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Undefined Behavior
This document is an educational document that tries to explain the concept
of “Undefined behavior” in the C programming language. It is the combined
efforts of the ISO WG14’s Undefined Behavior Study group, to clarify the term,
and its implications.

ISO C defines undefined behavior (UB) in Section 3.4.3 as:

behavior, upon use of a nonportable or erroneous program construct
or of erroneous data, for which this document imposes no require-
ments

Note 1 to entry: Possible undefined behavior ranges from ignor-
ing the situation completely with unpredictable results, to behaving
during translation or program execution in a documented manner
characteristic of the environment (with or without the issuance of a
diagnostic message), to terminating a translation or execution (with
the issuance of a diagnostic message).

Note 2 to entry: J.2 gives an overview over properties of C programs
that lead to undefined behavior.

Note 3 to entry: Any other behavior during execution of a program is
only affected as a direct consequence of the concrete behavior that
occurs when encountering the erroneous or non-portable program
construct or data. In particular, all observable behavior (5.1.2.4)
appears as specified in this document when it happens before an
operation with undefined behavior in the execution of the program.

Inherent to the ISO specification of the C programming language is the concept
that a set of behaviors are undefined. From this the specification derives several
strengths as well as several weaknesses. UB allows a platform to either define
platform-specific behaviors or ignore the possibility of an erroneous state. The
language does not require a platform to detect these errors.

Undefined behavior is used in many places in the C standard and for several
reasons such as:

• Simplicity: C is a relatively small and widely implemented language and
it remains so partially because implementations are not required to define
behaviors for many things.
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• Performance: Declaring some behaviors to be undefined allows for better
performance. (This will be discussed in more detail later in this paper.)
Some behaviors differ between hardware platforms so greatly that defining
and requiring one specific behavior would penalize hardware architectures
that implement an alternative behavior.

• Detectability: Many problematic states that a program can enter are
hard or expensive for the implementation to detect. UB therefore shifts
the burden of detection onto the programmer to guarantee their program
will not enter such a state.

• Extensibility: Where a behavior is not defined, a platform can choose
to implement a specific extension of the language that adds additional
features. Many compilers add extensions in one form or another.

• Historical reasons: Some behaviors cannot be defined today because
platforms have implemented divergent choices that existing software relies
on. Therefore, defining these UBs would break some existing platforms
and the programs that rely on them.

Undefined behavior can either be explicitly specified in the standard or remain
implicit if the standard does not define a behavior. The C standards body has a
goal to document all UB in the C standard, but identifying all UB is a difficult
and laborious task. The standard states that the rules for undefined behavior
extend to behavior that is not specified by the standard.

Additionally, there are paragraphs in the standard where it is unclear whether a
behavior is defined or not. This can mean that some platforms treat a behavior
as defined while others treat it as undefined. For example, the standard states
that the first member of a struct has a zero offset from the struct itself. Some
argue that this means that the first member of the struct therefore must have
the same pointer address as the struct while others argue that it is undefined if
the struct has the same address as its first member, as the standard does not
explicitly resolve this ambiguity.

Other types of behavior in the C standard.
Beyond undefined behavior, the C standard defines a range of terms for behav-
iors. Unlike undefined behavior, each of these terms do define a constrained
behavior where the implementation has some form of responsibility to uphold,
even if it may differ between implementations.

• Implementation-defined behavior: The behavior is chosen by the im-
plementation. Unlike Undefined behavior, a conforming implementation
must choose a dependable behavior and document this behavior, so that
it can be relied on by users.

• Unspecified behavior: Behavior where the standard offers 2 or more
options for implementations to choose from.

• Locale-specific behavior: A behavior that depend on local conventions
of nationality, culture, and language that each implementation documents.
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• Constraint: This is a restriction of the language, either syntactic or
semantic. It usually results in a compilation error.

• Runtime-constraints: A constraint that defines limitations of the C
standard library. These are limitations that can apply to how the program
uses the standard library and are therefore usually encountered at run
time.

• Diagnostic message: Is when the standard mandates that a conforming
implementation issue a message to the user. Usually this happens in the
form of a warning or error.

All of these are different from Undefined Behavior in that, while they may
produce different behaviors on different implementations, they do represent be-
haviors that a user can depend on, in a ISO compliant C implementation.

UB that is Assigned a Platform-Defined Behavior
The C standard states that any platform is free to detect UB and to provide
platform-specific behavior and document this behavior if it wishes. In this sense,
what is in strict ISO C terms “UB” may be well-defined behavior on a particular
implementation.

This can be very useful, because it enables implementers to extend C’s capabil-
ities, and thereby grants users access to platform-specific features. While the C
language is designed to enable cross-platform development, developers are free
to only support a limited set of platforms. For example, there are implemen-
tations of C that do define the behavior of out-of-bounds array writes, signed
integer overflow, and dereferencing null pointers.

For brevity, unless otherwise noted, this document will consider UB only in
cases where the implementation has not defined a platform-specific behavior or
implementation-specific behavior.

Detecting UB
Consider the following code:

int a[5];
a[x] = 0;

What should happen if x is 42? A language design could issue an error, exit
the program, or resize the array, among other choices. However, any of these
choices would require the implementation of the language to perform a test to
see if the value is within the valid range of the array.

int a[5];
if (x < 0 || x >= 5) {
/* Handle out-of-bounds write */

} else {
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a[x] = 0;
}

This range check would add work for the compiler and execution environment.
Adding any requirement to detect if the assignment is out of bounds would
come at a cost in run time performance, and complexity. Not only would the
implementation have to check each access to the array, but it would also have
to keep track of valid array ranges.

C is designed to be fast, simple, and easily implementable; this is why C does not
require any detection of out-of-bounds states. Consequentially C cannot define
a behavior for a state that isn’t detected. The behavior must be undefined.

It is a common misconception that all undefined behavior in the standard stems
from oversights, or to the standard body’s failure to agree on an appropriate
behavior. The above example clearly shows that it is not practical to define any
consistent behavior for out-of-bounds array access without imposing consider-
able burden on the implementation to detect the state. The cost of detecting
an erroneous state prevents the language from defining any behavior should it
occur.

Furthermore, if the standard were to require a program to exit on an out-of-
bounds write, then the following piece of code would become a valid way to exit
a program:

int a[5];
a[24] = 0;

This is not a good way to deliberately exit a program. It is preferred that a
program exit in a manner that the standard explicitly documents as exiting,
such as by calling a function named exit.

Reconsider this code:

int a[5];
a[x] = 0;

Another interpretation of the above code is that if there are no requirements for
an implementation to handle an out-of-bounds access, then the code contains
an implicit contract that x can only be between 0 and 4. The implementation
can then assume that the user is aware of the contract and consents to it, even
if the implementation cannot by itself determine that the contract is valid by
analysis of the possible values x may hold. The implementation therefore need
not check the value of x.

If the user cannot guarantee that x is within range, they can rewrite the code:

int a[5];
if (x >= 0 && x < 5)
a[x] = 0;
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One big reason that many behaviors are undefined is that detecting these un-
defined behaviors may be difficult to do at compile time, or it may impose too
much of a performance penalty at run time.

The existence of undefined behavior implies conversely that when a program
has no undefined behavior, its behavior is well-specified by the ISO C standard
and the platform on which it runs. This is a promise or contract between the
ISO C standard, the platform, and the developer. If the program violates this
promise, the result can be anything, and is likely to violate the user’s intentions,
and will not be portable. We will call this promise the “Assumed Absence of
UB”.

A C program that enters a state of UB can be considered to contain an error
that the platform is under no obligation to catch or report and the result could
be anything.

Assumed Absence of UB: the Contract between the Stan-
dard, Developer, and Implementation
Consider this code:

x = (x * 4) / 4;

From a mathematical perspective, this operation should not change the value of
x. The multiplication and the division should cancel each other out. However,
when calculated in a computer, x * 4 may result in a value that may not be
expressed using the type of x. If x is an unsigned 32-bit integer with the value
2,000,000,000 and it is multiplied by 4, the operation could wrap on a 32-bit
platform and produce 3,705,032,704. The subsequent division by 4 will then
produce 926,258,176. Since the standard declares that operations on unsigned
integers have defined wrapping behavior, the two operations do not cancel each
other out.

If we instead perform the same operation using signed integer types, things
might change because signed integer overflow is UB. By using a signed integer,
the programmer has agreed to the contract that no operations using the type will
ever produce overflow. Therefore, the optimizer is free to ignore any potential
overflow, and can assume that the two operations cancel each other out. This
mean that there is a significant optimization advantage in declaring that signed
integer overflow is UB.

The assumption that the program contains no UB is a powerful tool that com-
pilers can employ to analyze code to find optimizations. If we assume that a
program contains no UB, we can use this information to learn about the ex-
pected state of the execution. Consider:

int a[5];
a[x] = 0;

5



If x is any value below 0 or above 4, the code contains UB. On many plat-
forms, a[-1] and a[5] would be assigned to addresses outside the bounds of a.
Without requiring implementations to explicitly add bounds checks, it becomes
impossible to predict the side effects of an out-of-bounds write. The implementa-
tion is therefore allowed to assume that UB will not happen. This phenomenon
is known as “Assumed Absence of UB”, and it lets compilers make further de-
ductions. By writing the above code, the programmer respects a contract with
the compiler that x will never exceed the bounds of the array.

If we consider:

int a[5];
a[x] = 0;
if (x > 5) {
// ...

}

In this case, since the compiler assumes x must be between 0 and 4, the if
statement cannot possibly be true. This allows the compiler to optimize away
the if statement entirely. This completely conforms to the standard, but it
removes some predictability of UB, and can make programs with UB much
harder to debug. The out-of-bounds write no longer causes a predictable wild
write and it also causes an if statement to be removed.

A common bug is to try to detect and avoid signed integer overflow with code
like this:

if (x + 1 > x) {
x++;

}

If we assume that UB cannot happen, then we must assume the if condition
must always be true. Consequently, many compilers will optimize away the if
statement entirely.

The confluence of UB and more aggressive but standards-compliant compiler
optimizations exposes latent bugs that may otherwise behave according to user
intentions. These bugs are characterized as hard to find and diagnose. These
bugs often do not appear at lower optimization levels. This means that such
bugs do not appear in executables that developers produce during development.
Consequently, these bugs can bypass many tests. Debuggers tend to operate on
on executables compiled with lower optimization settings, where many of these
issues do not show up. This makes it harder to find and fix these bugs.

An early example of a vulnerability arising from such aggressive optimization is
CERT vulnerability 162289.
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State of UB
A common consideration when discussing UB is the question of when UB is
invoked. While some have argued that programs that are able to procure UB
have no requirements whatsoever, it is the position of the WG14 UB Study
Group that a program must first reach a state of UB before the requirements
of the language standard are suspended. This view is shared by implementers,
who have had a history of classifying instances where this isn’t true as compiler
bugs.

Consider the following:

int a[5], x;
scanf("%i", &x);
a[x] = 0;

In this example, a user-provided index is used to access an array of five ele-
ments. While this program may be bad form, it is well-defined until and unless
scanf sets x to outside the range of the array. The developer has (implicitly)
guaranteed that the index used to access the array will stay within the bounds
of the array, but this guarantee is maintained outside of the program. Many
programs depend on input strictly conforming to a set of requirements to oper-
ate correctly. While this may present safety and security issues, the developers
must weigh those considerations against other factors, such as performance.
Even a strictly-conforming program could enter a state of UB under some en-
vironmental circumstances. A program is only erroneous when it reaches UB.
An implementation is not released from complying with the ISO C standard
because UB is possible when executing that program; the implementation is
released only once the program has entered a state of UB.

Observability
A core tenet of the C standard is the “as-if” rule. This rule states that an
implementation is not required to operate in the way the program is strictly
written, so long as the implementation’s observable behavior (defined in C23,
s5.1.2.3p6) is identical to the program. The program must behave, but not
operate, as if the written program was executed.

This means that the actual program behavior can vary radically depending on
how an implementation is able to transform the program, as long as its observ-
able behavior remains constant. For example, two non-observable operations
can be reordered. Consider:

int a, b;
a = 0;
b = 1;

These are two non-observable assignments (because neither a nor b is volatile).
As two independent operations they are not required to be executed in any par-
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ticular order. They may in fact be executed concurrently. If we then consider:

*p = 0;
x = 42 / y;

These two operations are also non-observable operations, however both opera-
tions can produce UB (either by p pointing to a invalid address, or y producing
a divide by zero). Because the operations are non-observable, they may be re-
ordered. If y is zero, there is no guarantee that *p is written before the program
enters a state of UB.

Time Travel
Because any non-observable operation can be reordered and transformed, a
program might reach a state of UB in an ordering not explicitly expressed in
the source code. Due to the assumed absence of UB, and the “as-if” rule, a
program can show symptoms of UB before any actual UB is encountered during
program execution. Consider:

int a[5];
if (x < 0 || x >= 5)

y = 0;
a[x] = 0;

Using assumed absence of UB, the implementation can determine that x must
be a value between 0 and 4, and therefore the if statement can be removed.
This cases an out-of-order behavior known as “time traveling UB”, where a
program bug causes unintended consequences before the UB is encountered
during program execution. It is as if the UB traveled backwards in time from
the array access to the if statement.

Time traveling UB is permitted if it does not interfere with observable behavior
that occurs before entering a state of UB. Consider:

int a[5];
if (x < 0)

y = 0;
if (x >= 5)

printf("Error!\n");
a[x] = 0;

In this case, the call to printf is an observable event, and any re-ordering
requires it to execute correctly unless it is preceded by a state of UB. The
compiler is not permitted to optimize away the second if statement. The first if
statement however has no impact on the observable behavior and can therefore
be removed.

Note: Historically, there have been cases where time travel has impacted observ-
able state. Implementers have generally considered these to be implementation
bugs. To clarify that they indeed are bugs, the document [N3128 Uecker] was
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proposed and accepted for c23. It adds the non-normative 3rd Note that clarifies
the issue in the standard.

Static UB
Consider this code:

int a[5];
a[42] = 0;

Every time this code runs, it will produce UB. The state of UB does not depend
on any dynamic or external factors other than the code being executed. We
choose to define this type of UB as “static UB”, because it only depends on
variables that are known at compile time. The term “static UB” is somewhat
complicated because different implementations have differing abilities to detect
UB at compile time. Consider:

int a[5];
if (x > 0) {
y = 42;

} else {
y = MAX_INT;

}
a[y] = 0;

This code also contains static UB but requires a more complex analysis to reach
that conclusion. The term “static UB” denotes any UB that is not dependent
on runtime state. An implementation is under no obligation to detect static UB,
but if an implementation does detect static UB we have recommendations for
how to proceed. Static UB denotes expressions that always produce UB even if
it’s not proven that the expression will ever be evaluated.

UB is Erroneous
Any statement that produces a state of UB (with the exception of the
unreachable() macro) is erroneous, unless an implementation has defined its
own behavior for that statement. An implementation is under no obligation
to detect any UB. If, however, the implementation doesn’t detect static UB, it
is free to assume the statement will not produce UB. Therefore any static UB
(again, excepting unreachable()) should be considered a developer error and
not an intended use of the language. In these cases, an implementation should
issue an error with an appropriate diagnostic when it detects UB.

An implementation can assume that a program will not enter a state of UB, but
no implementation should assume that a program that reaches a state of UB is
intentional.

Consider again:
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int a[5];
a[x] = 0;

The assignment may or may not produce UB. In this case if we follow the rule
“assumed absence of UB”, we can assume that x must be between 0 and 4. The
assignment is an assignment, but it also provides a hint to the compiler as to
what x may be. If we then add:

int a[5];
a[x] = 0;
if (x > 4)
...

The if statement here can be considered dead code and optimized away. The if
statement doesn’t produce UB, it just cannot happen without UB. If we instead
consider:

int a[5];
if (x > 4) {
a[x] = 0;

}

Again, this code may or may not trigger UB, but if the assignment is ever
executed it is guaranteed to trigger UB. (Note that an implementation is not
required to detect the UB). In other words, the UB is static, but only if the
assignment is executed.

The correct interpretation of the detected static UB is that the code is erroneous.
It is incorrect to interpret the above code as a valid way for the user to express
that x is 4 or less. The “assumed absence of UB” rule only applies to the
way a construct can be assumed to be executed, not that a construct that
always produces UB will never be executed. 0ne divided by X, lets the compiler
assume X is not zero, and X divided by zero should cause the compiler to assume
unintended user error.

The one exception to this is the unreachable() macro. The unreachable()
macro is the only way for a user to express that a statement can be assumed to
never be executed. Incidentally, executing unreachable() is UB, but it should
not be regarded as equivalent to other UB in this regard.

For example:

if (x > 4)
unreachable();

This is a correct way to express that a compiler can assume that x is smaller or
equal to 4. Despite unreachable() being UB, it is not equivalent to:

if (x > 4)
x /= 0;
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Division by zero is UB, but unlike unreachable(), it is assumed to be a user
error. The unreachable() macro can therefore not be implemented by the user
by producing UB in some way other than the unreachable() macro. UB is also
erroneous even when it can be determined never to be executed. The following
can be detected as erroneous:

if (0)
x /= 0;

C is designed to make naive, as well as highly optimizing implementations pos-
sible. The C standard therefore places no requirements or limits on the efforts
an implementation takes to analyze the code. Whichever erroneous UB may be
detected will therefore vary between implementations.

Apparent predictable behavior of UB
Operating systems and even hardware have been designed to mitigate the side
effects of unintentional UB, or deliberate sabotage using UB, with features such
as protection of the memory containing the executable or execution stack. Due
to some of these protections, some UB is predictably caught at run time. This
mitigates the unpredictable nature of UB and improves the stability and security
of the system. However, this can also give the false impression that some UB
has predictable side effects. While dereferencing null pointers is technically UB,
doing so has a very predictable outcome (a trap) on many platforms. Even
if the behavior of dereferencing null is reliable on a platform, the compilers’
assumption that the code will not dereference null will make it unreliable.

Some UB was initially included in the C standard because the standard wanted
to allow for different platform designs. Over the years, some designs have grown
so dominant that few developers will ever encounter a platform that does not
conform to these dominant designs. One example of this is two’s-complement
arithmetic, which causes signed integer overflow to wrap.

This means that many UBs have predictable behavior on most platforms: | UB |
Convention | |—-|————| | Dereferencing null pointer | Traps | | Signed integer
overflow | Wraps | | Using the offset between 2 allocations | Treats pointers
as integer addresses | | Comparing the pointer to freed memory with a newly
allocated pointer | Treats pointers as integer addresses | | Reading uninitialized
memory | You get whatever is there |

Such behavior is not defined by the C standard but can seem to be predictable.
Predictability is of great value to most developers. The knowledge of how the
underlying platform operates lets the developer predict and diagnose bugs. A
trapped null pointer dereference is easy to find in a debugger. In fact, a pro-
grammer may deliberately add a null pointer dereference to a program to invoke
a core dump. In MSVC uninitialized memory is initialized to 0xCDCDCDCD, a
pattern that is instantly recognizable for any experienced Windows programmer.
[https://en.wikipedia.org/wiki/Magic_number_(programming)] If the sum of
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two large positive signed integers results in a negative value, a wise programmer
will suspect signed integer overflow which happened to wrap.

This apparent predictability of many types of UB hides the fact that UB is
not predictable. This causes many programmers to either not realize that some
of these behaviors are undefined or confuse UB with implementation-defined
behavior. They may believe that UB is defined in the C standard and UBs
may be non-portable, but they may assume that the behavior of their platform
applies to all platforms, or other hosts of their machine’s platform. This faulty
assumption creates a variety of hard-to-diagnose issues that we will explore
further.

An out-of-bounds write may have a wide range of consequences as it can disturb
many kinds of state. However, most developers would assume that an out-of-
bounds write is executed as a write operation, which is not true in general. If we
consider another UB such as signed integer overflow, it is even less predictable
that a simple arithmetic operation can have a wide range of unpredictable out-
comes.

Compiler restraint
Undefined behavior in C gives an implementation wide latitude to optimize the
code. This freedom has enabled implementers to successively generate faster and
faster machine code, which enables significant reduction in computing time and
energy consumption for a wide range of workloads. C is the de facto benchmark
for efficiency that other languages are compared against and strive to match.

Significant portions of UB, such as Aliasing, Provenance and Overflow are specif-
ically designed to enable implementations to make optimizations. Violating
these categories of UB is likely to cause unpredictable behavior only when an
implementation engages with these opportunities to optimize code.

As many implementations support varying levels of optimizations, a perception
has formed in parts of the C community that compilers, at higher levels of
optimizations, ignore the C standard and “break” code. This is a misconcep-
tion. Most C implementations are consistent with the C standard even at the
highest levels of optimization settings. Optimizations reveal existing bugs in
the source code much more often than they reveal bugs in the compiler. These
bugs are usually in violation of the C standard even when the program operates
consistently with the developers’ expectations.

The higher a level of optimization is employed, the more bugs are exposed, but as
the code is further transformed, it also becomes harder to debug. Many tools like
debuggers depend on low levels of optimizations to be able to correctly associate
the binary’s execution to the source code. This compounds the difficulty of
diagnosing UB bugs.

Given the misconception that optimizations break code, rather than reveal la-
tent bugs, implementers often unfairly get blamed for issues arising from UB.
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This has made many compilers avoid making certain optimizations, even when
supported by the specification, if they anticipate a user backlash. This creates
a gray area, where unsound code that contains UB may have an undocumented
reliable or semi-reliable behavior. This gray area comes at the cost of denying
performance afforded by the standard to compliant code.

Safety and security
C is regarded as an “unsafe language”. This is, in the strictest sense, not true.
The C standard does not require an implementation to check for several errors,
but it also does not prevent an implementation from doing so. Hence, each
implementation may choose the level of safety guaranteed.

In practice, C is an unsafe language because the most popular implementations
of C choose not to make many additional guarantees, but instead choose to
prioritize performance and power efficiency. As such, C is perceived as a de
facto unsafe language because that is how most users have chosen to use it.

There are safer implementations, but these are predominantly used to detect
issues during development rather than to add additional protections to deploy-
ment. One such implementation is Valgrind, whose default tool “memcheck”
detects out-of-bounds reads and writes to memory on the heap, as well as unini-
tialized reads, use-after-free errors, and memory leaks. Valgrind achieves these
safety constraints at a significant performance cost. Many different implemen-
tations such as GCC, LLVM and MSVS offer various tools for detecting and
diagnosing UB. Several static analyzers also exist to alleviate this problem.

Users can also write their own memory tracking shims to detect small out-of-
bounds writes, double frees, memory consumption and memory leaks, using
macros:

#define malloc(n) my_debug_mem_malloc(n, __FILE__, __LINE__) /* Replaces malloc. */
#define free(n) my_debug_mem_free(n, __FILE__, __LINE__) /* Replaces free. */

While not in any way mandated by the C specification, the prevailing modus
operandi of C users consists of using safety-related tools to detect issues during
development, rather than as backstops during deployment. A major drawback
of this approach is that since UB is a state that often cannot be definitively
detected until it occurs at run time, there is no easy way to definitively guarantee
that a program will not enter a state of UB.

Despite this, it is worth noting that some of the most trusted software in the
world, like the Linux kernel, Apache, MySQL, Curl, OpenSSL and Git are
written in C. The simplicity of C makes it significantly easier to read and detect
issues.

C does suffer when the standard is unclear, particularly in areas of the memory
model and concurrent execution. Rules about aliasing, active type, thread safety,
and volatile leaves a lot open to interpretation as to what is UB, and what
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is not. On many of these issues there is a lack of consensus within WG14.
Most implementations do support behaviors that in the strictest reading of the
standard would be considered UB simply because of user expectation, and to be
able to compile important existing software. In this sense most implementation
deviate from the standard, but how and how much they deviate varies. Some
projects like the Linux Kernel, has explicitly opted out of these ambiguities and
defined their own requirements.

Advice for Developers and Implementers
As this document has hopefully illustrated, Undefined Behavior in the context
of C is complex. To simply say that its behavior has been omitted from the
standard does not convey this complexity.

C is designed to be a language that trusts the developer. In the case of UB,
developers should interpret this to mean “Trust the developer not to initiate
UB”, rather than “The developer can trust UB if they know the underlying
implementation and platform”. The Undefined Behavior Study Group therefore
strongly advises developers to avoid any UB, unless a platform has explicitly
defined that behavior. Testing to determine what observable effect use of a
nonportable or erroneous program construct has on your platform is insuffi-
cient cause for assuming the UB will consistently have the same behavior on
all platforms, including the next one that your code will run on. Only trust an
implementation’s explicit documentation of a language extension that defines a
behavior. We advise that implementations clearly document any language ex-
tensions that replace undefined behavior so that users can differentiate between
such extensions and seemingly predictable but still unintended behavior.

A computer language is a tool for humans to communicate with computers, but
it is also a tool for computers to communicate with humans. Humans spend
more time reading the code they write and trying to figure out why its behavior
does not match their expectations, than computers do. Traditionally implemen-
tations have been black boxes that users must rely on, without understanding
how they operate. UB shows that this approach causes issues, because modern
compilers do not operate like many users expect them to. We would therefore
recommend that implementations try to find ways to be more transparent with
their transformations. The ability for users to inspect code that has been trans-
formed could reveal out-of-order issues, code removal, load/store omissions and
other non-obvious transformations. We recognize that this involves significant
user interface and architectural challenges.
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