
ISO/IEC 9899:202y (en) — n3299 working draft

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:202y

Information technology — Programming languages — C

Reply To: JeanHeyd Meneide <wg14@soasis.org>

Freek Wiedijk <freek@cs.ru.nl>

Abstract

(This cover sheet to be replaced by ISO.)

This document specifies the form and establishes the interpretation of programs expressed in the
programming language C. Its purpose is to promote portability, reliability, maintainability, and
efficient execution of C language programs on a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C language execution
library. Annexes summarize aspects of both of them, and enumerate factors that influence the
portability of C programs.

Although this document is intended to guide knowledgeable C language programmers as well as
implementers of C language translation systems, the document itself is not designed to serve as a
tutorial.

Recipients of this draft are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

After the end of the C23 cycle, work began on so-called "C2y", the next projected edition of this
document on January 24.

January 2024

The following changes were made on or after the January 2024 meeting:

— N3192: Sequential hexdigits.

— Editorial: Adjusted a footnote in Annex K from "reserved" to "potentially reserved".

© ISO/IEC 202y — All rights reserved

Abstract — i

mailto:wg14@soasis.org
mailto:freek@cs.ru.nl

ISO/IEC 9899:202y (en) — n3299 working draft

© ISO/IEC 202y — All rights reserved

Abstract — ii

ISO/IEC 9899:202y (en) — n3299 working draft

Contents

Foreword xii

Introduction xiii

1 Scope 1

2 Normative references 2

3 Terms, definitions, and symbols 3

4 Conformance 9

5 Environment 11

5.1 Introduction . 11

5.2 Conceptual models . 11

5.2.1 Translation environment . 11

5.2.2 Execution environments . 12

5.3 Environmental considerations . 19

5.3.1 Character sets . 19

5.3.2 Multibyte characters . 20

5.3.3 Character display semantics . 21

5.3.4 Signals and interrupts . 21

5.3.5 Environmental limits . 21

6 Language 36

6.1 Notation . 36

6.2 Concepts . 36

6.2.1 Scopes of identifiers, type names, and compound literals 36

6.2.2 Linkages of identifiers . 37

6.2.3 Name spaces of identifiers . 38

6.2.4 Storage durations of objects . 38

6.2.5 Types . 39

6.2.6 Representations of types . 43

6.2.7 Compatible type and composite type . 44

6.2.8 Alignment of objects . 46

6.2.9 Encodings . 46

6.3 Conversions . 47

6.3.1 Introduction . 47

6.3.2 Arithmetic operands . 47

© ISO/IEC 202y — All rights reserved

Contents — iii

ISO/IEC 9899:202y (en) — n3299 working draft

6.3.3 Other operands . 50

6.4 Lexical elements . 53

6.4.1 General . 53

6.4.2 Keywords . 54

6.4.3 Identifiers . 55

6.4.4 Universal character names . 57

6.4.5 Constants . 58

6.4.6 String literals . 68

6.4.7 Punctuators . 69

6.4.8 Header names . 70

6.4.9 Preprocessing numbers . 71

6.4.10 Comments . 71

6.5 Expressions . 73

6.5.1 General . 73

6.5.2 Primary expressions . 74

6.5.3 Postfix operators . 75

6.5.4 Unary operators . 82

6.5.5 Cast operators . 84

6.5.6 Multiplicative operators . 85

6.5.7 Additive operators . 86

6.5.8 Bitwise shift operators . 87

6.5.9 Relational operators . 87

6.5.10 Equality operators . 88

6.5.11 Bitwise AND operator . 89

6.5.12 Bitwise exclusive OR operator . 89

6.5.13 Bitwise inclusive OR operator . 90

6.5.14 Logical AND operator . 90

6.5.15 Logical OR operator . 90

6.5.16 Conditional operator . 91

6.5.17 Assignment operators . 92

6.5.18 Comma operator . 95

6.6 Constant expressions . 96

6.7 Declarations . 98

6.7.1 General . 98

6.7.2 Storage-class specifiers . 99

6.7.3 Type specifiers . 104

6.7.4 Type qualifiers . 121

6.7.5 Function specifiers . 125

6.7.6 Alignment specifier . 126

6.7.7 Declarators . 127

© ISO/IEC 202y — All rights reserved

Contents — iv

ISO/IEC 9899:202y (en) — n3299 working draft

6.7.8 Type names . 133

6.7.9 Type definitions . 134

6.7.10 Type inference . 135

6.7.11 Initialization . 137

6.7.12 Static assertions . 143

6.7.13 Attributes . 143

6.8 Statements and blocks . 153

6.8.1 General . 153

6.8.2 Labeled statements . 154

6.8.3 Compound statement . 154

6.8.4 Expression and null statements . 154

6.8.5 Selection statements . 155

6.8.6 Iteration statements . 156

6.8.7 Jump statements . 157

6.9 External definitions . 160

6.9.1 General . 160

6.9.2 Function definitions . 160

6.9.3 External object definitions . 162

6.10 Preprocessing directives . 164

6.10.1 General . 164

6.10.2 Conditional inclusion . 167

6.10.3 Source file inclusion . 171

6.10.4 Binary resource inclusion . 172

6.10.5 Macro replacement . 179

6.10.6 Line control . 186

6.10.7 Diagnostic directives . 187

6.10.8 Pragma directive . 187

6.10.9 Null directive . 188

6.10.10 Predefined macro names . 188

6.10.11 Pragma operator . 190

6.11 Future language directions . 191

6.11.1 Floating types . 191

6.11.2 Linkages of identifiers . 191

6.11.3 External names . 191

6.11.4 Character escape sequences . 191

6.11.5 Storage-class specifiers . 191

6.11.6 Pragma directives . 191

6.11.7 Predefined macro names . 191

7 Library 192

© ISO/IEC 202y — All rights reserved

Contents — v

ISO/IEC 9899:202y (en) — n3299 working draft

7.1 Introduction . 192

7.1.1 Definitions of terms . 192

7.1.2 Standard headers . 192

7.1.3 Reserved identifiers . 193

7.1.4 Use of library functions . 194

7.2 Diagnostics <assert.h> . 196

7.2.1 General . 196

7.2.2 Program diagnostics . 196

7.3 Complex arithmetic <complex.h> . 197

7.3.1 Introduction . 197

7.3.2 Conventions . 197

7.3.3 Branch cuts . 198

7.3.4 The CX_LIMITED_RANGE pragma . 198

7.3.5 Trigonometric functions . 198

7.3.6 Hyperbolic functions . 200

7.3.7 Exponential and logarithmic functions . 201

7.3.8 Power and absolute-value functions . 202

7.3.9 Manipulation functions . 203

7.4 Character handling <ctype.h> . 206

7.4.1 General . 206

7.4.2 Character classification functions . 206

7.4.3 Character case mapping functions . 208

7.5 Errors <errno.h> . 210

7.6 Floating-point environment <fenv.h> . 211

7.6.1 General . 211

7.6.2 The FENV_ACCESS pragma . 213

7.6.3 The FENV_ROUND pragma . 214

7.6.4 The FENV_DEC_ROUND pragma . 217

7.6.5 Floating-point exceptions . 218

7.6.6 Rounding and other control modes . 220

7.6.7 Environment . 222

7.7 Characteristics of floating types <float.h> . 225

7.8 Format conversion of integer types <inttypes.h> . 226

7.8.1 General . 226

7.8.2 Macros for format specifiers . 226

7.8.3 Functions for greatest-width integer types . 227

7.9 Alternative spellings <iso646.h> . 229

7.10 Characteristics of integer types <limits.h> . 230

7.11 Localization <locale.h> . 231

7.11.1 General . 231

© ISO/IEC 202y — All rights reserved

Contents — vi

ISO/IEC 9899:202y (en) — n3299 working draft

7.11.2 The setlocale function . 231

7.11.3 Numeric formatting convention inquiry . 232

7.12 Mathematics <math.h> . 238

7.12.1 General . 238

7.12.2 Treatment of error conditions . 241

7.12.3 The FP_CONTRACT pragma . 242

7.12.4 Classification macros . 242

7.12.5 Trigonometric functions . 245

7.12.6 Hyperbolic functions . 250

7.12.7 Exponential and logarithmic functions . 252

7.12.8 Power and absolute-value functions . 260

7.12.9 Error and gamma functions . 263

7.12.10 Nearest integer functions . 265

7.12.11 Remainder functions . 269

7.12.12 Manipulation functions . 271

7.12.13 Maximum, minimum, and positive difference functions 273

7.12.14 Fused multiply-add . 278

7.12.15 Functions that round result to narrower type 278

7.12.16 Quantum and quantum exponent functions 280

7.12.17 Decimal re-encoding functions . 282

7.12.18 Comparison macros . 284

7.13 Non-local jumps <setjmp.h> . 287

7.13.1 General . 287

7.13.2 Save calling environment . 287

7.13.3 Restore calling environment . 287

7.14 Signal handling <signal.h> . 289

7.14.1 General . 289

7.14.2 Specify signal handling . 289

7.14.3 Send signal . 291

7.15 Alignment <stdalign.h> . 292

7.16 Variable arguments <stdarg.h> . 293

7.16.1 General . 293

7.16.2 Variable argument list access macros . 293

7.17 Atomics <stdatomic.h> . 297

7.17.1 Introduction . 297

7.17.2 Initialization . 298

7.17.3 Order and consistency . 299

7.17.4 Fences . 301

7.17.5 Lock-free property . 302

7.17.6 Atomic integer types . 303

© ISO/IEC 202y — All rights reserved

Contents — vii

ISO/IEC 9899:202y (en) — n3299 working draft

7.17.7 Operations on atomic types . 304

7.17.8 Atomic flag type and operations . 306

7.18 Bit and byte utilities <stdbit.h> . 308

7.18.1 General . 308

7.18.2 Endian . 308

7.18.3 Count Leading Zeros . 309

7.18.4 Count Leading Ones . 309

7.18.5 Count Trailing Zeros . 309

7.18.6 Count Trailing Ones . 310

7.18.7 First Leading Zero . 310

7.18.8 First Leading One . 311

7.18.9 First Trailing Zero . 311

7.18.10 First Trailing One . 312

7.18.11 Count Zeros . 313

7.18.12 Count Ones . 313

7.18.13 Single-bit Check . 313

7.18.14 Bit Width . 314

7.18.15 Bit Floor . 314

7.18.16 Bit Ceiling . 315

7.19 Boolean type and values <stdbool.h> . 316

7.20 Checked Integer Arithmetic <stdckdint.h> . 317

7.20.1 General . 317

7.20.2 Checked Integer Operation Type-generic Macros 317

7.21 Common definitions <stddef.h> . 318

7.21.1 General . 318

7.21.2 The unreachable macro . 319

7.21.3 The nullptr_t type . 320

7.22 Integer types <stdint.h> . 321

7.22.1 General . 321

7.22.2 Integer types . 321

7.22.3 Widths of specified-width integer types . 323

7.22.4 Width of other integer types . 323

7.22.5 Macros for integer constants . 324

7.22.6 Maximal and minimal values of integer types 324

7.23 Input/output <stdio.h> . 325

7.23.1 Introduction . 325

7.23.2 Streams . 327

7.23.3 Files . 328

7.23.4 Operations on files . 329

7.23.5 File access functions . 331

© ISO/IEC 202y — All rights reserved

Contents — viii

ISO/IEC 9899:202y (en) — n3299 working draft

7.23.6 Formatted input/output functions . 334

7.23.7 Character input/output functions . 352

7.23.8 Direct input/output functions . 355

7.23.9 File positioning functions . 356

7.23.10 Error-handling functions . 358

7.24 General utilities <stdlib.h> . 360

7.24.1 General . 360

7.24.2 Numeric conversion functions . 360

7.24.3 Pseudo-random sequence generation functions 367

7.24.4 Memory management functions . 368

7.24.5 Communication with the environment . 371

7.24.6 Searching and sorting utilities . 374

7.24.7 Integer arithmetic functions . 375

7.24.8 Multibyte/wide character conversion functions 376

7.24.9 Multibyte/wide string conversion functions 377

7.24.10 Alignment of memory . 378

7.25 _Noreturn <stdnoreturn.h> . 380

7.26 String handling <string.h> . 381

7.26.1 String function conventions . 381

7.26.2 Copying functions . 381

7.26.3 Concatenation functions . 383

7.26.4 Comparison functions . 384

7.26.5 Search functions . 385

7.26.6 Miscellaneous functions . 388

7.27 Type-generic math <tgmath.h> . 390

7.28 Threads <threads.h> . 395

7.28.1 Introduction . 395

7.28.2 Initialization functions . 396

7.28.3 Condition variable functions . 396

7.28.4 Mutex functions . 398

7.28.5 Thread functions . 400

7.28.6 Thread-specific storage functions . 402

7.29 Date and time <time.h> . 405

7.29.1 Components of time . 405

7.29.2 Time manipulation functions . 406

7.29.3 Time conversion functions . 409

7.30 Unicode utilities <uchar.h> . 415

7.30.1 General . 415

7.30.2 Restartable multibyte/wide character conversion functions 415

7.31 Extended multibyte and wide character utilities <wchar.h> 420

© ISO/IEC 202y — All rights reserved

Contents — ix

ISO/IEC 9899:202y (en) — n3299 working draft

7.31.1 Introduction . 420

7.31.2 Formatted wide character input/output functions 421

7.31.3 Wide character input/output functions . 434

7.31.4 General wide string utilities . 438

7.31.4.1 General . 438

7.31.4.2 Wide string numeric conversion functions 438

7.31.4.3 Wide string copying functions . 443

7.31.4.4 Wide string concatenation functions 444

7.31.4.5 Wide string comparison functions . 444

7.31.4.6 Wide string search functions . 446

7.31.4.7 Miscellaneous functions . 450

7.31.5 Wide character time conversion functions . 450

7.31.6 Extended multibyte/wide character conversion utilities 451

7.31.6.1 General . 451

7.31.6.2 Single-byte/wide character conversion functions 451

7.31.6.3 Conversion state functions . 451

7.31.6.4 Restartable multibyte/wide character conversion functions 452

7.31.6.5 Restartable multibyte/wide string conversion functions 454

7.32 Wide character classification and mapping utilities <wctype.h> 456

7.32.1 Introduction . 456

7.32.2 Wide character classification utilities . 456

7.32.2.1 General . 456

7.32.2.2 Wide character classification functions 456

7.32.2.3 Extensible wide character classification functions 459

7.32.3 Wide character case mapping utilities . 460

7.32.3.1 Wide character case mapping functions 460

7.32.3.2 Extensible wide character case mapping functions 460

7.33 Future library directions . 462

7.33.1 General . 462

7.33.2 Complex arithmetic <complex.h> . 462

7.33.3 Character handling <ctype.h> . 462

7.33.4 Errors <errno.h> . 462

7.33.5 Floating-point environment <fenv.h> . 462

7.33.6 Characteristics of floating types <float.h> . 462

7.33.7 Format conversion of integer types <inttypes.h> 462

7.33.8 Localization <locale.h> . 462

7.33.9 Mathematics <math.h> . 462

7.33.10 Signal handling <signal.h> . 463

7.33.11 Atomics <stdatomic.h> . 463

7.33.12 Boolean type and values <stdbool.h> . 463

© ISO/IEC 202y — All rights reserved

Contents — x

ISO/IEC 9899:202y (en) — n3299 working draft

7.33.13 Bit and byte utilities <stdbit.h> . 463

7.33.14 Checked Arithmetic Functions <stdckdint.h> 463

7.33.15 Integer types <stdint.h> . 463

7.33.16 Input/output <stdio.h> . 463

7.33.17 General utilities <stdlib.h> . 463

7.33.18 String handling <string.h> . 464

7.33.19 Date and time <time.h> . 464

7.33.20 Threads <threads.h> . 464

7.33.21 Extended multibyte and wide character utilities <wchar.h> 464

7.33.22 Wide character classification and mapping utilities <wctype.h> 464

Annex A (informative) Language syntax summary 465

Annex B (informative) Library summary 480

Annex C (informative) Sequence points 520

Annex D (informative) Universal character names for identifiers 521

Annex E (informative) Implementation limits 523

Annex F (normative) ISO/IEC 60559 floating-point arithmetic 526

Annex G (normative) ISO/IEC 60559-compatible complex arithmetic 557

Annex H (normative) ISO/IEC 60559 interchange and extended types 568

Annex I (informative) Common warnings 601

Annex J (informative) Portability issues 602

Annex K (normative) Bounds-checking interfaces 640

Annex L (normative) Analyzability 688

Annex M (informative) Change History 690

Bibliography 696

Index 697

© ISO/IEC 202y — All rights reserved

Contents — xi

ISO/IEC 9899:202y (en) — n3299 working draft

Foreword

1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

2 The procedures used to develop this document and those intended for its further maintenance
are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria
needed for the different types of document should be noted. This document was drafted in ac-
cordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or
www.iec.ch/members_experts/refdocs).

3 ISO and IEC draw attention to the possibility that the implementation of this document may involve
the use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability
of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO
and IEC had not received notice of (a) patent(s) which may be required to implement this document.
However, implementers are cautioned that this may not represent the latest information, which may
be obtained from the patent database available at www.iso.org/patents and patents.iec.ch. ISO and
IEC shall not be held responsible for identifying any or all such patent rights.

4 Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

5 For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

6 This document was prepared by Joint Technical Committee ISO/IEC JTC1, Information technology,
Subcommittee SC22, Programming languages, their environments and system software interfaces.

7 This fifth edition cancels and replaces the fourth edition (ISO/IEC 9899:2018), which has been
technically revised. The main changes are contained in Annex M.

8 Any feedback or questions on this document should be directed to the user’s national stan-
dards body. A complete listing of these bodies can be found at www.iso.org/members.html and
www.iec.ch/national-committees.

© ISO/IEC 202y — All rights reserved

Foreword — xii

https://www.iso.org/directives
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/patents
https://patents.iec.ch
https://www.iso.org/iso/foreword.html
https://www.iso.org/members.html
https://www.iec.ch/national-committees

ISO/IEC 9899:202y (en) — n3299 working draft

Introduction

1 With the introduction of new devices and extended character sets, new features could be added to
future editions of this document. Subclauses in the language and library clauses warn implementers
and programmers of usages which, though valid in themselves, could conflict with future additions.

2 Certain features are obsolescent, which means that they could be considered for withdrawal in future
revisions of this document. They are retained because of their widespread use, but their use in
new implementations (for implementation features) or new programs (for language [6.11] or library
features [7.33]) is discouraged.

3 This document is divided into four major subdivisions:

— preliminary elements (Clauses 1–4);

— the characteristics of environments that translate and execute C programs (Clause 5);

— the language syntax, constraints, and semantics (Clause 6);

— the library facilities (Clause 7).

4 In any given subsequent clause or subclause, there are section delineations in bold to describe the
semantics, restrictions, and behaviors of programs for this language and potentially the use of its
library clauses in this document:

— Syntax
which pertains to the spelling and organization of the language and library;

— Constraints
which detail and enumerate various requirements for the correct interpretation of the language
and library, typically during translation;

— Semantics
which explain the behavior of language features and similar constructs;

— Description
which explain the behavior of library usage and similar constructs;

— Returns
which describes the effects of constructs provided back to a user of the library;

— Runtime-constraints
which detail and enumerate various requirements that are expected to be checked and which
shall not be violated, typically during execution;

— Environmental limits
which list limitations an implementation may impose on a library or language construct which
might otherwise be unlimited;

— Recommended practice
which provides guidance and important considerations for implementers of this document.

5 Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
document. References are used to refer to other related subclauses. Recommendations are provided
to give advice or guidance to implementers. Annexes define optional features, provide additional

© ISO/IEC 202y — All rights reserved

Introduction — xiii

ISO/IEC 9899:202y (en) — n3299 working draft

information and summarize the information contained in this document. A bibliography lists
documents that were referred to during the preparation of this document.

6 The language clause (Clause 6) is derived from "The C Reference Manual"[15].

7 The library clause (Clause 7) is based on the 1984 /usr/group Standard[16].

© ISO/IEC 202y — All rights reserved

Introduction — xiv

ISO/IEC 9899:202y (en) — n3299 working draft

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:202y

Information technology — Programming languages — C

1. Scope

1 This document specifies the form and establishes the interpretation of programs written in the C
programming language. It is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementers and programmers. It specifies:

— the representation of C programs;

— the syntax and constraints of the C language;

— the semantic rules for interpreting C programs;

— the representation of input data to be processed by C programs;

— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.

2 This document does not specify:

— the mechanism by which C programs are transformed for use by a data-processing system;

— the mechanism by which C programs are invoked for use by a data-processing system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C program;

— the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a conform-
ing implementation.

3 Annex J gives an overview of portability issues that a C program can encounter.

§ 1 © ISO/IEC 202y — All rights reserved

General — 1

ISO/IEC 9899:202y (en) — n3299 working draft

2. Normative references

1 The following documents are referred to in the text in such a way that some or all their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments)
applies.

2 ISO/IEC 2382:2015, Information technology — Vocabulary.

3 ISO 4217, Codes for the representation of currencies.

4 ISO 8601 series, Data elements and interchange formats — Information interchange — Representation of
dates and times.

5 ISO/IEC 10646, Information technology —Universal Coded Character Set (UCS).

6 ISO/IEC 60559:2020, Information technology — Microprocessor Systems — Floating-Point arithmetic.

7 ISO 80000–2, Quantities and units — Part 2: Mathematics.

8 The Unicode Consortium. Unicode Standard Annex, UAX #44, Unicode Character Database [online].
Edited by Ken Whistler. Available at https://www.unicode.org/reports/tr44.

9 The Unicode Consortium. The Unicode Standard, Derived Core Properties. Available at https:
//www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt.

© ISO/IEC 202y — All rights reserved

General — 2

§ 2

https://www.unicode.org/reports/tr44
https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt

ISO/IEC 9899:202y (en) — n3299 working draft

3. Terms, definitions, and symbols

1 For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO 80000–2,
and the following apply.

2 ISO and IEC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

3 Additional terms are defined where they appear in italic type or on the left side of a syntax rule.
Terms explicitly defined in this document are not to be presumed to refer implicitly to similar terms
defined elsewhere.

3.1
1 access (verb)

⟨execution-time action⟩ read or modify the value of an object

2 Note 1 to entry: Where only one of these two actions is meant, "read" or "modify" is used.

3 Note 2 to entry: "Modify" includes the case where the new value being stored is the same as the previous
value.

4 Note 3 to entry: Expressions that are not evaluated do not access objects.

3.2
1 alignment

requirement that objects of a particular type be located on storage boundaries with addresses that
are particular multiples of a byte (3.7) address

3.3
1 argument

actual argument

DEPRECATED: actual parameter

expression in the comma-separated list bounded by the parentheses in a function call expression, or
a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a
function-like macro invocation

3.4
1 arithmetically negate

produce the negative of a given number

2 Note 1 to entry: For a floating-point number (5.3.5.3.3), this changes the sign; for an integer, this is equivalent
to subtracting from zero.

3.5
1 behavior

external appearance or action

3.5.1
1 implementation-defined behavior

unspecified behavior where each implementation documents how the choice is made

§ 3.5.1 © ISO/IEC 202y — All rights reserved

General — 3

https://www.iso.org/obp
https://www.electropedia.org/

ISO/IEC 9899:202y (en) — n3299 working draft

2 Note 1 to entry: J.3 gives an overview over properties of C programs that lead to implementation-defined
behavior.

3 EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit when a
signed integer is shifted right.

3.5.2
1 locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implemen-
tation documents

2 Note 1 to entry: J.4 gives an overview over properties of C programs that lead to locale-specific behavior.

3 EXAMPLE An example of locale-specific behavior is whether the islower function returns true for characters
other than the 26 lowercase Latin letters.

3.5.3
1 undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which
this document imposes no requirements

2 Note 1 to entry: Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a translation or execution
(with the issuance of a diagnostic message).

3 Note 2 to entry: J.2 gives an overview over properties of C programs that lead to undefined behavior.

4 Note 3 to entry: Any other behavior during execution of a program is only affected as a direct consequence of
the concrete behavior that occurs when encountering the erroneous or non-portable program construct or data.
In particular, all observable behavior (5.2.2.4) appears as specified in this document when it happens before an
operation with undefined behavior in the execution of the program.

5 EXAMPLE An example of undefined behavior is the behavior on dereferencing a null pointer.

3.5.4
1 unspecified behavior

behavior, that results from the use of an unspecified value, or other behavior upon which this
document provides two or more possibilities and imposes no further requirements on which is
chosen in any instance

2 Note 1 to entry: J.1 gives an overview over properties of C programs that lead to unspecified behavior.

3 EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are evaluated.

3.6
1 bit

unit of data storage in the execution environment large enough to hold an object that can have one
of two values. It may not be possible to express the address of each individual bit of an object.

3.7
1 byte

addressable unit of data storage large enough to hold any member of the basic character set of the
execution environment

2 Note 1 to entry: It is possible to express the address of each individual byte of an object uniquely.

3.8
1 low-order bit

the least significant bit within a byte

© ISO/IEC 202y — All rights reserved

General — 4

§ 3.8

ISO/IEC 9899:202y (en) — n3299 working draft

3.9
1 high-order bit

the most significant bit within a byte

3.10
1 character

⟨abstract⟩ member of a set of elements used for the organization, control, or representation of data

3.10.1
1 character

single-byte character

⟨C⟩ bit representation that fits in a byte

3.10.2
1 multibyte character

sequence of one or more bytes representing a member of the extended character set of either the
source or the execution environment

2 Note 1 to entry: The extended character set is a superset of the basic character set.

3.10.3
1 wide character

value representable by an object of type wchar_t, capable of representing any character in the
current locale

3.11
1 constraint

restriction, either syntactic or semantic, by which the exposition of language elements is interpreted

3.12
1 correctly rounded result

representation in the result format that is nearest in value, subject to the current rounding mode, to
what the result would be given unlimited range and precision

2 Note 1 to entry: In this document, the words "correctly rounded" may apply to an operation that produces a
correctly rounded result, or to input for such an operation.

3 Note 2 to entry: ISO/IEC 60559 or implementation-defined rules apply for extreme magnitude results if the
result format contains infinity.

3.13
1 diagnostic message

message belonging to an implementation-defined subset of the implementation’s message output

3.14
1 forward reference

reference to a subsequent subclause in this document that contains additional information relevant
to the subclause containing the reference

3.15
1 implementation

particular set of software, running in a particular translation environment under particular con-
trol options, that performs translation of programs for, and supports execution of functions in, a

§ 3.15 © ISO/IEC 202y — All rights reserved

General — 5

ISO/IEC 9899:202y (en) — n3299 working draft

particular execution environment

3.16
1 implementation limit

restriction imposed upon programs by the implementation

3.17
1 memory location

either an object of scalar type, or a maximal sequence of adjacent bit-fields all having nonzero width

2 Note 1 to entry: Two threads of execution can update and access separate memory locations without interfering
with each other.

3 Note 2 to entry: A bit-field and an adjacent non-bit-field member are in separate memory locations. The same
applies to two bit-fields, if one is declared inside a nested structure declaration and the other is not, or if the
two are separated by a zero-length bit-field declaration, or if they are separated by a non-bit-field member
declaration. It is not safe to concurrently update two non-atomic bit-fields in the same structure if all members
declared between them are also (nonzero-length) bit-fields, no matter what the sizes of those intervening
bit-fields happen to be.

4 EXAMPLE A structure declared as

struct {
char a;
int b:5, c:11,:0, d:8;
struct { int ee:8; } e;

}

contains four separate memory locations: The member a, and bit-fields d and e.ee are each separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and c together
constitute the fourth memory location. The bit-fields b and c cannot be concurrently modified, but b and a, for
example, can be.

3.18
1 object

region of data storage in the execution environment, the contents of which can represent values

2 Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.3.1.

3.19
1 parameter

formal parameter

DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.20
1 recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that may be impractical for some implementations

3.21
1 runtime-constraint

requirement on a program when calling a library function

2 Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.11,

© ISO/IEC 202y — All rights reserved

General — 6

§ 3.21

ISO/IEC 9899:202y (en) — n3299 working draft

and it is not necessary for it to be diagnosed at translation time.

3 Note 2 to entry: Implementations that support the extensions in Annex K are required to verify that the
runtime-constraints for a library function are not violated by the program; see K.3.1.4.

4 Note 3 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler
when they perform a trap.

3.22
1 value

precise meaning of the contents of an object when interpreted as having a specific type

3.22.1
1 implementation-defined value

unspecified value where each implementation documents how the choice is made

3.22.2
1 unspecified value

valid value of the relevant type where this document imposes no requirements on which value is
chosen in any instance

3.23
1 indeterminate representation

object representation that either represents an unspecified value or is a non-value representation

3.24
1 non-value representation

an object representation that does not represent a value of the object type

3.25
1 perform a trap

interrupt execution of the program such that no further operations are performed

2 Note 1 to entry: Fetching a non-value representation permits an implementation to perform a trap but is not
required to (see 6.2.6.1).

3 Note 2 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler
when they perform a trap.

3.26
1 ⌈x⌉

ceiling of x

the least integer greater than or equal to x

2 EXAMPLE ⌈2.4⌉ is 3, ⌈−2.4⌉ is −2.

3.27
1 ⌊x⌋

floor of x

the greatest integer less than or equal to x

2 EXAMPLE ⌊2.4⌋ is 2, ⌊−2.4⌋ is −3.

3.28
1 wraparound

§ 3.28 © ISO/IEC 202y — All rights reserved

General — 7

ISO/IEC 9899:202y (en) — n3299 working draft

the process by which a value is reduced modulo 2N , where N is the width of the resulting type

© ISO/IEC 202y — All rights reserved

General — 8

§ 3.28

ISO/IEC 9899:202y (en) — n3299 working draft

4. Conformance

1 In this document, "shall" is to be interpreted as a requirement on an implementation or on a program;
conversely, "shall not" is to be interpreted as a prohibition.

2 If a "shall" or "shall not" requirement that appears outside of a constraint or runtime-constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indicated in this document by
the words "undefined behavior" or by the omission of any explicit definition of behavior. There is
no difference in emphasis among these three; they all describe "behavior that is undefined".

3 A program that is correct in all other aspects, operating on correct data, containing unspecified
behavior shall be a correct program and act in accordance with 5.2.2.4.

4 The implementation shall not successfully translate a preprocessing translation unit containing a
#error preprocessing directive unless it is part of a group skipped by conditional inclusion.

5 A strictly conforming program shall use only those features of the language and library specified in this
document. It shall not produce output dependent on any unspecified, undefined, or implementation-
defined behavior, and shall not exceed any minimum implementation limit.

6 EXAMPLE A strictly conforming program can use conditional features (see 6.10.10.4) provided the use is
guarded by an appropriate conditional inclusion preprocessing directive using the related macro. For example:

#ifdef __STDC_IEC_60559_BFP__ /* FE_UPWARD defined */
/* ... */
fesetround(FE_UPWARD);
/* ... */

#endif

7 The two forms of conforming implementation are hosted and freestanding. A conforming hosted
implementation shall accept any strictly conforming program. A conforming freestanding implementation
shall accept any strictly conforming program in which the use of the features specified in the library
clause (Clause 7) is confined to the contents of the standard headers <float.h>, <iso646.h>,
<limits.h>, <stdalign.h>, <stdarg.h>, <stdbit.h>, <stdbool.h>, <stddef.h>, <stdint.h>,
and <stdnoreturn.h>. Additionally, a conforming freestanding implementation shall accept any
strictly conforming program where:

— the features specified in the header <string.h> are used, except the following functions:
strcoll, strdup, strerror, strndup, strtok, strxfrm; and/or,

— the selected function memalignment from <stdlib.h> is used.

A conforming implementation may have extensions (including additional library functions), pro-
vided they do not alter the behavior of any strictly conforming program.1)

8 The strictly conforming programs that shall be accepted by a conforming freestanding implementa-
tion that defines __STDC_IEC_60559_BFP__ or __STDC_IEC_60559_DFP__ can also use features in
the contents of the standard headers <fenv.h>, <math.h>, and the strto* floating-point numeric
conversion functions (7.24.2) of the standard header <stdlib.h>, provided the program does not
set the state of the FENV_ACCESS pragma to "on".

All identifiers that are reserved when <stdlib.h> is included in a hosted implementation are
reserved when it is included in a freestanding implementation.

9 A conforming program is one that is acceptable to a conforming implementation.2)

1)This implies that a conforming implementation reserves no identifiers other than those explicitly reserved in this
document.

2)Strictly conforming programs are intended to be maximally portable among conforming implementations. Conforming
programs can depend upon nonportable features of a conforming implementation.

§ 4 © ISO/IEC 202y — All rights reserved

General — 9

ISO/IEC 9899:202y (en) — n3299 working draft

10 An implementation shall be accompanied by a document that defines all implementation-defined
and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.2), error directive (6.10.7), characteristics of floating
types <float.h> (7.7), alternative spellings <iso646.h> (7.9), sizes of integer types <limits.h>
(7.10), alignment <stdalign.h> (7.15), variable arguments <stdarg.h> (7.16), boolean type and
values <stdbool.h> (7.19), common definitions <stddef.h> (7.21), integer types <stdint.h> (7.22),
<stdnoreturn.h> (7.25).

© ISO/IEC 202y — All rights reserved

General — 10

§ 4

ISO/IEC 9899:202y (en) — n3299 working draft

5. Environment

5.1 Introduction
1 An implementation translates C source files and executes C programs in two data-processing-system

environments, which will be called the translation environment and the execution environment in this
document. Their characteristics define and constrain the results of executing conforming C programs
constructed according to the syntactic and semantic rules for conforming implementations.

2 NOTE In this clause, only a few of many possible forward references have been noted.

5.2 Conceptual models
5.2.1 Translation environment
5.2.1.1 Program structure

1 A C program is not required to be translated in its entirety at the same time. The text of the program
is kept in units called source files, (or preprocessing files) in this document. A source file together
with all the headers and source files included via the preprocessing directive #include is known
as a preprocessing translation unit. After preprocessing, a preprocessing translation unit is called a
translation unit. Previously translated translation units can be preserved individually or in libraries.
The separate translation units of a program communicate by (for example) calls to functions whose
identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9), preprocessing directives
(6.10).

5.2.1.2 Translation phases

1 The precedence among the syntax rules of translation is specified by the following phases.3)

1. Physical source file multibyte characters are mapped, in an implementation-defined manner, to
the source character set (introducing new-line characters for end-of-line indicators) if necessary.

2. Each instance of a backslash character (\) immediately followed by a new-line character is
deleted, splicing physical source lines to form logical source lines. Only the last backslash on
any physical source line shall be eligible for being part of such a splice. A source file that is
not empty shall end in a new-line character, which shall not be immediately preceded by a
backslash character before any such splicing takes place.

3. The source file is decomposed into preprocessing tokens4) and sequences of white-space
characters (including comments). A source file shall not end in a partial preprocessing token or
in a partial comment. Each comment is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of white-space characters other than new-line
is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary
operator expressions are executed. If a character sequence that matches the syntax of a univer-
sal character name is produced by token concatenation (6.10.5.4), the behavior is undefined. A
#include preprocessing directive causes the named header or source file to be processed from
phase 1 through phase 4, recursively. All preprocessing directives are then deleted.

3)This requires implementations to behave as if these separate phases occur, even though many are typically folded together
in practice. Source files, translation units, and translated translation units necessarily can be stored as files or through/within
any other implementation-defined medium. There is no expectation of any one-to-one correspondence between these entities
and any external representation. The description is conceptual only, and does not specify any particular implementation.

4)As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is context-dependent. For
example, see the handling of < within a #include preprocessing directive.

§ 5.2.1.2 © ISO/IEC 202y — All rights reserved

Environment — 11

ISO/IEC 9899:202y (en) — n3299 working draft

5. Each source character set member and escape sequence in character constants and string
literals is converted to the corresponding member of the execution character set. Each instance
of a source character or escape sequence for which there is no corresponding member is
converted in an implementation-defined manner to some member of the execution character
set other than the null (wide) character.5)

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token
is converted into a token. The resulting tokens are syntactically and semantically analyzed
and translated as a translation unit.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation. All
such translator output is collected into a program image which contains information needed
for execution in its execution environment.

Forward references: universal character names (6.4.4), lexical elements (6.4), preprocessing direc-
tives (6.10), external definitions (6.9).

5.2.1.3 Diagnostics
1 A conforming implementation shall produce at least one diagnostic message (identified in an

implementation-defined manner) if a preprocessing translation unit or translation unit contains
a violation of any syntax rule or constraint, even if the behavior is also explicitly specified as
undefined or implementation-defined. Diagnostic messages are not required to be produced in other
circumstances.

2 EXAMPLE An implementation is required to issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this document describes the behavior for a construct as being both a
constraint error and resulting in undefined behavior, the constraint error is still required to be diagnosed.

Recommended practice
3 An implementation is encouraged to identify the nature of, and where possible localize, each

violation. Of course, an implementation is free to produce any number of diagnostic messages, often
referred to as warnings, as long as a valid program is still correctly translated. It can also successfully
translate an invalid program. Annex I lists a few of the more common warnings.

5.2.2 Execution environments
5.2.2.1 General

1 Two execution environments are defined: freestanding and hosted. In both cases, program startup
occurs when a designated C function is called by the execution environment. All objects with static
storage duration shall be initialized (set to their initial values) before program startup. The manner
and timing of such initialization are otherwise unspecified. Program termination returns control to
the execution environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.11).

5.2.2.2 Freestanding environment
1 In a freestanding environment (in which C program execution can take place without any ben-

efit of an operating system), the name and type of the function called at program startup are
implementation-defined. Any library facilities available to a freestanding program, other than the
minimal set required by Clause 4, are implementation-defined.

2 The effect of program termination in a freestanding environment is implementation-defined.
5)An implementation can convert each instance of the same non-corresponding source character to a different member of

the execution character set.

© ISO/IEC 202y — All rights reserved

Environment — 12

§ 5.2.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

5.2.2.3 Hosted environment
5.2.2.3.1 General

1 A hosted environment is not required to be provided, but shall conform to the following specifica-
tions if present.

5.2.2.3.2 Program startup
1 The function called at program startup is named main. The implementation declares no prototype

for this function. It shall be defined with a return type of int and with no parameters:

int main(void) { /* ... */ }

or with two parameters (referred to here as argc and argv, though any names can be used, as they
are local to the function in which they are declared):

int main(int argc, char *argv[]) { /* ... */ }

or equivalent;6) or in some other implementation-defined manner.

2 If they are declared, the parameters to the main function shall obey the following constraints:

— The value of argc shall be nonnegative.

— argv[argc] shall be a null pointer.

— If the value of argc is greater than zero, the array members argv[0] through argv[argc-1]
inclusive shall contain pointers to strings, which are given implementation-defined values
by the host environment prior to program startup. The intent is to supply to the program
information determined prior to program startup from elsewhere in the hosted environment.
If the host environment is not capable of supplying strings with letters in both uppercase and
lowercase, the implementation shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to by argv[0] represents the
program name; argv[0][0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to by
argv[1] through argv[argc-1] represent the program parameters.

— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable
by the program, and retain their last-stored values between program startup and program
termination.

5.2.2.3.3 Program execution
1 In a hosted environment, a program can use all the functions, macros, type definitions, and objects

described in the library clause (Clause 7).

5.2.2.3.4 Program termination
1 If the return type of the main function is a type compatible with int, a return from the initial call

to the main function is equivalent to calling the exit function with the value returned by the main
function as its argument;7) reaching the } that terminates the main function returns a value of 0. If
the return type is not compatible with int, the termination status returned to the host environment
is unspecified.

Forward references: definition of terms (7.1.1), the exit function (7.24.5.4).

6)Thus, int can be replaced by a typedef name defined as int, or the type of argv can be written as char ** argv, or the
return type can be specified by typeof(1), and so on.

7)In accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in main will have ended in the
former case, even where they would not have in the latter.

§ 5.2.2.3.4 © ISO/IEC 202y — All rights reserved

Environment — 13

ISO/IEC 9899:202y (en) — n3299 working draft

5.2.2.4 Program semantics
1 The semantic descriptions in this document describe the behavior of an abstract machine in which

issues of optimization are irrelevant.

2 An access to an object through the use of an lvalue of volatile-qualified type is a volatile access. A
volatile access to an object, modifying an object, modifying a file, or calling a function that does any
of those operations are all side effects,8) which are changes in the state of the execution environment.

Evaluation of an expression in general includes both value computations and initiation of side effects.
Value computation for an lvalue expression includes determining the identity of the designated
object.

3 Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a
single thread, which induces a partial order among those evaluations. Given any two evaluations
A and B, if A is sequenced before B, then the execution of A shall precede the execution of B.
(Conversely, if A is sequenced before B, then B is sequenced after A.) If A is not sequenced before or
after B, then A and B are unsequenced. Evaluations A and B are indeterminately sequenced when A is
sequenced either before or after B, but it is unspecified which.9) The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated with B. (A
summary of the sequence points is given in Annex C.)

4 In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation is not required to evaluate part of an expression if it can deduce that its value is not
used and that no needed side effects are produced (including any caused by calling a function or
through volatile access to an object).

5 When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects
that are neither lock-free atomic objects nor of type volatile sig_atomic_t are unspecified, as is
the state of the dynamic floating-point environment. The representation of any object modified by
the handler that is neither a lock-free atomic object nor of type volatile sig_atomic_t becomes
indeterminate when the handler exits, as does the state of the dynamic floating-point environment if
it is modified by the handler and not restored to its original state.

6 The least requirements on a conforming implementation are:

— Volatile accesses to objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.23.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages appear prior to a program waiting for input.

This is the observable behavior of the program.

7 What constitutes an interactive device is implementation-defined.

8 More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

9 EXAMPLE 1 An implementation can define a one-to-one correspondence between abstract and actual semantics:
at every sequence point, the values of the actual objects would agree with those specified by the abstract
semantics. The keyword volatile would then be redundant.

10 Alternatively, an implementation can perform various optimizations within each translation unit, such that the
actual semantics would agree with the abstract semantics only when making function calls across translation

8)ISO/IEC 60559 requires certain user-accessible status flags and control modes. Floating-point operations implicitly set
the status flags; modes affect result values of floating-point operations. Implementations that support such floating-point
state are required to regard changes to it as side effects — see Annex F for details. The floating-point environment library
<fenv.h> provides a programming facility for indicating when these side effects matter, freeing the implementations in other
cases.

9)The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations cannot interleave, but
can be executed in any order.

© ISO/IEC 202y — All rights reserved

Environment — 14

§ 5.2.2.4

ISO/IEC 9899:202y (en) — n3299 working draft

unit boundaries. In such an implementation, at the time of each function entry and function return where the
calling function and the called function are in different translation units, the values of all externally linked
objects and of all objects accessible via pointers therein would agree with the abstract semantics. Furthermore,
at the time of each such function entry the values of the parameters of the called function and of all objects
accessible via pointers therein would agree with the abstract semantics. In this type of implementation, objects
referred to by interrupt service routines activated by the signal function would require explicit specification of
volatile storage, as well as other implementation-defined restrictions.

11 EXAMPLE 2 In executing the fragment

char c1, c2;
/* ... */
c1 = c1 + c2;

the "integer promotions" require that the abstract machine promote the value of each variable to int size and
then add the two ints and truncate the sum. Provided the addition of two chars can be done without integer
overflow, or with integer overflow wrapping silently to produce the correct result, the actual execution need
only produce the same result, possibly omitting the promotions.

12 EXAMPLE 3 Similarly, in the fragment

float f1, f2;
double d;
/* ... */
f1 = f2 * d;

the multiplication can be executed using float arithmetic if the implementation can ascertain that the result
would be the same as if it were executed using double arithmetic (for example, if d were replaced by the
constant 2.0, which has type double).

13 EXAMPLE 4 Implementations employing wide registers are expected to take care to honor appropriate
semantics. Values are independent of whether they are represented in a register or in memory. For example, an
implicit spilling of a register can not alter the value. Also, an explicit store and load rounds to the precision the
precision of the storage type. In particular, casts and assignments perform their specified conversion. For the
fragment

double d1, d2;
float f;
d1 = f = expression;
d2 = (float) expression;

the values assigned to d1 and d2 are required to have been converted to float.

14 EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in precision
as well as range. The implementation cannot generally apply the mathematical associative rules for addition
or multiplication, nor the distributive rule, because of roundoff error, even in the absence of overflow and
underflow. Likewise, implementations cannot generally replace decimal constants to rearrange expressions. In
the following fragment, rearrangements suggested by mathematical rules for real numbers are often not valid
(see F.9).

double x, y, z;
/* ... */
x = (x * y) * z; // not equivalent to x *= y * z;
z = (x - y) + y; // not equivalent to z = x;
z = x + x * y; // not equivalent to z = x * (1.0 + y);
y = x / 5.0; // not equivalent to y = x * 0.2;

15 EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/* ... */
a = a + 32760 + b + 5;

§ 5.2.2.4 © ISO/IEC 202y — All rights reserved

Environment — 15

ISO/IEC 9899:202y (en) — n3299 working draft

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next
added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in
which integer overflows produce an explicit trap and in which the range of values representable by an int is
[−32768,+32767], the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, −32754 and −15, the sum a + b would produce a trap while
the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);

or

a = (a + (b + 32765));

since the values for a and b can be, respectively, 4 and −8 or −17 and 12. However, on an implementation
in which integer overflow silently generates some value and where positive and negative integer overflows
cancel, the preceding expression statement can be rewritten by the implementation in any of the previously
specified ways because the same result will occur.

16 EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the following
fragment:

#include <stdio.h>
int sum;
char *p;
/* ... */
sum = sum * 10 - ’0’ + (*p++ = getchar());

the expression statement is grouped as if it were written as

sum = (((sum * 10) - ’0’) + ((*(p++)) = (getchar())));

but the actual increment of p can occur at any time between the previous sequence point and the next sequence
point (the ;), and the call to getchar can occur at any point prior to the need of its returned value.

Forward references: expressions (6.5.1), type qualifiers (6.7.4), statements (6.8), floating-point
environment <fenv.h> (7.6), the signal function (7.14), files (7.23.3).

5.2.2.5 Multi-threaded executions and data races
1 Under a hosted implementation that does not define __STDC_NO_THREADS__, a program can have

more than one thread of execution (or thread) running concurrently. The execution of each thread
proceeds as defined by the remainder of this document. The execution of the entire program consists
of an execution of all its threads.10) Under a freestanding implementation, it is implementation-
defined whether a program can have more than one thread of execution.

2 The value of an object visible to a thread T at a particular point is the initial value of the object, a
value stored in the object by T , or a value stored in the object by another thread, according to the
rules in the rest of this subclause.

3 NOTE 1 In some cases, there can instead be undefined behavior. Much of this section is motivated by the
desire to support atomic operations with explicit and detailed visibility constraints. However, it also implicitly
supports a simpler view for more restricted programs.

4 Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location.

10)The execution can usually be viewed as an interleaving of all the threads. However, some kinds of atomic operations, for
example, allow executions inconsistent with a simple interleaving as described in this subclause.

© ISO/IEC 202y — All rights reserved

Environment — 16

§ 5.2.2.5

ISO/IEC 9899:202y (en) — n3299 working draft

5 The library defines atomic operations (7.17) and operations on mutexes (7.28.4) that are specially
identified as synchronization operations. These operations play a special role in making assignments
in one thread visible to another. A synchronization operation on one or more memory locations is
one of an acquire operation, a release operation, both an acquire and release operation, or a consume
operation. A synchronization operation without an associated memory location is a fence and can
be either an acquire fence, a release fence, or both an acquire and release fence. In addition, there
are relaxed atomic operations, which are not synchronization operations, and atomic read-modify-write
operations, which have special characteristics.

6 NOTE 2 For example, a call that acquires a mutex will perform an acquire operation on the locations composing
the mutex. Correspondingly, a call that releases the same mutex will perform a release operation on those same
locations. Informally, performing a release operation on A forces prior side effects on other memory locations
to become visible to other threads that later perform an acquire or consume operation on A. Relaxed atomic
operations are not included as synchronization operations although, like synchronization operations, they
cannot contribute to data races.

7 All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M . If A and B are modifications of an atomic object M , and A happens before B,
then A shall precede B in the modification order of M , which is defined later in this subclause.

8 NOTE 3 This states that the modification orders are expected to respect the "happens before" relation.

9 NOTE 4 There is a separate order for each atomic object. There is no requirement that these can be combined
into a single total order for all objects. In general this will be impossible since different threads can observe
modifications to different variables in inconsistent orders.

10 A release sequence headed by a release operation A on an atomic object M is a maximal contiguous
sub-sequence of side effects in the modification order of M , where the first operation is A and every
subsequent operation either is performed by the same thread that performed the release or is an
atomic read-modify-write operation.

11 Certain library calls synchronize with other library calls performed by another thread. In particular,
an atomic operation A that performs a release operation on an object M synchronizes with an atomic
operation B that performs an acquire operation on M and reads a value written by any side effect in
the release sequence headed by A.

12 NOTE 5 Except in the specified cases, reading a later value does not necessarily ensure visibility as described
later in this subclause. Such a requirement would sometimes interfere with efficient implementation.

13 NOTE 6 The specifications of the synchronization operations define when one reads the value written by
another. For atomic variables, the definition is clear. All operations on a given mutex occur in a single total
order. Each mutex acquisition "reads the value written" by the last mutex release.

14 An evaluation A carries a dependency11) to an evaluation B if:

— the value of A is used as an operand of B, unless:

• B is an invocation of the kill_dependency macro,

• A is the left operand of a && or || operator,

• A is the left operand of a ?: operator, or

• A is the left operand of a , operator;

or

— A writes a scalar object or bit-field M , B reads from M the value written by A, and A is
sequenced before B, or

— for some evaluation X , A carries a dependency to X and X carries a dependency to B.

15 An evaluation A is dependency-ordered before12) an evaluation B if:

11)The "carries a dependency" relation is a subset of the "sequenced before" relation, and is similarly strictly intra-thread.
12)The "dependency-ordered before" relation is analogous to the "synchronizes with" relation, but uses release/consume in

place of release/acquire.

§ 5.2.2.5 © ISO/IEC 202y — All rights reserved

Environment — 17

ISO/IEC 9899:202y (en) — n3299 working draft

— A performs a release operation on an atomic object M , and, in another thread, B performs a
consume operation on M and reads a value written by any side effect in the release sequence
headed by A, or

— for some evaluation X , A is dependency-ordered before X and X carries a dependency to B.

16 An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X :

— A synchronizes with X and X is sequenced before B,

— A is sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

17 NOTE 7 The "inter-thread happens before" relation describes arbitrary concatenations of "sequenced before",
"synchronizes with", and "dependency-ordered before" relationships, with two exceptions. The first exception
is that a concatenation is not permitted to end with "dependency-ordered before" followed by "sequenced
before". The reason for this limitation is that a consume operation participating in a "dependency-ordered
before" relationship provides ordering only with respect to operations to which this consume operation carries
a dependency. The reason that this limitation applies only to the end of such a concatenation is that any
subsequent release operation will provide the required ordering for a prior consume operation. The second
exception is that a concatenation is not permitted to consist entirely of "sequenced before". The reasons for this
limitation are (1) to permit "inter-thread happens before" to be transitively closed and (2) the "happens before"
relation, defined subsequently in this subclause, provides for relationships consisting entirely of "sequenced
before".

18 An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread happens
before B. The implementation shall ensure that no program execution demonstrates a cycle in the
"happens before" relation.

19 NOTE 8 This cycle would otherwise be possible only through the use of consume operations.

20 A visible side effect A on an object M with respect to a value computation B of M satisfies the
conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M , as determined by evaluation B, shall be the value stored
by the visible side effect A.

21 NOTE 9 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data race
and the behavior is undefined.

22 NOTE 10 This states that operations on ordinary variables are not visibly reordered. This is not detectable
without data races, but ensures that data races, as defined here, and with suitable restrictions on the use of
atomics, correspond to data races in a simple interleaved (sequentially consistent) execution.

23 The value of an atomic object M , as determined by evaluation B, shall be the value stored by some
side effect A that modifies M , where B does not happen before A.

24 NOTE 11 The set of side effects from which a given evaluation can take its value is also restricted by the rest of
the rules described here, and in particular, by the coherence requirements subsequently in this subclause.

25 If an operation A that modifies an atomic object M happens before an operation B that modifies M ,
then A shall be earlier than B in the modification order of M .

26 NOTE 12 Such a requirement is known as "write-write coherence".

27 If a value computation A of an atomic object M happens before a value computation B of M , and A
takes its value from a side effect X on M , then the value computed by B shall either be the value
stored by X or the value stored by a side effect Y on M , where Y follows X in the modification
order of M .

© ISO/IEC 202y — All rights reserved

Environment — 18

§ 5.2.2.5

ISO/IEC 9899:202y (en) — n3299 working draft

28 NOTE 13 Such a requirement is known as "read-read coherence".

29 If a value computation A of an atomic object M happens before an operation B on M , then A shall
take its value from a side effect X on M , where X precedes B in the modification order of M .

30 NOTE 14 Such a requirement is known as "read-write coherence".

31 If a side effect X on an atomic object M happens before a value computation B of M , then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M .

32 NOTE 15 Such a requirement is known as "write-read coherence".

33 NOTE 16 This effectively disallows compiler reordering of atomic operations to a single object, even if both
operations are "relaxed" loads. By doing so, it effectively makes the "cache coherence" guarantee provided by
most hardware available to C atomic operations.

34 NOTE 17 The value observed by a load of an atomic object depends on the "happens before" relation, which in
turn depends on the values observed by loads of atomic objects. The intended reading is that there exists an
association of atomic loads with modifications they observe that, together with suitably chosen modification
orders and the "happens before" relation derived as described previously, satisfy the resulting constraints as
imposed here.

35 The execution of a program contains a data race if it contains two conflicting actions in different
threads, at least one of which is not atomic, and neither happens before the other. Any such data
race results in undefined behavior.

36 NOTE 18 It can be shown that programs that correctly use simple mutexes and memory_order_seq_cst
operations to prevent all data races, and use no other synchronization operations, behave as though the
operations executed by their constituent threads were simply interleaved, with each value computation of an
object being the last value stored in that interleaving. This is normally referred to as "sequential consistency".
However, this applies only to data-race-free programs, and data-race-free programs cannot observe most
program transformations that do not change single-threaded program semantics. In fact, most single-threaded
program transformations continue to be allowed, since any program that behaves differently as a result of such
transformations necessarily has undefined behavior even before such a transformation is applied.

37 NOTE 19 Compiler transformations that introduce assignments to a potentially shared memory location that
would not be modified by the abstract machine are generally precluded by this document, since such an
assignment can overwrite another assignment by a different thread in cases in which an abstract machine
execution would not have encountered a data race. This includes implementations of data member assignment
that overwrite adjacent members in separate memory locations. Reordering of atomic loads in cases in which
the atomics in question can alias is also generally precluded, since this can violate the coherence requirements.

38 NOTE 20 Transformations that introduce a speculative read of a potentially shared memory location possibly
will not preserve the semantics of the program as defined in this document, since they potentially introduce
a data race. However, they are typically valid in the context of an optimizing compiler that targets a specific
machine with well-defined semantics for data races. They would be invalid for a hypothetical machine that is
not tolerant of races or provides hardware race detection.

5.3 Environmental considerations
5.3.1 Character sets

1 Two sets of characters and their associated collating sequences shall be defined: the set in which source
files are written (the source character set), and the set interpreted in the execution environment (the
execution character set). Each set is further divided into a basic character set, whose contents are given
by this subclause, and a set of zero or more locale-specific members (which are not members of the
basic character set) called extended characters. The combined set is also called the extended character
set. The values of the members of the execution character set are implementation-defined.

2 In a character constant or string literal, members of the execution character set shall be represented by
corresponding members of the source character set or by escape sequences consisting of the backslash
\ followed by one or more characters. A byte with all bits set to 0, called the null character, shall exist
in the basic execution character set; it is used to terminate a character string.

3 Both the basic source and basic execution character sets shall have the following members: the 26
uppercase letters of the Latin alphabet

§ 5.3.1 © ISO/IEC 202y — All rights reserved

Environment — 19

ISO/IEC 9899:202y (en) — n3299 working draft

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h i j k l m
n o p q r s t u v w x y z

the 10 decimal digit

0 1 2 3 4 5 6 7 8 9

the following 32 graphic characters

! " # % & ’ () * + , - . / :
; < = > ? [\] ^ _ { | } ~

@ $ `

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
The representation of each member of the source and execution basic character sets shall fit in a
byte. In both the source and execution basic character sets, the value of each character after 0 in
the preceding list of decimal digits shall be one greater than the value of the previous. In source
files, there shall be some way of indicating the end of each line of text; this document treats such an
end-of-line indicator as if it were a single new-line character. In the basic execution character set,
there shall be control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to a token), the
behavior is undefined.

4 The value of each character after a, up to and including f, in the prior specified list of lowercase
letters shall be one greater than the value of the previous.

5 The value of each character after A, up to and including F, in the prior specified list of uppercase
letters, shall be one greater than the value of the previous.

6 A letter is an uppercase letter or a lowercase letter as defined previously in this subclause; in this
document the term does not include other characters that are letters in other alphabets.

7 The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.4), character constants (6.4.5.5), preprocessing
directives (6.10), string literals (6.4.6), comments (6.4.10), string (7.1.1).

5.3.2 Multibyte characters
1 The source character set can contain multibyte characters, used to represent members of the extended

character set. The execution character set can also contain multibyte characters, which are not
required to have the same encoding as for the source character set. For both character sets, the
following shall hold:

— The basic character set shall be present and each character shall be encoded as a single byte.

— The presence, meaning, and representation of any additional members is locale-specific.

— A multibyte character set can have a state-dependent encoding, wherein each sequence of multi-
byte characters begins in an initial shift state and enters other locale-specific shift states when
specific multibyte characters are encountered in the sequence. While in the initial shift state,
all single-byte characters retain their usual interpretation and do not alter the shift state. The
interpretation for subsequent bytes in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift state. Such
a byte shall not occur as part of any other multibyte character.

© ISO/IEC 202y — All rights reserved

Environment — 20

§ 5.3.2

ISO/IEC 9899:202y (en) — n3299 working draft

2 For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin and end
in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist of a
sequence of valid multibyte characters.

5.3.3 Character display semantics
1 The active position is that location on a display device where the next character output by the

fputc function would appear. The intent of writing a printing character (as defined by the isprint
function) to a display device is to display a graphic representation of that character at the active
position and then advance the active position to the next position on the current line. The direction
of writing is locale-specific. If the active position is at the final position of a line (if there is one), the
behavior of the display device is unspecified.

2 Alphabetic escape sequences representing non-graphic characters in the execution character set are
intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspace) Moves the active position to the previous position on the current line. If the active
position is at the initial position of a line, the behavior of the display device is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next logical page.

\n (new line) Moves the active position to the initial position of the next line.

\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the current
line. If the active position is at or past the last defined horizontal tabulation position, the behavior
of the display device is unspecified.

\v (vertical tab) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior of the display device is unspecified.

3 Each of these escape sequences shall produce a unique implementation-defined value which can be
stored in a single char object. The external representations in a text file are not necessarily identical
to the internal representations, and are outside the scope of this document.

Forward references: the isprint function (7.4.2.9), the fputc function (7.23.7.3).

5.3.4 Signals and interrupts
1 Functions shall be implemented such that they can be interrupted at any time by a signal, or can be

called by a signal handler, or both, with no alteration to earlier, but still active, invocations’ control
flow (after the interruption), function return values, or objects with automatic storage duration.
All such objects shall be maintained outside the function image (the instructions that compose the
executable representation of a function) on a per-invocation basis.

5.3.5 Environmental limits
5.3.5.1 General

1 Both the translation and execution environments constrain the implementation of language trans-
lators and libraries. The following summarizes the language-related environmental limits on a
conforming implementation; the library-related limits are discussed in Clause 7.

§ 5.3.5.1 © ISO/IEC 202y — All rights reserved

Environment — 21

ISO/IEC 9899:202y (en) — n3299 working draft

5.3.5.2 Translation limits
1 The implementation shall be able to translate and execute a program that uses but does not exceed

the following limitations for these constructs and entities:13)

— 127 nesting levels of blocks

— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic,
structure, union, or void type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator

— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name (each universal
character name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name speci-
fying a short identifier of 00FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)14)

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit

— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)

— 32767 bytes in an object (in a hosted environment only)

— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single member declaration list

5.3.5.3 Numerical limits
5.3.5.3.1 General

1 An implementation is required to document all the limits specified in this subclause, which are
specified in the headers <limits.h> and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.22).

13)Implementations are encouraged to avoid imposing fixed translation limits whenever possible.
14)See "future language directions" (6.11.3).

© ISO/IEC 202y — All rights reserved

Environment — 22

§ 5.3.5.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

5.3.5.3.2 Characteristics of integer types <limits.h>
1 The values given subsequently shall be replaced by constant expressions suitable for use in condi-

tional expression inclusion preprocessing directives. Their implementation-defined values shall be
equal or greater to those shown.

— width for an object of type bool15)

BOOL_WIDTH 1

— number of bits for smallest object that is not a bit-field (byte)

CHAR_BIT 8

The macros CHAR_WIDTH, SCHAR_WIDTH, and UCHAR_WIDTH that represent the width of the
types char, signed char and unsigned char shall expand to the same value as CHAR_BIT.

— width for an object of type unsigned short int

USHRT_WIDTH 16

The macro SHRT_WIDTH represents the width of the type short int and shall expand to the
same value as USHRT_WIDTH.

— width for an object of type unsigned int

UINT_WIDTH 16

The macro INT_WIDTH represents the width of the type int and shall expand to the same value
as UINT_WIDTH.

— width for an object of type unsigned long int

ULONG_WIDTH 32

The macro LONG_WIDTH represents the width of the type long int and shall expand to the
same value as ULONG_WIDTH.

— width for an object of type unsigned long long int

ULLONG_WIDTH 64

The macro LLONG_WIDTH represents the width of the type long long int and shall expand to
the same value as ULLONG_WIDTH.

— maximum width of a bit-precise integer type

BITINT_MAXWIDTH /* see the following */

The macro BITINT_MAXWIDTH represents the maximum width N supported by the declaration
of a bit-precise integer (6.2.5) in the type specifier _BitInt(N). The value BITINT_MAXWIDTH
shall expand to a value that is greater than or equal to the value of ULLONG_WIDTH.

— maximum number of bytes in a multibyte character, for any supported locale

MB_LEN_MAX 1

15)This value is exact.

§ 5.3.5.3.2 © ISO/IEC 202y — All rights reserved

Environment — 23

ISO/IEC 9899:202y (en) — n3299 working draft

2 For all unsigned integer types for which <limits.h> or <stdint.h> define a macro with suffix
_WIDTH holding its width N , there is a macro with suffix _MAX holding the maximal value 2N − 1
that is representable by the type and that has the same type as would an expression that is an object
of the corresponding type converted according to the integer promotions. If the value is in the range
of the type uintmax_t (7.22.2.6) the macro is suitable for use in conditional expression inclusion
preprocessing directives.

3 For all signed integer types for which <limits.h> or <stdint.h> define a macro with suffix _WIDTH
holding its width N , there are macros with suffix _MIN and _MAX holding the minimal and maximal
values −2N−1 and 2N−1 − 1 that are representable by the type and that have the same type as
would an expression that is an object of the corresponding type converted according to the integer
promotions. If the values are in the range of the type intmax_t (7.22.2.6) the macros are suitable for
use in conditional expression inclusion preprocessing directives.

4 If an object of type char can hold negative values, the value of CHAR_MIN shall be the same as that of
SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX (see 6.2.5.).

Forward references: representations of types (6.2.6), conditional inclusion (6.10.2), integer types
<stdint.h> (7.22).

5.3.5.3.3 Characteristics of floating types <float.h>
1 The characteristics of floating types are defined in terms of a model that describes a represen-

tation of floating-point numbers and allows other values. The characteristics provide informa-
tion about an implementation’s floating-point arithmetic.16) An implementation that defines
__STDC_IEC_60559_BFP__ or __STDC_IEC_559__ shall implement floating types and arithmetic
conforming to ISO/IEC 60559 as specified in Annex F of this document. An implementation that
defines __STDC_IEC_60559_COMPLEX__ or __STDC_IEC_559_COMPLEX__ shall implement complex
types and arithmetic conforming to ISO/IEC 60559 as specified in Annex G of this document.

2 The following parameters are used to define the model for each floating type:

s sign (±1)
b base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimum emin and a maximum emax)
p precision (the number of base-b digits in the significand)
fk nonnegative integers less than b (the significand digits)

For each floating type, the parameters b, p, emin , and emax are fixed constants.

3 For each floating type, a floating-point number (x) is defined by the following model:

x = sbe
p∑

k=1

fkb
−k, emin ≤ e ≤ emax

4 Model floating-point numbers x with f1 > 0 are called normalized floating-point numbers.

5 Model floating-point numbers x ̸= 0 with f1 = 0 and e = emin are called subnormal floating-point
numbers.

6 Model floating-point numbers x ̸= 0 with f1 = 0 and e > emin are called unnormalized floating-point
numbers.

7 Model floating-point numbers x with all fk = 0 are zeros.

8 Floating types shall be able to represent signed zeros or an unsigned zero and all normalized floating-
point numbers. In addition, floating types may be able to contain other kinds of floating-point
numbers, such as subnormal floating-point numbers and unnormalized floating-point numbers, and
values that are not floating-point numbers, such as NaNs and (signed and unsigned) infinities.

9 NOTE 1 Some implementations have types that include finite numbers with range and/or precision that are
not covered by the model.

16)The floating-point model is intended to clarify the description of each floating-point characteristic and does not require
the floating-point arithmetic of the implementation to be identical.

© ISO/IEC 202y — All rights reserved

Environment — 24

§ 5.3.5.3.3

ISO/IEC 9899:202y (en) — n3299 working draft

10 A NaN is a value signifying Not-a-Number. A quiet NaN propagates through almost every arithmetic
operation without raising a floating-point exception; a signaling NaN generally raises a floating-point
exception when occurring as an arithmetic operand.

11 NOTE 2 ISO/IEC 60559 specifies quiet and signaling NaNs. For implementations that do not support
ISO/IEC 60559, the terms quiet NaN and signaling NaN are intended to apply to values with similar be-
havior.

12 Wherever values are unsigned, any requirement in this document to get the sign shall produce an
unspecified sign, and any requirement to set the sign shall be ignored, unless otherwise specified.

13 NOTE 3 Bit representations of floating-point values can include a sign bit, even if the values can be regarded as
unsigned; ISO/IEC 60559 NaNs are such values.

14 Whether and in what cases subnormal numbers are treated as zeros is implementation-defined.
Subnormal numbers that in some cases are treated by arithmetic operations as zeros are properly
classified as subnormal. However, object representations that could represent subnormal numbers
but that are always treated by arithmetic operations as zeros are non-canonical zeros, and the values
are properly classified as zero, not subnormal. ISO/IEC 60559 arithmetic (with default exception
handling) always treats subnormal numbers as nonzero.

15 A value is negative if and only if it compares less than 0. Thus, negative zeros and NaNs are not
negative values.

16 An implementation can prefer particular representations of values that have multiple representations
in a floating type, 6.2.6.1 not withstanding. The preferred representations of a floating type, including
unique representations of values in the type, are called canonical. A floating type can also contain
non-canonical representations, for example, redundant representations of some or all its values, or
representations that are extraneous to the floating-point model. Typically, floating-point operations
deliver results with canonical representations. ISO/IEC 60559 operations deliver results with
canonical representations, unless specified otherwise.

17 NOTE 4 The library operations iscanonical and canonicalize distinguish canonical (preferred) representa-
tions, but this distinction alone does not imply that canonical and non-canonical representations are of different
values.

18 NOTE 5 Some of the values in the ISO/IEC 60559 decimal formats have non-canonical representations (as well
as a canonical representation).

19 The minimum range of representable values for a floating type is the most negative finite floating-
point number representable in that type through the most positive finite floating-point number
representable in that type. In addition, if negative infinity is representable in a type, the range of
that type is extended to all negative real numbers; likewise, if positive infinity is representable in a
type, the range of that type is extended to all positive real numbers.

20 The accuracy of the floating-point operations (+, -, *, /) and of most of the library functions in
<math.h> and <complex.h> that return floating-point results is implementation-defined, as is the
accuracy of the conversion between floating-point internal representations and string representations
performed by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The implemen-
tation may state that the accuracy is unknown. Decimal floating-point operations have stricter
requirements.

21 All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
suitable for use in conditional expression inclusion preprocessing directives; all floating val-
ues shall be arithmetic constant expressions. All except CR_DECIMAL_DIG (F.5), DECIMAL_DIG,
DEC_EVAL_METHOD, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have separate names for
all floating types. The floating-point model representation is provided for all values except
DEC_EVAL_METHOD, FLT_EVAL_METHOD and FLT_ROUNDS.

22 The remainder of this subclause specifies characteristics of standard floating types.

23 The rounding mode for floating-point addition for standard floating types is characterized by the
implementation-defined value of FLT_ROUNDS. Evaluation of FLT_ROUNDS correctly reflects any
execution-time change of rounding mode through the function fesetround in <fenv.h>.

§ 5.3.5.3.3 © ISO/IEC 202y — All rights reserved

Environment — 25

ISO/IEC 9899:202y (en) — n3299 working draft

−1 indeterminable

0 toward zero

1 to nearest, ties to even

2 toward positive infinity

3 toward negative infinity

4 to nearest, ties away from zero

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

24 Whether a type has the same base (b), precision (p), and exponent range (emin ≤ e ≤ emax) as an
ISO/IEC 60559 format is characterized by the implementation-defined values of FLT_IS_IEC_60559,
DBL_IS_IEC_60559 and LDBL_IS_IEC_60559 (this does not imply conformance to Annex F):

0 type does not have the precision and exponent range of an ISO/IEC 60559 format

1 type has the precision and exponent range of an ISO/IEC 60559 format

25 NOTE 6 Outside of the normalized floating-point numbers, the representability of values (e.g. negative zero)
of the ISO/IEC 60559 format is not implied.

26 The values of floating type yielded by operators subject to the usual arithmetic conversions, including
the values yielded by the implicit conversion of operands, and the values of floating constants are
evaluated to a format whose range and precision can be greater than required by the type. Such a
format is called an evaluation format. In all cases, assignment and cast operators yield values in the
format of the type. The extent to which evaluation formats are used is characterized by the value of
FLT_EVAL_METHOD:17)

−1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type float and double to the range and precision of
the double type, evaluate long double operations and constants to the range and precision
of the long double type;

2 evaluate all operations and constants to the range and precision of the long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior. The
value of FLT_EVAL_METHOD does not characterize values returned by function calls (see 6.8.7.5, F.6).

27 The presence or absence of subnormal numbers is characterized by the implementation-defined
values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:

−1 indeterminable

0 absent (type does not support subnormal numbers)

1 present (type does support subnormal numbers)

The use of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM macros is an obsolescent
feature.

28 Each of the signaling NaN macros

17)The evaluation method determines evaluation formats of expressions involving all floating types, not just real types.
For example, if FLT_EVAL_METHOD is 1, then the product of two float _Complex operands is represented in the double
_Complex format, and its parts are evaluated to double.

© ISO/IEC 202y — All rights reserved

Environment — 26

§ 5.3.5.3.3

ISO/IEC 9899:202y (en) — n3299 working draft

FLT_SNAN
DBL_SNAN
LDBL_SNAN

is defined if and only if the respective type contains signaling NaNs. They expand to a constant
expression of the respective type representing a signaling NaN. If an optional unary + or - operator
followed by a signaling NaN macro is used as an initializer that is evaluated at translation time, the
object is initialized with a signaling NaN value.

29 The macro

INFINITY

is defined if and only if the implementation supports an infinity for the type float. It expands to a
constant expression of type float representing positive or unsigned infinity.

30 The macro

NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to a
constant expression of type float representing a quiet NaN.

31 The values given in the following list shall be replaced by constant expressions with implementation-
defined values that are greater or equal in magnitude (absolute value) to those shown, with the
same sign:

— radix of exponent representation, b

FLT_RADIX 2

— number of base-FLT_RADIX digits in the floating-point significand, p

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

— number of decimal digits, n, such that any floating-point number with p radix b digits can be
rounded to a floating-point number with n decimal digits and back again without change to
the value,{

p log10 b if b is a power of 10
⌈1 + p log10 b⌉ otherwise

FLT_DECIMAL_DIG 6
DBL_DECIMAL_DIG 10
LDBL_DECIMAL_DIG 10

— number of decimal digits, n, such that any floating-point number in the widest of the supported
floating types and the supported ISO/IEC 60559 encodings with pmax radix b digits can be
rounded to a floating-point number with n decimal digits and back again without change to
the value,{

pmax log10 b if b is a power of 10
⌈1 + pmax log10 b⌉ otherwise

§ 5.3.5.3.3 © ISO/IEC 202y — All rights reserved

Environment — 27

ISO/IEC 9899:202y (en) — n3299 working draft

DECIMAL_DIG 10

This is an obsolescent feature, see 7.33.9.

— number of decimal digits, q, such that any floating-point number with q decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to
the q decimal digits,{

p log10 b if b is a power of 10
⌊(p− 1) log10 b⌋ otherwise

FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such that FLT_RADIX raised to one less than that power is a normal-
ized floating-point number, emin

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers,

⌈
log 10b

emin −1
⌉

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such that FLT_RADIX raised to one less than that power is a representable
finite floating-point number; if that representable finite floating-point number is normalized,
the value of the macro is emax

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, ⌊log 10((1− b−p)bemax)⌋

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

32 The values given in the following list shall be replaced by constant expressions with implementation-
defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number; if that number is normalized, its value is
(1− b−p)bemax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

— maximum normalized floating-point number, (1− b−p)bemax

© ISO/IEC 202y — All rights reserved

Environment — 28

§ 5.3.5.3.3

ISO/IEC 9899:202y (en) — n3299 working draft

FLT_NORM_MAX 1E+37
DBL_NORM_MAX 1E+37
LDBL_NORM_MAX 1E+37

33 The values given in the following list shall be replaced by constant expressions with implementation-
defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least normalized value greater than 1 that is representable in
the given floating type, b1−p

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized positive floating-point number, bemin −1

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

— minimum positive floating-point number

FLT_TRUE_MIN 1E-37
DBL_TRUE_MIN 1E-37
LDBL_TRUE_MIN 1E-37

Recommended practice
34 Conversion between real floating type and decimal character sequence with at most T_DECIMAL_DIG

digits should be correctly rounded, where T is the macro prefix for the type. This assures conversion
from real floating type to decimal character sequence with T_DECIMAL_DIG digits and back, using
to-nearest rounding, is the identity function.

35 EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum
requirements of this document, and the appropriate values in a <float.h> header for type float:

x = s16e
6∑

k=1

fk16
−k, −31 ≤ e ≤ +32

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

36 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for binary32
and binary64 numbers in ISO/IEC 60559,18) and the appropriate values in a <float.h> header for types float
and double. The decimal floating constants can possibly not give correct values (and hence are not appropriate
values in a <float.h> header) if FLT_EVAL_METHOD is not 0 or if a translation-time rounding mode other than

18)The floating-point model in ISO/IEC 60559 sums powers of b from zero, so the values of the exponent limits are one less
than shown here.

§ 5.3.5.3.3 © ISO/IEC 202y — All rights reserved

Environment — 29

ISO/IEC 9899:202y (en) — n3299 working draft

the ISO/IEC 60559 default is supported (either as the default or as a constant rounding mode set by an
FENV_ROUND pragma). The hexadecimal floating constants are correct in all such cases because their values are
exactly representable in the type.

xf = s2e
24∑

k=1

fk2
−k, −125 ≤ e ≤ +128

xd = s2e
53∑

k=1

fk2
−k, −1021 ≤ e ≤ +1024

FLT_IS_IEC_60559 1
FLT_RADIX 2
FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F // hex constant
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant
FLT_TRUE_MIN 1.40129846E-45F // decimal constant
FLT_TRUE_MIN 0X1P-149F // hex constant
FLT_HAS_SUBNORM 1
FLT_MIN_10_EXP -37
FLT_MAX_EXP +128
FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX 0X1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38
DBL_MANT_DIG 53
DBL_IS_IEC_60559 1
DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 // hex constant
DBL_DECIMAL_DIG 17
DBL_DIG 15
DBL_MIN_EXP -1021
DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_TRUE_MIN 4.9406564584124654E-324 // decimal constant
DBL_TRUE_MIN 0X1P-1074 // hex constant
DBL_HAS_SUBNORM 1
DBL_MIN_10_EXP -307
DBL_MAX_EXP +1024
DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX 0X1.fffffffffffffP1023 // hex constant
DBL_MAX_10_EXP +308

Forward references: conditional inclusion (6.10.2), predefined macro names (6.10.10), complex
arithmetic <complex.h> (7.3), extended multibyte and wide character utilities <wchar.h> (7.31),
floating-point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.24), input/output
<stdio.h> (7.23), mathematics <math.h> (7.12), ISO/IEC 60559 floating-point arithmetic (Annex F),
ISO/IEC 60559-compatible complex arithmetic (Annex G).

5.3.5.3.4 Characteristics of decimal floating types in <float.h>

1 This subclause specifies macros in <float.h> that provide characteristics of decimal floating types
(an optional feature) in terms of the model presented in 5.3.5.3.3. An implementation shall provide
these macros if and only if it defines __STDC_IEC_60559_DFP__. The prefixes DEC32_, DEC64_, and
DEC128_ denote the types _Decimal32, _Decimal64, and _Decimal128 respectively.

2 DEC_EVAL_METHOD is the decimal floating-point analog of FLT_EVAL_METHOD (5.3.5.3.3). Its
implementation-defined value characterizes the use of evaluation formats for decimal floating

© ISO/IEC 202y — All rights reserved

Environment — 30

§ 5.3.5.3.4

ISO/IEC 9899:202y (en) — n3299 working draft

types:

−1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type _Decimal32 and _Decimal64 to the range and
precision of the _Decimal64 type, evaluate _Decimal128 operations and constants to the
range and precision of the _Decimal128 type;

2 evaluate all operations and constants to the range and precision of the _Decimal128 type.

3 Each of the decimal signaling NaN macros

DEC32_SNAN
DEC64_SNAN
DEC128_SNAN

expands to a constant expression of the respective decimal floating type representing a signaling
NaN. If an optional unary + or - operator followed by a signaling NaN macro is used for initializing
an object of the same type that has static or thread storage duration, the object is initialized with a
signaling NaN value.

4 The macro

DEC_INFINITY

expands to a constant expression of type _Decimal32 representing positive infinity.

5 The macro

DEC_NAN

expands to a constant expression of type _Decimal32 representing a quiet NaN.

6 The integer values given in the following lists shall be replaced by constant expressions suitable for
use in conditional expression inclusion preprocessing directives:

— radix of exponent representation, b(=10)

For the standard floating types, this value is implementation-defined and is specified by the
macro FLT_RADIX. For the decimal floating types there is no corresponding macro, since the
value 10 is an inherent property of the types. Wherever FLT_RADIX appears in a description
of a function that has versions that operate on decimal floating types, it is noted that for the
decimal floating-point versions the value used is implicitly 10, rather than FLT_RADIX.

— number of digits in the coefficient

DEC32_MANT_DIG 7
DEC64_MANT_DIG 16
DEC128_MANT_DIG 34

— minimum exponent

DEC32_MIN_EXP -94
DEC64_MIN_EXP -382
DEC128_MIN_EXP -6142

— maximum exponent

§ 5.3.5.3.4 © ISO/IEC 202y — All rights reserved

Environment — 31

ISO/IEC 9899:202y (en) — n3299 working draft

DEC32_MAX_EXP 97
DEC64_MAX_EXP 385
DEC128_MAX_EXP 6145

— maximum representable finite decimal floating-point number (there are 6, 15 and 33 9’s after
the decimal points respectively)

DEC32_MAX 9.999999E96DF
DEC64_MAX 9.999999999999999E384DD
DEC128_MAX 9.999999999999999999999999999999999E6144DL

— the difference between 1 and the least value greater than 1 that is representable in the given
floating type

DEC32_EPSILON 1E-6DF
DEC64_EPSILON 1E-15DD
DEC128_EPSILON 1E-33DL

— minimum normalized positive decimal floating-point number

DEC32_MIN 1E-95DF
DEC64_MIN 1E-383DD
DEC128_MIN 1E-6143DL

— minimum positive subnormal decimal floating-point number

DEC32_TRUE_MIN 0.000001E-95DF
DEC64_TRUE_MIN 0.000000000000001E-383DD
DEC128_TRUE_MIN 0.000000000000000000000000000000001E-6143DL

7 For decimal floating-point arithmetic, it is often convenient to consider an alternate equivalent
model where the significand is represented with integer rather than fraction digits. With s, b, e, p,
and fk as defined in 5.3.5.3.3, a floating-point number x is defined by the model:

x = s · b(e−p)

p∑
k=1

fk · b(p−k)

8 With b fixed to 10, a decimal floating-point number x is thus:

x = s · 10(e−p)

p∑
k=1

fk · 10(p−k)

The quantum exponent is q = e− p and the coefficient is c = f1f2 · · · fp, which is an integer between
0 and 10p − 1, inclusive. Thus, x = s · c · 10q is represented by the triple of integers (s, c, q). The
quantum of x is 10q, which is the value of a unit in the last place of the coefficient. Table 5.1 shows
the range of quantum exponents.

Table 5.1 — Quantum exponent ranges

Type _Decimal32 _Decimal64 _Decimal128
Maximum Quantum Exponent (qmax) 90 369 6111
Minimum Quantum Exponent (qmin) −101 −398 −6176

© ISO/IEC 202y — All rights reserved

Environment — 32

§ 5.3.5.3.4

ISO/IEC 9899:202y (en) — n3299 working draft

9 For binary floating-point arithmetic following ISO/IEC 60559, representations in the model described
in 5.3.5.3.3 that have the same numerical value are indistinguishable in the arithmetic. However,
for decimal floating-point arithmetic, representations that have the same numerical value but
different quantum exponents, e.g. (+1, 10,−1) representing 1.0 and (+1, 100,−2) representing
1.00, are distinguishable. To facilitate exact fixed-point calculation, operation results that are of
decimal floating type have a preferred quantum exponent, as specified in ISO/IEC 60559, which is
determined by the quantum exponents of the operands if they have decimal floating types (or by
specific rules for conversions from other types). Table 5.2 gives rules for determining preferred
quantum exponents for results of ISO/IEC 60559 operations, and for other operations specified
in this document. When exact, these operations produce a result with their preferred quantum
exponent, or as close to it as possible within the limitations of the type. When inexact, these
operations produce a result with the least possible quantum exponent. For example, the preferred
quantum exponent for addition is the minimum of the quantum exponents of the operands. Hence
(+1, 123,−2) + (+1, 4000,−3) = (+1, 5230,−3) or 1.23 + 4.000 = 5.230.

10 Table 5.2 shows, for each operation delivering a result in decimal floating-point format, how the
preferred quantum exponents of the operands, Q(x), Q(y), etc., determine the preferred quantum
exponent of the operation result, provided the table formula is defined for the arguments. For
the cases where the formula is undefined and the function result is ±∞, the preferred quantum
exponent is immaterial because the quantum exponent of ±∞ is defined to be infinity. For the
other cases where the formula is undefined and the function result is finite, the preferred quantum
exponent is unspecified.

11 NOTE Although unspecified in ISO/IEC 60559, a preferred quantum exponent of 0 for the cases where the
formula is undefined and the function result is finite would be a reasonable implementation choice.

Table 5.2 — Preferred quantum exponents

Operation Preferred quantum exponent of result

roundeven, round, trunc, ceil, floor,
rint, nearbyint

max(Q(x), 0)

nextup, nextdown, nextafter, nexttoward
least possible

remainder
min(Q(x), Q(y))

fmin, fmax, fminimum, fmaximum,
fminimum_mag, fmaximum_mag,
fminimum_num, fmaximum_num,
fminimum_mag_num, fmaximum_mag_num

Q(x) if x gives the result, Q(y) if y gives the result

scalbn, scalbln
Q(x) + n

ldexp
Q(x) + p

logb
0

postfix ++ operator, postfix -- operator,
prefix ++ operator, prefix -- operator

min(Q(x), 0)

+ , d32add, d64add
min(Q(x), Q(y))

- , d32sub, d64sub
min(Q(x), Q(y))

* , d32mul, d64mul
Q(x) +Q(y)

/, d32div, d64div
Q(x)−Q(y)

sqrt, d32sqrt, d64sqrt
⌊Q(x)/2⌋

§ 5.3.5.3.4 © ISO/IEC 202y — All rights reserved

Environment — 33

ISO/IEC 9899:202y (en) — n3299 working draft

fma, d32fma, d64fma
min(Q(x) +Q(y), Q(z))

conversion from integer type 0
exact conversion from non-decimal floating
type

0

inexact conversion from non-decimal
floating type

least possible

conversion between decimal floating types Q(x)

*cx returned by canonicalize
Q(*x)

strto, wcsto, scanf, floating constants of
decimal floating type

see 7.24.2.7

-(x), +(x) Q(x)

fabs
Q(x)

copysign
Q(x)

quantize
Q(y)

quantum
Q(x)

*encptr returned by encodedec,
encodebin

Q(*xptr)

*xptr returned by decodedec, decodebin
Q(*encptr)

fmod
min(Q(x), Q(y))

fdim
min((Q(x), Q(y)) if x > y, 0 if x ≤ y

cbrt
⌊Q(x)/3⌋

hypot
min(Q(x), Q(y))

pow
⌊y×Q(x)⌋

modf
Q(value)

*iptr returned by modf
max(Q(value), 0)

frexp
Q(value) if value = 0, –(length of coefficient of
value) otherwise

*res returned by setpayload,
setpayloadsig

0 if pl does not represent a valid payload, not
applicable otherwise (NaN returned)

getpayload
0 if *x is a NaN, unspecified otherwise

compoundn
⌊n×min(0, Q(x))⌋

pown
⌊n×Q(x)⌋

powr
⌊y×Q(x)⌋

rootn
⌊Q(x)/n⌋

rsqrt
−⌊Q(x)/2⌋

transcendental functions 0

A function family listed in Table 5.2 indicates the functions for all decimal floating types, where the

© ISO/IEC 202y — All rights reserved

Environment — 34

§ 5.3.5.3.4

ISO/IEC 9899:202y (en) — n3299 working draft

function family is represented by the name of the functions without a suffix. For example, ceil
indicates the functions ceild32, ceild64, and ceild128.

Forward references: extended multibyte and wide character utilities <wchar.h> (7.31), floating-
point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.24), input/output <stdio.h>
(7.23), mathematics <math.h> (7.12), type-generic mathematics <tgmath.h> (7.27), ISO/IEC 60559
floating-point arithmetic (Annex F).

§ 5.3.5.3.4 © ISO/IEC 202y — All rights reserved

Environment — 35

ISO/IEC 9899:202y (en) — n3299 working draft

6. Language

6.1 Notation
1 In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic

type, and literal words and character set members (terminals) by bold type. A colon (:) following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words "one of". An optional symbol is indicated by the subscript "opt", so
that

{ expressionopt }

indicates an optional expression enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

3 A summary of the language syntax is given in Annex A.

6.2 Concepts
6.2.1 Scopes of identifiers, type names, and compound literals

1 An identifier can denote:

— a standard attribute, an attribute prefix, or an attribute name;

— an object;

— a function;

— a tag or a member of a structure, union, or enumeration;

— a typedef name;

— a label name;

— a macro name;

— or, a macro parameter.

The same identifier can denote different entities at different points in the program. A member
of an enumeration is called an enumeration constant. Macro names and macro parameters are not
considered further here, because prior to the semantic phase of program translation any occurrences
of macro names in the source file are replaced by the preprocessing token sequences that constitute
their macro definitions.

2 For each different entity that an identifier designates, the identifier is visible (i.e. can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function.)

3 A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere in the function in which it appears, and is declared implicitly by its syntactic appearance
(followed by a : and a statement).

4 Every other identifier has scope determined by the placement of its declaration (in a declarator
or type specifier). If the declarator or type specifier that declares the identifier appears outside
of any block or list of parameters, the identifier has file scope, which terminates at the end of the
translation unit. If the declarator or type specifier that declares the identifier appears inside a block
or within the list of parameter declarations in a function definition, the identifier has block scope,
which terminates at the end of the associated block. If the declarator or type specifier that declares

© ISO/IEC 202y — All rights reserved

Language — 36

§ 6.2.1

ISO/IEC 9899:202y (en) — n3299 working draft

the identifier appears within the list of parameter declarations in a function prototype (not part of a
function definition), the identifier has function prototype scope, which terminates at the end of the
function declarator. If an identifier designates two different entities in the same name space, the
scopes can overlap. If so, the scope of one entity (the inner scope) will end strictly before the scope of
the other entity (the outer scope). Within the inner scope, the identifier designates the entity declared
in the inner scope; the entity declared in the outer scope is hidden (and not visible) within the inner
scope.

5 Unless explicitly stated otherwise, where this document uses the term "identifier" to refer to an
entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

6 Two identifiers have the same scope if and only if their scopes terminate at the same point.

7 Structure, union, and enumeration tags have scope that begins just after the appearance of the tag
in a type specifier that declares the tag. Each enumeration constant has scope that begins just after
the appearance of its defining enumerator in an enumerator list. An ordinary identifier that has an
underspecified definition has scope that starts when the definition is completed; if the same ordinary
identifier declares another entity with a scope that encloses the current block, that declaration is
hidden as soon as the inner declarator is completed.19) Any other identifier has scope that begins
just after the completion of its declarator.

8 As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted. A compound literal (which is an expression that provides access to an
anonymous object) is associated with the scope of the type name used in its definition; that scope is
either file scope, function prototype scope, or block scope.

Forward references: declarations (6.7), function calls (6.5.3.3), function calls (6.5.3.6), function
definitions (6.9.2), identifiers (6.4.3), macro replacement (6.10.5), name spaces of identifiers (6.2.3),
source file inclusion (6.10.3), statements and blocks (6.8).

6.2.2 Linkages of identifiers
1 An identifier declared in different scopes or in the same scope more than once can be made to refer

to the same object or function by a process called linkage.20) There are three kinds of linkage: external,
internal, and none.

2 In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

3 If the declaration of a file scope identifier for:

— an object contains any of the storage-class specifiers static or constexpr;

— or, a function contains the storage-class specifier static,

then the identifier has internal linkage.21)

4 For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible,22) if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

5 If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier

19)That means, that the outer declaration is not visible for the initializer.
20)There is no linkage between different identifiers.
21)A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.2.
22)As specified in 6.2.1, the later declaration can hide the prior declaration.

§ 6.2.2 © ISO/IEC 202y — All rights reserved

Language — 37

ISO/IEC 9899:202y (en) — n3299 working draft

for an object has file scope and does not contain the storage-class specifier static or constexpr, its
linkage is external.

6 The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

7 If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

Forward references: declarations (6.7), expressions (6.5.1), external definitions (6.9), statements
(6.8).

6.2.3 Name spaces of identifiers
1 If more than one declaration of a particular identifier is visible at any point in a translation unit, the

syntactic context disambiguates uses that refer to different entities. Thus, there are separate name
spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any23) of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
-> operator);

— standard attributes and attribute prefixes (disambiguated by the syntax of the attribute specifier
and name of the attribute token) (6.7.13);

— the trailing identifier in an attribute prefixed token; each attribute prefix has a separate name
space for the implementation-defined attributes that it introduces (disambiguated by the
attribute prefix and the trailing identifier token);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumera-
tion constants).

Forward references: enumeration specifiers (6.7.3.3), labeled statements (6.8.2), structure and union
specifiers (6.7.3.2), structure and union members (6.5.3.4), tags (6.7.3.4), the goto statement (6.8.7.2).

6.2.4 Storage durations of objects
1 An object has a storage duration that determines its lifetime. There are four storage durations: static,

thread, automatic, and allocated. Allocated storage is described in 7.24.4.

2 The lifetime of an object is the portion of program execution during which storage is guaranteed
to be reserved for it. An object exists, has a constant address,24) and retains its last-stored value
throughout its lifetime.25) If an object is referred to outside of its lifetime, the behavior is undefined.
If a pointer value is used in an evaluation after the object the pointer points to (or just past) reaches
the end of its lifetime, the behavior is undefined. The representation of a pointer object becomes
indeterminate when the object the pointer points to (or just past) reaches the end of its lifetime.

3 An object whose identifier is declared without the storage-class specifier thread_local, and either
with external or internal linkage or with the storage-class specifier static, has static storage duration.
Its lifetime is the entire execution of the program and its stored value is initialized only once, prior
to program startup.

4 An object whose identifier is declared with the storage-class specifier thread_local has thread
storage duration. Its explicit or implicit initializer is evaluated prior to program execution, its lifetime

23)There is only one name space for tags even though three are possible.
24)The term "constant address" means that two pointers to the object constructed at possibly different times will compare

equal. The address can be different during two different executions of the same program.
25)In the case of a volatile object, the last store is not required to be explicit in the program.

© ISO/IEC 202y — All rights reserved

Language — 38

§ 6.2.4

ISO/IEC 9899:202y (en) — n3299 working draft

is the entire execution of the thread for which it is created, and its stored value is initialized with the
previously determined value when the thread is started. There is a distinct object per thread, and
use of the declared name in an expression refers to the object associated with the thread evaluating
the expression. The result of attempting to indirectly access an object with thread storage duration
from a thread other than the one with which the object is associated is implementation-defined.

5 An object whose identifier is declared with no linkage and without the storage-class specifier static
has automatic storage duration, as do some compound literals. The result of attempting to indirectly
access an object with automatic storage duration from a thread other than the one with which the
object is associated is implementation-defined.

6 For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering
an enclosed block or calling a function suspends, but does not end, execution of the current block.)
If the block is entered recursively, a new instance of the object is created each time. The initial
representation of the object is indeterminate. If an initialization is specified for the object and it is not
specified with constexpr, it is performed each time the declaration or compound literal is reached
in the execution of the block; if it is specified with constexpr the initializer is evaluated once at
translation time and the new instance of the object is initialized to that fixed value each time the
specification is reached; otherwise, the representation of the object becomes indeterminate each time
the declaration is reached.

7 For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.26) If the scope is
entered recursively, a new instance of the object is created each time. The initial representation of
the object is indeterminate.

8 A non-lvalue expression with structure or union type, where the structure or union contains a
member with array type (including, recursively, members of all contained structures and unions)
refers to an object with automatic storage duration and temporary lifetime.27) Its lifetime begins when
the expression is evaluated and its initial value is the value of the expression. Its lifetime ends
when the evaluation of the containing full expression ends. Any attempt to modify an object with
temporary lifetime results in undefined behavior. An object with temporary lifetime behaves as if it
were declared with the type of its value for the purposes of effective type. Such an object may not
have a unique address.

Forward references: array declarators (6.7.7.3), compound literals (6.5.3.6), declarators (6.7.7),
function calls (6.5.3.3), initialization (6.7.11), statements (6.8), effective type (6.5.1).

6.2.5 Types
1 The meaning of a value stored in an object or returned by a function is determined by the type of the

expression used to access it. (An identifier declared to be an object is the simplest such expression;
the type is specified in the declaration of the identifier.) Types are partitioned into object types (types
that describe objects) and function types (types that describe functions). At various points within a
translation unit an object type can be incomplete28) (lacking sufficient information to determine the
size of objects of that type) or complete (having sufficient information).29)

2 An object declared as type bool is large enough to store the values false and true.

3 An object declared as type char is large enough to store any member of the basic execution char-
acter set. If a member of the basic execution character set is stored in a char object, its value is
guaranteed to be nonnegative. If any other character is stored in a char object, the resulting value is
implementation-defined but shall be within the range of values that can be represented in that type.

26)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior
to the declaration, leaves the scope of the declaration.

27)The address of such an object is taken implicitly when an array member is accessed.
28)An incomplete type can only be used when the size of an object of that type is not needed. It is not needed, for example,

when a typedef name is declared to be a specifier for a structure or union, or when a pointer to or a function returning a
structure or union is being declared. The specification has to be complete before such a function is called or defined.

29)A type can be incomplete or complete throughout an entire translation unit, or it can change states at different points
within a translation unit.

§ 6.2.5 © ISO/IEC 202y — All rights reserved

Language — 39

ISO/IEC 9899:202y (en) — n3299 working draft

4 There are five standard signed integer types, designated as signed char, short int, int, long int,
and long long int. (These and other types can be designated in several additional ways, as
described in 6.7.3.)

5 A bit-precise signed integer type is designated as_BitInt(N)where N is an integer constant expression
that specifies the number of bits that are used to represent the type, including the sign bit. Each
value of N designates a distinct type.30)

6 There may also be implementation-defined extended signed integer types.31) The standard signed
integer types, bit-precise signed integer types, and extended signed integer types are collectively
called signed integer types.32)

7 An object declared as type signed char occupies the same amount of storage as a "plain" char
object. A "plain" int object has the natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT_MIN to INT_MAX as defined in the
header <limits.h>).

8 For each of the signed integer types, there is a corresponding (but different) unsigned integer type
(designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The type bool and the unsigned integer
types that correspond to the standard signed integer types are the standard unsigned integer types.
The unsigned integer types that correspond to the extended signed integer types are the extended
unsigned integer types. In addition to the unsigned integer types that correspond to the bit-precise
signed integer types there is the type unsigned _BitInt(1), which uses one bit to represent the
type. Collectively, unsigned _BitInt(1) and the unsigned integer types that correspond to the bit-
precise signed integer types are the bit-precise unsigned integer types. The standard unsigned integer
types, bit-precise unsigned integer types, and extended unsigned integer types are collectively called
unsigned integer types.33)

9 The standard signed integer types and standard unsigned integer types are collectively called the
standard integer types; the bit-precise signed integer types and bit-precise unsigned integer types
are collectively called the bit-precise integer types; the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

10 For any two integer types with the same signedness and different integer conversion rank (see
6.3.2.1), the range of values of the type with smaller integer conversion rank is a subrange of the
values of the other type.

11 The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same.34) The range of
representable values for the unsigned type is 0 to 2N − 1 (inclusive). A computation involving
unsigned operands can never produce an overflow, because arithmetic for the unsigned type is
performed modulo 2N .

12 There are three standard floating types, designated as float, double, and long double.35) The set of
values of the type float is a subset of the set of values of the type double; the set of values of the
type double is a subset of the set of values of the type long double.

13 There are three decimal floating types, designated as _Decimal32, _Decimal64, and _Decimal128
. Respectively, they have the ISO/IEC 60559 formats: decimal32,36) decimal64, and decimal128.
(Decimal floating types are a conditional feature that implementations may not support; see 6.10.10.4.)

30)Thus, _BitInt(3) is not the same type as _BitInt(4).
31)Implementation-defined keywords have the form of an identifier reserved for any use as described in 7.1.3.
32)Any statement in this document about signed integer types also applies to the bit-precise signed integer types and the

extended signed integer types, unless otherwise noted.
33)Any statement in this document about unsigned integer types also applies to the bit-precise unsigned integer types and

the extended unsigned integer types, unless otherwise specified.
34)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.
35)See "future language directions" (6.11.1).
36)ISO/IEC 60559 specifies decimal32 as a data-interchange format that does not require arithmetic support; however,

_Decimal32 is a fully supported arithmetic type.

© ISO/IEC 202y — All rights reserved

Language — 40

§ 6.2.5

ISO/IEC 9899:202y (en) — n3299 working draft

14 The standard floating types and the decimal floating types are collectively called the real floating
types..

15 There are three complex types, designated as float _Complex, double _Complex, and long double
_Complex.37) (Complex types are a conditional feature that implementations may not support; see
6.10.10.4.) The real floating and complex types are collectively called the floating types.

16 For each floating type there is a corresponding real type, which is always a real floating type. For real
floating types, it is the same type. For complex types, it is the type given by deleting the keyword
_Complex from the type name.

17 Each complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the real
part, and the second element to the imaginary part, of the complex number.

18 The type char, the signed and unsigned integer types, and the floating types are collectively called
the basic types. The basic types are complete object types. Even if the implementation defines two or
more basic types to have the same representation, they are nevertheless distinct types.

19 NOTE An implementation can define new keywords that provide alternative ways to designate a basic (or
any other) type; this does not violate the requirement that all basic types be different. Implementation-defined
keywords have the form of an identifier reserved for any use as described in 7.1.3.

20 The three types char, signed char, and unsigned char are collectively called the character types.
The implementation shall define char to have the same range, representation, and behavior as either
signed char or unsigned char.38)

21 An enumeration comprises a set of named integer constant values. Each distinct enumeration
constitutes a different enumerated type.

22 The type char, the signed and unsigned integer types, and the enumerated types are collectively
called integer types. The integer and real floating types are collectively called real types.

23 Integer and floating types are collectively called arithmetic types. Each arithmetic type belongs to
one type domain: the real type domain comprises the real types, the complex type domain comprises the
complex types.

24 The void type comprises an empty set of values; it is an incomplete object type that cannot be
completed.

25 Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called "array of T". The construction of an array
type from an element type is called "array type derivation".

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called "function returning T". The construction of a function type from a return type is called
"function type derivation".

37)A specification for imaginary types is in Annex G.
38)CHAR_MIN, defined in <limits.h>, will have one of the values 0 or SCHAR_MIN, and this can be used to distinguish the

two options. Irrespective of the choice made, char is a separate type from the other two and is not compatible with either.

§ 6.2.5 © ISO/IEC 202y — All rights reserved

Language — 41

ISO/IEC 9899:202y (en) — n3299 working draft

— A pointer type can be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called "pointer to T".
The construction of a pointer type from a referenced type is called "pointer type derivation".
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic(type-name). (Atomic
types are a conditional feature that implementations may not support; see 6.10.10.4.)

These methods of constructing derived types can be applied recursively.

26 Arithmetic types, pointer types, and the nullptr_t type are collectively called scalar types. Array
and structure types are collectively called aggregate types.39)

27 An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.3.4) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

28 A complete type shall have a size that is less than or equal to SIZE_MAX. A type has known constant
size if it is complete and is not a variable length array type.

29 Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

30 A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted previously in this subclause in the construction of derived types), or the type itself if
the type consists of no derived types.

31 Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,40) corresponding to the combinations of one, two, or all three of the const, volatile, and
restrict qualifiers. The qualified or unqualified versions of a type are distinct types that belong to
the same type category and have the same representation and alignment requirements.41) An array
and its element type are always considered to be identically qualified.42) Any other derived type is
not qualified by the qualifiers (if any) of the type from which it is derived.

32 Further, there is the _Atomic qualifier. The presence of the _Atomic qualifier designates an atomic
type. The size, representation, and alignment of an atomic type may not be the same as those of
the corresponding unqualified type. Therefore, this document explicitly uses the phrase "atomic,
qualified, or unqualified type" whenever the atomic version of a type is permitted along with the
other qualified versions of a type. The phrase "qualified or unqualified type", without specific
mention of atomic, does not include the atomic types.

33 A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.41) Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alignment requirements. All pointers to structure types shall have
the same representation and alignment requirements as each other. All pointers to union types shall
have the same representation and alignment requirements as each other. Pointers to other types may
not have the same representation or alignment requirements.

34 EXAMPLE 1 The type designated as "float *" has type "pointer to float". Its type category is pointer, not
a floating type. The const-qualified version of this type is designated as "float * const" whereas the type
designated as "const float *" is not a qualified type — its type is "pointer to const-qualified float" and is a
pointer to a qualified type.

39)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

40)See 6.7.4 regarding qualified array and function types.
41)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.
42)This does not apply to the _Atomic qualifier. Qualifiers do not have any direct effect on the array type itself, but affect

conversion rules for pointer types that reference an array type.

© ISO/IEC 202y — All rights reserved

Language — 42

§ 6.2.5

ISO/IEC 9899:202y (en) — n3299 working draft

35 EXAMPLE 2 The type designated as "struct tag (*[5])(float)" has type "array of pointer to function
returning struct tag". The array has length five and the function has a single parameter of type float. Its
type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types
6.2.6.1 General

1 The representations of all types are unspecified except as stated in this subclause.

2 Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

3 Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.

4 Values stored in non-bit-field objects of any other object type are represented using n×CHAR_BIT bits,
where n is the size of an object of that type, in bytes. An object that has the value can be copied into
an object of type unsigned char [n] (e.g. by memcpy); the resulting set of bytes is called the object
representation of the value. Values stored in bit-fields consist of m bits, where m is the size specified
for the bit-field. The object representation is the set of m bits the bit-field comprises in the addressable
storage unit holding it. Two values (other than NaNs) with the same object representation compare
equal, but values that compare equal may have different object representations.

5 Certain object representations do not represent a value of the object type. If such a representation is
read by an lvalue expression that does not have character type, the behavior is undefined. If such a
representation is produced by a side effect that modifies all or any part of the object by an lvalue
expression that does not have character type, the behavior is undefined.43) Such a representation is
called a non-value representation.

6 When a value is stored in an object of structure or union type, including in a member object, the
bytes of the object representation that correspond to any padding bytes take unspecified values
(e.g. structure and union assignment can fail to copy any padding bits). The object representation
of a structure or union object is never a non-value representation, even though the byte range
corresponding to a member of the structure or union object can be a non-value representation for
that member.

7 When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

8 Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.44) Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a non-value representation shall not be generated.

9 Loads and stores of objects with atomic types are done with memory_order_seq_cst semantics.

Forward references: declarations (6.7), expressions (6.5.1), lvalues, arrays, and function designators
(6.3.3.1), order and consistency (7.17.3).

6.2.6.2 Integer types
1 For unsigned integer types the bits of the object representation shall be divided into two groups:

value bits and padding bits. If there are N value bits, each bit shall represent a different power of
2 between 1 and 2N−1, so that objects of that type shall be capable of representing values from 0
to 2N − 1 using a pure binary representation; this shall be known as the value representation. The
values of any padding bits are unspecified. The number of value bits N is called the width of the
unsigned integer type. The type bool shall have one value bit and (sizeof(bool)*CHAR_BIT)- 1

43)Thus, an automatic variable can be initialized to a non-value representation without causing undefined behavior, but the
value of the variable cannot be used until a proper value is stored in it.

44)It is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects
of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply
that memcmp(&x, &y, sizeof(T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T can distinguish between them.

§ 6.2.6.2 © ISO/IEC 202y — All rights reserved

Language — 43

ISO/IEC 9899:202y (en) — n3299 working draft

padding bits. Otherwise, there is no requirement to have any padding bits; unsigned char shall
not have any padding bits.

2 For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. If the corresponding unsigned type has width N , the
signed type uses the same number of N bits, its width, as value bits and sign bit. N − 1 are value
bits and the remaining bit is the sign bit. Each bit that is a value bit shall have the same value as the
same bit in the object representation of the corresponding unsigned type. If the sign bit is zero, it
shall not affect the resulting value. If the sign bit is one, it has value −(2N−1). There can be padding
bits; signed char shall not have any padding bits.

3 The values of any padding bits are unspecified. A valid object representation of a signed integer
type where the sign bit is zero is a valid object representation of the corresponding unsigned type,
and shall represent the same value. For any integer type, the object representation where all the bits
are zero shall be a representation of the value zero in that type.

4 The precision of an integer type is the number of value bits.

5 NOTE 1 Some combinations of padding bits can generate non-value representations, for example, if one
padding bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a non-value
representation other than as part of an exceptional condition such as an integer overflow. All other combinations
of padding bits are alternative object representations of the value specified by the value bits.

6 NOTE 2 The sign representation defined in this document is called two’s complement. Previous editions of this
document (specifically ISO/IEC 9899:2018 and prior editions) additionally allowed other sign representations.

7 NOTE 3 For unsigned integer types the width and precision are the same, while for signed integer types the
width is one greater than the precision.

6.2.7 Compatible type and composite type
1 Two types are compatible types if they are the same. Additional rules for determining whether two

types are compatible are described in 6.7.3 for type specifiers, in 6.7.4 for type qualifiers, and in 6.7.7
for declarators.45) Moreover, two complete structure, union, or enumerated types declared with the
same tag are compatible if members satisfy the following requirements:

— there shall be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types;

— if one member of the pair is declared with an alignment specifier, the other is declared with an
equivalent alignment specifier;

— and, if one member of the pair is declared with a name, the other is declared with the same
name.

For two structures, corresponding members shall be declared in the same order. For two unions
declared in the same translation unit, corresponding members shall be declared in the same order. For
two structures or unions, corresponding bit-fields shall have the same widths. For two enumerations,
corresponding members shall have the same values; if one has a fixed underlying type, then the
other shall have a compatible fixed underlying type. For determining type compatibility, anonymous
structures and unions are considered a regular member of the containing structure or union type,
and the type of an anonymous structure or union is considered compatible to the type of another
anonymous structure or union, respectively, if their members fulfill the preceding requirements.

Furthermore, two structure, union, or enumerated types declared in separate translation units are
compatible in the following cases:

— both are declared without tags and they fulfill the preceding requirements;

— both have the same tag and are completed somewhere in their respective translation units and
they fulfill the preceding requirements;

45)Two types are not expected to be identical to be compatible.

© ISO/IEC 202y — All rights reserved

Language — 44

§ 6.2.7

ISO/IEC 9899:202y (en) — n3299 working draft

— both have the same tag and at least one of the two types is not completed in its translation unit.

Otherwise, the structure, union, or enumerated types are incompatible.46)

2 All declarations that refer to the same object or function shall have compatible type; otherwise, the
behavior is undefined.

3 A composite type can be constructed from two types that are compatible. If both types are the same
type, the composite type is this type. Otherwise, it is a type that is compatible with both and satisfies
the following conditions:

— If both types are structure types or both types are union types, the composite type is determined
recursively by forming the composite types of their members.

— If both types are array types, the following rules are applied:

• If one type is an array of known constant size, the composite type is an array of that size.

• Otherwise, if one type is a variable length array whose size is specified by an expression
that is not evaluated, the behavior is undefined.

• Otherwise, if one type is a variable length array whose size is specified, the composite
type is a variable length array of that size.

• Otherwise, if one type is a variable length array of unspecified size, the composite type is
a variable length array of unspecified size.

• Otherwise, both types are arrays of unknown size and the composite type is an array of
unknown size.

The element type of the composite type is the composite type of the two element types.

— If both types are function types, the type of each parameter in the composite parameter type
list is the composite type of the corresponding parameters.

— If one of the types has a standard attribute, the composite type also has that attribute.

— If both types are enumerated types, the composite type is an enumerated type.

— If one type is an enumerated type and the other is an integer type other than an enumerated
type, it is implementation-defined whether or not the composite type is an enumerated type.

These rules apply recursively to the types from which the two types are derived.

4 If any of the original types satisfies all requirements of the composite type, it is unspecified whether
the composite type is one of these types or a different type that satisfies the requirements.47)

5 For an identifier with internal or external linkage declared in a scope in which a prior declaration of
that identifier is visible,48) if the prior declaration specifies internal or external linkage, the type of
the identifier at the later declaration becomes the composite type.

6 EXAMPLE Given the following two file scope declarations:

int f(int (*)(char *), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:

int f(int (*)(char *), double (*)[3]);

Forward references: array declarators (6.7.7.3).

46)A structure, union, or enumerated type without a tag or an incomplete structure, union or enumerated type is not
compatible with any other structure, union or enum type declared in the same translation unit.

47)The notion of "same type" affects redeclarations of typedef names and tags in the same scope.
48)As specified in 6.2.1, the later declaration can hide the prior declaration.

§ 6.2.7 © ISO/IEC 202y — All rights reserved

Language — 45

ISO/IEC 9899:202y (en) — n3299 working draft

6.2.8 Alignment of objects
1 Complete object types have alignment requirements which place restrictions on the addresses at

which objects of that type can be allocated. An alignment is an implementation-defined integer
value representing the number of bytes between successive addresses at which a given object can be
allocated. An object type imposes an alignment requirement on every object of that type: stricter
alignment can be requested using the alignas keyword.

2 A fundamental alignment is a valid alignment less than or equal to alignof(max_align_t). Funda-
mental alignments shall be supported by the implementation for objects of all storage durations.
The alignment requirements of the following types shall be fundamental alignments:

— all atomic, qualified, or unqualified basic types;

— all atomic, qualified, or unqualified enumerated types;

— all atomic, qualified, or unqualified pointer types;

— all array types whose element type has a fundamental alignment requirement;

— all types specified in Clause 7 as complete object types;

— all structure or union types whose elements have types with fundamental alignment require-
ments and none of whose elements have an alignment specifier specifying an alignment that is
not a fundamental alignment.

3 An extended alignment is represented by an alignment greater than alignof(max_align_t). It is
implementation-defined whether any extended alignments are supported and the storage durations
for which they are supported. A type having an extended alignment requirement is an over-aligned
type.49)

4 Alignments are represented as values of the type size_t. Valid alignments include only fundamental
alignments, plus an additional implementation-defined set of values, which can be empty. Every
valid alignment value shall be a nonnegative integral power of two.

5 Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have
larger alignment values. An address that satisfies an alignment requirement also satisfies any weaker
valid alignment requirement.

6 The alignment requirement of a complete type can be queried using an alignof expression. The
types char, signed char, and unsigned char shall have the weakest alignment requirement.

7 Comparing alignments is meaningful and provides the obvious results:

— Two alignments are equal when their numeric values are equal.

— Two alignments are different when their numeric values are not equal.

— When an alignment is larger than another it represents a stricter alignment.

6.2.9 Encodings
1 The literal encoding is an implementation-defined mapping of the characters of the execution character

set to the values in a character constant (6.4.5.5) or string literal (6.4.6). It shall support a mapping
from all the basic execution character set values into the implementation-defined encoding. It can
contain multibyte character sequences (5.3.2).

2 The wide literal encoding is an implementation-defined mapping of the characters of the execution
character set to the values in a wchar_t character constant (6.4.5.5) or a wchar_t string literal (6.4.6).
It shall support a mapping from all the basic execution character set values into the implementation-
defined encoding. The mapping shall produce values identical to the literal encoding for all the basic
execution character set values if an implementation does not define __STDC_MB_MIGHT_NEQ_WC__.
One or more values may map to one or more values of the extended execution character set.

49)Every over-aligned type is, or contains, a structure or union type with a member to which an extended alignment has
been applied.

© ISO/IEC 202y — All rights reserved

Language — 46

§ 6.2.9

ISO/IEC 9899:202y (en) — n3299 working draft

6.3 Conversions
6.3.1 Introduction

1 Several operators convert operand values from one type to another automatically. This subclause
specifies the result required from such an implicit conversion, as well as those that result from a cast
operation (an explicit conversion). The list in 6.3.2.8 summarizes the conversions performed by most
ordinary operators; it is supplemented as required by the discussion of each operator in 6.5.1.

2 Unless explicitly stated otherwise, conversion of an operand value to a compatible type causes no
change to the value or the representation.

Forward references: cast operators (6.5.5).

6.3.2 Arithmetic operands
6.3.2.1 Boolean, characters, and integers

1 Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they have the same representa-
tion.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with
less precision.

— The rank of long long int shall be greater than the rank of long int, which shall be greater
than the rank of int, which shall be greater than the rank of short int, which shall be greater
than the rank of signed char.

— The rank of a bit-precise signed integer type shall be greater than the rank of any standard
integer type with less width or any bit-precise integer type with less width.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer
type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended integer
type with the same width or bit-precise integer type with the same width.

— The rank of any bit-precise integer type relative to an extended integer type of the same width
is implementation-defined.

— The rank of char shall equal the rank of signed char and unsigned char.

— The rank of bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type (see
6.7.3.3).

— The rank of any extended signed integer type relative to another extended signed integer
type with the same precision is implementation-defined, but still subject to the other rules for
determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than
T3, then T1 has greater rank than T3.

2 The following can be used in an expression wherever an int or unsigned int can be used:

— An object or expression with an integer type (other than int or unsigned int) whose integer
conversion rank is less than or equal to the rank of int and unsigned int.

— A bit-field of type bool, int, signed int, or unsigned int.

§ 6.3.2.1 © ISO/IEC 202y — All rights reserved

Language — 47

ISO/IEC 9899:202y (en) — n3299 working draft

The value from a bit-field of a bit-precise integer type is converted to the corresponding bit-precise
integer type. If the original type is not a bit-precise integer type (6.2.5): if an int can represent all
values of the original type (as restricted by the width, for a bit-field), the value is converted to an
int;50) otherwise, it is converted to an unsigned int. These are called the integer promotions. All
other types are unchanged by the integer promotions.

3 NOTE The integer promotions are applied only:

1. as part of the usual arithmetic conversions,

2. to certain argument expressions,

3. to the operands of the unary +, -, and ~ operators,

4. and to both operands of the shift operators,

as specified by their respective subclauses.

4 The integer promotions preserve value including sign. As discussed earlier, whether a "plain" char
can hold negative values is implementation-defined.

Forward references: enumeration specifiers (6.7.3.3), structure and union specifiers (6.7.3.2).

6.3.2.2 Boolean type
1 When any scalar value is converted to bool, the result is false if the value is a zero (for arithmetic

types), null (for pointer types), or the scalar has type nullptr_t; otherwise, the result is true.

6.3.2.3 Signed and unsigned integers
1 When a value with integer type is converted to another integer type other than bool, if the value

can be represented by the new type, it is unchanged.

2 Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting
one more than the maximum value that can be represented in the new type until the value is in the
range of the new type.51)

3 Otherwise, the new type is signed and the value cannot be represented in it; either the result is
implementation-defined or an implementation-defined signal is raised.

6.3.2.4 Real floating and integer
1 When a finite value of standard floating type is converted to an integer type other than bool, the

fractional part is discarded (i.e. the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the behavior is undefined.52)

2 When a finite value of decimal floating type is converted to an integer type other than bool, the
fractional part is discarded (i.e. the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the "invalid" floating-point exception shall be raised and
the result of the conversion is unspecified.

3 When a value of integer type is converted to a standard floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted is in the
range of values that can be represented but cannot be represented exactly, the result is either the
nearest higher or nearest lower representable value, chosen in an implementation-defined manner.
If the value being converted is outside the range of values that can be represented, the behavior is
undefined. Results of some implicit conversions can be represented in greater range and precision
than that required by the new type (see 6.3.2.8 and 6.8.7.5).

4 When a value of integer type is converted to a decimal floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted cannot
be represented exactly, the result shall be correctly rounded with exceptions raised as specified in
ISO/IEC 60559.

50)E.g. unsigned _BitInt(7): 2 is a bit-field that can hold the values 0, 1, 2, 3, and converts to unsigned _BitInt(7).
51)The rules describe arithmetic on the mathematical value, not the value of a given type of expression.
52)The remaindering operation performed when a value of integer type is converted to unsigned type is not necessary to be

performed when a value of real floating type is converted to unsigned type. Thus, the range of portable real floating values is
(−1, Utype_MAX + 1).

© ISO/IEC 202y — All rights reserved

Language — 48

§ 6.3.2.4

ISO/IEC 9899:202y (en) — n3299 working draft

6.3.2.5 Real floating types
1 When a value of real floating type is converted to a real floating type, if the value being converted

can be represented exactly in the new type, it is unchanged.

2 When a value of real floating type is converted to a standard floating type, if the value being
converted is in the range of values that can be represented but cannot be represented exactly, the
result is either the nearest higher or nearest lower representable value, chosen in an implementation-
defined manner. If the value being converted is outside the range of values that can be represented,
the behavior is undefined.

3 When a value of real floating type is converted to a decimal floating type, if the value being converted
cannot be represented exactly, the result is correctly rounded with exceptions raised as specified in
ISO/IEC 60559.

4 Results of some implicit conversions may be represented in greater range and precision than that
required by the new type (see 6.3.2.8 and 6.8.7.5).

6.3.2.6 Complex types
1 When a value of complex type is converted to another complex type, both the real and imaginary

parts follow the conversion rules for the corresponding real types.

6.3.2.7 Real and complex
1 When a value of real type is converted to a complex type, the real part of the complex result value is

determined by the rules of conversion to the corresponding real type and the imaginary part of the
complex result value is a positive zero or an unsigned zero.

2 When a value of complex type is converted to a real type other than bool,53) the imaginary part of
the complex value is discarded and the value of the real part is converted according to the conversion
rules for the corresponding real type.

6.3.2.8 Usual arithmetic conversions
1 Many operators that expect operands of arithmetic type cause conversions and yield result types in

a similar way. The purpose is to determine a common real type for the operands and result. For the
specified operands, each operand is converted, without change of type domain, to a type whose
corresponding real type is the common real type. Unless explicitly stated otherwise, the common
real type is also the corresponding real type of the result, whose type domain is the type domain of
the operands if they are the same, and complex otherwise. This pattern is called the usual arithmetic
conversions:

If one operand has decimal floating type, the other operand shall not have standard floating,
complex, or imaginary type.

First, if the type of either operand is _Decimal128, the other operand is converted to
_Decimal128.

Otherwise, if the type of either operand is _Decimal64, the other operand is converted to
_Decimal64.

Otherwise, if the type of either operand is _Decimal32, the other operand is converted to
_Decimal32.

Otherwise, if the corresponding real type of either operand is long double, the other operand
is converted, without change of type domain, to a type whose corresponding real type is
long double.

Otherwise, if the corresponding real type of either operand is double, the other operand is
converted, without change of type domain, to a type whose corresponding real type is double.

53)See 6.3.2.2.

§ 6.3.2.8 © ISO/IEC 202y — All rights reserved

Language — 49

ISO/IEC 9899:202y (en) — n3299 working draft

Otherwise, if the corresponding real type of either operand is float, the other operand is
converted, without change of type domain, to a type whose corresponding real type is float.54)

Otherwise, if any of the two types is an enumeration, it is converted to its underlying type.
Then, the integer promotions are performed on both operands. Next, the following rules are
applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned integer
types, the operand with the type of lesser integer conversion rank is converted to the type
of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or equal to
the rank of the type of the other operand, then the operand with signed integer type is
converted to the type of the operand with unsigned integer type.

Otherwise, if the type of the operand with signed integer type can represent all the values
of the type of the operand with unsigned integer type, then the operand with unsigned
integer type is converted to the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type corresponding to
the type of the operand with signed integer type.

2 The values of floating operands and of the results of floating expressions may be represented in
greater range and precision than that required by the type; the types are not changed thereby.
See 5.3.5.3.3 regarding evaluation formats.

3 EXAMPLE One consequence of _BitInt being exempt from the integer promotion rules (6.3.2) is that a
_BitInt operand of a binary operator is not always promoted to an int or unsigned int as part of the usual
arithmetic conversions. Instead, a lower-ranked operand is converted to the higher-rank operand type and the
result of the operation is the higher-ranked type.

_BitInt(2) a2 = 1;
_BitInt(3) a3 = 2;
_BitInt(33) a33 = 1;
signed char c = 3;

a2 * a3; /* As part of the multiplication, a2 is converted to
_BitInt(3) and the result type is _BitInt(3). */

a2 * c; /* As part of the multiplication, c is promoted to int,
a2 is converted to int and the result type is int. */

a33 * c; /* As part of the multiplication, c is promoted to int.
Then, provided int has a width of at most 32,
it is converted to _BitInt(33) and the result type
is _BitInt(33). */

void func(_BitInt(8) a8, _BitInt(24) a24) {
/* Cast one of the operands to 32-bits to guarantee the

result of the multiplication can contain all possible values. */
_BitInt(32) a32 = a8 * (_BitInt(32))a24;

}

6.3.3 Other operands
6.3.3.1 Lvalues, arrays, and function designators

1 An lvalue is an expression (with an object type other than void) that potentially designates an
object;55) if an lvalue does not designate an object when it is evaluated, the behavior is undefined.

54)For example, addition of a double _Complex and a float entails just the conversion of the float operand to double
(and yields a double _Complex result).

55)The name "lvalue" comes originally from the assignment expression E1 = E2, in which the left operand E1 is required to
be a (modifiable) lvalue. It is perhaps better considered as representing an object "locator value". What is sometimes called

© ISO/IEC 202y — All rights reserved

Language — 50

§ 6.3.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

When an object is said to have a particular type, the type is specified by the lvalue used to designate
the object. A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

2 Except when it is the operand of the sizeof operator, or the typeof operators, the unary & operator,
the ++ operator, the -- operator, or the left operand of the . operator or an assignment operator, an
lvalue that does not have array type is converted to the value stored in the designated object (and is
no longer an lvalue); this is called lvalue conversion. If the lvalue has qualified type, the value has the
unqualified version of the type of the lvalue; additionally, if the lvalue has atomic type, the value has
the non-atomic version of the type of the lvalue; otherwise, the value has the type of the lvalue. If the
lvalue has an incomplete type and does not have array type, the behavior is undefined. If the lvalue
designates an object of automatic storage duration that could have been declared with the register
storage class (never had its address taken), and that object is uninitialized (not declared with an
initializer and no assignment to it has been performed prior to use), the behavior is undefined.

3 Except when it is the operand of the sizeof operator, or typeof operators, or the unary & operator,
or is a string literal used to initialize an array, an expression that has type "array of type" is converted
to an expression with type "pointer to type" that points to the initial element of the array object and
is not an lvalue. If the array object has register storage class, the behavior is undefined.

4 A function designator is an expression that has function type. Except when it is the operand of the
sizeof operator,56) a typeof operator, or the unary & operator, a function designator with type
"function returning type" is converted to an expression that has type "pointer to function returning
type".

Forward references: address and indirection operators (6.5.4.3), assignment operators (6.5.17),
common definitions <stddef.h> (7.21), initialization (6.7.11), postfix increment and decrement
operators (6.5.3.5), prefix increment and decrement operators (6.5.4.2), the sizeof and alignof
operators (6.5.4.5), structure and union members (6.5.3.4).

6.3.3.2 void

1 The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.3.3 Pointers
1 A pointer to void can be converted to or from a pointer to any object type. A pointer to any object

type can be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

2 For any qualifier q, a pointer to a non-q-qualified type can be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

3 An integer constant expression with the value 0, such an expression cast to type void *, or the
predefined constant nullptr is called a null pointer constant.57) If a null pointer constant or a value
of the type nullptr_t (which is necessarily the value nullptr) is converted to a pointer type, the
resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or
function.

4 Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

5 An integer can be converted to any pointer type. Except as previously specified, the result is

"rvalue" is in this document described as the "value of an expression".
An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary expression that is a

pointer to an object, *E is an lvalue that designates the object to which E points.
56)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates

the constraints in 6.5.4.5
57)The macro NULL is defined in <stddef.h> (and other headers) as a null pointer constant; see 7.21.

§ 6.3.3.3 © ISO/IEC 202y — All rights reserved

Language — 51

ISO/IEC 9899:202y (en) — n3299 working draft

implementation-defined, possibly not correctly aligned, can possibly not point to an entity of the
referenced type, and can produce an indeterminate representation when stored into an object.58)

6 Any pointer type can be converted to an integer type. Except as previously specified, the result
is implementation-defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result is not required to be in the range of values of any integer type.

7 A pointer to an object type can be converted to a pointer to a different object type. If the resulting
pointer is not correctly aligned59) for the referenced type, the behavior is undefined. Otherwise,
when converted back again, the result shall compare equal to the original pointer. When a pointer to
an object is converted to a pointer to a character type, the result points to the lowest addressed byte
of the object. Successive increments of the result, up to the size of the object, yield pointers to the
remaining bytes of the object.

8 A pointer to a function of one type can be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

6.3.3.4 nullptr_t

1 The type nullptr_t can be converted to void, bool or to a pointer type; the result is a void
expression, false, or a null pointer value, respectively.

2 A null pointer constant or value of type nullptr_t can be converted to nullptr_t.

Forward references: cast operators (6.5.5), equality operators (6.5.10), integer types capable of
holding object pointers (7.22.2.5), simple assignment (6.5.17.2), the nullptr_t type (7.21.3).

58)The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be consistent with
the addressing structure of the execution environment.

59)In general, the concept "correctly aligned" is transitive: if a pointer to type A is correctly aligned for a pointer to type B,
which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

© ISO/IEC 202y — All rights reserved

Language — 52

§ 6.3.3.4

ISO/IEC 9899:202y (en) — n3299 working draft

6.4 Lexical elements
6.4.1 General
Syntax

1 token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator

each universal character name that cannot be one of the above
each non-white-space character that cannot be one of the above

Constraints
2 Each preprocessing token that is converted to a token shall have the lexical form of a keyword, an

identifier, a constant, a string literal, or a punctuator. A single universal character name shall match
one of the other preprocessing token categories.

Semantics
3 A token is the minimal lexical element of the language in translation phases 7 and 8 (5.2.1.2).

The categories of tokens are: keywords, identifiers, constants, string literals, and punctuators.
A preprocessing token is the minimal lexical element of the language in translation phases 3
through 6. The categories of preprocessing tokens are: header names, identifiers, preprocessing
numbers, character constants, string literals, punctuators, and both single universal character names
as well as single non-white-space characters that do not lexically match the other preprocessing
token categories.60) If a ’ or a " character matches the last category, the behavior is undefined.
Preprocessing tokens can be separated by white space; this consists of comments (described later),
or white-space characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As
described in 6.10, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space may appear within a
preprocessing token only as part of a header name or between the quotation characters in a character
constant or string literal.

4 If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing token.
There is one exception to this rule: header name preprocessing tokens are recognized only within #
include and #embed preprocessing directives, in __has_include and __has_embed expressions, as
well as in implementation-defined locations within #pragma directives. In such contexts, a sequence
of characters that could be either a header name or a string literal is recognized as the former.

5 EXAMPLE 1 The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer constant token), even though a parse as the pair of preprocessing tokens 1 and Ex can
produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program fragment
1E1 is parsed as a preprocessing number (one that is a valid floating constant token), whether or not E is a
macro name.

6 EXAMPLE 2 The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on incre-

60)An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.5.4); it cannot occur in source files.

§ 6.4.1 © ISO/IEC 202y — All rights reserved

Language — 53

ISO/IEC 9899:202y (en) — n3299 working draft

ment operators, even though the parse x ++ + ++ y can yield a correct expression.

Forward references: character constants (6.4.5.5), comments (6.4.10), expressions (6.5.1), floating
constants (6.4.5.3), header names (6.4.8), macro replacement (6.10.5), postfix increment and decrement
operators (6.5.3.5), prefix increment and decrement operators (6.5.4.2), preprocessing directives (6.10),
preprocessing numbers (6.4.9), string literals (6.4.6).

6.4.2 Keywords
Syntax

1 keyword: one of
alignas
alignof
auto
bool
break
case
char
const

constexpr
continue
default

do
double
else
enum
extern
false
float
for
goto
if

inline

int
long

nullptr
register
restrict
return
short
signed
sizeof
static

static_assert

struct
switch

thread_local
true

typedef
typeof

typeof_unqual
union

unsigned
void

volatile

while
_Atomic
_BitInt
_Complex

_Decimal128
_Decimal32
_Decimal64
_Generic

_Imaginary
_Noreturn

Semantics
2 The previously listed tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as

keywords except in an attribute token, and shall not be used otherwise. The keyword _Imaginary
is reserved for specifying imaginary types.61)

3 Table 6.1 provides alternate spellings for certain keywords. These can be used wherever the keyword
can.62)

Table 6.1 — Keywords and their spellings

Keyword Alternative Spelling
alignas _Alignas
alignof _Alignof
bool _Bool

static_assert _Static_assert
thread_local _Thread_local

The spelling of these keywords, their alternate forms, and of false and true inside expressions that
are subject to the # and ## preprocessing operators is unspecified.63)

61)One possible specification for imaginary types appears in Annex G.
62)These alternative keywords are obsolescent features and should not be used for new code and development.
63)The intent of this specification is to allow but not force the implementation of the corresponding feature by means of a

predefined macro.

© ISO/IEC 202y — All rights reserved

Language — 54

§ 6.4.2

ISO/IEC 9899:202y (en) — n3299 working draft

6.4.3 Identifiers
6.4.3.1 General
Syntax

1 identifier:
identifier-start
identifier identifier-continue

identifier-start:
nondigit

XID_Start character
universal character name of class XID_Start

identifier-continue:
digit
nondigit

XID_Continue character
universal character name of class XID_Continue

nondigit: one of
_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

Semantics
2 An XID_Start character is an implementation-defined character whose corresponding code point

in ISO/IEC 10646 has the XID_Start property. An XID_Continue character is an implementation-
defined character whose corresponding code point in ISO/IEC 10646 has the XID_Continue property.
An identifier is a sequence of one identifier start character followed by 0 or more identifier continue
characters, which designates one or more entities as described in 6.2.1. It is implementation-defined
if a $ (U+0024, DOLLAR SIGN) may be used as a nondigit character. Lowercase and uppercase
letters are distinct. There is no specific limit on the maximum length of an identifier.

3 The character classes XID_Start and XID_Continue are Derived Core Properties as described by
UAX #44.64) Each character and universal character name in an identifier shall designate a character
whose encoding in ISO/IEC 10646 has the XID_Continue property. The initial character (which
can be a universal character name) shall designate a character whose encoding in ISO/IEC 10646
has the XID_Start property. An identifier shall conform to Normalization Form C as specified in
ISO/IEC 10646. Annex D provides an overview of the conforming identifiers.

4 NOTE 1 Uppercase and lowercase letters are considered different for all identifiers.

5 NOTE 2 In translation phase 4, the term identifier also includes those preprocessing tokens (6.4.9) differentiated
as keywords (6.4.2) in the later translation phase 7 (5.2.1.2).

64)On systems that cannot accept extended characters in external identifiers, an encoding of the universal character name
can be used in forming such identifiers. For example, some otherwise unused character or sequence of characters can be used
to encode the u in a universal character name.

§ 6.4.3.1 © ISO/IEC 202y — All rights reserved

Language — 55

ISO/IEC 9899:202y (en) — n3299 working draft

6 When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing
token could be converted to either a keyword or an identifier, it is converted to a keyword except in
an attribute token.

7 Some identifiers are reserved.

— All identifiers that begin with a double underscore (__) or begin with an underscore (_)
followed by an uppercase letter are reserved for any use, except those identifiers which are
lexically identical to keywords.65)

— All identifiers that begin with an underscore are reserved for use as identifiers with file scope
in both the ordinary and tag name spaces.

Other identifiers may be reserved, see 7.1.3.

8 If the program declares or defines an identifier in a context in which it is reserved (other than as
allowed by 7.1.4), the behavior is undefined.

9 If the program defines a reserved identifier or standard attribute token described in 6.7.13.2 as a
macro name, or removes (with #undef) any macro definition of an identifier in the first group listed
previously or standard attribute token described in 6.7.13.2, the behavior is undefined.

10 Some identifiers may be potentially reserved. A potentially reserved identifier is an identifier which is
not reserved unless made so by an implementation providing the identifier (7.1.3) but is anticipated
to become reserved by an implementation or a future version of this document. An identifier that
this document describes as optional:

— If it is defined as a macro it is reserved.

— Otherwise, if the definition is given in clauses 1 to 6 it is reserved.

— Otherwise, it is potentially reserved.

Recommended practice
11 Implementations are encouraged to issue a diagnostic message when a potentially reserved identifier

is declared or defined for any use that is not implementation-compatible (see subsequent description
in this subclause) in a context where the potentially reserved identifier may be reserved under a
conforming implementation. This brings attention to a potential conflict when porting a program to
a future edition of this document.

12 An implementation-compatible use of a potentially reserved identifier is a declaration of an external
name where the name is provided by the implementation as an external name and where the
declaration declares an object or function with a type that is compatible with the type of the object
or function provided by the implementation under that name.

Implementation limits
13 As discussed in 5.3.5.2, an implementation may limit the number of significant initial characters

in an identifier; the limit for an external name (an identifier that has external linkage) may be more
restrictive than that for an internal name (a macro name or an identifier that does not have external
linkage). The number of significant characters in an identifier is implementation-defined.

14 Any identifiers that differ in a significant character are different identifiers. If two identifiers differ
only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.4), macro replacement (6.10.5), reserved library
identifiers (7.1.3), use of library functions (7.1.4), attributes (6.7.13.2).

6.4.3.2 Predefined identifiers
Semantics

1 The identifier __func__ shall be implicitly declared by the translator as if, immediately following
the opening brace of each function definition, the declaration

65)This allows a reserved identifier that matches the spelling of a keyword to be used as a macro name by the program.

© ISO/IEC 202y — All rights reserved

Language — 56

§ 6.4.3.2

ISO/IEC 9899:202y (en) — n3299 working draft

static const char __func__[] = "function-name";

appeared, where function-name is the name of the lexically-enclosing function.66)

2 This name is encoded as if the implicit declaration had been written in the source character set and
then translated into the execution character set as indicated in translation phase 5.

3 EXAMPLE The following code fragment can be used as an example:

#include <stdio.h>
void myfunc(void)
{

printf("%s\n", __func__);
/* ... */

}

Each time the function is called, it will print to the standard output stream:

myfunc

Forward references: function definitions (6.9.2).

6.4.4 Universal character names
Syntax

1 universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

Constraints
2 A universal character name shall not designate a code point where the hexadecimal value is:

— in the range D800 through DFFF inclusive; or

— greater than 10FFFF.67)

A universal character name outside the c-char sequence of a character constant, or the s-char
sequence of a string literal shall not designate a control character or a character in the basic character
set.

Description
3 Universal character names can be used in identifiers, character constants, and string literals to

designate characters that are not in the basic character set.

Semantics
4 A universal character name designates the character in ISO/IEC 10646 whose code point is the

hexadecimal value represented by the sequence of hexadecimal digits in the universal character
name.

66)Since the name __func__ is reserved for any use by the implementation (7.1.3), if any other identifier is explicitly declared
using the name __func__, the behavior is undefined.

67)The disallowed characters are the characters in the basic character set and the code positions reserved by ISO/IEC 10646
for control characters, the character DELETE, the S-zone (reserved for use by UTF-16), and characters too large to be encoded
by ISO/IEC 10646. Disallowed universal character escape sequences can still be specified with hexadecimal and octal escape
sequences (6.4.5.5).

§ 6.4.4 © ISO/IEC 202y — All rights reserved

Language — 57

ISO/IEC 9899:202y (en) — n3299 working draft

6.4.5 Constants
6.4.5.1 General
Syntax

1 constant:
integer-constant
floating-constant
enumeration-constant
character-constant
predefined-constant

Constraints
2 Each constant shall have a type and the value of a constant shall be in the range of representable

values for its type.

Semantics
3 Each constant has a type, determined by its form and value, as detailed later.

6.4.5.2 Integer constants
Syntax

1 integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt
binary-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant ’opt digit

octal-constant:
0
octal-constant ’opt octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit-sequence

binary-constant:
binary-prefix binary-digit
binary-constant ’opt binary-digit

hexadecimal-prefix: one of
0x 0X

binary-prefix: one of
0b 0B

© ISO/IEC 202y — All rights reserved

Language — 58

§ 6.4.5.2

ISO/IEC 9899:202y (en) — n3299 working draft

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence ’opt hexadecimal-digit

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

binary-digit: one of
0 1

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
unsigned-suffix bit-precise-int-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt
bit-precise-int-suffix unsigned-suffixopt

bit-precise-int-suffix: one of
wb WB

unsigned-suffix: one of
u U

long-suffix: one of
l L

long-long-suffix: one of
ll LL

Description
2 An integer constant begins with a digit, but has no period or exponent part. It can have a prefix that

specifies its base and a suffix that specifies its type. An optional separating single quote character

§ 6.4.5.2 © ISO/IEC 202y — All rights reserved

Language — 59

ISO/IEC 9899:202y (en) — n3299 working draft

(’) in an integer or floating constant is called a digit separator. Digit separators are ignored when
determining the value of the constant.

3 EXAMPLE 1 The following integer constants use digit separators; the comment associated with each constant
shows the equivalent constant without digit separators.

0b11’10’11’01 /* 0b11101101 */
’1’2 /* character constant ’1’ followed by integer constant 2,

not the integer constant 12 */
11’22 /* 1122 */
0x’FFFF’FFFF /* invalid hexadecimal constant (’ cannot appear after 0x) */
0x1’2’3’4AB’C’D /* 0x1234ABCD */

4 A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 through 7
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal
digits and the letters a (or A) through f (or F) with values 10 through 15 respectively. A binary
constant consists of the prefix 0b or 0B followed by a sequence of the digits 0 or 1.

Semantics
5 The value of a decimal constant is computed base 10; that of an octal constant, base 8; that of a

hexadecimal constant, base 16; that of a binary constant, base 2. The lexically first digit is the most
significant.

6 The type of an integer constant is the first of the corresponding Table 6.2 in which its value can be
represented.

7 If an integer constant that does not have suffixes wb, WB, uwb, or UWB cannot be represented by
any type in its list, it may have an extended integer type, if the extended integer type can represent
its value. If all the types in the list for the constant are signed, the extended integer type shall be
signed. If all the types in the list for the constant are unsigned, the extended integer type shall be
unsigned. If the list contains both signed and unsigned types, the extended integer type may be
signed or unsigned. If an integer constant cannot be represented by any type in its list and has no
extended integer type, then the integer constant has no type.

8 EXAMPLE 2 The wb suffix results in an _BitInt that includes space for the sign bit even if the value of the
constant is positive or was specified in binary, octal, or hexadecimal notation.

-3wb /* Yields a _BitInt(3) that is then arithmetically negated;
two value bits, one sign bit */

-0x3wb /* Yields a _BitInt(3) that is then arithmetically negated;
two value bits, one sign bit */

3wb /* Yields a _BitInt(3); two value bits, one sign bit */
3uwb /* Yields an unsigned _BitInt(2) */
-3uwb /* Yields an unsigned _BitInt(2) that is then arithmetically

negated, resulting in wraparound */

Forward references: preprocessing numbers (6.4.9), numeric conversion functions (7.24.2).

6.4.5.3 Floating constants
Syntax

1 floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

© ISO/IEC 202y — All rights reserved

Language — 60

§ 6.4.5.3

ISO/IEC 9899:202y (en) — n3299 working draft

Table 6.2 — Relationship between constants, suffixes, and types

Octal, Hexadecimal or Binary
Suffix Decimal Constant Constant
none int int

long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int
ll or LL long long int long long int

unsigned long long int
Both u or U unsigned long long int unsigned long long int
and ll or LL
wb or WB _BitInt(N) where the width N _BitInt(N) where the width N

is the smallest N greater than is the smallest N greater than
1 which can accommodate 1 which can accommodate
the value and the sign bit. the value and the sign bit.

Both u or U unsigned _BitInt(N) where the unsigned _BitInt(N) where the
and wb or WB width N is the smallest N width N is the smallest N

greater than 0 which can greater than 0 which can
accommodate the value. accommodate the value.

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

§ 6.4.5.3 © ISO/IEC 202y — All rights reserved

Language — 61

ISO/IEC 9899:202y (en) — n3299 working draft

digit-sequence:
digit
digit-sequence ’opt digit

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
p signopt digit-sequence
P signopt digit-sequence

floating-suffix: one of
f l F L df dd dl DF DD DL

Constraints
2 A floating suffix df, dd, dl, DF, DD, or DL shall not be used in a hexadecimal floating constant.

Description
3 A floating constant has a significand part that can be followed by an exponent part and a suffix that

specifies its type. The components of the significand part can include a digit sequence representing
the whole-number part, followed by a period (.), followed by a digit sequence representing the
fraction part. Digit separators (6.4.5.2) are ignored when determining the value of the constant. The
components of the exponent part are an e, E, p, or P followed by an exponent consisting of an
optionally signed digit sequence. Either the whole-number part or the fraction part has to be present;
for decimal floating constants, either the period or the exponent part has to be present.

Semantics
4 The significand part is interpreted as a (decimal or hexadecimal) rational number; the digit sequence

in the exponent part is interpreted as a decimal integer. For decimal floating constants, the exponent
indicates the power of 10 by which the significand part is to be scaled. For hexadecimal floating
constants, the exponent indicates the power of 2 by which the significand part is to be scaled. For
decimal floating constants, and also for hexadecimal floating constants when FLT_RADIX is not a
power of 2, the result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an implementation-defined
manner. For hexadecimal floating constants when FLT_RADIX is a power of 2, the result is correctly
rounded.

5 An unsuffixed floating constant has type double. If suffixed by a floating suffix it has a type
according to Table 6.3.

Table 6.3 — Suffixes for floating constants

Suffix Type
f, F float
l, L long double
df, DF _Decimal32
dd, DD _Decimal64

© ISO/IEC 202y — All rights reserved

Language — 62

§ 6.4.5.3

ISO/IEC 9899:202y (en) — n3299 working draft

dl, DL _Decimal128

6 The values of floating constants may be represented in greater range and precision than that required
by the type (determined by the suffix); the types are not changed thereby. See 5.3.5.3.3 regarding
evaluation formats.68)

7 Floating constants of decimal floating type that have the same numerical value but different quantum
exponents have distinguishable internal representations. The value shall be correctly rounded as
specified in ISO/IEC 60559. The coefficient c and the quantum exponent q of a finite converted
decimal floating-point number (see 5.3.5.3.4) are determined as follows:

— q is set to the value of signopt digit-sequence in the exponent part, if any, or to 0, otherwise.

— If there is a fractional constant, q is decreased by the number of digits to the right of the period
and the period is removed to form a digit sequence.

— c is set to the value of the digit sequence (after any period has been removed).

— Rounding required because of insufficient precision or range in the type of the result will
round c to the full precision available in the type, and will adjust q accordingly within the
limits of the type, provided the rounding does not yield an infinity (in which case the result
is an appropriately signed internal representation of infinity). If the full precision of the type
would require q to be smaller than the minimum for the type, then q is pinned at the minimum
and c is adjusted through the subnormal range accordingly, perhaps to zero.

8 Floating constants are converted to internal format as if at translation-time. The conversion of a
floating constant shall not raise an exceptional condition or a floating-point exception at execution
time. All floating constants of the same source form69) shall convert to the same internal format and,
provided they are subject to the same translation-time rounding direction (either the default or a
constant rounding mode set by an FENV_ROUND or FENV_DEC_ROUND pragma), to the same value.

9 EXAMPLE Following are floating constants of type _Decimal64 and their values as triples (s, c, q). For
_Decimal64, the precision (maximum coefficient length) is 16 and the quantum exponent range is −398 ≤ q ≤
369.

0.dd (+1, 0, 0)
0.00dd (+1, 0,−2)
123.dd (+1, 123, 0)
1.23E3dd (+1, 123, 1)
1.23E+3dd (+1, 123, 1)
12.3E+7dd (+1, 123, 6)
12.0dd (+1, 120,−1)
12.3dd (+1, 123,−1)
0.00123dd (+1, 123,−5)
1.23E-12dd (+1, 123,−14)
1234.5E-4dd (+1, 12345,−5)
0E+7dd (+1, 0, 7)
12345678901234567890.dd (+1, 1234567890123457, 4) assuming default rounding and

DEC_EVAL_METHOD is 0 or 170)

1234E-400dd (+1, 12,−398) assuming default rounding and DEC_EVAL_METHOD is 0 or 1
1234E-402dd (+1, 0,−398) assuming default rounding and DEC_EVAL_METHOD is 0 or 1
1000.dd (+1, 1000, 0)

68)Hexadecimal floating constants can be used to obtain exact values in the semantic type that are independent of the
evaluation format. Casts produce values in the semantic type, though depend on the rounding mode and can raise the inexact
floating-point exception.

69)1.23, 1.230, 123e-2, 123e-02, and 1.23L are all different source forms and thus can convert to a different internal
format and value (though they can use the same internal format and value).

70)That is, assuming the default translation rounding-direction mode is not changed by an FENV_DEC_ROUND pragma (7.6.4).

§ 6.4.5.3 © ISO/IEC 202y — All rights reserved

Language — 63

ISO/IEC 9899:202y (en) — n3299 working draft

.0001dd (+1, 1,−4)
1000.e0dd (+1, 1000, 0)
.0001e0dd (+1, 1,−4)
1000.0dd (+1, 10000,−1)
0.0001dd (+1, 1,−4)
1000.00dd (+1, 100 000,−2)
00.0001dd (+1, 1,−4)
001000.dd (+1, 1000, 0)
001000.0dd (+1, 10000,−1)
001000.00dd (+1, 100 000,−2)
00.00dd (+1, 0,−2)
00.dd (+1, 0, 0)
.00dd (+1, 0,−2)
00.00e-5dd (+1, 0,−7)
00.e-5dd (+1, 0,−5)
.00e-5dd (+1, 0,−7)

Recommended practice
10 The implementation should produce a diagnostic message if a hexadecimal constant cannot be

represented exactly in its evaluation format; the implementation should then proceed with the
translation of the program.

11 The translation-time conversion of floating constants should match the execution-time conversion
of character strings by library functions, such as strtod, given matching inputs suitable for both
conversions, the same result format, and default execution-time rounding.71)

12 NOTE Floating constants do not include a sign and are arithmetically negated by the unary - operator (6.5.4.4)
which arithmetically negates the rounded value of the constant. In contrast, the numeric conversion functions
in the strto family (7.24.2.6, 7.24.2.7) can include the sign as part of the input value and convert and round the
arithmetically negated input; implementations conforming to Annex F have this behavior. Negating before
rounding and negating after rounding can yield different results, depending on the rounding direction and
whether the results are correctly rounded. For example, the results are the same when both are correctly
rounded using rounding to nearest or rounding toward zero, but the results are different when they are inexact
and correctly rounded using rounding toward positive infinity or rounding toward negative infinity.

Conversions yielding exact results are not affected by the order of negating and rounding. For types with radix
10, decimal floating constants expressed within the precision and range of the evaluation format convert exactly.
For types whose radix is a power of 2, hexadecimal floating constants expressed within the precision and range
of the evaluation format convert exactly.

Forward references: preprocessing numbers (6.4.9), numeric conversion functions (7.24.2), the
strto function family (7.24.2.6, 7.24.2.7).

6.4.5.4 Enumeration constants
Syntax

1 enumeration-constant:
identifier

Semantics
2 An identifier declared as an enumeration constant for an enumeration without a fixed underlying

type has either type int or the enumerated type, as defined in 6.7.3.3. An identifier declared
as an enumeration constant for an enumeration with a fixed underlying type has the associated
enumerated type.

3 An enumeration constant can be used in an expression (or constant expression) wherever a value of
an integer type can be used.

Forward references: enumeration specifiers (6.7.3.3).

71)The specification for the library functions recommends more accurate conversion than required for floating constants
(see 7.24.2.6).

© ISO/IEC 202y — All rights reserved

Language — 64

§ 6.4.5.4

ISO/IEC 9899:202y (en) — n3299 working draft

6.4.5.5 Character constants
Syntax

1 character-constant:
encoding-prefixopt ’ c-char-sequence ’

encoding-prefix: one of
u8 u U L

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description
2 An integer character constant is a sequence of one or more multibyte characters enclosed in single-

quotes, as in ’x’. A UTF-8 character constant is the same, except prefixed by u8. A wchar_t character
constant is prefixed by the letter L. A UTF-16 character constant is prefixed by the letter u. A UTF-32
character constant is prefixed by the letter U. Collectively, wchar_t, UTF-16, and UTF-32 character
constants are called wide character constants. With a few exceptions detailed later, the elements of
the sequence are any members of the source character set; they are mapped in an implementation-
defined manner to members of the execution character set.

3 The single-quote ’, the double-quote ", the question-mark ?, the backslash \, and arbitrary integer
values are representable according to Table 6.5:

§ 6.4.5.5 © ISO/IEC 202y — All rights reserved

Language — 65

ISO/IEC 9899:202y (en) — n3299 working draft

Table 6.5 — Escape sequences

single quote’ \’
double quote " \"

question mark ? \?
backslash \ \\

octal character \octal digits
hexadecimal character \x hexadecimal digits

4 The double-quote " and question-mark ? are representable either by themselves or by the escape
sequences \" and \?, respectively, but the single-quote ’ and the backslash \ shall be represented,
respectively, by the escape sequences \’ and \\.

5 The octal digits that follow the backslash in an octal escape sequence are taken to be part of the
construction of a single character for an integer character constant or of a single wide character for a
wide character constant. The numerical value of the octal integer so formed specifies the value of
the desired character or wide character.

6 The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape sequence
are taken to be part of the construction of a single character for an integer character constant or of a
single wide character for a wide character constant. The numerical value of the hexadecimal integer
so formed specifies the value of the desired character or wide character.

7 Each octal or hexadecimal escape sequence is the longest sequence of characters that can constitute
the escape sequence.

8 In addition, characters not in the basic character set are representable by universal character names
and certain non-graphic characters are representable by escape sequences consisting of the back-
slash \ followed by a lowercase letter: \a, \b, \f, \n, \r, \t, and \v.72)

Constraints
9 The value of an octal or hexadecimal escape sequence shall be in the range of representable values

for the corresponding type, as dictated by Table 6.6:

Table 6.6 — Types provided by prefixes

Prefix Corresponding Type
none unsigned char
u8 char8_t
L the unsigned type corresponding to wchar_t
u char16_t
U char32_t

10 A UTF-8, UTF-16, or UTF-32 character constant shall not contain more than one character.73) The
value shall be representable with a single UTF-8, UTF-16, or UTF-32 code unit, respectively.

Semantics
11 An integer character constant has type int. The value of an integer character constant containing

a single character that maps to a single value in the literal encoding (6.2.9) is the numerical value
of the representation of the mapped character in the literal encoding interpreted as an integer.
The value of an integer character constant containing more than one character (e.g. ’ab’), or
containing a character or escape sequence that does not map to a single value in the literal encoding,
is implementation-defined. If an integer character constant contains a single character or escape
sequence, its value is the one that results when an object with type char whose value is that of the
single character or escape sequence is converted to type int.

72)The semantics of these characters were discussed in 5.3.3. If any other character follows a backslash, the result is not a
token and a diagnostic is required. See "future language directions" (6.11.4).

73)For example u8’ab’ violates this constraint.

© ISO/IEC 202y — All rights reserved

Language — 66

§ 6.4.5.5

ISO/IEC 9899:202y (en) — n3299 working draft

12 A UTF-8 character constant has type char8_t. If the UTF-8 character constant is not produced
through a hexadecimal or octal escape sequence, the value of a UTF-8 character constant is equal to
its ISO/IEC 10646 code point value, provided that the code point value can be encoded as a single
UTF-8 code unit. Otherwise, the value of the UTF-8 character constant is the numeric value specified
in the hexadecimal or octal escape sequence.

13 A UTF-16 character constant has type char16_t which is an unsigned integer type defined in the
<uchar.h> header. If the UTF-16 character constant is not produced through a hexadecimal or octal
escape sequence, the value of a UTF-16 character constant is equal to its ISO/IEC 10646 code point
value, provided that the code point value can be encoded as a single UTF-16 code unit. Otherwise,
the value of the UTF-16 character constant is the numeric value specified in the hexadecimal or octal
escape sequence.

14 A UTF-32 character constant has type char32_t which is an unsigned integer type defined in the
<uchar.h> header. If the UTF-32 character constant is not produced through a hexadecimal or octal
escape sequence, the value of a UTF-32 character constant is equal to its ISO/IEC 10646 code point
value, provided that the code point value can be encoded as a single UTF-32 code unit. Otherwise,
the value of the UTF-32 character constant is the numeric value specified in the hexadecimal or octal
escape sequence.

15 A wchar_t character constant has type wchar_t, an integer type defined in the <stddef.h> header.
The value of a wchar_t character constant containing a single multibyte character that maps to a
single member of the extended execution character set is the wide character corresponding to that
multibyte character in the implementation-defined wide literal encoding (6.2.9). The value of a
wchar_t character constant containing more than one multibyte character or a single multibyte
character that maps to multiple members of the extended execution character set, or containing a
multibyte character or escape sequence not represented in the extended execution character set, is
implementation-defined.

16 EXAMPLE 1 The construction ’\0’ is commonly used to represent the null character.

17 EXAMPLE 2 Implementations that use eight bits for objects that have type char can furnish certain values
in an variety of ways. In an implementation in which type char has the same range of values as signed
char, the integer character constant ’\xFF’ has the value −1; if type char has the same range of values as
unsigned char, the character constant ’\xFF’ has the value +255.

18 EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction ’\x123’ specifies an
integer character constant containing only one character, since a hexadecimal escape sequence is terminated only
by a non-hexadecimal character. To specify an integer character constant containing the two characters whose
values are ’\x12’ and ’3’, the construction ’\0223’ can be used, since an octal escape sequence is terminated
after three octal digits. (The value of this two-character integer character constant is implementation-defined.)

19 EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction L’\1234’
specifies the implementation-defined value that results from the combination of the values 0123 and ’4’.

Forward references: common definitions <stddef.h> (7.21), the mbtowc function (7.24.8.3), Uni-
code utilities <uchar.h> (7.30).

6.4.5.6 Predefined constants
Syntax

1 predefined-constant:
false
true
nullptr

Description
2 Some keywords represent constants of a specific value and type.

3 The keywords false and true are constants of type bool with a value of 0 for false and 1 for
true.74)

74)The constants false and true promote to type int, see 6.3.2.1. When used for arithmetic, in translation phase 4 (5.2.1.2),

§ 6.4.5.6 © ISO/IEC 202y — All rights reserved

Language — 67

ISO/IEC 9899:202y (en) — n3299 working draft

4 The keyword nullptr represents a null pointer constant. Details of its type are described in 7.21.3.

6.4.6 String literals
Syntax

1 string-literal:
encoding-prefixopt " s-char-sequenceopt "

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

Constraints
2 If a sequence of adjacent string literal tokens includes prefixed string literal tokens, the prefixed

tokens shall all have the same prefix.

Description
3 A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,

as in "xyz". A UTF-8 string literal is the same, except prefixed by u8. A wchar_t string literal is the
same, except prefixed by L. A UTF-16 string literal is the same, except prefixed by u. A UTF-32 string
literal is the same, except prefixed by U. Collectively, wchar_t, UTF-16, and UTF-32 string literals are
called wide string literals.

4 The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF-8 string literal) or a wide character constant (for a
wide string literal), except that the single-quote ’ is representable either by itself or by the escape
sequence \’, but the double-quote " shall be represented by the escape sequence \".

Semantics
5 In translation phase 6 (5.2.1.2), the multibyte character sequences specified by any sequence of

adjacent character and identically-prefixed string literal tokens are concatenated into a single
multibyte character sequence. If any of the tokens has an encoding prefix, the resulting multibyte
character sequence is treated as having the same prefix; otherwise, it is treated as a character string
literal.

6 In translation phase 7 (5.2.1.2), a byte or code of value zero is appended to each multibyte character
sequence that results from a string literal or literals.75) The multibyte character sequence is then used
to initialize an array of static storage duration and length just sufficient to contain the sequence. For
character string literals, the array elements have type char, and are initialized with the individual
bytes of the multibyte character sequence corresponding to the literal encoding (6.2.9). For UTF-8
string literals, the array elements have type char8_t, and are initialized with the characters of the
multibyte character sequence, as encoded in UTF-8. For wide string literals prefixed by the letter
L, the array elements have type wchar_t and are initialized with the sequence of wide characters
corresponding to the wide literal encoding. For wide string literals prefixed by the letter u or U,
the array elements have type char16_t or char32_t, respectively, and are initialized sequence of
wide characters corresponding to UTF-16 and UTF-32 encoded text, respectively. The value of a
string literal containing a multibyte character or escape sequence not represented in the execution

they are signed values and the result of such arithmetic is consistent with the results of later translation phases.
75)A string literal may not be a string (see 7.1.1), because a null character can be embedded in it by a \0 escape sequence.

© ISO/IEC 202y — All rights reserved

Language — 68

§ 6.4.6

ISO/IEC 9899:202y (en) — n3299 working draft

character set is implementation-defined. Any hexadecimal escape sequence or octal escape sequence
specified in a u8, u, or U string specifies a single char8_t, char16_t, or char32_t value and can
result in the full character sequence not being valid UTF-8, UTF-16, or UTF-32.

7 It is unspecified whether these arrays are distinct provided their elements have the appropriate
values. If the program attempts to modify such an array, the behavior is undefined.

8 EXAMPLE 1 This pair of adjacent character string literals

"\x12" "3"

produces a single character string literal containing the two characters whose values are ’\x12’ and ’3’,
because escape sequences are converted into single members of the execution character set just prior to adjacent
string literal concatenation.

9 EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

L"abc"

Likewise, each of the sequences

"a" "b" u"c"
"a" u"b" "c"
u"a" "b" u"c"
u"a" u"b" u"c"

is equivalent to

u"abc"

Forward references: common definitions <stddef.h> (7.21), the mbstowcs function (7.24.9.2),
Unicode utilities <uchar.h> (7.30).

6.4.7 Punctuators
Syntax

1 punctuator: one of
[] () { } . ->
++ -- & * + - ~ !
/ % << >> < > <= >= == != ^ | && ||
? : :: ; ...
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
<: :> <% %> %: %:%:

Semantics
2 A punctuator is a symbol that has independent syntactic and semantic significance. Depending on

context, it may specify an operation to be performed (which in turn may yield a value or a function
designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts). An operand is an entity on which an
operator acts.

§ 6.4.7 © ISO/IEC 202y — All rights reserved

Language — 69

ISO/IEC 9899:202y (en) — n3299 working draft

3 In all aspects of the language, the six tokens76)

<: :> <% %> %: %:%:

behave, respectively, the same as the six tokens

[] { } # ##

except for their spelling.77)

Forward references: expressions (6.5.1), declarations (6.7), preprocessing directives (6.10), state-
ments (6.8).

6.4.8 Header names
Syntax

1 header-name:
< h-char-sequence >
" q-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

the new-line character and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except

the new-line character and "

Semantics
2 The sequences in both forms of header names are mapped in an implementation-defined manner to

headers or external source file names as specified in 6.10.3.

3 If the characters ’, \, ", //, or /* occur in the sequence between the < and > delimiters, the behavior
is undefined. Similarly, if the characters ’, \, //, or /* occur in the sequence between the " delimiters,
the behavior is undefined.78)

Header name preprocessing tokens are recognized only within #include and #embed preprocessing
directives, in __has_include and __has_embed expressions, as well as in implementation-defined
locations within #pragma directives.79)

4 EXAMPLE The following sequence of characters:

76)These tokens are sometimes called "digraphs".
77)Thus [and <: behave differently when "stringized" (see 6.10.5.3), but can otherwise be freely interchanged.
78)Thus, sequences of characters that resemble escape sequences cause undefined behavior.
79)For an example of a header name preprocessing token used in a #pragma directive, see 6.10.11.

© ISO/IEC 202y — All rights reserved

Language — 70

§ 6.4.8

ISO/IEC 9899:202y (en) — n3299 working draft

0x3<1/a.h>1e2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited by
a { on the left and a } on the right).

{0x3}{<}{1}{/}{a}{.}{h}{>}{1e2}
{#}{include} {<1/a.h>}
{#}{define} {const}{.}{member}{@}{$}

Forward references: source file inclusion (6.10.3).

6.4.9 Preprocessing numbers
Syntax

1 pp-number:
digit
. digit
pp-number identifier-continue
pp-number ’ digit
pp-number ’ nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Description
2 A preprocessing number begins with a digit optionally preceded by a period (.) and may be followed

by valid identifier characters and the character sequences e+, e-, E+, E-, p+, p-, P+, or P-.

3 Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics
4 A preprocessing number does not have type or a value; it acquires both after a successful conversion

(as part of translation phase 7 (5.2.1.2)) to a floating constant token or an integer constant token.

6.4.10 Comments
1 Except within a character constant, a string literal, or a comment, the characters /* introduce a

comment. The contents of such a comment are examined only to identify multibyte characters and
to find the characters */ that terminate it.80)

2 Except within a character constant, a string literal, or a comment, the characters // introduce a
comment that includes all multibyte characters up to, but not including, the next new-line character.
The contents of such a comment are examined only to identify multibyte characters and to find the
terminating new-line character.

3 EXAMPLE

"a//b" // four-character string literal
#include "//e" // undefined behavior
// */ // comment, not syntax error
f = g/**//h; // equivalent to f = g / h;
//\
i(); // part of a two-line comment
/\

80)Thus, /* . . .*/ comments do not nest.

§ 6.4.10 © ISO/IEC 202y — All rights reserved

Language — 71

ISO/IEC 9899:202y (en) — n3299 working draft

/ j(); // part of a two-line comment
#define glue(x,y) x##y
glue(/,/) k(); // syntax error, not comment
/*//*/ l(); // equivalent to l();
m = n//**/o
+ p; // equivalent to m = n + p;

© ISO/IEC 202y — All rights reserved

Language — 72

§ 6.4.10

ISO/IEC 9899:202y (en) — n3299 working draft

6.5 Expressions
6.5.1 General

1 An expression is a sequence of operators and operands that specifies computation of a value, or that
designates an object or a function, or that generates side effects, or that performs a combination
thereof. The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator.

2 If a side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object, the behavior
is undefined. If there are multiple allowable orderings of the subexpressions of an expression, the
behavior is undefined if such an unsequenced side effect occurs in any of the orderings.81)

3 The grouping of operators and operands is indicated by the syntax.82) Except as specified later, side
effects and value computations of subexpressions are unsequenced.83)

4 Some operators (the unary operator ~, and the binary operators <<, >>, &, ^, and |, collectively
described as bitwise operators) are required to have operands that have integer type. These operators
yield values that depend on the internal representations of integers, and have implementation-
defined and undefined aspects for signed types.

5 If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

6 The effective type of an object for an access to its stored value is the declared type of the object, if
any.84) If a value is stored into an object having no declared type through an lvalue having a type
that is not a non-atomic character type, then the type of the lvalue becomes the effective type of the
object for that access and for subsequent accesses that do not modify the stored value. If a value
is copied into an object having no declared type using memcpy or memmove, or is copied as an array
of character type, then the effective type of the modified object for that access and for subsequent
accesses that do not modify the value is the effective type of the object from which the value is
copied, if it has one. For all other accesses to an object having no declared type, the effective type of
the object is simply the type of the lvalue used for the access.

7 An object shall have its stored value accessed only by an lvalue expression that has one of the
following types:85)

— a type compatible with the effective type of the object,

— a qualified version of a type compatible with the effective type of the object,

81)This paragraph renders undefined statement expressions such as

i = ++i + 1;
a[i++] = i;

while allowing

i = i + 1;
a[i] = i;

82)The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the order of the
major subclauses of this subclause, highest precedence first. Thus, for example, the expressions allowed as the operands
of the binary + operator (6.5.7) are those expressions defined in 6.5.2 through 6.5.7. The exceptions are cast expressions
(6.5.5) as operands of unary operators (6.5.4), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.5.2), generic selection parentheses () (6.5.2.1), subscripting brackets code[] (6.5.3.2), function-call
parentheses () (6.5.3.3), and the conditional operator ?: (6.5.16).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is indicated in each
subclause by the syntax for the expressions discussed therein.

83)In an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminately
sequenced evaluations of its subexpressions can be performed inconsistently in different evaluations.

84)Allocated objects have no declared type.
85)The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

§ 6.5.1 © ISO/IEC 202y — All rights reserved

Language — 73

ISO/IEC 9899:202y (en) — n3299 working draft

— the signed or unsigned type compatible with the underlying type of the effective type of the
object,

— the signed or unsigned type compatible with a qualified version of the underlying type of the
effective type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a character type.

8 A floating expression may be contracted, that is, evaluated as though it were a single opera-
tion, thereby omitting rounding errors implied by the source code and the expression evaluation
method.86)

The FP_CONTRACT pragma in <math.h> provides a way to disallow contracted expressions. Other-
wise, whether and how expressions are contracted is implementation-defined.87)

9 Operators involving decimal floating types are evaluated according to the semantics of
ISO/IEC 60559, including production of results with the preferred quantum exponent as specified
in ISO/IEC 60559.

Forward references: the FP_CONTRACT pragma (7.12.3), copying functions (7.26.2).

6.5.2 Primary expressions
Syntax

1 primary-expression:
identifier
constant
string-literal
(expression)
generic-selection

Constraints
2 The identifier in an identifier primary expression shall have a visible declaration as an ordinary

identifier that declares an object or a function.88)

Semantics
3 An identifier primary expression designating an object is an lvalue. An identifier primary expression

designating a function is a function designator.

4 A constant is a primary expression. Its type depends on its form and value, as detailed in 6.4.5.

5 A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.6.

6 A parenthesized expression is a primary expression. Its type, value, and semantics are identical to
those of the unparenthesized expression.

7 A generic selection is a primary expression. Its type, value, and semantics depend on the selected
generic association, as detailed in the following subclause.

Forward references: declarations (6.7).

86)The intermediate operations in the contracted expression are evaluated as if to infinite range and precision, while the
final operation is rounded to the format determined by the expression evaluation method. A contracted expression can also
omit the raising of floating-point exceptions.

87)This license is specifically intended to allow implementations to exploit fast machine instructions that combine multiple
C operators. As contractions potentially undermine predictability, and can even decrease accuracy for containing expressions,
their use needs to be well-defined and clearly documented.

88)An identifier designating an enumeration constant is a primary expression through the constant production, not the
identifier production.

© ISO/IEC 202y — All rights reserved

Language — 74

§ 6.5.2

ISO/IEC 9899:202y (en) — n3299 working draft

6.5.2.1 Generic selection
Syntax

1 generic-selection:
_Generic (assignment-expression , generic-assoc-list)

generic-assoc-list:
generic-association
generic-assoc-list , generic-association

generic-association:
type-name : assignment-expression
default : assignment-expression

Constraints
2 A generic selection shall have no more than one default generic association. The type name in a

generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generic selection shall specify compatible types. The type of the
controlling expression is the type of the expression as if it had undergone an lvalue conversion,89)

array to pointer conversion, or function to pointer conversion. That type shall be compatible with at
most one of the types named in the generic association list. If a generic selection has no default
generic association, its controlling expression shall have type compatible with exactly one of the
types named in its generic association list.

Semantics
3 The controlling expression of a generic selection is not evaluated. If a generic selection has a generic

association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

4 The type and value of a generic selection are identical to those of its result expression. It is an
lvalue, a function designator, or a void expression if its result expression is, respectively, an lvalue, a
function designator, or a void expression.

5 EXAMPLE A cbrt type-generic macro can be implemented as follows:

#define cbrt(X) _Generic((X), \
long double: cbrtl, \
default: cbrt, \
float: cbrtf \
)(X)

7.27 shows how such a macro can be implemented with the required rounding properties.

6.5.3 Postfix operators
6.5.3.1 General
Syntax

1 postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --
compound-literal

89)An lvalue conversion drops type qualifiers.

§ 6.5.3.1 © ISO/IEC 202y — All rights reserved

Language — 75

ISO/IEC 9899:202y (en) — n3299 working draft

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

6.5.3.2 Array subscripting
Constraints

1 One of the expressions shall have type "pointer to complete object type", the other expression shall
have integer type, and the result has type "type".

Semantics
2 A postfix expression followed by an expression in square brackets [] is a subscripted designation of

an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical
to (*((E1)+(E2))). Because of the conversion rules that apply to the binary + operator, if E1 is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2-th element of E1 (counting from zero).

3 Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n ≥ 2) with dimensions i× j × · · · × k, then E (used as other than an lvalue) is
converted to a pointer to an (n− 1)-dimensional array with dimensions j × · · · × k. If the unary *
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n− 1)-dimensional array, which itself is converted into a pointer if used as other than an
lvalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

4 EXAMPLE The following snippet has an array object defined by the declaration:

int x[3][5];

Here x is a 3× 5 array of objects of type int; more precisely, x is an array of three element objects, each of which
is an array of five objects of type int. In the expression x[i], which is equivalent to (*((x)+(i))), x is first
converted to a pointer to the initial array of five objects of type int. Then i is adjusted according to the type of
x, which conceptually entails multiplying i by the size of the object to which the pointer points, namely an
array of five int objects. The results are added and indirection is applied to yield an array of five objects of
type int. When used in the expression x[i][j], that array is in turn converted to a pointer to the first of the
objects of type int, so x[i][j] yields an int.

Forward references: additive operators (6.5.7), address and indirection operators (6.5.4.3), array
declarators (6.7.7.3).

6.5.3.3 Function calls
Constraints

1 The expression that denotes the called function90) shall have type pointer to function returning void
or returning a complete object type other than an array type.

2 The number of arguments shall agree with the number of parameters. Each argument shall have a
type such that its value may be assigned to an object with the unqualified version of the type of its
corresponding parameter

Semantics
3 A postfix expression followed by parentheses () containing a possibly empty, comma-separated

list of expressions is a function call. The postfix expression denotes the called function. The list of
expressions specifies the arguments to the function.

4 An argument can be an expression of any complete object type. In preparing for the call to a function,
the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.91)

90)Most often, this is the result of converting an identifier that is a function designator.
91)A function can change the values of its parameters, but these changes cannot affect the values of the arguments. On the

other hand, it is possible to pass a pointer to an object, and the function can then change the value of the object pointed to. A

© ISO/IEC 202y — All rights reserved

Language — 76

§ 6.5.3.3

ISO/IEC 9899:202y (en) — n3299 working draft

5 If the expression that denotes the called function has type pointer to function returning an object
type, the function call expression has the same type as that object type, and has the value determined
as specified in 6.8.7.5. Otherwise, the function call has type void.

6 The arguments are implicitly converted, as if by assignment, to the types of the corresponding
parameters, taking the type of each parameter to be the unqualified version of its declared type. The
ellipsis notation in a function prototype declarator causes argument type conversion to stop after the
last declared parameter, if present. The integer promotions are performed on each trailing argument,
and trailing arguments that have type float are promoted to double. These are called the default
argument promotions. No other conversions are performed implicitly.

7 If the function is defined with a type that is not compatible with the type (of the expression) pointed
to by the expression that denotes the called function, the behavior is undefined.

8 There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls)
that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.92)

9 Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions.

10 EXAMPLE In the function call

(*pf[f1()]) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 can be called in any order. All side effects are completed before the function
pointed to by pf[f1()] is called.

Forward references: function declarators (6.7.7.4), function definitions (6.9.2), the return statement
(6.8.7.5), simple assignment (6.5.17.2).

6.5.3.4 Structure and union members
Constraints

1 The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

2 The first operand of the -> operator shall have type "pointer to atomic, qualified, or unqualified
structure" or "pointer to atomic, qualified, or unqualified union", and the second operand shall
name a member of the type pointed to.

Semantics
3 A postfix expression followed by the . operator and an identifier designates a member of a structure

or union object. The value is that of the named member,93) and is an lvalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

4 A postfix expression followed by the -> operator and an identifier designates a member of a structure
or union object. The value is that of the named member of the object to which the first expression
points, and is an lvalue.94) If the first expression is a pointer to a qualified type, the result has the
so-qualified version of the type of the designated member.

5 Accessing a member of an atomic structure or union object results in undefined behavior.95)

parameter declared to have array or function type is adjusted to have a pointer type as described in 6.7.7.4.
92)In other words, function executions do not interleave with each other.
93)If the member used to read the contents of a union object is not the same as the member last used to store a value in the

object the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called type punning). This can possibly be a non-value representation.

94)If &E is a valid pointer expression (where & is the address of operator, which generates a pointer to its operand), the
expression (&E)->MOS is the same as E.MOS.

95)For example, a data race would occur if access to the entire structure or union in one thread conflicts with access to a
member from another thread, where at least one access is a modification. Members can be safely accessed using a non-atomic
object which is assigned to or from the atomic object.

§ 6.5.3.4 © ISO/IEC 202y — All rights reserved

Language — 77

ISO/IEC 9899:202y (en) — n3299 working draft

6 One special guarantee is made to simplify the use of unions: if a union contains several structures
that share a common initial sequence (see following sentence), and if the union object currently
contains one of these structures, it is permitted to inspect the common initial part of any of them
anywhere that a declaration of the completed type of the union is visible. Two structures share a
common initial sequence if corresponding members have compatible types (and, for bit-fields, the
same widths) for a sequence of one or more initial members.

7 EXAMPLE 1 If f is a function returning a structure or union, and x is a member of that structure or union,
f().x is a valid postfix expression but is not an lvalue.

8 EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;
const struct s cs;
volatile struct s vs;

the various members have the types:

s.i int
s.ci const int
cs.i const int
cs.ci const int
vs.i volatile int
vs.ci volatile const int

9 EXAMPLE 3 The following is a valid fragment:

union {
struct {

int alltypes;
} n;
struct {

int type;
int intnode;

} ni;
struct {

int type;
double doublenode;

} nf;
} u;
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... */
if (u.n.alltypes == 1)

if (sin(u.nf.doublenode) == 0.0)
/* ... */

The following is not a valid fragment (because the union type is not visible within function f):

struct t1 { int m; };
struct t2 { int m; };
int f(struct t1 *p1, struct t2 *p2)
{

if (p1->m < 0)
p2->m = -p2->m;

return p1->m;
}
int g()
{

union {
struct t1 s1;
struct t2 s2;

© ISO/IEC 202y — All rights reserved

Language — 78

§ 6.5.3.4

ISO/IEC 9899:202y (en) — n3299 working draft

} u;
/* ... */
return f(&u.s1, &u.s2);

}

Forward references: address and indirection operators (6.5.4.3), structure and union specifiers
(6.7.3.2).

6.5.3.5 Postfix increment and decrement operators
Constraints

1 The operand of the postfix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics
2 The result of the postfix ++ operator is the value of the operand. As a side effect, the value of the

operand object is incremented (that is, the value 1 of the appropriate type is added to it). See the
discussions of additive operators and compound assignment for information on constraints, types,
and conversions and the effects of operations on pointers. The value computation of the result is
sequenced before the side effect of updating the stored value of the operand. With respect to an
indeterminately sequenced function call, the operation of postfix ++ is a single evaluation. Postfix
++ on an object with atomic type is a read-modify-write operation with memory_order_seq_cst
memory order semantics.96)

3 The postfix -- operator is analogous to the postfix ++ operator, except that the value of the operand
is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.5.7), compound assignment (6.5.17.3).

6.5.3.6 Compound literals
Syntax

1 compound-literal:
(storage-class-specifiersopt type-name) braced-initializer

storage-class-specifiers:
storage-class-specifier
storage-class-specifiers storage-class-specifier

Constraints
2 The type name shall specify a complete object type or an array of unknown size, but not a variable

length array type.

3 All the constraints for initializer lists in 6.7.11 also apply to compound literals.

4 If the compound literal is associated with file scope or block scope (see 6.2.1) the storage-class
specifiers SC (possibly empty),97) type name T, and initializer list, if any, shall be such that they are

96)Where a pointer to an atomic object can be formed and E has integer type, E++ is equivalent to the following code
sequence where T is the type of E:

T *addr = &E;
T old = *addr;
T new;
do {

new = old + 1;
} while (!atomic_compare_exchange_strong(addr, &old, new));

with old being the result of the operation.
Special care is necessary if E has floating type; see 6.5.17.3.

97)If the storage-class specifiers contain the same storage-class specifier more than once, the following constraint is violated.

§ 6.5.3.6 © ISO/IEC 202y — All rights reserved

Language — 79

ISO/IEC 9899:202y (en) — n3299 working draft

valid specifiers for an object definition in file scope or block scope, respectively, of the following
form,

SC typeof(T) ID = { IL };

where ID is an identifier that is unique for the whole program and where IL is a (possibly empty)
initializer list with nested structure, designators, values and types as the initializer list of the
compound literal. All the constraints for storage-class specifiers in 6.7.2 also apply correspondingly
to compound literals. If the compound literal is associated with function prototype scope, constraints
as if in block scope apply.

Semantics
5 For a compound literal associated with function prototype scope:

— the type is determined as if in block scope and no object is created;

— if it is a compound literal constant it is evaluated at translation time;

— if it is not a compound literal constant, neither the compound literal as a whole nor any of the
initializers are evaluated.

Otherwise, a compound literal provides access to an unnamed object whose value, type, storage
duration, initializer, and other properties are as if given by the definition syntax in the constraints.

6 If the storage duration is automatic, the lifetime of the instance of the unnamed object is the current
execution of the enclosing block.98)

7 If the storage-class specifiers are absent or contain constexpr, static, register, or thread_local
the behavior is as if the object were declared and initialized in the corresponding scope with these
storage-class specifiers; if another storage-class specifier is present, the behavior is undefined. If
the storage-class specifier constexpr is present, the initializer is evaluated at translation time.
Otherwise, if the storage duration is automatic, the initializer is evaluated at each evaluation of the
compound literal; if the storage duration is static or thread the initializer is (as if) evaluated once
prior to program startup.

8 The value of the compound literal is that of an lvalue corresponding to the unnamed object.

9 All the semantic rules for initializer lists in 6.7.11 also apply to compound literals.99)

10 String literals, and compound literals with const-qualified types, including those specified with
constexpr, are not required to designate distinct objects.100)

11 EXAMPLE 1 The following 2 functions can be used as an example:

int f(int*);
int g(char * para[f((int[27]){ 0, })]) {

/* ... */
return 0;

}

Here, each call to g creates an unnamed object of type int[27] to determine the variably modified type of
para for the duration of the call. During that determination, a pointer to the object is passed into a call to the
function f. If a pointer to the object is kept by f, access to that object is possible during the whole execution of
the call to g. The lifetime of the object ends with the end of the call to g; for any access after that, the behavior is
undefined.

12 EXAMPLE 2 The file scope definition

98)This differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and the result
of a cast expression is not an lvalue.

99)For example, subobjects without explicit initializers are initialized to zero.
100)This allows implementations to share storage for string literals and constant compound literals with the same or

overlapping representations.

© ISO/IEC 202y — All rights reserved

Language — 80

§ 6.5.3.6

ISO/IEC 9899:202y (en) — n3299 working draft

int *p = (int []){2, 4};

initializes p to point to the first element of an array of two int s, the first having the value two and the second
having the value four. The expressions in this compound literal are expected to be constant. The unnamed
object has static storage duration.

13 EXAMPLE 3 In contrast, in

void f(void)
{

int *p;
/*...*/
p = (int [2]){*p};
/*...*/

}

p is assigned the address of the first element of an array of two int s, the first having the value previously
pointed to by p and the second, zero. The initializer expression in this compound literal is not required to be
constant. The unnamed object has automatic storage duration.

14 EXAMPLE 4 Initializers with designations can be combined with compound literals. Structure objects created
using compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

15 EXAMPLE 5 A read-only compound literal can be specified through constructions like:

(const float []){1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}

16 EXAMPLE 6 The following three expressions have different meanings:

"/tmp/fileXXXXXX"
(char []){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array of char, but can be modifiable; the last two
have automatic storage duration when they occur within the body of a function, and the first of these two is
modifiable.

17 EXAMPLE 7 Like string literals, const-qualified compound literals can be placed into read-only memory and
can even be shared. For example,

(const char []){"abc"} == "abc"

can yield 1 if the literals’ storage is shared.

18 EXAMPLE 8 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked
object. For example, there is no way to write a self-referential compound literal that can be used as the function
argument in place of the named object endless_zeros in the following snippet:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

19 EXAMPLE 9 Each compound literal creates only a single object in a given scope:

§ 6.5.3.6 © ISO/IEC 202y — All rights reserved

Language — 81

ISO/IEC 9899:202y (en) — n3299 working draft

struct s { int i; };

int f (void)
{

struct s *p = 0, *q;
int j = 0;

again:
q = p, p = &((struct s){ j++ });
if (j < 2) goto again;

return p == q && q->i == 1;
}

The function f() always returns the value 1.

20 If an iteration statement were used instead of an explicit goto and a label, the lifetime of the unnamed object
would be the body of the loop only, and on entry next time around p would have indeterminate representation,
which would result in undefined behavior.

Forward references: type names (6.7.8), initialization (6.7.11).

6.5.4 Unary operators
6.5.4.1 General
Syntax

1 unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
alignof (type-name)

unary-operator: one of
& * + - ~ !

6.5.4.2 Prefix increment and decrement operators
Constraints

1 The operand of the prefix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics
2 The value of the operand of the prefix ++ operator is incremented. The result is the new value of

the operand after incrementation. The expression ++E is equivalent to (E+=1), where the value 1
is of the appropriate type. See the discussions of additive operators and compound assignment
for information on constraints, types, side effects, and conversions and the effects of operations on
pointers.

3 The prefix -- operator is analogous to the prefix ++ operator, except that the value of the operand is
decremented.

Forward references: additive operators (6.5.7), compound assignment (6.5.17.3).

© ISO/IEC 202y — All rights reserved

Language — 82

§ 6.5.4.2

ISO/IEC 9899:202y (en) — n3299 working draft

6.5.4.3 Address and indirection operators
Constraints

1 The operand of the unary & operator shall be either a function designator, the result of a [] or unary
* operator, or an lvalue that designates an object that is not a bit-field and is not declared with the
register storage-class specifier.

2 The operand of the unary * operator shall have pointer type.

Semantics
3 The unary & operator yields the address of its operand. If the operand has type "type", the result has

type "pointer to type". If the operand is the result of a unary * operator, neither that operator nor
the & operator is evaluated and the result is as if both were omitted, except that the constraints on
the operators still apply and the result is not an lvalue. Similarly, if the operand is the result of a []
operator, neither the & operator nor the unary * that is implied by the [] is evaluated and the result
is as if the & operator were removed and the [] operator were changed to a + operator. Otherwise,
the result is a pointer to the object or function designated by its operand.

4 The unary * operator denotes indirection. If the operand points to a function, the result is a function
designator; if it points to an object, the result is an lvalue designating the object. If the operand has
type "pointer to type", the result has type "type". If an invalid value has been assigned to the pointer,
the behavior of the unary * operator is undefined.101)

Forward references: storage-class specifiers (6.7.2), structure and union specifiers (6.7.3.2).

6.5.4.4 Unary arithmetic operators
Constraints

1 The operand of the unary + or - operator shall have arithmetic type; of the ~ operator, integer type;
of the ! operator, scalar type.

Semantics
2 The result of the unary + operator is the value of its (promoted) operand. The integer promotions

are performed on the operand, and the result has the promoted type.

3 The result of the unary - operator is the negative of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

4 The result of the ~ operator is the bitwise complement of its (promoted) operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set). The integer
promotions are performed on the operand, and the result has the promoted type. If the promoted
type is an unsigned type, the expression ~E is equivalent to the maximum value representable in
that type minus E.

5 The result of the logical negation operator ! is 0 if the value of its operand compares unequal to
0, 1 if the value of its operand compares equal to 0. The result has type int. The expression !E is
equivalent to (0==E).

6.5.4.5 The sizeof and alignof operators
Constraints

1 The sizeof operator shall not be applied to an expression that has function type or an incomplete
type, to the parenthesized name of such a type, or to an expression that designates a bit-field member.
The alignof operator shall not be applied to a function type or an incomplete type.

101)Thus, &*E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). It is always true that if E is a
function designator or an lvalue that is a valid operand of the unary & operator, *&E is a function designator or an lvalue
equal to E. If *P is an lvalue and T is the name of an object pointer type, *(T)P is an lvalue that has a type compatible with
that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address inappropriately
aligned for the type of object pointed to, and the address of an object after the end of its lifetime.

§ 6.5.4.5 © ISO/IEC 202y — All rights reserved

Language — 83

ISO/IEC 9899:202y (en) — n3299 working draft

Semantics
2 The sizeof operator yields the size (in bytes) of its operand, which can be an expression or the

parenthesized name of a type. The size is determined from the type of the operand. The result
is an integer. If the type of the operand is a variable length array type, the operand is evaluated;
otherwise, the operand is not evaluated and the result is an integer constant.

3 The alignof operator yields the alignment requirement of its operand type. The operand is not
evaluated and the result is an integer constant expression. When applied to an array type, the result
is the alignment requirement of the element type.

4 When sizeof is applied to an operand that has type char, unsigned char, or signed char, (or
a qualified version thereof) the result is 1. When applied to an operand that has array type, the
result is the total number of bytes in the array.102) When applied to an operand that has structure or
union type, the result is the total number of bytes in such an object, including internal and trailing
padding.

5 The value of the result of both operators is implementation-defined, and its type (an unsigned
integer type) is size_t, defined in <stddef.h> (and other headers).

6 EXAMPLE 1 A principal use of the sizeof operator is in communication with routines such as storage
allocators and I/O systems. A storage-allocation function can accept a size (in bytes) of an object to allocate and
return a pointer to void. For example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The implementation of the alloc function presumably ensures that its return value is aligned suitably for
conversion to a pointer to double.

7 EXAMPLE 2 Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]

8 EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a function:

#include <stddef.h>

size_t fsize3(int n)
{

char b[n+3]; // variable length array
return sizeof b; // execution time sizeof

}

int main(void)
{

size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;

}

Forward references: common definitions <stddef.h> (7.21), declarations (6.7), structure and union
specifiers (6.7.3.2), type names (6.7.8), array declarators (6.7.7.3).

6.5.5 Cast operators
Syntax

1 cast-expression:
unary-expression
(type-name) cast-expression

102)When applied to a parameter declared to have array or function type, the sizeof operator yields the size of the adjusted
(pointer) type (see 6.9.2).

© ISO/IEC 202y — All rights reserved

Language — 84

§ 6.5.5

ISO/IEC 9899:202y (en) — n3299 working draft

Constraints
2 Unless the type name specifies a void type, the type name shall specify atomic, qualified, or

unqualified scalar type, and the operand shall have scalar type.

3 Conversions that involve pointers, other than where permitted by the constraints of 6.5.17.2, shall be
specified by means of an explicit cast.

4 A pointer type shall not be converted to any floating type. A floating type shall not be converted to
any pointer type. The type nullptr_t shall not be converted to any type other than void, bool or a
pointer type. If the target type is nullptr_t, the cast expression shall be a null pointer constant or
have type nullptr_t.

Semantics
5 Size expressions and typeof operators contained in a type name used with a cast operator are

evaluated whenever the cast expression is evaluated.

6 Preceding an expression by a parenthesized type name converts the value of the expression to the
unqualified, non-atomic version of the named type. This construction is called a cast.103) A cast that
specifies no conversion has no effect on the type or value of an expression.

7 If the value of the expression is represented with greater range or precision than required by the type
named by the cast (6.3.2.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type and removes any extra range and precision.

Forward references: equality operators (6.5.10), function declarators (6.7.7.4), simple assignment
(6.5.17.2), type names (6.7.8).

6.5.6 Multiplicative operators
Syntax

1 multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints
2 Each of the operands shall have arithmetic type. The operands of the % operator shall have integer

type.

3 If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
4 The usual arithmetic conversions are performed on the operands.

5 The result of the binary * operator is the product of the operands.

6 The result of the / operator is the quotient from the division of the first operand by the second; the
result of the % operator is the remainder. In both operations, if the value of the second operand is
zero, the behavior is undefined.

7 When integers are divided, the result of the / operator is the algebraic quotient with any fractional
part discarded.104) If the quotient a/b is representable, the expression (a/b)*b + a%b shall equal a;
otherwise, the behavior of both a/b and a%b is undefined.

103)A cast does not yield an lvalue.
104)This is often called "truncation toward zero".

§ 6.5.6 © ISO/IEC 202y — All rights reserved

Language — 85

ISO/IEC 9899:202y (en) — n3299 working draft

6.5.7 Additive operators
Syntax

1 additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints
2 For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a

complete object type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

3 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible complete object
types; or

— the left operand is a pointer to a complete object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

4 If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
5 If both operands have arithmetic type, the usual arithmetic conversions are performed on them.

6 The result of the binary + operator is the sum of the operands.

7 The result of the binary - operator is the difference resulting from the subtraction of the second
operand from the first.

8 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

9 When an expression that has integer type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the
array is large enough, the result points to an element offset from the original element such that the
difference of the subscripts of the resulting and original array elements equals the integer expression.
In other words, if the expression P points to the i-th element of an array object, the expressions
(P)+N (equivalently, N+(P)) and (P)-N (where N has the value n) point to, respectively, the i+ n-th
and i− n-th elements of the array object, provided they exist. Moreover, if the expression P points to
the last element of an array object, the expression (P)+1 points one past the last element of the array
object, and if the expression Q points one past the last element of an array object, the expression
(Q)-1 points to the last element of the array object. If the pointer operand and the result do not point
to elements of the same array object or one past the last element of the array object, the behavior is
undefined. If the addition or subtraction produces an overflow, the behavior is undefined. If the
result points one past the last element of the array object, it shall not be used as the operand of a
unary * operator that is evaluated.

10 When two pointers are subtracted, both shall point to elements of the same array object, or one past
the last element of the array object; the result is the difference of the subscripts of the two array
elements. The size of the result is implementation-defined, and its type (a signed integer type) is
ptrdiff_t defined in the <stddef.h> header. If the result is not representable in an object of that
type, the behavior is undefined. In other words, if the expressions P and Q point to, respectively, the
i-th and j-th elements of an array object, the expression (P)-(Q) has the value i− j provided the
value fits in an object of type ptrdiff_t. Moreover, if the expression P points either to an element of

© ISO/IEC 202y — All rights reserved

Language — 86

§ 6.5.7

ISO/IEC 9899:202y (en) — n3299 working draft

an array object or one past the last element of an array object, and the expression Q points to the last
element of the same array object, the expression ((Q)+1)-(P) has the same value as ((Q)-(P))+1
and as -((P)-((Q)+1)), and has the value zero if the expression P points one past the last element
of the array object, even though the expression (Q)+1 does not point to an element of the array
object.

11 NOTE Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s):
In this scheme the integer expression added to or subtracted from the converted pointer is first multiplied by
the size of the object originally pointed to, and the resulting pointer is converted back to the original type. For
pointer subtraction, the result of the difference between the character pointers is similarly divided by the size of
the object originally pointed to. When viewed in this way, an implementation need only provide one extra byte
(which can overlap another object in the program) just after the end of the object to satisfy the "one past the last
element" requirements.

12 EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
int n = 4, m = 3;
int a[n][m];
int (*p)[m] = a; // p == &a[0]
p += 1; // p == &a[1]
(*p)[2] = 99; // a[1][2] == 99
n = p - a; // n == 1

}

13 If array a in the preceding example were declared to be an array of known constant size, and pointer p were
declared to be a pointer to an array of the same known constant size (pointing to a), the results would be the
same.

Forward references: array declarators (6.7.7.3), common definitions <stddef.h> (7.21).

6.5.8 Bitwise shift operators
Syntax

1 shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The integer promotions are performed on each of the operands. The type of the result is that of the

promoted left operand. If the value of the right operand is negative or is greater than or equal to the
width of the promoted left operand, the behavior is undefined.

4 The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1 has
an unsigned type, the value of the result is E1× 2E2, wrapped around. If E1 has a signed type and
nonnegative value, and E1× 2E2 is representable in the result type, then that is the resulting value;
otherwise, the behavior is undefined.

5 The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of
E1/2E2. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

6.5.9 Relational operators
Syntax

1 relational-expression:
shift-expression

§ 6.5.9 © ISO/IEC 202y — All rights reserved

Language — 87

ISO/IEC 9899:202y (en) — n3299 working draft

relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints
2 One of the following shall hold:

— both operands have real type; or

— both operands are pointers to qualified or unqualified versions of compatible object types.

3 If either operand has decimal floating type, the other operand shall not have standard floating type.

Semantics
4 If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

Positive zeros compare equal to negative zeros.

5 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6 When two pointers are compared, the result depends on the relative locations in the address space
of the objects pointed to. If two pointers to object types both point to the same object, or both point
one past the last element of the same array object, they compare equal. If the objects pointed to
are members of the same aggregate object, pointers to structure members declared later compare
greater than pointers to members declared earlier in the structure, and pointers to array elements
with larger subscript values compare greater than pointers to elements of the same array with lower
subscript values. All pointers to members of the same union object compare equal. If the expression
P points to an element of an array object and the expression Q points to the last element of the same
array object, the pointer expression Q+1 compares greater than P. In all other cases, the behavior is
undefined.

7 Each of the operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or
equal to) shall yield 1 if the specified relation is true and 0 if it is false.105) The result has type int.

6.5.10 Equality operators
Syntax

1 equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Constraints
2 One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void;

— both operands have type nullptr_t;

105)The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other
words, "if a is less than b, compare 1 to c; otherwise, compare 0 to c".

© ISO/IEC 202y — All rights reserved

Language — 88

§ 6.5.10

ISO/IEC 9899:202y (en) — n3299 working draft

— one operand has type nullptr_t and the other is a null pointer constant; or,

— one operand is a pointer and the other is a null pointer constant or has type nullptr_t.

3 If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
4 The == (equal to) and != (not equal to) operators are analogous to the relational operators except for

their lower precedence.106) Each of the operators yields 1 if the specified relation is true and 0 if it is
false. The result has type int. For any pair of operands, exactly one of the relations is true.

5 If both of the operands have arithmetic type, the usual arithmetic conversions are performed.
Positive zeros compare equal to negative zeros. Values of complex types are equal if and only if both
their real parts are equal and also their imaginary parts are equal. Any two values of arithmetic
types from different type domains are equal if and only if the results of their conversions to the
(complex) result type determined by the usual arithmetic conversions are equal. If both operands
have type nullptr_t or one operand has type nullptr_t and the other is a null pointer constant,
they compare equal.

6 Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant or has type nullptr_t, they compare equal if the former is a null pointer. If one
operand is a pointer to an object type and the other is a pointer to a qualified or unqualified version
of void, the former is converted to the type of the latter.

7 Two pointers compare equal if and only if both are null pointers, both are pointers to the same object
(including a pointer to an object and a subobject at its beginning) or function, both are pointers to
one past the last element of the same array object, or one is a pointer to one past the end of one array
object and the other is a pointer to the start of a different array object that happens to immediately
follow the first array object in the address space.107)

8 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6.5.11 Bitwise AND operator
Syntax

1 AND-expression:
equality-expression

AND-expression & equality-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the result
is set if and only if each of the corresponding bits in the converted operands is set).

6.5.12 Bitwise exclusive OR operator
Syntax

1 exclusive-OR-expression:
AND-expression

106)Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.
107)Two objects can be adjacent in memory because they are adjacent elements of a larger array or adjacent members

of a structure with no padding between them, or because the implementation chose to place them so, even though they
are unrelated. If prior invalid pointer operations (such as accesses outside array bounds) produced undefined behavior,
subsequent comparisons also produce undefined behavior.

§ 6.5.12 © ISO/IEC 202y — All rights reserved

Language — 89

ISO/IEC 9899:202y (en) — n3299 working draft

exclusive-OR-expression ^ AND-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The usual arithmetic conversions are performed on the operands.

4 The result of the ^ operator is the bitwise exclusive OR of the operands (that is, each bit in the result
is set if and only if exactly one of the corresponding bits in the converted operands is set).

6.5.13 Bitwise inclusive OR operator
Syntax

1 inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The usual arithmetic conversions are performed on the operands.

4 The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in the result
is set if and only if at least one of the corresponding bits in the converted operands is set).

6.5.14 Logical AND operator
Syntax

1 logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Constraints
2 Each of the operands shall have scalar type.

Semantics
3 The && operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it yields 0. The

result has type int.

4 Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; if the
second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares equal to 0, the second operand is not evaluated.

6.5.15 Logical OR operator
Syntax

1 logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

Constraints
2 Each of the operands shall have scalar type.

© ISO/IEC 202y — All rights reserved

Language — 90

§ 6.5.15

ISO/IEC 9899:202y (en) — n3299 working draft

Semantics
3 The || operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it yields 0.

The result has type int.

4 Unlike the bitwise | operator, the || operator guarantees left-to-right evaluation; if the second
operand is evaluated, there is a sequence point between the evaluations of the first and second
operands. If the first operand compares unequal to 0, the second operand is not evaluated.

6.5.16 Conditional operator
Syntax

1 conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints
2 The first operand shall have scalar type.

3 One of the following shall hold for the second and third operands:108)

— both operands have arithmetic type;

— both operands have compatible structure or union type;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— both operands have nullptr_t type;

— one operand is a pointer and the other is a null pointer constant or has type nullptr_t; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void.

4 If either of the second or third operands has decimal floating type, the other operand shall not have
standard floating type, complex type, or imaginary type.

Semantics
5 The first operand is evaluated; there is a sequence point between its evaluation and the evaluation

of the second or third operand (whichever is evaluated). The second operand is evaluated only if
the first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0;
the result is the value of the second or third operand (whichever is evaluated), converted to the type
described subsequently in this subclause.109)

6 If the second and third operands have arithmetic type, the result type is the same as if the usual
arithmetic conversions were applied to both operands. If both the operands have structure or union
type, the result is the composite type. If both operands have void type, the result has void type.

7 If both the second and third operands are pointers, the result type is a pointer to a type qualified
with all the type qualifiers of the types referenced by both operands; if one is a null pointer constant
(other than a pointer) or has type nullptr_t and the other is a pointer, the result type is the pointer
type; if both the second and third operands have nullptr_t type, the result also has that type.
Furthermore, if both operands are pointers to compatible types or to differently qualified versions of
compatible types, the result type is a pointer to an appropriately qualified version of the composite
type; if one operand is a null pointer constant, the result has the type of the other operand; otherwise,

108)If a second or third operand of type nullptr_t is used and the other operand is not a pointer and does not have type
nullptr_t itself, a constraint is violated even if that other operand is a null pointer constant such as 0.
109)A conditional expression does not yield an lvalue.

§ 6.5.16 © ISO/IEC 202y — All rights reserved

Language — 91

ISO/IEC 9899:202y (en) — n3299 working draft

one operand is a pointer to void or a qualified version of void, in which case the result type is a
pointer to an appropriately qualified version of void.

8 If one operand is a pointer to a variably modified type and the other operand is a null pointer
constant or has type nullptr_t, the behavior is undefined if the type depends on an array size
expression that is not evaluated.

9 EXAMPLE The common type that results when the second and third operands are pointers is determined in
two independent stages. The appropriate qualifiers, for example, do not depend on whether the two pointers
have compatible types.

10 Given the declarations

const void *c_vp;
void *vp;
const int *c_ip;
volatile int *v_ip;
int *ip;
const char *c_cp;

the third column in the Table 6.7 is the common type that is the result of a conditional expression in which the
first two columns are the second and third operands (in either order):

Table 6.7 — Common type for conditional expression evaluations

c_vp c_ip const void *
v_ip 0 volatile int *
c_ip v_ip const volatile int *
vp c_cp const void *
ip c_ip const int *
vp ip void *

6.5.17 Assignment operators
6.5.17.1 General
Syntax

1 assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= /= %= += -= <<= >>= &= ^= |=

Constraints
2 An assignment operator shall have a modifiable lvalue as its left operand.

Semantics
3 An assignment operator stores a value in the object designated by the left operand. An assignment

expression has the value of the left operand after the assignment,110) but is not an lvalue. The type of
an assignment expression is the type the left operand would have after lvalue conversion. The side
effect of updating the stored value of the left operand is sequenced after the value computations of
the left and right operands. The evaluations of the operands are unsequenced.

110)The implementation is permitted to read the object to determine the value but is not required to, even when the object
has volatile-qualified type.

© ISO/IEC 202y — All rights reserved

Language — 92

§ 6.5.17.1

ISO/IEC 9899:202y (en) — n3299 working draft

6.5.17.2 Simple assignment
Constraints

1 One of the following shall hold:111)

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right operand
has arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union type
compatible with the type of the right operand;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) both operands are pointers to qualified
or unqualified versions of compatible types, and the type pointed to by the left operand has all
the qualifiers of the type pointed to by the right operand;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) one operand is a pointer to an object type,
and the other is a pointer to a qualified or unqualified version of void, and the type pointed to
by the left operand has all the qualifiers of the type pointed to by the right operand;

— the left operand has an atomic, qualified, or unqualified version of the nullptr_t type and
the right operand is a null pointer constant or its type is nullptr_t;

— the left operand is an atomic, qualified, or unqualified pointer, and the right operand is a null
pointer constant or its type is nullptr_t; or

— the left operand has type atomic, qualified, or unqualified bool, and the right operand is a
pointer or its type is nullptr_t.

Semantics
2 In simple assignment (=), the value of the right operand is converted to the type of the assignment

expression and replaces the value stored in the object designated by the left operand.112)

3 If the value being stored in an object is read from another object that overlaps in any way the storage
of the first object, then the two objects shall occupy exactly the same storage and shall have qualified
or unqualified versions of a compatible type; otherwise, the behavior is undefined.

4 EXAMPLE 1 In the program fragment

int f(void);
char c;
/* ... */
if ((c = f()) == -1)

/* ... */

the int value returned by the function can be truncated when stored in the char, and then converted back to
int width prior to the comparison. In an implementation in which "plain" char has the same range of values
as unsigned char (and char is narrower than int), the result of the conversion cannot be negative, so the
operands of the comparison can never compare equal. Therefore, for full portability, the variable c would be
declared as int.

5 EXAMPLE 2 In the fragment:

char c;
int i;
long l;

l = (c = i);

111)The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion (specified in
6.3.3.1) that changes lvalues to "the value of the expression" and thus removes any type qualifiers that were applied to the
type category of the expression (for example, it removes const but not volatile from the type int volatile * const).
112)As described in 6.2.6.1, a store to an object with atomic type is done with memory_order_seq_cst semantics.

§ 6.5.17.2 © ISO/IEC 202y — All rights reserved

Language — 93

ISO/IEC 9899:202y (en) — n3299 working draft

the value of i is converted to the type of the assignment expression c = i, that is, char type. The value of the
expression enclosed in parentheses is then converted to the type of the outer assignment expression, that is,
long int type.

6 EXAMPLE 3 The following fragment can be used as an example:

const char **cpp;
char *p;
const char c = ’A’;

cpp = &p; // constraint violation

*cpp = &c; // valid

*p = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the value
of the const object c.

6.5.17.3 Compound assignment
Constraints

1 For the operators += and -= only, either the left operand shall be an atomic, qualified, or unqualified
pointer to a complete object type, and the right shall have integer type; or the left operand shall have
atomic, qualified, or unqualified arithmetic type, and the right shall have arithmetic type.

2 For the other operators, the left operand shall have atomic, qualified, or unqualified arithmetic type,
and (considering the type the left operand would have after lvalue conversion) each operand shall
have arithmetic type consistent with those allowed by the corresponding binary operator.

3 If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
4 A compound assignment of the form E1 op= E2 is equivalent to the simple assignment expression E1 =

E1 op (E2), except that the lvalue E1 is evaluated only once, and with respect to an indeterminately
sequenced function call, the operation of a compound assignment is a single evaluation. If E1 has an
atomic type, compound assignment is a read-modify-write operation with memory_order_seq_cst
memory order semantics.

5 NOTE Where a pointer to an atomic object can be formed and E1 and E2 have integer type, this is equivalent
to the following code sequence where T1 is the type of E1 and T2 is the type of E2:

T1 *addr = &E1;
T2 val = (E2);
T1 old = *addr;
T1 new;
do {

new = old op val;
} while (!atomic_compare_exchange_strong(addr, &old, new));

with new being the result of the operation.

If E1 or E2 has floating type, then exceptional conditions or floating-point exceptions encountered during
discarded evaluations of new would also be discarded to satisfy the equivalence of E1 op= E2 and E1 = E1 op
(E2). For example, if Annex F is in effect, the floating types involved have ISO/IEC 60559 binary formats, and
FLT_EVAL_METHOD is 0, the equivalent code would be:

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
/* ... */

fenv_t fenv;
T1 *addr = &E1;
T2 val = E2;
T1 old = *addr;
T1 new;

© ISO/IEC 202y — All rights reserved

Language — 94

§ 6.5.17.3

ISO/IEC 9899:202y (en) — n3299 working draft

feholdexcept(&fenv);
for (;;) {

new = old op val;
if (atomic_compare_exchange_strong(addr, &old, new))

break;
feclearexcept(FE_ALL_EXCEPT);

}
feupdateenv(&fenv);

If FLT_EVAL_METHOD is not 0, then T2 is expected to be a type with the range and precision to which E2 is
evaluated to satisfy the equivalence.

6.5.18 Comma operator
Syntax

1 expression:
assignment-expression
expression , assignment-expression

Semantics
2 The left operand of a comma operator is evaluated as a void expression; there is a sequence point

between its evaluation and that of the right operand. Then the right operand is evaluated; the result
has its type and value.113)

3 EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot appear in
contexts where a comma is used to separate items in a list (such as arguments to functions or lists of initializers).
On the other hand, it can be used within a parenthesized expression or within the second expression of a
conditional operator in such contexts. In the function call

f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.11).

113)A comma operator does not yield an lvalue.

§ 6.5.18 © ISO/IEC 202y — All rights reserved

Language — 95

ISO/IEC 9899:202y (en) — n3299 working draft

6.6 Constant expressions
Syntax

1 constant-expression:
conditional-expression

Description
2 A constant expression can be evaluated during translation rather than runtime, and accordingly can

be used in any place that a constant can be.

Constraints
3 Constant expressions shall not contain assignment, increment, decrement, function-call, or comma

operators, except when they are contained within a subexpression that is not evaluated.114)

4 Each constant expression shall evaluate to a constant that is in the range of representable values for
its type.

Semantics
5 An expression that evaluates to a constant is required in several contexts. If a floating expression

is evaluated in the translation environment, the arithmetic range and precision shall be at least as
great as if the expression were being evaluated in the execution environment.115)

6 A compound literal with storage-class specifier constexpr is a compound literal constant, as is a
postfix expression that applies the . member access operator to a compound literal constant of
structure or union type, even recursively. A compound literal constant is a constant expression with
the type and value of the unnamed object.

7 An identifier that is:

— an enumeration constant,

— a predefined constant, or

— declared with storage-class specifier constexpr and has an object type,

is a named constant, as is a postfix expression that applies the . member access operator to a named
constant of structure or union type, even recursively. For enumeration and predefined constants,
their value and type are defined in the respective clauses; for constexpr objects, such a named
constant is a constant expression with the type and value of the declared object.

8 An integer constant expression116) shall have integer type and shall only have operands that are
integer constants, named and compound literal constants of integer type, character constants,
sizeof expressions whose results are integer constants, alignof expressions, and floating, named,
or compound literal constants of arithmetic type that are the immediate operands of casts. Cast
operators in an integer constant expression shall only convert arithmetic types to integer types,
except as part of an operand to the typeof operators, sizeof operator, or alignof operator.

9 More latitude is permitted for constant expressions in initializers. Such a constant expression shall
be, or evaluate to, one of the following:

— a named constant,

— a compound literal constant,

114)The operand of a typeof (6.7.3.6), sizeof, or alignof operator is usually not evaluated (6.5.4.5).
115)The use of evaluation formats as characterized by FLT_EVAL_METHOD and DEC_EVAL_METHOD also applies to evaluation in

the translation environment.
116)An integer constant expression is required in contexts such as the size of a bit-field member of a structure, the value of

an enumeration constant, and the size of a non-variable length array. Further constraints that apply to the integer constant
expressions used in conditional-inclusion preprocessing directives are discussed in 6.10.2.

© ISO/IEC 202y — All rights reserved

Language — 96

§ 6.6

ISO/IEC 9899:202y (en) — n3299 working draft

— an arithmetic constant expression,

— a null pointer constant,

— an address constant, or

— an address constant for a complete object type plus or minus an integer constant expression.

10 An arithmetic constant expression shall have arithmetic type and shall only have operands that are
integer constants, floating constants, named or compound literal constants of arithmetic type, char-
acter constants, sizeof expressions whose results are integer constants, and alignof expressions.
Cast operators in an arithmetic constant expression shall only convert arithmetic types to arithmetic
types, except as part of an operand to the typeof operators, sizeof operator, or alignof operator.

11 An address constant is a null pointer,117) a pointer to an lvalue designating an object of static storage
duration, or a pointer to a function designator; it shall be created explicitly using the unary &
operator or an integer constant cast to pointer type, or implicitly using an expression of array or
function type.

12 The array-subscript [] and member-access -> operator, the address & and indirection * unary
operators, and pointer casts can be used in the creation of an address constant, but the value of an
object shall not be accessed by use of these operators.118)

13 A structure or union constant is a named constant or compound literal constant with structure or
union type, respectively.

14 An implementation may accept other forms of constant expressions, called extended constant expres-
sions. It is implementation-defined whether extended constant expressions are usable in the same
manner as the constant expressions defined in this document, including whether or not extended
integer constant expressions are considered to be integer constant expressions.119)

15 Starting from a structure or union constant, the member-access . operator can be used to form a
named constant or compound literal constant as described previously in this subclause.

16 If the member-access operator . accesses a member of a union constant, the accessed member shall
be the same as the member that is initialized by the union constant’s initializer.

17 The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.120)

Forward references: array declarators (6.7.7.3), initialization (6.7.11).

117)A named constant or compound literal constant of integer type and value zero is a null pointer constant. A named
constant or compound literal constant with a pointer type and a value null is a null pointer but not a null pointer constant; it
can only be used to initialize a pointer object if its type implicitly converts to the target type.
118)Named constants or compound literal constants with arithmetic type, including names of constexpr objects, are valid in

offset computations such as array subscripts or in pointer casts, as long as the expressions in which they occur form integer
constant expressions. In contrast, names of other objects, even if const-qualified and with static storage duration, are not
valid.

119)For example, in the declaration int arr_or_vla[(int)+1.0];, while possible to be computed by some implementations
as an array with a size of one, it is implementation-defined whether this results in a variable length array declaration or a
declaration of an array of known constant size of automatic storage duration. The choice depends on whether (int)+1.0 is
an extended integer constant expression.
120)Thus, in the following initialization,

static int i = 2 || 1 / 0;

the expression is a valid integer constant expression with value one.

§ 6.6 © ISO/IEC 202y — All rights reserved

Language — 97

ISO/IEC 9899:202y (en) — n3299 working draft

6.7 Declarations
6.7.1 General
Syntax

1 declaration:
declaration-specifiers init-declarator-listopt ;
attribute-specifier-sequence declaration-specifiers init-declarator-list ;
static_assert-declaration
attribute-declaration

declaration-specifiers:
declaration-specifier attribute-specifier-sequenceopt
declaration-specifier declaration-specifiers

declaration-specifier:
storage-class-specifier
type-specifier-qualifier
function-specifier

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

attribute-declaration:
attribute-specifier-sequence ;

Constraints
2 If a declaration other than a static_assert or attribute declaration does not include an init declarator

list, its declaration specifiers shall include one of the following:

— a struct or union specifier or enum specifier that includes a tag, with the declaration being of a
form specified in 6.7.3.4 to declare that tag;

— an enum specifier that includes an enumerator list.

3 EXAMPLE 1 The following are invalid, because the declared tag or enumeration constants are in a nested
construct, rather than a declaration specifier of the declaration being of one of the given forms:

struct { struct s2 { int x2a; } x2b; };
typeof (struct s3 { int x3; });
alignas (struct s4 { int x4; }) int;
typeof (struct s5 *);
typeof (enum { E6 });
struct { void (*p)(struct s7 *); };

4 If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a
declarator or type specifier) with the same scope and in the same name space, except that:

— a typedef name can be redefined to denote the same type as it currently does, provided that
type is not a variably modified type;

— enumeration constants and tags can be redeclared as specified in 6.7.3.3 and 6.7.3.4, respectively.

5 All declarations in the same scope that refer to the same object or function shall specify compatible
types.

© ISO/IEC 202y — All rights reserved

Language — 98

§ 6.7.1

ISO/IEC 9899:202y (en) — n3299 working draft

Semantics
6 A declaration specifies the interpretation and properties of a set of identifiers. A definition of an

identifier is a declaration for that identifier that for:

— an object, causes storage to be reserved for that object,

— a function, includes the function body,121)

— an enumeration constant, is the first (or only) declaration of the identifier, or

— a typedef name, is the first (or only) declaration of the identifier.

7 The declaration specifiers consist of a sequence of specifiers, followed by an optional attribute
specifier sequence. The declaration specifiers indicate the linkage, storage duration, and part of
the type of the entities that the declarators denote. The init declarator list is a comma-separated
sequence of declarators, each of which can have additional type information, or an initializer, or
both. The declarators contain the identifiers (if any) being declared. The optional attribute specifier
sequence in a declaration appertains to each of the entities declared by the declarators of the init
declarator list.

8 If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer. In the case of
function parameters, it is the adjusted type (see 6.7.7.4) that is required to be complete.

9 The optional attribute specifier sequence terminating a sequence of declaration specifiers appertains
to the type determined by the preceding sequence of declaration specifiers. The attribute specifier
sequence affects the type only for the declaration it appears in, not other declarations involving the
same type.

10 Except where specified otherwise, the meaning of an attribute declaration is implementation-defined.

11 EXAMPLE 2 In the declaration for an entity, attributes appertaining to that entity can appear at the start of the
declaration and after the identifier for that declaration.

[[deprecated]] void f [[deprecated]] (void); // valid

12 A declaration such that the declaration specifiers contain no type specifier or that is declared with
constexpr is said to be underspecified. If such a declaration is not a definition, if it declares no or more
than one ordinary identifier, if the declared identifier already has a declaration in the same scope,
if the declared entity is not an object, or if anywhere within the sequence of tokens making up the
declaration identifiers that are not ordinary are declared, the behavior is implementation-defined.122)

13 EXAMPLE 3 As declarations using constexpr are underspecified, the following has implementation-defined
behavior because tokens within the declaration declare s which is not an ordinary identifier:

constexpr typeof(struct s *) x = 0;

Forward references: declarators (6.7.7), enumeration specifiers (6.7.3.3), initialization (6.7.11),
storage-class specifiers (6.7.2), type inference (6.7.10), type names (6.7.8), type qualifiers (6.7.4).

6.7.2 Storage-class specifiers
Syntax

1 storage-class-specifier:
auto
constexpr
extern
register

121)Function definitions have a different syntax, described in 6.9.2.
122)It is recommended that implementations that accept such declarations follow the semantics of the corresponding feature

in ISO/IEC 14882.

§ 6.7.2 © ISO/IEC 202y — All rights reserved

Language — 99

ISO/IEC 9899:202y (en) — n3299 working draft

static
thread_local
typedef

Constraints
2 At most, one storage-class specifier can be given in the declaration specifiers in a declaration, except

that:

— thread_local can appear with static or extern,

— auto can appear with all the others except typedef,123) and

— constexpr can appear with auto, register, or static.

3 In the declaration of an object with block scope, if the declaration specifiers include thread_local,
they shall also include either static or extern. If thread_local appears in any declaration of an
object, it shall be present in every declaration of that object.

4 thread_local shall not appear in the declaration specifiers of a function declaration. auto shall only
appear in the declaration specifiers of an identifier with file scope or along with other storage-class
specifiers if the type is to be inferred from an initializer.

5 An object declared with storage-class specifier constexpr or any of its members, even recursively,
shall not have an atomic type, or a variably modified type, or a type that is volatile or restrict
qualified. An initializer of floating type shall be evaluated with the translation-time floating-point
environment. The declaration shall be a definition and shall have an initializer.124) The value of
any constant expressions or of any character in a string literal of the initializer shall be exactly
representable in the corresponding target type; no change of value shall be applied.125)

6 If an object or subobject declared with storage-class specifier constexpr has pointer, integer, or
arithmetic type, any explicit initializer value for it shall be null,126) an integer constant expression,
or an arithmetic constant expression, respectively. If the object declared has real floating type, the
initializer shall have integer or real floating type. If the object declared has imaginary type, the
initializer shall have imaginary type. If the initializer has decimal floating type, the object declared
shall have decimal floating type and the conversion shall preserve the quantum of the initializer. If
the initializer has real type and a signaling NaN value, the unqualified versions of the type of the
initializer and the corresponding real type of the object declared shall be compatible.

7 EXAMPLE 1 Although in the following the expression A.p is not a null pointer constant, only a constant
expression with pointer type and a null pointer value, the member-wise initialization of B with A is valid.

struct s { void *p; };
constexpr struct s A = { nullptr };
constexpr struct s B = A;

8 EXAMPLE 2 Pointers can be initialized to eligible constant expressions, such as a null pointer constant:

constexpr int *p = {}; // Default initialization with a null pointer

9 EXAMPLE 3

123)See "future language directions" (6.11.5).
124)All assignment expressions of such an initializer, if any, are constant expressions or string literals, see 6.7.11.
125)In the context of arithmetic conversions, 6.3.2 describes the details of changes of value that occur if values of arithmetic

expressions are stored in the objects that for example have a different signedness, excess precision or quantum exponent.
Whenever such a change of value is necessary, the constraint is violated.

126)The named constant or compound literal constant corresponding to an object declared with storage-class specifier
constexpr and pointer type is a constant expression with a value null, and thus a null pointer and an address constant. Thus,
such a named constant is a valid initializer for other constexpr declarations, provided the pointer types match accordingly.
However, even if it has type void* it is not a null pointer constant.

© ISO/IEC 202y — All rights reserved

Language — 100

§ 6.7.2

ISO/IEC 9899:202y (en) — n3299 working draft

void f (void) {
constexpr float f = 1.0f;
constexpr float g = 3.0f;
fesetround(FE_TOWARDSZERO); // does not affect

// the following initialization
// of "h"

constexpr float h = f / g;
// ...

}

Semantics
10 Storage-class specifiers specify various properties of identifiers and declared features:

— storage duration (static in block scope, thread_local, auto, register),

— linkage (extern, static and constexpr in file scope, typedef),

— value (constexpr), and

— type (typedef).

11 The meanings of the various linkages and storage durations were discussed in 6.2.2 and 6.2.4,
typedef is discussed in 6.7.9, and type inference using auto is discussed in 6.7.10.

12 A declaration of an identifier for an object with storage-class specifier register suggests that
access to the object be as fast as possible. The extent to which such suggestions are effective is
implementation-defined.127)

13 The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

14 If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, including recursively for any aggregate or union member objects.

15 If auto appears with another storage-class specifier, or if it appears in a declaration at file scope, it is
ignored for the purposes of determining a storage duration or linkage. In this case, it indicates only
that the declared type can be inferred.

16 An object declared with a storage-class specifier constexpr has its value permanently fixed at
translation-time; if not yet present, a const-qualification is implicitly added to the object’s type. The
declared identifier is considered a constant expression of the respective kind, see 6.6.

17 NOTE 1 An object declared in block scope with a storage-class specifier constexpr and without static has
automatic storage duration, the identifier has no linkage, and each instance of the object has a unique address
obtainable with & (if it is not declared with the register specifier), if any. Such an object in file scope has static
storage duration, the corresponding identifier has internal linkage, and each translation unit that sees the same
textual definition implements a separate object with a distinct address.

18 NOTE 2 The constraints for constexpr objects are intended to enforce checks for portability at translation
time.

constexpr unsigned int minusOne = -1; // constraint violation
constexpr unsigned int uint_max = -1U; // ok
constexpr double onethird = 1.0/3.0; // possible constraint violation
constexpr double onethirdtrunc = (double)(1.0/3.0); // ok
constexpr _Decimal32 small = DEC64_TRUE_MIN * 0; // constraint violation

127)The implementation can treat any register declaration simply as an auto declaration. However, whether or not
addressable storage is used, the address of any part of an object declared with storage-class specifier register cannot be
computed, either explicitly (by use of the unary & operator as discussed in 6.5.4.3) or implicitly (by converting an array name
to a pointer as discussed in 6.3.3.1). Thus, the only operator that can be applied to an array declared with storage-class
specifier register is sizeof and the typeof operators.

§ 6.7.2 © ISO/IEC 202y — All rights reserved

Language — 101

ISO/IEC 9899:202y (en) — n3299 working draft

If a truncation of excess precision changes the value in the initializer of onethird, a constraint is violated and a
diagnostic is required. In contrast to that, the explicit conversion in the initializer for onethirdtrunc ensures
that the definition is valid. Similarly, the initializer of small has a quantum exponent that is larger than the
largest possible quantum exponent for _Decimal32.

19 NOTE 3 Similarly, implementation-defined behavior related to the char type of the elements of the string
literal "\xFF" can cause constraint violations at translation time:

constexpr char string[] = { "\xFF", }; // ok
constexpr char8_t u8string[] = { u8"\xFF", }; // ok
constexpr unsigned char ucstring[] = { "\xFF", }; // possible constraint

// violation

In both the string and ucstring initializers, the initializer is a (brace-enclosed) string literal of type char. If the
type char is capable of representing negative values and its width is 8, then the preceding code is equivalent to:

constexpr char string[] = { -1, 0, }; // ok
constexpr char8_t u8string[] = { 255, 0, }; // ok
constexpr unsigned char ucstring[] = { -1, 0, }; // constraint violation

The hexadecimal escape sequence results in a value of 255. For an initializer of type char, it is converted to
a signed 8-bit integer, making a value of -1. A negative value does not fit within the range of values for
unsigned char, and therefore the initialization of ucstring is a constraint violation under the previously
stated implementation conditions. In the case where char is not capable of representing negative values, the
original snippet is equivalent to the following and there is no constraint violation.

constexpr char string[] = { 255, 0, }; // ok
constexpr char8_t u8string[] = { 255, 0, }; // ok
constexpr unsigned char ucstring[] = { 255, 0, }; // ok

20 EXAMPLE 4 An identifier declared with the constexpr specifier can have its value used in constant expres-
sions:

constexpr int K = 47;
enum {

A = K, // valid, constant initialization
};
constexpr int L = K; // valid, constexpr initialization
static int b = K + 1; // valid, static initialization
int array[K]; // not a VLA

21 EXAMPLE 5 This example illustrates constexpr initializations involving different type domains, decimal and
non-decimal floating types, NaNs and infinities, and quanta in decimal floating types.

#include <float.h>
#include <complex.h>

constexpr float _Complex fc1 = 1.0; // ok
constexpr float _Complex fc2 = 0.1; // constraint violation, unless double

// has the same precision as float
// and is evaluated with the same
// precision

constexpr float _Complex fc3 = 3*I; // ok

constexpr double d1 = (double _Complex)1.0; // constraint violation
constexpr float f1 = (long double)INFINITY; // ok
constexpr float f2 = (long double)NAN; // ok, quiet NaNs in real floating

// types are considered the same
// value, regardless of payloads

constexpr double d2 = DBL_SNAN; // ok
constexpr double d3 = FLT_SNAN; // constraint violation, even if float

// and double have the same format

© ISO/IEC 202y — All rights reserved

Language — 102

§ 6.7.2

ISO/IEC 9899:202y (en) — n3299 working draft

constexpr double _Complex dc1 = DBL_SNAN; // ok
constexpr double _Complex dc2 = CMPLX(DBL_SNAN, 0.); // ok
constexpr double _Complex dc3 = CMPLX(0., DBL_SNAN); // ok

constexpr _Decimal32 d321 = 1.0; // ok
constexpr _Decimal32 d322 = 1; // ok
constexpr _Decimal32 d323 = INFINITY; // ok
constexpr _Decimal32 d324 = NAN; // ok
constexpr _Decimal64 d641 = DEC64_SNAN; // ok
constexpr _Decimal64 d642 = DEC32_SNAN; // constraint violation
constexpr float f3 = 1.DF; // constraint violation
constexpr float f4 = DEC_INFINITY; // constraint violation
constexpr double d4 = DEC_NAN; // constraint violation
constexpr _Decimal32 d325 = DEC64_TRUE_MIN * 0; // constraint violation,

// quantum not preserved
#ifdef __STDC_IEC_60559_COMPLEX__

constexpr double d5 = (double _Imaginary)0.0; // constraint violation
constexpr double d6 = (double _Imaginary)0.0; // constraint violation
constexpr double _Imaginary di1 = 0.0*I; // ok
constexpr double _Imaginary di2 = 0.0; // constraint violation
#endif

22 EXAMPLE 6 An object declared with the constexpr specifier stores the exact value of its initializer, no implicit
value change is applied:

#include <float.h>

constexpr int A = 42LL; // valid, 42 always fits in an int
constexpr signed short B = ULLONG_MAX; // constraint violation, value never

// fits
constexpr float C = 47u; // valid, exactly representable

// in float

#if FLT_MANT_DIG > 24
constexpr float D = 536900000; // constraint violation if float is

// ISO/IEC 60559 binary32
#endif

#if (FLT_MANT_DIG == DBL_MANT_DIG) \
&& (0 <= FLT_EVAL_METHOD) \
&& (FLT_EVAL_METHOD <= 1)

constexpr float E = 1.0 / 3.0; // only valid if double expressions
// and float objects have the same
// precision

#endif

#if FLT_EVAL_METHOD == 0
constexpr float F = 1.0f / 3.0f; // valid, same type and precision
#else
constexpr float F = (float)(1.0f / 3.0f); // needs cast to truncate the

// excess precision
#endif

23 EXAMPLE 7 This recursively applies to initializers for all elements of an aggregate object declared with the
constexpr specifier:

constexpr static unsigned short array[] = {
3000, // valid, fits in unsigned short range
300000, // constraint violation if short is 16-bit
-1 // constraint violation, target type is unsigned

§ 6.7.2 © ISO/IEC 202y — All rights reserved

Language — 103

ISO/IEC 9899:202y (en) — n3299 working draft

};

struct S {
int x, y;

};
constexpr struct S s = {

.x = INT_MAX, // valid

.y = UINT_MAX, // constraint violation
};

Forward references: type definitions (6.7.9), type inference (6.7.10).

6.7.3 Type specifiers
6.7.3.1 General
Syntax

1 type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_BitInt (constant-expression)
bool
_Complex
_Decimal32
_Decimal64
_Decimal128
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name
typeof-specifier

Constraints
2 Except where the type is inferred (6.7.10), at least one type specifier shall be given in the declaration

specifiers in each declaration, and in the specifier-qualifier list in each member declaration and type
name. Each list of type specifiers shall be one of the following multisets (delimited by commas,
when there is more than one multiset per item); the type specifiers can occur in any order, possibly
intermixed with the other declaration specifiers.

— void

— char

— signed char

— unsigned char

— short, signed short, short int, or signed short int

— unsigned short, or unsigned short int

— int, signed, or signed int

— unsigned, or unsigned int

© ISO/IEC 202y — All rights reserved

Language — 104

§ 6.7.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

— long, signed long, long int, or signed long int

— unsigned long, or unsigned long int

— long long, signed long long, long long int, or signed long long int

— unsigned long long, or unsigned long long int

— _BitInt(constant-expression), or signed _BitInt(constant-expression)

— unsigned _BitInt(constant-expression)

— float

— double

— long double

— _Decimal32

— _Decimal64

— _Decimal128

— bool

— float _Complex

— double _Complex

— long double _Complex

— atomic type specifier

— struct or union specifier

— enum specifier

— typedef name

— typeof specifier

3 The type specifier _Complex shall not be used if the implementation does not support complex
types, and the type specifiers _Decimal32, _Decimal64, and _Decimal128 shall not be used if the
implementation does not support decimal floating types (see 6.10.10.4).

4 The parenthesized constant expression that follows the _BitInt keyword shall be an integer constant
expression N that specifies the width (6.2.6.2) of the type. The value of N for unsigned _BitInt
shall be greater than or equal to 1. The value of N for _BitInt shall be greater than or equal to 2.
The value of N shall be less than or equal to the value of BITINT_MAXWIDTH (see 5.3.5.3.2).

Semantics
5 Specifiers for structures, unions, enumerations, atomic types, and typeof specifiers are discussed in

6.7.3.2 through 6.7.3.6. Declarations of typedef names are discussed in 6.7.9. The characteristics of
the other types are discussed in 6.2.5.

6 For a declaration such that the declaration specifiers contain no type specifier a mechanism to infer
the type from an initializer is discussed in 6.7.10. In such a declaration, optional elements, if any,
of a sequence of declaration specifiers appertain to the inferred type (for qualifiers and attribute
specifiers) or to the declared objects (for alignment specifiers).

7 Each of the comma-separated multisets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifier int designates the same type as signed int or the
same type as unsigned int.

Forward references: atomic type specifiers (6.7.3.5), enumeration specifiers (6.7.3.3), structure and
union specifiers (6.7.3.2), tags (6.7.3.4), type definitions (6.7.9).

6.7.3.2 Structure and union specifiers
Syntax

1 struct-or-union-specifier:
struct-or-union attribute-specifier-sequenceopt identifieropt { member-declaration-list }

§ 6.7.3.2 © ISO/IEC 202y — All rights reserved

Language — 105

ISO/IEC 9899:202y (en) — n3299 working draft

struct-or-union attribute-specifier-sequenceopt identifier

struct-or-union:
struct
union

member-declaration-list:
member-declaration
member-declaration-list member-declaration

member-declaration:
attribute-specifier-sequenceopt specifier-qualifier-list member-declarator-listopt ;
static_assert-declaration

specifier-qualifier-list:
type-specifier-qualifier attribute-specifier-sequenceopt
type-specifier-qualifier specifier-qualifier-list

type-specifier-qualifier:
type-specifier
type-qualifier
alignment-specifier

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator
declaratoropt : constant-expression

Constraints
2 A member declaration that does not declare an anonymous structure or anonymous union shall

contain a member declarator list.

3 A structure or union shall not contain a member with incomplete or function type (hence, a structure
shall not contain an instance of itself, but can contain a pointer to an instance of itself), except that
the last member of a structure with more than one named member can have incomplete array type;
such a structure (and any union containing, possibly recursively, a member that is such a structure)
shall not be a member of a structure or an element of an array.

4 The expression that specifies the width of a bit-field shall be an integer constant expression with a
nonnegative value that does not exceed the width of an object of the type that would be specified
were the colon and expression omitted.128) If the value is zero, the declaration shall have no
declarator.

5 A bit-field shall have a type that is a qualified or unqualified bool, signed int, unsigned int, a
bit-precise integer type, or other implementation-defined type. It is implementation-defined whether
atomic types are permitted.

6 An attribute specifier sequence shall not appear in a struct-or-union specifier without a member

128)While the number of bits in a bool object is at least CHAR_BIT, the width of a bool is just 1 bit.

© ISO/IEC 202y — All rights reserved

Language — 106

§ 6.7.3.2

ISO/IEC 9899:202y (en) — n3299 working draft

declaration list, except in a declaration of the form:

struct-or-union attribute-specifier-sequence identifier ;

The attributes in the attribute specifier sequence, if any, are thereafter considered attributes of the
struct or union whenever it is named.

Semantics
7 As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose storage is

allocated in an ordered sequence, and a union is a type consisting of a sequence of members whose
storage overlap.

8 Structure and union specifiers have the same form. The keywords struct and union indicate that
the type being specified is, respectively, a structure type or a union type.

9 The optional attribute specifier sequence in a struct-or-union specifier appertains to the structure
or union type being declared. The optional attribute specifier sequence in a member declaration
appertains to each of the members declared by the member declarator list; it shall not appear if the
optional member declarator list is omitted. The optional attribute specifier sequence in a specifier
qualifier list appertains to the type denoted by the preceding type specifier qualifiers. The attribute
specifier sequence affects the type only for the member declaration or type name it appears in, not
other types or declarations involving the same type.

10 The member declaration list is a sequence of declarations for the members of the structure or union.
If the member declaration list does not contain any named members, either directly or via an
anonymous structure or anonymous union, the behavior is undefined.129)

11 A member of a structure or union can have any complete object type other than a variably modified
type.130) In addition, a member can be declared to consist of a specified number of bits (including a
sign bit, if any). Such a member is called a bit-field;131) its width is preceded by a colon.

12 A bit-field is interpreted as having a signed or unsigned integer type consisting of the specified
number of bits.132) If the value 0 or 1 is stored into a nonzero-width bit-field of type bool, the value
of the bit-field shall compare equal to the value stored; a bool bit-field has the semantics of a bool.

13 An implementation can allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be
packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that
does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined. The alignment of the addressable storage unit is unspecified.

14 A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.133) As a special case, a bit-field structure member with a width of zero indicates that no
further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

15 An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are members of the containing
structure or union, keeping their structure or union layout. This applies recursively if the containing
structure or union is also anonymous.

16 Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

129)For further rules affecting compatibility and completeness of structure or union types, see 6.2.7 and 6.7.3.4.
130)A structure or union cannot contain a member with a variably modified type because member names are not ordinary

identifiers as defined in 6.2.3.
131)The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field

objects.
132)As specified in 6.7.3, if the actual type specifier used is int or a typedef-name defined as int, then it is implementation-

defined whether the bit-field is signed or unsigned. This includes an int type specifier produced using the typeof specifiers
(6.7.3.6).

133)An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

§ 6.7.3.2 © ISO/IEC 202y — All rights reserved

Language — 107

ISO/IEC 9899:202y (en) — n3299 working draft

17 Within a structure object, the non-bit-field members and the units in which bit-fields reside have
addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in
which it resides), and vice versa. There can be unnamed padding within a structure object, but not
at its beginning.

18 The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field, then to the unit in which it resides),
and vice versa. The members of a union object overlap in such a way that pointers to them when
converted to pointers to character type point to the same byte. There can be unnamed padding at
the end of a union object, but not at its beginning.

19 There can be unnamed padding at the end of a structure or union.

20 As a special case, the last member of a structure with more than one named member can have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or ->) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
object being accessed; the offset of the array shall remain that of the flexible array member, even if
this would differ from that of the replacement array. If this array would have no elements, it behaves
as if it had one element but the behavior is undefined if any attempt is made to access that element
or to generate a pointer one past it.

21 EXAMPLE 1 The following declarations illustrate the behavior when an attribute is written on a tag declaration:

struct [[deprecated]] S; // valid, [[deprecated]] appertains to struct S
void f(struct S *s); // valid, the struct S type has the [[deprecated]]

// attribute
struct S { // valid, struct S inherits the [[deprecated]] attribute

int a; // from the previous declaration
};
void g(struct [[deprecated]] S s); // invalid

22 EXAMPLE 2 The following illustrates anonymous structures and unions:

struct v {
union { // anonymous union

struct { int i, j; }; // anonymous structure
struct { long k, l; } w;

};
int m;

} v1;

v1.i = 2; // valid
v1.k = 3; // invalid: inner structure is not anonymous
v1.w.k = 5; // valid

23 EXAMPLE 3 After the declaration:

struct s { int n; double d[]; };

the structure struct s has a flexible array member d. A typical way to use this is:

int m = /* some value */;
struct s *p = malloc(sizeof(struct s) + sizeof(double [m]));

and assuming that the call to malloc succeeds, the object pointed to by p behaves, for most purposes, as if p
had been declared as:

© ISO/IEC 202y — All rights reserved

Language — 108

§ 6.7.3.2

ISO/IEC 9899:202y (en) — n3299 working draft

struct { int n; double d[m]; } *p;

(there are circumstances in which this equivalence is broken; in particular, the offsets of member d can sometimes
not be the same).

24 Following the declaration of the previous example:

struct s t1 = { 0 }; // valid
struct s t2 = { 1, { 4.2 }}; // invalid
t1.n = 4; // valid
t1.d[0] = 4.2; // can be undefined behavior

The initialization of t2 is invalid (and violates a constraint) because struct s is treated as if it did not contain
member d. The assignment to t1.d[0] has probably undefined behavior, but it is possible that

sizeof(struct s) >= offsetof(struct s, d) + sizeof(double)

in which case the assignment would be legitimate. Nevertheless, it cannot appear in strictly conforming code.

25 After the further declaration:

struct ss { int n; };

the expressions:

sizeof(struct s) >= sizeof(struct ss)
sizeof(struct s) >= offsetof(struct s, d)

are always equal to 1.

26 If sizeof(double) is 8, then after the following code is executed:

struct s *s1;
struct s *s2;
s1 = malloc(sizeof(struct s) + 64);
s2 = malloc(sizeof(struct s) + 46);

and assuming that the calls to malloc succeed, the objects pointed to by s1 and s2 behave, for most purposes,
as if the identifiers had been declared as:

struct { int n; double d[8]; } *s1;
struct { int n; double d[5]; } *s2;

27 Following the further successful assignments:

s1 = malloc(sizeof(struct s) + 10);
s2 = malloc(sizeof(struct s) + 6);

they then behave as if the declarations were:

struct { int n; double d[1]; } *s1, *s2;

and:

double *dp;
dp = &(s1->d[0]); // valid

*dp = 42; // valid
dp = &(s2->d[0]); // valid

*dp = 42; // undefined behavior

28 The assignment:

§ 6.7.3.2 © ISO/IEC 202y — All rights reserved

Language — 109

ISO/IEC 9899:202y (en) — n3299 working draft

*s1 = *s2;

only copies the member n; if any of the array elements are within the first sizeof(struct s) bytes of the
structure, they are set to an indeterminate representation, that can sometimes not coincide with a copy of the
representation of the elements of the source array.

29 EXAMPLE 4 Because members of anonymous structures and unions are considered to be members of the
containing structure or union, struct s in the following example has more than one named member and thus
the use of a flexible array member is valid:

struct s {
struct { int i; };
int a[];

};

Forward references: declarators (6.7.7), tags (6.7.3.4).

6.7.3.3 Enumeration specifiers
Syntax

1 enum-specifier:
enum attribute-specifier-sequenceopt identifieropt enum-type-specifieropt

{ enumerator-list }
enum attribute-specifier-sequenceopt identifieropt enum-type-specifieropt

{ enumerator-list , }
enum identifier enum-type-specifieropt

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant attribute-specifier-sequenceopt
enumeration-constant attribute-specifier-sequenceopt = constant-expression

enum-type-specifier:
: specifier-qualifier-list

2 All enumerations have an underlying type. The underlying type can be explicitly specified using an
enum type specifier and is its fixed underlying type. If it is not explicitly specified, the underlying
type is the enumeration’s compatible type, which is either char or a standard or extended signed or
unsigned integer type.

Constraints
3 For an enumeration with a fixed underlying type, the integer constant expression defining the value

of the enumeration constant shall be representable in that fixed underlying type. If the value of
an enumeration constant without a defining constant expression for an enumeration with fixed
underlying type is obtained by adding 1 to the previous enumeration constant, the value of that
previous enumeration constant shall not be the maximum value of the underlying type.

4 For an enumeration without a fixed underlying type, the expression that defines the value of an
enumeration constant shall be an integer constant expression. For all the integer constant expressions
which make up the values of the enumeration constants, there shall be a type capable of representing
all the values that is a standard or extended signed or unsigned integer type, or char.

5 If an enum type specifier is present, then the longest possible sequence of tokens that can be
interpreted as a specifier qualifier list is interpreted as part of the enum type specifier. It shall name
an integer type that is neither an enumeration nor a bit-precise integer type. The underlying type of
the enumeration is the unqualified, non-atomic version of the type specified by the type specifiers in
the specifier qualifier list.134)

134)The specifier qualifier list is not a context listed in 6.7.6 as permitted for alignment specifiers, so the presence of an
alignment specifier in the list violates a constraint.

© ISO/IEC 202y — All rights reserved

Language — 110

§ 6.7.3.3

ISO/IEC 9899:202y (en) — n3299 working draft

6 An enum specifier of the form

enum identifier enum-type-specifier

shall not appear except in a declaration of the form

enum identifier enum-type-specifier ;

unless it is immediately followed by an opening brace, an enumerator list (with an optional ending
comma), and a closing brace.

7 If two enum specifiers that include an enum type specifier declare the same type, the underlying
types shall be compatible.

8 An enumeration with a fixed underlying type shall be defined with an enum type specifier. No
enum specifier for an enumeration without a fixed underlying type shall include an enum type
specifier.

Semantics
9 The optional attribute specifier sequence in the enum specifier appertains to the enumeration; the

attributes in that attribute specifier sequence are thereafter considered attributes of the enumeration
whenever it is named. The optional attribute specifier sequence in the enumerator appertains to that
enumerator.

10 The identifiers in an enumerator list are declared as constants of the types specified later in this
subclause and can appear wherever such are permitted.135) An enumerator with = defines its
enumeration constant as the value of the constant expression. If the first enumerator has no =,
the value of its enumeration constant is zero. Each subsequent enumerator with no = defines its
enumeration constant as the value of the constant expression obtained by adding 1 to the value
of the previous enumeration constant. (The use of enumerators with = may produce enumeration
constants with values that duplicate other values in the same enumeration.) The enumerators of an
enumeration are also known as its members.

11 The type for the members of an enumeration is called the enumeration member type.

12 During the processing of each enumeration constant in the enumerator list, the type of the enumera-
tion constant shall be:

— the previously declared type, if it is a redeclaration of the same enumeration constant; or,

— the enumerated type, for an enumeration with fixed underlying type; or,

— int, if there are no previous enumeration constants in the enumerator list and no explicit =
with a defining integer constant expression; or,

— int, if given explicitly with = and the value of the integer constant expression is representable
by an int; or,

— the type of the integer constant expression, if given explicitly with = and if the value of the
integer constant expression is not representable by int; or,

— the type of the value from the previous enumeration constant with one added to it. If such
an integer constant expression would overflow or wraparound the value of the previous
enumeration constant from the addition of one, the type takes on either:

— a suitably sized signed integer type, excluding the bit-precise signed integer types, capable
of representing the value of the previous enumeration constant plus one; or,

— a suitably sized unsigned integer type, excluding the bit-precise unsigned integer types,
capable of representing the value of the previous enumeration constant plus one.

135)Thus, the identifiers of enumeration constants declared in the same scope are all required to be distinct from each other
and from other identifiers declared in ordinary declarators.

§ 6.7.3.3 © ISO/IEC 202y — All rights reserved

Language — 111

ISO/IEC 9899:202y (en) — n3299 working draft

A signed integer type is chosen if the previous enumeration constant being added is of signed
integer type. An unsigned integer type is chosen if the previous enumeration constant is of
unsigned integer type. If there is no suitably sized integer type described previously which
can represent the new value, then the enumeration has no type which can represent all its
values.136)

13 For all enumerations without a fixed underlying type, each enumerated type shall be compatible
with char or a signed or an unsigned integer type that is not bool or a bit-precise integer type. The
choice of type is implementation-defined,137) but shall be capable of representing the values of all
the members of the enumeration.138)

14 Enumeration constants can be redefined in the same scope with the same value as part of a redecla-
ration of the same enumerated type.

15 The enumeration member type for an enumerated type without fixed underlying type upon comple-
tion is:

— int if all the values of the enumeration are representable as an int; or,

— the enumerated type.139)

16 The enumeration member type for an enumerated type with fixed underlying type is the enumerated
type. The enumerated type is compatible with the underlying type of the enumeration. After possible
lvalue conversion a value of the enumerated type behaves the same as the value with the underlying
type, in particular with all aspects of promotion, conversion, and arithmetic. Conversion to the
enumerated type has the same semantics as conversion to the underlying type.140)

17 EXAMPLE 1 The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, *cp;
col = claret;
cp = &col;
if (*cp != burgundy)

/* ... */

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as a pointer
to an object that has that type. The enumerated values are in the set {0, 1, 20, 21}.

18 EXAMPLE 2 Even if the value of an enumeration constant is generated by the implicit addition of one, an
enumeration with a fixed underlying type does not exhibit typical overflow behavior:

#include <limits.h>

enum us : unsigned short {
us_max = USHRT_MAX,
us_violation, /* Constraint violation:

USHRT_MAX + 1 would wraparound. */
us_violation_2 = us_max + 1, /* Maybe constraint violation:

USHRT_MAX + 1 can be promoted to "int", and
result is too wide for the
underlying type. */

us_wraparound_to_zero = (unsigned short)(USHRT_MAX + 1) /* Okay:

136)Therefore, a constraint has been violated.
137)An implementation can delay the choice of which integer type until all enumeration constants have been seen.
138)For further rules affecting compatibility and completeness of enumerated types see 6.2.7 and 6.7.3.4.
139)The integer type selected during processing of the enumerator list (before completion) of the enumeration can sometimes

not be the same as the compatible implementation-defined integer type selected for the completed enumeration.
140)This means in particular that if the compatible type is bool, values of the enumerated type behave in all aspects the same

as bool, conversion to the enumerated type behaves the same as bool (6.3.2.2), and the members only have values false
and true. If it is a signed integer type and the constant expression of an enumeration constant overflows, a constraint for
constant expressions (6.6) is violated.

© ISO/IEC 202y — All rights reserved

Language — 112

§ 6.7.3.3

ISO/IEC 9899:202y (en) — n3299 working draft

conversion done in constant expression
before conversion to underlying type:
unsigned semantics okay. */

};

enum ui : unsigned int {
ui_max = UINT_MAX,
ui_violation, /* Constraint violation:

UINT_MAX + 1 would wraparound. */
ui_no_violation = ui_max + 1, /* Okay: Arithmetic performed as typical

unsigned integer arithmetic: conversion
from a value that is already 0 to 0. */

ui_wraparound_to_zero = (unsigned int)(UINT_MAX + 1) /* Okay: conversion
done in constant expression before conversion to
underlying type: unsigned semantics okay. */

};

int main () {
// Same as return 0;
return ui_wraparound_to_zero + us_wraparound_to_zero;

}

19 EXAMPLE 3 The following fragment:

#include <limits.h>

enum E1: short;
enum E2: short;
enum E3; /* Constraint violation: E3 forward declaration. */
enum E4 : unsigned long long;

enum E1 : short { m11, m12 };
enum E1 x = m11;

enum E2 : long { m21, m22 }; /* Constraint violation: different underlying types

*/

enum E3 {
m31,
m32,
m33 = sizeof(enum E3) /* Constraint violation: E3 is not complete here. */

};
enum E3 : int; /* Constraint violation: E3 previously had no underlying type */

enum E4 : unsigned long long {
m40 = sizeof(enum E4),
m41 = ULLONG_MAX,
m42 /* Constraint violation: unrepresentable value (wraparound) */

};

enum E5 y; /* Constraint violation: incomplete type */
enum E6 : long int z; /* Constraint violation: enum-type-specifier

with identifier in declarator */
enum E7 : long int = 0; /* Syntax violation:

enum-type-specifier with initializer */

demonstrates many of the properties of multiple declarations of enumerations with underlying types. Par-
ticularly, enum E3 is declared and defined without an underlying type first, therefore a redeclaration with
an underlying type second is a violation. Because it not complete at that time within its enumerator list,
sizeof(enum E3) is a constraint violation within the enum E3 definition. enum E4 is complete as it is being
defined, therefore sizeof(enum E4) is not a constraint violation.

§ 6.7.3.3 © ISO/IEC 202y — All rights reserved

Language — 113

ISO/IEC 9899:202y (en) — n3299 working draft

20 EXAMPLE 4 The following fragment:

enum no_underlying {
a0

};

int main (void) {
int a = _Generic(a0,

int: 2,
unsigned char: 1,
default: 0

);
int b = _Generic((enum no_underlying)a0,

int: 2,
unsigned char: 1,
default: 0

);
return a + b;

}

demonstrates the implementation-defined nature of the underlying type of enumerations using generic selection
(6.5.2.1). The value of a after its initialization is 2. The value of b after its initialization is implementation-defined:
the enumeration is compatible with a type large enough to fit the values of its enumeration constants due to the
constraints. Because the only value is 0 for a0, b can hold any of 2, 1, or 0.

The following fragment is similar, but uses a fixed underlying type:

enum underlying : unsigned char {
b0

};

int main (void) {
int a = _Generic(b0,

int: 2,
unsigned char: 1,
default: 0

);
int b = _Generic((enum underlying)b0,

int: 2,
unsigned char: 1,
default: 0

);
return 0;

}

Here, we are guaranteed that a and b are both initialized to 1. This makes enumerations with a fixed underlying
type more portable.

21 EXAMPLE 5 Enumerations with a fixed underlying type have braces and the enumerator list specified as part
of their declaration if they are not a standalone declaration:

void f1 (enum a : long b); /* Constraint violation */
void f2 (enum c : long { x } d);
enum e : int f3(); /* Constraint violation */

typedef enum t u; /* Constraint violation: forward declaration of t. */
typedef enum v : short W; /* Constraint violation */
typedef enum q : short { s } R;

struct s1 {
int x;
enum e : int : 1; /* Constraint violation */
int y;

© ISO/IEC 202y — All rights reserved

Language — 114

§ 6.7.3.3

ISO/IEC 9899:202y (en) — n3299 working draft

};

enum forward; /* Constraint violation */
extern enum forward fwd_val0; /* Constraint violation: incomplete type */
extern enum forward* fwd_ptr0; /* Constraint violation: enums cannot be

used like other incomplete types */
extern int* fwd_ptr0; /* Constraint violation: incompatible

with incomplete type. */

enum forward1 : int;
extern enum forward1 fwd_val1;
extern int fwd_val1;
extern enum forward1* fwd_ptr1;
extern int* fwd_ptr1;

int main () {
enum e : short;
enum e : short f = 0; /* Constraint violation */
enum g : short { y } h = y;
return 0;

}

22 EXAMPLE 6 Enumerations with a fixed underlying type are complete when the enum type specifier for that
specific enumeration is complete. The enumeration e in this snippet:

enum e : typeof ((enum e : short { A })0, (short)0);

enum e is considered complete by the first opening brace within the typeof in this snippet.

Forward references: generic selection (6.5.2.1), tags (6.7.3.4), declarations (6.7), declarators (6.7.7),
function declarators (6.7.7.4), type names (6.7.8).

6.7.3.4 Tags
Constraints

1 Where two declarations that use the same tag declare the same type, they shall both use the same
choice of struct, union, or enum. If two declarations of the same type have a member-declaration
or enumerator-list, one shall not be nested within the other and both declarations shall fulfill
all requirements of compatible types (6.2.7) with the additional requirement that corresponding
members of structure or union types shall have the same (and not merely compatible) types.

2 A type specifier of the form

enum identifier

without an enumerator list shall only appear after the type it specifies is complete.

3 A type specifier of the form

struct-or-union attribute-specifier-sequenceopt identifier

shall not contain an attribute specifier sequence.141)

Semantics
4 All declarations of structure, union, or enumerated types that have the same scope and use the same

tag declare the same type.

5 Irrespective of whether there is a tag or what other declarations of the type are in the same trans-
lation unit, the type (except enumerated types with a fixed underlying type) is incomplete until
immediately after the closing brace of the list defining the content for the first time and complete
thereafter.

6 Enumerated types with fixed underlying type (6.7.3.3) are complete immediately after their first

141)As specified in 6.7.3.2, the type specifier can be followed by a ; or a member declaration list.

§ 6.7.3.4 © ISO/IEC 202y — All rights reserved

Language — 115

ISO/IEC 9899:202y (en) — n3299 working draft

associated enum type specifier ends.

7 EXAMPLE 1 The following example shows allowed redeclarations of the same structure, union, or enumerated
type in the same scope:

struct foo { struct { int x; }; };
struct foo { struct { int x; }; };
union bar { int x; float y; };
union bar { int x; float y; };
typedef struct q { int x; } q_t;
typedef struct q { int x; } q_t;
void foo(void)
{

struct S { int x; };
struct T { struct S s; };
struct S { int x; };
struct T { struct S s; };

}
enum X { A = 1, B = 1 + 1 };
enum X { B = 2, A = 1 };

enum Q { C = 1 };
enum Q { C = C }; // ok!

8 EXAMPLE 2 The following example shows invalid redeclarations of the same structure, union, or enumerated
type in the same scope:

struct foo { int (*p)[3]; };
struct foo { int (*p)[]; }; // member has different type

union bar { int x; float y; };
union bar { int z; float y; }; // member has different name

union purr { int x; float y; };
union purr { float y; int x; }; // members have different order
// "purr" only valid if each union "purr" is in
// two different translation units

typedef struct { int x; } q_t;
typedef struct { int x; } q_t; // not the same type

struct S { int x; };

void foo(void)
{

struct T { struct S s; };
struct S { int x; };
struct T { struct S s; }; // struct S not the same type

}

enum X { A = 1, B = 2 };
enum X { A = 1, B = 3 }; // different enumeration constant

enum R { C = 1 };
enum Q { C = 1 }; // conflicting enumeration constant

9 Two declarations of structure, union, or enumerated types which are in different scopes or use
different tags declare distinct types. Each declaration of a structure, union, or enumerated type
which does not include a tag declares a distinct type.

10 A type specifier of the form

struct-or-union attribute-specifier-sequenceopt identifieropt { member-declaration-list }

© ISO/IEC 202y — All rights reserved

Language — 116

§ 6.7.3.4

ISO/IEC 9899:202y (en) — n3299 working draft

or

enum attribute-specifier-sequenceopt identifieropt enum-type-specifieropt { enumerator-list }

or

enum attribute-specifier-sequenceopt identifieropt enum-type-specifieropt { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content, union content,
or enumeration content. If an identifier is provided,142) the type specifier also declares the identifier to
be the tag of that type. The optional attribute specifier sequence appertains to the structure, union,
or enumerated type being declared; the attributes in that attribute specifier sequence are thereafter
considered attributes of the structure, union, or enumerated type whenever it is named.

11 A declaration of the form

struct-or-union attribute-specifier-sequenceopt identifier ;

or

enum identifier enum-type-specifier ;

specifies a structure, union, or enumerated type and declares the identifier as a tag of that type.143)

The optional attribute specifier sequence appertains to the structure or union type being declared;
the attributes in that attribute specifier sequence are thereafter considered attributes of the structure
or union type whenever it is named.

12 If a type specifier of the form

struct-or-union attribute-specifier-sequenceopt identifier

occurs other than as part of one of the preceding forms, and no other declaration of the identifier as
a tag is visible, then it declares an incomplete structure or union type, and declares the identifier as
the tag of that type.143)

13 If a type specifier of the form

struct-or-union attribute-specifier-sequenceopt identifier

or

enum identifier

occurs other than as part of one of the preceding forms, and a declaration of the identifier as a tag is
visible, then it specifies the same type as that other declaration, and does not redeclare the tag.

14 EXAMPLE 3 This mechanism allows declaration of a self-referential structure.

struct tnode {
int count;
struct tnode *left, *right;

};

specifies a structure that contains an integer and two pointers to objects of the same type. Once this declaration
has been given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object of the given type. With these
declarations, the expression sp->left refers to the left struct tnode pointer of the object to which sp points;
the expression s.right->count designates the count member of the right struct tnode pointed to from s.

15 The following alternative formulation uses the typedef mechanism:

142)If there is no identifier, the type can, within the translation unit, only be referred to by the declaration of which it is a part.
Of course, when the declaration is of a typedef name, subsequent declarations can make use of that typedef name to declare
objects having the specified structure, union, or enumerated type.
143)A similar construction for an enum that does not contain a fixed underlying type does not exist. Enumerations with a

fixed underlying type are always complete after the enum type specifier.

§ 6.7.3.4 © ISO/IEC 202y — All rights reserved

Language — 117

ISO/IEC 9899:202y (en) — n3299 working draft

typedef struct tnode TNODE;
struct tnode {

int count;
TNODE *left, *right;

};
TNODE s, *sp;

16 EXAMPLE 4 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential structures,
the declarations

struct s1 { struct s2 *s2p; /* ... */ }; // D1
struct s2 { struct s1 *s1p; /* ... */ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already declared
as a tag in an enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared in D2. To eliminate
this context sensitivity, the declaration

struct s2;

can be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then completes
the specification of the new type.

Forward references: declarators (6.7.7), type definitions (6.7.9).

6.7.3.5 Atomic type specifiers
Syntax

1 atomic-type-specifier:
_Atomic (type-name)

Constraints
2 Atomic type specifiers shall not be used if the implementation does not support atomic types (see

6.10.10.4).

3 The type name in an atomic type specifier shall not refer to an array type, a function type, an atomic
type, or a qualified type.

Semantics
4 The properties associated with atomic types are meaningful only for expressions that are lvalues.

If the _Atomic keyword is immediately followed by a left parenthesis, it is interpreted as a type
specifier (with a type name), not as a type qualifier.

6.7.3.6 Typeof specifiers
Syntax

1 typeof-specifier:
typeof (typeof-specifier-argument)
typeof_unqual (typeof-specifier-argument)

typeof-specifier-argument:
expression
type-name

2 The typeof and typeof_unqual tokens are collectively called the typeof operators.

Constraints
3 The typeof operators shall not be applied to an expression that designates a bit-field member.

© ISO/IEC 202y — All rights reserved

Language — 118

§ 6.7.3.6

ISO/IEC 9899:202y (en) — n3299 working draft

Semantics
4 The typeof specifier applies the typeof operators to an expression (6.5.1) or a type name. If the typeof

operators are applied to an expression, they yield the type of their operand.144) Otherwise, they
designate the same type as the type name with any nested typeof specifier evaluated.145) If the type
of the operand is a variably modified type, the operand is evaluated; otherwise, the operand is not
evaluated.

5 The result of the typeof_unqual operator is the non-atomic unqualified version of the type that
would result from the typeof operator.146) The typeof operator preserves all qualifiers.

6 EXAMPLE 1 Type of an expression.

typeof(1+1) main () {
return 0;

}

is equivalent to this program:

int main () {
return 0;

}

7 EXAMPLE 2 The following program:

const _Atomic int purr = 0;
const int meow = 1;
const char* const animals[] = {

"aardvark",
"bluejay",
"catte",

};

typeof_unqual(meow) main (int argc, char* argv[]) {
typeof_unqual(purr) plain_purr;
typeof(_Atomic typeof(meow)) atomic_meow;
typeof(animals) animals_array;
typeof_unqual(animals) animals2_array;
return 0;

}

is equivalent to this program:

const _Atomic int purr = 0;
const int meow = 1;
const char* const animals[] = {

"aardvark",
"bluejay",
"catte",

};

int main (int argc, char* argv[]) {
int plain_purr;
const _Atomic int atomic_meow;
const char* const animals_array[3];
const char* animals2_array[3];
return 0;

144)When applied to a parameter declared to have array or function type, the typeof operators yield the adjusted (pointer)
type (see 6.9.2).
145)If the typeof specifier argument is itself a typeof specifier, the operand will be evaluated before evaluating the current

typeof operator. This happens recursively until a typeof specifier is no longer the operand.
146)_Atomic (type-name), with parentheses, is considered an _Atomic-qualified type.

§ 6.7.3.6 © ISO/IEC 202y — All rights reserved

Language — 119

ISO/IEC 9899:202y (en) — n3299 working draft

}

8 EXAMPLE 3 The equivalence between sizeof and typeof’s deduction of the type means this program has no
constraint violations:

int main (int argc, char* argv[]) {
static_assert(sizeof(typeof(’p’)) == sizeof(int));
static_assert(sizeof(typeof(’p’)) == sizeof(’p’));
static_assert(sizeof(typeof((char)’p’)) == sizeof(char));
static_assert(sizeof(typeof((char)’p’)) == sizeof((char)’p’));
static_assert(sizeof(typeof("meow")) == sizeof(char[5]));
static_assert(sizeof(typeof("meow")) == sizeof("meow"));
static_assert(sizeof(typeof(argc)) == sizeof(int));
static_assert(sizeof(typeof(argc)) == sizeof(argc));
static_assert(sizeof(typeof(argv)) == sizeof(char**));
static_assert(sizeof(typeof(argv)) == sizeof(argv));

static_assert(sizeof(typeof_unqual(’p’)) == sizeof(int));
static_assert(sizeof(typeof_unqual(’p’)) == sizeof(’p’));
static_assert(sizeof(typeof_unqual((char)’p’)) == sizeof(char));
static_assert(sizeof(typeof_unqual((char)’p’)) == sizeof((char)’p’));
static_assert(sizeof(typeof_unqual("meow")) == sizeof(char[5]));
static_assert(sizeof(typeof_unqual("meow")) == sizeof("meow"));
static_assert(sizeof(typeof_unqual(argc)) == sizeof(int));
static_assert(sizeof(typeof_unqual(argc)) == sizeof(argc));
static_assert(sizeof(typeof_unqual(argv)) == sizeof(char**));
static_assert(sizeof(typeof_unqual(argv)) == sizeof(argv));
return 0;

}

9 EXAMPLE 4 The following program with nested typeof(...):

int main (int argc, char*[]) {
float val = 6.0f;
return (typeof(typeof_unqual(typeof(argc))))val;

}

is equivalent to this program:

int main (int argc, char*[]) {
float val = 6.0f;
return (int)val;

}

10 EXAMPLE 5 Variable length arrays with typeof operators performs the operation at execution time rather than
translation time.

#include <stddef.h>

size_t vla_size (int n) {
typedef char vla_type[n + 3];
vla_type b; // variable length array
return sizeof(

typeof_unqual(b)
); // execution-time sizeof, translation-time typeof operation

}

int main () {
return (int)vla_size(10); // vla_size returns 13

}

© ISO/IEC 202y — All rights reserved

Language — 120

§ 6.7.3.6

ISO/IEC 9899:202y (en) — n3299 working draft

11 EXAMPLE 6 Nested typeof operators, arrays, and pointers do not perform array to pointer decay.

int main () {
typeof(typeof(const char*)[4]) y = {

"a",
"b",
"c",
"d"

}; // 4-element array of "pointer to const char"
return 0;

}

12 EXAMPLE 7 Function, pointer, and array types can be substituted with typeof operations.

void f(int);

typeof(f(5)) g(double x) { // g has type "void(double)"
printf("value %g\n", x);

}

typeof(g)* h; // h has type "void(*)(double)"
typeof(true ? g : nullptr) k; // k has type "void(*)(double)"

void j(double A[5], typeof(A)* B); // j has type "void(double*, double**)"

extern typeof(double[]) D; // D has an incomplete type
typeof(D) C = { 0.7, 99 }; // C has type "double[2]"

typeof(D) D = { 5, 8.9, 0.1, 99 }; // D is now completed to "double[4]"
typeof(D) E; // E has type "double[4]" from D’s completed type

6.7.4 Type qualifiers
6.7.4.1 General
Syntax

1 type-qualifier:
const
restrict
volatile
_Atomic

Constraints
2 Types other than pointer types whose referenced type is an object type and (possibly multi-

dimensional) array types with such pointer types as element type shall not be restrict-qualified.

3 The _Atomic qualifier shall not be used if the implementation does not support atomic types
(see 6.10.10.4).

4 The type modified by the _Atomic qualifier shall not be an array type or a function type.

Semantics
5 The properties associated with qualified types are meaningful only for expressions that are lval-

ues.147)

6 If the same qualifier appears more than once in the same specifier-qualifier list or as declaration
specifiers, either directly, via one or more typeof specifiers, or via one or more typedefs, the behavior
is the same as if it appeared only once. If other qualifiers appear along with the _Atomic qualifier

147)The implementation can place a const object that is not volatile in a read-only region of storage. Moreover, the
implementation is not expected to allocate storage for such an object if its address is never used.

§ 6.7.4.1 © ISO/IEC 202y — All rights reserved

Language — 121

ISO/IEC 9899:202y (en) — n3299 working draft

the resulting type is the so-qualified atomic type.

7 If an attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer to an
object defined with a volatile-qualified type through use of an lvalue with non-volatile-qualified
type, the behavior is undefined.148)

8 An object that has volatile-qualified type can be modified in ways unknown to the implementation
or have other unknown side effects. Therefore, any expression referring to such an object shall be
evaluated strictly according to the rules of the abstract machine, as described in 5.2.2.4. Furthermore,
at every sequence point the value last stored in the object shall agree with that prescribed by the
abstract machine, except as modified by the unknown factors mentioned previously.149) What
constitutes an access to an object that has volatile-qualified type is implementation-defined.

9 An object that is accessed through a restrict-qualified pointer has a special association with that
pointer. This association, defined in 6.7.4.2, requires that all accesses to that object use, directly
or indirectly, the value of that pointer.150) The intended use of the restrict qualifier (like the
register storage class) is to promote optimization, and deleting all instances of the qualifier from
all preprocessing translation units composing a conforming program does not change its meaning
(i.e. observable behavior), unless _Generic is used to distinguish whether or not a type has that
qualifier.

10 If the specification of an array type includes any type qualifiers, both the array and the element type
are so-qualified. If the specification of a function type includes any type qualifiers, the behavior is
undefined.151)

11 For two qualified types to be compatible, both shall have the identically qualified version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect the
specified type.

12 EXAMPLE 1 An object declared

extern const volatile int real_time_clock;

can be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

13 EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers modify
an aggregate type:

const struct s { int mem; } cs = { 1 };
struct s ncs; // the object ncs is modifiable
typedef int A[2][3];
const A a = {{4, 5, 6}, {7, 8, 9}}; // array of array of const int
int *pi;
const int *pci;

ncs = cs; // valid
cs = ncs; // violates modifiable lvalue constraint for =
pi = &ncs.mem; // valid
pi = &cs.mem; // violates type constraints for =
pci = &cs.mem; // valid
pi = a[0]; // invalid: a[0] has type "const int *"

14 EXAMPLE 3 The declaration

148)This applies to those objects that behave as if they were defined with qualified types, even if they are never actually
defined as objects in the program (such as an object at a memory-mapped input/output address).
149)A volatile declaration can be used to describe an object corresponding to a memory-mapped input/output port or an

object accessed by an asynchronously interrupting function. Actions on objects so declared are not allowed to be "optimized
out" by an implementation or reordered except as permitted by the rules for evaluating expressions.
150)For example, a statement that assigns a value returned by malloc to a single pointer establishes this association between

the allocated object and the pointer.
151)This can occur with typedef s. This rule does not apply to the _Atomic qualifier, and that qualifiers do not have any

direct effect on the array type itself, but affect conversion rules for pointer types that reference an array type.

© ISO/IEC 202y — All rights reserved

Language — 122

§ 6.7.4.1

ISO/IEC 9899:202y (en) — n3299 working draft

_Atomic volatile int *p;

specifies that p has the type "pointer to volatile atomic int", a pointer to a volatile-qualified atomic type.

6.7.4.2 Formal definition of restrict
1 Let D be a declaration of an ordinary identifier that provides a means of designating an object P as a

restrict-qualified pointer to type T.

2 If D appears inside a block and does not have storage class extern, let B denote the block. If D
appears in the list of parameter declarations of a function definition, let B denote the associated block.
Otherwise, let B denote the block of main (or the block of whatever function is called at program
startup in a freestanding environment).

3 In what follows, a pointer expression E is said to be based on object P if (at some sequence point in
the execution of B prior to the evaluation of E) modifying P to point to a copy of the array object into
which it formerly pointed would change the value of E.152) "based" is defined only for expressions
with pointer types.

4 During each execution of B, let L be any lvalue that has &L based on P. If L is used to access the
value of the object X that it designates, and X is also modified (by any means), then the following
requirements apply: T shall not be const-qualified. Every other lvalue used to access the value of
X shall also have its address based on P. Every access that modifies X shall be considered also to
modify P, for the purposes of this subclause. If P is assigned the value of a pointer expression E that
is based on another restricted pointer object P2, associated with block B2, then either the execution
of B2 shall begin before the execution of B, or the execution of B2 shall end prior to the assignment.
If these requirements are not met, then the behavior is undefined.

5 Here an execution of B means that portion of the execution of the program that would correspond to
the lifetime of an object with scalar type and automatic storage duration associated with B.

6 A translator is free to ignore any or all aliasing implications of uses of restrict.

7 EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert that if an object is accessed using one of a, b, or c, and that object is modified anywhere in the program,
then it is never accessed using either of the other two.

8 EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int * restrict p, int * restrict q)
{

while (n-- > 0)

*p++ = *q++;
}

assert that, during each execution of the function, if an object is accessed through one of the pointer parameters,
then it is not also accessed through the other. The translator can make this no-aliasing inference based on the
parameter declarations alone, without analyzing the function body.

9 The benefit of the restrict qualifiers is that they enable a translator to make an effective dependence analysis
of function f without examining any of the calls of f in the program. The cost is that the programmer has to
examine all those calls to ensure that none give undefined behavior. For example, the second call of f in g has
undefined behavior because each of d[1] through d[49] is accessed through both p and q.

void g(void)
{

152)In other words, E depends on the value of P itself rather than on the value of an object referenced indirectly through P.
For example, if identifier p has type (int **restrict), then the pointer expressions p and p+1 are based on the restricted
pointer object designated by p, but the pointer expressions *p and p[1] are not.

§ 6.7.4.2 © ISO/IEC 202y — All rights reserved

Language — 123

ISO/IEC 9899:202y (en) — n3299 working draft

extern int d[100];
f(50, d + 50, d); // valid
f(50, d + 1, d); // undefined behavior

}

10 EXAMPLE 3 The function parameter declarations

void h(int n, int * restrict p, int * restrict q, int * restrict r)
{

int i;
for (i = 0; i < n; i++)

p[i] = q[i] + r[i];
}

illustrate how an unmodified object can be aliased through two restricted pointers. If a and b are disjoint arrays,
a call of the form h(100, a, b, b) has defined behavior, because array b is not modified within function h.

11 EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish between a function
call and an equivalent nested block. With one exception, only "outer-to-inner" assignments between restricted
pointers declared in nested blocks have defined behavior.

{
int * restrict p1;
int * restrict q1;
p1 = q1; // undefined behavior
{

int * restrict p2 = p1; // valid
int * restrict q2 = q1; // valid
p1 = q2; // undefined behavior
p2 = q2; // undefined behavior

}
}

12 The one exception allows the value of a restricted pointer to be carried out of the block in which it (or, more
precisely, the ordinary identifier used to designate it) is declared when that block finishes execution. For
example, this permits new_vector to return a vector.

typedef struct { int n; float * restrict v; } vector;
vector new_vector(int n)
{

vector t;
t.n = n;
t.v = malloc(n * sizeof(float));
return t;

}

13 EXAMPLE 5 Suppose that a programmer knows that references of the form p[i] and q[j] are never aliases in
the body of a function:

void f(int n, int *p, int *q) { /* ... */ }

There are several ways that this information can be conveyed to a translator using the restrict qualifier.
Example 2 shows the most effective way, qualifying all pointer parameters, and can be used provided that
neither p nor q becomes based on the other in the function body. A potentially effective alternative is:

void f(int n, int * restrict p, int * const q) { /* ... */ }

Again, it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone,
though now subtler reasoning is used: that the const-qualification of q precludes it becoming based on p. There
is also a requirement that q is not modified, so this alternative cannot be used for the function in Example 2, as
written.

© ISO/IEC 202y — All rights reserved

Language — 124

§ 6.7.4.2

ISO/IEC 9899:202y (en) — n3299 working draft

14 EXAMPLE 6 Another potentially effective alternative is:

void f(int n, int *p, int const * restrict q) { /* ... */ }

Again, it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone,
though now even subtler reasoning is used: that this combination of restrict and const means that objects
referenced using q cannot be modified, and so no modified object can be referenced using both p and q.

15 EXAMPLE 7 The least effective alternative is:

void f(int n, int * restrict p, int *q) { /* ... */ }

Here the translator can make the no-aliasing inference only by analyzing the body of the function and proving
that q cannot become based on p. Some translator designs can choose to exclude this analysis, given availability
of the more effective alternatives described previously. Such a translator is required to assume that aliases are
present because assuming that aliases are not present can result in an incorrect translation. Also, a translator
that attempts the analysis can potentially not succeed in all cases and consequently need to conservatively
assume that aliases are present.

6.7.5 Function specifiers
Syntax

1 function-specifier:
inline
_Noreturn

Constraints
2 Function specifiers shall be used only in the declaration of an identifier for a function.

3 An inline definition of a function with external linkage shall not contain, anywhere in the tokens
making up the function definition, a definition of a modifiable object with static or thread storage
duration, and shall not contain, anywhere in the tokens making up the function definition, a reference
to an identifier with internal linkage.

4 In a hosted environment, no function specifier(s) shall appear in a declaration of main.

Semantics
5 A function specifier can appear more than once; the behavior is the same as if it appeared only once.

6 A function declared with an inline function specifier is an inline function. Making a function an
inline function suggests that calls to the function be as fast as possible.153) The extent to which such
suggestions are effective is implementation-defined.154)

7 Any function with internal linkage can be an inline function. For a function with external linkage,
the following restrictions apply: If a function is declared with an inline function specifier, then it
shall also be defined in the same translation unit. If all the file scope declarations for a function in a
translation unit include the inline function specifier without extern, then the definition in that
translation unit is an inline definition. An inline definition does not provide an external definition for
the function and does not forbid an external definition in another translation unit. Inline definitions
provide an alternative to external definitions, which a translator can use to implement any call to
the function in the same translation unit. It is unspecified whether a call to the function uses the
inline definition or the external definition.155)

153)By using, for example, an alternative to the usual function call mechanism, such as "inline substitution". Inline
substitution is not textual substitution, nor does it create a new function. Therefore, for example, the expansion of a macro
used within the body of the function uses the definition it had at the point the function body appears, and not where the
function is called; and identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a single
address, regardless of the number of inline definitions that occur in addition to the external definition.
154)For example, an implementation can possibly never perform inline substitution, or can only perform inline substitutions

to calls in the scope of an inline declaration.
155)Since an inline definition is distinct from the corresponding external definition and from any other corresponding inline

§ 6.7.5 © ISO/IEC 202y — All rights reserved

Language — 125

ISO/IEC 9899:202y (en) — n3299 working draft

8 A function declared with a _Noreturn function specifier shall not return to its caller. The attribute
[[noreturn]] provides similar semantics. The _Noreturn function specifier is an obsolescent
feature (6.7.13.7).

Recommended practice
9 The implementation should produce a diagnostic message for a function declared with a _Noreturn

function specifier that appears to be capable of returning to its caller.

10 EXAMPLE 1 The declaration of an inline function with external linkage can result in either an external
definition, or a definition available for use only within the translation unit. A file scope declaration with extern
creates an external definition. The following example shows an entire translation unit.

inline double fahr(double t)
{

return (9.0 * t) / 5.0 + 32.0;
}

inline double cels(double t)
{

return (5.0 * (t - 32.0)) / 9.0;
}

extern double fahr(double); // creates an external definition

double convert(int is_fahr, double temp)
{

/* A translator can perform inline substitutions */
return is_fahr ? cels(temp): fahr(temp);

}

11 The definition of fahr is an external definition because fahr is also declared with extern, but the definition of
cels is an inline definition. Because cels has external linkage and is referenced, an external definition has to
appear in another translation unit (see 6.9); the inline definition and the external definition are distinct and
either can be used for the call.

12 EXAMPLE 2 The following inline definitions are invalid:

static int a;
typeof (a) inline f() { return 0; }
typeof ((int) { 0 }) inline g() { return 0; }

Forward references: function definitions (6.9.2).

6.7.6 Alignment specifier
Syntax

1 alignment-specifier:
alignas (type-name)
alignas (constant-expression)

Constraints
2 An alignment specifier shall appear only in the declaration specifiers of a declaration, or in the

specifier-qualifier list of a member declaration, or in the type name of a compound literal. An
alignment specifier shall not be used in conjunction with either of the storage-class specifiers
typedef or register, nor in a declaration of a function or bit-field.

3 The constant expression shall be an integer constant expression. It shall evaluate to a valid funda-
mental alignment, or to a valid extended alignment supported by the implementation for an object

definitions in other translation units, all corresponding objects with static storage duration are also distinct in each of the
definitions.

© ISO/IEC 202y — All rights reserved

Language — 126

§ 6.7.6

ISO/IEC 9899:202y (en) — n3299 working draft

of the storage duration (if any) being declared, or to zero.

4 An object shall not be declared with an over-aligned type with an extended alignment requirement
not supported by the implementation for an object of that storage duration.

5 The combined effect of all alignment specifiers in a declaration shall not specify an alignment that is
less strict than the alignment that would otherwise be required for the type of the object or member
being declared.

Semantics
6 The first form is equivalent to alignas(alignof(type-name)).

7 The alignment requirement of the declared object or member is taken to be the specified alignment.
An alignment specification of zero has no effect.156) When multiple alignment specifiers occur in a
declaration, the effective alignment requirement is the strictest specified alignment.

8 If the definition of an object has an alignment specifier, any other declaration of that object shall
either specify equivalent alignment or have no alignment specifier. If the definition of an object does
not have an alignment specifier, any other declaration of that object shall also have no alignment
specifier. If declarations of an object in different translation units have different alignment specifiers,
the behavior is undefined.

6.7.7 Declarators
6.7.7.1 General
Syntax

1 declarator:
pointeropt direct-declarator

direct-declarator:
identifier attribute-specifier-sequenceopt
(declarator)
array-declarator attribute-specifier-sequenceopt
function-declarator attribute-specifier-sequenceopt

array-declarator:
direct-declarator [type-qualifier-listopt assignment-expressionopt]
direct-declarator [static type-qualifier-listopt assignment-expression]
direct-declarator [type-qualifier-list static assignment-expression]
direct-declarator [type-qualifier-listopt *]

function-declarator:
direct-declarator (parameter-type-listopt)

pointer:
* attribute-specifier-sequenceopt type-qualifier-listopt

* attribute-specifier-sequenceopt type-qualifier-listopt pointer
type-qualifier-list:

type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , ...
...

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

156)An alignment specification of zero also does not affect other alignment specifications in the same declaration.

§ 6.7.7.1 © ISO/IEC 202y — All rights reserved

Language — 127

ISO/IEC 9899:202y (en) — n3299 working draft

parameter-declaration:
attribute-specifier-sequenceopt declaration-specifiers declarator
attribute-specifier-sequenceopt declaration-specifiers abstract-declaratoropt

Semantics
2 Each declarator declares an identifier for a single object, function, or type, within a declaration. The

preceding specifiers indicate the type, storage class, or other properties of the identifier or identifiers
being declared. Each declarator specifies one declaration and names it and/or modifies the type of
the specifiers with operators such as * (pointer to) and () (function returning).

3 A full declarator is a declarator that is not part of another declarator. If, in the nested sequence of
declarators in a full declarator, there is a declarator specifying a variable length array type, the type
specified by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

4 In the following subclauses, consider a declaration

T D1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is a declarator
that contains an identifier ident. The type specified for the identifier ident in the various forms of
declarator is described inductively using this notation.

5 If, in the declaration "T D1", D1 has the form

identifier attribute-specifier-sequenceopt

then the type specified for ident is T and the optional attribute specifier sequence appertains to the
entity that is declared.

6 If, in the declaration "T D1", D1 has the form

(D)

then ident has the type specified by the declaration "T D". Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complicated declarators can be altered
by parentheses.

Implementation limits
7 As discussed in 5.3.5.2, an implementation may limit the number of pointer, array, and function

declarators that modify an arithmetic, structure, union, or void type, either directly or via one or
more typedefs.

Forward references: array declarators (6.7.7.3), type definitions (6.7.9).

6.7.7.2 Pointer declarators
Semantics

1 If, in the declaration "T D1", D1 has the form

* attribute-specifier-sequenceopt type-qualifier-listopt D

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list type-qualifier-list pointer to T". For each type
qualifier in the list, ident is a so-qualified pointer. The optional attribute specifier sequence appertains
to the pointer and not the object pointed to.

2 For two pointer types to be compatible, both shall be identically qualified and both shall be pointers
to compatible types.

3 EXAMPLE The following pair of declarations demonstrates the difference between a "variable pointer to a
constant value" and a "constant pointer to a variable value".

const int *ptr_to_constant;
int *const constant_ptr;

© ISO/IEC 202y — All rights reserved

Language — 128

§ 6.7.7.2

ISO/IEC 9899:202y (en) — n3299 working draft

The contents of any object pointed to by ptr_to_constant cannot be modified through that pointer, but
ptr_to_constant itself can be changed to point to another object. Similarly, the contents of the int pointed to
by constant_ptr can be modified, but constant_ptr itself always points to the same location.

4 The declaration of the constant pointer constant_ptr can be clarified by including a definition for the type
"pointer to int".

typedef int *int_ptr;
const int_ptr constant_ptr;

declares constant_ptr as an object that has type "const-qualified pointer to int".

6.7.7.3 Array declarators
Constraints

1 In addition to optional type qualifiers and the keyword static, the [and] can delimit an expression
or *. If they delimit an expression (which specifies the size of an array), the expression shall have
an integer type. If the expression is a constant expression, it shall have a value greater than zero.
The element type shall not be an incomplete or function type. The optional type qualifiers and the
keyword static shall appear only in a declaration of a function parameter with an array type, and
then only in the outermost array type derivation.

2 If an identifier is declared as having a variably modified type, it shall be an ordinary identifier (as
defined in 6.2.3), have no linkage, and have either block scope or function prototype scope. If an
identifier is declared to be an object with static or thread storage duration, it shall not have a variable
length array type.

Semantics
3 If, in the declaration "T D1", D1 has one of the forms:

D [type-qualifier-listopt assignment-expressionopt] attribute-specifier-sequenceopt
D [static type-qualifier-listopt assignment-expression] attribute-specifier-sequenceopt
D [type-qualifier-list static assignment-expression] attribute-specifier-sequenceopt
D [type-qualifier-listopt *] attribute-specifier-sequenceopt

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list array of T".157)158) The optional attribute specifier
sequence appertains to the array. (See 6.7.7.4 for the meaning of the optional type qualifiers and the
keyword static.)

4 If the size is not present, the array type is an incomplete type. If the size is * instead of being an
expression, the array type is a variable length array type of unspecified size, which can only be used
as part of the nested sequence of declarators or abstract declarators for a parameter declaration, not
including anything inside an array size expression in one of those declarators;159) such arrays are
nonetheless complete types. If the size is an integer constant expression and the element type has a
known constant size, the array type is not a variable length array type; otherwise, the array type is a
variable length array type. (Variable length arrays with automatic storage duration are a conditional
feature that implementations may support; see 6.10.10.4.)

5 If the size is an expression that is not an integer constant expression: if it occurs in a declaration at
function prototype scope, it is treated as if it were replaced by *; otherwise, each time it is evaluated
it shall have a value greater than zero. The size of each instance of a variable length array type does
not change during its lifetime. Where a size expression is part of the operand of a typeof or sizeof
operator and changing the value of the size expression would not affect the result of the operator, it
is unspecified whether or not the size expression is evaluated. Where a size expression is part of the
operand of an alignof operator, that expression is not evaluated.

6 For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present, and are integer constant expressions, then both size specifiers shall have

157)When several "array of" specifications are adjacent, a multidimensional array is declared.
158)The array is considered identically qualified to T according to 6.2.5.
159)They can be used only in function declarations that are not definitions (see 6.7.7.4 and 6.9.2).

§ 6.7.7.3 © ISO/IEC 202y — All rights reserved

Language — 129

ISO/IEC 9899:202y (en) — n3299 working draft

the same constant value. If the two array types are used in a context which requires them to be
compatible, the behavior is undefined if the two size specifiers evaluate to unequal values.

7 EXAMPLE 1

float fa[11], *afp[17];

declares an array of float numbers and an array of pointers to float numbers.

8 EXAMPLE 2 There is a distinction between the declarations

extern int *x;
extern int y[];

The first declares x to be a pointer to int; the second declares y to be an array of int of unknown size (an
incomplete type), the storage for which is defined elsewhere.

9 EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m;

void fcompat(void)
{

int a[n][6][m];
int (*p)[4][n+1];
int c[n][n][6][m];
int (*r)[n][n][n+1];
p = a; // invalid: not compatible because 4 != 6
r = c; // compatible, but defined behavior only if

// n == 6 and m == n+1
}

10 EXAMPLE 4 All valid declarations of variably modified (VM) types are either at block scope or function
prototype scope. Array objects declared with the thread_local, static, or extern storage-class specifier
cannot have a variable length array (VLA) type. However, an object declared with the static storage-class
specifier can have a VM type (that is, a pointer to a VLA type). Finally, only ordinary identifiers can be declared
with a VM type and identifiers with VM type cannot, therefore, be members of structures or unions.

extern int n;
int A[n]; // invalid: file scope VLA
extern int (*p2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM

void fvla(int m, int C[m][m]); // valid: VLA with prototype scope

void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{

typedef int VLA[m][m]; // valid: block scope typedef VLA

struct tag {
int (*y)[n]; // invalid: y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier

};
int D[m]; // valid: auto VLA
static int E[m]; // invalid: static block scope VLA
extern int F[m]; // invalid: F has linkage and is VLA
int (*s)[m]; // valid: auto pointer to VLA
extern int (*r)[m]; // invalid: r has linkage and points to VLA
static int (*q)[m] = &B; // valid: q is a static block pointer to VLA

}

© ISO/IEC 202y — All rights reserved

Language — 130

§ 6.7.7.3

ISO/IEC 9899:202y (en) — n3299 working draft

11 EXAMPLE 5 The following is invalid, because the use of [*] is inside an array size expression rather than
directly part of the nested sequence of abstract declarators for a parameter declaration:

void f(int (*)[sizeof(int (*)[*])]);

Forward references: function declarators (6.7.7.4), function definitions (6.9.2), initialization (6.7.11).

6.7.7.4 Function declarators
Constraints

1 A function declarator shall not specify a return type that is a function type or an array type.

2 The only storage-class specifier that shall occur in a parameter declaration is register.

3 After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
4 If, in the declaration "T D1", D1 has the form

D (parameter-type-listopt) attribute-specifier-sequenceopt

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list function returning the unqualified, non-atomic
version of T". The optional attribute specifier sequence appertains to the function type.

5 A parameter type list specifies the types of, and can declare identifiers for, the parameters of the
function.

6 A declaration of a parameter as "array of type" shall be adjusted to "qualified pointer to type", where
the type qualifiers (if any) are those specified within the [and] of the array type derivation. If the
keyword static also appears within the [and] of the array type derivation, then for each call to
the function, the value of the corresponding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size expression.

7 A declaration of a parameter as "function returning type" shall be adjusted to "pointer to function
returning type", as in 6.3.3.1.

8 If the list terminates with an ellipsis (...), no information about the number or types of the
parameters after the comma is supplied.160)

9 The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

10 If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

11 If the function declarator is not part of a definition of that function, parameters can have incomplete
type and can use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

12 The storage-class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition. The optional attribute specifier sequence in a parameter declaration appertains to the
parameter.

13 For a function declarator without a parameter type list: the effect is as if it were declared with a
parameter type list consisting of the keyword void. A function declarator provides a prototype for
the function.

14 For two function types to be compatible, both shall specify compatible return types. Moreover,
the parameter type lists shall agree in the number of parameters and in use of the final ellipsis;
corresponding parameters shall have compatible types. In the determination of type compatibility
and of a composite type, each parameter declared with function or array type is taken as having the

160)The macros defined in the <stdarg.h> header (7.16) can be used to access arguments that correspond to the ellipsis.

§ 6.7.7.4 © ISO/IEC 202y — All rights reserved

Language — 131

ISO/IEC 9899:202y (en) — n3299 working draft

adjusted type and each parameter declared with qualified type is taken as having the unqualified
version of its declared type.

15 EXAMPLE 1 The declaration

int f(void), *fip(), (*pfi)();

declares a function f with no parameters returning an int, a function fip with no parameters returning a
pointer to an int, and a pointer pfi to a function with no parameters returning an int. It is especially useful
to compare the last two. The binding of *fip() is *(fip()), so that the declaration suggests, and the same
construction in an expression requires, the calling of a function fip, and then using indirection through the
pointer result to yield an int. In the declarator (*pfi)(), the extra parentheses are necessary to indicate that
indirection through a pointer to a function yields a function designator, which is then used to call the function;
it returns an int.

16 If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the
declaration occurs inside a function, the identifiers of the functions f and fip have block scope and either
internal or external linkage (depending on what file scope declarations for these identifiers are visible), and the
identifier of the pointer pfi has block scope and no linkage.

17 EXAMPLE 2 The declaration

int (*apfi[3])(int *x, int *y);

declares an array apfi of three pointers to functions returning int. Each of these functions has two parameters
that are pointers to int. The identifiers x and y are declared for descriptive purposes only and go out of scope
at the end of the declaration of apfi.

18 EXAMPLE 3 The declaration

int (*fpfi(int (*)(long), int))(int, ...);

declares a function fpfi that returns a pointer to a function returning an int. The function fpfi has two
parameters: a pointer to a function returning an int (with one parameter of type long int), and an int. The
pointer returned by fpfi points to a function that has one int parameter and accepts zero or more additional
arguments of any type.

19 EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][n*m+300], double x);

int main(void)
{

double b[4][308];
addscalar(4, 2, b, 2.17);
return 0;

}

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (int i = 0; i < n; i++)

for (int j = 0, k = n*m+300; j < k; j++)
// a is a pointer to a VLA with n*m+300 elements
a[i][j] += x;

}

20 EXAMPLE 5 The following are all compatible function prototype declarators.

double maximum(int n, int m, double a[n][m]);
double maximum(int n, int m, double a[*][*]);
double maximum(int n, int m, double a[][*]);
double maximum(int n, int m, double a[][m]);

© ISO/IEC 202y — All rights reserved

Language — 132

§ 6.7.7.4

ISO/IEC 9899:202y (en) — n3299 working draft

as are:

void f(double (* restrict a)[5]);
void f(double a[restrict][5]);
void f(double a[restrict 3][5]);
void f(double a[restrict static 3][5]);

The last declaration also specifies that the argument corresponding to a in any call to f can be expected to be a
non-null pointer to the first of at least three arrays of 5 doubles, which the others do not.

Forward references: function definitions (6.9.2), type names (6.7.8).

6.7.8 Type names
Syntax

1 type-name:
specifier-qualifier-list abstract-declaratoropt

abstract-declarator:
pointer
pointeropt direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
array-abstract-declarator attribute-specifier-sequenceopt
function-abstract-declarator attribute-specifier-sequenceopt

array-abstract-declarator:
direct-abstract-declaratoropt [type-qualifier-listopt assignment-expressionopt]
direct-abstract-declaratoropt [static type-qualifier-listopt assignment-expression]
direct-abstract-declaratoropt [type-qualifier-list static assignment-expression]
direct-abstract-declaratoropt [*]

function-abstract-declarator:
direct-abstract-declaratoropt (parameter-type-listopt)

Semantics
2 In several contexts, it is necessary to specify a type. This is accomplished using a type name, which is

syntactically a declaration for a function or an object of that type that omits the identifier.161) The
optional attribute specifier sequence in a direct abstract declarator appertains to the preceding array
or function type. The attribute specifier sequence affects the type only for the declaration it appears
in, not other declarations involving the same type.

3 EXAMPLE The constructions

(a) int
(b) int *
(c) int *[3]
(d) int (*)[3]
(e) int (*)[*]
(f) int *()
(g) int (*)(void)
(h) int (*const [])(unsigned int, ...)

name respectively the types

(a) int,

(b) pointer to int,

(c) array of three pointers to int,

161)As indicated by the syntax, empty parentheses in a type name are interpreted as "function with no parameters", rather
than redundant parentheses around the omitted identifier.

§ 6.7.8 © ISO/IEC 202y — All rights reserved

Language — 133

ISO/IEC 9899:202y (en) — n3299 working draft

(d) pointer to an array of three int s,

(e) pointer to a variable length array of an unspecified number of int s,

(f) function with no parameters returning a pointer to int,

(g) pointer to function with no parameters returning an int, and

(h) array of an unspecified number of constant pointers to functions, each with one parameter that has type
unsigned int and an unspecified number of other parameters, returning an int.

6.7.9 Type definitions
Syntax

1 typedef-name:
identifier

Constraints
2 If a typedef name specifies a variably modified type then it shall have block scope.

Semantics
3 In a declaration whose storage-class specifier is typedef, each declarator defines an identifier to be

a typedef name that denotes the type specified for the identifier in the way described in 6.7.7. Any
array size expressions associated with variable length array declarators and typeof operators are
evaluated each time the declaration of the typedef name is reached in the order of execution. A
typedef declaration does not introduce a new type, only a synonym for the type so specified. That
is, in the following declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers in T
(known as T), and the identifier in D has the type "derived-declarator-type-list T" where the derived-
declarator-type-list is specified by the declarators of D. A typedef name shares the same name space
as other identifiers declared in ordinary declarators. If the identifier is redeclared in an enclosed
block, the type of the inner declaration shall not be inferred (6.7.10).

4 EXAMPLE 1 After

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;
extern KLICKSP *metricp;
range x;
range z, *zp;

are all valid declarations. The type of distance is int, that of metricp is "pointer to function with no
parameters returning int", and that of x and z is the specified structure; zp is a pointer to such a structure. The
object distance has a type compatible with any other int object.

5 EXAMPLE 2 After the declarations

typedef struct s1 { int x; } t1, *tp1;
typedef struct s2 { int x; } t2, *tp2;

type t1 and the type pointed to by tp1 are compatible. Type t1 is also compatible with type struct s1, but
not compatible with the types struct s2, t2, the type pointed to by tp2, or int.

6 EXAMPLE 3 The following obscure constructions

© ISO/IEC 202y — All rights reserved

Language — 134

§ 6.7.9

ISO/IEC 9899:202y (en) — n3299 working draft

typedef signed int t;
typedef int plain;
struct tag {

unsigned t:4;
const t:5;
plain r:5;

};

declare a typedef name t with type signed int, a typedef name plain with type int, and a structure with
three bit-field members, one named t that contains values in the range [0, 15], an unnamed const-qualified
bit-field which (if it can be accessed) would contain values in the range [−16,+15], and one named r that
contains values in one of the ranges [0, 31] or [−16,+15]. (The choice of range is implementation-defined.) The
first two bit-field declarations differ in that unsigned is a type specifier (which forces t to be the name of a
structure member), while const is a type qualifier (which modifies t which is still visible as a typedef name). If
these declarations are followed in an inner scope by

t f(t (t));
long t;

then a function f is declared with type "function returning signed int with one unnamed parameter with
type pointer to function returning signed int with one unnamed parameter with type signed int", and an
identifier t with type long int.

7 EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the
following declarations of the signal function specify exactly the same type, the first without making use of
any typedef names.

typedef void fv(int), (*pfv)(int);

void (*signal(int, void (*)(int)))(int);
fv *signal(int, fv *);
pfv signal(int, pfv);

8 EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the time
the typedef name is defined, not each time it is used:

void copyt(int n)
{

typedef int B[n]; // B is n ints, n evaluated now
n += 1;
B a; // a is n ints, n without += 1
int b[n]; // a and b are different sizes
for (int i = 1; i < n; i++)

a[i-1] = b[i];
}

6.7.10 Type inference
Constraints

1 A declaration for which the type is inferred shall contain the storage-class specifier auto.

Semantics
2 For such a declaration that is the definition of an object the init-declarator shall have the form

direct-declarator = assignment-expression

The inferred type of the declared object is the type of the assignment expression after lvalue, array
to pointer or function to pointer conversion, additionally qualified by qualifiers and amended by
attributes as they appear in the declaration specifiers, if any.162) Implementations can accept a direct
162)The scope rules as described in 6.2.1 also prohibit the use of the identifier of the declarator within the assignment

expression.

§ 6.7.10 © ISO/IEC 202y — All rights reserved

Language — 135

ISO/IEC 9899:202y (en) — n3299 working draft

declarator that is not of the form

identifier attribute-specifier-sequenceopt

optionally enclosed in balanced pairs of parentheses; if a direct declarator of a different form is
accepted, the behavior is implementation-defined.163)

3 NOTE A declaration that also defines a structure or union type has implementation-defined behavior. Here,
the identifier x which is not ordinary but in the name space of the structure type is declared.

auto p = (struct { int x; } *)0;

Even a forward declaration of a structure tag

struct s;
auto p = (struct s { int x; } *)0;

would not change that situation. A direct use of the structure definition as the type specifier ensures portability
of the declaration.

struct s { int x; } * p = 0;

The following also has implementation-defined behavior:

auto alignas (struct s *) x = 0;

4 EXAMPLE 1 The following file scope definitions:

static auto a = 3.5;
auto p = &a;

are interpreted as if they had been written as:

static double a = 3.5;
double * p = &a;

So effectively a is a double and p is a double*. The restrictions on the syntax of such declarations does not
allow the declarator to be *p, but that the final type here nevertheless is a pointer type.

5 EXAMPLE 2 The scope of the identifier for which the type is inferred only starts after the end of the initializer
(6.2.1), so the assignment expression cannot use the identifier to refer to the object or function that is declared,
for example to take its address. Any use of the identifier in the initializer is invalid, even if an entity with the
same name exists in an outer scope.

{
double a = 7;
double b = 9;
{

double b = b * b; // undefined, uses uninitialized
// variable without address

printf("%g\n", a); // valid, uses "a" from outer scope, prints 7
auto a = a * a; // invalid, "a" from outer scope is not

// visible during initialization
}
{

auto b = a * a; // valid, uses "a" from outer scope
auto a = b; // valid, "a" from outer scope not visible now
// ...
printf("%g\n", a); // valid, uses "a" from inner scope, prints 49

}

163)It is recommended that implementations that accept different forms of direct declarators follow the syntax and semantics
of the corresponding feature in ISO/IEC 14882.

© ISO/IEC 202y — All rights reserved

Language — 136

§ 6.7.10

ISO/IEC 9899:202y (en) — n3299 working draft

// ...
}

6 EXAMPLE 3 In the following, declarations of pA and qA are valid. The type of A after array-to-pointer
conversion is a pointer type, and qA is a pointer to array.

double A[3] = { 0 };
auto pA = A;
auto qA = &A;

7 EXAMPLE 4 Type inference can be used to capture the type of a call to a type-generic function. It ensures that
the same type as the argument x is used.

#include <tgmath.h>
auto y = cos(x);

If instead the type of y is explicitly specified to a different type than x, a diagnosis of the mismatch is not
enforced.

8 EXAMPLE 5 A type-generic macro that generalizes the div functions (7.24.7.2) is defined and used as follows.

#define div(X, Y) _Generic((X)+(Y),\
int: div,\
long: ldiv,\
long long: lldiv)((X), (Y))

auto z = div(x, y);
auto q = z.quot;
auto r = z.rem;

9 EXAMPLE 6 Definitions of objects with inferred type are valid in all contexts that allow the initializer syntax
as described. In particular they can be used to ensure type safety of for-loop controlling expressions.

for (auto i = j; i < 2*j; ++i) {
// ...

}

Here, regardless of the integer rank or signedness of the type of j, i will have the non-atomic unqualified
version of j’s type. So, after lvalue conversion and possible promotion, the two operands of the < operator in
the controlling expression are guaranteed to have the same type, and, in particular, the same signedness.

6.7.11 Initialization
Syntax

1 braced-initializer:
{ }
{ initializer-list }
{ initializer-list , }

initializer:
assignment-expression
braced-initializer

initializer-list:
designationopt initializer
initializer-list , designationopt initializer

designation:
designator-list =

§ 6.7.11 © ISO/IEC 202y — All rights reserved

Language — 137

ISO/IEC 9899:202y (en) — n3299 working draft

designator-list:
designator
designator-list designator

designator:
[constant-expression]
. identifier

2 An empty brace pair ({}) is called an empty initializer and is referred to as empty initialization.

Constraints
3 No initializer shall attempt to provide a value for an object not contained within the entity being

initialized.

4 The type of the entity to be initialized shall be an array of unknown size or a complete object type.
An entity of variable length array type shall not be initialized except by an empty initializer. An
array of unknown size shall not be initialized by an empty initializer.

5 All the expressions in an initializer for an object that has static or thread storage duration or is
declared with the constexpr storage-class specifier shall be constant expressions or string literals.

6 If the declaration of an identifier has block scope, and the identifier has external or internal linkage,
the declaration shall have no initializer for the identifier.

7 If a designator has the form

[constant-expression]

then the current object (defined subsequently in this subclause) shall have array type and the
expression shall be an integer constant expression. If the array is of unknown size, any nonnegative
value is valid.

8 If a designator has the form

. identifier

then the current object (defined subsequently in this subclause) shall have structure or union type
and the identifier shall be the name of a member of that type.

Semantics
9 An initializer specifies the initial value stored in an object. For objects with atomic type additional

restrictions apply, see 7.17.2 and 7.17.8.

10 Except where explicitly stated otherwise, for the purposes of this subclause unnamed members
of objects of structure and union type do not participate in initialization. Unnamed members of
structure objects have indeterminate representation even after initialization.

11 If an object that has automatic storage duration is not initialized explicitly, its representation is
indeterminate. If an object that has static or thread storage duration is not initialized explicitly, or
any object is initialized with an empty initializer, then it is subject to default initialization, which
initializes an object as follows:

— if it has pointer type, it is initialized to a null pointer;

— if it has decimal floating type, it is initialized to positive zero, and the quantum exponent is
implementation-defined;164)

— if it has arithmetic type, and it does not have decimal floating type, it is initialized to (positive
or unsigned) zero;

— if it is an aggregate, every member is initialized (recursively) according to these rules, and any
padding is initialized to zero bits;

164)A representation with all bits zero results in a decimal floating-point zero with the most negative exponent.

© ISO/IEC 202y — All rights reserved

Language — 138

§ 6.7.11

ISO/IEC 9899:202y (en) — n3299 working draft

— if it is a union, the first named member is initialized (recursively) according to these rules, and
any padding is initialized to zero bits.

12 The initializer for a scalar shall be a single expression, optionally enclosed in braces, or it shall be
an empty initializer. If the initializer is not the empty initializer, the initial value of the object is
that of the expression (after conversion); the same type constraints and conversions as for simple
assignment apply, taking the type of the scalar to be the unqualified version of its declared type.

13 The rest of this subclause deals with initializers for objects that have aggregate or union type.

14 The initializer for a structure or union object shall be either an initializer list as described subse-
quently in this subclause, or a single expression that has compatible structure or union type. In the
latter case, the initial value of the object, including unnamed members, is that of the expression.165)

15 An array of character type can be initialized by a character string literal or UTF-8 string literal,
optionally enclosed in braces. Successive bytes of the string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

16 An array with element type compatible with a qualified or unqualified wchar_t, char16_t, or
char32_t can be initialized by a wide string literal with the corresponding encoding prefix (L, u, or
U, respectively), optionally enclosed in braces. Successive wide characters of the wide string literal
(including the terminating null wide character if there is room or if the array is of unknown size)
initialize the elements of the array.

17 Otherwise, the initializer for an object that has aggregate or union type shall be a brace-enclosed list
of initializers for the elements or named members.

18 Each brace-enclosed initializer list has an associated current object. When no designations are present,
subobjects of the current object are initialized in order according to the type of the current object:
array elements in increasing subscript order, structure members in declaration order, and the first
named member of a union.166) In contrast, a designation causes the following initializer to begin
initialization of the subobject described by the designator. Initialization then continues forward in
order, beginning with the next subobject after that described by the designator.167)

19 Each designator list begins its description with the current object associated with the closest sur-
rounding brace pair. Each item in the designator list (in order) specifies a particular member of its
current object and changes the current object for the next designator (if any) to be that member.168)

The current object that results at the end of the designator list is the subobject to be initialized by the
following initializer.

20 The initialization shall occur in initializer list order, each initializer provided for a particular subobject
overriding any previously listed initializer for the same subobject;169) all subobjects that are not
initialized explicitly are subject to default initialization.

21 If the aggregate or union contains elements or members that are aggregates or unions, these rules
apply recursively to the subaggregates or contained unions. If the initializer of a subaggregate or
contained union begins with a left brace, the initializers enclosed by that brace and its matching right
brace initialize the elements or members of the subaggregate or the contained union. Otherwise, only
enough initializers from the list are taken to account for the elements or members of the subaggregate
or the first member of the contained union; any remaining initializers are left to initialize the next
element or member of the aggregate of which the current subaggregate or contained union is a part.

22 If there are fewer initializers in a brace-enclosed list than there are elements or members of an
165)If the object being initialized does not have automatic storage duration, this case violates a constraint unless the expression

is a named constant or compound literal constant (6.6).
166)If the initializer list for a subaggregate or contained union does not begin with a left brace, its subobjects are initialized as

usual, but the subaggregate or contained union does not become the current object: current objects are associated only with
brace-enclosed initializer lists.
167)After a union member is initialized, the next object is not the next member of the union; instead, it is the next subobject of

an object containing the union.
168)Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with the surrounding

brace pair. Note, too, that each separate designator list is independent.
169)Any initializer for the subobject which is overridden and so not used to initialize that subobject can potentially not be

evaluated at all.

§ 6.7.11 © ISO/IEC 202y — All rights reserved

Language — 139

ISO/IEC 9899:202y (en) — n3299 working draft

aggregate, or fewer characters in a string literal used to initialize an array of known size than there
are elements in the array, the remainder of the aggregate is subject to default initialization.

23 If an array of unknown size is initialized, its size is determined by the largest indexed element with
an explicit initializer. The array type is completed at the end of its initializer list.

24 The evaluations of the initialization list expressions are indeterminately sequenced with respect to
one another and thus the order in which any side effects occur is unspecified.170)

25 EXAMPLE 1 Provided that <complex.h> has been included, the declarations

int i = 3.5;
double complex c = 5 + 3 * I;

define and initialize i with the value 3 and c with the value 5.0 + i3.0.

26 EXAMPLE 2 The declaration

int x[] = { 1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three elements, as no size was specified and
there are three initializers.

27 EXAMPLE 3 The declaration

int y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y (the array object y[0]),
namely y[0][0], y[0][1], and y[0][2]. Likewise the next two lines initialize y[1] and y[2]. The initializer
ends early, so y[3] is initialized with zeros. Precisely the same effect can be achieved by

int y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer for y[0] does not begin with a left brace, so three items from the list are used. Likewise the next
three are taken successively for y[1] and y[2].

28 EXAMPLE 4 The declaration

int z[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column of z as specified and initializes the rest with zeros.

29 EXAMPLE 5 The declaration

struct { int a[3], b; } w[] = { { 1 }, 2 };

is a definition with an inconsistently bracketed initialization. It defines an array with two element structures:
w[0].a[0] is 1 and w[1].a[0] is 2; all the other elements are zero.

30 EXAMPLE 6 The declaration

short q[4][3][2] = {
{ 1 },
{ 2, 3 },
{ 4, 5, 6 }

170)In particular, the evaluation order can be the same or different as the order of subobject initialization.

© ISO/IEC 202y — All rights reserved

Language — 140

§ 6.7.11

ISO/IEC 9899:202y (en) — n3299 working draft

};

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array object:
q[0][0][0] is 1, q[1][0][0] is 2, q[1][0][1] is 3, and 4, 5, and 6 initialize q[2][0][0], q[2][0][1], and
q[2][1][0], respectively; all the rest are zero. The initializer for q[0][0] does not begin with a left brace, so
up to six items from the current list can be used. There is only one, so the values for the remaining five elements
are initialized with zero. Likewise, the initializers for q[1][0] and q[2][0] do not begin with a left brace, so
each uses up to six items, initializing their respective two-dimensional subaggregates. If there had been more
than six items in any of the lists, a diagnostic message would have been issued. The same initialization result
can be achieved by:

short q[4][3][2] = {
1, 0, 0, 0, 0, 0,
2, 3, 0, 0, 0, 0,
4, 5, 6

};

or by:

short q[4][3][2] = {
{

{ 1 },
},
{

{ 2, 3 },
},
{

{ 4, 5 },
{ 6 },

}
};

in a fully bracketed form.

31 The fully bracketed and minimally bracketed forms of initialization are, in general, less likely to cause confusion.

32 EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the declara-
tion

typedef int A[]; // OK - declared with block scope

the declaration

A a = { 1, 2 }, b = { 3, 4, 5 };

is identical to

int a[] = { 1, 2 }, b[] = { 3, 4, 5 };

due to the rules for incomplete types.

33 EXAMPLE 8 The declaration

char s[] = "abc", t[3] = "abc";

defines "plain" char array objects s and t whose elements are initialized with character string literals. This
declaration is identical to

char s[] = { ’a’, ’b’, ’c’, ’\0’ },
t[] = { ’a’, ’b’, ’c’ };

The contents of the arrays are modifiable. On the other hand, the declaration

§ 6.7.11 © ISO/IEC 202y — All rights reserved

Language — 141

ISO/IEC 9899:202y (en) — n3299 working draft

char *p = "abc";

defines p with type "pointer to char" and initializes it to point to an object with type "array of char" with
length 4 whose elements are initialized with a character string literal. If an attempt is made to use p to modify
the contents of the array, the behavior is undefined.

34 EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using designators:

enum { member_one, member_two };
const char *nm[] = {

[member_two] = "member two",
[member_one] = "member one",

};

35 EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:

div_t answer = {.quot = 2, .rem = -1 };

36 EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists are
difficult to understand:

struct { int a[3], b; } w[] =
{ [0].a = {1}, [1].a[0] = 2 };

37 EXAMPLE 12

struct T {
int k;
int l;

};

struct S {
int i;
struct T t;

};

struct T x = {.l = 43, .k = 42, };

void f(void)
{

struct S l = { 1, .t = x, .t.l = 41, };
}

The value of l.t.k is 42, because implicit initialization does not override explicit initialization.

38 EXAMPLE 13 Space can be "allocated" from both ends of an array by using a single designator:

int a[A_MAX] = {
1, 3, 5, 7, 9, [A_MAX-5] = 8, 6, 4, 2, 0

};

In the preceding snippet, if A_MAX is greater than ten, there will be some zero-valued elements in the middle; if
it is less than ten, some of the values provided by the first five initializers will be overridden by the second five.

39 EXAMPLE 14 Any member of a union can be initialized:

union { /* ... */ } u = {.any_member = 42 };

Forward references: common definitions <stddef.h> (7.21).

© ISO/IEC 202y — All rights reserved

Language — 142

§ 6.7.11

ISO/IEC 9899:202y (en) — n3299 working draft

6.7.12 Static assertions
Syntax

1 static_assert-declaration:
static_assert (constant-expression , string-literal) ;
static_assert (constant-expression) ;

Constraints
2 The constant expression shall compare unequal to 0.

Semantics
3 The constant expression shall be an integer constant expression. If the value of the constant expres-

sion compares unequal to 0, the declaration has no effect. Otherwise, the constraint is violated and
the implementation shall produce a diagnostic message which should include the text of the string
literal, if present.

Forward references: diagnostics (7.2).

6.7.13 Attributes
6.7.13.1 Introduction

1 Attributes specify additional information for various source constructs such as types, objects,
identifiers, or blocks. They are identified by an attribute token, which can either be a attribute prefixed
token (for implementation-specific attributes) or a standard attribute specified by an identifier (for
attributes specified in this document).

2 Support for any of the standard attributes specified in this document is implementation-defined
and optional. For an attribute token (including an attribute prefixed token) not specified in this
document, the behavior is implementation-defined. Any attribute token that is not supported by the
implementation is ignored.

3 Attributes are said to appertain to some source construct, identified by the syntactic context where
they appear, and for each individual attribute, the corresponding clause constrains the syntactic
context in which this appurtenance is valid. The attribute specifier sequence appertaining to some
source construct shall contain only attributes that are allowed to apply to that source construct.

4 In all aspects of the language, a standard attribute specified by this document as an identifier attr
and an identifier of the form __attr__ shall behave the same when used as an attribute token,
except for the spelling.171)

5 For all standard attributes specified by this document, the current value when its token sequence is
given to the __has_c_attribute conditional inclusion expression (6.10.2) is written in the associated
subclause for that attribute. A history of those values can be found in Table M.??[].

Recommended practice
6 It is recommended that implementations support all standard attributes as defined in this document.

6.7.13.2 General
Syntax

1 attribute-specifier-sequence:
attribute-specifier-sequenceopt attribute-specifier

attribute-specifier:
[[attribute-list]]

attribute-list:
attributeopt
attribute-list , attributeopt

171)Thus, the attributes [[nodiscard]] and [[__nodiscard__]] can be freely interchanged. Implementations are encour-
aged to behave similarly for attribute tokens (including attribute prefixed tokens) they provide.

§ 6.7.13.2 © ISO/IEC 202y — All rights reserved

Language — 143

ISO/IEC 9899:202y (en) — n3299 working draft

attribute:
attribute-token attribute-argument-clauseopt

attribute-token:
standard-attribute
attribute-prefixed-token

standard-attribute:
identifier

attribute-prefixed-token:
attribute-prefix :: identifier

attribute-prefix:
identifier

attribute-argument-clause:
(balanced-token-sequenceopt)

balanced-token-sequence:
balanced-token
balanced-token-sequence balanced-token

balanced-token:
(balanced-token-sequenceopt)
[balanced-token-sequenceopt]
{ balanced-token-sequenceopt }

any token other than a parenthesis, a bracket, or a brace

Constraints
2 The identifier in a standard attribute shall be one of:

deprecated
fallthrough

maybe_unused
nodiscard

noreturn
_Noreturn

unsequenced
reproducible

Semantics
3 An attribute specifier that contains no attributes has no effect. The order in which attribute tokens

appear in an attribute list is not significant. If a keyword (6.4.2) that satisfies the syntactic require-
ments of an identifier (6.4.3) is contained in an attribute token, it is considered an identifier. A strictly
conforming program using a standard attribute remains strictly conforming in the absence of that
attribute.172)

4 NOTE For each standard attribute, the form of the balanced token sequence, if any, will be specified.

Recommended practice
5 Each implementation should choose a distinctive name for the attribute prefix in an attribute

prefixed token. Implementations should not define attributes without an attribute prefix unless it is
a standard attribute as specified in this document.

6 EXAMPLE 1 Suppose that an implementation chooses the attribute prefix hal and provides specific attributes
named daisy and rosie.

[[deprecated, hal::daisy]] double nine1000(double);
[[deprecated]] [[hal::daisy]] double nine1000(double);
[[deprecated]] double nine1000 [[hal::daisy]] (double);

Then all the following declarations should be equivalent aside from the spelling:

[[__deprecated__, __hal__::__daisy__]] double nine1000(double);
[[__deprecated__]] [[__hal__::__daisy__]] double nine1000(double);
[[__deprecated__]] double nine1000 [[__hal__::__daisy__]] (double);

172)Standard attributes specified by this document can be parsed but ignored by an implementation without changing the
semantics of a correct program; the same is not true for attributes not specified by this document.

© ISO/IEC 202y — All rights reserved

Language — 144

§ 6.7.13.2

ISO/IEC 9899:202y (en) — n3299 working draft

These use the alternate spelling that is required for all standard attributes and recommended for prefixed
attributes. These can be better-suited for use in header files, where the use of the alternate spelling avoids
naming conflicts with user-provided macros.

7 EXAMPLE 2 For the same implementation, the following two declarations are equivalent, because the ordering
inside attribute lists is not important.

[[hal::daisy, hal::rosie]] double nine999(double);
[[hal::rosie, hal::daisy]] double nine999(double);

On the other hand the following two declarations are not equivalent, because the ordering of different attribute
specifiers can affect the semantics.

[[hal::daisy]] [[hal::rosie]] double nine999(double);
[[hal::rosie]] [[hal::daisy]] double nine999(double); // can have different semantics

6.7.13.3 The nodiscard attribute
Constraints

1 The nodiscard attribute shall be applied to a function or to the definition of a structure, union, or
enumerated type. If an attribute argument clause is present, it shall have the form:

(string-literal)

Semantics
2 The __has_c_attribute conditional inclusion expression (6.10.2) shall return the value 202311L

when given nodiscard as the pp-tokens operand if the implementation supports the attribute.

3 A name or entity declared without the nodiscard attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked after the first declaration that marks it.

Recommended practice
4 A nodiscard call is a function call expression that calls a function previously declared with attribute

nodiscard, or whose return type is a structure, union, or enumerated type marked with attribute
nodiscard. Evaluation of a nodiscard call as a void expression (6.8.4) is discouraged unless explicitly
cast to void. Implementations are encouraged to issue a diagnostic in such cases. This is typically
because immediately discarding the return value of a nodiscard call has surprising consequences.

5 The diagnostic message should include text provided by the string literal within the attribute
argument clause of any nodiscard attribute applied to the name or entity.

6 EXAMPLE 1

struct [[nodiscard]] error_info { /*...*/ };
struct error_info enable_missile_safety_mode(void);
void launch_missiles(void);
void test_missiles(void) {

enable_missile_safety_mode();
launch_missiles();

}

A diagnostic for the call to enable_missile_safety_mode is encouraged.

7 EXAMPLE 2

[[nodiscard]] int important_func(void);
void call(void) {

int i = important_func();
}

No diagnostic for the call to important_func is encouraged despite the value of i not being used.

8 EXAMPLE 3

§ 6.7.13.3 © ISO/IEC 202y — All rights reserved

Language — 145

ISO/IEC 9899:202y (en) — n3299 working draft

[[nodiscard("armer needs to check armed state")]]
bool arm_detonator(int within);

void call(void) {
arm_detonator(3);
detonate();

}

A diagnostic for the call to arm_detonator using the string literal "armer needs to check armed state"
from the attribute argument clause is encouraged.

6.7.13.4 The maybe_unused attribute
Constraints

1 The maybe_unused attribute shall be applied to the declaration of a structure, a union, a typedef
name, an object, a structure or union member, a function, an enumeration, an enumerator, or a label.
No attribute argument clause shall be present.

Semantics
2 The maybe_unused attribute indicates that a name or entity is possibly intentionally unused.

3 The __has_c_attribute conditional inclusion expression (6.10.2) shall return the value 202311L
when given maybe_unused as the pp-tokens operand if the implementation supports the attribute.

A name or entity declared without the maybe_unused attribute can later be redeclared with the
attribute and vice versa. An entity is considered marked with the attribute after the first declaration
that marks it.

Recommended practice
4 For an entity marked maybe_unused, implementations are encouraged not to emit a diagnostic that

the entity is unused, or that the entity is used despite the presence of the attribute.

5 EXAMPLE

[[maybe_unused]] void f([[maybe_unused]] int i) {
[[maybe_unused]] int j = i + 100;
assert(j);

}

Implementations are encouraged not to diagnose that j is unused, even if NDEBUG is defined.

6.7.13.5 The deprecated attribute
Constraints

1 The deprecated attribute shall be applied to the declaration of a structure, a union, a typedef name,
an object, a structure or union member, a function, an enumeration, or an enumerator.

2 If an attribute argument clause is present, it shall have the form:

(string-literal)

Semantics
3 The deprecated attribute can be used to mark names and entities whose use is still allowed, but is

discouraged for some reason.173)

4 The __has_c_attribute conditional inclusion expression (6.10.2) shall return the value 202311L
when given deprecated as the pp-tokens operand if the implementation supports the attribute.

5 A name or entity declared without the deprecated attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked with the attribute after the first declaration that
marks it.
173)In particular, deprecated is appropriate for names and entities that are obsolescent, insecure, unsafe, or otherwise unfit

for purpose.

© ISO/IEC 202y — All rights reserved

Language — 146

§ 6.7.13.5

ISO/IEC 9899:202y (en) — n3299 working draft

Recommended practice
6 Implementations should use the deprecated attribute to produce a diagnostic message in case the

program refers to a name or entity other than to declare it, after a declaration that specifies the
attribute, when the reference to the name or entity is not within the context of a related deprecated
entity. The diagnostic message should include text provided by the string literal within the attribute
argument clause of any deprecated attribute applied to the name or entity.

7 EXAMPLE

struct [[deprecated]] S {
int a;

};

enum [[deprecated]] E1 {
one

};

enum E2 {
two [[deprecated("use ’three’ instead")]],
three

};

[[deprecated]] typedef int Foo;

void f1(struct S s) { // Diagnose use of S
int i = one; // Diagnose use of E1
int j = two; // Diagnose use of two: "use ’three’ instead"
int k = three;
Foo f; // Diagnose use of Foo

}

[[deprecated]] void f2(struct S s) {
int i = one;
int j = two;
int k = three;
Foo f;

}

struct [[deprecated]] T {
Foo f;
struct S s;

};

Implementations are encouraged to diagnose the use of deprecated entities within a context which is not itself
deprecated, as indicated for function f1, but not to diagnose within function f2 and struct T, as they are
themselves deprecated.

6.7.13.6 The fallthrough attribute
Constraints

1 The attribute token fallthrough shall only appear in an attribute declaration (6.7); such a dec-
laration is a fallthrough declaration. No attribute argument clause shall be present. A fallthrough
declaration can only appear within an enclosing switch statement (6.8.5.3). The next block item
(6.8.3) that would be encountered after a fallthrough declaration shall be a case label or default
label associated with the innermost enclosing switch statement and, if the fallthrough declaration is
contained in an iteration statement, the next statement shall be part of the same execution of the
secondary block of the innermost enclosing iteration statement.

Semantics
2 The __has_c_attribute conditional inclusion expression (6.10.2) shall return the value 202311L

when given fallthrough as the pp-tokens operand if the implementation supports the attribute.

§ 6.7.13.6 © ISO/IEC 202y — All rights reserved

Language — 147

ISO/IEC 9899:202y (en) — n3299 working draft

Recommended practice
3 The use of a fallthrough declaration is intended to suppress a diagnostic that an implementation can

otherwise issue for a case or default label that is reachable from another case or default label
along some path of execution. Implementations are encouraged to issue a diagnostic if a fallthrough
declaration is not dynamically reachable.

4 EXAMPLE

void f(int n) {
void g(void), h(void), i(void);
switch (n) {
case 1: /* diagnostic on fallthrough discouraged */
case 2:

g();
[[fallthrough]];

case 3: /* diagnostic on fallthrough discouraged */
do {

[[fallthrough]]; /* constraint violation: next statement is not
part of the same secondary block execution */

} while(false);
case 6:

do {
[[fallthrough]]; /* constraint violation: next statement is not

part of the same secondary block execution */
} while (n--);

case 7:
while (false) {

[[fallthrough]]; /* constraint violation: next statement is not
part of the same secondary block execution */

}
case 5:

h();
case 4: /* fallthrough diagnostic encouraged */

i();
[[fallthrough]]; /* constraint violation */

}
}

6.7.13.7 The noreturn and _Noreturn attributes
Description

1 When _Noreturn is used as an attribute token (instead of a function specifier), the constraints and
semantics are identical to that of the noreturn attribute token. Use of _Noreturn as an attribute
token is an obsolescent feature.174)

Constraints
2 The noreturn attribute shall be applied to a function. No attribute argument clause shall be present.

Semantics
3 The first declaration of a function shall specify the noreturn attribute if any declaration of that

function specifies the noreturn attribute. If a function is declared with the noreturn attribute in
one translation unit and the same function is declared without the noreturn attribute in another
translation unit, the behavior is undefined.

4 If a function f is called where fwas previously declared with the noreturn attribute and f eventually
returns, the behavior is undefined.

5 The __has_c_attribute conditional inclusion expression (6.10.2) shall return the value 202311L
when given noreturn as the pp-tokens operand if the implementation supports the attribute.

174)[[_Noreturn]] and [[noreturn]] are equivalent attributes to support code that includes <stdnoreturn.h>, because
that header defines noreturn as a macro that expands to _Noreturn.

© ISO/IEC 202y — All rights reserved

Language — 148

§ 6.7.13.7

ISO/IEC 9899:202y (en) — n3299 working draft

Recommended practice
6 The implementation should produce a diagnostic message for a function declared with a noreturn

attribute that appears to be capable of returning to its caller.

7 EXAMPLE

[[noreturn]] void f(void) {
abort(); // ok

}

[[noreturn]] void g(int i) { // causes undefined behavior if i <= 0
if (i > 0) abort();

}

[[noreturn]] int h(void);

Implementations are encouraged to diagnose the definition of g() because it is capable of returning to its caller.
Implementations are similarly encouraged to diagnose the declaration of h() because it appears capable of
returning to its caller due to the non-void return type.

6.7.13.8 Standard attributes for function types
6.7.13.8.1 General
Constraints

1 The identifier in a standard function type attribute shall be one of:

unsequenced reproducible

2 An attribute for a function type shall be applied to a function declarator175) or to a type specifier that
has a function type. The corresponding attribute is a property of the function type.176) No attribute
argument clause shall be present.

Description
3 The main purpose of the function type properties and attributes defined in this clause is to provide

the translator with information about the access of objects by a function such that certain prop-
erties of function calls can be deduced; the properties distinguish read operations (stateless and
independent) and write operations (effectless, idempotent and reproducible) or a combination of
both (unsequenced). Although semantically attached to a function type, the attributes described are
not part of the prototype of such a function, and redeclarations and conversions that drop such an
attribute are valid and constitute compatible types. Conversely, if a definition that does not have the
asserted property is accessed by a function declaration or a function pointer with a type that has the
attribute, the behavior is undefined.177)

4 To allow reordering of calls to functions as they are described here, possible access to objects with a
lifetime that starts before or ends after a call has to be restricted; effects on all objects that are accessed
during a function call are restricted to the same thread as the call and the based-on relation between
pointer parameters and lvalues (6.7.4.2) models the fact that objects do not change inadvertently
during the call. In the following, an operation is said to be sequenced during a function call if it is
sequenced after the start of the function call178) and before the call terminates. An object definition
of an object X in a function f escapes if an access to X happens while no call to f is active. An object
is local to a call to a function f if its lifetime starts and ends during the call or if it is defined by f

175)That is, they appear in the attributes right after the closing parenthesis of the parameter list, independently of whether
the function type is, for example, used directly to declare a function or whether it is used in a pointer to function type.
176)If several declarations of the same function or function pointer are visible, regardless whether an attribute is present

at several or just one of the declarators, it is attached to the type of the corresponding function definition, function pointer
object, or function pointer value.
177)That is, the fact that a function has one of these properties is in general not determined by the specification of the

translation unit in which it is found; other translation units and specific run time conditions also condition the possible
assertion of the properties.
178)The initializations of the parameters is sequenced during the function call.

§ 6.7.13.8.1 © ISO/IEC 202y — All rights reserved

Language — 149

ISO/IEC 9899:202y (en) — n3299 working draft

but does not escape. A function call and an object X synchronize if all accesses to X that are not
sequenced during the call happen before or after the call. Execution state that is described in the
library clause, such as the floating-point environment, conversion state, locale, input/output streams,
external files or errno are considered as objects for the purposes of these attributes; operations that
access this state, even indirectly, are considered as lvalue conversions for the purposes of these
attributes, and operations that allow to change this state are considered as store operations, for the
purposes of these attributes.

5 A function definition f is stateless if any definition of an object of static or thread storage duration in
f or in a function that is called by f is const but not volatile qualified.

6 An object X is observed by a function call if both synchronize, if X is not local to the call, if X has a
lifetime that starts before the function call and if an access of X is sequenced during the call; the last
value of X , if any, that is stored before the call is said to be the value of X that is observed by the
call. A function pointer value f is independent if for any object X that is observed by some call to f
through an lvalue that is not based on a parameter of the call, then all accesses to X in all calls to
f during the same program execution observe the same value; otherwise if the access is based on
a pointer parameter, there shall be a unique such pointer parameter P such that any access to X
shall be to an lvalue that is based on P . A function definition is independent if the derived function
pointer value is independent.

7 A store operation to an object X that is sequenced during a function call such that both synchronize
is said to be observable if X is not local to the call, if the lifetime of X ends after the call, if the stored
value is different from the value observed by the call, if any, and if it is the last value written before
the termination of the call. An evaluation of a function call179) is effectless if any store operation
that is sequenced during the call is the modification of an object that synchronizes with the call; if
additionally the operation is observable, there shall be a unique pointer parameter P of the function
such that any access to X shall be to an lvalue that is based on P . A function pointer value f is
effectless if any evaluation of a function call that calls f is effectless. A function definition is effectless
if the derived function pointer value is effectless.

8 An evaluation E is idempotent if a second evaluation of E can be sequenced immediately after the
original one without changing the resulting value, if any, or the observable state of the execution.
A function pointer value f is idempotent if any evaluation of a function call180) that calls f is
idempotent. A function definition is idempotent if the derived function pointer value is idempotent.

9 A function is reproducible if it is effectless and idempotent; it is unsequenced if it is stateless, effectless,
idempotent and independent.181)

10 NOTE 1 The synchronization requirements with respect to any accessed object X for the independence of
functions provide boundaries up to which a function call can safely be reordered without changing the semantics
of the program. If X is const but not volatile qualified the reordering is unconstrained. If it is an object that
is conditioned in an initialization phase, for a single threaded program a synchronization is provided by the
sequenced before relation and the reordering can, in principle, move the call just after the initialization. For a
multi-threaded program, synchronization guarantees can be given by calls to synchronizing functions of the
<threads.h> header or by an appropriate call to atomic_thread_fence at the end of the initialization phase.
If a function is known to be independent or effectless, adding restrict qualifications to the declarations of
all pointer parameters does not change the semantics of any call. Similarly, changing the memory order to
memory_order_relaxed for all atomic operations during a call to such a function preserves semantics.

11 NOTE 2 In general the functions provided by the <math.h> header do not have the properties that are defined
previously in this subclause; many of them change the floating-point state or errno when they encounter an
error (so they have observable side effects) and the results of most of them depend on execution-wide state
such as the rounding direction mode (so they are not independent). Whether a particular C library function
is reproducible or unsequenced additionally often depends on properties of the implementation, such as

179)This considers the evaluation of the function call itself, not the evaluation of a full function call expression. Such an
evaluation is sequenced after all evaluations that determine f and the call arguments, if any, have been performed.
180)This considers the evaluation of the function call itself, not the evaluation of a full function call expression. Such an

evaluation is sequenced after all evaluations that determine f and the call arguments, if any, have been performed.
181)A function call of an unsequenced function can be executed as early as the function pointer value, the values of the

arguments and all objects that are accessible through them, and all values of globally accessible state have been determined,
and it can be executed as late as the arguments and the objects they possibly target are unchanged and as any of its return
value or modified pointed-to arguments are accessed.

© ISO/IEC 202y — All rights reserved

Language — 150

§ 6.7.13.8.1

ISO/IEC 9899:202y (en) — n3299 working draft

implementation-defined behavior for certain error conditions.

Recommended practice
12 If possible, it is recommended that implementations diagnose if an attribute of this clause is applied

to a function definition that does not have the corresponding property. It is recommended that appli-
cations that assert the independent or effectless properties for functions qualify pointer parameters
with restrict.

Forward references: errors <errno.h> (7.5), floating-point environment <fenv.h> (7.6), local-
ization <locale.h> (7.11), mathematics <math.h> (7.12), fences (7.17.4), input/output <stdio.h>
(7.23), threads <threads.h> (7.28), extended multibyte and wide character utilities <wchar.h>
(7.31).

6.7.13.8.2 The reproducible type attribute
Description

1 The reproducible type attribute asserts that a function or pointed-to function with that type is
reproducible.

2 The __has_c_attribute conditional inclusion expression (6.10.2) shall return the value 202311L
when given reproducible as the pp-tokens operand if the implementation supports the attribute.

3 EXAMPLE The attribute in the following function declaration asserts that two consecutive calls to the function
will result in the same return value. Changes to the abstract state during the call are possible as long as they
are not observable, but no other side effects will occur. Thus the function definition can for example use local
objects of static or thread storage duration to keep track of the arguments for which the function has been called
and cache their computed return values.

size_t hash(char const[static 32]) [[reproducible]];

6.7.13.8.3 The unsequenced type attribute
Description

1 The unsequenced type attribute asserts that a function or pointed-to function with that type is
unsequenced.

2 The __has_c_attribute conditional inclusion expression (6.10.2) shall return the value 202311L
when given unsequenced as the pp-tokens operand if the implementation supports the attribute.

3 NOTE 1 The unsequenced type attribute asserts strong properties for such a function, in particular that
certain sequencing requirements for function calls can be relaxed without affecting the state of the abstract
machine. Thereby, calls to such functions are natural candidates for optimization techniques such as common
subexpression elimination, local memoization or lazy evaluation.

4 NOTE 2 A proof of validity of the annotation of a function type with the unsequenced attribute can depend
on the property of whether a derived function pointer escapes the translation unit or not. For a function with
internal linkage where no function pointer escapes the translation unit, all calling contexts are known and it is
possible, in principle, to prove that no control flow exists such that a library function is called with arguments
that trigger an exceptional condition. For a function with external linkage such a proof is potentially not
possible and such a function therefore only is used when it can be ensured that no exceptional condition results
from the provided arguments.

5 NOTE 3 The unsequenced property does not necessarily imply that the function is reentrant or that calls can
be executed concurrently. This is because an unsequenced function can read from and write to objects of static
storage duration, as long as no change is observable after a call terminates.

6 EXAMPLE 1 The attribute in the following function declaration asserts that it doesn’t depend on any modifiable
state of the abstract machine. Calls to the function can be executed out of sequence before the return value is
needed and two calls to the function with the same argument value will result in the same return value.

bool tendency(signed char) [[unsequenced]];

Therefore such a call for a given argument value needs only to be executed once and the returned value can be
reused when appropriate. For example, calls for all possible argument values can be executed during program
startup and tabulated.

§ 6.7.13.8.3 © ISO/IEC 202y — All rights reserved

Language — 151

ISO/IEC 9899:202y (en) — n3299 working draft

7 EXAMPLE 2 The attribute in the following function declaration asserts that it doesn’t depend on any modifiable
state of the abstract machine. Within the same thread, calls to the function can be executed out of sequence
before the return value is needed and two calls to the function will result in the same pointer return value.
Therefore such a call needs only to be executed once in a given thread and the returned pointer value can be
reused when appropriate. For example, a single call can be executed during thread startup and the return value
p and the value of the object *p of type toto const can be cached.

typedef struct toto toto;
toto const* toto_zero(void) [[unsequenced]];

8 EXAMPLE 3 The unsequenced property of a function f can be locally asserted within a function g that uses it.
For example the library function sqrt is in general not unsequenced because a negative argument will raise a
domain error and because the result can depend on the rounding mode. Nevertheless in contexts similar to the
following function a user can prove that it will not be called with invalid arguments, and, that the floating-point
environment has the same value for all calls.

#include <math.h>
#include <fenv.h>

inline double distance (double const x[static 2]) [[reproducible]] {
#pragma STDC FP_CONTRACT OFF
#pragma STDC FENV_ROUND FE_TONEAREST
// We assert that sqrt will not be called with invalid arguments
// and the result only depends on the argument value.
extern typeof(sqrt) [[unsequenced]] sqrt;
return sqrt(x[0]*x[0] + x[1]*x[1]);

}

The function distance potentially has the side effect of changing the floating-point environment. Nevertheless
the floating environment is thread local, thus a change to that state outside the function is sequenced with
the change within and additionally the observed value is restored when the function returns. Thus this side
effect is not observable for a caller. Overall the function distance is stateless, effectless and idempotent and in
particular it is reproducible as the attribute indicates. Because the function can be called in a context where the
floating-point environment has different state, distance is not independent and thus it is also not unsequenced.
Nevertheless, adding an unsequenced attribute where this is justified can introduce optimization opportunities.

double g (double y[static 1], double const x[static 2]) {
// We assert that distance will not see different states of the floating
// point environment.
extern double distance (double const x[static 2]) [[unsequenced]];
y[0] = distance(x);
...
return distance(x); // replacement by y[0] is valid

}

© ISO/IEC 202y — All rights reserved

Language — 152

§ 6.7.13.8.3

ISO/IEC 9899:202y (en) — n3299 working draft

6.8 Statements and blocks
6.8.1 General
Syntax

1 statement:
labeled-statement
unlabeled-statement

unlabeled-statement:
expression-statement
attribute-specifier-sequenceopt primary-block
attribute-specifier-sequenceopt jump-statement

primary-block:
compound-statement
selection-statement
iteration-statement

secondary-block:
statement

Semantics
2 A statement specifies an action to be performed. Except as indicated, statements are executed in

sequence. The optional attribute specifier sequence appertains to the respective statement.

3 A block is either a primary block, a secondary block, or the block associated with a function definition;
it allows a set of declarations and statements to be grouped into one syntactic unit. Whenever a
block B appears in the syntax production as part of the definition of an enclosing block A, scopes of
identifiers and lifetimes of objects that are associated with B do not extend to the parts of A that are
outside of B. The initializers of objects that have automatic storage duration, and any size expressions
and typeof operators in declarations of ordinary identifiers with block scope, are evaluated and
the values are stored in the objects (the representation of objects without an initializer becomes
indeterminate) each time the declaration is reached in the order of execution, as if it were a statement,
and within each declaration in the order that declarators appear.

4 A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

5 NOTE Each of the following is a full expression:

— a full declarator for a variably modified type,

— an initializer that is not part of a compound literal,

— the expression in an expression statement,

— the controlling expression of a selection statement (if or switch),

— the controlling expression of a while or do statement,

— each of the (optional) expressions of a for statement,

— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor
produce any side effects, so the sequencing implications of being a full expression are not relevant to a constant
expression.

Forward references: expression and null statements (6.8.4), selection statements (6.8.5), iteration
statements (6.8.6), the return statement (6.8.7.5).

§ 6.8.1 © ISO/IEC 202y — All rights reserved

Language — 153

ISO/IEC 9899:202y (en) — n3299 working draft

6.8.2 Labeled statements
Syntax

1 label:
attribute-specifier-sequenceopt identifier :
attribute-specifier-sequenceopt case constant-expression :
attribute-specifier-sequenceopt default :

labeled-statement:
label statement

Constraints
2 A case or default label shall appear only in a switch statement. Further constraints on such labels

are discussed under the switch statement.

3 Label names shall be unique within a function.

Semantics
4 Any statement or declaration in a compound statement can be preceded by a prefix that declares an

identifier as a label name. The optional attribute specifier sequence appertains to the label. Labels in
themselves do not alter the flow of control, which continues unimpeded across them.

Forward references: the goto statement (6.8.7.2), the switch statement (6.8.5.3) .

6.8.3 Compound statement
Syntax

1 compound-statement:
{ block-item-listopt }

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
unlabeled-statement
label

Semantics
2 A compound statement that is a function body together with the parameter type list and the optional

attribute specifier sequence between them forms the block associated with the function definition
in which it appears. Otherwise, it is a block that is different from any other block. A label shall be
translated as if it were followed by a null statement.

6.8.4 Expression and null statements
Syntax

1 expression-statement:
expressionopt ;
attribute-specifier-sequence expression ;

Semantics
2 The attribute specifier sequence appertains to the expression. The expression in an expression

statement is evaluated as a void expression for its side effects.182)

3 A null statement (consisting of just a semicolon) performs no operations.
182)Such as assignments, and function calls which have side effects.

© ISO/IEC 202y — All rights reserved

Language — 154

§ 6.8.4

ISO/IEC 9899:202y (en) — n3299 working draft

4 EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the discarding of
its value can be made explicit by converting the expression to a void expression by means of a cast:

int p(int);
/* ... */
(void)p(0);

5 EXAMPLE 2 In the program fragment

char *s;
/* ... */
while (*s++ != ’\0’)

;

a null statement is used to supply an empty loop body to the iteration statement.

Forward references: iteration statements (6.8.6).

6.8.5 Selection statements
6.8.5.1 General
Syntax

1 selection-statement:
if (expression) secondary-block
if (expression) secondary-block else secondary-block
switch (expression) secondary-block

Semantics
2 A selection statement selects among a set of secondary blocks depending on the value of a controlling

expression.

6.8.5.2 The if statement
Constraints

1 The controlling expression of an if statement shall have scalar type.

Semantics
2 In both forms, the first substatement is executed if the expression compares unequal to 0. In the

else form, the second substatement is executed if the expression compares equal to 0. If the first
substatement is reached via a label, the second substatement is not executed.

3 An else is associated with the lexically nearest preceding if that is allowed by the syntax.

6.8.5.3 The switch statement
Constraints

1 The controlling expression of a switch statement shall have integer type.

2 If a switch statement has an associated case or default label within the scope of an identifier with
a variably modified type, the entire switch statement shall be within the scope of that identifier.183)

3 The expression of each case label shall be an integer constant expression and no two of the case
constant expressions associated to the same switch statement shall have the same value after
conversion. There can be at most one default label associated to a switch statement. (Any enclosed
switch statement can have a default label or case constant expressions with values that duplicate
case constant expressions in the enclosing switch statement.)

183)That is, the declaration either precedes the switch statement, or it follows the last case or default label associated with
the switch that is in the block containing the declaration.

§ 6.8.5.3 © ISO/IEC 202y — All rights reserved

Language — 155

ISO/IEC 9899:202y (en) — n3299 working draft

Semantics
4 A switch statement causes control to jump to, into, or past the statement that is the switch body,

depending on the value of a controlling expression, and on the presence of a default label and the
values of any case labels on or in the switch body. A case or default label is accessible only within
the closest enclosing switch statement.

5 The integer promotions are performed on the controlling expression. The constant expression in
each case label is converted to the promoted type of the controlling expression. If a converted value
matches that of the promoted controlling expression, control jumps to the statement or declaration
following the matched case label. Otherwise, if there is a default label, control jumps to the
statement or declaration following the default label. If no converted case constant expression
matches and there is no default label, no part of the switch body is executed.

Implementation limits
6 As discussed in 5.3.5.2, the implementation may limit the number of case values in a switch

statement.

7 EXAMPLE In the artificial program fragment

switch (expr)
{

int i = 4;
f(i);

case 0:
i = 17;
/* falls through into default code */

default:
printf("%d\n", i);

}

the object whose identifier is i exists with automatic storage duration (within the block) but is never initialized,
and thus if the controlling expression has a nonzero value, the call to the printf function will access an object
with an indeterminate representation. Similarly, the call to the function f cannot be reached.

6.8.6 Iteration statements
6.8.6.1 General
Syntax

1 iteration-statement:
while (expression) secondary-block
do secondary-block while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) secondary-block
for (declaration expressionopt ; expressionopt) secondary-block

Constraints
2 The controlling expression of an iteration statement shall have scalar type.

Semantics
3 An iteration statement causes a secondary block called the loop body to be executed repeatedly until

the controlling expression compares equal to 0. The repetition occurs regardless of whether the loop
body is entered from the iteration statement or by a jump.184)

4 An iteration statement may be assumed by the implementation to terminate if its controlling
expression is not a constant expression,185) and none of the following operations are performed in its

184)Code jumped over is not executed. In particular, the controlling expression of a for or while statement is not evaluated
before entering the loop body, nor is clause-1 (6.8.6.4) of a for statement.
185)An omitted controlling expression is replaced by a nonzero constant, which is a constant expression.

© ISO/IEC 202y — All rights reserved

Language — 156

§ 6.8.6.1

ISO/IEC 9899:202y (en) — n3299 working draft

body, controlling expression or (in the case of a for statement) its expression-3:186)

— input/output operations

— accessing a volatile object

— synchronization or atomic operations.

6.8.6.2 The while statement
1 The evaluation of the controlling expression takes place before each execution of the loop body.

6.8.6.3 The do statement
1 The evaluation of the controlling expression takes place after each execution of the loop body.

6.8.6.4 The for statement
1 The statement

for (clause-1; expression-2; expression-3) statement

behaves as follows: The expression expression-2 is the controlling expression that is evaluated before
each execution of the loop body. The expression expression-3 is evaluated as a void expression after
each execution of the loop body. If clause-1 is a declaration, the scope of any identifiers it declares
is the remainder of the declaration and the entire loop, including the other two expressions; it is
reached in the order of execution before the first evaluation of the controlling expression. If clause-1
is an expression, it is evaluated as a void expression before the first evaluation of the controlling
expression.187)

2 Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a nonzero
constant.

6.8.7 Jump statements
6.8.7.1 General
Syntax

1 jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt ;

Semantics
2 A jump statement causes an unconditional jump to another place.

6.8.7.2 The goto statement
Constraints

1 The identifier in a goto statement shall name a label located somewhere in the enclosing function. A
goto statement shall not jump from outside the scope of an identifier having a variably modified
type to inside the scope of that identifier.

186)This is intended to allow compiler transformations such as removal of empty loops even when termination cannot be
proven.

187)Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in the loop; the
controlling expression, expression-2, specifies an evaluation made before each iteration, such that execution of the loop
continues until the expression compares equal to 0; and expression-3 specifies an operation (such as incrementing) that is
performed after each iteration.

§ 6.8.7.2 © ISO/IEC 202y — All rights reserved

Language — 157

ISO/IEC 9899:202y (en) — n3299 working draft

Semantics
2 A goto statement causes an unconditional jump to the statement prefixed by the named label in the

enclosing function.

3 EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The
following outline presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.
2. The general initialization code is too large to warrant duplication.
3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by continue

statements, for example.)

/* ... */
goto first_time;
for (;;) {

// determine next operation
/* ... */
if (need to reinitialize) {

// reinitialize-only code
/* ... */

first_time:
// general initialization code
/* ... */
continue;

}
// handle other operations
/* ... */

}

4 EXAMPLE 2 A goto statement which jumps past any declarations of objects with variably modified types is
not conforming. A jump within the scope, however, is valid.

goto lab3; // invalid: going INTO scope of VLA.
{

double a[n];
a[j] = 4.4;

lab3:
a[j] = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
a[j] = 5.5;

lab4:
a[j] = 6.6;

}
goto lab4; // invalid: going INTO scope of VLA.

6.8.7.3 The continue statement
Constraints

1 A continue statement shall appear only in or as a loop body.

Semantics
2 A continue statement causes a jump to the loop-continuation portion of the innermost enclosing

iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/* ... */) {
/* ... */
continue;
/* ... */

contin:
}

do {
/* ... */
continue;
/* ... */

contin:;
} while (/* ... */);

for (/* ... */) {
/* ... */
continue;
/* ... */

contin:
}

© ISO/IEC 202y — All rights reserved

Language — 158

§ 6.8.7.3

ISO/IEC 9899:202y (en) — n3299 working draft

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin; .188)

6.8.7.4 The break statement
Constraints

1 A break statement shall appear only in or as a switch body or loop body.

Semantics
2 A break statement terminates execution of the innermost enclosing switch or iteration statement.

6.8.7.5 The return statement
Constraints

1 A return statement with an expression shall not appear in a function whose return type is void. A
return statement without an expression shall only appear in a function whose return type is void.

Semantics
2 A return statement terminates execution of the current function and returns control to its caller. A

function can have any number of return statements.

3 If a return statement with an expression is executed, the value of the expression is returned to the
caller as the value of the function call expression. If the expression has a type different from the
return type of the function in which it appears, the value is converted as if by assignment to an
object having the return type of the function.189)

4 EXAMPLE In:

struct s { double i; } f(void);
union {

struct {
int f1;
struct s f2;

} u1;
struct {

struct s f3;
int f4;

} u2;
} g;

struct s f(void)
{

return g.u1.f2;
}

/* ... */
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using a
function call to fetch the value).

188)Following the contin: label in the 2nd example is a null statement. The null statement in the first and third example is
implied by the label (6.8.3).
189)The return statement is not an assignment. The overlap restriction of 6.5.17.2 does not apply to the case of function

return. The representation of floating-point values can have wider range or precision than implied by the type; a cast can be
used to remove this extra range and precision.

§ 6.8.7.5 © ISO/IEC 202y — All rights reserved

Language — 159

ISO/IEC 9899:202y (en) — n3299 working draft

6.9 External definitions
6.9.1 General
Syntax

1 translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints
2 The storage-class specifier register shall not appear in the declaration specifiers in an external

declaration. The storage-class specifier auto shall only appear in the declaration specifiers in an
external declaration if the type is inferred.

3 There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
there shall be exactly one external definition for the identifier in the translation unit, unless it is:

— part of the operand of a sizeof operator whose result is an integer constant;

— part of the operand of an alignof operator whose result is an integer constant;

— part of the controlling expression of a generic selection;

— part of the expression in a generic association that is not the result expression of its generic
selection;

— or, part of the operand of any typeof operator whose result is not a variably modified type.

Semantics
4 As discussed in 5.2.1.1, the unit of program text after preprocessing is a translation unit, which

consists of a sequence of external declarations. These are described as "external" because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that also
causes storage to be reserved for an object or a function named by the identifier is a definition.

5 An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a typeof operator whose result is not a variably modified type,
part of the controlling expression of a generic selection, part of the expression in a generic association
that is not the result expression of its generic selection, or part of a sizeof or alignof operator
whose result is an integer constant expression), somewhere in the entire program there shall be
exactly one external definition for the identifier; otherwise, there shall be no more than one.190)

6.9.2 Function definitions
Syntax

1 function-definition:
attribute-specifier-sequenceopt declaration-specifiers declarator function-body

function-body:
compound-statement

190)Thus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for
it.

© ISO/IEC 202y — All rights reserved

Language — 160

§ 6.9.2

ISO/IEC 9899:202y (en) — n3299 working draft

Constraints
2 The identifier declared in a function definition (which is the name of the function) shall have a

function type, as specified by the declarator portion of the function definition.

3 The return type of a function shall be void or a complete object type other than array type.

4 The storage-class specifier, if any, in the declaration specifiers shall be either extern or static.

5 If the parameter list consists of a single parameter of type void, the parameter declarator shall not
include an identifier.

6 Variable length array types of unspecified size shall not be used as part of a parameter declaration
in a function definition.

Semantics
7 The optional attribute specifier sequence in a function definition appertains to the function.

8 The declarator in a function definition specifies the name of the function being defined and the
types (and optionally the names) of all the parameters; the declarator also serves as a function
prototype for later calls to the same function in the same translation unit. The type of each parameter
is adjusted as described in 6.7.7.4.

9 If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

10 The parameter type list, the attribute specifier sequence of the declarator that follows the parameter
type list, and the compound statement of the function body form a single block.191) Each parameter
has automatic storage duration; its identifier, if any,192) is an lvalue.193) The layout of the storage for
parameters is unspecified.

11 On entry to the function, the size expressions of each variably modified parameter and typeof opera-
tors used in declarations of parameters are evaluated and the value of each argument expression is
converted to the type of the corresponding parameter as if by assignment. (Array expressions and
function designators as arguments were converted to pointers before the call.)

12 After all parameters have been assigned, the compound statement of the function body is executed.

13 Unless otherwise specified, if the } that terminates the function body is reached, and the value of the
function call is used by the caller, the behavior is undefined.

14 NOTE In a function definition, the return type of the function and its prototype cannot be inherited from a
typedef:

typedef int F(void); // type F is "function with no parameters
// returning int"

F f, g; // f and g both have type compatible with F
F f { /* ... */ } // WRONG: syntax/constraint error
F g() { /* ... */ } // WRONG: declares that g returns a function
int f(void) { /* ... */ } // RIGHT: f has type compatible with F
int g() { /* ... */ } // RIGHT: g has type compatible with F
F *e(void) { /* ... */ } // e returns a pointer to a function
F *((e))(void) { /* ... */ } // same: parentheses irrelevant
int (*fp)(void); // fp points to a function that has type F
F *Fp; // Fp points to a function that has type F

15 EXAMPLE 1 In the following:

extern int max(int a, int b)
{

191)The visibility scope of a parameter in a function definition starts when its declaration is completed, extends to following
parameter declarations, to possible attributes that follow the parameter type list, and then to the entire function body. The
lifetime of each instance of a parameter starts when the declaration is evaluated starting a call and ends when that call
terminates.
192)A parameter that has no declared name is inaccessible within the function body.
193)A parameter identifier cannot be redeclared in the function body except in an enclosed block.

§ 6.9.2 © ISO/IEC 202y — All rights reserved

Language — 161

ISO/IEC 9899:202y (en) — n3299 working draft

return a > b ? a: b;
}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declarator;
and

{ return a > b ? a: b; }

is the function body.

16 EXAMPLE 2 To pass one function to another, one can say

int f(void);
/* ... */
g(f);

Then the definition of g can read

void g(int (*funcp)(void))
{

/* ... */
(*funcp)(); /* or funcp(); ...*/

}

or, equivalently,

void g(int func(void))
{

/* ... */
func(); /* or (*func)(); ...*/

}

6.9.3 External object definitions
Semantics

1 If the declaration of an identifier for an object has file scope and an initializer, or has file scope and
storage-class specifier thread_local, the declaration is an external definition for the identifier.

2 A declaration of an identifier for an object that has file scope without an initializer, and without
the storage-class specifier extern or thread_local, constitutes a tentative definition. If a translation
unit contains one or more tentative definitions for an identifier, and the translation unit contains no
external definition for that identifier, then the behavior is exactly as if the translation unit contains a
file scope declaration of that identifier with an empty initializer and a type determined as follows:

— if the composite type as of the end of the translation unit is an array of unknown size, then an
array of size one with the composite element type;

— otherwise, the composite type at the end of the translation unit.

3 If the declaration of an identifier for an object is a tentative definition and has internal linkage, the
declared type shall not be an incomplete type.

© ISO/IEC 202y — All rights reserved

Language — 162

§ 6.9.3

ISO/IEC 9899:202y (en) — n3299 working draft

4 EXAMPLE 1

int i1 = 1; // definition, external linkage
static int i2 = 2; // definition, internal linkage
extern int i3 = 3; // definition, external linkage
int i4; // tentative definition, external linkage
static int i5; // tentative definition, internal linkage

int i1; // valid tentative definition, refers to previous
int i2; // 6.2.2 renders undefined, linkage disagreement
int i3; // valid tentative definition, refers to previous
int i4; // valid tentative definition, refers to previous
int i5; // 6.2.2 renders undefined, linkage disagreement

extern int i1; // refers to previous, whose linkage is external
extern int i2; // refers to previous, whose linkage is internal
extern int i3; // refers to previous, whose linkage is external
extern int i4; // refers to previous, whose linkage is external
extern int i5; // refers to previous, whose linkage is internal

5 EXAMPLE 2 If at the end of the translation unit containing

int i[];

the array i still has incomplete type, the implicit initializer causes it to have one element, which is set to zero
on program startup.

§ 6.9.3 © ISO/IEC 202y — All rights reserved

Language — 163

ISO/IEC 9899:202y (en) — n3299 working draft

6.10 Preprocessing directives

6.10.1 General

Syntax

1 preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
non-directive

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt
elifdef identifier new-line groupopt
elifndef identifier new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

control-line:
include pp-tokens new-line
embed pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
warning pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

text-line:
pp-tokensopt new-line

non-directive:
pp-tokens new-line

lparen:
a (character not immediately preceded by white space

© ISO/IEC 202y — All rights reserved

Language — 164

§ 6.10.1

ISO/IEC 9899:202y (en) — n3299 working draft

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

identifier-list:
identifier
identifier-list , identifier

pp-parameter:
pp-parameter-name pp-parameter-clauseopt

pp-parameter-name:
pp-standard-parameter
pp-prefixed-parameter

pp-standard-parameter:
identifier

pp-prefixed-parameter:
identifier :: identifier

pp-parameter-clause:
(pp-balanced-token-sequenceopt)

pp-balanced-token-sequence:
pp-balanced-token
pp-balanced-token-sequence pp-balanced-token

pp-balanced-token:
(pp-balanced-token-sequenceopt)
[pp-balanced-token-sequenceopt]
{ pp-balanced-token-sequenceopt }

any pp-token other than a parenthesis, a bracket, or a brace

embed-parameter-sequence:
pp-parameter
embed-parameter-sequence pp-parameter

Description
2 A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following

constraints: The first token in the sequence is a # preprocessing token that (at the start of translation
phase 4) is either the first character in the source file (optionally after white space containing no
new-line characters) or that follows white space containing at least one new-line character. The last

§ 6.10.1 © ISO/IEC 202y — All rights reserved

Language — 165

ISO/IEC 9899:202y (en) — n3299 working draft

token in the sequence is the first new-line character that follows the first token in the sequence.194) A
new-line character ends the preprocessing directive even if it occurs within what would otherwise
be an invocation of a function-like macro.

3 A text line shall not begin with a # preprocessing token. A non-directive shall not begin with any of
the directive names appearing in the syntax.

4 Some preprocessing directives take additional information using preprocessor parameters. A
preprocessing parameter (pp-parameter) shall be either a preprocessor prefixed parameter (identified by
a pp-prefixed-parameter, for implementation-defined preprocessor parameters) or a preprocessor
standard parameter (identified with a pp-standard-parameter, for pp-parameters specified by this
document).

5 In all aspects, a preprocessor standard parameter specified by this document as an identifier
pp_param and an identifier of the form __pp_param__ shall behave the same when used as a
preprocessor parameter, except for the spelling.

6 EXAMPLE 1 Thus, the preprocessor parameters on the two binary resource inclusion directives (6.10.4):

#embed "boop.h" limit(5)
#embed "boop.h" __limit__(5)

behave the same, and can be freely interchanged. Implementations are encouraged to behave similarly for
preprocessor parameters (including preprocessor prefixed parameters) they provide.

7 When in a group that is skipped (6.10.2), the directive syntax is relaxed to allow any sequence of
preprocessing tokens to occur between the directive name and the following new-line character.

Constraints
8 The only white-space characters that shall appear between preprocessing tokens within a prepro-

cessing directive (from just after the introducing # preprocessing token through just before the
terminating new-line character) are space and horizontal-tab (including spaces that have replaced
comments or possibly other white-space characters in translation phase 3).

9 A preprocessor parameter shall be either a preprocessor standard parameter, or an implementation-
defined preprocessor prefixed parameter.195)

Semantics
10 The implementation can process and skip sections of source files conditionally, include other source

files, and replace macros. These capabilities are called preprocessing, because conceptually they occur
before translation of the resulting translation unit.

11 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless
otherwise stated.

12 EXAMPLE 2 In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not
begin with a # at the start of translation phase 4 (5.2.1.2), even though it will do so after the macro EMPTY has
been replaced.

13 The execution of a non-directive preprocessing directive results in undefined behavior.

194)Thus, preprocessing directives are commonly called "lines". These "lines" have no other syntactic significance, as all
white space is equivalent except in certain situations during preprocessing (see the # character string literal creation operator
in 6.10.5.3, for example).
195)An unrecognized preprocessor prefixed parameter is a constraint violation, except within has_embed expressions (6.10.2).

© ISO/IEC 202y — All rights reserved

Language — 166

§ 6.10.1

ISO/IEC 9899:202y (en) — n3299 working draft

6.10.2 Conditional inclusion
Syntax

1 defined-macro-expression:
defined identifier
defined (identifier)

h-preprocessing-token:
any preprocessing-token other than >

h-pp-tokens:
h-preprocessing-token
h-pp-tokens h-preprocessing-token

header-name-tokens:
string-literal
< h-pp-tokens >

has-include-expression:
__has_include (header-name)
__has_include (header-name-tokens)

has-embed-expression:
__has_embed (header-name embed-parameter-sequenceopt)
__has_embed (header-name-tokens pp-balanced-token-sequenceopt)

has-c-attribute-express:
__has_c_attribute (pp-tokens)

2 The #if and #elif directives are collectively known as the conditional expression inclusion prepro-
cessing directives. The conditional expression inclusion preprocessing directives, #ifdef, #ifndef,
#elifdef, and #elifndef directives are collectively known as the conditional inclusion preprocessing
directives.

Constraints
3 The expression that controls conditional inclusion shall be an integer constant expression except that:

identifiers (including those lexically identical to keywords) are interpreted as described subsequently
in this subclause196) and it can contain zero or more defined macro expressions, has_include expres-
sions, has_embed expressions, and/or has_c_attribute expressions as unary operator expressions.

4 A defined macro expression evaluates to 1 if the identifier is currently defined as a macro name (that
is, if it is predefined or if it has been the subject of a #define preprocessing directive without an
intervening #undef directive with the same subject identifier), 0 if it is not.

5 The second form of the has_include expression and has_embed expression is considered only if the
first form does not match, in which case the preprocessing tokens are processed just as in normal
text.

6 The header or source file identified by the parenthesized preprocessing token sequence in each
contained has_include expression is searched for as if that preprocessing token were the pp-tokens
in a #include directive, except that no further macro expansion is performed. Such a directive shall
satisfy the syntactic requirements of a #include directive. The has_include expression evaluates to
1 if the search for the source file succeeds, and to 0 if the search fails.

7 The resource (6.10.4) identified by the header-name preprocessing token sequence in each contained
has_embed expression is searched for as if those preprocessing token were the pp-tokens in a #embed
directive, except that no further macro expansion is performed. Such a directive shall satisfy the
syntactic requirements of a #embed directive. The has_embed expression evaluates to the same value
as the following predefined macros (6.10.10.2):

— __STDC_EMBED_NOT_FOUND__, if the search fails or if any of the embed parameters in the
embed parameter sequence specified are not supported by the implementation for the #embed

196)Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not
macro names — there simply are no keywords, enumeration constants, etc.

§ 6.10.2 © ISO/IEC 202y — All rights reserved

Language — 167

ISO/IEC 9899:202y (en) — n3299 working draft

directive; or,

— __STDC_EMBED_FOUND__, if the search for the resource succeeds and all embed parameters in
the embed parameter sequence specified are supported by the implementation for the #embed
directive and the resource is not empty; or,

— __STDC_EMBED_EMPTY__, if the search for the resource succeeds and all embed parameters in
the embed parameter sequence specified are supported by the implementation for the #embed
directive and the resource is empty.

8 NOTE 1 Unrecognized preprocessor prefixed parameters in has_embed expressions are not a constraint
violation and instead cause the expression to be evaluated to 0, as specified previously.

9 Each has_c_attribute expression is replaced by a nonzero pp-number matching the form of an integer
constant if the implementation supports an attribute with the name specified by interpreting the
pp-tokens as an attribute token, and by 0 otherwise. The pp-tokens shall match the form of an
attribute token.

10 Each preprocessing token that remains (in the list of preprocessing tokens that will become the
controlling expression) after all macro replacements have occurred shall be in the lexical form of a
token (6.4).

Semantics
11 The #ifdef, #ifndef, #elifdef, and #elifndef directives, and the defined conditional inclusion

operator, shall treat __has_include, __has_embed and __has_c_attribute as if they were the
name of defined macros. The identifiers __has_include, __has_embed, and __has_c_attribute
shall not appear in any context not mentioned in this subclause.

12 Preprocessing directives of the forms

if constant-expression new-line groupopt
elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

13 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the control-
ling constant expression are replaced (except for those macro names modified by the defined unary
operator), just as in normal text. If the token defined is generated as a result of this replacement
process or use of the defined unary operator does not match one of the two specified forms prior
to macro replacement, the behavior is undefined. After all replacements due to macro expansion
and evaluations of defined macro expressions, has_include expressions, has_embed expressions,
and has_c_attribute expressions have been performed, all remaining identifiers other than true
(including those lexically identical to keywords such as false) are replaced with the pp-number 0,
true is replaced with pp-number 1, and then each preprocessing token is converted into a token.
The resulting tokens compose the controlling constant expression which is evaluated according
to the rules of 6.6. For the purposes of this token conversion and evaluation, all signed integer
types and all unsigned integer types act as if they have the same representation as, respectively,
the types intmax_t and uintmax_t defined in the header <stdint.h>. This includes interpreting
character constants, which can involve converting escape sequences into execution character set
members. Whether the numeric value for these character constants matches the value obtained
when an identical character constant occurs in an expression (other than within a #if or #elif
directive) is implementation-defined. Whether a single-character character constant may have a
negative value is implementation-defined.

14 NOTE 2 On an implementation where INT_MAX is 0x7FFF and UINT_MAX is 0xFFFF, the constant 0x8000 is
signed and positive within a #if expression even though it would be unsigned in translation phase 7 (5.2.1.2).

15 NOTE 3 The constant expression in the following #if directive and if statement is not guaranteed to evaluate
to the same value in these two contexts.

#if ’z’ - ’a’ == 25
if (’z’ - ’a’ == 25)

© ISO/IEC 202y — All rights reserved

Language — 168

§ 6.10.2

ISO/IEC 9899:202y (en) — n3299 working draft

16 Preprocessing directives of the forms

ifdef identifier new-line groupopt
ifndef identifier new-line groupopt
elifdef identifier new-line groupopt
elifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions
are equivalent to #if defined identifier, #if !defined identifier, #elif defined identifier, and
#elif !defined identifier respectively.

17 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls
is skipped: directives are processed only through the name that determines the directive to keep
track of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored,
as are the other preprocessing tokens in the group. Only the first group whose control condition
evaluates to true (nonzero) is processed; any following groups are skipped and their controlling
directives are processed as if they were in a group that is skipped. If none of the conditions evaluates
to true, and there is a #else directive, the group controlled by the #else is processed; lacking a
#else directive, all the groups until the #endif are skipped.197)

18 EXAMPLE 1 This demonstrates a way to include a header file only if it is available.

#if __has_include(<optional.h>)
include <optional.h>
define have_optional 1
#elif __has_include(<experimental/optional.h>)
include <experimental/optional.h>
define have_optional 1
define have_experimental_optional 1
#endif
#ifndef have_optional
define have_optional 0
#endif

19 EXAMPLE 2

/* Fallback for compilers not yet implementing this feature. */
#ifndef __has_c_attribute
#define __has_c_attribute(x) 0
#endif /* __has_c_attribute */

#if __has_c_attribute(fallthrough)
/* Standard attribute is available, use it. */
#define FALLTHROUGH [[fallthrough]]
#elif __has_c_attribute(vendor::fallthrough)
/* Vendor attribute is available, use it. */
#define FALLTHROUGH [[vendor::fallthrough]]
#else
/* Fallback implementation. */
#define FALLTHROUGH
#endif

20 EXAMPLE 3

#ifdef __STDC__

#define TITLE "ISO C Compilation"
#elifndef __cplusplus
#define TITLE "Non-ISO C Compilation"
#else

197)As indicated by the syntax, no preprocessing tokens are allowed to follow a #else or #endif directive before the
terminating new-line character. However, comments can appear anywhere in a source file, including within a preprocessing
directive.

§ 6.10.2 © ISO/IEC 202y — All rights reserved

Language — 169

ISO/IEC 9899:202y (en) — n3299 working draft

/* C++ */
#define TITLE "C++ Compilation"
#endif

21 EXAMPLE 4 A combination of __FILE__ (6.10.10.2) and __has_embed can be used to check for support of
specific implementation extensions for the #embed (6.10.4) directive’s parameters.

#if __has_embed(__FILE__ ext::token(0xB055))
#define DESCRIPTION "Supports extended token embed parameter"
#else
#define DESCRIPTION "Does not support extended token embed parameter"
#endif

22 EXAMPLE 5 The following snippet uses __has_embed to check for support of a specific implementation-
defined embed parameter, and otherwise uses standard behavior to produce the same effect.

void parse_into_s(short* ptr, unsigned char* ptr_bytes, unsigned long long size);

int main () {
#if __has_embed ("bits.bin" ds9000::element_type(short))

/* Implementation extension: create short integers from the */
/* translation environment resource into */
/* a sequence of integer constants */
short meow[] = {

#embed "bits.bin" ds9000::element_type(short)
};

#elif __has_embed ("bits.bin")
/* no support for implementation-specific */
/* ds9000::element_type(short) parameter */
const unsigned char meow_bytes[] = {

#embed "bits.bin"
};
short meow[sizeof(meow_bytes) / sizeof(short)] = {};
/* parse meow_bytes into short values by-hand! */
parse_into_s(meow, meow_bytes, sizeof(meow_bytes));

#else
#error "cannot find bits.bin resource"
#endif

return (int)(meow[0] + meow[(sizeof(meow) / sizeof(*meow)) - 1]);
}

23 EXAMPLE 6 If the search for the resource is successful, this resource is always considered empty due to the
limit(0) embed parameter, including in __has_embed expressions.

int main () {
#if __has_embed(<infinite-resource> limit(0)) == 2

// if <infinite-resource> exists, this
// token sequence is always taken.
return 0;

#else
// the ’infinite-resource’ resource does not exist
#error "The resource does not exist"

#endif
}

Forward references: macro replacement (6.10.5), source file inclusion (6.10.3), mandatory macros
(6.10.10.2), largest integer types (7.22.2.6).

© ISO/IEC 202y — All rights reserved

Language — 170

§ 6.10.2

ISO/IEC 9899:202y (en) — n3299 working draft

6.10.3 Source file inclusion
Constraints

1 A #include directive shall identify a header or source file that can be processed by the implementa-
tion.

Semantics
2 A preprocessing directive of the form

include < h-char-sequence > new-line

searches a sequence of implementation-defined places for a header identified uniquely by the
specified sequence between the < and > delimiters, and causes the replacement of that directive
by the entire contents of the header. How the places are specified or the header identified is
implementation-defined.

3 A preprocessing directive of the form

include " q-char-sequence " new-line

causes the replacement of that directive by the entire contents of the source file identified by
the specified sequence between the " delimiters. The named source file is searched for in an
implementation-defined manner. If this search is not supported, or if the search fails, the directive is
reprocessed as if it read

include < h-char-sequence > new-line

with the identical contained sequence (including > characters, if any) from the original directive.

4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting after
all replacements shall match one of the two previous forms.198) The method by which a sequence
of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is
combined into a single header name preprocessing token is implementation-defined.

5 The implementation shall provide unique mappings for sequences consisting of one or more nondig-
its or digits (6.4.3.1) followed by a period (.) and a single nondigit. The first character shall not be a
digit. The implementation can ignore distinctions of alphabetical case and restrict the mapping to
eight significant characters before the period.

6 A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit (see 5.3.5.2).

7 EXAMPLE 1 The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

8 EXAMPLE 2 This illustrates macro-replaced #include directives:

#if VERSION == 1
#define INCFILE "vers1.h"

#elif VERSION == 2
#define INCFILE "vers2.h" // and so on

#else
#define INCFILE "versN.h"

198)Adjacent string literals are not concatenated into a single string literal (see the translation phases in 5.2.1.2); thus, an
expansion that results in two string literals is an invalid directive.

§ 6.10.3 © ISO/IEC 202y — All rights reserved

Language — 171

ISO/IEC 9899:202y (en) — n3299 working draft

#endif
#include INCFILE

Forward references: macro replacement (6.10.5).

6.10.4 Binary resource inclusion
6.10.4.1 #embed preprocessing directive
Description

1 A resource is a source of data accessible from the translation environment. An embed parameter is a
single preprocessor parameter in the embed parameter sequence. It has an implementation resource
width, which is the implementation-defined size in bits of the located resource. It also has a resource
width, which is either:

— the number of bits as computed from the optionally-provided limit embed parameter
(6.10.4.2), if present; or,

— the implementation resource width.

2 An embed parameter sequence is a whitespace-delimited list of preprocessor parameters which can
modify the result of the replacement for the #embed preprocessing directive.

Constraints
3 An #embed directive shall identify a resource that can be processed by the implementation as a

binary data sequence given the provided embed parameters.

4 Embed parameters not specified in this document shall be implementation-defined. Implementation-
defined embed parameters may change the subsequently-defined semantics of the directive; oth-
erwise, #embed directives which do not contain implementation-defined embed parameters shall
behave as described in this document.

5 A resource is considered empty when its resource width is zero.

6 Let embed element width be either:

— an integer constant expression greater than zero determined by an implementation-defined
embed parameter; or,

— CHAR_BIT (5.3.5.3.2).

The result of (resource width) % (embed element width) shall be zero.199)

Semantics
7 The expansion of a #embed directive is a token sequence formed from the list of integer constant

expressions described later in this subclause. The group of tokens for each integer constant expres-
sion in the list is separated in the token sequence from the group of tokens for the previous integer
constant expression in the list by a comma. The sequence neither begins nor ends in a comma. If the
list of integer constant expressions is empty, the token sequence is empty. The directive is replaced
by its expansion and, with the presence of certain embed parameters, additional or replacement
token sequences.

8 A preprocessing directive of the form

embed < h-char-sequence > embed-parameter-sequenceopt new-line

searches a sequence of implementation-defined places for a resource identified uniquely by the spec-
ified sequence between the < and >. The search for the named resource is done in an implementation-
defined manner.
199)This constraint helps ensure data is neither filled with padding values nor truncated in a given environment, and helps

ensure the data is portable with respect to usages of memcpy (7.26.2.1) with character type arrays initialized from the data.

© ISO/IEC 202y — All rights reserved

Language — 172

§ 6.10.4.1

ISO/IEC 9899:202y (en) — n3299 working draft

9 A preprocessing directive of the form

embed " q-char-sequence " embed-parameter-sequenceopt new-line

searches a sequence of implementation-defined places for a resource identified uniquely by the
specified sequence between the " delimiters. The search for the named resource is done in an
implementation-defined manner. If this search is not supported, or if the search fails, the directive is
reprocessed as if it read

embed < h-char-sequence > embed-parameter-sequenceopt new-line

with the identical contained q-char-sequence (including > characters, if any) from the original
directive.

10 Either form of the #embed directive specified previously behaves as specified later in this subclause.
The values of the integer constant expressions in the expanded sequence are determined by an
implementation-defined mapping of the resource’s data. Each integer constant expression’s value is
in the range from 0 to (2embed element width)− 1, inclusive.200) If:

— the list of integer constant expressions is used to initialize an array of a type compatible with
unsigned char, or compatible with char if char cannot hold negative values; and,

— the embed element width is equal to CHAR_BIT (5.3.5.3.2),

then the contents of the initialized elements of the array are as-if the resource’s binary data is fread
(7.23.8.1) into the array at translation time.

11 A preprocessing directive of the form

embed pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
embed in the directive are processed just as in normal text. (Each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting after
all replacements shall match one of the two previous forms.201) The method by which a sequence
of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is
combined into a single resource name preprocessing token is implementation-defined.

12 An embed parameter with a preprocessor parameter token that is one of the following is a standard
embed parameter:

limit prefix suffix if_empty

The significance of these standard embed parameters is specified later in this subclause.

Recommended practice
13 The #embed directive is meant to translate binary data in a resource to a sequence of integer constant

expressions in a way that preserves the value of the resource’s bit stream where possible.

14 A mechanism similar to, but distinct from, the implementation-defined search paths used for source
file inclusion (6.10.3) is encouraged.

15 Implementations should take into account translation-time bit and byte orders as well as execution-
time bit and byte orders to more appropriately represent the resource’s binary data from the directive.
This maximizes the chance that, if the resource referenced at translation time through the #embed
directive is the same one accessed through execution-time means, the data that is e.g. fread or
similar into contiguous storage will compare bit-for-bit equal to an array of character type initialized
from an #embed directive’s expanded contents.

16 EXAMPLE 1 Placing a small image resource.

200)For example, an embed element width of 8 will yield a range of values from 0 to 255, inclusive.
201)Adjacent string literals are not concatenated into a single string literal (see the translation phases in 5.2.1.2); thus, an

expansion that results in two string literals is an invalid directive.

§ 6.10.4.1 © ISO/IEC 202y — All rights reserved

Language — 173

ISO/IEC 9899:202y (en) — n3299 working draft

#include <stddef.h>

void have_you_any_wool(const unsigned char*, size_t);

int main (int, char*[]) {
static const unsigned char baa_baa[] = {

#embed "black_sheep.ico"
};

have_you_any_wool(baa_baa, sizeof(baa_baa));

return 0;
}

17 EXAMPLE 2 This snippet:

int main (int, char*[]) {
static const unsigned char coefficients[] = {

#embed "only_8_bits.bin" // potential constraint violation
};

return 0;
}

can violate the constraint that (resource width) % (embed element width) is 0. There is a chance that the
implementation-defined 8 bit width of the resource is not evenly divisible by the embed element width (e.g. on
a system where CHAR_BIT is 16). Issuing a diagnostic in this case can aid in portability by calling attention to
potentially incompatible expectations between implementations and their resources.

18 EXAMPLE 3 Initialization of non-arrays.

int main () {
/* Braces can be kept or elided as per normal initialization rules */
int i = {

#embed "i.dat"
}; /* valid if i.dat produces 1 value,

i value is [0, 2(embed element width)) */
int i2 =

#embed "i.dat"
; /* valid if i.dat produces 1 value,

i2 value is [0, 2(embed element width)) */
struct s {

double a, b, c;
struct { double e, f, g; };
double h, i, j;

};
struct s x = {
/* initializes each element in order according to initialization
rules with comma-separated list of integer constant expressions
inside of braces */

#embed "s.dat"
};
return 0;

}

Non-array types can still be initialized since the directive produces a comma-delimited list of integer constant
expressions, a single integer constant expression, or nothing.

19 EXAMPLE 4 Equivalency of bit sequence and bit order between a translation-time read and an execution-time
read of the same resource/file.

#include <string.h>

© ISO/IEC 202y — All rights reserved

Language — 174

§ 6.10.4.1

ISO/IEC 9899:202y (en) — n3299 working draft

#include <stddef.h>
#include <stdio.h>

int main(void) {
static const unsigned char embed_data[] = {

#embed <data.dat>
};

const size_t f_size = sizeof(embed_data);
unsigned char f_data[f_size];
FILE* f_source = fopen("data.dat", "rb");
if (f_source == nullptr)

return 1;
char* f_ptr = (char*)&f_data[0];
if (fread(f_ptr, 1, f_size, f_source) != f_size) {

fclose(f_source);
return 1;

}
fclose(f_source);

int is_same = memcmp(&embed_data[0], f_ptr, f_size);
// if both operations refers to the same resource/file at
// execution time and translation time, "is_same" should be 0
return is_same == 0 ? 0 : 1;

}

6.10.4.2 limit parameter
Constraints

1 The limit standard embed parameter can appear zero times or one time in the embed parameter
sequence. Its preprocessor argument clause shall be present and have the form:

(constant-expression)

and shall be an integer constant expression. The integer constant expression shall not evaluate to a
value less than 0.

2 The token defined shall not appear within the constant expression.

Semantics
3 The embed parameter with a preprocessor parameter token limit denotes a balanced preprocessing

token sequence that will be used to compute the resource width. Independently of any macro
replacement done previously (e.g. when matching the form of #embed), the constant expression is
evaluated after the balanced preprocessing token sequence is processed as in normal text, using
the rules specified for conditional inclusion (6.10.2), with the exception that any defined macro
expressions are not permitted.

4 The resource width is:

— 0, if the integer constant expression evaluates to 0; or,

— the implementation resource width if it is less than the embed element width multiplied by
the integer constant expression; or,

— the embed element width multiplied by the integer constant expression, if it is less than or
equal to the implementation resource width.

5 EXAMPLE 1 Checking the first 4 elements of a sound resource.

#include <assert.h>

int main (int, char*[]) {

§ 6.10.4.2 © ISO/IEC 202y — All rights reserved

Language — 175

ISO/IEC 9899:202y (en) — n3299 working draft

static const char sound_signature[] = {
#embed <sdk/jump.wav> limit(2+2)

};
static_assert((sizeof(sound_signature) / sizeof(*sound_signature)) == 4,

"There should only be 4 elements in this array.");

// verify PCM WAV resource
assert(sound_signature[0] == ’R’);
assert(sound_signature[1] == ’I’);
assert(sound_signature[2] == ’F’);
assert(sound_signature[3] == ’F’);
assert(sizeof(sound_signature) == 4);

return 0;
}

6 EXAMPLE 2 Similar to a previous example, except it illustrates macro expansion specifically done for the
limit(...) parameter.

#include <assert.h>

#define TWO_PLUS_TWO 2+2

int main (int, char*[]) {
const char sound_signature[] = {
/* the token sequence within the parentheses
for the "limit" parameter undergoes macro
expansion, at least once, resulting in

#embed <sdk/jump.wav> limit(2+2)

*/
#embed <sdk/jump.wav> limit(TWO_PLUS_TWO)

};
static_assert((sizeof(sound_signature) / sizeof(*sound_signature)) == 4,

"There should only be 4 elements in this array.");

// verify PCM WAV resource
assert(sound_signature[0] == ’R’);
assert(sound_signature[1] == ’I’);
assert(sound_signature[2] == ’F’);
assert(sound_signature[3] == ’F’);
assert(sizeof(sound_signature) == 4);

return 0;
}

7 EXAMPLE 3 A potential constraint violation since an environment that has a CHAR_BIT whose value is greater
than 24 can possibly not get enough data from the resource.

int main (int, char*[]) {
const unsigned char arr[] = {

#embed "24_bits.bin" limit(1) // can be a constraint violation
};

return 0;
}

8 EXAMPLE 4 Resources interfacing with certain implementations can recieve an infinite stream of data, such as
the (hypothetical) </owo/uwurandom> resource used in the following snippet:

int main (int, char*[]) {
const unsigned char arr[] = {

© ISO/IEC 202y — All rights reserved

Language — 176

§ 6.10.4.2

ISO/IEC 9899:202y (en) — n3299 working draft

#embed </owo/uwurandom> limit(513)
};

return 0;
}

The limit parameter can help process only a portion of that information and prevent exhaustion of an
implementation’s internal resources when processing such data.

6.10.4.3 suffix parameter
Constraints

1 The suffix standard embed parameter can appear zero times or one time in the embed parameter
sequence. Its preprocessor argument clause shall be present and have the form:

(pp-balanced-token-sequenceopt)

Semantics
2 The embed parameter with a preprocessing parameter token suffix denotes a balanced preprocess-

ing token sequence within its preprocessor argument clause that will be placed immediately after
the result of the associated #embed directive’s expansion.

3 If the resource is empty, then suffix has no effect and is ignored.

4 EXAMPLE Extra elements added to array initializer.

#include <string.h>

#ifndef SHADER_TARGET
#define SHADER_TARGET "edith-impl.glsl"
#endif

extern char* null_term_shader_data;

void fill_in_data () {
const char internal_data[] = {

#embed SHADER_TARGET \
suffix(,)
0

};

strcpy(null_term_shader_data, internal_data);
}

6.10.4.4 prefix parameter
Constraints

1 The prefix standard embed parameter can appear zero times or one time in the embed parameter
sequence. Its preprocessor parameter clause shall be present and have the form:

(pp-balanced-token-sequenceopt)

Semantics
2 The embed parameter with a preprocessor parameter token prefix denotes a balanced preprocessing

token sequence within its preprocessor argument clause that will be placed immediately before the
result of the associated #embed directive’s expansion, if any.

3 If the resource is empty, then prefix has no effect and is ignored.

4 EXAMPLE A null-terminated character array with prefixed and suffixed additional tokens when the resource
is not empty, providing null termination and a byte order mark.

#include <assert.h>
#include <string.h>

§ 6.10.4.4 © ISO/IEC 202y — All rights reserved

Language — 177

ISO/IEC 9899:202y (en) — n3299 working draft

#ifndef SHADER_TARGET
#define SHADER_TARGET "ches.glsl"
#endif

extern char* merp;

void init_data () {
const char whl[] = {

#embed SHADER_TARGET \
prefix(0xEF, 0xBB, 0xBF,) /* UTF-8 BOM */ \
suffix(,)
0

};
// always null terminated,
// contains BOM if not-empty
int is_good = (sizeof(whl) == 1 && whl[0] == ’\0’)
|| (whl[0] == ’\xEF’ && whl[1] == ’\xBB’
&& whl[2] == ’\xBF’ && whl[sizeof(whl) - 1] == ’\0’);
assert(is_good);
strcpy(merp, whl);

}

6.10.4.5 if_empty parameter
Constraints

1 The if_empty standard embed parameter can appear zero times or one time in the embed parameter
sequence. Its preprocessor argument clause shall be present and have the form:

(pp-balanced-token-sequenceopt)

Semantics
2 The embed parameter with a preprocessing parameter token if_empty denotes a balanced pre-

processing token sequence within its preprocessor argument clause that will replace the #embed
directive entirely.

If the resource is not empty, then if_empty has no effect and is ignored.

3 EXAMPLE 1 If the search for the resource is successful, this resource is always considered empty due to the
limit(0) embed parameter. This program always returns 0, even if the resource is searched for and found
successfully by the implementation and has an implementation resource width greater than 0.

int main () {
return

#embed <some_resource> limit(0) prefix(1) if_empty(0)
;
// becomes:
// return 0;

}

4 EXAMPLE 2 An example similar to using the suffix embed parameter, but changed slightly.

#include <string.h>

#ifndef SHADER_TARGET
#define SHADER_TARGET "edith-impl.glsl"
#endif

extern char* null_term_shader_data;

void fill_in_data () {
const char internal_data[] = {

© ISO/IEC 202y — All rights reserved

Language — 178

§ 6.10.4.5

ISO/IEC 9899:202y (en) — n3299 working draft

#embed SHADER_TARGET \
suffix(, 0) \
if_empty(0)

};

strcpy(null_term_shader_data, internal_data);
}

5 EXAMPLE 3 This resource is considered empty due to the limit(0) embed parameter, meaning an if_empty
expression replaces the directive as specified previously. A constraint is still violated if the search for the
resource is unsuccessful.

int main () {
return

#embed <infinite-resource> limit(0) if_empty(45540)
;

}

becomes:

int main () {
return 45540;

}

6.10.5 Macro replacement
6.10.5.1 General
Constraints

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same
number, ordering, spelling, and white-space separation, where all white-space separations are
considered identical.

2 An identifier currently defined as an object-like macro shall not be redefined by another #define
preprocessing directive unless the second definition is an object-like macro definition and the two
replacement lists are identical. Likewise, an identifier currently defined as a function-like macro
shall not be redefined by another #define preprocessing directive unless the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two
replacement lists are identical.

3 There shall be white space between the identifier and the replacement list in the definition of an
object-like macro.

4 If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments
(including those arguments consisting of no preprocessing tokens) in an invocation of a function-like
macro shall equal the number of parameters in the macro definition. Otherwise, there shall be at
least as many arguments in the invocation as there are parameters in the macro definition (excluding
the ...). There shall exist a) preprocessing token that terminates the invocation.

5 The identifiers __VA_ARGS__ and __VA_OPT__ shall occur only in the replacement-list of a function-
like macro that uses the ellipsis notation in the parameters.

6 A parameter identifier in a function-like macro shall be uniquely declared within its scope.

Semantics
7 The identifier immediately following the define is called the macro name. There is one name

space for macro names. Any white-space characters preceding or following the replacement list of
preprocessing tokens are not considered part of the replacement list for either form of macro.

8 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a prepro-
cessing directive can begin, the identifier is not subject to macro replacement.

9 A preprocessing directive of the form

§ 6.10.5.1 © ISO/IEC 202y — All rights reserved

Language — 179

ISO/IEC 9899:202y (en) — n3299 working draft

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name202) to be replaced
by the replacement list of preprocessing tokens that constitute the remainder of the directive. The
replacement list is then rescanned for more macro names as specified later in this subclause.

10 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their declaration
in the identifier list until the new-line character that terminates the #define preprocessing directive.
Each subsequent instance of the function-like macro name followed by a (as the next preprocessing
token introduces the sequence of preprocessing tokens that is replaced by the replacement list
in the definition (an invocation of the macro). The replaced sequence of preprocessing tokens is
terminated by the matching) preprocessing token, skipping intervening matched pairs of left and
right parenthesis preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space character.

11 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms
the list of arguments for the function-like macro. The individual arguments within the list are
separated by comma preprocessing tokens, but comma preprocessing tokens between matching
inner parentheses do not separate arguments. If there are sequences of preprocessing tokens within
the list of arguments that would otherwise act as preprocessing directives,203) the behavior is
undefined.

12 If there is a ... in the identifier-list in the macro definition, then the trailing arguments (if any),
including any separating comma preprocessing tokens, are merged to form a single item: the variable
arguments. The number of arguments so combined is such that, following merger, the number of
arguments is one more than the number of parameters in the macro definition (excluding the ...),
except that if there are as many arguments as named parameters, the macro invocation behaves as if
a comma token has been appended to the argument list such that variable arguments are formed
that contain no pp-tokens.

6.10.5.2 Argument substitution
Syntax

1 va-opt-replacement:
__VA_OPT__ (pp-tokensopt)

Description
2 Argument substitution is a process during macro expansion in which identifiers corresponding to

the parameters of the macro definition and the special constructs __VA_ARGS__ and __VA_OPT__

are replaced with token sequences from the arguments of the macro invocation and possibly of the
argument of the feature __VA_OPT__. The latter process allows to control a substitute token sequence
that is only expanded if the argument list that corresponds to a trailing ... of the parameter list is
present and has a non-empty substitution.

Constraints
3 The identifier __VA_OPT__ shall always occur as part of the preprocessing token sequence va-opt-

replacement; its closing) is determined by skipping intervening pairs of matching left and right
parentheses in its pp-tokens. The pp-tokens of a va-opt-replacement shall not contain __VA_OPT__.
The pp-tokens shall form a valid replacement list for the current function-like macro.

202)Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences
possibly containing identifier-like subsequences (see 5.2.1.2, translation phases), they are never scanned for macro names or
parameters.

203)Despite the name, a non-directive is a preprocessing directive.

© ISO/IEC 202y — All rights reserved

Language — 180

§ 6.10.5.2

ISO/IEC 9899:202y (en) — n3299 working draft

Semantics
4 After the arguments for the invocation of a function-like macro have been identified, argument

substitution takes place. A va-opt-replacement is treated as if it were a parameter. For each parameter
in the replacement list that is neither preceded by a # or ## preprocessing token nor followed by a
preprocessing token, the preprocessing tokens naming the parameter are replaced by a token
sequence determined as follows:

— If the parameter is of the form va-opt-replacement, the replacement preprocessing tokens are
the preprocessing token sequence for the corresponding argument, as specified later in this
subclause.

— Otherwise, the replacement preprocessing tokens are the preprocessing tokens of the corre-
sponding argument after all macros contained therein have been expanded. The argument’s
preprocessing tokens are completely macro replaced before being substituted as if they formed
the rest of the preprocessing file with no other preprocessing tokens being available.

5 EXAMPLE 1

#define LPAREN() (
#define G(Q) 42
#define F(R, X, ...) __VA_OPT__(G R X))
int x = F(LPAREN(), 0, <:-); // replaced by int x = 42;

6 An identifier __VA_ARGS__ that occurs in the replacement list is treated as if it were a parameter,
and the variable arguments form the preprocessing tokens used to replace it.

7 The preprocessing token sequence for the corresponding argument of a va-opt-replacement is
defined as follows. If a (hypothetical) substitution of __VA_ARGS__ as neither an operand of # nor
consists of no preprocessing tokens, the argument consists of a single placemarker preprocessing
token (6.10.5.4, 6.10.5.5). Otherwise, the argument consists of the results of the expansion of the
contained pp-tokens as the replacement list of the current function-like macro before removal of
placemarker tokens, rescanning, and further replacement.

8 NOTE The placemarker tokens are removed before stringization (6.10.5.3), and can be removed by rescanning
and further replacement (6.10.5.5).

9 EXAMPLE 2

#define F(...) f(0 __VA_OPT__(,) __VA_ARGS__)
#define G(X, ...) f(0, X __VA_OPT__(,) __VA_ARGS__)
#define SDEF(sname, ...) S sname __VA_OPT__(= { __VA_ARGS__ })
#define EMP

F(a, b, c) // replaced by f(0, a, b, c)
F() // replaced by f(0)
F(EMP) // replaced by f(0)

G(a, b, c) // replaced by f(0, a, b, c)
G(a,) // replaced by f(0, a)
G(a) // replaced by f(0, a)

SDEF(foo); // replaced by S foo;
SDEF(bar, 1, 2); // replaced by S bar = { 1, 2 };

#define H1(X, ...) X __VA_OPT__(##) __VA_ARGS__

// error: ## on line above
// cannot appear at the beginning of a replacement
// list (6.10.5.4)

#define H2(X, Y, ...) __VA_OPT__(X ## Y,) __VA_ARGS__

§ 6.10.5.2 © ISO/IEC 202y — All rights reserved

Language — 181

ISO/IEC 9899:202y (en) — n3299 working draft

H2(a, b, c, d) // replaced by ab, c, d

#define H3(X, ...) #__VA_OPT__(X##X X##X)
H3(, 0) // replaced by ""

#define H4(X, ...) __VA_OPT__(a X ## X) ## b
H4(, 1) // replaced by a b

#define H5A(...) __VA_OPT__()/**/__VA_OPT__()
#define H5B(X) a ## X ## b
#define H5C(X) H5B(X)
H5C(H5A()) // replaced by ab

6.10.5.3 The # operator
Constraints

1 Each # preprocessing token in the replacement list for a function-like macro shall be followed by a
parameter as the next preprocessing token in the replacement list.

Semantics
2 If, in the replacement list, a parameter is immediately preceded by a # preprocessing token, both

are replaced by a single character string literal preprocessing token that contains the spelling of the
preprocessing token sequence for the corresponding argument (excluding placemarker tokens).

3 Let the stringizing argument be the preprocessing token sequence for the corresponding argument
with placemarker tokens removed. Each occurrence of white space between the stringizing argu-
ment’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token composing the
stringizing argument is deleted. Otherwise, the original spelling of each preprocessing token in
the stringizing argument is retained in the character string literal, except for special handling for
producing the spelling of string literals and character constants: a \ character is inserted before each
" and \ character of a character constant or string literal (including the delimiting " characters),
except that it is implementation-defined whether a \ character is inserted before the \ character
beginning a universal character name.

4 If the replacement that results is not a valid character string literal, the behavior is undefined.
The character string literal corresponding to an empty stringizing argument is "". The order of
evaluation of # and ## operators is unspecified.

6.10.5.4 The ## operator
Constraints

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for
either form of macro definition.

Semantics
2 If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed

by a ## preprocessing token, the parameter is replaced by the corresponding argument’s preprocess-
ing token sequence; however, if an argument consists of no preprocessing tokens, the parameter is
replaced by a placemarker preprocessing token instead.204)

3 For both object-like and function-like macro invocations, before the replacement list is reexamined
for more macro names to replace, each instance of a ## preprocessing token in the replacement list
(not from an argument) is deleted and the preceding preprocessing token is concatenated with the
following preprocessing token. Placemarker preprocessing tokens are handled specially: concatena-
tion of two placemarkers results in a single placemarker preprocessing token, and concatenation
of a placemarker with a non-placemarker preprocessing token results in the non-placemarker pre-
processing token. If the result is not a valid preprocessing token, the behavior is undefined. The

204)Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within
translation phase 4 (5.2.1.2).

© ISO/IEC 202y — All rights reserved

Language — 182

§ 6.10.5.4

ISO/IEC 9899:202y (en) — n3299 working draft

resulting token is available for further macro replacement. The order of evaluation of ## operators is
unspecified.

4 EXAMPLE In the following fragment:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
// char p[] = "x ## y";

The expansion produces, at various stages:

join(x, y)

in_between(x hash_hash y)

in_between(x ## y)

mkstr(x ## y)

"x ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this
new token is not the ## operator.

6.10.5.5 Rescanning and further replacement
1 After all parameters in the replacement list have been substituted and # and ## processing has

taken place, all placemarker preprocessing tokens are removed. The resulting preprocessing token
sequence is then rescanned, along with all subsequent preprocessing tokens of the source file, for
more macro names to replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source file’s preprocessing tokens), it is not replaced. Furthermore, if any
nested replacements encounter the name of the macro being replaced, it is not replaced. These
nonreplaced macro name preprocessing tokens are no longer available for further replacement even
if they are later (re)examined in contexts in which that macro name preprocessing token would
otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a prepro-
cessing directive even if it resembles one, but all pragma unary operator expressions within it are
then processed as specified in 6.10.11.

4 EXAMPLE There are cases where it is not clear whether a replacement is nested or not. For example, given the
following macro definitions:

#define f(a) a*g
#define g(a) f(a)

the invocation

f(2)(9)

can expand to either

2*f(9)

or

2*9*g

§ 6.10.5.5 © ISO/IEC 202y — All rights reserved

Language — 183

ISO/IEC 9899:202y (en) — n3299 working draft

Strictly conforming programs are not permitted to depend on such unspecified behavior.

6.10.5.6 Scope of macro definitions
1 A macro definition lasts (independent of block structure) until a corresponding #undef directive is

encountered or (if none is encountered) until the end of the preprocessing translation unit. Macro
definitions have no significance after translation phase 4.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified
identifier is not currently defined as a macro name.

3 EXAMPLE 1 The simplest use of this facility is to define a "manifest constant", as in

#define TABSIZE 100

int table[TABSIZE];

4 EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments. It has
the advantages of working for any compatible types of the arguments and of generating in-line code without
the overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a
second time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a): (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

5 EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x
#define r(x,y) x ## y
#define str(x) # x

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);
p() i[q()] = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };

6 EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s

© ISO/IEC 202y — All rights reserved

Language — 184

§ 6.10.5.6

ISO/IEC 9899:202y (en) — n3299 working draft

#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) // this goes away

== 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs(
"strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0" ": @\n",
s);

#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs(
"strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0: @\n",
s);

#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the # and ## tokens in the macro definition is optional.

7 EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),

t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[] = { 123, 45, 67, 89,
10, 11, 12, };

8 EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a) (/* note the white space */ \

a /* other stuff on this line

*/)

But the following redefinitions of the preceding definitions are invalid:

#define OBJ_LIKE (0) // different token sequence

§ 6.10.5.6 © ISO/IEC 202y — All rights reserved

Language — 185

ISO/IEC 9899:202y (en) — n3299 working draft

#define OBJ_LIKE (1 - 1) // different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

9 EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, __VA_ARGS__)
#define showlist(...) puts(#__VA_ARGS__)
#define report(test, ...) ((test)?puts(#test):\

printf(__VA_ARGS__))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):

printf("x is %d but y is %d", x, y));

6.10.6 Line control
Constraints

1 The string literal of a #line directive, if present, shall be a character string literal.

Semantics
2 The line number of the current source line is one greater than the number of new-line characters read

or introduced in translation phase 1 (5.2.1.2) while processing the source file to the current token.

3 If a preprocessing token (in particular __LINE__) spans two or more physical lines, it is unspecified
which of those line numbers is associated with that token. If a preprocessing directive spans two or
more physical lines, it is unspecified which of those line numbers is associated with the preprocessing
directive. If a macro invocation spans multiple physical lines, it is unspecified which of those line
numbers is associated with that invocation. The line number of a preprocessing token is independent
of the context (in particular, as a macro argument or in a preprocessing directive). The line number
of a __LINE__ in a macro body is the line number of the macro invocation.

4 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a
source line that has a line number as specified by the digit sequence (interpreted as a decimal integer,
ignoring any optional digit separators (6.4.5.2) in the digit sequence). The digit sequence shall not
specify zero, nor a number greater than 2147483647.

5 A preprocessing directive of the form

line digit-sequence " s-char-sequenceopt " new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

6 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
line on the directive are processed just as in normal text (each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens). The directive resulting after

© ISO/IEC 202y — All rights reserved

Language — 186

§ 6.10.6

ISO/IEC 9899:202y (en) — n3299 working draft

all replacements shall match one of the two previous forms and is then processed as appropriate.205)

Recommended practice
7 The line number associated with a pp-token should be the line number of the first character of the

pp-token. The line number associated with a preprocessing directive should be the line number of
the line with the first # token. The line number associated with a macro invocation should be the
line number of the first character of the macro name in the invocation.

6.10.7 Diagnostic directives
Semantics

1 A preprocessing directive of either form

error pp-tokensopt new-line
warning pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of
preprocessing tokens.

6.10.8 Pragma directive
Semantics

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

where the preprocessing token STDC does not immediately follow pragma in the directive (prior
to any macro replacement)206) causes the implementation to behave in an implementation-defined
manner. The behavior can cause translation to fail or cause the translator or the resulting program to
behave in a non-conforming manner. Any such pragma that is not recognized by the implementation
is ignored.

2 If the preprocessing token STDC does immediately follow pragma in the directive (prior to any macro
replacement), then no macro replacement is performed on the directive, and the directive shall have
one of the following forms207) whose meanings are described elsewhere:

standard-pragma:
pragma STDC FP_CONTRACT on-off-switch
pragma STDC FENV_ACCESS on-off-switch
pragma STDC FENV_DEC_ROUND dec-direction
pragma STDC FENV_ROUND direction
pragma STDC CX_LIMITED_RANGE on-off-switch

on-off-switch: one of
ON OFF DEFAULT

direction: one of
FE_DOWNWARD FE_TONEAREST FE_TONEARESTFROMZERO
FE_TOWARDZERO FE_UPWARD FE_DYNAMIC

205)Because a new-line is explicitly included as part of the #line directive, the number of new-line characters read while
processing to the first pp-token can be different depending on whether the implementation uses a one-pass preprocessor.
Therefore, there are two possible values for the line number following a directive of the form #line __LINE__ new-line.

206)An implementation is not required to perform macro replacement in pragmas, but it is permitted except for in standard
pragmas (where STDC immediately follows pragma). If the result of macro replacement in a non-standard pragma has the
same form as a standard pragma, the behavior is still implementation-defined; an implementation is permitted to behave as
if it were the standard pragma, but is not required to.
207)See "future language directions" (6.11.6).

§ 6.10.8 © ISO/IEC 202y — All rights reserved

Language — 187

ISO/IEC 9899:202y (en) — n3299 working draft

dec-direction: one of
FE_DEC_DOWNWARD FE_DEC_TONEAREST FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO FE_DEC_UPWARD FE_DEC_DYNAMIC

Recommended practice
3 Implementations are encouraged to diagnose unrecognized pragmas.

Forward references: the FP_CONTRACT pragma (7.12.3), the FENV_ACCESS pragma
(7.6.2), the FENV_DEC_ROUND pragma (7.6.4), the FENV_ROUND pragma (7.6.3), the
CX_LIMITED_RANGE pragma (7.3.4).

6.10.9 Null directive
Semantics

1 A preprocessing directive of the form

new-line

has no effect.

6.10.10 Predefined macro names
6.10.10.1 General

1 The values of the predefined macros listed in the following subclauses208) (except for __FILE__ and
__LINE__) remain constant throughout the translation unit.

2 None of the following macro names in this subclause nor the identifiers defined,
__has_c_attribute, __has_include, or __has_embed shall be the subject of a #define or
a #undef preprocessing directive. Any other predefined macro names: shall begin with a leading
underscore followed by an uppercase letter; or, a second underscore; or, shall be any of the
identifiers alignas, alignof, bool, false, static_assert, thread_local, or true.

3 The implementation shall not predefine the macro __cplusplus, nor shall it define it in any standard
header.

Forward references: standard headers (7.1.2).

6.10.10.2 Mandatory macros
1 The following macro names shall be defined by the implementation:

__DATE__ The date of translation of the preprocessing translation unit: a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the value is
less than 10. If the date of translation is not available, an implementation-defined valid
date shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).209)

__LINE__ The presumed line number (within the current source file) of the current source line (an
integer constant).209)

__STDC__ The integer constant 1, intended to indicate a conforming implementation.

__STDC_EMBED_NOT_FOUND__, __STDC_EMBED_FOUND__, __STDC_EMBED_EMPTY__ The integer con-
stants 0, 1, and 2, respectively.

__STDC_HOSTED__ The integer constant 1 if the implementation is a hosted implementation or the
integer constant 0 if it is not.

208)See "future language directions" (6.11.7).
209)The presumed source file name and line number can be changed by the #line directive.

© ISO/IEC 202y — All rights reserved

Language — 188

§ 6.10.10.2

ISO/IEC 9899:202y (en) — n3299 working draft

__STDC_UTF_16__ The integer constant 1, intended to indicate that values of type char16_t are
UTF-16 encoded.

__STDC_UTF_32__ The integer constant 1, intended to indicate that values of type char32_t are
UTF-32 encoded.

__STDC_VERSION__ The integer constant 202ymmL.210)

__TIME__ The time of translation of the preprocessing translation unit: a character string literal of
the form "hh:mm:ss" as in the time generated by the asctime function. If the time of
translation is not available, an implementation-defined valid time shall be supplied.

Forward references: the asctime function (7.29.3.2).

6.10.10.3 Environment macros
1 The following macro names are conditionally defined by the implementation:

__STDC_ISO_10646__ An integer constant of the form yyyymmL (for example, 202012L). If this
symbol is defined, then every character in the Unicode required set, when stored in an
object of type wchar_t, has the same value as the short identifier of that character. The
Unicode required set consists of all the characters that are defined by ISO/IEC 10646, along
with all amendments and technical corrigenda, as of the specified year and month. If
some other encoding is used, the macro shall not be defined and the actual encoding
used is implementation-defined.

__STDC_MB_MIGHT_NEQ_WC__ The integer constant 1, intended to indicate that, in the encoding for
wchar_t, a member of the basic character set is not required to have a code value equal
to its value when used as the lone character in an integer character constant.

Forward references: common definitions (7.21), Unicode utilities (7.30).

6.10.10.4 Conditional feature macros
1 The following macro names are conditionally defined by the implementation:

__STDC_ANALYZABLE__ The integer constant 1, if the implementation conforms to the specifications
in Annex L (Analyzability).

__STDC_IEC_60559_BFP__ The integer constant 202ymmL, intended to indicate conformance to
Annex F (ISO/IEC 60559 floating-point arithmetic) for binary floating-point arithmetic.

__STDC_IEC_559__ The integer constant 1, intended to indicate conformance to the specifications
in Annex F (ISO/IEC 60559 floating-point arithmetic) for binary floating-point arithmetic.
Use of this macro is an obsolescent feature.

__STDC_IEC_60559_DFP__ The integer constant 202ymmL, intended to indicate support of decimal
floating types and conformance to Annex F (ISO/IEC 60559 floating-point arithmetic) for
decimal floating-point arithmetic.

__STDC_IEC_60559_COMPLEX__ The integer constant 202ymmL, intended to indicate conformance
to the specifications in Annex G (ISO/IEC 60559 compatible complex arithmetic).

__STDC_IEC_60559_TYPES__ The integer constant 202ymmL, intended to indicate conformance to
the specification in Annex H (ISO/IEC 60559 interchange and extended types).

__STDC_IEC_559_COMPLEX__ The integer constant 1, intended to indicate adherence to the specifi-
cations in Annex G (ISO/IEC 60559 compatible complex arithmetic). Use of this macro is
an obsolescent feature.

210)See Annex M for the values in previous editions of this document. The intention is that this will remain an integer
constant of type long int that is increased with each edition of this document.

§ 6.10.10.4 © ISO/IEC 202y — All rights reserved

Language — 189

ISO/IEC 9899:202y (en) — n3299 working draft

__STDC_LIB_EXT1__ The integer constant 202ymmL, intended to indicate support for the extensions
defined in Annex K (Bounds-checking interfaces).

__STDC_NO_ATOMICS__ The integer constant 1, intended to indicate that the implementation does
not support atomic types (including the _Atomic type qualifier) and the <stdatomic.h>
header.

__STDC_NO_COMPLEX__ The integer constant 1, intended to indicate that the implementation does
not support complex types or the <complex.h> header.

__STDC_NO_THREADS__ The integer constant 1, intended to indicate that the implementation does
not support the <threads.h> header.

__STDC_NO_VLA__ The integer constant 1, intended to indicate that the implementation does not
support variable length arrays with automatic storage duration. Parameters declared
with variable length array types are adjusted and then define objects of automatic storage
duration with pointer types. Thus, support for such declarations is mandatory.

2 NOTE The intention for the macros __STDC_LIB_EXT1__, __STDC_IEC_60559_BFP__,
__STDC_IEC_60559_DFP__, __STDC_IEC_60559_COMPLEX__, and __STDC_IEC_60559_TYPES__, with
the value 202ymmL, is that this will remain an integer constant of type long int that is increased with each
edition of this document.

3 An implementation that defines __STDC_NO_COMPLEX__ shall not define __STDC_IEC_60559_COMPLEX__
or __STDC_IEC_559_COMPLEX__.

6.10.11 Pragma operator
Semantics

1 A unary operator expression of the form:
_Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting any encoding prefix, deleting
the leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and
replacing each escape sequence \\ by a single backslash. The resulting sequence of characters
is processed through translation phase 3 to produce preprocessing tokens that are executed as if
they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary
operator expression are removed.

2 EXAMPLE A directive of the form:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro
replacement, as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING (..\listing.dir)

© ISO/IEC 202y — All rights reserved

Language — 190

§ 6.10.11

ISO/IEC 9899:202y (en) — n3299 working draft

6.11 Future language directions
6.11.1 Floating types

1 Future standardization can include additional floating types, including those with greater range,
precision, or both than long double.

6.11.2 Linkages of identifiers
1 Declaring an identifier with internal linkage at file scope without the static or constexpr storage-

class specifier is an obsolescent feature.

6.11.3 External names
1 Restriction of the significance of an external name to fewer than 255 characters (considering each

universal character name or extended source character as a single character) is an obsolescent feature
that is a concession to existing implementations.

6.11.4 Character escape sequences
1 Lowercase letters as escape sequences are reserved for future standardization. Other characters may

be used in extensions.

6.11.5 Storage-class specifiers
1 The placement of a storage-class specifier other than at the beginning of the declaration specifiers in

a declaration is an obsolescent feature.

2 Future standardization can change the auto storage-class specifier to a type specifier.

6.11.6 Pragma directives
1 Pragmas whose first preprocessing token is STDC are reserved for future standardization.

6.11.7 Predefined macro names
1 Macro names beginning with __STDC_ are reserved for future standardization.

2 Uses of the __STDC_IEC_559__ and __STDC_IEC_559_COMPLEX__ macros are obsolescent features.

§ 6.11.7 © ISO/IEC 202y — All rights reserved

Language — 191

ISO/IEC 9899:202y (en) — n3299 working draft

7. Library

7.1 Introduction
7.1.1 Definitions of terms

1 A string is a contiguous sequence of characters terminated by and including the first null character.
The term multibyte string is sometimes used instead to emphasize special processing given to
multibyte characters contained in the string or to avoid confusion with a wide string. A pointer to
a string is a pointer to its initial (lowest addressed) character. The length of a string is the number
of bytes preceding the null character and the value of a string is the sequence of the values of the
contained characters, in order.

2 The decimal-point character is the character used by functions that convert floating-point numbers
to or from character sequences to denote the beginning of the fractional part of such character
sequences.211) It is represented in the text and examples by a period, but can be changed by the
setlocale function.

3 A null wide character is a wide character with code value zero.

4 A wide string is a contiguous sequence of wide characters terminated by and including the first null
wide character. A pointer to a wide string is a pointer to its initial (lowest addressed) wide character.
The length of a wide string is the number of wide characters preceding the null wide character and the
value of a wide string is the sequence of code values of the contained wide characters, in order.

5 A shift sequence is a contiguous sequence of bytes within a multibyte string that (potentially) causes
a change in shift state (see 5.3.2). A shift sequence shall not have a corresponding wide character; it
is instead taken to be an adjunct to an adjacent multibyte character.212) In this clause, "white-space
character" refers to (execution) white-space character as defined by isspace. "White-space wide
character" refers to (execution) white-space wide character as defined by iswspace.

Forward references: character handling (7.4), the setlocale function (7.11.2).

7.1.2 Standard headers
1 Each library function is declared in a header,213) whose contents are made available by the #include

preprocessing directive. The header declares a set of related functions, plus any types and addi-
tional macros needed to facilitate the use of such related functions. In addition to the provisions
given in this clause, an implementation that defines __STDC_IEC_60559_BFP__,__STDC_IEC_559__,
or __STDC_IEC_60559_DFP__ shall conform to the specifications in Annex F, one that defines
__STDC_IEC_60559_COMPLEX__ or __STDC_IEC_559_COMPLEX__ shall conform to the specifications
in Annex G, one that defines __STDC_IEC_60559_TYPES__ shall conform to the specifications in
Annex H and one that defines __STDC_LIB_EXT1__ shall conform to the specifications in Annex K,
and those Annexes should be read as if they were merged into the parallel structure of named
subclauses of this clause. Declarations of types described here, in Annex H, or in Annex K, shall not
include type qualifiers, unless explicitly stated otherwise.

2 An implementation that does not support decimal floating types (6.10.10.4) may not support inter-
faces or aspects of interfaces that are specific to these types.

3 The standard headers are214)

211)The functions that make use of the decimal-point character are the numeric conversion functions (7.24.2, 7.31.4.2) and the
formatted input/output functions (7.23.6, 7.31.2).
212)For state-dependent encodings, the values for MB_CUR_MAX and MB_LEN_MAX are thus required to be large enough to

count all the bytes in any complete multibyte character plus at least one adjacent shift sequence of maximum length. Whether
these counts provide for more than one shift sequence is the implementation’s choice.
213)A header is not necessarily a source file, nor are the< and > delimited sequences in header names necessarily valid source

file names.
214)The headers <complex.h>, <stdatomic.h>, and <threads.h> are conditional features that implementations can support

but are not required to; see 6.10.10.4.

© ISO/IEC 202y — All rights reserved

Library — 192

§ 7.1.2

ISO/IEC 9899:202y (en) — n3299 working draft

<assert.h>
<complex.h>
<ctype.h>
<errno.h>
<fenv.h>
<float.h>
<inttypes.h>
<iso646.h>
<limits.h>
<locale.h>
<math.h>

<setjmp.h>
<signal.h>
<stdalign.h>
<stdarg.h>
<stdatomic.h>
<stdbit.h>
<stdbool.h>
<stdckdint.h>
<stddef.h>
<stdint.h>
<stdio.h>

<stdlib.h>
<stdnoreturn.h>
<string.h>
<tgmath.h>
<threads.h>
<time.h>
<uchar.h>
<wchar.h>
<wctype.h>

4 If a file with the same name as one of the preceding entries in < and > delimited sequences, not
provided as part of the implementation, is placed in any of the standard places that are searched for
included source files, the behavior is undefined.

5 Standard headers can be included in any order; each can be included more than once in a given
scope, with no effect different from being included only once, except that the effect of including
<assert.h> depends on the definition of NDEBUG (see 7.2). If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However, if
an identifier is declared or defined in more than one header, the second and subsequent associated
headers can be included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the inclusion of the
header or when any macro defined in the header is expanded.

6 Some standard headers define or declare identifiers that had not been present in previous versions
of this document. To allow implementations and users to adapt to that situation, they also define a
version macro for feature test of the form __STDC_VERSION_ XXXX_H__ which expands to 202311L,
where XXXX is the all-caps spelling of the corresponding header <xxxx.h>.

7 Any definition of an object-like macro described in this clause or Annex F, Annex G, Annex H,
or Annex K shall expand to code that is fully protected by parentheses where necessary, so that it
groups in an arbitrary expression as if it were a single identifier.

8 Any declaration of a library function shall have external linkage.

9 A summary of the contents of the standard headers is given in Annex B.

Forward references: diagnostics (7.2).

7.1.3 Reserved identifiers
1 Each header declares or defines all identifiers listed in its associated subclause, and optionally

declares or defines identifiers listed in its associated future library directions subclause and identifiers
which are always reserved either for any use or for use as file scope identifiers.

— All potentially reserved identifiers (including ones listed in the future library directions) that
are provided by an implementation with an external definition are reserved for any use. An
implementation shall not provide an external definition of a potentially reserved identifier
unless that identifier is reserved for a use where it would have external linkage.215) All other
potentially reserved identifiers that are provided by an implementation (including in the
form of a macro) are reserved for any use when the associated header is included. No other
potentially reserved identifiers are reserved.216)

— Each macro name in any of the following subclauses (including the future library directions)
is reserved for use as specified if any of its associated headers is included; unless explicitly
stated otherwise (see 7.1.4).

215)All library functions have external linkage.
216)A potentially reserved identifier becomes a reserved identifier when an implementation begins using it or a future

standard reserves it, but is otherwise available for use by the programmer.

§ 7.1.3 © ISO/IEC 202y — All rights reserved

Library — 193

ISO/IEC 9899:202y (en) — n3299 working draft

— All identifiers with external linkage in any of the following subclauses (including the future
library directions) and errno are always reserved for use as identifiers with external linkage.217)

— Each identifier with file scope listed in any of the following subclauses (including the future
library directions) is reserved for use as a macro name and as an identifier with file scope in
the same name space if any of its associated headers is included.

7.1.4 Use of library functions
1 Each of the following statements applies unless explicitly stated otherwise in the detailed descrip-

tions that follow:

— If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer, or a pointer
to non-modifiable storage when the corresponding parameter is not const-qualified) or a type
(after default argument promotion) not expected by a function with a variable number of
arguments, the behavior is undefined.

— If a function argument is described as being an array, the pointer passed to the function shall
have a value such that all address computations and accesses to objects (that would be valid if
the pointer did point to the first element of such an array) are valid.218)

— Any function declared in a header may be additionally implemented as a function-like macro
defined in the header, so if a library function is declared explicitly when its header is included,
one of the techniques shown later in the next subclause can be used to ensure the declaration is
not affected by such a macro. Any macro definition of a function can be suppressed locally by
enclosing the name of the function in parentheses, because the name is then not followed by
the left parenthesis that indicates expansion of a macro function name. For the same syntactic
reason, it is permitted to take the address of a library function even if it is also defined as a
macro.219) The use of #undef to remove any macro definition will also ensure that an actual
function is referred to.

— Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.220)

— Likewise, those function-like macros described in the following subclauses may be invoked in
an expression anywhere a function with a compatible return type could be called.221)

— All object-like macros listed as expanding to integer constant expressions shall additionally be
suitable for use in conditional expression inclusion preprocessing directives.

217)The list of reserved identifiers with external linkage includes math_errhandling, setjmp, va_copy, and va_end.
218)This includes, for example, passing a valid pointer that points one-past-the-end of an array along with a size of 0, or

using any valid pointer with a size of 0.
219)This means that an implementation is required to provide an actual function for each library function, even if it also

provides a macro for that function.
220)However, such macros can sometimes not contain the sequence points that the corresponding function calls do.
221)Because external identifiers and some macro names beginning with an underscore are reserved, implementations can

provide special semantics for such names. For example, the identifier _BUILTIN_abs can be used to indicate generation of
in-line code for the abs function. Thus, the appropriate header can specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine function can write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The prototype
for the function, which precedes and is hidden by any macro definition, is thereby revealed also.

© ISO/IEC 202y — All rights reserved

Library — 194

§ 7.1.4

ISO/IEC 9899:202y (en) — n3299 working draft

2 Provided that a library function can be declared without reference to any type defined in a header, it
is also permissible to declare the function and use it without including its associated header.

3 There is a sequence point immediately before a library function returns.

4 The functions in the standard library are not guaranteed to be reentrant and may modify objects
with static or thread storage duration.222)

5 Unless explicitly stated otherwise in the detailed descriptions that follow, library functions shall
prevent data races as follows: A library function shall not directly or indirectly access objects
accessible by threads other than the current thread unless the objects are accessed directly or
indirectly via the function’s arguments. A library function shall not directly or indirectly modify
objects accessible by threads other than the current thread unless the objects are accessed directly or
indirectly via the function’s non-const arguments.223) Implementations may share their own internal
objects between threads if the objects are not visible to users and are protected against data races.

6 Unless otherwise specified, library functions shall perform all operations solely within the current
thread if those operations have effects that are visible to users.224)

7 EXAMPLE The function atoi can be used in any of several ways:

— by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char *str;
/* ... */
i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi
const char *str;
/* ... */
i = atoi(str);

or

#include <stdlib.h>
const char *str;
/* ... */
i = (atoi)(str);

— by explicit declaration

extern int atoi(const char *);
const char *str;
/* ... */
i = atoi(str);

222)Thus, a signal handler cannot, in general, call standard library functions.
223)This means, for example, that an implementation is not permitted to use a static object for internal purposes without

synchronization because it can cause a data race even in programs that do not explicitly share objects between threads.
Similarly, an implementation of memcpy is not permitted to copy bytes beyond the specified length of the destination object
and then restore the original values because it can cause a data race if the program shared those bytes between threads.
224)This allows implementations to parallelize operations if there are no visible side effects.

§ 7.1.4 © ISO/IEC 202y — All rights reserved

Library — 195

ISO/IEC 9899:202y (en) — n3299 working draft

7.2 Diagnostics <assert.h>
7.2.1 General

1 The header <assert.h> defines the assert and __STDC_VERSION_ASSERT_H__ macros and refers
to another macro,

NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a macro name at the point in the source
file where <assert.h> is included, the assert macro is defined simply as

#define assert(...) ((void)0)

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h>
is included.

2 The assert macro shall be implemented as a macro with an ellipsis parameter, not as an actual
function. If the macro definition is suppressed to access an actual function, the behavior is undefined.

3 NOTE Nevertheless, when NDEBUG is not defined, the macro acts as a function taking one parameter as
indicated by the prototype as given later in this subclause (7.2.2.1). For both assert() and assert(1, 1), the
number of arguments does not agree with the number of parameters. A diagnostic is required by 6.5.3.3.

4 The macro

__STDC_VERSION_ASSERT_H__

is an integer constant expression with a value equivalent to 202311L.

7.2.2 Program diagnostics
7.2.2.1 The assert macro
Synopsis

1 #include <assert.h>
void assert(scalar expression);

Description
2 The assert macro puts diagnostic tests into programs; it expands to a void expression. When it is

executed, if expression (which shall have a scalar type) is false (that is, compares equal to 0), the
assert macro writes information about the particular invocation that failed (including the text of the
argument, the name of the source file, the source line number, and the name of the enclosing function
— the latter are respectively the values of the preprocessing macros __FILE__ and __LINE__ and of
the identifier __func__) on the standard error stream in an implementation-defined format.225)

It then calls the abort function.

Returns
3 The assert macro returns no value.

Forward references: the abort function (7.24.5.1).

225)The message written can be of the form:

Assertion failed: expression, function abc, file xyz, line nnn.

© ISO/IEC 202y — All rights reserved

Library — 196

§ 7.2.2.1

ISO/IEC 9899:202y (en) — n3299 working draft

7.3 Complex arithmetic <complex.h>
7.3.1 Introduction

1 The header <complex.h> defines macros and declares functions that support complex arithmetic.226)

2 Implementations that define the macro __STDC_NO_COMPLEX__ may not provide this header nor
support any of its facilities.

3 The macro

__STDC_VERSION_COMPLEX_H__

is an integer constant expression with a value equivalent to 202311L.

4 Each synopsis, other than for the CMPLX macros, specifies a family of functions consisting of a princi-
pal function with one or more double complex parameters and a double complex or double return
value; and other functions with the same name but with f and l suffixes which are corresponding
functions with float and long double parameters and return values.

5 The macro

complex

expands to _Complex; the macro

_Complex_I

expands to an arithmetic constant expression of type float _Complex, with the value of the imagi-
nary unit.227)

6 The macros

imaginary

and

_Imaginary_I

are defined if and only if the implementation supports imaginary types;228) and, if defined, they
expand to _Imaginary and an arithmetic constant expression of type float _Imaginary with the
value of the imaginary unit.

7 The macro

I

expands to either _Imaginary_I or _Complex_I. If _Imaginary_I is not defined, I shall expand to
_Complex_I.

8 Notwithstanding the provisions of 7.1.3, a program can undefine and perhaps then redefine the
macros complex, imaginary, and I.

Forward references: the CMPLX macros (7.3.9.3), ISO/IEC 60559-compatible complex arithmetic
(Annex G).

7.3.2 Conventions
1 Values are interpreted as radians, not degrees. An implementation may set errno but is not required

to do so.

226)See "future library directions" (7.33.2).
227)The imaginary unit is a number i such that i2 = −1.
228)A specification for imaginary types is in Annex G.

§ 7.3.2 © ISO/IEC 202y — All rights reserved

Library — 197

ISO/IEC 9899:202y (en) — n3299 working draft

7.3.3 Branch cuts
1 Some of the following functions have branch cuts, across which the function is discontinuous. For

implementations with a signed zero (including all ISO/IEC 60559 implementations) that follow the
specifications of Annex G, the sign of zero distinguishes one side of a cut from another so that the
function is continuous (except for format limitations) as the cut is approached from either side. For
example, for the square root function, which has a branch cut along the negative real axis, the top of
the cut, with imaginary part +0, maps to the positive imaginary axis, and the bottom of the cut, with
imaginary part -0, maps to the negative imaginary axis.

2 Implementations that do not support a signed zero (see Annex F) cannot distinguish the sides of
branch cuts. These implementations shall map a cut so that the function is continuous as the cut is
approached coming around the finite endpoint of the cut in a counter clockwise direction. (Branch
cuts for the functions specified here have just one finite endpoint.) For example, in the square root
function, coming counter clockwise around the finite endpoint of the cut along the negative real axis
approaches the cut from above, so that the cut maps to the positive imaginary axis.

7.3.4 The CX_LIMITED_RANGE pragma
Synopsis

1 #include <complex.h>
#pragma STDC CX_LIMITED_RANGE on-off-switch

Description
2 The usual mathematical formulas for complex multiply, divide, and absolute value are problem-

atic because of their treatment of infinities and because of undue overflow and underflow. The
CX_LIMITED_RANGE pragma can be used to inform the implementation that (where the state is "on")
the usual mathematical formulas are acceptable.229) The pragma can occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
CX_LIMITED_RANGE pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another CX_LIMITED_RANGE
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state for the pragma is "off".

7.3.5 Trigonometric functions
7.3.5.1 The cacos functions
Synopsis

1 #include <complex.h>
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

Description
2 The cacos functions compute the complex arc cosine of z, with branch cuts outside the interval

[−1,+1] along the real axis.

229)The purpose of the pragma is to allow the implementation to use the formulas:

(x+ iy)× (u+ iv) = (xu− yv) + i(yu+ xv)

(x+ iy) / (u+ iv) = [(xu+ yv) + i(yu− xv)]/(u2 + v2)

|x+ iy| =
√

x2 + y2

where the programmer can determine they are safe.

© ISO/IEC 202y — All rights reserved

Library — 198

§ 7.3.5.1

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The cacos functions return the complex arc cosine value, in the range of a strip mathematically

unbounded along the imaginary axis and in the interval [0, π] along the real axis.

7.3.5.2 The casin functions
Synopsis

1 #include <complex.h>
double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

Description
2 The casin functions compute the complex arc sine of z, with branch cuts outside the interval

[−1,+1] along the real axis.

Returns
3 The casin functions return the complex arc sine value, in the range of a strip mathematically

unbounded along the imaginary axis and in the interval [−π
2 ,+

π
2] along the real axis.

7.3.5.3 The catan functions
Synopsis

1 #include <complex.h>
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

Description
2 The catan functions compute the complex arc tangent of z, with branch cuts outside the interval

[−i,+i] along the imaginary axis.

Returns
3 The catan functions return the complex arc tangent value, in the range of a strip mathematically

unbounded along the imaginary axis and in the interval [−π
2 ,+

π
2] along the real axis.

7.3.5.4 The ccos functions
Synopsis

1 #include <complex.h>
double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

Description
2 The ccos functions compute the complex cosine of z.

Returns
3 The ccos functions return the complex cosine value.

7.3.5.5 The csin functions
Synopsis

1 #include <complex.h>
double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

§ 7.3.5.5 © ISO/IEC 202y — All rights reserved

Library — 199

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The csin functions compute the complex sine of z.

Returns
3 The csin functions return the complex sine value.

7.3.5.6 The ctan functions
Synopsis

1 #include <complex.h>
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

Description
2 The ctan functions compute the complex tangent of z.

Returns
3 The ctan functions return the complex tangent value.

7.3.6 Hyperbolic functions
7.3.6.1 The cacosh functions
Synopsis

1 #include <complex.h>
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

Description
2 The cacosh functions compute the complex arc hyperbolic cosine of z, with a branch cut at values

less than 1 along the real axis.

Returns
3 The cacosh functions return the complex arc hyperbolic cosine value, in the range of a half-strip of

nonnegative values along the real axis and in the interval [−iπ,+iπ] along the imaginary axis.

7.3.6.2 The casinh functions
Synopsis

1 #include <complex.h>
double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

Description
2 The casinh functions compute the complex arc hyperbolic sine of z, with branch cuts outside the

interval [−i,+i] along the imaginary axis.

Returns
3 The casinh functions return the complex arc hyperbolic sine value, in the range of a strip mathe-

matically unbounded along the real axis and in the interval [− iπ
2 ,+

iπ
2] along the imaginary axis.

7.3.6.3 The catanh functions
Synopsis

1 #include <complex.h>

© ISO/IEC 202y — All rights reserved

Library — 200

§ 7.3.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

Description
2 The catanh functions compute the complex arc hyperbolic tangent of z, with branch cuts outside

the interval [−1,+1] along the real axis.

Returns
3 The catanh functions return the complex arc hyperbolic tangent value, in the range of a strip

mathematically unbounded along the real axis and in the interval [− iπ
2 ,+

iπ
2] along the imaginary

axis.

7.3.6.4 The ccosh functions
Synopsis

1 #include <complex.h>
double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

Description
2 The ccosh functions compute the complex hyperbolic cosine of z.

Returns
3 The ccosh functions return the complex hyperbolic cosine value.

7.3.6.5 The csinh functions
Synopsis

1 #include <complex.h>
double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

Description
2 The csinh functions compute the complex hyperbolic sine of z.

Returns
3 The csinh functions return the complex hyperbolic sine value.

7.3.6.6 The ctanh functions
Synopsis

1 #include <complex.h>
double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

Description
2 The ctanh functions compute the complex hyperbolic tangent of z.

Returns
3 The ctanh functions return the complex hyperbolic tangent value.

7.3.7 Exponential and logarithmic functions
7.3.7.1 The cexp functions

§ 7.3.7.1 © ISO/IEC 202y — All rights reserved

Library — 201

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <complex.h>
double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

Description
2 The cexp functions compute the complex base-e exponential of z.

Returns
3 The cexp functions return the complex base-e exponential value.

7.3.7.2 The clog functions
Synopsis

1 #include <complex.h>
double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

Description
2 The clog functions compute the complex natural (base-e) logarithm of z, with a branch cut along

the negative real axis.

Returns
3 The clog functions return the complex natural logarithm value, in the range of a strip mathematically

unbounded along the real axis and in the interval [−iπ,+iπ] along the imaginary axis.

7.3.8 Power and absolute-value functions
7.3.8.1 The cabs functions
Synopsis

1 #include <complex.h>
double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

Description
2 The cabs functions compute the complex absolute value (also called norm, modulus, or magnitude)

of z.

Returns
3 The cabs functions return the complex absolute value.

7.3.8.2 The cpow functions
Synopsis

1 #include <complex.h>
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x, long double complex y);

Description
2 The cpow functions compute the complex power function xy, with a branch cut for the first parameter

along the negative real axis.

© ISO/IEC 202y — All rights reserved

Library — 202

§ 7.3.8.2

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The cpow functions return the complex power function value.

7.3.8.3 The csqrt functions
Synopsis

1 #include <complex.h>
double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

Description
2 The csqrt functions compute the complex square root of z, with a branch cut along the negative

real axis.

Returns
3 The csqrt functions return the complex square root value, in the range of the right half-plane

(including the imaginary axis).

7.3.9 Manipulation functions
7.3.9.1 The carg functions
Synopsis

1 #include <complex.h>
double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

Description
2 The carg functions compute the argument (also called phase (which is an angle)) of z, with a branch

cut along the negative real axis.

Returns
3 The carg functions return the value of the argument in the interval [−π,+π].

7.3.9.2 The cimag functions
Synopsis

1 #include <complex.h>
double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

Description

2 The cimag functions compute the imaginary part of z.230)

Returns
3 The cimag functions return the imaginary part value (as a real).

7.3.9.3 The CMPLX macros
Synopsis

1 #include <complex.h>
double complex CMPLX(double x, double y);
float complex CMPLXF(float x, float y);

230)For a complex variable z, z and CMPLX(creal(z), cimag(z)) are equivalent expressions. If imaginary types are
supported, z and creal(z)+cimag(z)*I are equivalent expressions.

§ 7.3.9.3 © ISO/IEC 202y — All rights reserved

Library — 203

ISO/IEC 9899:202y (en) — n3299 working draft

long double complex CMPLXL(long double x, long double y);

Description
2 The CMPLX macros expand to an expression of the specified complex type, with the real part having

the (converted) value of x and the imaginary part having the (converted) value of y. The resulting
expression shall be suitable for use as an initializer for an object with static or thread storage duration,
provided both arguments are likewise suitable. The resulting expression shall be an arithmetic
constant expression, provided both arguments are arithmetic constant expressions.

Returns
3 The CMPLX macros return the complex value x + iy.

4 NOTE These macros act as if the implementation supported imaginary types and the definitions were:

#define CMPLX(x, y) ((double complex)((double)(x) + \
_Imaginary_I * (double)(y)))

#define CMPLXF(x, y) ((float complex)((float)(x) + \
_Imaginary_I * (float)(y)))

#define CMPLXL(x, y) ((long double complex)((long double)(x) + \
_Imaginary_I * (long double)(y)))

7.3.9.4 The conj functions
Synopsis

1 #include <complex.h>
double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

Description
2 The conj functions compute the complex conjugate of z, by arithmetically negating its imaginary

part.

Returns
3 The conj functions return the complex conjugate value.

7.3.9.5 The cproj functions
Synopsis

1 #include <complex.h>
double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

Description
2 The cproj functions compute a projection of z onto the Riemann sphere where z projects to z except

that all complex infinities (even those with one infinite part and one NaN part) project to positive
infinity on the real axis. If z has an infinite part, then cproj(z) is equivalent to

INFINITY + I * copysign(0.0, cimag(z))

Returns
3 The cproj functions return the value of the projection onto the Riemann sphere.

7.3.9.6 The creal functions

© ISO/IEC 202y — All rights reserved

Library — 204

§ 7.3.9.6

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <complex.h>
double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

Description

2 The creal functions compute the real part of z.231)

Returns
3 The creal functions return the real part value.

231)For a complex variable z, z and CMPLX(creal(z), cimag(z)) are equivalent expressions. If imaginary types are
supported, z and creal(z)+cimag(z)*I are equivalent expressions.

§ 7.3.9.6 © ISO/IEC 202y — All rights reserved

Library — 205

ISO/IEC 9899:202y (en) — n3299 working draft

7.4 Character handling <ctype.h>

7.4.1 General
1 The header <ctype.h> declares several functions useful for classifying and mapping characters.232)

In all cases the argument is an int, the value of which shall be representable as an unsigned char
or shall equal the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

2 The behavior of these functions is affected by the current locale. Those functions that have locale-
specific aspects only when not in the "C" locale are noted subsequently in this subclause.

3 The term printing character refers to a member of a locale-specific set of characters, each of which
occupies one printing position on a display device; the term control character refers to a member of a
locale-specific set of characters that are not printing characters.233) All letters and digits are printing
characters.

Forward references:

EOF (7.23.1), localization (7.11).

7.4.2 Character classification functions
7.4.2.1 General

1 The functions in this subclause return nonzero (true) if and only if the value of the argument c
conforms to that in the description of the function.

7.4.2.2 The isalnum function
Synopsis

1 #include <ctype.h>
int isalnum(int c);

Description
2 The isalnum function tests for any character for which isalpha or isdigit is true.

7.4.2.3 The isalpha function
Synopsis

1 #include <ctype.h>
int isalpha(int c);

Description
2 The isalpha function tests for any character for which isupper or islower is true, or any character

that is one of a locale-specific set of alphabetic characters for which none of iscntrl, isdigit,
ispunct, or isspace is true.234) In the "C" locale, isalpha returns true only for the characters for
which isupper or islower is true.

7.4.2.4 The isblank function
Synopsis

1 #include <ctype.h>
int isblank(int c);

232)See "future library directions" (7.33.3).
233)In an implementation that uses the seven-bit US ASCII character set, the printing characters are those whose values lie

from 0x20 (space) through 0x7E (tilde); the control characters are those whose values lie from 0 (NUL) through 0x1F (US),
and the character 0x7F (DEL).
234)The functions islower and isupper test true or false separately for each of these additional characters; all four combina-

tions are possible.

© ISO/IEC 202y — All rights reserved

Library — 206

§ 7.4.2.4

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The isblank function tests for any character that is a standard blank character or is one of a locale-

specific set of characters for which isspace is true and that is used to separate words within a line
of text. The standard blank characters are the following: space (’ ’), and horizontal tab (’\t’). In
the "C" locale, isblank returns true only for the standard blank characters.

7.4.2.5 The iscntrl function
Synopsis

1 #include <ctype.h>
int iscntrl(int c);

Description
2 The iscntrl function tests for any control character.

7.4.2.6 The isdigit function
Synopsis

1 #include <ctype.h>
int isdigit(int c);

Description
2 The isdigit function tests for any decimal-digit character (as defined in 5.3.1).

7.4.2.7 The isgraph function
Synopsis

1 #include <ctype.h>
int isgraph(int c);

Description
2 The isgraph function tests for any printing character except space (’ ’).

7.4.2.8 The islower function
Synopsis

1 #include <ctype.h>
int islower(int c);

Description
2 The islower function tests for any character that is a lowercase letter or is one of a locale-specific set

of characters for which none of iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale,
islower returns true only for the lowercase letters (as defined in 5.3.1).

7.4.2.9 The isprint function
Synopsis

1 #include <ctype.h>
int isprint(int c);

Description
2 The isprint function tests for any printing character including space (’ ’).

7.4.2.10 The ispunct function
Synopsis

1 #include <ctype.h>
int ispunct(int c);

§ 7.4.2.10 © ISO/IEC 202y — All rights reserved

Library — 207

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The ispunct function tests for any printing character that is one of a locale-specific set of punctuation

characters for which neither isspace nor isalnum is true. In the "C" locale, ispunct returns true
for every printing character for which neither isspace nor isalnum is true.

7.4.2.11 The isspace function
Synopsis

1 #include <ctype.h>
int isspace(int c);

Description
2 The isspace function tests for any character that is a standard white-space character or is one of

a locale-specific set of characters for which isalnum is false. The standard white-space characters
are the following: space (’ ’), form feed (’\f’), new-line (’\n’), carriage return (’\r’), horizontal
tab (’\t’), and vertical tab (’\v’). In the "C" locale, isspace returns true only for the standard
white-space characters.

7.4.2.12 The isupper function
Synopsis

1 #include <ctype.h>
int isupper(int c);

Description
2 The isupper function tests for any character that is an uppercase letter or is one of a locale-specific

set of characters for which none of iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale,
isupper returns true only for the uppercase letters (as defined in 5.3.1).

7.4.2.13 The isxdigit function
Synopsis

1 #include <ctype.h>
int isxdigit(int c);

Description
2 The isxdigit function tests for any hexadecimal-digit character (as defined in 6.4.5.2).

7.4.3 Character case mapping functions
7.4.3.1 The tolower function
Synopsis

1 #include <ctype.h>
int tolower(int c);

Description
2 The tolower function converts an uppercase letter to a corresponding lowercase letter.

Returns
3 If the argument is a character for which isupper is true and there are one or more corresponding

characters, as specified by the current locale, for which islower is true, the tolower function returns
one of the corresponding characters (always the same one for any given locale); otherwise, the
argument is returned unchanged.

7.4.3.2 The toupper function

© ISO/IEC 202y — All rights reserved

Library — 208

§ 7.4.3.2

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <ctype.h>
int toupper(int c);

Description
2 The toupper function converts a lowercase letter to a corresponding uppercase letter.

Returns
3 If the argument is a character for which islower is true and there are one or more corresponding

characters, as specified by the current locale, for which isupper is true, the toupper function returns
one of the corresponding characters (always the same one for any given locale); otherwise, the
argument is returned unchanged.

§ 7.4.3.2 © ISO/IEC 202y — All rights reserved

Library — 209

ISO/IEC 9899:202y (en) — n3299 working draft

7.5 Errors <errno.h>
1 The header <errno.h> defines several macros, all relating to the reporting of error conditions.

2 The macros are

EDOM
EILSEQ
ERANGE

which expand to integer constant expressions with type int, distinct positive values, and which are
suitable for use in conditional expression inclusion preprocessing directives; and

errno

which expands to a modifiable lvalue235) that has type int and thread storage duration, the value
of which is set to a positive error number by several library functions. If a macro definition is
suppressed to access an actual object, or a program defines an identifier with the name errno, the
behavior is undefined.

3 The value of errno in the initial thread is zero at program startup (the initial representation of the
object designated by errno in other threads is indeterminate), but is never set to zero by any library
function.236) The value of errno may be set to nonzero by a library function call whether or not there
is an error, provided the use of errno is not documented in the description of the function in this
document.

4 Additional macro definitions, beginning with E and a digit or E and an uppercase letter,237) may also
be specified by the implementation.

235)The macro errno is not expected to be the identifier of an object. Expansion to a modifiable lvalue resulting from a
function call (for example, (*errno())) is a viable implementation strategy.
236)Thus, a program that uses errno for error checking would set it to zero before a library function call, then inspect it

before a subsequent library function call. Of course, a library function can save the value of errno on entry and then set it to
zero, as long as the original value is restored if errno’s value is still zero just before the return.
237)See "future library directions" (7.33.4).

© ISO/IEC 202y — All rights reserved

Library — 210

§ 7.5

ISO/IEC 9899:202y (en) — n3299 working draft

7.6 Floating-point environment <fenv.h>
7.6.1 General

1 The header <fenv.h> defines several macros, and declares types and functions that provide access to
the floating-point environment. The floating-point environment refers collectively to any floating-point
status flags and control modes supported by the implementation.238)

A floating-point status flag is a system variable whose value is set (but never cleared) when a floating-
point exception is raised, which occurs as a side effect of exceptional floating-point arithmetic to
provide auxiliary information.239) A floating-point control mode is a system variable whose value may
be set by the user to affect the subsequent behavior of floating-point arithmetic.

2 A floating-point control mode may be constant (7.6.3) or dynamic. The dynamic floating-point en-
vironment includes the dynamic floating-point control modes and the floating-point status flags.

3 The dynamic floating-point environment has thread storage duration. The initial state for a thread’s
dynamic floating-point environment is the current state of the dynamic floating-point environment
of the thread that creates it. It is initialized at the time of the thread’s creation.

4 Certain programming conventions support the intended model of use for the dynamic floating-point
environment:240)

— a function call does not alter its caller’s floating-point control modes, clear its caller’s floating-
point status flags, nor depend on the state of its caller’s floating-point status flags unless the
function is so documented;

— a function call is assumed to require default floating-point control modes, unless its documen-
tation promises otherwise;

— a function call is assumed to have the potential for raising floating-point exceptions, unless its
documentation promises otherwise.

5 The feature test macro __STDC_VERSION_FENV_H__ expands to the token 202311L.

6 The type

fenv_t

represents the entire dynamic floating-point environment.

7 The type

femode_t

represents the collection of dynamic floating-point control modes supported by the implementation,
including the dynamic rounding direction mode.

8 The type

fexcept_t

represents the floating-point status flags collectively, including any status the implementation
associates with the flags.

9 Each of the macros
238)This header is designed to support the floating-point exception status flags and rounding-direction control modes

required by ISO/IEC 60559, and other similar floating-point state information. It is also designed to facilitate code portability
among all systems.
239)A floating-point status flag is not an object and can be set more than once within an expression.
240)With these conventions, a programmer can safely assume default floating-point control modes (or be unaware of them).

The responsibilities associated with accessing the floating-point environment fall on the programmer or program that does so
explicitly.

§ 7.6.1 © ISO/IEC 202y — All rights reserved

Library — 211

ISO/IEC 9899:202y (en) — n3299 working draft

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

is defined if and only if the implementation supports the floating-point exception by means of the
functions in 7.6.5.241) Additional implementation-defined floating-point exceptions, with macro
definitions beginning with FE_ and an uppercase letter,242) may also be specified by the implementa-
tion. The defined macros expand to integer constant expressions with values such that bitwise ORs
of all combinations of the macros result in distinct values, and furthermore, bitwise ANDs of all
combinations of the macros result in zero.243)

10 Decimal floating-point operations and ISO/IEC 60559 binary floating-point operations (Annex F)
access the same floating-point exception status flags.

11 The macro

FE_DFL_MODE

represents the default state for the collection of dynamic floating-point control modes sup-
ported by the implementation – and has type "pointer to const-qualified femode_t". Additional
implementation-defined states for the dynamic mode collection, with macro definitions beginning
with FE_ and an uppercase letter, and having type "pointer to const-qualified femode_t", may also
be specified by the implementation.

12 The macro

FE_ALL_EXCEPT

is the bitwise OR of all floating-point exception macros defined by the implementation. If no such
macros are defined, FE_ALL_EXCEPT shall be defined as 0.

13 Each of the macros

FE_DOWNWARD
FE_TONEAREST
FE_TONEARESTFROMZERO
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the represented round-
ing direction by means of the fegetround and fesetround functions. The defined macros ex-
pand to integer constant expressions whose values are distinct nonnegative values. Additional
implementation-defined rounding directions, with macro definitions beginning with FE_ and an
uppercase letter,244) may also be specified by the implementation.245)

14 If the implementation supports decimal floating types, each of the macros

FE_DEC_DOWNWARD
FE_DEC_TONEAREST
FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO

241)The implementation supports a floating-point exception if there are circumstances where a call to at least one of the
functions in 7.6.5, using the macro as the appropriate argument, will succeed. It is not necessary for all the functions to
succeed all the time.
242)See "future library directions" (7.33.5).
243)The macros are typically distinct powers of two.
244)See "future library directions" (7.33.5).
245)Even though the rounding direction macros can expand to constants corresponding to the values of FLT_ROUNDS, they

are not required to do so.

© ISO/IEC 202y — All rights reserved

Library — 212

§ 7.6.1

ISO/IEC 9899:202y (en) — n3299 working draft

FE_DEC_UPWARD

is defined for use with the fe_dec_getround and fe_dec_setround functions for getting and
setting the dynamic rounding direction mode for decimal floating-point operations. The decimal
rounding direction affects all (inexact) operations that produce a result of decimal floating type and
all operations that produce an integer or character sequence result and have an operand of decimal
floating type, unless stated otherwise. The macros expand to integer constant expressions whose
values are distinct nonnegative values.

15 During translation, constant rounding direction modes for decimal floating-point arithmetic are
in effect where specified. Elsewhere, during translation the decimal rounding direction mode is
FE_DEC_TONEAREST.

16 At program startup the dynamic rounding direction mode for decimal floating-point arithmetic is
initialized to FE_DEC_TONEAREST.

17 The macro

FE_DFL_ENV

represents the default dynamic floating-point environment — the one installed at program startup
— and has type "pointer to const-qualified fenv_t". It can be used as an argument to <fenv.h>
functions that manage the dynamic floating-point environment.

18 Additional implementation-defined environments, with macro definitions beginning with FE_ and
an uppercase letter,246) and having type "pointer to const-qualified fenv_t", may also be specified
by the implementation.

7.6.2 The FENV_ACCESS pragma
Synopsis

1 #include <fenv.h>
#pragma STDC FENV_ACCESS on-off-switch

Description
2 The FENV_ACCESS pragma provides a means to inform the implementation when a program can

access the floating-point environment to test floating-point status flags or run under non-default
floating-point control modes.247) The pragma shall occur either outside external declarations or
preceding all explicit declarations and statements inside a compound statement. When outside
external declarations, the pragma takes effect from its occurrence until another FENV_ACCESS pragma
is encountered, or until the end of the translation unit. When inside a compound statement, the
pragma takes effect from its occurrence until another FENV_ACCESS pragma is encountered (including
within a nested compound statement), or until the end of the compound statement. At the end of a
compound statement, the state for the pragma is restored to its condition just before the compound
statement. If this pragma is used in any other context, the behavior is undefined. If part of a program
tests floating-point status flags or establishes or is executed with non-default floating-point mode
settings using any means other than the FENV_ROUND pragmas, but was translated with the state for
the FENV_ACCESS pragma "off", the behavior is undefined. The default state ("on" or "off") for the
pragma is implementation-defined. (When execution passes from a part of the program translated
with FENV_ACCESS "off" to a part translated with FENV_ACCESS "on", the state of the floating-point
status flags is unspecified and the floating-point control modes have their default settings.)

3 EXAMPLE

#include <fenv.h>

246)See "future library directions" (7.33.5).
247)The purpose of the FENV_ACCESS pragma is to allow certain optimizations that can subvert flag tests and mode changes

(e.g. global common subexpression elimination, code motion, and constant folding). In general, if the state of FENV_ACCESS
is "off", the translator can assume that the flags are not tested, and that default modes are in effect, except where specified
otherwise by an FENV_ROUND pragma.

§ 7.6.2 © ISO/IEC 202y — All rights reserved

Library — 213

ISO/IEC 9899:202y (en) — n3299 working draft

void f(double x)
{

#pragma STDC FENV_ACCESS ON
void g(double);
void h(double);
/* ... */
g(x + 1);
h(x + 1);
/* ... */

}

4 If the function g can depend on status flags set as a side effect of the first x + 1, or if the second x + 1 can
depend on control modes set as a side effect of the call to function g, then the program has to contain an
appropriately placed invocation of #pragma STDC FENV_ACCESS ON as shown.248)

7.6.3 The FENV_ROUND pragma
Synopsis

1 #include <fenv.h>
#pragma STDC FENV_ROUND direction
#pragma STDC FENV_ROUND FE_DYNAMIC

Description
2 The FENV_ROUND pragma provides a means to specify a constant rounding direction for floating-point

operations for standard floating types within a translation unit or compound statement. The pragma
shall occur either outside external declarations or before all explicit declarations and statements
inside a compound statement. When outside external declarations, the pragma takes effect from
its occurrence until another FENV_ROUND pragma is encountered, or until the end of the translation
unit. When inside a compound statement, the pragma takes effect from its occurrence until another
FENV_ROUND pragma is encountered (including within a nested compound statement), or until the
end of the compound statement; at the end of a compound statement the static rounding mode is
restored to its condition just before the compound statement. If this pragma is used in any other
context, its behavior is undefined.

3 direction shall be: one of the names of the supported rounding direction macros for operations
for standard floating types (7.6), to specify a constant rounding mode; or, FE_DYNAMIC, to specify
dynamic rounding. If any other value is specified, the behavior is undefined. If no FENV_ROUND
pragma is in effect, or the specified direction is FE_DYNAMIC, rounding is according to the mode
specified by the dynamic floating-point environment, which is the dynamic rounding mode that
was established either at thread creation or by a call to fesetround, fesetmode, fesetenv, or
feupdateenv. If the direction FE_DYNAMIC is specified and FENV_ACCESS is "off", the translator may
assume that the default rounding mode is in effect.

4 The FENV_ROUND pragma affects operations for standard floating types. Within the scope of an
FENV_ROUND pragma establishing a constant rounding mode, floating-point operators, implicit
conversions (including the conversion of a value represented in a format wider than its semantic
types to its semantic type, as done by classification macros), and invocations of functions indicated
in Table 7.1, for which macro replacement has not been suppressed (7.1.4), shall be evaluated
according to the specified constant rounding mode (as though no constant mode was specified
and the corresponding dynamic rounding mode had been established by a call to fesetround).
Invocations of functions for which macro replacement has been suppressed and invocations of
functions other than those indicated in Table 7.1 shall not be affected by constant rounding modes –
they are affected by (and affect) only the dynamic mode. Floating constants (6.4.5.3) of a standard
floating type that occur in the scope of a constant rounding mode shall be interpreted according to
that mode.

248)The side effects impose a temporal ordering that requires two evaluations of x + 1. On the other hand, without the
#pragma STDC FENV_ACCESS ON pragma, and assuming the default state is "off", just one evaluation of x + 1 would suffice.

© ISO/IEC 202y — All rights reserved

Library — 214

§ 7.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

Table 7.1 — Functions affected by constant rounding modes – for standard floating types

Header Function families
<math.h>

acos, acospi, asin, asinpi, atan, atan2, atan2pi, atanpi
<math.h>

cos, cospi, sin, sinpi, tan, tanpi
<math.h>

acosh, asinh, atanh
<math.h>

cosh, sinh, tanh
<math.h>

exp, exp10, exp10m1, exp2, exp2m1, expm1
<math.h>

log, log10, log10p1, log1p, log2, log2p1, logp1
<math.h>

scalbn, scalbln, ldexp
<math.h>

cbrt, compoundn, hypot, pow, pown, powr, rootn, rsqrt, sqrt
<math.h>

erf, erfc
<math.h>

lgamma, tgamma
<math.h>

rint, nearbyint, lrint, llrint
<math.h>

fdim
<math.h>

fma
<math.h>

fadd, dadd, fsub, dsub, fmul, dmul, fdiv, ddiv, ffma, dfma, fsqrt, dsqrt
<stdlib.h>

atof, strfrom, strto
<wchar.h>

wcsto
<stdio.h>

printf and scanf families
<wchar.h>

wprintf and wscanf families

A function family listed in Table 7.1 indicates the functions for all standard floating types, where
the function family is represented by the name of the functions without a suffix. For example, acos
indicates the functions acos, acosf, and acosl.

5 NOTE Constant rounding modes can be implemented using dynamic rounding modes as illustrated in the
following example, except that this method does not interpret inexact floating constants according to the
constant rounding mode as required.

{
#pragma STDC FENV_ROUND direction
// compiler inserts:
// #pragma STDC FENV_ACCESS ON
// int __savedrnd;
// __savedrnd = __swapround(direction);
... operations affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
... operations not affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
... operations affected by constant rounding mode ...
// compiler inserts:
// __swapround(__savedrnd);

§ 7.6.3 © ISO/IEC 202y — All rights reserved

Library — 215

ISO/IEC 9899:202y (en) — n3299 working draft

}

where __swapround is defined by:

static inline int __swapround(const int new) {
const int old = fegetround();
fesetround(new);
return old;

}

© ISO/IEC 202y — All rights reserved

Library — 216

§ 7.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

7.6.4 The FENV_DEC_ROUND pragma
Synopsis

1 #include <fenv.h>
#ifdef __STDC_IEC_60559_DFP__

#pragma STDC FENV_DEC_ROUND dec-direction
#endif

Description
2 The FENV_DEC_ROUND pragma is a decimal floating-point analog of the FENV_ROUND pragma. If

FLT_RADIX is not 10, the FENV_DEC_ROUND pragma affects operators, functions, and floating con-
stants only for decimal floating types. The affected functions are listed in Table 7.2.
If FLT_RADIX is 10, whether the FENV_ROUND and FENV_DEC_ROUND pragmas alter the rounding direc-
tion of both standard and decimal floating-point operations is implementation-defined. dec-direction
shall be one of the decimal rounding direction macro names (FE_DEC_DOWNWARD, FE_DEC_TONEAREST
, FE_DEC_TONEARESTFROMZERO, FE_DEC_TOWARDZERO, and FE_DEC_UPWARD) defined in 7.6, to specify
a constant rounding mode, or FE_DEC_DYNAMIC, to specify dynamic rounding. The corresponding
dynamic rounding mode can be established by a call to fe_dec_setround.

Table 7.2 — Functions affected by constant rounding modes – for decimal floating types

Header Function families
<math.h>

acos, acospi, asin, asinpi, atan, atan2, atan2pi, atanpi
<math.h>

cos, cospi, sin, sinpi, tan, tanpi
<math.h>

acosh, asinh, atanh
<math.h>

cosh, sinh, tanh
<math.h>

exp, exp10, exp10m1, exp2, exp2m1, expm1
<math.h>

log, log10, log10p1, log1p, log2, log2p1, logp1
<math.h>

scalbn, scalbln, ldexp
<math.h>

cbrt, compoundn, hypot, pow, pown, powr, rootn, rsqrt, sqrt
<math.h>

erf, erfc
<math.h>

lgamma, tgamma
<math.h>

rint, nearbyint, lrint, llrint
<math.h>

quantize
<math.h>

fdim
<math.h>

fma
<math.h>

d32add, d64add, d32sub, d64sub, d32mul, d64mul, d32div, d64div,
d32fma, d64fma, d32sqrt, d64sqrt

<stdlib.h>
strfrom, strto

<wchar.h>
wcsto

<stdio.h> printf and scanf families
<wchar.h> wprintf and wscanf families

A function family listed in Table 7.2 indicates the functions for all decimal floating types, where the

§ 7.6.4 © ISO/IEC 202y — All rights reserved

Library — 217

ISO/IEC 9899:202y (en) — n3299 working draft

function family is represented by the name of the functions without a suffix. For example, acos
indicates the functions acosd32, acosd64, and acosd128.

7.6.5 Floating-point exceptions
7.6.5.1 General

1 The following functions provide access to the floating-point status flags.249) The int input argument
for the functions represents a subset of floating-point exceptions, and can be zero or the bitwise
OR of one or more floating-point exception macros, for example FE_OVERFLOW | FE_INEXACT. For
other argument values, the behavior of these functions is undefined.

7.6.5.2 The feclearexcept function
Synopsis

1 #include <fenv.h>
int feclearexcept(int excepts);

Description
2 The feclearexcept function attempts to clear the supported floating-point exceptions represented

by its argument.

Returns
3 The feclearexcept function returns zero if the excepts argument is zero or if all the specified

exceptions were successfully cleared. Otherwise, it returns a nonzero value.

7.6.5.3 The fegetexceptflag function
Synopsis

1 #include <fenv.h>
int fegetexceptflag(fexcept_t *flagp, int excepts);

Description
2 The fegetexceptflag function attempts to store an implementation-defined representation of the

states of the floating-point status flags indicated by the argument excepts in the object pointed to
by the argument flagp.

Returns
3 The fegetexceptflag function returns zero if the representation was successfully stored. Otherwise,

it returns a nonzero value.

7.6.5.4 The feraiseexcept function
Synopsis

1 #include <fenv.h>
int feraiseexcept(int excepts);

Description
2 The feraiseexcept function attempts to raise the supported floating-point exceptions represented

by its argument.250) The order in which these floating-point exceptions are raised is unspecified,
except as stated in F.8.7. Whether the feraiseexcept function additionally raises the "inexact"

249)The functions fetestexcept, feraiseexcept, and feclearexcept support the basic abstraction of flags that are either
set or clear. An implementation can endow floating-point status flags with more information — for example, the address of
the code which first raised the floating-point exception; the functions fegetexceptflag and fesetexceptflag deal with
the full content of flags.
250)The effect is intended to be similar to that of floating-point exceptions raised by arithmetic operations. Hence, implemen-

tation extensions associated with raising a floating-point exception (for example, enabled traps or ISO/IEC 60559 alternate
exception handling) should be honored. The specification in F.8.7 is in the same spirit.

© ISO/IEC 202y — All rights reserved

Library — 218

§ 7.6.5.4

ISO/IEC 9899:202y (en) — n3299 working draft

floating-point exception whenever it raises the "overflow" or "underflow" floating-point exception
is implementation-defined.

Returns
3 The feraiseexcept function returns zero if the excepts argument is zero or if all the specified

exceptions were successfully raised. Otherwise, it returns a nonzero value.

Recommended practice
Implementation extensions associated with raising a floating-point exception (for example, enabled
traps or ISO/IEC 60559 alternate exception handling) should be honored by this function.

7.6.5.5 The fesetexcept function
Synopsis

1 #include <fenv.h>
int fesetexcept(int excepts);

Description
2 The fesetexcept function attempts to set the supported floating-point exception flags represented

by its argument. This function does not clear any floating-point exception flags. This function
changes the state of the floating-point exception flags, but does not cause any other side effects that
can be associated with raising floating-point exceptions.251)

Returns
3 The fesetexcept function returns zero if all the specified exceptions were successfully set or if the

excepts argument is zero. Otherwise, it returns a nonzero value.

7.6.5.6 The fesetexceptflag function
Synopsis

1 #include <fenv.h>
int fesetexceptflag(const fexcept_t *flagp, int excepts);

Description
2 The fesetexceptflag function attempts to set the floating-point status flags indicated by the

argument excepts to the states stored in the object pointed to by flagp. The value of *flagp
shall have been set by a previous call to fegetexceptflag whose second argument represented at
least those floating-point exceptions represented by the argument excepts. Like fesetexcept, this
function does not raise floating-point exceptions, but only sets the state of the flags.

Returns
3 The fesetexceptflag function returns zero if the excepts argument is zero or if all the specified

flags were successfully set to the appropriate state. Otherwise, it returns a nonzero value.

7.6.5.7 The fetestexceptflag function
Synopsis

1 #include <fenv.h>
int fetestexceptflag(const fexcept_t *flagp, int excepts);

Description
2 The fetestexceptflag function determines which of a specified subset of the floating-point excep-

tion flags are set in the object pointed to by flagp. The value of *flagp shall have been set by a
previous call to fegetexceptflag whose second argument represented at least those floating-point
exceptions represented by the argument excepts. The excepts argument specifies the floating-point
status flags to be queried.
251)Implementation extensions like traps for floating-point exceptions and ISO/IEC 60559 exception handling do not occur.

§ 7.6.5.7 © ISO/IEC 202y — All rights reserved

Library — 219

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The fetestexceptflag function returns the value of the bitwise OR of the floating-point exception

macros included in excepts corresponding to the floating-point exceptions set in *flagp.

7.6.5.8 The fetestexcept function
Synopsis

1 #include <fenv.h>
int fetestexcept(int excepts);

Description
2 The fetestexcept function determines which of a specified subset of the floating-point excep-

tion flags are currently set. The excepts argument specifies the floating-point status flags to be
queried.252)

Returns
3 The fetestexcept function returns the value of the bitwise OR of the floating-point exception

macros corresponding to the currently set floating-point exceptions included in excepts.

4 EXAMPLE Call f if "invalid" is set, then g if "overflow" is set:

#include <fenv.h>
/* ... */
{

#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept(FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* ... */

}

7.6.6 Rounding and other control modes
7.6.6.1 General

1 The fegetround and fesetround functions provide control of rounding direction modes. The
fegetmode and fesetmode functions manage all the implementation’s dynamic floating-point
control modes collectively.

7.6.6.2 The fegetmode function
Synopsis

1 #include <fenv.h>
int fegetmode(femode_t *modep);

Description
2 The fegetmode function attempts to store all the dynamic floating-point control modes in the object

pointed to by modep.

Returns
3 The fegetmode function returns zero if the modes were successfully stored. Otherwise, it returns a

nonzero value.

7.6.6.3 The fegetround function

252)This mechanism allows testing several floating-point exceptions with just one function call.

© ISO/IEC 202y — All rights reserved

Library — 220

§ 7.6.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <fenv.h>
int fegetround(void);

Description
2 The fegetround function gets the current value of the dynamic rounding direction mode.

Returns
3 The fegetround function returns the value of the rounding direction macro representing the current

dynamic rounding direction or a negative value if there is no such rounding direction macro or the
current dynamic rounding direction is not determinable.

7.6.6.4 The fe_dec_getround function
Synopsis

1 #include <fenv.h>
#ifdef __STDC_IEC_60559_DFP__

int fe_dec_getround(void);
#endif

Description
2 The fe_dec_getround function gets the current value of the dynamic rounding direction mode for

decimal floating-point operations.

Returns
3 The fe_dec_getround function returns the value of the rounding direction macro representing the

current dynamic rounding direction for decimal floating-point operations, or a negative value if
there is no such rounding macro or the current rounding direction is not determinable.

7.6.6.5 The fesetmode function
Synopsis

1 #include <fenv.h>
int fesetmode(const femode_t *modep);

Description
2 The fesetmode function attempts to establish the dynamic floating-point modes represented by the

object pointed to by modep. The argument modep shall point to an object set by a call to fegetmode,
or equal FE_DFL_MODE or a dynamic floating-point mode state macro defined by the implementation.

Returns
The fesetmode fesetmode function returns zero if the modes were successfully established. Other-
wise, it returns a nonzero value.

7.6.6.6 The fesetround function
Synopsis

1 #include <fenv.h>
int fesetround(int rnd);

Description
2 The fesetround function establishes the rounding direction represented by its argument rnd. If

the argument is not equal to the value of a rounding direction macro, the rounding direction is not
changed.

§ 7.6.6.6 © ISO/IEC 202y — All rights reserved

Library — 221

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The fesetround function returns zero if and only if the dynamic rounding direction mode was set

to the requested rounding direction.

4 EXAMPLE The following is a way to save, set, and restore the rounding direction, including reporting an error
and abort if setting the rounding direction fails.

#include <fenv.h>
#include <assert.h>

void f(int rnd_dir)
{

#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(rnd_dir);
assert(setround_ok == 0);
/* ... */
fesetround(save_round);
/* ... */

}

7.6.6.7 The fe_dec_setround function
Synopsis

1 #include <fenv.h>
#ifdef __STDC_IEC_60559_DFP__

int fe_dec_setround(int rnd);
#endif

Description
2 The fe_dec_setround function sets the dynamic rounding direction mode for decimal floating-

point operations to be the rounding direction represented by its argument rnd. If the argument is
not equal to the value of a decimal rounding direction macro, the rounding direction is not changed.

3 If FLT_RADIX is not 10, the rounding direction altered by the fesetround function is independent
of the rounding direction altered by the fe_dec_setround function; otherwise if FLT_RADIX is
10, whether the fesetround and fe_dec_setround functions alter the rounding direction of both
standard and decimal floating-point operations is implementation-defined.

Returns
4 The fe_dec_setround function returns a zero value if and only if the argument is equal to a decimal

rounding direction macro (that is, if and only if the dynamic rounding direction mode for decimal
floating-point operations was set to the requested rounding direction).

7.6.7 Environment
7.6.7.1 General

1 The functions in this section manage the floating-point environment — status flags and control
modes — as one entity.

7.6.7.2 The fegetenv function
Synopsis

1 #include <fenv.h>
int fegetenv(fenv_t *envp);

© ISO/IEC 202y — All rights reserved

Library — 222

§ 7.6.7.2

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The fegetenv function attempts to store the current dynamic floating-point environment in the

object pointed to by envp.

Returns
3 The fegetenv function returns zero if the environment was successfully stored. Otherwise, it returns

a nonzero value.

7.6.7.3 The feholdexcept function
Synopsis

1 #include <fenv.h>
int feholdexcept(fenv_t *envp);

Description
2 The feholdexcept function saves the current dynamic floating-point environment in the object

pointed to by envp, clears the floating-point status flags, and then installs a non-stop (continue on
floating-point exceptions) mode, if available, for all floating-point exceptions.253)

Returns
3 The feholdexcept function returns zero if and only if non-stop floating-point exception handling

was successfully installed.

7.6.7.4 The fesetenv function
Synopsis

1 #include <fenv.h>
int fesetenv(const fenv_t *envp);

Description
2 The fesetenv function attempts to establish the dynamic floating-point environment represented by

the object pointed to by envp. The argument envp shall point to an object set by a call to fegetenv
or feholdexcept, or equal a dynamic floating-point environment macro. fesetenv merely installs
the state of the floating-point status flags represented through its argument, and does not raise these
floating-point exceptions.

Returns
3 The fesetenv function returns zero if the environment was successfully established. Otherwise, it

returns a nonzero value.

7.6.7.5 The feupdateenv function
Synopsis

1 #include <fenv.h>
int feupdateenv(const fenv_t *envp);

Description
2 The feupdateenv function attempts to save the currently raised floating-point exceptions in its

automatic storage, install the dynamic floating-point environment represented by the object pointed
to by envp, and then raise the saved floating-point exceptions. The argument envp shall point to an
object set by a call to feholdexcept or fegetenv, or equal a dynamic floating-point environment
macro.

253)ISO/IEC 60559 systems have a default non-stop mode, and typically at least one other mode for trap handling or aborting;
if the system provides only the non-stop mode then installing it is trivial. For such systems, the feholdexcept function can
be used in conjunction with the feupdateenv function to write routines that hide spurious floating-point exceptions from
their callers.

§ 7.6.7.5 © ISO/IEC 202y — All rights reserved

Library — 223

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The feupdateenv function returns zero if all the actions were successfully carried out. Otherwise, it

returns a nonzero value.

4 EXAMPLE Hide spurious underflow floating-point exceptions:

#include <fenv.h>
double f(double x)
{

#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
if (feholdexcept(&save_env))

return /* indication of an environmental problem */;
// compute result
if (/* test spurious underflow */)

if (feclearexcept(FE_UNDERFLOW))
return /* indication of an environmental problem */;

if (feupdateenv(&save_env))
return /* indication of an environmental problem */;

return result;
}

© ISO/IEC 202y — All rights reserved

Library — 224

§ 7.6.7.5

ISO/IEC 9899:202y (en) — n3299 working draft

7.7 Characteristics of floating types <float.h>
1 The header <float.h> defines several macros that expand to various limits and parameters of the

real floating types.

2 The macro

__STDC_VERSION_FLOAT_H__

is an integer constant expression with a value equivalent to 202311L.

3 The rest of the macros, their meanings, and the constraints (or restrictions) on their values are listed
in 5.3.5.3.3 and 5.3.5.3.4. A summary is given in Annex E.

§ 7.7 © ISO/IEC 202y — All rights reserved

Library — 225

ISO/IEC 9899:202y (en) — n3299 working draft

7.8 Format conversion of integer types <inttypes.h>
7.8.1 General

1 The header <inttypes.h> includes the header <stdint.h> and extends it with additional facilities
provided by hosted implementations.

2 It defines the macro

__STDC_VERSION_INTTYPES_H__

which is an integer constant expression with a value equivalent to 202311L.

3 It declares functions for manipulating greatest-width integers and converting numeric character
strings to greatest-width integers, and it declares the type

imaxdiv_t

which is a structure type that is the type of the value returned by the imaxdiv function. For each
type declared in <stdint.h>, it defines corresponding macros for conversion specifiers for use with
the formatted input/output functions.254)

Forward references: integer types <stdint.h> (7.22), formatted input/output functions (7.23.6),
formatted wide character input/output functions (7.31.2).

7.8.2 Macros for format specifiers
1 Each of the following object-like macros expands to a character string literal containing a conversion

specifier, possibly modified by a length modifier, suitable for use within the format argument of a
formatted input/output function when converting the corresponding integer type. These macro
names have the general form of PRI (character string literals for the fprintf and fwprintf family)
or SCN (character string literals for the fscanf and fwscanf family),255) followed by the conversion
specifier, followed by a name corresponding to a similar type name in 7.22.2. In these names, N
represents the width of the type as described in 7.22.2. For example, PRIdFAST32 can be used in a
format string to print the value of an integer of type int_fast32_t. The functions in the fprintf
and fwprintf families shall behave as if they use va_arg with a type argument naming the type
resulting from applying the default argument promotions to the type corresponding to the macro
and then convert the result of the va_arg expansion to the type corresponding to the macro.

2 The fprintf macros for signed integers are:

PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR
PRIiN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR

3 The fprintf macros for unsigned integers are:

PRIbN PRIbLEASTN PRIbFASTN PRIbMAX PRIbPTR
PRIoN PRIoLEASTN PRIoFASTN PRIoMAX PRIoPTR
PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
PRIxN PRIxLEASTN PRIxFASTN PRIxMAX PRIxPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR

4 The following fprintf macros for unsigned integer types are optional:

PRIBN PRIBLEASTN PRIBFASTN PRIBMAX PRIBPTR

They shall be defined if the implementation supports the B specifier as indicated in 7.23.6.2 and
7.31.2.2; otherwise they shall not be defined.

5 The fscanf macros for signed integers are:

SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR

254)See "future library directions" (7.33.7).
255)For any given type, the corresponding macros for fprintf and fscanf functions can be distinct.

© ISO/IEC 202y — All rights reserved

Library — 226

§ 7.8.2

ISO/IEC 9899:202y (en) — n3299 working draft

6 The fscanf macros for unsigned integers are:

SCNbN SCNbLEASTN SCNbFASTN SCNbMAX SCNbPTR
SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxPTR

7 For each type that the implementation provides in <stdint.h>, the corresponding fprintf macros
shall be defined and the corresponding fscanf macros shall be defined unless the implementation
does not have a suitable fscanf length modifier for the type.

8 EXAMPLE

#include <inttypes.h>
#include <wchar.h>
int main(void)
{

uintmax_t i = UINTMAX_MAX; // this type always exists
wprintf(L"The largest integer value is %020"

PRIxMAX "\n", i);
return 0;

}

7.8.3 Functions for greatest-width integer types
7.8.3.1 The imaxabs function
Synopsis

1 #include <inttypes.h>
intmax_t imaxabs(intmax_t j);

Description
2 The imaxabs function computes the absolute value of an integer j. If the result cannot be represented,

the behavior is undefined.256)

Returns
3 The imaxabs function returns the absolute value.

7.8.3.2 The imaxdiv function
Synopsis

1 #include <inttypes.h>
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

Description
2 The imaxdiv function computes numer / denom and numer % denom in a single operation.

Returns
3 The imaxdiv function returns a structure of type imaxdiv_t comprising both the quotient and the

remainder. The structure shall contain (in either order) the members quot (the quotient) and rem
(the remainder), each of which has type intmax_t. If either part of the result cannot be represented,
the behavior is undefined.

7.8.3.3 The strtoimax and strtoumax functions
Synopsis

1 #include <inttypes.h>
intmax_t strtoimax(const char * restrict nptr, char ** restrict endptr, int base);
uintmax_t strtoumax(const char * restrict nptr, char ** restrict endptr, int base);

256)The absolute value of the most negative number is not representable.

§ 7.8.3.3 © ISO/IEC 202y — All rights reserved

Library — 227

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The strtoimax and strtoumax functions are equivalent to the strtol, strtoll, strtoul, and

strtoull functions, except that the initial portion of the string is converted to intmax_t and
uintmax_t representation, respectively.

Returns
3 The strtoimax and strtoumax functions return the converted value, if any. If no conversion could

be performed, zero is returned. If the correct value is outside the range of representable values,
INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAX is returned (according to the return type and sign of the
value, if any), and the value of the macro ERANGE is stored in errno.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.24.2.8).

7.8.3.4 The wcstoimax and wcstoumax functions
Synopsis

1 #include <stddef.h> // for wchar_t
#include <inttypes.h>
intmax_t wcstoimax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);
uintmax_t wcstoumax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);

Description
2 The wcstoimax and wcstoumax functions are equivalent to the wcstol, wcstoll, wcstoul, and

wcstoull functions except that the initial portion of the wide string is converted to intmax_t and
uintmax_t representation, respectively.

Returns
3 The wcstoimax function returns the converted value, if any. If no conversion could be performed,

zero is returned. If the correct value is outside the range of representable values, INTMAX_MAX,
INTMAX_MIN, or UINTMAX_MAX is returned (according to the return type and sign of the value, if any),
and the value of the macro ERANGE is stored in errno.

Forward references: the wcstol, wcstoll, wcstoul, and wcstoull functions (7.31.4.2.4).

© ISO/IEC 202y — All rights reserved

Library — 228

§ 7.8.3.4

ISO/IEC 9899:202y (en) — n3299 working draft

7.9 Alternative spellings <iso646.h>
1 The header <iso646.h> defines the following eleven macros (on the left) that expand to the corre-

sponding tokens (on the right):

and &&
and_eq &=
bitand &
bitor |
compl ~
not !
not_eq !=
or ||
or_eq |=
xor ^
xor_eq ^=

§ 7.9 © ISO/IEC 202y — All rights reserved

Library — 229

ISO/IEC 9899:202y (en) — n3299 working draft

7.10 Characteristics of integer types <limits.h>
1 The header <limits.h> defines several macros that expand to various limits and parameters of the

standard integer types.

2 The macro

__STDC_VERSION_LIMITS_H__

is an integer constant expression with a value equivalent to 202311L.

3 The rest of the macros, their meanings, and the constraints (or restrictions) on their values are listed
in 5.3.5.3.2. A summary is given in Annex E.

© ISO/IEC 202y — All rights reserved

Library — 230

§ 7.10

ISO/IEC 9899:202y (en) — n3299 working draft

7.11 Localization <locale.h>

7.11.1 General
1 The header <locale.h> declares two functions, one type, and defines several macros.

2 The type is

struct lconv

which contains members related to the formatting of numeric values. The structure shall contain
at least the following members, in any order. The semantics of the members and their normal
ranges are explained in 7.11.3.1. In the "C" locale, the members shall have the values specified in the
comments.

char *decimal_point; // "."
char *thousands_sep; // ""
char *grouping; // ""
char *mon_decimal_point; // ""
char *mon_thousands_sep; // ""
char *mon_grouping; // ""
char *positive_sign; // ""
char *negative_sign; // ""
char *currency_symbol; // ""
char frac_digits; // CHAR_MAX
char p_cs_precedes; // CHAR_MAX
char n_cs_precedes; // CHAR_MAX
char p_sep_by_space; // CHAR_MAX
char n_sep_by_space; // CHAR_MAX
char p_sign_posn; // CHAR_MAX
char n_sign_posn; // CHAR_MAX
char *int_curr_symbol; // ""
char int_frac_digits; // CHAR_MAX
char int_p_cs_precedes; // CHAR_MAX
char int_n_cs_precedes; // CHAR_MAX
char int_p_sep_by_space; // CHAR_MAX
char int_n_sep_by_space; // CHAR_MAX
char int_p_sign_posn; // CHAR_MAX
char int_n_sign_posn; // CHAR_MAX

3 The macros defined are NULL (described in 7.21); and

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

which expand to integer constant expressions with distinct values, suitable for use as the first
argument to the setlocale function.257) Additional macro definitions, beginning with the characters
LC_ and an uppercase letter,258) may also be specified by the implementation.

7.11.2 The setlocale function
Synopsis

1 #include <locale.h>
char *setlocale(int category, const char *locale);

257)ISO/IEC 9945 specifies locale and charmap formats that can be used to specify locales for C.
258)See "future library directions" (7.33.8).

§ 7.11.2 © ISO/IEC 202y — All rights reserved

Library — 231

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The setlocale function selects the appropriate portion of the program’s locale as specified by

the category and locale arguments. The setlocale function may be used to change or query
the program’s entire current locale or portions thereof. The value LC_ALL for category names
the program’s entire locale; the other values for category name only a portion of the program’s
locale. LC_COLLATE affects the behavior of the strcoll and strxfrm functions. LC_CTYPE affects
the behavior of the character handling functions259) and the multibyte and wide character functions.
LC_MONETARY affects the monetary formatting information returned by the localeconv function.
LC_NUMERIC affects the decimal-point character for the formatted input/output functions and the
string conversion functions, as well as the nonmonetary formatting information returned by the
localeconv function. LC_TIME affects the behavior of the strftime and wcsftime functions.

3 A value of "C" for locale specifies the minimal environment for C translation; a value of "" for
locale specifies the locale-specific native environment. Other implementation-defined strings may
be passed as the second argument to setlocale.

4 At program startup, the equivalent of

setlocale(LC_ALL, "C");

is executed.

5 A call to the setlocale function may introduce a data race with other calls to the setlocale
function or with calls to functions that are affected by the current locale. The implementation shall
behave as if no library function calls the setlocale function.

Returns
6 If a pointer to a string is given for locale and the selection can be honored, the setlocale function

returns a pointer to the string associated with the specified category for the new locale. If the
selection cannot be honored, the setlocale function returns a null pointer and the program’s locale
is not changed.

7 A null pointer for locale causes the setlocale function to return a pointer to the string associated
with the category for the program’s current locale; the program’s locale is not changed.260)

8 The pointer to string returned by the setlocale function is such that a subsequent call with that
string value and its associated category will restore that part of the program’s locale. The string
pointed to shall not be modified by the program. The behavior is undefined if the returned value
is used after a subsequent call to the setlocale function, or after the thread which called the
setlocale function to obtain the returned value has exited.

Forward references: formatted input/output functions (7.23.6), multibyte/wide character conver-
sion functions (7.24.8), multibyte/wide string conversion functions (7.24.9), numeric conversion
functions (7.24.2), the strcoll function (7.26.4.4), the strftime function (7.29.3.6), the strxfrm
function (7.26.4.6).

7.11.3 Numeric formatting convention inquiry
7.11.3.1 The localeconv function
Synopsis

1 #include <locale.h>
struct lconv *localeconv(void);

Description
2 The localeconv function sets the components of an object with type struct lconv with values

appropriate for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale.
259)The only functions in 7.4 whose behavior is not affected by the current locale are isdigit and isxdigit.
260)The implementation is thus required to arrange to encode in a string the various categories due to a heterogeneous locale

when category has the value LC_ALL.

© ISO/IEC 202y — All rights reserved

Library — 232

§ 7.11.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

3 The members of the structure with type char * are pointers to strings, any of which (except
decimal_point) can point to "", to indicate that the value is not available in the current locale or is
of zero length. Apart from grouping and mon_grouping, the strings shall start and end in the initial
shift state. The members with type char are nonnegative numbers, any of which can be CHAR_MAX
to indicate that the value is not available in the current locale. The members include the following:

char *decimal_point

The decimal-point character used to format nonmonetary quantities.

char *thousands_sep

The character used to separate groups of digits before the decimal-point character in
formatted nonmonetary quantities.

char *grouping

A string whose elements indicate the size of each group of digits in formatted nonmon-
etary quantities.

char *mon_decimal_point

The decimal-point used to format monetary quantities.

char *mon_thousands_sep

The separator for groups of digits before the decimal-point in formatted monetary
quantities.

char *mon_grouping

A string whose elements indicate the size of each group of digits in formatted monetary
quantities.

char *positive_sign

The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative_sign

The string used to indicate a negative-valued formatted monetary quantity.

char *currency_symbol

The local currency symbol applicable to the current locale.

char frac_digits

The number of fractional digits (those after the decimal-point) to be displayed in a
locally formatted monetary quantity.

char p_cs_precedes

Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
nonnegative locally formatted monetary quantity.

char n_cs_precedes

Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
negative locally formatted monetary quantity.

char p_sep_by_space

Set to a value indicating the separation of the currency_symbol, the sign string, and
the value for a nonnegative locally formatted monetary quantity.

char n_sep_by_space

Set to a value indicating the separation of the currency_symbol, the sign string, and
the value for a negative locally formatted monetary quantity.

char p_sign_posn

Set to a value indicating the positioning of the positive_sign for a nonnegative locally
formatted monetary quantity.

§ 7.11.3.1 © ISO/IEC 202y — All rights reserved

Library — 233

ISO/IEC 9899:202y (en) — n3299 working draft

char n_sign_posn

Set to a value indicating the positioning of the negative_sign for a negative locally
formatted monetary quantity.

char *int_curr_symbol

The international currency symbol applicable to the current locale. The first three
characters contain the alphabetic international currency symbol in accordance with
those specified in ISO 4217. The fourth character (immediately preceding the null
character) is the character used to separate the international currency symbol from the
monetary quantity.

char int_frac_digits

The number of fractional digits (those after the decimal-point) to be displayed in an
internationally formatted monetary quantity.

char int_p_cs_precedes

Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
nonnegative internationally formatted monetary quantity.

char int_n_cs_precedes

Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
negative internationally formatted monetary quantity.

char int_p_sep_by_space

Set to a value indicating the separation of the int_curr_symbol, the sign string, and
the value for a nonnegative internationally formatted monetary quantity.

char int_n_sep_by_space

Set to a value indicating the separation of the int_curr_symbol, the sign string, and
the value for a negative internationally formatted monetary quantity.

char int_p_sign_posn

Set to a value indicating the positioning of the positive_sign for a nonnegative
internationally formatted monetary quantity.

char int_n_sign_posn

Set to a value indicating the positioning of the negative_sign for a negative interna-
tionally formatted monetary quantity.

4 The elements of grouping and mon_grouping are interpreted according to the following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that compose the current group. The next
element is examined to determine the size of the next group of digits before the current
group.

5 The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and
int_n_sep_by_space are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the value;
otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a space
separates the sign string from the value.

© ISO/IEC 202y — All rights reserved

Library — 234

§ 7.11.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

For int_p_sep_by_space and int_n_sep_by_space, the fourth character of int_curr_symbol is
used instead of a space.

6 The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are inter-
preted according to the following:

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string succeeds the quantity and currency symbol.

3 The sign string immediately precedes the currency symbol.

4 The sign string immediately succeeds the currency symbol.

7 The implementation shall behave as if no library function calls the localeconv function.

Returns
8 The localeconv function returns a pointer to the filled-in object. The structure pointed to by the

return value shall not be modified by the program, but may be overwritten by a subsequent call
to the localeconv function. In addition, calls to the setlocale function with categories LC_ALL,
LC_MONETARY, or LC_NUMERIC may overwrite the contents of the structure.

9 EXAMPLE 1 Table 7.3 illustrates rules which can be used by four countries to format — potentially irrelevant,
imaginary, and/or historical — monetary quantities.

Table 7.3 — Formatting rule examples

Local format International format
Country Positive Negative Positive Negative
Country1 1.234,56 mk -1.234,56 mk FIM 1.234,56 FIM -1.234,56
Country2 L.1.234 -L.1.234 ITL 1.234 -ITL 1.234
Country3 ƒ 1.234,56 ƒ -1.234,56 NLG 1.234,56 NLG -1.234,56
Country4 SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56 CHF 1,234.56C

10 For these four countries, the respective values for the monetary members of the structure returned by
localeconv can be as displayed in Table 7.4:

Table 7.4 — Formatting values for example countries

Country1 Country2 Country3 Country4

mon_decimal_point "," "" "," "."
mon_thousands_sep "." "." "." ","
mon_grouping "\3" "\3" "\3" "\3"
positive_sign "" "" "" ""
negative_sign "-" "-" "-" "C"
currency_symbol "mk" "L." "\u0192" "SFrs."
frac_digits 2 0 2 2
p_cs_precedes 0 1 1 1
n_cs_precedes 0 1 1 1
p_sep_by_space 1 0 1 0
n_sep_by_space 1 0 2 0
p_sign_posn 1 1 1 1
n_sign_posn 1 1 4 2
int_curr_symbol "FIM " "ITL " "NLG " "CHF "
int_frac_digits 2 0 2 2
int_p_cs_precedes 1 1 1 1
int_n_cs_precedes 1 1 1 1
int_p_sep_by_space 1 1 1 1
int_n_sep_by_space 2 1 2 1

§ 7.11.3.1 © ISO/IEC 202y — All rights reserved

Library — 235

ISO/IEC 9899:202y (en) — n3299 working draft

int_p_sign_posn 1 1 1 1
int_n_sign_posn 4 1 4 2

© ISO/IEC 202y — All rights reserved

Library — 236

§ 7.11.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

11 EXAMPLE 2 Table 7.5 illustrates how the cs_precedes, sep_by_space, and sign_posn members affect the
formatted value.

Table 7.5 — Select member formatting affect

p_sep_by_space
p_cs_precedes p_sign_posn 0 1 2

0 0 (1.25$) (1.25 $) (1.25$)
1 +1.25$ +1.25 $ + 1.25$
2 1.25$+ 1.25 $+ 1.25$ +
3 1.25+$ 1.25 +$ 1.25+ $
4 1.25$+ 1.25 $+ 1.25$ +

1 0 ($1.25) ($ 1.25) ($1.25)
1 +$1.25 +$ 1.25 + $1.25
2 $1.25+ $ 1.25+ $1.25 +
3 +$1.25 +$ 1.25 + $1.25
4 $+1.25 $+ 1.25 $ +1.25

§ 7.11.3.1 © ISO/IEC 202y — All rights reserved

Library — 237

ISO/IEC 9899:202y (en) — n3299 working draft

7.12 Mathematics <math.h>
7.12.1 General

1 The header <math.h> declares two types and many mathematical functions and defines several
macros. Most synopses specify a family of functions consisting of a principal function with one
or more double parameters, a double return value, or both; and other functions with the same
name but with f and l suffixes, which are corresponding functions with float and long double
parameters, return values, or both.261) Integer arithmetic functions and conversion functions are
discussed later.

2 The feature test macro __STDC_VERSION_MATH_H__ expands to the token 202311L.

3 The types

float_t
double_t

are floating types such that the values of float and double are subsets of the values of float_t
and double_t, respectively, and such that the values of float_t are a subset of the values of
double_t. If FLT_EVAL_METHOD equals 0, float_t and double_t are float and double, respec-
tively; if FLT_EVAL_METHOD equals 1, they are both double; if FLT_EVAL_METHOD equals 2, they are
both long double; and for other values of FLT_EVAL_METHOD, they are otherwise implementation-
defined.262) If they are not real floating types, the behavior is implementation-defined.

4 The types

_Decimal32_t
_Decimal64_t

are decimal floating types at least as wide as _Decimal32 and _Decimal64, respectively, and
such that _Decimal64_t is at least as wide as _Decimal32_t. They are present only if the
implementation defines __STDC_IEC_60559_DFP__ and additionally the user code defines
__STDC_WANT_IEC_60559_EXT__ before any inclusion of <math.h>. If DEC_EVAL_METHOD
equals 0, _Decimal32_t and _Decimal64_t are _Decimal32 and _Decimal64, respectively; if
DEC_EVAL_METHOD equals 1, they are both _Decimal64; if DEC_EVAL_METHOD equals 2, they are
both _Decimal128; and for other values of DEC_EVAL_METHOD, they are otherwise implementation-
defined.

5 The macro

HUGE_VAL

expands to a double arithmetic constant expression, not necessarily representable as a float, whose
value is the maximum value returned by library functions when a floating result of type double
overflows under the default rounding mode, either maximum finite number in the type or positive
or unsigned infinity. The macros

HUGE_VALF
HUGE_VALL

are respectively float and long double analogs of HUGE_VAL.263)

6 The macros in this paragraph are only present if the implementation defines
__STDC_IEC_60559_DFP__ and additionally the user code defines __STDC_WANT_IEC_60559_EXT__
before any inclusion of <math.h>. The macro

261)Particularly on systems with wide expression evaluation, a <math.h> function can pass arguments and return values in
wider format than the synopsis prototype indicates.

262)The types float_t and double_t are intended to be the implementation’s most efficient types at least as wide as
float and double, respectively. For FLT_EVAL_METHOD equal 0, 1, or 2, the type float_t is the narrowest type used by the
implementation to evaluate floating expressions.
263)HUGE_VAL, HUGE_VALF, and HUGE_VALL can be positive infinities in an implementation that supports infinities.

© ISO/IEC 202y — All rights reserved

Library — 238

§ 7.12.1

ISO/IEC 9899:202y (en) — n3299 working draft

HUGE_VAL_D32

expands to an arithmetic constant expression of type _Decimal32 representing positive infinity. The
macros

HUGE_VAL_D64
HUGE_VAL_D128

are respectively _Decimal64 and _Decimal128 analogs of HUGE_VAL_D32.

7 The macro

INFINITY

is defined if and only if the implementation supports an infinity for the type float. It expands to an
arithmetic constant expression of type float representing positive or unsigned infinity.

8 The macro

DEC_INFINITY

expands to an arithmetic constant expression of type _Decimal32 representing positive infinity.

9 The macro

NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to
an arithmetic constant expression of type float representing a quiet NaN.

10 The macro

DEC_NAN

expands to an arithmetic constant expression of type _Decimal32 representing a quiet NaN.

11 Use of the macros INFINITY, DEC_INFINITY, NAN, and DEC_NAN in <math.h> is an obsolescent
feature. Instead, use the same macros in <float.h>.

12 The number classification macros

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

represent mutually exclusive kinds of floating-point values. They expand to integer constant
expressions with distinct values. Additional implementation-defined floating-point classifications,
with macro definitions beginning with FP_ and an uppercase letter, may also be specified by the
implementation.

13 The math rounding direction macros

FP_INT_UPWARD
FP_INT_DOWNWARD
FP_INT_TOWARDZERO
FP_INT_TONEARESTFROMZERO
FP_INT_TONEAREST

represent the rounding directions of the functions ceil, floor, trunc, round, and roundeven,
respectively, that convert to integral values in floating-point formats. They expand to integer

§ 7.12.1 © ISO/IEC 202y — All rights reserved

Library — 239

ISO/IEC 9899:202y (en) — n3299 working draft

constant expressions with distinct values suitable for use as the second argument to the fromfp,
ufromfp, fromfpx, and ufromfpx functions.

14 The macro

FP_FAST_FMA

is optionally defined. If defined, it indicates that the fma function generally executes about as fast as,
or faster than, a multiply and an add of double operands.264) The macros

FP_FAST_FMAF
FP_FAST_FMAL

are, respectively, float and long double analogs of FP_FAST_FMA. If defined, these macros expand
to the integer constant 1.

15 The macros

FP_FAST_FMAD32
FP_FAST_FMAD64
FP_FAST_FMAD128

are, respectively, _Decimal32, _Decimal64, and _Decimal128 analogs of FP_FAST_FMA.

16 Each of the macros

FP_FAST_FADD
FP_FAST_FADDL
FP_FAST_DADDL
FP_FAST_FSUB
FP_FAST_FSUBL

FP_FAST_DSUBL
FP_FAST_FMUL
FP_FAST_FMULL
FP_FAST_DMULL
FP_FAST_FDIV

FP_FAST_FDIVL
FP_FAST_DDIVL
FP_FAST_FSQRT
FP_FAST_FSQRTL
FP_FAST_DSQRTL

FP_FAST_FFMA
FP_FAST_FFMAL
FP_FAST_DFMAL

is optionally defined. If defined, it indicates that the corresponding function generally executes
about as fast, or faster, than the corresponding operation or function of the argument type with
result type the same as the argument type followed by conversion to the narrower type. For
FP_FAST_FFMA, FP_FAST_FFMAL, and FP_FAST_DFMAL, the comparison is to a call to fma or fmal
followed by a conversion, not to separate multiply, add, and conversion. If defined, these macros
expand to the integer constant 1.

17 The macros

FP_FAST_D32ADDD64
FP_FAST_D32ADDD128
FP_FAST_D64ADDD128
FP_FAST_D32SUBD64
FP_FAST_D32SUBD128
FP_FAST_D64SUBD128

FP_FAST_D32MULD64
FP_FAST_D32MULD128
FP_FAST_D64MULD128
FP_FAST_D32DIVD64
FP_FAST_D32DIVD128
FP_FAST_D64DIVD128

FP_FAST_D32FMAD64
FP_FAST_D32FMAD128
FP_FAST_D64FMAD128
FP_FAST_D32SQRTD64
FP_FAST_D32SQRTD128
FP_FAST_D64SQRTD128

are analogs of FP_FAST_FADD, FP_FAST_FADDL, FP_FAST_DADDL, etc., for decimal floating types.

18 The macros

FP_ILOGB0
FP_ILOGBNAN

expand to integer constant expressions whose values are returned by ilogb(x) if x is zero or
NaN, respectively. The value of FP_ILOGB0 shall be either INT_MIN or -INT_MAX. The value of
FP_ILOGBNAN shall be either INT_MAX or INT_MIN.
264)Typically, the FP_FAST_FMA macro is defined if and only if the fma function is implemented directly with a hardware

multiply-add instruction. Software implementations are expected to be substantially slower.

© ISO/IEC 202y — All rights reserved

Library — 240

§ 7.12.1

ISO/IEC 9899:202y (en) — n3299 working draft

19 The macros

FP_LLOGB0
FP_LLOGBNAN

expand to integer constant expressions whose values are returned by llogb(x) if x is zero or NaN, re-
spectively. The value of FP_LLOGB0 shall be LONG_MIN if the value of FP_ILOGB0 is INT_MIN, and shall
be -LONG_MAX if the value of FP_ILOGB0 is -INT_MAX. The value of FP_LLOGBNAN shall be LONG_MAX
if the value of FP_ILOGBNAN is INT_MAX, and shall be LONG_MIN if the value of FP_ILOGBNAN is
INT_MIN.

20 The macros

MATH_ERRNO
MATH_ERREXCEPT

expand to the integer constants 1 and 2, respectively; the macro

math_errhandling

expands to an expression that has type int and the value MATH_ERRNO, MATH_ERREXCEPT, the
bitwise OR of both, or 0; the value shall not be 0 in a hosted implementation. The value
of math_errhandling is constant for the duration of the program. It is unspecified whether
math_errhandling is a macro or an identifier with external linkage. If a macro definition is sup-
pressed or a program defines an identifier with the name math_errhandling, the behavior is
undefined. If the expression math_errhandling & MATH_ERREXCEPT can be nonzero, the implemen-
tation shall define the macros FE_DIVBYZERO, FE_INVALID, and FE_OVERFLOW in <fenv.h>.

7.12.2 Treatment of error conditions
1 The behavior of each of the functions in <math.h> is specified for all representable values of its

input arguments, except where explicitly stated otherwise. Each function shall execute as if it were a
single operation without raising SIGFPE and without generating any of the floating-point exceptions
"invalid", "divide-by-zero", or "overflow" except to reflect the result of the function.

2 For all functions, a domain error occurs if and only if an input argument is outside the domain
over which the mathematical function is defined. The description of each function lists any re-
quired domain errors; an implementation may define additional domain errors, provided that
such errors are consistent with the mathematical definition of the function.265) Whether a sig-
naling NaN input causes a domain error is implementation-defined. On a domain error, the
function returns an implementation-defined value; if the integer expression math_errhandling
& MATH_ERRNO is nonzero, the integer expression errno acquires the value EDOM; if the integer

expression math_errhandling & MATH_ERREXCEPT is nonzero, the "invalid" floating-point excep-
tion is raised.

3 Similarly, a pole error (also known as a singularity or infinitary) occurs if and only if the mathematical
function has an exact infinite result as the finite input argument(s) are approached in the limit (for ex-
ample, log(0.0)). The description of each function lists any required pole errors; an implementation
may define additional pole errors, provided that such errors are consistent with the mathematical
definition of the function. On a pole error, the function returns an implementation-defined value;
if the integer expression math_errhandling & MATH_ERRNO is nonzero, the integer expression
errno acquires the value ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT
is nonzero, the "divide-by-zero" floating-point exception is raised.

4 Likewise, a range error occurs if and only if the result overflows or underflows, as defined below.
The description of each function lists any required range errors; an implementation may define
additional range errors, provided that such errors are consistent with the mathematical definition of

265)In an implementation that supports infinities, this allows an infinity as an argument to be a domain error if the
mathematical domain of the function does not include the infinity.

§ 7.12.2 © ISO/IEC 202y — All rights reserved

Library — 241

ISO/IEC 9899:202y (en) — n3299 working draft

the function and are the result of either overflow or underflow. Range errors that are required or
implementation-defined shall or may be reported, as specified in this subclause, respectively.

5 A floating result overflows if a finite result value with ordinary accuracy266) would have magnitude
(absolute value) too large for the representation with full precision in the specified type. A result that
is exactly an infinity does not overflow. If a floating result overflows and default rounding is in effect,
then the function returns the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL according
to the return type, with the same sign as the correct value of the function; however, for the types
with reduced-precision representations of numbers beyond the overflow threshold, the function
may return a representation of the result with less than full precision for the type. If a floating
result overflows and default rounding is in effect and the integer expression math_errhandling &
MATH_ERRNO is nonzero, then the integer expression errno acquires the value ERANGE. If a floating
result overflows, and the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, the
"overflow" floating-point exception is raised (regardless of whether default rounding is in effect).

6 The result underflows if a nonzero result value with ordinary accuracy would have magnitude
(absolute value) less than the minimum normalized number in the type; however a zero result that
is specified to be an exact zero does not underflow. Also, a result with ordinary accuracy and the
magnitude of the minimum normalized number may underflow.267) If the result underflows, the
function returns an implementation-defined value whose magnitude is no greater than the smallest
normalized positive number in the specified type; if the integer expression math_errhandling &
MATH_ERRNO is nonzero, whether errno acquires the value ERANGE is implementation-defined; if

the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, whether the "underflow"
floating-point exception is raised is implementation-defined.

7 If a domain, pole, or range error occurs and the integer expression math_errhandling &
MATH_ERRNO is zero,268) then errno shall either be set to the value corresponding to the error or left
unmodified. If no such error occurs, errno shall be left unmodified regardless of the setting of
math_errhandling.

7.12.3 The FP_CONTRACT pragma
Synopsis

1 #include <math.h>
#pragma STDC FP_CONTRACT on-off-switch

Description
2 The FP_CONTRACT pragma can be used to allow (if the state is "on") or disallow (if the state is

"off") the implementation to contract expressions (6.5.1). Each pragma can occur either outside
external declarations or preceding all explicit declarations and statements inside a compound
statement. When outside external declarations, the pragma takes effect from its occurrence until
another FP_CONTRACT pragma is encountered, or until the end of the translation unit. When inside
a compound statement, the pragma takes effect from its occurrence until another FP_CONTRACT
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state ("on" or "off") for the pragma is implementation-defined.

7.12.4 Classification macros
7.12.4.1 General

1 Floating-point values can be classified as NaN, infinite, normal, subnormal, or zero, or into other
implementation-defined categories. Numbers whose magnitude is at least bemin −1 (the minimum
magnitude of normalized floating-point numbers in the type) and at most (1 − b−p)bemax (the

266)Ordinary accuracy is determined by the implementation. It refers to the accuracy of the function where results are not
compromised by extreme magnitude.
267)The term underflow here is intended to encompass both "gradual underflow" as in ISO/IEC 60559 and also "flush-to-zero"

underflow. ISO/IEC 60559 underflow can occur in cases where the magnitude of the rounded result (accurate to the full
precision of the type) equals the minimum normalized number in the format.

268)Math errors are being indicated by the floating-point exception flags rather than by errno.

© ISO/IEC 202y — All rights reserved

Library — 242

§ 7.12.4.1

ISO/IEC 9899:202y (en) — n3299 working draft

maximum magnitude of normalized floating-point numbers in the type), where b, p, emin , and emax

are as in 5.3.5.3.3, are classified as normal. Larger magnitude finite numbers represented with full
precision in the type may also be classified as normal. Nonzero numbers whose magnitude is less
than bemin −1 are classified as subnormal.

2 In the synopses in this subclause, real-floating indicates that the argument shall be an expression of
real floating type.

7.12.4.2 The fpclassify macro
Synopsis

1 #include <math.h>
int fpclassify(real-floating x);

Description
2 The fpclassify macro classifies its argument value as NaN, infinite, normal, subnormal, zero, or

into another implementation-defined category. First, an argument represented in a format wider
than its semantic type is converted to its semantic type. Then classification is based on the type of
the argument.269)

Returns
3 The fpclassify macro returns the value of the number classification macro appropriate to the value

of its argument.

7.12.4.3 The iscanonical macro
Synopsis

1 #include <math.h>
int iscanonical(real-floating x);

Description
2 The iscanonical macro determines whether its argument value is canonical (5.3.5.3.3). First, an

argument represented in a format wider than its semantic type is converted to its semantic type.
Then, determination is based on the type of the argument.

Returns
3 The iscanonical macro returns a nonzero value if and only if its argument is canonical.

7.12.4.4 The isfinite macro
Synopsis

1 #include <math.h>
int isfinite(real-floating x);

Description
2 The isfinite macro determines whether its argument has a finite value (zero, subnormal, or

normal, and not infinite or NaN). First, an argument represented in a format wider than its semantic
type is converted to its semantic type. Then determination is based on the type of the argument.

Returns
3 The isfinite macro returns a nonzero value if and only if its argument has a finite value.

7.12.4.5 The isinf macro

269)Since an expression can be evaluated with more range and precision than its type has, it is important to know the type
that classification is based on. For example, a normal long double value can become subnormal when converted to double,
and zero when converted to float.

§ 7.12.4.5 © ISO/IEC 202y — All rights reserved

Library — 243

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <math.h>
int isinf(real-floating x);

Description
2 The isinf macro determines whether its argument value is (positive or negative) infinity. First, an

argument represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argument.

Returns
3 The isinf macro returns a nonzero value if and only if its argument has an infinite value.

7.12.4.6 The isnan macro
Synopsis

1 #include <math.h>
int isnan(real-floating x);

Description
2 The isnan macro determines whether its argument value is a NaN. First, an argument represented

in a format wider than its semantic type is converted to its semantic type. Then determination is
based on the type of the argument.270)

Returns
3 The isnan macro returns a nonzero value if and only if its argument has a NaN value.

7.12.4.7 The isnormal macro
Synopsis

1 #include <math.h>
int isnormal(real-floating x);

Description
2 The isnormal macro determines whether its argument value is normal (neither zero, subnormal,

infinite, nor NaN). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the argument.

Returns
3 The isnormal macro returns a nonzero value if and only if its argument has a normal value.

7.12.4.8 The signbit macro
Synopsis

1 #include <math.h>
int signbit(real-floating x);

Description

2 The signbit macro determines whether the sign of its argument value is negative.271) If the
argument value is an unsigned zero, its sign is regarded as positive. Otherwise, if the argument
value is unsigned, the result value (zero or nonzero) is implementation-defined.

270)For the isnan macro, the type for determination does not matter unless the implementation supports NaNs in the
evaluation type but not in the semantic type.
271)The signbit macro determines the sign of all values, including infinities, zeros, and NaNs.

© ISO/IEC 202y — All rights reserved

Library — 244

§ 7.12.4.8

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The signbitmacro returns a nonzero value if and only if the sign of its argument value is determined

to be negative.

7.12.4.9 The issignaling macro
Synopsis

1 #include <math.h>
int issignaling(real-floating x);

Description
2 The issignaling macro determines whether its argument value is a signaling NaN.

Returns

3 The issignaling macro returns a nonzero value if and only if its argument is a signaling NaN.272)

7.12.4.10 The issubnormal macro
Synopsis

1 #include <math.h>
int issubnormal(real-floating x);

Description
2 The issubnormal macro determines whether its argument value is subnormal. First, an argument

represented in a format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument.

Returns
3 The issubnormal macro returns a nonzero value if and only if its argument is subnormal.

7.12.4.11 The iszero macro
Synopsis

1 #include <math.h>
int iszero(real-floating x);

Description
2 The iszero macro determines whether its argument value is (positive, negative, or unsigned) zero.

First, an argument represented in a format wider than its semantic type is converted to its semantic
type. Then, determination is based on the type of the argument.

Returns
3 The iszero macro returns a nonzero value if and only if its argument is zero.

7.12.5 Trigonometric functions
7.12.5.1 The acos functions
Synopsis

1 #include <math.h>
double acos(double x);
float acosf(float x);
long double acosl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 acosd32(_Decimal32 x);

272)F.3 specifies that issignaling (and all the other classification macros), raise no floating-point exception if the argument
is a variable, or any other expression whose value is represented in the format of its semantic type, even if the value is a
signaling NaN.

§ 7.12.5.1 © ISO/IEC 202y — All rights reserved

Library — 245

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal64 acosd64(_Decimal64 x);
_Decimal128 acosd128(_Decimal128 x);
#endif

Description
2 The acos functions compute the principal value of the arc cosine of x. A domain error occurs for

arguments not in the interval [−1,+1].

Returns
3 The acos functions return arccosx in the interval [0, π] radians.

7.12.5.2 The asin functions
Synopsis

1 #include <math.h>
double asin(double x);
float asinf(float x);
long double asinl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 asind32(_Decimal32 x);
_Decimal64 asind64(_Decimal64 x);
_Decimal128 asind128(_Decimal128 x);
#endif

Description
2 The asin functions compute the principal value of the arc sine of x. A domain error occurs for

arguments not in the interval [−1,+1]. A range error occurs if nonzero x is too close to zero.

Returns
3 The asin functions return arcsinx in the interval [−π

2 ,+
π
2] radians.

7.12.5.3 The atan functions
Synopsis

1 #include <math.h>
double atan(double x);
float atanf(float x);
long double atanl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 atand32(_Decimal32 x);
_Decimal64 atand64(_Decimal64 x);
_Decimal128 atand128(_Decimal128 x);
#endif

Description
2 The atan functions compute the principal value of the arc tangent of x. A range error occurs if

nonzero x is too close to zero.

Returns
3 The atan functions return arctanx in the interval [−π

2 ,+
π
2] radians.

7.12.5.4 The atan2 functions
Synopsis

1 #include <math.h>
double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);
#ifdef __STDC_IEC_60559_DFP__

© ISO/IEC 202y — All rights reserved

Library — 246

§ 7.12.5.4

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal32 atan2d32(_Decimal32 y, _Decimal32 x);
_Decimal64 atan2d64(_Decimal64 y, _Decimal64 x);
_Decimal128 atan2d128(_Decimal128 y, _Decimal128 x);
#endif

Description
2 The atan2 functions compute the value of the arc tangent of y/x, using the signs of both arguments

to determine the quadrant of the return value. A domain error may occur if both arguments are zero.
A range error occurs if x is positive and nonzero y

x is too close to zero.

Returns
3 The atan2 functions return arctan(y/x) in the interval [−π,+π] radians.

7.12.5.5 The cos functions
Synopsis

1 #include <math.h>
double cos(double x);
float cosf(float x);
long double cosl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 cosd32(_Decimal32 x);
_Decimal64 cosd64(_Decimal64 x);
_Decimal128 cosd128(_Decimal128 x);
#endif

Description
2 The cos functions compute the cosine of x (measured in radians).

Returns
3 The cos functions return cosx.

7.12.5.6 The sin functions
Synopsis

1 #include <math.h>
double sin(double x);
float sinf(float x);
long double sinl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sind32(_Decimal32 x);
_Decimal64 sind64(_Decimal64 x);
_Decimal128 sind128(_Decimal128 x);
#endif

Description
2 The sin functions compute the sine of x (measured in radians). A range error occurs if nonzero x is

too close to zero.

Returns
3 The sin functions return sinx.

7.12.5.7 The tan functions
Synopsis

1 #include <math.h>
double tan(double x);
float tanf(float x);
long double tanl(long double x);

§ 7.12.5.7 © ISO/IEC 202y — All rights reserved

Library — 247

ISO/IEC 9899:202y (en) — n3299 working draft

#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tand32(_Decimal32 x);
_Decimal64 tand64(_Decimal64 x);
_Decimal128 tand128(_Decimal128 x);
#endif

Description
2 The tan functions return the tangent of x (measured in radians). A range error occurs if nonzero x is

too close to zero.

Returns
3 The tan functions return tanx.

7.12.5.8 The acospi functions
Synopsis

1 #include <math.h>
double acospi(double x);
float acospif(float x);
long double acospil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 acospid32(_Decimal32 x);
_Decimal64 acospid64(_Decimal64 x);
_Decimal128 acospid128(_Decimal128 x);
#endif

Description
2 The acospi functions compute the principal value of the arc cosine of x, divided by π, thus measur-

ing the angle in half-revolutions. A domain error occurs for arguments not in the interval [−1,+1].

Returns
3 The acospi functions return arccos(x)/π in the interval [0, 1].

7.12.5.9 The asinpi functions
Synopsis

1 #include <math.h>
double asinpi(double x);
float asinpif(float x);
long double asinpil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 asinpid32(_Decimal32 x);
_Decimal64 asinpid64(_Decimal64 x);
_Decimal128 asinpid128(_Decimal128 x);
#endif

Description
2 The asinpi functions compute the principal value of the arc sine of x, divided by π, thus measuring

the angle in half-revolutions. A domain error occurs for arguments not in the interval [−1,+1]. A
range error occurs if nonzero x is too close to zero.

Returns

3 The asinpi functions return arcsin(x)/π in the interval [− 1
2 ,+

1
2].

7.12.5.10 The atanpi functions
Synopsis

1

© ISO/IEC 202y — All rights reserved

Library — 248

§ 7.12.5.10

ISO/IEC 9899:202y (en) — n3299 working draft

#include <math.h>
double atanpi(double x);
float atanpif(float x);
long double atanpil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 atanpid32(_Decimal32 x);
_Decimal64 atanpid64(_Decimal64 x);
_Decimal128 atanpid128(_Decimal128 x);
#endif

Description
2 The atanpi functions compute the principal value of the arc tangent of x, divided by π, thus

measuring the angle in half-revolutions. A range error occurs if nonzero x is too close to zero.

Returns

3 The atanpi functions return arctan(x)/π. in the interval [− 1
2 ,+

1
2].

7.12.5.11 The atan2pi functions
Synopsis

1 #include <math.h>
double atan2pi(double y, double x);
float atan2pif(float y, float x);
long double atan2pil(long double y, long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 atan2pid32(_Decimal32 y, _Decimal32 x);
_Decimal64 atan2pid64(_Decimal64 y, _Decimal64 x);
_Decimal128 atan2pid128(_Decimal128 y, _Decimal128 x);
#endif

Description
2 The atan2pi functions compute the angle, measured in half-revolutions, subtended at the origin by

the point (x, y) and the positive x-axis. Thus, the atan2pi functions compute arctan(yx)/π, in the
range [−1,+1]. A domain error may occur if both arguments are zero. A range error occurs if x is
positive and nonzero y

x is too close to zero.

Returns
3 The atan2pi functions return the computed angle, in the interval [−1,+1].

7.12.5.12 The cospi functions
Synopsis

1 #include <math.h>
double cospi(double x);
float cospif(float x);
long double cospil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 cospid32(_Decimal32 x);
_Decimal64 cospid64(_Decimal64 x);
_Decimal128 cospid128(_Decimal128 x);
#endif

Description
2 The cospi functions compute the cosine of π × x, thus regarding x as a measurement in half-

revolutions.

Returns
3 The cospi functions return cos(π × x).

§ 7.12.5.12 © ISO/IEC 202y — All rights reserved

Library — 249

ISO/IEC 9899:202y (en) — n3299 working draft

7.12.5.13 The sinpi functions
Synopsis

1 #include <math.h>
double sinpi(double x);
float sinpif(float x);
long double sinpil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sinpid32(_Decimal32 x);
_Decimal64 sinpid64(_Decimal64 x);
_Decimal128 sinpid128(_Decimal128 x);
#endif

Description
2 The sinpi functions compute the sine of π×x, thus regarding x as a measurement in half-revolutions.

A range error occurs if nonzero x is too close to zero.

Returns
3 The sinpi functions return sin(π × x).

7.12.5.14 The tanpi functions
Synopsis

1 #include <math.h>
double tanpi(double x);
float tanpif(float x);
long double tanpil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tanpid32(_Decimal32 x);
_Decimal64 tanpid64(_Decimal64 x);
_Decimal128 tanpid128(_Decimal128 x);
#endif

Description
2 The tanpi functions compute the tangent of π × x, thus regarding x as a measurement in half-

revolutions. A range error occurs if nonzero x is too close to zero. A pole error may occur if |x| is
(n+ 0.5) for integer n.

Returns
3 The tanpi functions return tan(π × x).

7.12.6 Hyperbolic functions
7.12.6.1 The acosh functions
Synopsis

1 #include <math.h>
double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 acoshd32(_Decimal32 x);
_Decimal64 acoshd64(_Decimal64 x);
_Decimal128 acoshd128(_Decimal128 x);
#endif

Description
2 The acosh functions compute the (nonnegative) arc hyperbolic cosine of x. A domain error occurs

for arguments less than 1.

© ISO/IEC 202y — All rights reserved

Library — 250

§ 7.12.6.1

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The acosh functions return arcoshx in the interval [0,+∞].

7.12.6.2 The asinh functions
Synopsis

1 #include <math.h>
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 asinhd32(_Decimal32 x);
_Decimal64 asinhd64(_Decimal64 x);
_Decimal128 asinhd128(_Decimal128 x);
#endif

Description
2 The asinh functions compute the arc hyperbolic sine of x. A range error occurs if nonzero x is too

close to zero.

Returns
3 The asinh functions return arsinhx.

7.12.6.3 The atanh functions
Synopsis

1 #include <math.h>
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 atanhd32(_Decimal32 x);
_Decimal64 atanhd64(_Decimal64 x);
_Decimal128 atanhd128(_Decimal128 x);
#endif

Description
2 The atanh functions compute the arc hyperbolic tangent of x. A domain error occurs for arguments

not in the interval [−1,+1]. A pole error may occur if the argument equals -1 or +1. A range error
occurs if nonzero x is too close to zero.

Returns
3 The atanh functions return artanhx.

7.12.6.4 The cosh functions
Synopsis

1 #include <math.h>
double cosh(double x);
float coshf(float x);
long double coshl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 coshd32(_Decimal32 x);
_Decimal64 coshd64(_Decimal64 x);
_Decimal128 coshd128(_Decimal128 x);
#endif

§ 7.12.6.4 © ISO/IEC 202y — All rights reserved

Library — 251

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The cosh functions compute the hyperbolic cosine of x. A range error occurs if the magnitude of

finite x is too large.

Returns
3 The cosh functions return coshx.

7.12.6.5 The sinh functions
Synopsis

1 #include <math.h>
double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sinhd32(_Decimal32 x);
_Decimal64 sinhd64(_Decimal64 x);
_Decimal128 sinhd128(_Decimal128 x);
#endif

Description
2 The sinh functions compute the hyperbolic sine of x. A range error occurs if the magnitude of finite

x is too large or if nonzero x is too close to zero.

Returns
3 The sinh functions return sinhx.

7.12.6.6 The tanh functions
Synopsis

1 #include <math.h>
double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tanhd32(_Decimal32 x);
_Decimal64 tanhd64(_Decimal64 x);
_Decimal128 tanhd128(_Decimal128 x);
#endif

Description
2 The tanh functions compute the hyperbolic tangent of x. A range error occurs if nonzero x is too

close to zero.

Returns
3 The tanh functions return tanhx.

7.12.7 Exponential and logarithmic functions
7.12.7.1 The exp functions
Synopsis

1 #include <math.h>
double exp(double x);
float expf(float x);
long double expl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 expd32(_Decimal32 x);
_Decimal64 expd64(_Decimal64 x);
_Decimal128 expd128(_Decimal128 x);

© ISO/IEC 202y — All rights reserved

Library — 252

§ 7.12.7.1

ISO/IEC 9899:202y (en) — n3299 working draft

#endif

Description
2 The exp functions compute the base-e exponential of x. A range error occurs if the magnitude of

finite x is too large.

Returns
3 The exp functions return ex.

7.12.7.2 The exp10 functions
Synopsis

1 #include <math.h>
double exp10(double x);
float exp10f(float x);
long double exp10l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 exp10d32(_Decimal32 x);
_Decimal64 exp10d64(_Decimal64 x);
_Decimal128 exp10d128(_Decimal128 x);
#endif

Description
2 The exp10 functions compute the base-10 exponential of x. A range error occurs if the magnitude of

finite x is too large.

Returns
3 The exp10 functions return 10x.

7.12.7.3 The exp10m1 functions
Synopsis

1 #include <math.h>
double exp10m1(double x);
float exp10m1f(float x);
long double exp10m1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 exp10m1d32(_Decimal32 x);
_Decimal64 exp10m1d64(_Decimal64 x);
_Decimal128 exp10m1d128(_Decimal128 x);
#endif

Description
2 The exp10m1 functions compute the base-10 exponential of the argument, minus 1. A range error

occurs if positive finite x is too large or if nonzero x is too close to zero.

Returns
3 The exp10m1 functions return 10x − 1.

7.12.7.4 The exp2 functions
Synopsis

1 #include <math.h>
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 exp2d32(_Decimal32 x);
_Decimal64 exp2d64(_Decimal64 x);

§ 7.12.7.4 © ISO/IEC 202y — All rights reserved

Library — 253

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal128 exp2d128(_Decimal128 x);
#endif

Description
2 The exp2 functions compute the base-2 exponential of x. A range error occurs if the magnitude of

finite x is too large.

Returns
3 The exp2 functions return 2x.

7.12.7.5 The exp2m1 functions
Synopsis

1 #include <math.h>
double exp2m1(double x);
float exp2m1f(float x);
long double exp2m1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 exp2m1d32(_Decimal32 x);
_Decimal64 exp2m1d64(_Decimal64 x);
_Decimal128 exp2m1d128(_Decimal128 x);
#endif

Description
2 The exp2m1 functions compute the base-2 exponential of the argument, minus 1. A range error

occurs if positive finite x is too large or if nonzero x is too close to zero.

Returns
3 The exp2m1 functions return 2x − 1.

7.12.7.6 The expm1 functions
Synopsis

1 #include <math.h>
double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 expm1d32(_Decimal32 x);
_Decimal64 expm1d64(_Decimal64 x);
_Decimal128 expm1d128(_Decimal128 x);
#endif

Description
2 The expm1 functions compute the base-e exponential of the argument, minus 1. A range error occurs

if positive finite x is too large or if nonzero x is too close to zero.273)

Returns
3 The expm1 functions return ex − 1.

7.12.7.7 The frexp functions
Synopsis

1 #include <math.h>
double frexp(double value, int *p);
float frexpf(float value, int *p);
long double frexpl(long double value, int *p);

273)For small magnitude x, expm1(x) is expected to be more accurate than exp(x)-1.

© ISO/IEC 202y — All rights reserved

Library — 254

§ 7.12.7.7

ISO/IEC 9899:202y (en) — n3299 working draft

#ifdef __STDC_IEC_60559_DFP__
_Decimal32 frexpd32(_Decimal32 value, int *p);
_Decimal64 frexpd64(_Decimal64 value, int *p);
_Decimal128 frexpd128(_Decimal128 value, int *p);
#endif

Description
2 The frexp functions break a floating-point number into a normalized fraction and an integer

exponent. They store the integer in the int object pointed to by p. If the return type of the function
is a standard floating type, the exponent is an integral power of 2. If the return type of the function
is a decimal floating type, the exponent is an integral power of 10.

Returns
3 If value is not a floating-point number or if the integral power is outside the range of int, the results

are unspecified. Otherwise, the frexp functions return the value x, such that x has a magnitude
in the interval [12 , 1) or zero, and value equals x × 2*p , when the return type of the function is a
standard floating type; or x has a magnitude in the interval [1/10, 1) or zero, and value equals
x × 10*p , when the return type of the function is a decimal floating type. If value is zero, both parts
of the result are zero.

7.12.7.8 The ilogb functions
Synopsis

1 #include <math.h>
int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);
#ifdef __STDC_IEC_60559_DFP__

int ilogbd32(_Decimal32 x);
int ilogbd64(_Decimal64 x);
int ilogbd128(_Decimal128 x);
#endif

Description
2 The ilogb functions extract the exponent of x as a signed int value. If x is zero they compute the

value FP_ILOGB0; if x is infinite they compute the value INT_MAX; if x is a NaN they compute the
value FP_ILOGBNAN; otherwise, they are equivalent to calling the corresponding logb function and
converting the returned value to type int. A domain error or range error may occur if x is zero,
infinite, or NaN. If the correct value is outside the range of the return type, the numeric result is
unspecified and a domain error or range error may occur.

Returns
3 The ilogb functions return the exponent of x as a signed int value.

Forward references: the logb functions (7.12.7.17).

7.12.7.9 The ldexp functions
Synopsis

1 #include <math.h>
double ldexp(double x, int p);
float ldexpf(float x, int p);
long double ldexpl(long double x, int p);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 ldexpd32(_Decimal32 x, int p);
_Decimal64 ldexpd64(_Decimal64 x, int p);
_Decimal128 ldexpd128(_Decimal128 x, int p);
#endif

§ 7.12.7.9 © ISO/IEC 202y — All rights reserved

Library — 255

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The ldexp functions multiply a floating-point number by an integral power of 2 when the return

type of the function is a standard floating type, or by an integral power of 10 when the return type
of the function is a decimal floating type. A range error occurs for some finite x, depending on p.

Returns
3 The ldexp functions return x × 2p when the return type of the function is a standard floating type,

or return x × 10p when the return type of the function is a decimal floating type.

7.12.7.10 The llogb functions
Synopsis

1 #include <math.h>
long int llogb(double x);
long int llogbf(float x);
long int llogbl(long double x);
#ifdef __STDC_IEC_60559_DFP__

long int llogbd32(_Decimal32 x);
long int llogbd64(_Decimal64 x);
long int llogbd128(_Decimal128 x);
#endif

Description
2 The llogb functions extract the exponent of x as a signed long int value. If x is zero they compute

the value FP_LLOGB0; if x is infinite they compute the value LONG_MAX; if x is a NaN they compute
the value FP_LLOGBNAN; otherwise, they are equivalent to calling the corresponding logb function
and converting the returned value to type long int. A domain error or range error may occur if x is
zero, infinite, or NaN. If the correct value is outside the range of the return type, the numeric result
is unspecified.

Returns
3 The llogb functions return the exponent of x as a signed long int value.

Forward references: the logb functions (7.12.7.17).

7.12.7.11 The log functions
Synopsis

1 #include <math.h>
double log(double x);
float logf(float x);
long double logl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 logd32(_Decimal32 x);
_Decimal64 logd64(_Decimal64 x);
_Decimal128 logd128(_Decimal128 x);
#endif

Description
2 The log functions compute the base-e (natural) logarithm of x. A domain error occurs if the

argument is less than zero. A pole error may occur if the argument is zero.

Returns
3 The log functions return loge x.

7.12.7.12 The log10 functions
Synopsis

1 #include <math.h>

© ISO/IEC 202y — All rights reserved

Library — 256

§ 7.12.7.12

ISO/IEC 9899:202y (en) — n3299 working draft

double log10(double x);
float log10f(float x);
long double log10l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 log10d32(_Decimal32 x);
_Decimal64 log10d64(_Decimal64 x);
_Decimal128 log10d128(_Decimal128 x);
#endif

Description
2 The log10 functions compute the base-10 (common) logarithm of x. A domain error occurs if the

argument is less than zero. A pole error may occur if the argument is zero.

Returns
3 The log10 functions return log10 x.

7.12.7.13 The log10p1 functions
Synopsis

1 #include <math.h>
double log10p1(double x);
float log10p1f(float x);
long double log10p1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 log10p1d32(_Decimal32 x);
_Decimal64 log10p1d64(_Decimal64 x);
_Decimal128 log10p1d128(_Decimal128 x);
#endif

Description
2 The log10p1 functions compute the base-10 logarithm of 1 plus the argument. A domain error

occurs if the argument is less than −1. A pole error may occur if the argument equals −1. A range
error occurs if nonzero x is too close to zero.

Returns
3 The log10p1 functions return log10(1 + x).

7.12.7.14 The log1p and logp1 functions
Synopsis

1 #include <math.h>
double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);
double logp1(double x);
float logp1f(float x);
long double logp1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 log1pd32(_Decimal32 x);
_Decimal64 log1pd64(_Decimal64 x);
_Decimal128 log1pd128(_Decimal128 x);
_Decimal32 logp1d32(_Decimal32 x);
_Decimal64 logp1d64(_Decimal64 x);
_Decimal128 logp1d128(_Decimal128 x);
#endif

§ 7.12.7.14 © ISO/IEC 202y — All rights reserved

Library — 257

ISO/IEC 9899:202y (en) — n3299 working draft

Description

2 The log1p functions are equivalent to the logp1 functions.274) These functions compute the base-e
(natural) logarithm of 1 plus the argument.275) A domain error occurs if the argument is less than
−1. A pole error may occur if the argument equals −1. A range error occurs if nonzero x is too close
to zero.

Returns
3 The log1p and logp1 functions return loge(1 + x).

7.12.7.15 The log2 functions
Synopsis

1 #include <math.h>
double log2(double x);
float log2f(float x);
long double log2l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 log2d32(_Decimal32 x);
_Decimal64 log2d64(_Decimal64 x);
_Decimal128 log2d128(_Decimal128 x);
#endif

Description
2 The log2 functions compute the base-2 logarithm of x. A domain error occurs if the argument is less

than zero. A pole error may occur if the argument is zero.

Returns
3 The log2 functions return log2 x.

7.12.7.16 The log2p1 functions
Synopsis

1 #include <math.h>
double log2p1(double x);
float log2p1f(float x);
long double log2p1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 log2p1d32(_Decimal32 x);
_Decimal64 log2p1d64(_Decimal64 x);
_Decimal128 log2p1d128(_Decimal128 x);
#endif

Description
2 The log2p1 functions compute the base-2 logarithm of 1 plus the argument. A domain error occurs

if the argument is less than −1. A pole error may occur if the argument equals −1. A range error
occurs if nonzero x is too close to zero.

Returns
3 The log2p1 functions return log2(1+x).

7.12.7.17 The logb functions
Synopsis

1 #include <math.h>
double logb(double x);
float logbf(float x);

274)The logp1 functions are preferred for name consistency with the log10p1 and log2p1 functions.
275)For small magnitude x, logp1(x) is expected to be more accurate than log(1 + x).

© ISO/IEC 202y — All rights reserved

Library — 258

§ 7.12.7.17

ISO/IEC 9899:202y (en) — n3299 working draft

long double logbl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 logbd32(_Decimal32 x);
_Decimal64 logbd64(_Decimal64 x);
_Decimal128 logbd128(_Decimal128 x);
#endif

Description
2 The logb functions extract the exponent of x, as a signed integer value in floating-point format. If x

is subnormal it is treated as though it were normalized; thus, for positive finite x,

1 ≤ x × b−logb(x) < b

where b = FLT_RADIX if the return type of the function is a standard floating type, or b = 10 if the
return type of the function is a decimal floating type. A domain error or pole error may occur if the
argument is zero.

Returns
3 The logb functions return the signed exponent of x.

7.12.7.18 The modf functions
Synopsis

1 #include <math.h>
double modf(double value, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 modfd32(_Decimal32 x, _Decimal32 *iptr);
_Decimal64 modfd64(_Decimal64 x, _Decimal64 *iptr);
_Decimal128 modfd128(_Decimal128 x, _Decimal128 *iptr);
#endif

Description
2 The modf functions break the argument value into integral and fractional parts, each of which has

the same type and sign as the argument. They store the integral part (in floating-point format) in the
object pointed to by iptr.

Returns
3 The modf functions return the signed fractional part of value.

7.12.7.19 The scalbn and scalbln functions
Synopsis

1 #include <math.h>
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);
double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 scalbnd32(_Decimal32 x, int n);
_Decimal64 scalbnd64(_Decimal64 x, int n);
_Decimal128 scalbnd128(_Decimal128 x, int n);
_Decimal32 scalblnd32(_Decimal32 x, long int n);
_Decimal64 scalblnd64(_Decimal64 x, long int n);
_Decimal128 scalblnd128(_Decimal128 x, long int n);
#endif

§ 7.12.7.19 © ISO/IEC 202y — All rights reserved

Library — 259

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The scalbn and scalbln functions compute x × bn, where b = FLT_RADIX if the return type of the

function is a standard floating type, or b = 10 if the return type of the function is a decimal floating
type. A range error occurs for some finite x, depending on n.

Returns
3 The scalbn and scalbln functions return x × bn.

7.12.8 Power and absolute-value functions
7.12.8.1 The cbrt functions
Synopsis

1 #include <math.h>
double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 cbrtd32(_Decimal32 x);
_Decimal64 cbrtd64(_Decimal64 x);
_Decimal128 cbrtd128(_Decimal128 x);
#endif

Description
2 The cbrt functions compute the real cube root of x.

Returns

3 The cbrt functions return x
1
3 .

7.12.8.2 The compoundn functions
Synopsis

1 #include <math.h>
double compoundn(double x, long long int n);
float compoundnf(float x, long long int n);
long double compoundnl(long double x, long long int n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 compoundnd32(_Decimal32 x, long long int n);
_Decimal64 compoundnd64(_Decimal64 x, long long int n);
_Decimal128 compoundnd128(_Decimal128 x, long long int n);
#endif

Description
2 The compoundn functions compute 1 plus x, raised to the power n. A domain error occurs if x < −1.

Depending on n, a range error occurs if either positive finite x is too large or if x is too near but not
equal to -1. A pole error may occur if x equals −1 and n < 0.

Returns
3 The compoundn functions return (1 + x)n.

7.12.8.3 The fabs functions
Synopsis

1 #include <math.h>
double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fabsd32(_Decimal32 x);

© ISO/IEC 202y — All rights reserved

Library — 260

§ 7.12.8.3

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal64 fabsd64(_Decimal64 x);
_Decimal128 fabsd128(_Decimal128 x);
#endif

Description
2 The fabs functions compute the absolute value of x.

Returns
3 The fabs functions return |x|.

7.12.8.4 The hypot functions
Synopsis

1 #include <math.h>
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 hypotd32(_Decimal32 x, _Decimal32 y);
_Decimal64 hypotd64(_Decimal64 x, _Decimal64 y);
_Decimal128 hypotd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The hypot functions compute the square root of the sum of the squares of x and y, without undue

overflow or underflow. A range error occurs for some finite arguments.

Returns

3 The hypot functions return
√
x2 + y2.

7.12.8.5 The pow functions
Synopsis

1 #include <math.h>
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 powd32(_Decimal32 x, _Decimal32 y);
_Decimal64 powd64(_Decimal64 x, _Decimal64 y);
_Decimal128 powd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The pow functions compute x raised to the power y. A domain error occurs if x is finite and less than

zero and y is finite and not an integer value. A domain error may occur if x is zero and y is zero.
Depending on y, a range error occurs if either the magnitude of nonzero finite x is too large or too
near zero. A domain error or pole error may occur if x is zero and y is less than zero.

Returns
3 The pow functions return xy.

7.12.8.6 The pown functions
Synopsis

1 #include <math.h>
double pown(double x, long long int n);
float pownf(float x, long long int n);

§ 7.12.8.6 © ISO/IEC 202y — All rights reserved

Library — 261

ISO/IEC 9899:202y (en) — n3299 working draft

long double pownl(long double x, long long int n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 pownd32(_Decimal32 x, long long int n);
_Decimal64 pownd64(_Decimal64 x, long long int n);
_Decimal128 pownd128(_Decimal128 x, long long int n);
#endif

Description

2 The pown functions compute x raised to the nth power. A pole error may occur if x equals 0 and
n < 0. Depending on n, a range error occurs if either the magnitude of nonzero finite x is too large
or too near zero.

Returns
3 The pown functions return xn.

7.12.8.7 The powr functions
Synopsis

1 #include <math.h>
double powr(double y, double x);
float powrf(float y, float x);
long double powrl(long double y, long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 powrd32(_Decimal32 y, _Decimal32 x);
_Decimal64 powrd64(_Decimal64 y, _Decimal64 x);
_Decimal128 powrd128(_Decimal128 y, _Decimal128 x);
#endif

Description

2 The powr functions compute x raised to the power y as ey loge x.276) A domain error occurs if x < 0 or
if x and y are both zero. Depending on y, a range error occurs if either positive nonzero finite x is
too large or too near zero. A pole error may occur if x equals zero and finite y < 0.

Returns
3 The powr functions return ey loge x.

7.12.8.8 The rootn functions
Synopsis

1 #include <math.h>
double rootn(double x, long long int n);
float rootnf(float x, long long int n);
long double rootnl(long double x, long long int n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 rootnd32(_Decimal32 x, long long int n);
_Decimal64 rootnd64(_Decimal64 x, long long int n);
_Decimal128 rootnd128(_Decimal128 x, long long int n);
#endif

Description

2 The rootn functions compute the principal nth root of x. A domain error occurs if n is 0 or if x < 0
and n is even. If n is −1, a range error occurs if either the magnitude of nonzero finite x is too large
or too near zero. A pole error may occur if x equals zero and n < 0.

276)Restricting the domain to that of the formula ey loge x is intended to better meet expectations for a continuous power
function and to allow implementations with fewer tests for special cases.

© ISO/IEC 202y — All rights reserved

Library — 262

§ 7.12.8.8

ISO/IEC 9899:202y (en) — n3299 working draft

Returns

3 The rootn functions return x
1
n .

7.12.8.9 The rsqrt functions
Synopsis

1 #include <math.h>
double rsqrt(double x);
float rsqrtf(float x);
long double rsqrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 rsqrtd32(_Decimal32 x);
_Decimal64 rsqrtd64(_Decimal64 x);
_Decimal128 rsqrtd128(_Decimal128 x);
#endif

Description
2 The rsqrt functions compute the reciprocal of the nonnegative square root of the argument. A

domain error occurs if the argument is less than zero. A pole error may occur if the argument equals
zero.

Returns

3 The rsqrt functions return 1√
x

.

7.12.8.10 The sqrt functions
Synopsis

1 #include <math.h>
double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sqrtd32(_Decimal32 x);
_Decimal64 sqrtd64(_Decimal64 x);
_Decimal128 sqrtd128(_Decimal128 x);
#endif

Description
2 The sqrt functions compute the nonnegative square root of x. A domain error occurs if the argument

is less than zero.

Returns
3 The sqrt functions return

√
x.

7.12.9 Error and gamma functions
7.12.9.1 The erf functions
Synopsis

1 #include <math.h>
double erf(double x);
float erff(float x);
long double erfl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 erfd32(_Decimal32 x);
_Decimal64 erfd64(_Decimal64 x);
_Decimal128 erfd128(_Decimal128 x);
#endif

§ 7.12.9.1 © ISO/IEC 202y — All rights reserved

Library — 263

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The erf functions compute the error function of x. A range error occurs if nonzero x is too close to

zero.

Returns

3 The erf functions return erf x = 2√
π

x∫
0

e−t2dt.

7.12.9.2 The erfc functions
Synopsis

1 #include <math.h>
double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 erfcd32(_Decimal32 x);
_Decimal64 erfcd64(_Decimal64 x);
_Decimal128 erfcd128(_Decimal128 x);
#endif

Description
2 The erfc functions compute the complementary error function of x. A range error occurs if positive

finite x is too large.

Returns

3 The erfc functions return erfcx = 1− erf x = 2√
π

∞∫
x
e−t2dt.

7.12.9.3 The lgamma functions
Synopsis

1 #include <math.h>
double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 lgammad32(_Decimal32 x);
_Decimal64 lgammad64(_Decimal64 x);
_Decimal128 lgammad128(_Decimal128 x);
#endif

Description
2 The lgamma functions compute the natural logarithm of the absolute value of gamma of x. A range

error occurs if positive finite x is too large. A pole error may occur if x is a negative integer or zero.

Returns
3 The lgamma functions return loge |Γ(x)|.

7.12.9.4 The tgamma functions
Synopsis

1 #include <math.h>
double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tgammad32(_Decimal32 x);
_Decimal64 tgammad64(_Decimal64 x);

© ISO/IEC 202y — All rights reserved

Library — 264

§ 7.12.9.4

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal128 tgammad128(_Decimal128 x);
#endif

Description
2 The tgamma functions compute the gamma function of x. A domain error or pole error may occur if

x is a negative integer or zero. A range error occurs for some finite x less than zero, if positive finite
x is too large, or nonzero x is too close to zero.

Returns
3 The tgamma functions return Γ(x).

7.12.10 Nearest integer functions
7.12.10.1 The ceil functions
Synopsis

1 #include <math.h>
double ceil(double x);
float ceilf(float x);
long double ceill(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 ceild32(_Decimal32 x);
_Decimal64 ceild64(_Decimal64 x);
_Decimal128 ceild128(_Decimal128 x);
#endif

Description
2 The ceil functions compute the smallest integer value not less than x.

Returns
3 The ceil functions return ⌈x⌉, expressed as a floating-point number.

7.12.10.2 The floor functions
Synopsis

1 #include <math.h>
double floor(double x);
float floorf(float x);
long double floorl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 floord32(_Decimal32 x);
_Decimal64 floord64(_Decimal64 x);
_Decimal128 floord128(_Decimal128 x);
#endif

Description
2 The floor functions compute the largest integer value not greater than x.

Returns
3 The floor functions return ⌊x⌋, expressed as a floating-point number.

7.12.10.3 The nearbyint functions
Synopsis

1 #include <math.h>
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);
#ifdef __STDC_IEC_60559_DFP__

§ 7.12.10.3 © ISO/IEC 202y — All rights reserved

Library — 265

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal32 nearbyintd32(_Decimal32 x);
_Decimal64 nearbyintd64(_Decimal64 x);
_Decimal128 nearbyintd128(_Decimal128 x);
#endif

Description
2 The nearbyint functions round their argument to an integer value in floating-point format, using

the current rounding direction and without raising the "inexact" floating-point exception.

Returns
3 The nearbyint functions return the rounded integer value.

7.12.10.4 The rint functions
Synopsis

1 #include <math.h>
double rint(double x);
float rintf(float x);
long double rintl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 rintd32(_Decimal32 x);
_Decimal64 rintd64(_Decimal64 x);
_Decimal128 rintd128(_Decimal128 x);
#endif

Description
2 The rint functions differ from the nearbyint functions (7.12.10.3) only in that the rint functions

may raise the "inexact" floating-point exception if the result differs in value from the argument.

Returns
3 The rint functions return the rounded integer value.

7.12.10.5 The lrint and llrint functions
Synopsis

1 #include <math.h>
long int lrint(double x);
long int lrintf(float x);
long int lrintl(long double x);
long long int llrint(double x);
long long int llrintf(float x);
long long int llrintl(long double x);
#ifdef __STDC_IEC_60559_DFP__

long int lrintd32(_Decimal32 x);
long int lrintd64(_Decimal64 x);
long int lrintd128(_Decimal128 x);
long long int llrintd32(_Decimal32 x);
long long int llrintd64(_Decimal64 x);
long long int llrintd128(_Decimal128 x);
#endif

Description
2 The lrint and llrint functions round their argument to the nearest integer value, rounding

according to the current rounding direction. If the rounded value is outside the range of the return
type, the numeric result is unspecified and a domain error or range error may occur.

Returns
3 The lrint and llrint functions return the rounded integer value.

© ISO/IEC 202y — All rights reserved

Library — 266

§ 7.12.10.5

ISO/IEC 9899:202y (en) — n3299 working draft

7.12.10.6 The round functions
Synopsis

1 #include <math.h>
double round(double x);
float roundf(float x);
long double roundl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 roundd32(_Decimal32 x);
_Decimal64 roundd64(_Decimal64 x);
_Decimal128 roundd128(_Decimal128 x);
#endif

Description
2 The round functions round their argument to the nearest integer value in floating-point format,

rounding halfway cases away from zero, regardless of the current rounding direction.

Returns
3 The round functions return the rounded integer value.

7.12.10.7 The lround and llround functions
Synopsis

1 #include <math.h>
long int lround(double x);
long int lroundf(float x);
long int lroundl(long double x);
long long int llround(double x);
long long int llroundf(float x);
long long int llroundl(long double x);
#ifdef __STDC_IEC_60559_DFP__

long int lroundd32(_Decimal32 x);
long int lroundd64(_Decimal64 x);
long int lroundd128(_Decimal128 x);
long long int llroundd32(_Decimal32 x);
long long int llroundd64(_Decimal64 x);
long long int llroundd128(_Decimal128 x);
#endif

Description
2 The lround and llround functions round their argument to the nearest integer value, rounding

halfway cases away from zero, regardless of the current rounding direction. If the rounded value is
outside the range of the return type, the numeric result is unspecified and a domain error or range
error may occur.

Returns
3 The lround and llround functions return the rounded integer value.

7.12.10.8 The roundeven functions
Synopsis

1 #include <math.h>
double roundeven(double x);
float roundevenf(float x);
long double roundevenl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 roundevend32(_Decimal32 x);
_Decimal64 roundevend64(_Decimal64 x);
_Decimal128 roundevend128(_Decimal128 x);
#endif

§ 7.12.10.8 © ISO/IEC 202y — All rights reserved

Library — 267

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The roundeven functions round their argument to the nearest integer value in floating-point format,

rounding halfway cases to even (that is, to the nearest value that is an even integer), regardless of
the current rounding direction.

Returns
3 The roundeven functions return the rounded integer value.

7.12.10.9 The trunc functions
Synopsis

1 #include <math.h>
double trunc(double x);
float truncf(float x);
long double truncl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 truncd32(_Decimal32 x);
_Decimal64 truncd64(_Decimal64 x);
_Decimal128 truncd128(_Decimal128 x);
#endif

Description
2 The trunc functions round their argument to the integer value, in floating format, nearest to but no

larger in magnitude than the argument.

Returns
3 The trunc functions return the truncated integer value.

7.12.10.10 The fromfp and ufromfp functions
Synopsis

1 #include <math.h>
double fromfp(double x, int rnd, unsigned int width);
float fromfpf(float x, int rnd, unsigned int width);
long double fromfpl(long double x, int rnd, unsigned int width);
double ufromfp(double x, int rnd, unsigned int width);
float ufromfpf(float x, int rnd, unsigned int width);
long double ufromfpl(long double x, int rnd, unsigned int width);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fromfpd32(_Decimal32 x, int rnd, unsigned int width);
_Decimal64 fromfpd64(_Decimal64 x, int rnd, unsigned int width);
_Decimal128 fromfpd128(_Decimal128 x, int rnd, unsigned int width);
_Decimal32 ufromfpd32(_Decimal32 x, int rnd, unsigned int width);
_Decimal64 ufromfpd64(_Decimal64 x, int rnd, unsigned int width);
_Decimal128 ufromfpd128(_Decimal128 x, int rnd, unsigned int width);
#endif

Description
2 The fromfp and ufromfp functions round x, using the math rounding direction indicated by rnd, to

a signed or unsigned integer, respectively. If width is nonzero and the resulting integer is within the
range

— [−2(width−1), 2(width−1) − 1], for signed

— [0, 2width − 1], for unsigned

© ISO/IEC 202y — All rights reserved

Library — 268

§ 7.12.10.10

ISO/IEC 9899:202y (en) — n3299 working draft

then the functions return the integer value (represented in floating type). Otherwise, if width is
zero or x does not round to an integer within the range, the functions return a NaN (of the type
of the x argument, if available), else the value of x, and a domain error occurs. If the value of the
rnd argument is not equal to the value of a math rounding direction macro (7.12), the direction of
rounding is unspecified. The fromfp and ufromfp functions do not raise the "inexact" floating-point
exception.

Returns
3 The fromfp and ufromfp functions return the rounded integer value.

4 EXAMPLE 1 Upward rounding of double x to type int, without raising the "inexact" floating-point exception,
is achieved by

(int)fromfp(x, FP_INT_UPWARD, INT_WIDTH)

5 EXAMPLE 2 Unsigned integer wrapping is not performed in

ufromfp(-3.0, FP_INT_UPWARD, UINT_WIDTH) /* domain error */

7.12.10.11 The fromfpx and ufromfpx functions
Synopsis

1 #include <math.h>
double fromfpx(double x, int rnd, unsigned int width);
float fromfpxf(float x, int rnd, unsigned int width);
long double fromfpxl(long double x, int rnd, unsigned int width);
double ufromfpx(double x, int rnd, unsigned int width);
float ufromfpxf(float x, int rnd, unsigned int width);
long double ufromfpxl(long double x, int rnd, unsigned int width);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fromfpxd32(_Decimal32 x, int rnd, unsigned int width);
_Decimal64 fromfpxd64(_Decimal64 x, int rnd, unsigned int width);
_Decimal128 fromfpxd128(_Decimal128 x, int rnd, unsigned int width);
_Decimal32 ufromfpxd32(_Decimal32 x, int rnd, unsigned int width);
_Decimal64 ufromfpxd64(_Decimal64 x, int rnd, unsigned int width);
_Decimal128 ufromfpxd128(_Decimal128 x, int rnd, unsigned int width);
#endif

Description
2 The fromfpx and ufromfpx functions differ from the fromfp and ufromfp functions, respectively,

only in that the fromfpx and ufromfpx functions raise the "inexact" floating-point exception if a
rounded result not exceeding the specified width differs in value from the argument x.

Returns
3 The fromfpx and ufromfpx functions return the rounded integer value.

4 NOTE Conversions to integer types that are not required to raise the inexact exception can be done simply by
rounding to integral value in floating type and then converting to the target integer type. For example, the
conversion of long double x to uint64_t, using upward rounding, is done by

(uint64_t)ceill(x)

7.12.11 Remainder functions
7.12.11.1 The fmod functions
Synopsis

1 #include <math.h>
double fmod(double x, double y);
float fmodf(float x, float y);

§ 7.12.11.1 © ISO/IEC 202y — All rights reserved

Library — 269

ISO/IEC 9899:202y (en) — n3299 working draft

long double fmodl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmodd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmodd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmodd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fmod functions compute the floating-point remainder of x/y.

Returns
3 The fmod functions return the value x − ny, for some integer n such that, if y is nonzero, the result

has the same sign as x and magnitude less than the magnitude of y. If y is zero, whether a domain
error occurs or the fmod functions return zero is implementation-defined.

7.12.11.2 The remainder functions
Synopsis

1 #include <math.h>
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 remainderd32(_Decimal32 x, _Decimal32 y);
_Decimal64 remainderd64(_Decimal64 x, _Decimal64 y);
_Decimal128 remainderd128(_Decimal128 x, _Decimal128 y);
#endif

Description

2 The remainder functions compute the remainder x REM y required by ISO/IEC 60559.277)

Returns
3 The remainder functions return x REM y. If y is zero, whether a domain error occurs or the functions

return zero is implementation-defined.

7.12.11.3 The remquo functions
Synopsis

1 #include <math.h>
double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

Description
2 The remquo functions compute the same remainder as the remainder functions. In the object

pointed to by quo they store a value whose magnitude is congruent modulo 2n to the magnitude of
the integral quotient of x/y, where n is an implementation-defined integer greater than or equal to 3.
If the value stored is not zero, its sign is the sign of x/y.

Returns
3 The remquo functions return x REM y. If y is zero, the value stored in the object pointed to by quo

is unspecified and whether a domain error occurs or the functions return zero is implementation-
defined.

4 NOTE There are no decimal floating-point versions of the remquo functions.

277)"When y ̸= 0, the remainder r = x REM y is defined regardless of the rounding mode by the mathematical relation
r = x− ny, where n is the integer nearest the exact value of x

y
; whenever |n− x

y
| = 1

2
, then n is even. If r = 0, its sign shall

be that of x." This definition is applicable for all implementations.

© ISO/IEC 202y — All rights reserved

Library — 270

§ 7.12.11.3

ISO/IEC 9899:202y (en) — n3299 working draft

7.12.12 Manipulation functions
7.12.12.1 The copysign functions
Synopsis

1 #include <math.h>
double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 copysignd32(_Decimal32 x, _Decimal32 y);
_Decimal64 copysignd64(_Decimal64 x, _Decimal64 y);
_Decimal128 copysignd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The copysign functions produce a value with the magnitude of x and the sign of y. If x or y is an

unsigned value, the sign (if any) of the result is implementation-defined. On implementations that
represent a signed zero but do not treat negative zero consistently in arithmetic operations, the
copysign functions should regard the sign of zero as positive.

Returns
3 The copysign functions return a value with the magnitude of x and the sign of y.

7.12.12.2 The nan functions
Synopsis

1 #include <math.h>
double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nand32(const char *tagp);
_Decimal64 nand64(const char *tagp);
_Decimal128 nand128(const char *tagp);
#endif

Description
2 The nan, nanf, and nanl functions convert the string pointed to by tagp according to the following

rules. The call nan("n-char-sequence") is equivalent to strtod("NAN(n-char-sequence)", nullptr);
the call nan("") is equivalent to strtod("NAN()", nullptr). If tagp does not point to an empty
string or an n-char sequence, the call is equivalent to strtod("NAN", nullptr). Calls to nanf and
nanl are equivalent to the corresponding calls to strtof and strtold.

Returns
3 The nan functions return a quiet NaN, if available, with content indicated through tagp. If the

implementation does not support quiet NaNs, the functions return zero.

Forward references: the strtod, strtof, and strtold functions (7.24.2.6).

7.12.12.3 The nextafter functions
Synopsis

1 #include <math.h>
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nextafterd32(_Decimal32 x, _Decimal32 y);
_Decimal64 nextafterd64(_Decimal64 x, _Decimal64 y);

§ 7.12.12.3 © ISO/IEC 202y — All rights reserved

Library — 271

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal128 nextafterd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The nextafter functions determine the next representable value, in the return type of the function,

after x in the direction of y, where x and y are first converted to the return type of the function.278)

The nextafter functions return y if x equals y.

A range error occurs if the magnitude of x is the largest finite value representable in the type and the
result is infinite or not representable in the type. If x != y, a range error occurs for either subnormal
or zero results.

Returns
3 The nextafter functions return the next representable value in the specified format after x in the

direction of y.

7.12.12.4 The nexttoward functions
Synopsis

1 #include <math.h>
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nexttowardd32(_Decimal32 x, _Decimal128 y);
_Decimal64 nexttowardd64(_Decimal64 x, _Decimal128 y);
_Decimal128 nexttowardd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The nexttoward functions are equivalent to the nextafter functions except that the second param-

eter has type long double or _Decimal128 and the functions return y converted to the return type
of the function if x equals y.279)

Returns
3 The nexttoward functions return the next representable value in the specified format after x in the

direction of y.

7.12.12.5 The nextup functions
Synopsis

1 #include <math.h>
double nextup(double x);
float nextupf(float x);
long double nextupl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nextupd32(_Decimal32 x);
_Decimal64 nextupd64(_Decimal64 x);
_Decimal128 nextupd128(_Decimal128 x);
#endif

Description
2 The nextup functions determine the next representable value, in the return type of the function,

greater than x. If x is the negative number of least magnitude in the type of x, nextup(x) is −0 if
the type has signed zeros and is 0 otherwise. If x is zero, nextup(x) is the positive number of least

278)The argument values are converted to the return type of the function, even by a macro implementation of the function.
279)The result of the nexttoward functions is determined in the return type of the function, without loss of range or precision

in a floating second argument.

© ISO/IEC 202y — All rights reserved

Library — 272

§ 7.12.12.5

ISO/IEC 9899:202y (en) — n3299 working draft

magnitude in the type of x. If x is the positive number (finite or infinite) of maximum magnitude in
the type, nextup(x) is x.

Returns
3 The nextup functions return the next representable value in the specified type greater than x.

7.12.12.6 The nextdown functions
Synopsis

1 #include <math.h>
double nextdown(double x);
float nextdownf(float x);
long double nextdownl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nextdownd32(_Decimal32 x);
_Decimal64 nextdownd64(_Decimal64 x);
_Decimal128 nextdownd128(_Decimal128 x);
#endif

Description
2 The nextdown functions determine the next representable value, in the return type of the function,

less than x. If x is the positive number of least magnitude in the type of x, nextdown(x) is +0 if the
type has signed zeros and is 0 otherwise. If x is zero, nextdown(x) is the negative number of least
magnitude in the type of x. If x is the negative number (finite or infinite) of maximum magnitude in
the type, nextdown(x) is x.

Returns
3 The nextdown functions return the next representable value in the specified type less than x.

7.12.12.7 The canonicalize functions
Synopsis

1 #include <math.h>
int canonicalize(double *cx, const double *x);
int canonicalizef(float *cx, const float *x);
int canonicalizel(long double *cx, const long double *x);
#ifdef __STDC_IEC_60559_DFP__

int canonicalized32(_Decimal32 *cx, const _Decimal32 *x);
int canonicalized64(_Decimal64 *cx, const _Decimal64 *x);
int canonicalized128(_Decimal128 *cx, const _Decimal128 *x);
#endif

Description
2 The canonicalize functions attempt to produce a canonical version of the floating-point repre-

sentation in the object pointed to by the argument x, as if to a temporary object of the specified
type, and store the canonical result in the object pointed to by the argument cx.280) If the input *x
is a signaling NaN, the canonicalize functions are intended to store a canonical quiet NaN. If a
canonical result is not produced the object pointed to by cx is unchanged.

Returns
3 The canonicalize functions return zero if a canonical result is stored in the object pointed to by cx.

Otherwise they return a nonzero value.

7.12.13 Maximum, minimum, and positive difference functions
7.12.13.1 The fdim functions

280)Arguments x and cx can point to the same object.

§ 7.12.13.1 © ISO/IEC 202y — All rights reserved

Library — 273

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <math.h>
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fdimd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fdimd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fdimd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fdim functions determine the positive difference between their arguments:{

x − y if x > y

+0 if x ≤ y

A range error occurs for some finite arguments.

Returns
3 The fdim functions return the positive difference value.

7.12.13.2 The fmax functions
Synopsis

1 #include <math.h>
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmaxd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaxd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaxd128(_Decimal128 x, _Decimal128 y);
#endif

Description

2 The fmax functions determine the maximum numeric value of their arguments.281)

Returns
3 The fmax functions return the maximum numeric value of their arguments.

7.12.13.3 The fmin functions
Synopsis

1 #include <math.h>
double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmind32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmind64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmind128(_Decimal128 x, _Decimal128 y);
#endif

281)Quiet NaN arguments are treated as missing data: if one argument is a quiet NaN and the other numeric, then the fmax
functions choose the numeric value. See F.10.10.2.

© ISO/IEC 202y — All rights reserved

Library — 274

§ 7.12.13.3

ISO/IEC 9899:202y (en) — n3299 working draft

Description

2 The fmin functions determine the minimum numeric value of their arguments.282)

Returns
3 The fmin functions return the minimum numeric value of their arguments.

4 NOTE The fmax and fmin functions are similar to the fmaximum_num and fminimum_num functions, though
can differ in which signed zero is returned when the arguments are differently signed zeros and in their
treatment of signaling NaNs (see F.10.10.5).

7.12.13.4 The fmaximum functions
Synopsis

1 #include <math.h>
double fmaximum(double x, double y);
float fmaximumf(float x, float y);
long double fmaximuml(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmaximumd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximumd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximumd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fmaximum functions determine the maximum value of their arguments. For these functions, +0

is considered greater than −0. These functions differ from the fmaximum_num functions only in their
treatment of NaN arguments (see F.10.10.4, F.10.10.5).

Returns
3 The fmaximum functions return the maximum value of their arguments.

7.12.13.5 The fminimum functions
Synopsis

1 #include <math.h>
double fminimum(double x, double y);
float fminimumf(float x, float y);
long double fminimuml(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fminimumd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimumd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimumd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fminimum functions determine the minimum value of their arguments. For these functions, −0

is considered less than +0. These functions differ from the fminimum_num functions only in their
treatment of NaN arguments (see F.10.10.4, F.10.10.5).

Returns
3 The fminimum functions return the minimum value of their arguments.

7.12.13.6 The fmaximum_mag functions
Synopsis

1 #include <math.h>
double fmaximum_mag(double x, double y);
float fmaximum_magf(float x, float y);

282)The fmin functions are analogous to the fmax functions in their treatment of quiet NaNs.

§ 7.12.13.6 © ISO/IEC 202y — All rights reserved

Library — 275

ISO/IEC 9899:202y (en) — n3299 working draft

long double fmaximum_magl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmaximum_magd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximum_magd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximum_magd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fmaximum_mag functions determine the value of the argument of maximum magnitude: x

if |x| > |y|, y if |y| > |x|, and fmaximum(x, y) otherwise. These functions differ from the
fmaximum_mag_num functions only in their treatment of NaN arguments (see F.10.10.4, F.10.10.5).

Returns
3 The fmaximum_mag functions return the value of the argument of maximum magnitude.

7.12.13.7 The fminimum_mag functions
Synopsis

1 #include <math.h>
double fminimum_mag(double x, double y);
float fminimum_magf(float x, float y);
long double fminimum_magl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fminimum_magd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimum_magd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimum_magd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fminimum_mag functions determine the value of the argument of minimum magnitude: x

if |x| < |y|, y if |y| < |x|, and fminimum(x, y) otherwise. These functions differ from the
fminimum_mag_num functions only in their treatment of NaN arguments (see F.10.10.4, F.10.10.5).

Returns
3 The fminimum_mag functions return the value of the argument of minimum magnitude.

7.12.13.8 The fmaximum_num functions
Synopsis

1 #include <math.h>
double fmaximum_num(double x, double y);
float fmaximum_numf(float x, float y);
long double fmaximum_numl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmaximum_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximum_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximum_numd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fmaximum_num functions determine the maximum value of their numeric arguments. They

determine the number if one argument is a number and the other is a NaN. These functions differ
from the fmaximum functions only in their treatment of NaN arguments (see F.10.10.4, F.10.10.5).

Returns
3 The fmaximum_num functions return the maximum value of their numeric arguments.

7.12.13.9 The fminimum_num functions

© ISO/IEC 202y — All rights reserved

Library — 276

§ 7.12.13.9

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <math.h>
double fminimum_num(double x, double y);
float fminimum_numf(float x, float y);
long double fminimum_numl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fminimum_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimum_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimum_numd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fminimum_num functions determine the minimum value of their numeric arguments. They

determine the number if one argument is a number and the other is a NaN. These functions differ
from the fminimum functions only in their treatment of NaN arguments (see F.10.10.4, F.10.10.5).

Returns
3 The fminimum_num functions return the minimum value of their numeric arguments.

7.12.13.10 The fmaximum_mag_num functions
Synopsis

1 #include <math.h>
double fmaximum_mag_num(double x, double y);
float fmaximum_mag_numf(float x, float y);
long double fmaximum_mag_numl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmaximum_mag_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximum_mag_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximum_mag_numd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fmaximum_mag_num functions determine the value of a numeric argument of maximum mag-

nitude. They determine the number if one argument is a number and the other is a NaN. These
functions differ from the fmaximum_mag functions only in their treatment of NaN arguments (see
F.10.10.4, F.10.10.5).

Returns
3 The fmaximum_mag_num functions return the value of a numeric argument of maximum magnitude.

7.12.13.11 The fminimum_mag_num functions
Synopsis

1 #include <math.h>
double fminimum_mag_num(double x, double y);
float fminimum_mag_numf(float x, float y);
long double fminimum_mag_numl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fminimum_mag_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimum_mag_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimum_mag_numd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fminimum_mag_num functions determine the value of a numeric argument of minimum mag-

nitude. They determine the number if one argument is a number and the other is a NaN. These

§ 7.12.13.11 © ISO/IEC 202y — All rights reserved

Library — 277

ISO/IEC 9899:202y (en) — n3299 working draft

functions differ from the fminimum_mag functions only in their treatment of NaN arguments (see
F.10.10.4, F.10.10.5).

Returns
3 The fminimum_mag_num functions return the value of a numeric argument of minimum magnitude.

7.12.14 Fused multiply-add
7.12.14.1 The fma functions
Synopsis

1 #include <math.h>
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmad32(_Decimal32 x, _Decimal32 y, _Decimal32 z);
_Decimal64 fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z);
_Decimal128 fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
#endif

Description
2 The fma functions compute (x × y) + z, rounded as one ternary operation: they compute the value

(as if) to infinite precision and round once to the return type, according to the current rounding
mode. A range error occurs for some finite arguments. A domain error occurs for some infinite
arguments.

Returns
3 The fma functions return (x × y) + z, rounded as one ternary operation.

7.12.15 Functions that round result to narrower type
7.12.15.1 General

1 The functions in this subclause round their results to the return type, which is typically narrower283)

than the parameter types.

7.12.15.2 Add and round to narrower type
Synopsis

1 #include <math.h>
float fadd(double x, double y);
float faddl(long double x, long double y);
double daddl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32addd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32addd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64addd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 These functions compute the sum of x+y, rounded to the return type of the function. They compute

the sum (as if) to infinite precision and round once to the return type, according to the current
rounding mode. A range error occurs for some finite arguments. A domain error may occur for
infinite arguments.

Returns
3 These functions return the sum of x + y, rounded to the return type of the function.

283)In some cases the destination type can sometimes not be narrower than the parameter types. For example, double
potentially is not narrower than long double.

© ISO/IEC 202y — All rights reserved

Library — 278

§ 7.12.15.2

ISO/IEC 9899:202y (en) — n3299 working draft

7.12.15.3 Subtract and round to narrower type
Synopsis

1 #include <math.h>
float fsub(double x, double y);
float fsubl(long double x, long double y);
double dsubl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32subd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32subd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64subd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 These functions compute the difference of x − y, rounded to the return type of the function. They

compute the difference (as if) to infinite precision and round once to the return type, according to
the current rounding mode. A range error occurs for some finite arguments. A domain error may
occur for infinite arguments.

Returns
3 These functions return the difference of x − y, rounded to the return type of the function.

7.12.15.4 Multiply and round to narrower type
Synopsis

1 #include <math.h>
float fmul(double x, double y);
float fmull(long double x, long double y);
double dmull(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32muld64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32muld128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64muld128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 These functions compute the product x×y, rounded to the return type of the function. They compute

the product (as if) to infinite precision and round once to the return type, according to the current
rounding mode. A range error occurs for some finite arguments. A domain error occurs for one
infinite argument and one zero argument.

Returns
3 These functions return the product of x × y, rounded to the return type of the function.

7.12.15.5 Divide and round to narrower type
Synopsis

1 #include <math.h>
float fdiv(double x, double y);
float fdivl(long double x, long double y);
double ddivl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32divd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32divd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64divd128(_Decimal128 x, _Decimal128 y);
#endif

§ 7.12.15.5 © ISO/IEC 202y — All rights reserved

Library — 279

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 These functions compute the quotient x ÷ y, rounded to the return type of the function. They

compute the quotient (as if) to infinite precision and round once to the return type, according to the
current rounding mode. A range error occurs for some finite arguments. A domain error occurs for
either both arguments infinite or both arguments zero. A pole error occurs for a finite x and a zero y.

Returns
3 These functions return the quotient x ÷ y, rounded to the return type of the function.

7.12.15.6 Fused multiply-add and round to narrower type
Synopsis

1 #include <math.h>
float ffma(double x, double y, double z);
float ffmal(long double x, long double y, long double z);
double dfmal(long double x, long double y, long double z);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z);
_Decimal32 d32fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
_Decimal64 d64fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
#endif

Description
2 These functions compute (x × y) + z (as if) to infinite precision and round once to the return type,

according to the current rounding mode. A range error occurs for some finite arguments. A domain
error may occur for an infinite argument.

Returns
3 These functions return (x × y) + z, rounded to the return type of the function.

7.12.15.7 Square root rounded to narrower type
Synopsis

1 #include <math.h>
float fsqrt(double x);
float fsqrtl(long double x);
double dsqrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32sqrtd64(_Decimal64 x);
_Decimal32 d32sqrtd128(_Decimal128 x);
_Decimal64 d64sqrtd128(_Decimal128 x);
#endif

Description
2 These functions compute the square root of x, rounded to the return type of the function. They

compute the square root (as if) to infinite precision and round once to the return type, according
to the current rounding mode. A range error occurs for some finite positive arguments. A domain
error occurs if the argument is less than zero.

Returns
3 These functions return the nonnegative square root of x, rounded to the return type of the function.

7.12.16 Quantum and quantum exponent functions
7.12.16.1 The quantizedN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

© ISO/IEC 202y — All rights reserved

Library — 280

§ 7.12.16.1

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal32 quantized32(_Decimal32 x, _Decimal32 y);
_Decimal64 quantized64(_Decimal64 x, _Decimal64 y);
_Decimal128 quantized128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The quantizedN functions compute, if possible, a value with the numerical value of x and the

quantum exponent of y. If the quantum exponent is being increased, the value shall be correctly
rounded; if the result does not have the same value as x, the "inexact" floating-point exception shall
be raised. If the quantum exponent is being decreased and the significand of the result has more
digits than the type would allow, the result is NaN, the "invalid" floating-point exception is raised,
and a domain error occurs. If one or both operands are NaN the result is NaN. Otherwise if only
one operand is infinite, the result is NaN, the "invalid" floating-point exception is raised, and a
domain error occurs. If both operands are infinite, the result is DEC_INFINITY with the sign of x,
converted to the return type of the function. The quantizedN functions do not raise the "overflow"
and "underflow" floating-point exceptions.

Returns
3 The quantizedN functions return a value with the numerical value of x (except for any rounding)

and the quantum exponent of y.

7.12.16.2 The samequantumdN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

bool samequantumd32(_Decimal32 x, _Decimal32 y);
bool samequantumd64(_Decimal64 x, _Decimal64 y);
bool samequantumd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The samequantumdN functions determine if the quantum exponents of x and y are the same. If both

x and y are NaN, or both infinite, they have the same quantum exponents; if exactly one operand
is infinite or exactly one operand is NaN, they do not have the same quantum exponents. The
samequantumdN functions raise no floating-point exception.

Returns
3 The samequantumdN functions return nonzero (true) when x and y have the same quantum expo-

nents, zero (false) otherwise.

7.12.16.3 The quantumdN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 quantumd32(_Decimal32 x);
_Decimal64 quantumd64(_Decimal64 x);
_Decimal128 quantumd128(_Decimal128 x);
#endif

Description
2 The quantumdN functions compute the quantum (5.3.5.3.4) of a finite argument. If x is infinite, the

result is +∞.

Returns
3 The quantumdN functions return the quantum of x.

§ 7.12.16.3 © ISO/IEC 202y — All rights reserved

Library — 281

ISO/IEC 9899:202y (en) — n3299 working draft

7.12.16.4 The llquantexpdN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

long long int llquantexpd32(_Decimal32 x);
long long int llquantexpd64(_Decimal64 x);
long long int llquantexpd128(_Decimal128 x);
#endif

Description
2 The llquantexpdN functions compute the quantum exponent (5.3.5.3.4) of a finite argument. If x is

infinite or NaN, they compute LLONG_MIN, the "invalid" floating-point exception is raised, and a
domain error occurs.

Returns
3 The llquantexpdN functions return the quantum exponent of x.

7.12.17 Decimal re-encoding functions
7.12.17.1 General

1 ISO/IEC 60559 specifies two different schemes to encode significands in the object representation of
a decimal floating-point object: one based on decimal encoding (which packs three decimal digits
into 10 bits), the other based on binary encoding (as a binary integer). An implementation may use
either of these encoding schemes for its decimal floating types. The re-encoding functions in this
subclause provide conversions between external decimal data with a given encoding scheme and
the implementation’s corresponding decimal floating type.

7.12.17.2 The encodedecdN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

void encodedecd32(unsigned char encptr[restrict static 4],
const _Decimal32 * restrict xptr);

void encodedecd64(unsigned char encptr[restrict static 8],
const _Decimal64 * restrict xptr);

void encodedecd128(unsigned char encptr[restrict static 16],
const _Decimal128 * restrict xptr);

#endif

Description
2 The encodedecdN functions convert *xptr into an ISO/IEC 60559 decimalN encoding in the

encoding scheme based on decimal encoding of the significand and store the resulting encoding
as an N/8 element array, with 8 bits per array element, in the object pointed to by encptr. The
order of bytes in the array follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).
These functions preserve the value of *xptr and raise no floating-point exceptions. If *xptr is
non-canonical, these functions can possibly produce a canonical encoding.

Returns
3 The encodedecdN functions return no value.

7.12.17.3 The decodedecdN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

void decodedecd32(_Decimal32 * restrict xptr,
const unsigned char encptr[restrict static 4]);

© ISO/IEC 202y — All rights reserved

Library — 282

§ 7.12.17.3

ISO/IEC 9899:202y (en) — n3299 working draft

void decodedecd64(_Decimal64 * restrict xptr,
const unsigned char encptr[restrict static 8]);

void decodedecd128(_Decimal128 * restrict xptr,
const unsigned char encptr[restrict static 16]);

#endif

Description
2 The decodedecdN functions interpret the N/8 element array pointed to by encptr as an

ISO/IEC 60559 decimalN encoding, with 8 bits per array element, in the encoding scheme based on
decimal encoding of the significand. The order of bytes in the array follows the endianness specified
with __STDC_ENDIAN_NATIVE__ (7.18.2). These functions convert the given encoding into a value
of the decimal floating type, and store the result in the object pointed to by xptr. These functions
preserve the encoded value and raise no floating-point exceptions. If the encoding is non-canonical,
these functions can possibly produce a canonical representation.

Returns
3 The decodedecdN functions return no value.

7.12.17.4 The encodebindN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

void encodebind32(unsigned char encptr[restrict static 4],
const _Decimal32 * restrict xptr);

void encodebind64(unsigned char encptr[restrict static 8],
const _Decimal64 * restrict xptr);

void encodebind128(unsigned char encptr[restrict static 16],
const _Decimal128 * restrict xptr);

#endif

Description
2 The encodebindN functions convert *xptr into an ISO/IEC 60559 decimalN encoding in the

encoding scheme based on binary encoding of the significand and store the resulting encoding
as an N/8 element array, with 8 bits per array element, in the object pointed to by encptr. The
order of bytes in the array follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).
These functions preserve the value of *xptr and raise no floating-point exceptions. If *xptr is
non-canonical, these functions can possibly produce a canonical encoding.

Returns
3 The encodebindN functions return no value.

7.12.17.5 The decodebindN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

void decodebind32(_Decimal32 * restrict xptr,
const unsigned char encptr[restrict static 4]);

void decodebind64(_Decimal64 * restrict xptr,
const unsigned char encptr[restrict static 8]);

void decodebind128(_Decimal128 * restrict xptr,
const unsigned char encptr[restrict static 16]);

#endif

Description
2 The decodebindN functions interpret the N/8 element array pointed to by encptr as an

ISO/IEC 60559 decimalN encoding, with 8 bits per array element, in the encoding scheme based on

§ 7.12.17.5 © ISO/IEC 202y — All rights reserved

Library — 283

ISO/IEC 9899:202y (en) — n3299 working draft

binary encoding of the significand. The order of bytes in the array follows the endianness specified
with __STDC_ENDIAN_NATIVE__ (7.18.2). These functions convert the given encoding into a value of
decimal floating type, and store the result in the object pointed to by xptr. These functions preserve
the encoded value and raise no floating-point exceptions. If the encoding is non-canonical, these
functions can produce a canonical representation.

Returns
3 The decodebindN functions return no value.

7.12.18 Comparison macros
7.12.18.1 General

1 The relational and equality operators support the usual mathematical relationships between numeric
values. For any ordered pair of numeric values exactly one of the relationships — less, greater, and
equal — is true. Relational operators may raise the "invalid" floating-point exception when argument
values are NaNs. For a NaN and a numeric value, or for two NaNs, just the unordered relationship
is true.284) 7.12.18.2 through 7.12.18.7 provide macros that are quiet versions of the relational
operators: the macros do not raise the "invalid" floating-point exception as an effect of quiet NaN
arguments. The comparison macros facilitate writing efficient code that accounts for quiet NaNs
without suffering the "invalid" floating-point exception. In the synopses in this subclause, real-
floating indicates that the argument shall be an expression of real floating type285) (both arguments
are not required to have the same type).286) If either argument has decimal floating type, the other
argument shall have decimal floating type as well.

7.12.18.2 The isgreater macro
Synopsis

1 #include <math.h>
int isgreater(real-floating x, real-floating y);

Description
2 The isgreater macro determines whether its first argument is greater than its second argument.

The value of isgreater(x,y) is always equal to (x) > (y).

However, unlike (x) > (y), isgreater(x,y) does not raise the "invalid" floating-point exception
when x and y are unordered and neither is a signaling NaN.

Returns
3 The isgreater macro returns the value of (x) > (y).

7.12.18.3 The isgreaterequal macro
Synopsis

1 #include <math.h>
int isgreaterequal(real-floating x, real-floating y);

Description
2 The isgreaterequal macro determines whether its first argument is greater than or equal to its

second argument. The value of isgreaterequal(x,y) is always equal to (x) >= (y).

However, unlike (x) >= (y), isgreaterequal(x,y) does not raise the "invalid" floating-point
exception when x and y are unordered and neither is a signaling NaN.

284)ISO/IEC 60559 requires that the built-in relational operators raise the "invalid" floating-point exception if the operands
compare unordered, as an error indicator for programs written without consideration of NaNs; the result in these cases is
false.
285)If any argument is of integer type, or any other type that is not a real floating type, the behavior is undefined.
286)Whether an argument represented in a format wider than its semantic type is converted to the semantic type is unspecified.

© ISO/IEC 202y — All rights reserved

Library — 284

§ 7.12.18.3

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The isgreaterequal macro returns the value of (x) >= (y).

7.12.18.4 The isless macro
Synopsis

1 #include <math.h>
int isless(real-floating x, real-floating y);

Description
2 The isless macro determines whether its first argument is less than its second argument. The value

of isless(x,y) is always equal to (x) < (y).

However, unlike (x) < (y), isless(x,y) does not raise the "invalid" floating-point exception when
x and y are unordered and neither is a signaling NaN.

Returns
3 The isless macro returns the value of (x) < (y).

7.12.18.5 The islessequal macro
Synopsis

1 #include <math.h>
int islessequal(real-floating x, real-floating y);

Description
2 The islessequal macro determines whether its first argument is less than or equal to its second

argument. The value of islessequal(x,y) is always equal to (x) <= (y).

However, unlike (x) <= (y), islessequal(x,y) does not raise the "invalid" floating-point excep-
tion when x and y are unordered and neither is a signaling NaN.

Returns
3 The islessequal macro returns the value of (x) <= (y).

7.12.18.6 The islessgreater macro
Synopsis

1 #include <math.h>
int islessgreater(real-floating x, real-floating y);

Description
2 The islessgreater macro determines whether its first argument is less than or greater than its

second argument. The islessgreater(x,y) macro is similar to (x) < (y) || (x) > (y).

However, islessgreater(x,y) does not raise the "invalid" floating-point exception when x and y
are unordered and neither is a signaling NaN (nor does it evaluate x and y twice).

Returns
3 The islessgreater macro returns the value of (x) < (y) || (x) > (y).

7.12.18.7 The isunordered macro
Synopsis

1 #include <math.h>
int isunordered(real-floating x, real-floating y);

§ 7.12.18.7 © ISO/IEC 202y — All rights reserved

Library — 285

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The isunordered macro determines whether its arguments are unordered. It does not raise the

"invalid" floating-point exception when x and y are unordered and neither is a signaling NaN.

Returns
3 The isunordered macro returns 1 if its arguments are unordered and 0 otherwise.

7.12.18.8 The iseqsig macro
Synopsis

1 #include <math.h>
int iseqsig(real-floating x, real-floating y);

Description
2 The iseqsig macro determines whether its arguments are equal. If an argument is a NaN, a domain

error occurs for the macro, as if a domain error occurred for a function (7.12.2).

Returns
3 The iseqsig macro returns 1 if its arguments are equal and 0 otherwise.

© ISO/IEC 202y — All rights reserved

Library — 286

§ 7.12.18.8

ISO/IEC 9899:202y (en) — n3299 working draft

7.13 Non-local jumps <setjmp.h>
7.13.1 General

1 The header <setjmp.h> defines the macros setjmp and __STDC_VERSION_SETJMP_H__, and de-
clares one function and one type, for bypassing the normal function call and return discipline.287)

2 The macro

__STDC_VERSION_SETJMP_H__

is an integer constant expression with a value equivalent to 202311L.

3 The type declared is

jmp_buf

which is an array type suitable for holding the information needed to restore a calling environment.
The environment of an invocation of the setjmp macro consists of information sufficient for a call to
the longjmp function to return execution to the correct block and invocation of that block, were it
called recursively. It does not include the state of the floating-point environment, of open files, or of
any other component of the abstract machine.

4 It is unspecified whether setjmp is a macro or an identifier declared with external linkage. If a macro
definition is suppressed to access an actual function, or a program defines an external identifier with
the name setjmp, the behavior is undefined.

7.13.2 Save calling environment
7.13.2.1 The setjmp macro
Synopsis

1 #include <setjmp.h>
int setjmp(jmp_buf env);

Description
2 The setjmp macro saves its calling environment in its jmp_buf argument for later use by the

longjmp function.

Returns
3 If the return is from a direct invocation, the setjmp macro returns the value zero. If the return is

from a call to the longjmp function, the setjmp macro returns a nonzero value.

Environmental limits
4 An invocation of the setjmp macro shall appear only in one of the following contexts:

— the entire controlling expression of a selection or iteration statement;

— one operand of a relational or equality operator with the other operand an integer constant
expression, with the resulting expression being the entire controlling expression of a selection
or iteration statement;

— the operand of a unary ! operator with the resulting expression being the entire controlling
expression of a selection or iteration statement; or

— the entire expression of an expression statement (possibly cast to void).

5 If the invocation appears in any other context, the behavior is undefined.

7.13.3 Restore calling environment
7.13.3.1 The longjmp function
287)These functions are useful for dealing with unusual conditions encountered in a low-level function of a program.

§ 7.13.3.1 © ISO/IEC 202y — All rights reserved

Library — 287

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <setjmp.h>
[[noreturn]] void longjmp(jmp_buf env, int val);

Description
2 The longjmp function restores the environment saved by the most recent invocation of the setjmp

macro in the same invocation of the program with the corresponding jmp_buf argument. If there
has been no such invocation, or if the invocation was from another thread of execution, or if the
function containing the invocation of the setjmp macro has terminated execution288) in the interim,
or if the invocation of the setjmp macro was within the scope of an identifier with variably modified
type and execution has left that scope in the interim, the behavior is undefined.

3 All accessible objects have values, and all other components of the abstract machine289) have state,
as of the time the longjmp function was called, except that the representation of objects of automatic
storage duration that are local to the function containing the invocation of the corresponding
setjmp macro that do not have volatile-qualified type and have been changed between the setjmp
invocation and longjmp call is indeterminate.

Returns
4 After longjmp is completed, thread execution continues as if the corresponding invocation of the

setjmp macro had just returned the value specified by val. The longjmp function cannot cause the
setjmp macro to return the value 0; if val is 0, the setjmp macro returns the value 1.

5 EXAMPLE The longjmp function that returns control back to the point of the setjmp invocation can cause
memory associated with a variable length array object to be squandered.

#include <setjmp.h>
jmp_buf buf;
void g(int n);
void h(int n);
int n = 6;

void f(void)
{

int x[n]; // valid: f is not terminated
setjmp(buf);
g(n);

}

void g(int n)
{

int a[n]; // acan remain allocated
h(n);

}

void h(int n)
{

int b[n]; // bcan remain allocated
longjmp(buf, 2); // can cause memory loss

}

288)For example, by executing a return statement or because another longjmp call has caused a transfer to a setjmp
invocation in a function earlier in the set of nested calls.
289)This includes, but is not limited to, the floating-point environment and the state of open files.

© ISO/IEC 202y — All rights reserved

Library — 288

§ 7.13.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

7.14 Signal handling <signal.h>

7.14.1 General
1 The header <signal.h> declares a type and two functions and defines several macros, for handling

various signals (conditions that may be reported during program execution).

2 The type defined is

sig_atomic_t

which is the (possibly volatile-qualified) integer type of an object that can be accessed as an atomic
entity, even in the presence of asynchronous interrupts.

3 The macros defined are

SIG_DFL
SIG_ERR
SIG_IGN

which expand to constant expressions with distinct values that have type compatible with the second
argument to, and the return value of, the signal function, and whose values compare unequal to
the address of any declarable function; and the following, which expand to positive integer constant
expressions with type int and distinct values that are the signal numbers, each corresponding to
the specified condition:

SIGABRT abnormal termination, such as is initiated by the abort function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation resulting in
overflow

SIGILL detection of an invalid function image, such as an invalid instruction

SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

4 An implementation is not required to generate any of these signals, except as a result of explicit
calls to the raise function. Additional signals and pointers to undeclarable functions, with macro
definitions beginning, respectively, with the letters SIG and an uppercase letter or with SIG_ and
an uppercase letter,290) may also be specified by the implementation. The complete set of signals,
their semantics, and their default handling is implementation-defined; all signal numbers shall be
positive.

7.14.2 Specify signal handling
7.14.2.1 The signal function
Synopsis

1 #include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);

Description
2 The signal function chooses one of three ways in which receipt of the signal number sig is to

be subsequently handled. If the value of func is SIG_DFL, default handling for that signal will
occur. If the value of func is SIG_IGN, the signal will be ignored. Otherwise, func shall point to a
function to be called when that signal occurs. An invocation of such a function because of a signal, or

290)See "future library directions" (7.33.10). The names of the signal numbers reflect the following terms (respectively): abort,
floating-point exception, illegal instruction, interrupt, segmentation violation, and termination.

§ 7.14.2.1 © ISO/IEC 202y — All rights reserved

Library — 289

ISO/IEC 9899:202y (en) — n3299 working draft

(recursively) of any further functions called by that invocation (other than functions in the standard
library),291) is called a signal handler.

3 When a signal occurs and func points to a function, it is implementation-defined whether the equiva-
lent of signal(sig, SIG_DFL); is executed or the implementation prevents some implementation-
defined set of signals (at least including sig) from occurring until the current signal handling has
completed; in the case of SIGILL, the implementation may alternatively define that no action is taken.
Then the equivalent of (*func)(sig); is executed. If and when the function returns, if the value
of sig is SIGFPE, SIGILL, SIGSEGV, or any other implementation-defined value corresponding to a
computational exception, the behavior is undefined; otherwise the program will resume execution
at the point it was interrupted.

4 If the signal occurs as the result of calling the abort or raise function, the signal handler shall not
call the raise function.

5 If the signal occurs other than as the result of calling the abort or raise function, the behavior is
undefined if the signal handler refers to any object with static or thread storage duration that is not
a lock-free atomic object and that is not declared with the constexpr storage-class specifier other
than by assigning a value to an object declared as volatile sig_atomic_t, or the signal handler
calls any function in the standard library other than

— the abort function,

— the _Exit function,

— the quick_exit function,

— the functions in <stdatomic.h> (except where explicitly stated otherwise) when the atomic
arguments are lock-free,

— the atomic_is_lock_free function with any atomic argument, or

— the signal function with the first argument equal to the signal number corresponding to the
signal that caused the invocation of the handler. Furthermore, if such a call to the signal
function results in a SIG_ERR return, the object designated by errno has an indeterminate
representation.292)

6 At program startup, the equivalent of

signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the equivalent of

signal(sig, SIG_DFL);

is executed for all other signals defined by the implementation.

7 Use of this function in a multi-threaded program results in undefined behavior. The implementation
shall behave as if no library function calls the signal function.

Returns
8 If the request can be honored, the signal function returns the value of func for the most recent

successful call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned and
a positive value is stored in errno.

Forward references: the abort function (7.24.5.1), the exit function (7.24.5.4), the _Exit function
(7.24.5.5), the quick_exit function (7.24.5.7).

291)This includes functions called indirectly via standard library functions (e.g. a SIGABRT handler called via the abort
function).
292)If any signal is generated by an asynchronous signal handler, the behavior is undefined.

© ISO/IEC 202y — All rights reserved

Library — 290

§ 7.14.2.1

ISO/IEC 9899:202y (en) — n3299 working draft

7.14.3 Send signal
7.14.3.1 The raise function
Synopsis

1 #include <signal.h>
int raise(int sig);

Description
2 The raise function carries out the actions described in 7.14.2.1 for the signal sig. If a signal handler

is called, the raise function shall not return until after the signal handler does.

Returns
3 The raise function returns zero if successful, nonzero if unsuccessful.

§ 7.14.3.1 © ISO/IEC 202y — All rights reserved

Library — 291

ISO/IEC 9899:202y (en) — n3299 working draft

7.15 Alignment <stdalign.h>
1 The header <stdalign.h> provides no content.

© ISO/IEC 202y — All rights reserved

Library — 292

§ 7.15

ISO/IEC 9899:202y (en) — n3299 working draft

7.16 Variable arguments <stdarg.h>
7.16.1 General

1 The header <stdarg.h> declares a type and defines five macros, for advancing through a list of
arguments whose number and types are not known to the called function when it is translated.

2 The macro

__STDC_VERSION_STDARG_H__

is an integer constant expression with a value equivalent to 202311L.

3 A function may be called with a variable number of arguments of varying types if its parameter
type list ends with an ellipsis.

4 The type declared is

va_list

which is a complete object type suitable for holding information needed by the macros va_start,
va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function
shall declare an object (generally referred to as ap in this subclause) having type va_list. The object
ap may be passed as an argument to another function; if that function invokes the va_arg macro
with parameter ap, the representation of ap in the calling function is indeterminate and shall be
passed to the va_end macro prior to any further reference to ap.293)

7.16.2 Variable argument list access macros
7.16.2.1 General

1 The va_start and va_arg macros described in this subclause shall be implemented as macros, not
functions. It is unspecified whether va_copy and va_end are macros or identifiers declared with
external linkage. If a macro definition is suppressed to access an actual function, or a program
defines an external identifier with the same name, the behavior is undefined. Each invocation of
the va_start and va_copy macros shall be matched by a corresponding invocation of the va_end
macro in the same function.

7.16.2.2 The va_arg macro
Synopsis

1 #include <stdarg.h>
type va_arg(va_list ap, type);

Description
2 The va_arg macro expands to an expression that has the specified type and the value of the next

argument in the call. The parameter ap shall have been initialized by the va_start or va_copy
macro (without an intervening invocation of the va_end macro for the same ap). Each invocation of
the va_arg macro modifies ap so that the values of successive arguments are returned in turn. The
behavior is undefined if there is no actual next argument. The parameter type shall be an object type
name. If type is not compatible with the type of the actual next argument (as promoted according to
the default argument promotions), the behavior is undefined, except for the following cases:

— both types are pointers to qualified or unqualified versions of compatible types;

— one type is compatible with a signed integer type, the other type is compatible with the
corresponding unsigned integer type, and the value is representable in both types;

— one type is pointer to qualified or unqualified void and the other is a pointer to a qualified or
unqualified character type;

293)A pointer to a va_list can be created and passed to another function, in which case the original function can make
further use of the original list after the other function returns.

§ 7.16.2.2 © ISO/IEC 202y — All rights reserved

Library — 293

ISO/IEC 9899:202y (en) — n3299 working draft

— or, the type of the next argument is nullptr_t and type is a pointer type that has the same
representation and alignment requirements as a pointer to a character type.294)

Returns
3 The first invocation of the va_arg macro after that of the va_start macro returns the value of the

first argument without an explicit parameter, which matches the position of the ... in the parameter
list. Successive invocations return the values of the remaining arguments in succession.

7.16.2.3 The va_copy macro
Synopsis

1 #include <stdarg.h>
void va_copy(va_list dest, va_list src);

Description
2 The va_copy macro initializes dest as a copy of src, as if the va_start macro had been applied

to dest followed by the same sequence of uses of the va_arg macro as had previously been used
to reach the present state of src. Neither the va_copy nor va_start macro shall be invoked to
reinitialize dest without an intervening invocation of the va_end macro for the same dest.

Returns
3 The va_copy macro returns no value.

7.16.2.4 The va_end macro
Synopsis

1 #include <stdarg.h>
void va_end(va_list ap);

Description
2 The va_end macro facilitates a normal return from the function whose variable argument list was

referred to by the expansion of the va_start macro, or the function containing the expansion of
the va_copy macro, that initialized the va_list ap. The va_end macro may modify ap so that it
is no longer usable (without being reinitialized by the va_start or va_copy macro). If there is no
corresponding invocation of the va_start or va_copy macro, or if the va_end macro is not invoked
before the return, the behavior is undefined.

Returns
3 The va_end macro returns no value.

7.16.2.5 The va_start macro
Synopsis

1 #include <stdarg.h>
void va_start(va_list ap, ...);

Description
2 The va_start macro shall be invoked before any access to the unnamed arguments.

3 The va_start macro initializes ap for subsequent use by the va_arg and va_end macros. Neither the
va_start nor va_copy macro shall be invoked to reinitialize ap without an intervening invocation
of the va_end macro for the same ap.

4 Only the first argument passed to va_start is evaluated. If any additional arguments expand to
include unbalanced parentheses, or a preprocessing token that does not convert to a token, the
behavior is undefined.
294)Such types are in particular pointers to qualified or unqualified versions of void.

© ISO/IEC 202y — All rights reserved

Library — 294

§ 7.16.2.5

ISO/IEC 9899:202y (en) — n3299 working draft

5 NOTE The macro allows additional arguments to be passed for va_start for compatibility with older versions
of the library only.

Returns
6 The va_start macro returns no value.

Recommended practice
7 Additional arguments beyond the first given to the va_start macro may be expanded and used

in unspecified contexts where they are unevaluated. For example, an implementation diagnoses
potentially erroneous input for an invocation of va_start such as:

#include <stdarg.h>

void miaou (...) {
va_list vl;
va_start(vl, 1, 3.0, "12", xd); // diagnostic encouraged
/* ... */
va_end(vl);

}

Simultaneously, va_start usage consistent with older revisions of this document should not pro-
duce a diagnostic:

#include <stdarg.h>

void neigh (int last_arg, ...) {
va_list vl;
va_start(vl, last_arg); // no diagnostic
/* ... */
va_end(vl);

}

8 EXAMPLE 1 The function f1 gathers into an array a list of arguments that are pointers to strings (but not more
than MAXARGS arguments), then passes the array as a single argument to function f2. The number of pointers is
specified by the first argument to f1.

#include <stdarg.h>
#define MAXARGS 31

void f1(int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1 is required to have visible the definition of the function or a declaration such as

void f1(int, ...);

9 EXAMPLE 2 The function f3 is similar, but saves the status of the variable argument list after the indicated
number of arguments; after f2 has been called once with the whole list, the trailing part of the list is gathered
again and passed to function f4.

§ 7.16.2.5 © ISO/IEC 202y — All rights reserved

Library — 295

ISO/IEC 9899:202y (en) — n3299 working draft

#include <stdarg.h>
#define MAXARGS 31

void f3(int n_ptrs, int f4_after, ...)
{

va_list ap, ap_save;
char *array[MAXARGS];
int ptr_no = 0;
if (n_ptrs > MAXARGS)

n_ptrs = MAXARGS;
va_start(ap);
while (ptr_no < n_ptrs) {

array[ptr_no++] = va_arg(ap, char *);
if (ptr_no == f4_after)

va_copy(ap_save, ap);
}
va_end(ap);
f2(n_ptrs, array);

// Now process the saved copy.

n_ptrs -= f4_after;
ptr_no = 0;
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap_save, char *);
va_end(ap_save);
f4(n_ptrs, array);

}

10 EXAMPLE 3 The function f5 is similar to f1, but instead of passing an explicit number of strings as the first
argument, the argument list is terminated with a null pointer.

#include <stdarg.h>

#define MAXARGS 31

void f5(...)
{

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;
va_start(ap);
while (ptr_no < MAXARGS)
{

char *ptr = va_arg(ap, char *);
if (!ptr)

break;
array[ptr_no++] = ptr;

}
va_end(ap);
f6(ptr_no, array);

}

Each call to f5 is required to have visible the definition of the function or a declaration such as

void f5(...);

and implicitly requires the last argument to be a null pointer.

© ISO/IEC 202y — All rights reserved

Library — 296

§ 7.16.2.5

ISO/IEC 9899:202y (en) — n3299 working draft

7.17 Atomics <stdatomic.h>
7.17.1 Introduction

1 The header <stdatomic.h> defines several macros and declares several types and functions for
performing atomic operations on data shared between threads.295)

2 Implementations that define the macro __STDC_NO_ATOMICS__ may not provide this header nor
support any of its facilities.

3 The macro

__STDC_VERSION_STDATOMIC_H__

is an integer constant expression with a value equivalent to 202311L.

4 The macros defined are the atomic lock-free macros

ATOMIC_BOOL_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
ATOMIC_CHAR8_T_LOCK_FREE
ATOMIC_CHAR16_T_LOCK_FREE
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_WCHAR_T_LOCK_FREE
ATOMIC_SHORT_LOCK_FREE
ATOMIC_INT_LOCK_FREE
ATOMIC_LONG_LOCK_FREE
ATOMIC_LLONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE

which expand to constant expressions suitable for use in conditional expression inclusion prepro-
cessing directives and which indicate the lock-free property of the corresponding atomic types (both
signed and unsigned); and

ATOMIC_FLAG_INIT

which expands to an initializer for an object of type atomic_flag.

5 The types include

memory_order

which is an enumerated type whose enumerators identify memory ordering constraints;

atomic_flag

which is a structure type representing a lock-free, primitive atomic flag; and several atomic analogs
of integer types.

6 In the following synopses:

— An A refers to an atomic type.

— A C refers to its corresponding non-atomic type.

— An M refers to the type of the other argument for arithmetic operations. For atomic integer
types, M is C. For atomic pointer types, M is ptrdiff_t.

— The functions not ending in _explicit have the same semantics as the corresponding
_explicit function with memory_order_seq_cst for the memory_order argument.

295)See "future library directions" (7.33.11).

§ 7.17.1 © ISO/IEC 202y — All rights reserved

Library — 297

ISO/IEC 9899:202y (en) — n3299 working draft

7 It is unspecified whether any generic function declared in <stdatomic.h> is a macro or an identifier
declared with external linkage. If a macro definition is suppressed to access an actual function,
or a program defines an external identifier with the name of a generic function, the behavior is
undefined.

8 NOTE Many operations are volatile-qualified. The "volatile as device register" semantics have not changed in
the standard. This qualification means that volatility is preserved when applying these operations to volatile
objects.

7.17.2 Initialization
7.17.2.1 General

1 An atomic object with automatic storage duration that is not initialized or such an object with
allocated storage duration initially has an indeterminate representation; equally, a non-atomic store
to any byte of the representation (either directly or, for example, by calls to memcpy or memset) makes
any atomic object have an indeterminate representation. Explicit or default initialization for atomic
objects with static or thread storage duration that do not have the type atomic_flag is guaranteed
to produce a valid state.296)

2 Concurrent access to an atomic object before it is set to a valid state, even via an atomic operation,
constitutes a data race. If a signal occurs other than as the result of calling the abort or raise
functions, the behavior is undefined if the signal handler reads or modifies an atomic object that has
an indeterminate representation.

3 EXAMPLE The following definition ensure valid states for guide and head regardless if these are found in file
scope or block scope. Thus any atomic operation that is performed on them after their initialization has been
met is well defined.

_Atomic int guide = 42;
static _Atomic(void*) head;

7.17.2.2 The atomic_init generic function
Synopsis

1 #include <stdatomic.h>
void atomic_init(volatile A *obj, C value);

Description
2 The atomic_init generic function initializes the atomic object pointed to by obj to the value value,

while also initializing any additional state that the implementation may need to carry for the atomic
object. If the object has no declared type, after the call the effective type is the atomic type A.

3 Although this function initializes an atomic object, it does not avoid data races; concurrent access to
the object being initialized, even via an atomic operation, constitutes a data race.

4 If a signal occurs other than as the result of calling the abort or raise functions, the behavior is
undefined if the signal handler calls the atomic_init generic function.

Returns
5 The atomic_init generic function returns no value.

6 EXAMPLE

atomic_int guide;
atomic_init(&guide, 42);

296)See "future library directions" (7.33.11).

© ISO/IEC 202y — All rights reserved

Library — 298

§ 7.17.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

7.17.3 Order and consistency
7.17.3.1 General

1 The enumerated type memory_order specifies the detailed regular (non-atomic) memory synchro-
nization operations as defined in 5.2.2.5 and may provide for operation ordering. Its enumeration
constants are as follows:297)

memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_acq_rel
memory_order_seq_cst

2 For memory_order_relaxed, no operation orders memory.

3 For memory_order_release, memory_order_acq_rel, and memory_order_seq_cst, a store opera-
tion performs a release operation on the affected memory location.

4 For memory_order_acquire, memory_order_acq_rel, and memory_order_seq_cst, a load opera-
tion performs an acquire operation on the affected memory location.

5 For memory_order_consume, a load operation performs a consume operation on the affected mem-
ory location.

6 There shall be a single total order S on all memory_order_seq_cst operations, consistent with the
"happens before" order and modification orders for all affected locations, such that each
memory_order_seq_cst operation B that loads a value from an atomic object M observes one of
the following values:

— the result of the last modification A of M that precedes B in S, if it exists, or

— if A exists, the result of some modification of M that is not memory_order_seq_cst and that
does not happen before A, or

— if A does not exist, the result of some modification of M that is not memory_order_seq_cst.

7 NOTE 1 Although it is not explicitly required that S include lock operations, it can always be extended to an
order that does include lock and unlock operations, since the ordering between those is already included in the
"happens before" ordering.

8 NOTE 2 Atomic operations specifying memory_order_relaxed are relaxed only with respect to memory
ordering. Implementations still guarantee that any given atomic access to a particular atomic object is indivisible
with respect to all other atomic accesses to that object.

9 For an atomic operation B that reads the value of an atomic object M , if there is a
memory_order_seq_cst fence X sequenced before B, then B observes either the last
memory_order_seq_cst modification of M preceding X in the total order S or a later mod-
ification of M in its modification order.

10 For atomic operations A and B on an atomic object M , where A modifies M and B takes its value, if
there is a memory_order_seq_cst fence X such that A is sequenced before X and B follows X in S,
then B observes either the effects of A or a later modification of M in its modification order.

11 For atomic modifications A and B of an atomic object M , B occurs later than A in the modification
order of M if:

— there is a memory_order_seq_cst fence X such that A is sequenced before X , and X precedes
B in S, or

— there is a memory_order_seq_cst fence Y such that Y is sequenced before B, and A precedes
Y in S, or

297)See "future library directions" (7.33.11).

§ 7.17.3.1 © ISO/IEC 202y — All rights reserved

Library — 299

ISO/IEC 9899:202y (en) — n3299 working draft

— there are memory_order_seq_cst fences X and Y such that A is sequenced before X , Y is
sequenced before B, and X precedes Y in S.

12 Atomic read-modify-write operations shall always read the last value (in the modification order)
stored before the write associated with the read-modify-write operation.

13 An atomic store shall only store a value that has been computed from constants and program input
values by a finite sequence of program evaluations, such that each evaluation observes the stored
values of the objects as computed by the last prior assignment in the sequence. The ordering of
evaluations in this sequence shall be such that

— If an evaluation B observes a value computed by A in a different thread, then B does not
happen before A.

— If an evaluation A is included in the sequence, then all evaluations that assign to the same
object and happen before A are also included.

14 NOTE 3 The second requirement disallows "out-of-thin-air", or "speculative" stores of atomics when relaxed
atomics are used. Since unordered operations are involved, evaluations can appear in this sequence out of
thread order. For example, with x and y initially zero,

// Thread 1:
r1 = atomic_load_explicit(&y, memory_order_relaxed);
atomic_store_explicit(&x, r1, memory_order_relaxed);

// Thread 2:
r2 = atomic_load_explicit(&x, memory_order_relaxed);
atomic_store_explicit(&y, 42, memory_order_relaxed);

is allowed to produce r1 == 42 && r2 == 42. The sequence of evaluations justifying this consists of:

atomic_store_explicit(&y, 42, memory_order_relaxed);
r1 = atomic_load_explicit(&y, memory_order_relaxed);
atomic_store_explicit(&x, r1, memory_order_relaxed);
r2 = atomic_load_explicit(&x, memory_order_relaxed);

On the other hand,

// Thread 1:
r1 = atomic_load_explicit(&y, memory_order_relaxed);
atomic_store_explicit(&x, r1, memory_order_relaxed);

// Thread 2:
r2 = atomic_load_explicit(&x, memory_order_relaxed);
atomic_store_explicit(&y, r2, memory_order_relaxed);

is not allowed to produce r1 == 42 && r2 == 42, since there is no sequence of evaluations that results in the
computation of 42. In the absence of "relaxed" operations and read-modify-write operations with weaker than
memory_order_acq_rel ordering, the second requirement has no impact.

Recommended practice
15 The requirements do not forbid r1 == 42 && r2 == 42 in the following example, with x and y

initially zero:

// Thread 1:
r1 = atomic_load_explicit(&x, memory_order_relaxed);
if (r1 == 42)

atomic_store_explicit(&y, r1, memory_order_relaxed);

// Thread 2:

© ISO/IEC 202y — All rights reserved

Library — 300

§ 7.17.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

r2 = atomic_load_explicit(&y, memory_order_relaxed);
if (r2 == 42)

atomic_store_explicit(&x, 42, memory_order_relaxed);

However, this is not useful behavior, and implementations should not allow it.

16 Implementations should make atomic stores visible to atomic loads within a reasonable amount of
time.

7.17.3.2 The kill_dependency macro
Synopsis

1 #include <stdatomic.h>
type kill_dependency(type y);

Description
2 The kill_dependency macro terminates a dependency chain; the argument does not carry a depen-

dency to the return value.

Returns
3 The kill_dependency macro returns the value of y.

7.17.4 Fences
7.17.4.1 General

1 This subclause introduces synchronization primitives called fences. Fences can have acquire seman-
tics, release semantics, or both. A fence with acquire semantics is called an acquire fence; a fence with
release semantics is called a release fence.

2 A release fence A synchronizes with an acquire fence B if there exist atomic operations X and Y ,
both operating on some atomic object M , such that A is sequenced before X , X modifies M , Y is
sequenced before B, and Y reads the value written by X or a value written by any side effect in the
hypothetical release sequence X would head if it were a release operation.

3 A release fence A synchronizes with an atomic operation B that performs an acquire operation on an
atomic object M if there exists an atomic operation X such that A is sequenced before X , X modifies
M , and B reads the value written by X or a value written by any side effect in the hypothetical
release sequence X would head if it were a release operation.

4 An atomic operation A that is a release operation on an atomic object M synchronizes with an
acquire fence B if there exists some atomic operation X on M such that X is sequenced before B
and reads the value written by A or a value written by any side effect in the release sequence headed
by A.

7.17.4.2 The atomic_thread_fence function
Synopsis

1 #include <stdatomic.h>
void atomic_thread_fence(memory_order order);

Description
2 Depending on the value of order, this operation:

— has no effects, if order == memory_order_relaxed;

— is an acquire fence, if order == memory_order_acquire or
order == memory_order_consume;

— is a release fence, if order == memory_order_release;

— is both an acquire fence and a release fence, if order == memory_order_acq_rel;

§ 7.17.4.2 © ISO/IEC 202y — All rights reserved

Library — 301

ISO/IEC 9899:202y (en) — n3299 working draft

— is a sequentially consistent acquire and release fence, if order == memory_order_seq_cst.

Returns
3 The atomic_thread_fence function returns no value.

7.17.4.3 The atomic_signal_fence function
Synopsis

1 #include <stdatomic.h>
void atomic_signal_fence(memory_order order);

Description
2 Equivalent to atomic_thread_fence(order), except that the resulting ordering constraints are

established only between a thread and a signal handler executed in the same thread.

3 NOTE 1 The atomic_signal_fence function can be used to specify the order in which actions performed by
the thread become visible to the signal handler.

4 NOTE 2 Compiler optimizations and reorderings of loads and stores are inhibited in the same way as with
atomic_thread_fence, but the hardware fence instructions that atomic_thread_fence would have inserted
are not emitted.

Returns
5 The atomic_signal_fence function returns no value.

7.17.5 Lock-free property
7.17.5.1 General

1 The atomic lock-free macros indicate the lock-free property of integer and address atomic types. A
value of 0 indicates that the type is never lock-free; a value of 1 indicates that the type is sometimes
lock-free; a value of 2 indicates that the type is always lock-free.

Recommended practice
2 Operations that are lock-free should also be address-free. That is, atomic operations on the same

memory location via two different addresses will communicate atomically. The implementation
should not depend on any per-process state. This restriction enables communication via memory
mapped into a process more than once and memory shared between two processes.

7.17.5.2 The atomic_is_lock_free generic function
Synopsis

1 #include <stdatomic.h>
bool atomic_is_lock_free(const volatile A *obj);

Description
2 The atomic_is_lock_free generic function indicates whether atomic operations on objects of the

type pointed to by obj are lock-free.

Returns
3 The atomic_is_lock_free generic function returns nonzero (true) if and only if atomic operations

on objects of the type pointed to by the argument are lock-free. In any given program execution, the
result of the lock-free query shall be consistent for all pointers of the same type.298)

298)obj can be a null pointer.

© ISO/IEC 202y — All rights reserved

Library — 302

§ 7.17.5.2

ISO/IEC 9899:202y (en) — n3299 working draft

7.17.6 Atomic integer types
1 For each line in Table 7.6,299) the atomic type name is declared as a type that has the same represen-

tation and alignment requirements as the corresponding direct type.300)

Table 7.6 — Type name equivalency

Atomic type name Direct type
atomic_bool _Atomic bool
atomic_char _Atomic char
atomic_schar _Atomic signed char
atomic_uchar _Atomic unsigned char
atomic_short _Atomic short
atomic_ushort _Atomic unsigned short
atomic_int _Atomic int
atomic_uint _Atomic unsigned int
atomic_long _Atomic long
atomic_ulong _Atomic unsigned long
atomic_llong _Atomic long long
atomic_ullong _Atomic unsigned long long
atomic_char8_t _Atomic char8_t
atomic_char16_t _Atomic char16_t
atomic_char32_t _Atomic char32_t
atomic_wchar_t _Atomic wchar_t
atomic_int_least8_t _Atomic int_least8_t
atomic_uint_least8_t _Atomic uint_least8_t
atomic_int_least16_t _Atomic int_least16_t
atomic_uint_least16_t _Atomic uint_least16_t
atomic_int_least32_t _Atomic int_least32_t
atomic_uint_least32_t _Atomic uint_least32_t
atomic_int_least64_t _Atomic int_least64_t
atomic_uint_least64_t _Atomic uint_least64_t
atomic_int_fast8_t _Atomic int_fast8_t
atomic_uint_fast8_t _Atomic uint_fast8_t
atomic_int_fast16_t _Atomic int_fast16_t
atomic_uint_fast16_t _Atomic uint_fast16_t
atomic_int_fast32_t _Atomic int_fast32_t
atomic_uint_fast32_t _Atomic uint_fast32_t
atomic_int_fast64_t _Atomic int_fast64_t
atomic_uint_fast64_t _Atomic uint_fast64_t
atomic_intptr_t _Atomic intptr_t
atomic_uintptr_t _Atomic uintptr_t
atomic_size_t _Atomic size_t
atomic_ptrdiff_t _Atomic ptrdiff_t
atomic_intmax_t _Atomic intmax_t
atomic_uintmax_t _Atomic uintmax_t

2 Conversions to atomic_bool behave the same as conversions to bool.

Recommended practice
3 The representation of an atomic integer type is not required to have the same size as the correspond-

ing regular type but it should have the same size whenever possible, as it eases effort required to
port existing code.

299)See "future library directions" (7.33.11).
300)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.

§ 7.17.6 © ISO/IEC 202y — All rights reserved

Library — 303

ISO/IEC 9899:202y (en) — n3299 working draft

7.17.7 Operations on atomic types
7.17.7.1 General

1 There are only a few kinds of operations on atomic types, though there are many instances of those
kinds. This subclause specifies each general kind.

7.17.7.2 The atomic_store generic functions
Synopsis

1 #include <stdatomic.h>
void atomic_store(volatile A *object, C desired);
void atomic_store_explicit(volatile A *object, C desired, memory_order order);

Description
2 The order argument shall not be memory_order_acquire, memory_order_consume, nor

memory_order_acq_rel. Atomically replace the value pointed to by object with the value of
desired. Memory is affected according to the value of order.

Returns
3 The atomic_store generic functions return no value.

7.17.7.3 The atomic_load generic functions
Synopsis

1 #include <stdatomic.h>
C atomic_load(const volatile A *object);
C atomic_load_explicit(const volatile A *object, memory_order order);

Description
2 The order argument shall not be memory_order_release nor memory_order_acq_rel. Memory is

affected according to the value of order.

Returns
3 Atomically returns the value pointed to by object.

7.17.7.4 The atomic_exchange generic functions
Synopsis

1 #include <stdatomic.h>
C atomic_exchange(volatile A *object, C desired);
C atomic_exchange_explicit(volatile A *object, C desired, memory_order order);

Description
2 Atomically replace the value pointed to by object with desired. Memory is affected according to

the value of order. These operations are read-modify-write operations (5.2.2.5).

Returns
3 Atomically returns the value pointed to by object immediately before the effects.

7.17.7.5 The atomic_compare_exchange generic functions
Synopsis

1 #include <stdatomic.h>
bool atomic_compare_exchange_strong(volatile A *object, C *expected, C desired);
bool atomic_compare_exchange_strong_explicit(volatile A *object, C *expected,

C desired, memory_order success, memory_order failure);
bool atomic_compare_exchange_weak(volatile A *object, C *expected, C desired);
bool atomic_compare_exchange_weak_explicit(volatile A *object, C *expected,

C desired, memory_order success, memory_order failure);

© ISO/IEC 202y — All rights reserved

Library — 304

§ 7.17.7.5

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The failure argument shall not be memory_order_release nor memory_order_acq_rel. The

failure argument shall be no stronger than the success argument.

3 Atomically, compares the contents of the memory pointed to by object for equality with that
pointed to by expected, and if true, replaces the contents of the memory pointed to by object
with desired, and if false, updates the contents of the memory pointed to by expected with that
pointed to by object. Further, if the comparison is true, memory is affected according to the value
of success, and if the comparison is false, memory is affected according to the value of failure.
These operations are atomic read-modify-write operations (5.2.2.5).

4 NOTE 1 For example, the effect of atomic_compare_exchange_strong is

if (memcmp(object, expected, sizeof(*object)) == 0)
memcpy(object, &desired, sizeof(*object));

else
memcpy(expected, object, sizeof(*object));

5 A weak compare-and-exchange operation can fail spuriously. That is, even when the contents
of memory referred to by expected and object are equal, it can return zero and store back to
expected the same memory contents that were originally there.

6 NOTE 2 This spurious failure enables implementation of compare-and-exchange on a broader class of machines;
e.g. load-locked store-conditional machines.

§ 7.17.7.5 © ISO/IEC 202y — All rights reserved

Library — 305

ISO/IEC 9899:202y (en) — n3299 working draft

7 EXAMPLE A consequence of spurious failure is that nearly all uses of weak compare-and-exchange will be in
a loop.

exp = atomic_load(&cur);
do {

des = function(exp);
} while (!atomic_compare_exchange_weak(&cur, &exp, des));

When a compare-and-exchange is in a loop, the weak version will yield better performance on some platforms.
When a weak compare-and-exchange would require a loop and a strong one would not, the strong one is
preferable.

Returns
8 The result of the comparison.

7.17.7.6 The atomic_fetch and modify generic functions
1 The following operations perform arithmetic and bitwise computations. All these operations are

applicable to an object of any atomic integer type other than _Atomic bool, atomic_bool, or the
atomic version of an enumeration with underlying type bool. The key, operator, and computation
correspondence is:

key op computation
add + addition
sub - subtraction
or | bitwise inclusive or
xor ^ bitwise exclusive or
and & bitwise and

Synopsis

2 #include <stdatomic.h>
C atomic_fetch_key(volatile A *object, M operand);
C atomic_fetch_key_explicit(volatile A *object, M operand, memory_order order);

Description
3 Atomically replaces the value pointed to by object with the result of the computation applied to

the value pointed to by object and the given operand. Memory is affected according to the value
of order. These operations are atomic read-modify-write operations (5.2.2.5). For signed integer
types, arithmetic performs silent wraparound on integer overflow; there are no undefined results.
For address types, the result may be an undefined address, but the operations otherwise have no
undefined behavior.

Returns
4 Atomically, the value pointed to by object immediately before the effects.

7.17.8 Atomic flag type and operations
7.17.8.1 General

1 The atomic_flag type provides the classic test-and-set functionality. It has two states, set and clear.

2 Operations on an object of type atomic_flag shall be lock free.

3 NOTE Hence, as per 7.17.5, the operations should also be address-free. No other type requires lock-free
operations, so the atomic_flag type is the minimum hardware-implemented type needed to conform to this
document. The remaining types can be emulated with atomic_flag, though with less than ideal properties.

4 The macro ATOMIC_FLAG_INIT can be used to initialize an atomic_flag to the clear state. An
atomic_flag that is not explicitly initialized with ATOMIC_FLAG_INIT has initially an indeterminate
representation.

© ISO/IEC 202y — All rights reserved

Library — 306

§ 7.17.8.1

ISO/IEC 9899:202y (en) — n3299 working draft

5 EXAMPLE

atomic_flag guard = ATOMIC_FLAG_INIT;

7.17.8.2 The atomic_flag_test_and_set functions
Synopsis

1 #include <stdatomic.h>
bool atomic_flag_test_and_set(volatile atomic_flag *object);
bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object,

memory_order order);

Description
2 Atomically places the atomic flag pointed to by object in the set state and returns the value

corresponding to the immediately preceding state. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (5.2.2.5).

Returns
3 The atomic_flag_test_and_set functions return the value that corresponds to the state of the

atomic flag immediately before the effects. The return value true corresponds to the set state and the
return value false corresponds to the clear state.

7.17.8.3 The atomic_flag_clear functions
Synopsis

1 #include <stdatomic.h>
void atomic_flag_clear(volatile atomic_flag *object);
void atomic_flag_clear_explicit(volatile atomic_flag *object,

memory_order order);

Description
2 The order argument shall not be memory_order_acquire nor memory_order_acq_rel. Atomically

places the atomic flag pointed to by object into the clear state. Memory is affected according to the
value of order.

Returns
3 The atomic_flag_clear functions return no value.

§ 7.17.8.3 © ISO/IEC 202y — All rights reserved

Library — 307

ISO/IEC 9899:202y (en) — n3299 working draft

7.18 Bit and byte utilities <stdbit.h>
7.18.1 General

1 The header <stdbit.h> defines the following macros, types, and functions, to work with the byte
and bit representation of many types, typically integer types. This header makes available the
size_t type name (7.21) and any uintN_t, intN_t, uint_leastN_t, or int_leastN_t type names
defined by the implementation (7.22).

2 The macro

__STDC_VERSION_STDBIT_H__

is an integer constant expression with a value equivalent to 202311L.

3 The most significant index is the 0-based index counting from the most significant bit, 0, to the least
significant bit, w − 1, where w is the width of the type that is having its most significant index
computed.

4 The least significant index is the 0-based index counting from the least significant bit, 0, to the most
significant bit, w − 1, where w is the width of the type that is having its least significant index
computed.

5 It is unspecified whether any generic function declared in <stdbit.h> is a macro or an identifier
declared with external linkage. If a macro definition is suppressed to access an actual function,
or a program defines an external identifier with the name of a generic function, the behavior is
unspecified.

7.18.2 Endian
1 Two common methods of byte ordering in multi-byte scalar types are little-endian and big-endian.

Little-endian is a format for storage or transmission of binary data in which the least significant
byte is placed first, with the rest in ascending order. Or, that the least significant byte is stored at
the smallest memory address. Big-endian is a format for storage or transmission of binary data in
which the most significant byte is placed first, with the rest in descending order. Or, that the most
significant byte is stored at the smallest memory address. Other byte orderings are also possible.

2 The macros are:

__STDC_ENDIAN_LITTLE__

which represents a method of byte order storage in which the least significant byte is placed first
and the rest are in ascending order, and is an integer constant expression;

__STDC_ENDIAN_BIG__

which represents a method of byte order storage in which the most significant byte is placed first
and the rest are in descending order, and is an integer constant expression;

__STDC_ENDIAN_NATIVE__ /* see following description */

which represents the method of byte order storage for the execution environment and is an integer
constant expression. __STDC_ENDIAN_NATIVE__ describes the endianness of the execution environ-
ment with respect to bit-precise integer types, standard integer types, and extended integer types
which do not have padding bits.

3 __STDC_ENDIAN_NATIVE__ shall expand to an integer constant expression whose value is
equivalent to the value of __STDC_ENDIAN_LITTLE__ if the execution environment is little-
endian. Otherwise, __STDC_ENDIAN_NATIVE__ shall expand to an integer constant expression
whose value is equivalent to the value of __STDC_ENDIAN_BIG__ if the execution environment
is big-endian. If the execution environment is neither little-endian nor big-endian, it then
has some other implementation-defined byte order and the macro __STDC_ENDIAN_NATIVE__

shall expand to an integer constant expression whose value is different from the values of

© ISO/IEC 202y — All rights reserved

Library — 308

§ 7.18.2

ISO/IEC 9899:202y (en) — n3299 working draft

__STDC_ENDIAN_LITTLE__ and __STDC_ENDIAN_BIG__. The values of the integer constant
expressions for __STDC_ENDIAN_LITTLE__ and __STDC_ENDIAN_BIG__ are not equal.

7.18.3 Count Leading Zeros
Synopsis

1 #include <stdbit.h>
unsigned int stdc_leading_zeros_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_leading_zeros_us(unsigned short value) [[unsequenced]];
unsigned int stdc_leading_zeros_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_leading_zeros_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_leading_zeros_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_leading_zeros(generic_value_type value) [[unsequenced]];

Returns
2 Returns the number of consecutive 0 bits in value, starting from the most significant bit.

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as it is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

7.18.4 Count Leading Ones
Synopsis

1 #include <stdbit.h>
unsigned int stdc_leading_ones_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_leading_ones_us(unsigned short value) [[unsequenced]];
unsigned int stdc_leading_ones_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_leading_ones_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_leading_ones_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_leading_ones(generic_value_type value) [[unsequenced]];

Returns
2 Returns the number of consecutive 1 bits in value, starting from the most significant bit.

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as it is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

7.18.5 Count Trailing Zeros

§ 7.18.5 © ISO/IEC 202y — All rights reserved

Library — 309

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <stdbit.h>
unsigned int stdc_trailing_zeros_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_trailing_zeros_us(unsigned short value) [[unsequenced]];
unsigned int stdc_trailing_zeros_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_trailing_zeros_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_trailing_zeros_ull(unsigned long long int value) [[unsequenced]];
generic_return_type
stdc_trailing_zeros(generic_value_type value) [[unsequenced]];

Returns
2 Returns the number of consecutive 0 bits in value, starting from the least significant bit.

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as it is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

7.18.6 Count Trailing Ones
Synopsis

1 #include <stdbit.h>
unsigned int stdc_trailing_ones_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_trailing_ones_us(unsigned short value) [[unsequenced]];
unsigned int stdc_trailing_ones_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_trailing_ones_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_trailing_ones_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_trailing_ones(generic_value_type value) [[unsequenced]];

Returns
2 Returns the number of consecutive 1 bits in value, starting from the least significant bit.

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as it is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

7.18.7 First Leading Zero

© ISO/IEC 202y — All rights reserved

Library — 310

§ 7.18.7

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <stdbit.h>
unsigned int stdc_first_leading_zero_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_first_leading_zero_us(unsigned short value) [[unsequenced]];
unsigned int stdc_first_leading_zero_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_first_leading_zero_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_first_leading_zero_ull(unsigned long long int value) [[unsequenced]];
generic_return_type
stdc_first_leading_zero(generic_value_type value) [[unsequenced]];

Returns
2 Returns the most significant index of the first 0 bit in value, plus 1. If it is not found, this function

returns 0.

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as it is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

7.18.8 First Leading One
Synopsis

1 #include <stdbit.h>
unsigned int stdc_first_leading_one_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_first_leading_one_us(unsigned short value) [[unsequenced]];
unsigned int stdc_first_leading_one_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_first_leading_one_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_first_leading_one_ull(unsigned long long int value) [[unsequenced]];
generic_return_type
stdc_first_leading_one(generic_value_type value) [[unsequenced]];

Returns
2 Returns the most significant index of the first 1 bit in value, plus 1. If it is not found, this function

returns 0.

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as it is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

7.18.9 First Trailing Zero

§ 7.18.9 © ISO/IEC 202y — All rights reserved

Library — 311

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <stdbit.h>
unsigned int stdc_first_trailing_zero_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_first_trailing_zero_us(unsigned short value) [[unsequenced]];
unsigned int stdc_first_trailing_zero_ui(unsigned int value) [[unsequenced]];
unsigned int
stdc_first_trailing_zero_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_first_trailing_zero_ull(unsigned long long int value) [[unsequenced]];
generic_return_type
stdc_first_trailing_zero(generic_value_type value) [[unsequenced]];

Returns
2 Returns the least significant index of the first 0 bit in value, plus 1. If it is not found, this function

returns 0.

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as it is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

7.18.10 First Trailing One
Synopsis

1 #include <stdbit.h>
unsigned int stdc_first_trailing_one_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_first_trailing_one_us(unsigned short value) [[unsequenced]];
unsigned int stdc_first_trailing_one_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_first_trailing_one_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_first_trailing_one_ull(unsigned long long int value) [[unsequenced]];
generic_return_type
stdc_first_trailing_one(generic_value_type value) [[unsequenced]];

Returns
2 Returns the least significant index of the first 1 bit in value, plus 1. If it is not found, this function

returns 0.

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as it is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

© ISO/IEC 202y — All rights reserved

Library — 312

§ 7.18.10

ISO/IEC 9899:202y (en) — n3299 working draft

7.18.11 Count Zeros
Synopsis

1 #include <stdbit.h>
unsigned int stdc_count_zeros_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_count_zeros_us(unsigned short value) [[unsequenced]];
unsigned int stdc_count_zeros_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_count_zeros_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_count_zeros_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_count_zeros(generic_value_type value) [[unsequenced]];

Returns
2 Returns the total number of 0 bits within the given value.

3 The type-generic function (marked by its generic_value_type argument) returns the previously de-
scribed result for a given input value so long as the generic_value_type is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

7.18.12 Count Ones
Synopsis

1 #include <stdbit.h>
unsigned int stdc_count_ones_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_count_ones_us(unsigned short value) [[unsequenced]];
unsigned int stdc_count_ones_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_count_ones_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_count_ones_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_count_ones(generic_value_type value) [[unsequenced]];

Returns
2 Returns the total number of 1 bits within the given value.

The type-generic function (marked by its generic_value_type argument) returns the previously de-
scribed result for a given input value so long as the generic_value_type is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

7.18.13 Single-bit Check

§ 7.18.13 © ISO/IEC 202y — All rights reserved

Library — 313

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <stdbit.h>
bool stdc_has_single_bit_uc(unsigned char value) [[unsequenced]];
bool stdc_has_single_bit_us(unsigned short value) [[unsequenced]];
bool stdc_has_single_bit_ui(unsigned int value) [[unsequenced]];
bool stdc_has_single_bit_ul(unsigned long int value) [[unsequenced]];
bool stdc_has_single_bit_ull(unsigned long long int value) [[unsequenced]];
bool stdc_has_single_bit(generic_value_type value) [[unsequenced]];

Returns
2 The stdc_has_single_bit functions return true if and only if there is a single 1 bit in value.

The type-generic function (marked by its generic_value_type argument) returns the previously de-
scribed result for a given input value so long as the generic_value_type is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

7.18.14 Bit Width
Synopsis

1 #include <stdbit.h>
unsigned int stdc_bit_width_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_bit_width_us(unsigned short value) [[unsequenced]];
unsigned int stdc_bit_width_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_bit_width_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_bit_width_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_bit_width(generic_value_type value) [[unsequenced]];

Description
2 The stdc_bit_width functions compute the smallest number of bits needed to store value.

Returns
3 The stdc_bit_width functions return 0 if value is 0. Otherwise, they return 1 + ⌊log2(value)⌋.

The type-generic function (marked by its generic_value_type argument) returns the previously de-
scribed result for a given input value so long as the generic_value_type is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

The generic_return_type type shall be a suitable large unsigned integer type capable of representing
the computed result.

7.18.15 Bit Floor

© ISO/IEC 202y — All rights reserved

Library — 314

§ 7.18.15

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <stdbit.h>
unsigned char stdc_bit_floor_uc(unsigned char value) [[unsequenced]];
unsigned short stdc_bit_floor_us(unsigned short value) [[unsequenced]];
unsigned int stdc_bit_floor_ui(unsigned int value) [[unsequenced]];
unsigned long int stdc_bit_floor_ul(unsigned long int value) [[unsequenced]];
unsigned long long int
stdc_bit_floor_ull(unsigned long long int value) [[unsequenced]];
generic_value_type stdc_bit_floor(generic_value_type value) [[unsequenced]];

Description
2 The stdc_bit_floor functions compute the largest integral power of 2 that is not greater than

value.

Returns
3 The stdc_bit_floor functions return 0 if value is 0. Otherwise, they return the largest integral

power of 2 that is not greater than value.

The type-generic function (marked by its generic_value_type argument) returns the previously de-
scribed result for a given input value so long as the generic_value_type is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

7.18.16 Bit Ceiling
Synopsis

1 #include <stdbit.h>
unsigned char stdc_bit_ceil_uc(unsigned char value) [[unsequenced]];
unsigned short stdc_bit_ceil_us(unsigned short value) [[unsequenced]];
unsigned int stdc_bit_ceil_ui(unsigned int value) [[unsequenced]];
unsigned long int stdc_bit_ceil_ul(unsigned long int value) [[unsequenced]];
unsigned long long int
stdc_bit_ceil_ull(unsigned long long int value) [[unsequenced]];
generic_value_type stdc_bit_ceil(generic_value_type value) [[unsequenced]];

Description
2 The stdc_bit_ceil functions compute the smallest integral power of 2 that is not less than value.

If the computation does not fit in the given return type, they return 0.

Returns
3 The stdc_bit_ceil functions return the smallest integral power of 2 that is not less than value or

0 if such a value is not representable in the return type.

The type-generic function (marked by its generic_value_type argument) returns the previously de-
scribed result for a given input value so long as the generic_value_type is a:

— standard unsigned integer type, excluding bool;

— extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer
type, excluding bool.

§ 7.18.16 © ISO/IEC 202y — All rights reserved

Library — 315

ISO/IEC 9899:202y (en) — n3299 working draft

7.19 Boolean type and values <stdbool.h>
1 The header <stdbool.h> provides the obsolescent macro __bool_true_false_are_definedwhich

expands to the integer constant 1.

© ISO/IEC 202y — All rights reserved

Library — 316

§ 7.19

ISO/IEC 9899:202y (en) — n3299 working draft

7.20 Checked Integer Arithmetic <stdckdint.h>
7.20.1 General

1 The header <stdckdint.h> defines several macros for performing checked integer arithmetic.

2 The macro

__STDC_VERSION_STDCKDINT_H__

is an integer constant expression with a value equivalent to 202311L.

7.20.2 Checked Integer Operation Type-generic Macros
Synopsis

1 #include <stdckdint.h>
bool ckd_add(type1 *result, type2 a, type3 b);
bool ckd_sub(type1 *result, type2 a, type3 b);
bool ckd_mul(type1 *result, type2 a, type3 b);

Description
2 These type-generic macros perform addition, subtraction, or multiplication of the mathematical

values of a and b, storing the result of the operation in *result, (that is, *result is assigned the
result of computing a + b, a - b, or a * b). Each operation is performed as if both operands were
represented in a signed integer type with infinite range, and the result was then converted from this
integer type to type1.

3 Both type2 and type3 shall be any integer type other than "plain" char, bool, a bit-precise integer
type, or an enumerated type, and they can be the same. *result shall be a modifiable lvalue of any
integer type other than "plain" char, bool, a bit-precise integer type, or an enumerated type.

Recommended practice
4 It is recommended to produce a diagnostic message if type2 or type3 are not suitable integer types, or

if *result is not a modifiable lvalue of a suitable integer type.

Returns
5 If these type-generic macros return false, the value assigned to *result correctly represents the

mathematical result of the operation. Otherwise, these type-generic macros return true. In this case,
the value assigned to *result is the mathematical result of the operation wrapped around to the
width of *result.

6 EXAMPLE If a and b are values of type signed int, and result is a signed long, then

ckd_sub(&result, a, b);

indicates if a - b can be expressed as a signed long. If signed long has a greater width than signed int,
this is the case and this macro invocation returns false.

§ 7.20.2 © ISO/IEC 202y — All rights reserved

Library — 317

ISO/IEC 9899:202y (en) — n3299 working draft

7.21 Common definitions <stddef.h>
7.21.1 General

1 The header <stddef.h> defines the following macros and declares the following types. Some are
also defined in other headers, as noted in their respective subclauses.

2 The macro

__STDC_VERSION_STDDEF_H__

is an integer constant expression with a value equivalent to 202311L.

3 The types are

ptrdiff_t

which is the signed integer type of the result of subtracting two pointers;

size_t

which is the unsigned integer type of the result of the sizeof operator;

max_align_t

which is an object type whose alignment is the greatest fundamental alignment;

wchar_t

which is an integer type whose range of values can represent distinct codes for all members of the
largest extended character set specified among the supported locales; the null character shall have
the code value zero. Each member of the basic character set shall have a code value equal to its
value when used as the lone character in an integer character constant if an implementation does
not define __STDC_MB_MIGHT_NEQ_WC__; and,

nullptr_t

which is the type of the nullptr predefined constant, see the subsequent description in the following
subclauses.

4 The macros are

NULL

which expands to an implementation-defined null pointer constant;

unreachable()

which expands to a void expression whose behavior is undefined if it is reached during execution;
and

offsetof(type, member-designator)

which expands to an integer constant expression that has type size_t, the value of which is the
offset in bytes, to the subobject (designated by member-designator), from the beginning of any object
of type type. The type and member designator shall be such that given

static type t;

© ISO/IEC 202y — All rights reserved

Library — 318

§ 7.21.1

ISO/IEC 9899:202y (en) — n3299 working draft

then the expression &(t. member-designator) evaluates to an address constant. If the specified type
name contains a comma not between matching parentheses or if the specified member is a bit-field,
the behavior is undefined.

Recommended practice
5 The types used for size_t and ptrdiff_t should not have an integer conversion rank greater than

that of signed long int unless the implementation supports objects large enough to make this
necessary.

7.21.2 The unreachable macro
Synopsis

1 #include <stddef.h>
void unreachable(void);

Description
2 An invocation of the function-like macro unreachable indicates that the particular flow control

that leads to the invocation will never be taken; it receives no arguments and expands to a void
expression. The program execution shall not reach such an invocation.

Returns
3 If a macro invocation unreachable() is reached during execution, the behavior is undefined.

4 EXAMPLE 1 The following program assumes that each execution is provided with at least one command line
argument. The behavior of an execution with no arguments is undefined.

#include <stddef.h>
#include <stdio.h>

int main (int argc, char* argv[static argc + 1]) {
if (argc <= 2)

unreachable();
else

return printf("%s: we see %s", argv[0], argv[1]);

return puts("this should never be reached");
}

Here, the static array size expression and the annotation of the control flow with unreachable indicates
that the pointed-to parameter array argv will hold at least three elements, regardless of the circumstances.
A possible optimization is that the resulting executable never performs the comparison and unconditionally
executes a tail call to printf that never returns to the main function. In particular, the entire call and reference
to puts can be omitted from the executable. No diagnostic is expected.

Because argv and argc’s values are controlled by the implementation and cannot be deterministically accounted
for by the program, this program runs a high risk of engaging in completely undefined behavior.

5 EXAMPLE 2 The following code expresses the expectation that the argument to the function will be one
of the three enumerator values despite an enumeration type allowing other, non-enumerated values to be
passed. Some implementations can diagnose the lack of a return statement after the switch, but use of
the unreachable macro signals information to the implementation that this scenario should not be possible,
allowing for better diagnostic and optimization properties.

enum Colors { Red, Green, Blue };
int get_channel_index(enum Colors c) {

switch (c) {
case Red: return 0;
case Green: return 1;
case Blue: return 2;

}
unreachable();

§ 7.21.2 © ISO/IEC 202y — All rights reserved

Library — 319

ISO/IEC 9899:202y (en) — n3299 working draft

}

7.21.3 The nullptr_t type
Synopsis

1 #include <stddef.h>
typedef typeof_unqual(nullptr) nullptr_t;

Description
2 The nullptr_t type is the type of the nullptr predefined constant. It has only a very limited use

in contexts where this type is needed to distinguish nullptr from other expression types. It is an
unqualified complete scalar type that is different from all pointer or arithmetic types and is neither
an atomic or array type and has exactly one value, nullptr. Default or empty initialization of an
object of this type is equivalent to an initialization by nullptr.

3 The size and alignment of nullptr_t is the same as for a pointer to character type. An object
representation of the value nullptr is the same as the object representation of a null pointer value of
type void*. An lvalue conversion of an object of type nullptr_t with such an object representation
has the value nullptr; if the object representation is different, the behavior is undefined.301)

4 NOTE Because it is considered to be a scalar type, nullptr_t can appear in many context where (void*)0
would be valid, for example,

— as the operand of alignas, sizeof or typeof operators,

— as the operand of an implicit or explicit conversion to a pointer type,

— as the assignment expression in an assignment or initialization of an object of type nullptr_t,

— as an argument to a parameter of type nullptr_t or in a variable argument list,

— as a void expression,

— as the operand of an implicit or explicit conversion to bool,

— as an operand of a _Generic primary expression,

— as an operand of the !, &&, || or conditional operators, or

— as the controlling expression of an if or iteration statement.

301)Thus, during the whole program execution an object of type nullptr_t evaluates to the assumed value nullptr.

© ISO/IEC 202y — All rights reserved

Library — 320

§ 7.21.3

ISO/IEC 9899:202y (en) — n3299 working draft

7.22 Integer types <stdint.h>
7.22.1 General

1 The header <stdint.h> declares sets of integer types having specified widths, and defines corre-
sponding sets of macros.302) It also defines macros that specify limits of integer types corresponding
to types defined in other standard headers.

2 Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;

— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)

3 Corresponding macros specify limits of the declared types and construct suitable constants.

4 For each type described herein that the implementation provides,303) <stdint.h> shall declare that
typedef name and define the associated macros. Conversely, for each type described herein that
the implementation does not provide, <stdint.h> shall not declare that typedef name nor shall it
define the associated macros. An implementation shall provide those types described as "required",
but may not provide any of the others (described as "optional"). None of the types shall be defined
as a synonym for a bit-precise integer type.

5 The feature test macro __STDC_VERSION_STDINT_H__ expands to the token 202311L.

7.22.2 Integer types
7.22.2.1 General

1 When typedef names differing only in the absence or presence of the initial u are defined, they shall
denote corresponding signed and unsigned types as described in 6.2.5; an implementation providing
one of these corresponding types shall also provide the other.

2 In the following descriptions, the symbol N represents an unsigned decimal integer with no leading
zeros (e.g. 8 or 24, but not 04 or 048).

7.22.2.2 Exact-width integer types
1 The typedef name intN_t designates a signed integer type with width N and no padding bits. Thus,

int8_t denotes such a signed integer type with a width of exactly 8 bits.

2 The typedef name uintN_t designates an unsigned integer type with width N and no padding bits.
Thus, uint24_t denotes such an unsigned integer type with a width of exactly 24 bits.

3 If an implementation provides standard or extended integer types with a particular width and no
padding bits, it shall define the corresponding typedef names.

7.22.2.3 Minimum-width integer types
1 The typedef name int_leastN_t designates a signed integer type with a width of at least N, such

that no signed integer type with lesser size has at least the specified width. Thus, int_least32_t
denotes a signed integer type with a width of at least 32 bits.

2 The typedef name uint_leastN_t designates an unsigned integer type with a width of at least
N, such that no unsigned integer type with lesser size has at least the specified width. Thus,
uint_least16_t denotes an unsigned integer type with a width of at least 16 bits.

302)See "future library directions" (7.33.15).
303)Some of these types can denote implementation-defined extended integer types.

§ 7.22.2.3 © ISO/IEC 202y — All rights reserved

Library — 321

ISO/IEC 9899:202y (en) — n3299 working draft

3 If the typedef name intN_t is defined, int_leastN_t designates the same type. If the typedef
name uintN_t is defined, uint_leastN_t designates the same type.

4 The following types are required:

int_least8_t
int_least16_t
int_least32_t
int_least64_t

uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t

All other types of this form are optional.

7.22.2.4 Fastest minimum-width integer types

1 Each of the following types designates an integer type that is usually fastest304) to operate with
among all integer types that have at least the specified width.

2 The typedef name int_fastN_t designates the fastest signed integer type with a width of at least
N. The typedef name uint_fastN_t designates the fastest unsigned integer type with a width of at
least N.

3 The following types are required:

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t

uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t

All other types of this form are optional.

7.22.2.5 Integer types capable of holding object pointers
1 The following type designates a signed integer type, other than a bit-precise integer type, with the

property that any valid pointer to void can be converted to this type, then converted back to pointer
to void, and the result will compare equal to the original pointer:

intptr_t

The following type designates an unsigned integer type, other than a bit-precise integer type, with
the property that any valid pointer to void can be converted to this type, then converted back to
pointer to void, and the result will compare equal to the original pointer:

uintptr_t

These types are optional.

7.22.2.6 Greatest-width integer types
1 The following type designates a signed integer type, other than a bit-precise integer type, capable of

representing any value of any signed integer type with the possible exceptions of signed bit-precise
integer types and of signed extended integer types that are wider than long long and that are
referred by the type definition for an exact width integer type:

intmax_t

The following type designates the unsigned integer type that corresponds to intmax_t:305)

304)The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear grounds for
choosing one type over another, it will simply pick some integer type satisfying the signedness and width requirements.
305)Thus this type is capable of representing any value of any unsigned integer type with the possible exception of bit-precise

integer types and particular extended integer types that are wider than unsigned long long.

© ISO/IEC 202y — All rights reserved

Library — 322

§ 7.22.2.6

ISO/IEC 9899:202y (en) — n3299 working draft

uintmax_t

These types are required.

7.22.3 Widths of specified-width integer types
7.22.3.1 General

1 The following object-like macros specify the width of the types declared in <stdint.h>. Each macro
name corresponds to a similar type name in 7.22.2.

2 Each instance of any defined macro shall be replaced by a constant expression suitable for use in
#if preprocessing directives. Its implementation-defined value shall be equal to or greater than
the value given in the subsequent subclauses, except where stated to be exactly the given value.
An implementation shall define only the macros corresponding to those typedef names it actually
provides.306)

7.22.3.2 Width of exact-width integer types

1 INTN_WIDTH exactly N
UINTN_WIDTH exactly N

7.22.3.3 Width of minimum-width integer types

1 INT_LEASTN_WIDTH exactly UINT_LEASTN_WIDTH
UINT_LEASTN_WIDTH N

7.22.3.4 Width of fastest minimum-width integer types

1 INT_FASTN_WIDTH exactly UINT_FASTN_WIDTH
UINT_FASTN_WIDTH N

7.22.3.5 Width of integer types capable of holding object pointers

1 INTPTR_WIDTH exactly UINTPTR_WIDTH
UINTPTR_WIDTH 16

7.22.3.6 Width of greatest-width integer types

1 INTMAX_WIDTH exactly UINTMAX_WIDTH
UINTMAX_WIDTH 64

7.22.4 Width of other integer types
7.22.4.1 General

1 The following object-like macros specify the width of integer types corresponding to types defined
in other standard headers.

2 Each instance of these macros shall be replaced by a constant expression suitable for use in #if
preprocessing directives. Its implementation-defined value shall be equal to or greater than the
corresponding value given in the following subclauses. An implementation shall define only the
macros corresponding to those typedef names it actually provides.307)

7.22.4.2 Width of ptrdiff_t

1 PTRDIFF_WIDTH 16

306)The exact-width and pointer-holding integer types are optional.
307)A freestanding implementation is not expected to provide all these types.

§ 7.22.4.2 © ISO/IEC 202y — All rights reserved

Library — 323

ISO/IEC 9899:202y (en) — n3299 working draft

7.22.4.3 Width of sig_atomic_t

1 SIG_ATOMIC_WIDTH 8

7.22.4.4 Width of size_t

1 SIZE_WIDTH 16

7.22.4.5 Width of wchar_t

1 WCHAR_WIDTH 8

7.22.4.6 Width of wint_t

1 WINT_WIDTH 16

7.22.5 Macros for integer constants
7.22.5.1 General

1 The following function-like macros expand to integer constants suitable for initializing objects that
have integer types corresponding to types defined in <stdint.h>. Each macro name corresponds to
a similar type name in 7.22.2.3 or 7.22.2.6.

2 The argument in any instance of these macros shall be an unsuffixed integer constant (as defined in
6.4.5.2) with a value that does not exceed the limits for the corresponding type.

3 Each invocation of one of these macros shall expand to an integer constant expression. The type of
the expression shall have the same type as would an expression of the corresponding type converted
according to the integer promotions. The value of the expression shall be that of the argument. If
the value is in the range of the type intmax_t (for a signed type) or the type uintmax_t (for an
unsigned type), see 7.22.2.6, the expression is suitable for use in conditional expression inclusion
preprocessing directives.

7.22.5.2 Macros for minimum-width integer constants
1 The macro INTN_C(value) expands to an integer constant expression corresponding to the type

int_leastN_t. The macro UINTN_C(value) expands to an integer constant expression correspond-
ing to the type uint_leastN_t. For example, if uint_least64_t is a name for the type unsigned
long long int, then UINT64_C(0x123) can expand to the integer constant 0x123ULL.

7.22.5.3 Macros for greatest-width integer constants
1 The following macro expands to an integer constant expression having the value specified by its

argument and the type intmax_t:

INTMAX_C(value)

The following macro expands to an integer constant expression having the value specified by its
argument and the type uintmax_t:

UINTMAX_C(value)

7.22.6 Maximal and minimal values of integer types
1 For all integer types for which there is a macro with suffix _WIDTH holding the width, maximum

macros with suffix _MAX and, for all signed types, minimum macros with suffix _MIN are defined
as by 5.3.5.3. If it is unspecified if a type is signed or unsigned and the implementation has it as
an unsigned type, a minimum macro with extension _MIN and value 0 of the corresponding type,
converted according to the integer promotions, is defined.

© ISO/IEC 202y — All rights reserved

Library — 324

§ 7.22.6

ISO/IEC 9899:202y (en) — n3299 working draft

7.23 Input/output <stdio.h>
7.23.1 Introduction

1 The header <stdio.h> defines several macros, and declares three types and many functions for
performing input and output.

2 The macro

__STDC_VERSION_STDIO_H__

is an integer constant expression with a value equivalent to 202311L.

3 The types declared are size_t (described in 7.21);

FILE

which is an object type capable of recording all the information needed to control a stream, including
its file position indicator, a pointer to its associated buffer (if any), an error indicator that records
whether a read/write error has occurred, and an end-of-file indicator that records whether the end of
the file has been reached; and

fpos_t

which is a complete object type other than an array type capable of recording all the information
needed to specify uniquely every position within a file.

4 The macros are NULL (described in 7.21);

_IOFBF
_IOLBF
_IONBF

which expand to integer constant expressions with distinct values, suitable for use as the third
argument to the setvbuf function;

BUFSIZ

which expands to an integer constant expression that is the size of the buffer used by the setbuf
function;

EOF

which expands to an integer constant expression, with type int and a negative value, that is returned
by several functions to indicate end-of-file, that is, no more input from a stream;

FOPEN_MAX

which expands to an integer constant expression that is the minimum number of files that the
implementation guarantees can be open simultaneously;

FILENAME_MAX

which expands to an integer constant expression that is the size needed for an array of char large
enough to hold the longest file name string that the implementation guarantees can be opened or, if
the implementation imposes no practical limit on the length of file name strings, the recommended
size of an array intended to hold a file name string;308)

308)Of course, file name string contents are subject to other system-specific constraints; therefore all possible strings of length
FILENAME_MAX cannot be expected to be opened successfully.

§ 7.23.1 © ISO/IEC 202y — All rights reserved

Library — 325

ISO/IEC 9899:202y (en) — n3299 working draft

_PRINTF_NAN_LEN_MAX

which expands to an integer constant expression (suitable for use in conditional expression inclusion
preprocessing directives) that is the maximum number of characters output for any

[-]NAN(n-char-sequence)

sequence.309) If an implementation has no support for NaNs, it shall be 0. _PRINTF_NAN_LEN_MAX
shall be less than 64;

L_tmpnam

which expands to an integer constant expression that is the size needed for an array of char large
enough to hold a temporary file name string generated by the tmpnam function;

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integer constant expressions with distinct values, suitable for use as the third
argument to the fseek function;

TMP_MAX

which expands to an integer constant expression that is the minimum number of unique file names
that can be generated by the tmpnam function;

stderr
stdin
stdout

which are expressions of type "pointer to FILE" that point to the FILE objects associated, respectively,
with the standard error, input, and output streams.

5 The header <wchar.h> declares functions for wide character input and output. The wide character
input/output functions described in that subclause provide operations analogous to most of those
described here, except that the fundamental units internal to the program are wide characters. The
external representation (in the file) is a sequence of generalized multibyte characters, as described
further in 7.23.3.

6 The input/output functions are given the following collective terms:

— The wide character input functions — those functions described in 7.31 that perform input
into wide characters and wide strings: fgetwc, fgetws, getwc, getwchar, fwscanf, wscanf,
vfwscanf, and vwscanf.

— The wide character output functions — those functions described in 7.31 that perform output from
wide characters and wide strings: fputwc, fputws, putwc, putwchar, fwprintf, wprintf,
vfwprintf, and vwprintf.

— The wide character input/output functions — the union of the ungetwc function, the wide charac-
ter input functions, and the wide character output functions.

— The byte input/output functions — those functions described in this subclause that perform
input/output: fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, fwrite, getc, getchar,
printf, putc, putchar, puts, scanf, ungetc, vfprintf, vfscanf, vprintf, and vscanf.

Forward references: files (7.23.3), the fseek function (7.23.9.2), streams (7.23.2), the tmpnam function
(7.23.4.4), <wchar.h> (7.31).

309)If the implementation only uses the [-]NAN style, then _PRINTF_NAN_LEN_MAX would have the value 4.

© ISO/IEC 202y — All rights reserved

Library — 326

§ 7.23.1

ISO/IEC 9899:202y (en) — n3299 working draft

7.23.2 Streams
1 Input and output, whether to or from physical devices such as terminals and tape drives, or whether

to or from files supported on structured storage devices, are mapped into logical data streams, whose
properties are more uniform than their various inputs and outputs. Two forms of mapping are
supported, for text streams and for binary streams.310)

2 A text stream is an ordered sequence of characters composed into lines, each line consisting of zero or
more characters plus a terminating new-line character. Whether the last line requires a terminating
new-line character is implementation-defined. Characters can be added, altered, or deleted on input
and output to conform to differing conventions for representing text in the host environment. Thus,
there is not required to be a one-to-one correspondence between the characters in a stream and those
in the external representation. Data read in from a text stream will necessarily compare equal to the
data that were earlier written out to that stream only if:

— the data consist only of printing characters and the control characters horizontal tab and
new-line;

— no new-line character is immediately preceded by space characters;

— and, the last character is a new-line character.

Whether space characters that are written out immediately before a new-line character appear when
read in is implementation-defined.

3 A binary stream is an ordered sequence of characters that can transparently record internal data.
Data read in from a binary stream shall compare equal to the data that were earlier written out to
that stream, under the same implementation. Such a stream may, however, have an implementation-
defined number of null characters appended to the end of the stream.

4 Each stream has an orientation. After a stream is associated with an external file, but before any
operations are performed on it, the stream is unoriented. Once a wide character input/output
function has been applied to an unoriented stream, the stream becomes a wide-oriented stream.
Similarly, once a byte input/output function has been applied to an unoriented stream, the stream
becomes a byte-oriented stream. Only a call to the freopen function or the fwide function can
otherwise alter the orientation of a stream. (A successful call to freopen removes any orientation.)311)

5 Byte input/output functions shall not be applied to a wide-oriented stream and wide character
input/output functions shall not be applied to a byte-oriented stream. The remaining stream
operations do not affect, and are not affected by, a stream’s orientation, except for the following
additional restrictions:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both text and
binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that leaves the
file position indicator prior to the end-of-file, a wide character output function can overwrite a
partial multibyte character; any file contents beyond the byte(s) written can henceforth not
consist of valid multibyte characters.

6 Each wide-oriented stream has an associated mbstate_t object that stores the current parse state
of the stream. A successful call to fgetpos stores a representation of the value of this mbstate_t
object as part of the value of the fpos_t object. A later successful call to fsetpos using the same
stored fpos_t value restores the value of the associated mbstate_t object as well as the position
within the controlled stream.

7 Each stream has an associated lock that is used to prevent data races when multiple threads of
execution access a stream, and to restrict the interleaving of stream operations performed by multiple

310)An implementation does not need to distinguish between text streams and binary streams. In such an implementation,
there need be no new-line characters in a text stream nor any limit to the length of a line.
311)The three predefined streams stdin, stdout, and stderr are unoriented at program startup.

§ 7.23.2 © ISO/IEC 202y — All rights reserved

Library — 327

ISO/IEC 9899:202y (en) — n3299 working draft

threads. Only one thread can hold this lock at a time. The lock is reentrant: a single thread can hold
the lock multiple times at a given time.

8 All functions that read, write, position, or query the position of a stream lock the stream before
accessing it. They release the lock associated with the stream when the access is complete.

Environmental limits
9 An implementation shall support text files with lines containing at least 254 characters, including

the terminating new-line character. The value of the macro BUFSIZ shall be at least 256.

Forward references: the freopen function (7.23.5.4), the fwide function (7.31.3.5), mbstate_t
(7.31.1), the fgetpos function (7.23.9.1), the fsetpos function (7.23.9.3).

7.23.3 Files
1 A stream is associated with an external file (which can be a physical device) by opening a file, which

can involve creating a new file. Creating an existing file causes its former contents to be discarded, if
necessary. If a file can support positioning requests (such as a disk file, as opposed to a terminal),
then a file position indicator associated with the stream is positioned at the start (character number
zero) of the file, unless the file is opened with append mode in which case it is implementation-
defined whether the file position indicator is initially positioned at the beginning or the end of the
file. The file position indicator is maintained by subsequent reads, writes, and positioning requests,
to facilitate an orderly progression through the file.

2 Binary files are not truncated, except as defined in 7.23.5.3. Whether a write on a text stream causes
the associated file to be truncated beyond that point is implementation-defined.

3 When a stream is unbuffered, characters are intended to appear from the source or at the destination
as soon as possible. Otherwise characters may be accumulated and transmitted to or from the host
environment as a block. When a stream is fully buffered, characters are intended to be transmitted
to or from the host environment as a block when a buffer is filled. When a stream is line buffered,
characters are intended to be transmitted to or from the host environment as a block when a new-line
character is encountered. Furthermore, characters are intended to be transmitted as a block to the
host environment when a buffer is filled, when input is requested on an unbuffered stream, or when
input is requested on a line buffered stream that requires the transmission of characters from the
host environment. Support for these characteristics is implementation-defined, and can be affected
via the setbuf and setvbuf functions.

4 A file may be disassociated from a controlling stream by closing the file. Output streams are
flushed (any unwritten buffer contents are transmitted to the host environment) before the stream
is disassociated from the file. The lifetime of a FILE object ends when the associated file is closed
(including the standard text streams). Whether a file of zero length (on which no characters have
been written by an output stream) actually exists is implementation-defined.

5 The file may be subsequently reopened, by the same or another program execution, and its contents
reclaimed or modified (if it can be repositioned at its start). If the main function returns to its original
caller, or if the exit function is called, all open files are closed (hence all output streams are flushed)
before program termination. Other paths to program termination, such as calling the abort function,
are not required to close all files properly.

6 The address of the FILE object used to control a stream can be significant; a copy of a FILE object is
not required to serve in place of the original.

7 At program startup, three text streams are predefined and are already opened — standard input (for
reading conventional input), standard output (for writing conventional output), and standard error
(for writing diagnostic output). As initially opened, the standard error stream is not fully buffered;
the standard input and standard output streams are fully buffered if and only if the stream can be
determined not to refer to an interactive device.

8 Functions that open additional (nontemporary) files require a file name, which is a string. The
rules for composing valid file names are implementation-defined. Whether the same file can be
simultaneously open multiple times is also implementation-defined.

© ISO/IEC 202y — All rights reserved

Library — 328

§ 7.23.3

ISO/IEC 9899:202y (en) — n3299 working draft

9 Although both text and binary wide-oriented streams are conceptually sequences of wide characters,
the external file associated with a wide-oriented stream is a sequence of multibyte characters,
generalized as follows:

— Multibyte encodings within files can contain embedded null bytes (unlike multibyte encodings
valid for use internal to the program).

— A file is not required to begin nor end in the initial shift state.312)

10 Moreover, the encodings used for multibyte characters can differ among files. Both the nature and
choice of such encodings are implementation-defined.

11 The wide character input functions read multibyte characters from the stream and convert them
to wide characters as if they were read by successive calls to the fgetwc function. Each conversion
occurs as if by a call to the mbrtowc function, with the conversion state described by the stream’s
own mbstate_t object. The byte input functions read characters from the stream as if by successive
calls to the fgetc function.

12 The wide character output functions convert wide characters to multibyte characters and write them
to the stream as if they were written by successive calls to the fputwc function. Each conversion
occurs as if by a call to the wcrtomb function, with the conversion state described by the stream’s
own mbstate_t object. The byte output functions write characters to the stream as if by successive
calls to the fputc function.

13 In some cases, some of the byte input/output functions also perform conversions between multibyte
characters and wide characters. These conversions also occur as if by calls to the mbrtowc and
wcrtomb functions.

14 An encoding error occurs if the character sequence presented to the underlying mbrtowc function
does not form a valid (generalized) multibyte character, or if the code value passed to the underlying
wcrtomb does not correspond to a valid (generalized) multibyte character. The wide character
input/output functions and the byte input/output functions store the value of the macro EILSEQ in
errno if and only if an encoding error occurs.

Environmental limits
15 The value of FOPEN_MAX shall be at least eight, including the three standard text streams.

Forward references: the exit function (7.24.5.4), the fgetc function (7.23.7.1), the fopen function
(7.23.5.3), the fputc function (7.23.7.3), the setbuf function (7.23.5.5), the setvbuf function (7.23.5.6),
the fgetwc function (7.31.3.1), the fputwc function (7.31.3.3), conversion state (7.31.6), the mbrtowc
function (7.31.6.4.3), the wcrtomb function (7.31.6.4.4).

7.23.4 Operations on files
7.23.4.1 The remove function
Synopsis

1 #include <stdio.h>
int remove(const char *filename);

Description
2 The remove function causes the file whose name is the string pointed to by filename to be no longer

accessible by that name. A subsequent attempt to open that file using that name will fail, unless it is
created anew. If the file is open, the behavior of the remove function is implementation-defined.

Returns
3 The remove function returns zero if the operation succeeds, nonzero if it fails.

312)Setting the file position indicator to end-of-file, as with fseek(file, 0, SEEK_END), has undefined behavior for a
binary stream (because of possible trailing null characters) or for any stream with state-dependent encoding that does not
assuredly end in the initial shift state.

§ 7.23.4.1 © ISO/IEC 202y — All rights reserved

Library — 329

ISO/IEC 9899:202y (en) — n3299 working draft

7.23.4.2 The rename function
Synopsis

1 #include <stdio.h>
int rename(const char *old, const char *new);

Description
2 The rename function causes the file whose name is the string pointed to by old to be henceforth

known by the name given by the string pointed to by new. The file named old is no longer accessible
by that name. If a file named by the string pointed to by new exists prior to the call to the rename
function, the behavior is implementation-defined.

Returns

3 The rename function returns zero if the operation succeeds, nonzero if it fails,313) in which case if the
file existed previously it is still known by its original name.

7.23.4.3 The tmpfile function
Synopsis

1 #include <stdio.h>
FILE *tmpfile(void);

Description
2 The tmpfile function creates a temporary binary file that is different from any other existing file

and that will automatically be removed when it is closed or at program termination. If the program
terminates abnormally, whether an open temporary file is removed is implementation-defined. The
file is opened for update with "wb+" mode.

Recommended practice
3 It should be possible to open at least TMP_MAX temporary files during the lifetime of the program

(this limit may be shared with tmpnam) and there should be no limit on the number simultaneously
open other than this limit and any limit on the number of open files (FOPEN_MAX).

Returns
4 The tmpfile function returns a pointer to the stream of the file that it created. If the file cannot be

created, the tmpfile function returns a null pointer.

Forward references: the fopen function (7.23.5.3).

7.23.4.4 The tmpnam function
Synopsis

1 #include <stdio.h>
char *tmpnam(char *s);

Description
2 The tmpnam function generates a string that is a valid file name and that is not the same as the name

of an existing file.314) The function is potentially capable of generating at least TMP_MAX different
strings, but any or all of them can already be in use by existing files and thus not be suitable return
values.

3 The tmpnam function generates a different string each time it is called.

313)Among the reasons the implementation can cause the rename function to fail are that the file is open or that it is necessary
to copy its contents to effectuate its renaming.
314)Files created using strings generated by the tmpnam function are temporary only in the sense that their names are not

expected to collide with those generated by conventional naming rules for the implementation. It is still necessary to use the
remove function to remove such files when their use is ended, and before program termination.

© ISO/IEC 202y — All rights reserved

Library — 330

§ 7.23.4.4

ISO/IEC 9899:202y (en) — n3299 working draft

4 Calls to the tmpnam function with a null pointer argument may introduce data races with each other.
The implementation shall behave as if no library function calls the tmpnam function.

Returns
5 If no suitable string can be generated, the tmpnam function returns a null pointer. Otherwise, if

the argument is a null pointer, the tmpnam function leaves its result in an internal static object and
returns a pointer to that object (subsequent calls to the tmpnam function may modify the same object).
If the argument is not a null pointer, it is assumed to point to an array of at least L_tmpnam chars;
the tmpnam function writes its result in that array and returns the argument as its value.

Environmental limits
6 The value of the macro TMP_MAX shall be at least 25.

7.23.5 File access functions
7.23.5.1 The fclose function
Synopsis

1 #include <stdio.h>
int fclose(FILE *stream);

Description
2 A successful call to the fclose function causes the stream pointed to by stream to be flushed and

the associated file to be closed. Any unwritten buffered data for the stream are delivered to the
host environment to be written to the file; any unread buffered data are discarded. Whether the call
succeeds or not, the stream is disassociated from the file and any buffer set by the setbuf or setvbuf
function is disassociated from the stream (and deallocated if it was automatically allocated).

Returns
3 The fclose function returns zero if the stream was successfully closed, or EOF if any errors were

detected.

7.23.5.2 The fflush function
Synopsis

1 #include <stdio.h>
int fflush(FILE *stream);

Description
2 If stream points to an output stream or an update stream in which the most recent operation was

not input, the fflush function causes any unwritten data for that stream to be delivered to the host
environment to be written to the file; otherwise, the behavior is undefined.

3 If stream is a null pointer, the fflush function performs this flushing action on all streams for which
the behavior is defined previously in this subclause.

Returns
4 The fflush function sets the error indicator for the stream and returns EOF if a write error occurs,

otherwise it returns zero.

Forward references: the fopen function (7.23.5.3).

7.23.5.3 The fopen function
Synopsis

1 #include <stdio.h>
FILE *fopen(const char * restrict filename, const char * restrict mode);

§ 7.23.5.3 © ISO/IEC 202y — All rights reserved

Library — 331

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The fopen function opens the file whose name is the string pointed to by filename, and associates

a stream with it.

3 The argument mode points to a string. If the string is one of the following, the file is open in the
indicated mode. Otherwise, the behavior is undefined.315)

r open text file for reading
w truncate to zero length or create text file for writing
wx create text file for writing
a append; open or create text file for writing at end-of-file
rb open binary file for reading
wb truncate to zero length or create binary file for writing
wbx create binary file for writing
ab append; open or create binary file for writing at end-of-file
r+ open text file for update (reading and writing)
w+ truncate to zero length or create text file for update
w+x create text file for update
a+ append; open or create text file for update, writing at end-of-file
r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for update
w+bx or wb+x create binary file for update
a+b or ab+ append; open or create binary file for update, writing at end-of-file

4 Opening a file with read mode (’r’ as the first character in the mode argument) fails if the file does
not exist or cannot be read.

5 Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created. The check for the existence of the file and the creation of the file
if it does not exist is atomic with respect to other threads and other concurrent program executions.
If the implementation is not capable of performing the check for the existence of the file and the
creation of the file atomically, it shall fail instead of performing a non-atomic check and creation.

6 Opening a file with append mode (’a’ as the first character in the mode argument) causes all subse-
quent writes to the file to be forced to the then current end-of-file at the point of buffer flush or actual
write, regardless of intervening calls to the fseek, fsetpos, or rewind functions. Incrementing the
current end-of-file by the amount of data written is atomic with respect to other threads writing to
the same file provided the file was also opened in append mode. If the implementation is not capable
of incrementing the current end-of-file atomically, it shall fail instead of performing non-atomic
end-of-file writes. In some implementations, opening a binary file with append mode (’b’ as the
second or third character in the previously described list of mode argument values) may initially
position the file position indicator for the stream beyond the last data written, because of null
character padding.

7 When a file is opened with update mode (’+’ as the second or third character in the previously
described list of mode argument values), both input and output can be performed on the associated
stream. However, output shall not be directly followed by input without an intervening call to the
fflush function or to a file positioning function (fseek, fsetpos, or rewind), and input shall not
be directly followed by output without an intervening call to a file positioning function, unless the
input operation encounters end-of-file. Opening (or creating) a text file with update mode may
instead open (or create) a binary stream in some implementations.

8 When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream are cleared.
315)If the string begins with one of the listed mode sequences, the implementation can choose to ignore the remaining

characters, or it can use them to select different kinds of a file (some of which can not conform to the properties in 7.23.2).

© ISO/IEC 202y — All rights reserved

Library — 332

§ 7.23.5.3

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
9 The fopen function returns a pointer to the object controlling the stream. If the open operation fails,

fopen returns a null pointer.

Forward references: file positioning functions (7.23.9).

7.23.5.4 The freopen function
Synopsis

1 #include <stdio.h>
FILE *freopen(const char * restrict filename, const char * restrict mode,

FILE * restrict stream);

Description
2 The freopen function opens the file whose name is the string pointed to by filename and associates

the stream pointed to by stream with it. The mode argument is used just as in the fopen function.316)

3 If filename is a null pointer, the freopen function attempts to change the mode of the stream to
that specified by mode, as if the name of the file currently associated with the stream had been
used. It is implementation-defined which changes of mode are permitted (if any), and under what
circumstances.

4 The freopen function first attempts to close any file that is associated with the specified stream.
Failure to close the file is ignored. The error and end-of-file indicators for the stream are cleared.

Returns
5 The freopen function returns a null pointer if the open operation fails. Otherwise, freopen returns

the value of stream.

7.23.5.5 The setbuf function
Synopsis

1 #include <stdio.h>
void setbuf(FILE * restrict stream, char * restrict buf);

Description
2 Except that it returns no value, the setbuf function is equivalent to the setvbuf function invoked

with the values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer), with the value
_IONBF for mode.

Returns
3 The setbuf function returns no value.

Forward references: the setvbuf function (7.23.5.6).

7.23.5.6 The setvbuf function
Synopsis

1 #include <stdio.h>
int setvbuf(FILE * restrict stream, char * restrict buf, int mode, size_t size);

Description
2 The setvbuf function may be used only after the stream pointed to by stream has been associated

with an open file and before any other operation (other than an unsuccessful call to setvbuf) is
performed on the stream. The argument mode determines how stream will be buffered, as follows:

316)The primary use of the freopen function is to change the file associated with a standard text stream (stderr, stdin, or
stdout), as those identifiers are not required to be modifiable lvalues to which the value returned by the fopen function can
be assigned.

§ 7.23.5.6 © ISO/IEC 202y — All rights reserved

Library — 333

ISO/IEC 9899:202y (en) — n3299 working draft

_IOFBF causes input/output to be fully buffered;

_IOLBF causes input/output to be line buffered;

_IONBF causes input/output to be unbuffered.

If buf is not a null pointer, the array it points to can be used instead of a buffer allocated by the
setvbuf function317) and the argument size specifies the size of the array; otherwise, size may
determine the size of a buffer allocated by the setvbuf function. The members of the array at any
time have unspecified values.

Returns
3 The setvbuf function returns zero on success, or nonzero if an invalid value is given for mode or if

the request cannot be honored.

7.23.6 Formatted input/output functions
7.23.6.1 General

1 The formatted input/output functions shall behave as if there is a sequence point after the actions
associated with each specifier.318)

7.23.6.2 The fprintf function
Synopsis

1 #include <stdio.h>
int fprintf(FILE * restrict stream, const char * restrict format, ...);

Description
2 The fprintf function writes output to the stream pointed to by stream, under control of the string

pointed to by format that specifies how subsequent arguments are converted for output. If there are
insufficient arguments for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated (as always) but are otherwise ignored. The
fprintf function returns when the end of the format string is encountered.

3 The format shall be a multibyte character sequence, beginning and ending in its initial shift state.
The format is composed of zero or more directives: ordinary multibyte characters (not %), which
are copied unchanged to the output stream; and conversion specifications, each of which results
in fetching zero or more subsequent arguments, converting them, if applicable, according to the
corresponding conversion specifier, and then writing the result to the output stream.

4 Each conversion specification is introduced by the character %. After the %, the following appear in
sequence:

— Zero or more flags (in any order) that modify the meaning of the conversion specification.

— An optional minimum field width. If the converted value has fewer characters than the field
width, it is padded with spaces (by default) on the left (or right, if the left adjustment flag,
described later, has been given) to the field width. The field width takes the form of an asterisk
* (described later) or a nonnegative decimal integer.319)

— An optional precision that gives the minimum number of digits to appear for the b, B, d, i,
o, u, x, and X conversions, the number of digits to appear after the decimal-point character
for a, A, e, E, f, and F conversions, the maximum number of significant digits for the g and G
conversions, or the maximum number of bytes to be written for s conversions. The precision
takes the form of a period (.) followed either by an asterisk * (described later) or by an optional
nonnegative decimal integer; if only the period is specified, the precision is taken as zero. If a
precision appears with any other conversion specifier, the behavior is undefined.

317)The buffer has to have a lifetime at least as great as the open stream, so not closing the stream before a buffer that has
automatic storage duration is deallocated upon block exit results in undefined behavior.
318)The fprintf functions perform writes to memory for the %n specifier.
319)0 is taken as a flag, not as the beginning of a field width.

© ISO/IEC 202y — All rights reserved

Library — 334

§ 7.23.6.2

ISO/IEC 9899:202y (en) — n3299 working draft

— An optional length modifier that specifies the size of the argument.

— A conversion specifier character that specifies the type of conversion to be applied.

5 As noted previously, a field width, or precision, or both, may be indicated by an asterisk. In this
case, an int argument supplies the field width or precision. The arguments specifying field width,
or precision, or both, shall appear (in that order) before the argument (if any) to be converted. A
negative field width argument is taken as a - flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

6 The flag characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if this flag is
not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It begins with a
sign only when a value with a negative sign is converted if this flag is not specified.)320)

space If the first character of a signed conversion is not a sign, or if a signed conversion results in
no characters, a space is prefixed to the result. If the space and + flags both appear, the space
flag is ignored.

The result is converted to an "alternative form". For o conversion, it increases the precision, if
and only if necessary, to force the first digit of the result to be a zero (if the value and precision
are both 0, a single 0 is printed). For b conversion, a nonzero result has 0b prefixed to it.
For the optional B conversion as described later in this subclause, a nonzero result has 0B
prefixed to it. For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to it. For a,
A, e, E, f, F, g, and G conversions, the result of converting a floating-point number always
contains a decimal-point character, even if no digits follow it. (Normally, a decimal-point
character appears in the result of these conversions only if a digit follows it.) For g and
G conversions, trailing zeros are not removed from the result. For other conversions, the
behavior is undefined.

0 For b, B, d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width rather than performing space
padding, except when converting an infinity or NaN. If the 0 and - flags both appear, the 0
flag is ignored. For b, B, d, i, o, u, x, and X conversions, if a precision is specified, the 0 flag is
ignored. For other conversions, the behavior is undefined.

7 The length modifiers and their meanings are:

hh Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have been promoted
according to the integer promotions, but its value shall be converted to signed char or
unsigned char before printing); or that a following n conversion specifier applies to a
pointer to a signed char argument.

h Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will have been promoted
according to the integer promotions, but its value shall be converted to short int or
unsigned short int before printing); or that a following n conversion specifier applies
to a pointer to a short int argument.

l (ell) Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a long
int or unsigned long int argument; that a following n conversion specifier applies
to a pointer to a long int argument; that a following c conversion specifier applies
to a wint_t argument; that a following s conversion specifier applies to a pointer to
a wchar_t argument; or has no effect on a following a, A, e, E, f, F, g, or G conversion
specifier.

320)The results of all floating conversions of a negative zero, and of negative values that round to zero, include a minus sign.

§ 7.23.6.2 © ISO/IEC 202y — All rights reserved

Library — 335

ISO/IEC 9899:202y (en) — n3299 working draft

ll (ell-ell) Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a long
long int or unsigned long long int argument; or that a following n conversion

specifier applies to a pointer to a long long int argument.

j Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to an
intmax_t or uintmax_t argument; or that a following n conversion specifier applies to
a pointer to an intmax_t argument.

z Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a size_t
or the corresponding signed integer type argument; or that a following n conversion
specifier applies to a pointer to a signed integer type corresponding to size_t argument.

t Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument; or that a following n
conversion specifier applies to a pointer to a ptrdiff_t argument.

wN Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to an
integer argument with a specific width where N is a positive decimal integer with
no leading zeros (the argument will have been promoted according to the integer
promotions, but its value shall be converted to the unpromoted type); or that a following
n conversion specifier applies to a pointer to an integer type argument with a width
of N bits. All minimum-width integer types (7.22.2.3) and exact-width integer types
(7.22.2.2) defined in the header <stdint.h> shall be supported. Other supported values
of N are implementation-defined.

wfN Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a fastest
minimum-width integer argument with a specific width where N is a positive decimal
integer with no leading zeros (the argument will have been promoted according to
the integer promotions, but its value shall be converted to the unpromoted type); or
that a following n conversion specifier applies to a pointer to a fastest minimum-width
integer type argument with a width of N bits. All fastest minimum-width integer types
(7.22.2.4) defined in the header <stdint.h> shall be supported. Other supported values
of N are implementation-defined.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
long double argument.

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal32 argument.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal64 argument.

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal128 argument.

If a length modifier appears with any conversion specifier other than as specified previously, the
behavior is undefined.

8 The conversion specifiers and their meanings are:

d,i The int argument is converted to signed decimal in the style [-]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no characters.

b,B,o,u,x,X The unsigned int argument is converted to unsigned binary (b or B), unsigned octal
(o), unsigned decimal (u), or unsigned hexadecimal notation (x or X) in the style dddd;
the letters abcdef are used for x conversion and the letters ABCDEF for X conversion. The
precision specifies the minimum number of digits to appear; if the value being converted
can be represented in fewer digits, it is expanded with leading zeros. The default precision

© ISO/IEC 202y — All rights reserved

Library — 336

§ 7.23.6.2

ISO/IEC 9899:202y (en) — n3299 working draft

is 1. The result of converting a zero value with a precision of zero is no characters. The
specifier B is optional and provides the same functionality as b, except for the # flag as
previously specified. The PRIB macros from <inttypes.h> shall only be defined if the
implementation follows the specification as given here.

f,F A double argument representing a floating-point number is converted to decimal notation
in the style [-]ddd.ddd, where the number of digits after the decimal-point character is
equal to the precision specification. If the precision is missing, it is taken as 6; if the
precision is zero and the # flag is not specified, no decimal-point character appears. If a
decimal-point character appears, at least one digit appears before it. The value is rounded
to the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles [-]inf or
[-]infinity — which style is implementation-defined. A double argument representing a
NaN is converted in one of the styles [-]nan or [-]nan(n-char-sequence) — which style, and
the meaning of any n-char-sequence, is implementation-defined. The F conversion specifier
produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively.321)

e,E A double argument representing a floating-point number is converted in the style
[-]d.ddde±dd, where there is one digit (which is nonzero if the argument is nonzero) before
the decimal-point character and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified,
no decimal-point character appears. The value is rounded to the appropriate number of
digits. The E conversion specifier produces a number with E instead of e introducing the
exponent. The exponent always contains at least two digits, and only as many more digits
as necessary to represent the exponent. If the value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

g,G A double argument representing a floating-point number is converted in style f or e (or
in style F or E in the case of a G conversion specifier), depending on the value converted
and the precision. Let P equal the precision if nonzero, 6 if the precision is omitted, or 1 if
the precision is zero. Then, if a conversion with style E would have an exponent of X :

if P > X ≥ −4, the conversion is with style f (or F) and precision P − (X + 1).

otherwise, the conversion is with style e (or E) and precision P − 1.

Finally, unless the # flag is used, any trailing zeros are removed from the fractional portion
of the result and the decimal-point character is removed if there is no fractional portion
remaining.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

a,A A double argument representing a floating-point number is converted in the style
[-]0xh.hhhhp±d, where there is one hexadecimal digit (which is nonzero if the argument is a
normalized floating-point number and is otherwise unspecified) before the decimal-point
character 322) and the number of hexadecimal digits after it is equal to the precision; if the

321)When applied to infinite and NaN values, the -, +, and space flag characters have their usual meaning; the # and 0 flag
characters have no effect.
322)Binary implementations can choose the hexadecimal digit to the left of the decimal-point character so that subsequent

digits align to nibble (4-bit) boundaries. This implementation choice affects numerical values printed with a precision P
that is insufficient to represent all values exactly. Implementations with different conventions about the most significant
hexadecimal digit will round at different places, affecting the numerical value of the hexadecimal result. For example,
possible printed output for the code

#include <stdio.h>
/* ... */
double x = 123.0;
printf("%.1a", x);

include "0x1.fp+6 " and "0xf.6p+3 " whose numerical values are 124 and 123, respectively. Portable code seeking identical
numerical results on different platforms should avoid precisions P that require rounding.

§ 7.23.6.2 © ISO/IEC 202y — All rights reserved

Library — 337

ISO/IEC 9899:202y (en) — n3299 working draft

precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient for an
exact representation of the value; if the precision is missing and FLT_RADIX is not a power
of 2, then the precision is sufficient to distinguish323) values of type double, except that
trailing zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The letters abcdef are used for a conversion and the
letters ABCDEF for A conversion. The A conversion specifier produces a number with X and
P instead of x and p. The exponent always contains at least one digit, and only as many
more digits as necessary to represent the decimal exponent of 2. If the value is zero, the
exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

If an H, D, or DD modifier is present and the precision is missing, then for a decimal
floating type argument represented by a triple of integers (s, c, q), where n is the number
of significant digits in the coefficient c,

— if −(n + 5) ≤ q ≤ 0, use style f (or style F in the case of an A conversion specifier)
with formatting precision equal to −q,

— otherwise, use style e (or style E in the case of an A conversion specifier) with format-
ting precision equal to n− 1, with the exceptions that if c = 0 then the digit-sequence
in the exponent-part shall have the value q (rather than 0), and that the exponent is
always expressed with the minimum number of digits required to represent its value
(the exponent never contains a leading zero).

If the precision P is present (in the conversion specification) and is zero or at least as large
as the precision p (5.3.5.3.3) of the decimal floating type, the conversion is as if the precision
were missing. If the precision P is present (and nonzero) and less than the precision p of
the decimal floating type, the conversion first obtains an intermediate result as follows,
where n is the number of significant digits in the coefficient:

— If n ≤ P , set the intermediate result to the input.

— If n > P , round the input value, according to the current rounding direction for
decimal floating-point operations, to P decimal digits, with unbounded exponent
range, representing the result with a P -digit integer coefficient when in the form
(s, c, q).

Convert the intermediate result in the manner described previously for the case where the
precision is missing.

c If no l length modifier is present, the int argument is converted to an unsigned char,
and the resulting character is written.

If an l length modifier is present, the wint_t argument is converted as if by a call to
the wcrtomb function with a pointer to storage of at least MB_CUR_MAX bytes, the wint_t
argument converted to wchar_t, and an initial shift state.

s If no l length modifier is present, the argument shall be a pointer to storage of character
type.324) Characters from the storage are written up to (but not including) the terminating
null character. If the precision is specified, no more than that many bytes are written. If
the precision is not specified or is greater than the size of the storage, the storage shall
contain a null character.

If an l length modifier is present, the argument shall be a pointer to storage of wchar_t
type. Wide characters from the storage are converted to multibyte characters (each as if
by a call to the wcrtomb function, with the conversion state described by an mbstate_t
object initialized to zero before the first wide character is converted) up to and including

323)The formatting precision P is sufficient to distinguish values of the source type if 16P > bp where b (not a power of 2) and
p are the base and precision of the source type (5.3.5.3.3). A smaller P potentially suffices depending on the implementation’s
scheme for determining the digit to the left of the decimal-point character.
324)No special provisions are made for multibyte characters.

© ISO/IEC 202y — All rights reserved

Library — 338

§ 7.23.6.2

ISO/IEC 9899:202y (en) — n3299 working draft

a terminating null wide character. The resulting multibyte characters are written up to
(but not including) the terminating null character (byte). If no precision is specified, the
storage shall contain a null wide character. If a precision is specified, no more than that
many bytes are written (including shift sequences, if any), and the storage shall contain
a null wide character if, to equal the multibyte character sequence length given by the
precision, the function would need to access a wide character one past the end of the array.
In no case is a partial multibyte character written.325)

p The argument shall be a pointer to void or a pointer to a character type. The value of the
pointer is converted to a sequence of printing characters, in an implementation-defined
manner.

n The argument shall be a pointer to signed integer whose type is specified by the length
modifier, if any, for the conversion specification, or shall be int if no length modifier is
specified for the conversion specification. The number of characters written to the output
stream so far by this call to fprintf is stored into the integer object pointed to by the
argument. No argument is converted, but one is consumed. If the conversion specification
includes any flags, a field width, or a precision, the behavior is undefined.

% A % character is written. No argument is converted. The complete conversion specification
shall be %%.

9 If a conversion specification is invalid, the behavior is undefined.326) fprintf shall behave as if it
uses va_arg with a type argument naming the type resulting from applying the default argument
promotions to the type corresponding to the conversion specification and then converting the result
of the va_arg expansion to the type corresponding to the conversion specification.327)

10 In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

11 For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.

Recommended practice
12 For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable

in the given precision, the result should be one of the two adjacent numbers in hexadecimal floating
style with the given precision, with the extra stipulation that the error should have a correct sign for
the current rounding direction.

13 For e, E, f, F, g, and G conversions, if the number of significant decimal digits is at most the maximum
value M of the T_DECIMAL_DIG macros (defined in <float.h>), then the result should be correctly
rounded.328) If the number of significant decimal digits is more than M but the source value is
exactly representable with M digits, then the result should be an exact representation with trailing
zeros. Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
M significant digits; the value of the resultant decimal string D should satisfy L ≤ D ≤ U, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

14 The uppercase B format specifier is made optional by the previous description, because it used to be
available for extensions in previous versions of this document. Implementations that did not use an
uppercase B as their own extension before are encouraged to implement it as previously described.

Returns
15 The fprintf function returns the number of characters transmitted, or a negative value if an output

or encoding error occurred or if the implementation does not support a specified width length
modifier.

325)Redundant shift sequences can result if multibyte characters have a state-dependent encoding.
326)See "future library directions" (7.33.16).
327)The behavior is undefined when the types differ as specified for va_arg 7.16.2.2.
328)For binary-to-decimal conversion, the result format’s values are the numbers representable with the given format specifier.

The number of significant digits is determined by the format specifier, and in the case of fixed-point conversion by the source
value as well.

§ 7.23.6.2 © ISO/IEC 202y — All rights reserved

Library — 339

ISO/IEC 9899:202y (en) — n3299 working draft

Environmental limits
16 The number of characters that can be produced by any single conversion shall be at least 4095.

17 EXAMPLE 1 To print a date and time in the form "Sunday, July 3, 10:02" followed by π to five decimal places:

#include <math.h>
#include <stdio.h>
/* ... */
char *weekday, *month; // pointers to strings
int day, hour, min;
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);
fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

18 EXAMPLE 2 In this example, multibyte characters do not have a state-dependent encoding, and the members
of the extended character set that consist of more than one byte each consist of exactly two bytes, the first of
which is denoted here by a □ and the second by an uppercase letter.

19 Given the following wide string with length seven,

static wchar_t wstr[] = L"□X□Yabc□Z□W";

the seven calls

fprintf(stdout, "|1234567890123|\n");
fprintf(stdout, "|%13ls|\n", wstr);
fprintf(stdout, "|%-13.9ls|\n", wstr);
fprintf(stdout, "|%13.10ls|\n", wstr);
fprintf(stdout, "|%13.11ls|\n", wstr);
fprintf(stdout, "|%13.15ls|\n", &wstr[2]);
fprintf(stdout, "|%13lc|\n", (wint_t) wstr[5]);

will print the following seven lines:

|1234567890123|
| □X□Yabc□Z□W|
|□X□Yabc□Z |
| □X□Yabc□Z|
| □X□Yabc□Z□W|
| abc□Z□W|
| □Z|

20 EXAMPLE 3 Following are representations of _Decimal64 arguments as triples (s, c, q) and the corresponding
character sequences fprintf produces with "%Da":

© ISO/IEC 202y — All rights reserved

Library — 340

§ 7.23.6.2

ISO/IEC 9899:202y (en) — n3299 working draft

(+1, 123, 0) 123
(−1, 123, 0) -123
(+1, 123,−2) 1.23
(+1, 123, 1) 1.23e+3
(−1, 123, 1) -1.23e+3
(+1, 123,−8) 0.00000123
(+1, 123,−9) 1.23e-7
(+1, 120,−8) 0.00000120
(+1, 120,−9) 1.20e-7
(+1, 1234567890123456, 0) 1234567890123456
(+1, 1234567890123456, 1) 1.234567890123456e+16
(+1, 1234567890123456,−1) 123456789012345.6
(+1, 1234567890123456,−21) 0.000001234567890123456
(+1, 1234567890123456,−22) 1.234567890123456e-7
(+1, 0, 0) 0
(−1, 0, 0) -0
(+1, 0,−6) 0.000000
(+1, 0,−7) 0e-7
(+1, 0, 2) 0e+2
(+1, 5,−6) 0.000005
(+1, 50,−7) 0.0000050
(+1, 5,−7) 5e-7

To illustrate the effects of a precision specification, the sequence:

_Decimal32 x = 6543.00DF; // (+1, 654300, -2)
fprintf(stdout, "%Ha\n", x);
fprintf(stdout, "%.6Ha\n", x);
fprintf(stdout, "%.5Ha\n", x);
fprintf(stdout, "%.4Ha\n", x);
fprintf(stdout, "%.3Ha\n", x);
fprintf(stdout, "%.2Ha\n", x);
fprintf(stdout, "%.1Ha\n", x);
fprintf(stdout, "%.0Ha\n", x);

assuming default rounding, results in:

6543.00
6543.00
6543.0
6543
6.54e+3
6.5e+3
7e+3
6543.00

To illustrate the effects of the exponent range, the sequence:

_Decimal32 x = 9543210e87DF; // (+1, 9543210, 87)
_Decimal32 y = 9500000e90DF; // (+1, 9500000, 90)
fprintf(stdout, "%.6Ha\n", x);
fprintf(stdout, "%.5Ha\n", x);
fprintf(stdout, "%.4Ha\n", x);
fprintf(stdout, "%.3Ha\n", x);
fprintf(stdout, "%.2Ha\n", x);
fprintf(stdout, "%.1Ha\n", x);
fprintf(stdout, "%.1Ha\n", y);

assuming default rounding, results in:

§ 7.23.6.2 © ISO/IEC 202y — All rights reserved

Library — 341

ISO/IEC 9899:202y (en) — n3299 working draft

9.54321e+93
9.5432e+93
9.543e+93
9.54e+93
9.5e+93
1e+94
1e+97

To further illustrate the effects of the exponent range, the sequence:

_Decimal32 x = 9512345e90DF; // (+1, 9512345, 90)
_Decimal32 y = 9512345e86DF; // (+1, 9512345, 86)
fprintf(stdout, "%.3Ha\n", x);
fprintf(stdout, "%.2Ha\n", x);
fprintf(stdout, "%.1Ha\n", x);
fprintf(stdout, "%.2Ha\n", y);

assuming default rounding, results in:

9.51e+96
9.5e+96
1e+97
9.5e+92

Forward references: conversion state (7.31.6), the wcrtomb function (7.31.6.4.4).

7.23.6.3 The fscanf function
Synopsis

1 #include <stdio.h>
int fscanf(FILE * restrict stream, const char * restrict format, ...);

Description
2 The fscanf function reads input from the stream pointed to by stream, under control of the string

pointed to by format that specifies the admissible input sequences and how they are to be converted
for assignment, using subsequent arguments as pointers to the objects to receive the converted
input. If there are insufficient arguments for the format, the behavior is undefined. If the format
is exhausted while arguments remain, the excess arguments are evaluated (as always) but are
otherwise ignored.

3 The format shall be a multibyte character sequence, beginning and ending in its initial shift state.
The format is composed of zero or more directives: one or more white-space characters, an ordinary
multibyte character (neither % nor a white-space character), or a conversion specification. Each
conversion specification is introduced by the character %. After the %, the following appear in
sequence:

— An optional assignment-suppressing character *.

— An optional decimal integer greater than zero that specifies the maximum field width (in
characters).

— An optional length modifier that specifies the size of the receiving object.

— A conversion specifier character that specifies the type of conversion to be applied.

4 The fscanf function executes each directive of the format in turn. When all directives have been
executed, or if a directive fails (as detailed later in this subclause), the function returns. Failures are
described as input failures (due to the occurrence of an encoding error or the unavailability of input
characters), or matching failures (due to inappropriate input).

5 A directive composed of white-space character(s) is executed by reading input up to the first non-
white-space character (which remains unread), or until no more characters can be read. The directive
never fails.

© ISO/IEC 202y — All rights reserved

Library — 342

§ 7.23.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

6 A directive that is an ordinary multibyte character is executed by reading the next characters of the
stream. If any of those characters differ from the ones composing the directive, the directive fails
and the differing and subsequent characters remain unread. Similarly, if end-of-file, an encoding
error, or a read error prevents a character from being read, the directive fails.

7 A directive that is a conversion specification defines a set of matching input sequences, as described
further in this subclause for each specifier. A conversion specification is executed in the following
steps:

8 Input white-space characters are skipped, unless the specification includes a [, c, or n specifier.329)

9 An input item is read from the stream, unless the specification includes an n specifier. An input
item is defined as the longest sequence of input characters which does not exceed any specified
field width and which is, or is a prefix of, a matching input sequence.330) The first character, if any,
after the input item remains unread. If the length of the input item is zero, the execution of the
directive fails; this condition is a matching failure unless end-of-file, an encoding error, or a read
error prevented input from the stream, in which case it is an input failure.

10 Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input
characters) is converted to a type appropriate to the conversion specifier. If the input item is not a
matching sequence, the execution of the directive fails: this condition is a matching failure. Unless
assignment suppression was indicated by a *, the result of the conversion is placed in the object
pointed to by the first argument following the format argument that has not already received a
conversion result. If this object does not have an appropriate type, or if the result of the conversion
cannot be represented in the object, the behavior is undefined.

11 The length modifiers and their meanings are:

hh Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to signed char or unsigned char.

h Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to short int or unsigned short int.

l (ell) Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to long int or unsigned long int; that a following a, A, e, E, f, F,
g, or G conversion specifier applies to an argument with type pointer to double; or that
a following c, s, or [conversion specifier applies to an argument with type pointer to
wchar_t.

ll (ell-ell) Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to long long int or unsigned long long int.

j Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to intmax_t or uintmax_t.

z Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to ptrdiff_t or the corresponding unsigned integer type.

wN Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
which is a pointer to an integer with a specific width where N is a positive decimal integer
with no leading zeros. All minimum-width integer types (7.22.2.3) and exact-width
integer types (7.22.2.2) defined in the header <stdint.h> shall be supported. Other
supported values of N are implementation-defined.

329)These white-space characters are not counted against a specified field width.
330)fscanf pushes back at most one input character onto the input stream. Therefore, some sequences that are acceptable to
strtod, strtol, etc., are unacceptable to fscanf.

§ 7.23.6.3 © ISO/IEC 202y — All rights reserved

Library — 343

ISO/IEC 9899:202y (en) — n3299 working draft

wfN Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
which is a pointer to a fastest minimum-width integer with a specific width where N is a
positive decimal integer with no leading zeros. All fastest minimum-width integer types
(7.22.2.4) defined in the header <stdint.h> shall be supported. Other supported values
of N are implementation-defined.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to long double.

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal32.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal64.

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal128.

If a length modifier appears with any conversion specifier other than as specified previously, the
behavior is undefined.

12 In the following, the type of the corresponding argument for a conversion specifier shall be a pointer
to a type determined by the length modifiers, if any, or specified by the conversion specifier. The
conversion specifiers and their meanings are:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
int.

b Matches an optionally signed binary integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 2 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

i Matches an optionally signed integer, whose format is the same as expected for the subject
sequence of the strtol function with the value 0 for the base argument. Unless a length
modifier is specified, the corresponding argument shall be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 8 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the strtoul function with the value 16 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

a,e,f,g Matches an optionally signed floating-point number, infinity, or NaN, whose format is
the same as expected for the subject sequence of the strtod function. Unless a length
modifier is specified, the corresponding argument shall be a pointer to float.

c Matches a sequence of characters of exactly the number specified by the field width (1 if
no field width is present in the directive).

© ISO/IEC 202y — All rights reserved

Library — 344

§ 7.23.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

331)

If no l length modifier is present, the corresponding argument shall be a pointer to char,
signed char, unsigned char, or void that points to storage large enough to accept the
sequence. No null character is added.

If an l length modifier is present, the input shall be a sequence of multibyte characters that
begins in the initial shift state. Each multibyte character in the sequence is converted to a
wide character as if by a call to the mbrtowc function, with the conversion state described
by an mbstate_t object initialized to zero before the first multibyte character is converted.
The corresponding argument shall be a pointer to storage of wchar_t large enough to
accept the resulting sequence of wide characters. No null wide character is added.

s Matches a sequence of non-white-space characters.331)

If no l length modifier is present, the corresponding argument shall be a pointer to char,
signed char, unsigned char, or void that points to storage large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an l length modifier is present, the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte character is converted to a wide
character as if by a call to the mbrtowc function, with the conversion state described by an
mbstate_t object initialized to zero before the first multibyte character is converted. The
corresponding argument shall be a pointer to storage of wchar_t large enough to accept
the sequence and the terminating null wide character, which will be added automatically.

[Matches a nonempty sequence of characters from a set of expected characters (the
scanset).331)

If no l length modifier is present, the corresponding argument shall be a pointer to char,
signed char, unsigned char, or void that points to storage large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an l length modifier is present, the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte character is converted to a wide
character as if by a call to the mbrtowc function, with the conversion state described by
an mbstate_t object initialized to zero before the first multibyte character is converted.
The corresponding argument shall be a pointer that points to storage of wchar_t large
enough to accept the sequence and the terminating null wide character, which will be
added automatically.

The conversion specifier includes all subsequent characters in the format string, up to
and including the matching right bracket (]). The characters between the brackets (the
scanlist) compose the scanset, unless the character after the left bracket is a circumflex (^),
in which case the scanset contains all characters that do not appear in the scanlist between
the circumflex and the right bracket. If the conversion specifier begins with [] or [^], the
right bracket character is in the scanlist and the next following right bracket character is
the matching right bracket that ends the specification; otherwise the first following right
bracket character is the one that ends the specification. If a - character is in the scanlist
and is not the first, nor the second where the first character is a ^, nor the last character,
the behavior is implementation-defined.

p Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the %p conversion of the fprintf function.
The corresponding argument shall be a pointer to a pointer of void. The input item is
converted to a pointer value in an implementation-defined manner. If the input item is a
value converted earlier during the same program execution, the pointer that results shall
compare equal to that value; otherwise the behavior of the %p conversion is undefined.

331)No special provisions are made for multibyte characters in the matching rules used by the c, s, and [conversion specifiers
— the extent of the input field is determined on a byte-by-byte basis. The resulting field is nevertheless a sequence of multibyte
characters that begins in the initial shift state.

§ 7.23.6.3 © ISO/IEC 202y — All rights reserved

Library — 345

ISO/IEC 9899:202y (en) — n3299 working draft

n No input is consumed. The corresponding argument shall be a pointer of a signed integer
type. The number of characters read from the input stream so far by this call to the fscanf
function is stored into the integer object pointed to by the argument. Execution of a %n
directive does not increment the assignment count returned at the completion of execution
of the fscanf function. No argument is converted, but one is consumed. If the conversion
specification includes an assignment-suppressing character or a field width, the behavior
is undefined.

% Matches a single % character; no conversion or assignment occurs. The complete conversion
specification shall be %%.

13 If a conversion specification is invalid, the behavior is undefined.332)

14 The conversion specifiers A, E, F, G, and X are also valid and behave the same as, respectively, a, e, f,
g, and x.

15 Trailing white-space characters (including new-line characters) are left unread unless matched by a
directive. The success of literal matches and suppressed assignments is not directly determinable
other than via the %n directive.

Returns
16 The fscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure or if the implementation does not support a specific width length modifier.

17 EXAMPLE 1 The call:

#include <stdio.h>
/* ... */
int n, i; float x; char name[50];
n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence thompson\0.

18 EXAMPLE 2 The call:

#include <stdio.h>
/* ... */
int i; float x; char name[50];
fscanf(stdin, "%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign to i the value 56 and to x the value 789.0, will skip 0123, and will assign to name the sequence 56\0.
The next character read from the input stream will be a.

19 EXAMPLE 3 To accept repeatedly from stdin a quantity, a unit of measure, and an item name:

#include <stdio.h>
/* ... */
int count; float quant; char units[21], item[21];
do {

count = fscanf(stdin, "%f%20s of %20s", &quant, units, item);

332)See "future library directions" (7.33.16).

© ISO/IEC 202y — All rights reserved

Library — 346

§ 7.23.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

fscanf(stdin,"%*[^\n]");
} while (!feof(stdin) && !ferror(stdin));

20 If the stdin stream contains the following lines:

2 quarts of oil
-12.8degrees Celsius
lots of luck
10.0LBS of
dirt
100ergs of energy

the execution of the preceding example will be analogous to the following assignments:

quant = 2; strcpy(units, "quarts"); strcpy(item, "oil");
count = 3;
quant = -12.8; strcpy(units, "degrees");
count = 2; // "C" fails to match "o"
count = 0; // "l" fails to match "%f"
quant = 10.0; strcpy(units, "LBS"); strcpy(item, "dirt");
count = 3;
count = 0; // "100e" fails to match "%f"
count = EOF;

21 EXAMPLE 4 In:

#include <stdio.h>
/* ... */
int d1, d2, n1, n2, i;
i = sscanf("123", "%d%n%n%d", &d1, &n1, &n2, &d2);

the value 123 is assigned to d1 and the value 3 to n1. Because %n can never get an input failure, the value of 3 is
also assigned to n2. The value of d2 is not affected. The value 1 is assigned to i.

22 EXAMPLE 5 The call:

#include <stdio.h>
/* ... */
int n, i;
n = sscanf("foo %bar 42", "foo%%bar%d", &i);

will assign to n the value 1 and to i the value 42 because input white-space characters are skipped for both the
% and d conversion specifiers.

23 EXAMPLE 6 In these examples, multibyte characters do have a state-dependent encoding, and the members
of the extended character set that consist of more than one byte each consist of exactly two bytes, the first of
which is denoted here by a □ and the second by an uppercase letter, but are only recognized as such when in
the alternate shift state. The shift sequences are denoted by ↑ and ↓, in which the first causes entry into the
alternate shift state.

24 After the call:

#include <stdio.h>
/* ... */
char str[50];
fscanf(stdin, "a%s", str);

with the input line:

a↑□X□Y↓ bc

str will contain ↑□X□Y↓\0 assuming that none of the bytes of the shift sequences (or of the multibyte characters,
in the more general case) appears to be a single-byte white-space character.

§ 7.23.6.3 © ISO/IEC 202y — All rights reserved

Library — 347

ISO/IEC 9899:202y (en) — n3299 working draft

25 In contrast, after the call:

#include <stdio.h>
#include <stddef.h>
/* ... */
wchar_t wstr[50];
fscanf(stdin, "a%ls", wstr);

with the same input line, wstr will contain the two wide characters that correspond to □X and □Y and a
terminating null wide character.

26 However, the call:

#include <stdio.h>
#include <stddef.h>
/* ... */
wchar_t wstr[50];
fscanf(stdin, "a↑□X↓%ls", wstr);

with the same input line will return zero due to a matching failure against the ↓ sequence in the format string.

27 Assuming that the first byte of the multibyte character □X is the same as the first byte of the multibyte character
□Y, after the call:

#include <stdio.h>
#include <stddef.h>
/* ... */
wchar_t wstr[50];
fscanf(stdin, "a↑□Y↓%ls", wstr);

with the same input line, zero will again be returned, but stdin will be left with a partially consumed multibyte
character.

Forward references: the strtod, strtof, and strtold functions (7.24.2.6),
the strtol, strtoll, strtoul, and strtoull functions (7.24.2.8), conversion state (7.31.6), the
wcrtomb function (7.31.6.4.4).

7.23.6.4 The printf function
Synopsis

1 #include <stdio.h>
int printf(const char * restrict format, ...);

Description
2 The printf function is equivalent to fprintf with the argument stdout interposed before the

arguments to printf.

Returns
3 The printf function returns the number of characters transmitted, or a negative value if an output

or encoding error occurred.

7.23.6.5 The scanf function
Synopsis

1 #include <stdio.h>
int scanf(const char * restrict format, ...);

Description
2 The scanf function is equivalent to fscanf with the argument stdin interposed before the argu-

ments to scanf.

© ISO/IEC 202y — All rights reserved

Library — 348

§ 7.23.6.5

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The scanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.23.6.6 The snprintf function
Synopsis

1 #include <stdio.h>
int snprintf(char * restrict s, size_t n, const char * restrict format, ...);

Description
2 The snprintf function is equivalent to fprintf, except that the output is written into an array

(specified by argument s) rather than to a stream. If n is zero, nothing is written, and s can be a null
pointer. Otherwise, output characters beyond the n-1st are discarded rather than being written to
the array, and a null character is written at the end of the characters actually written into the array. If
copying takes place between objects that overlap, the behavior is undefined.

Returns
3 The snprintf function returns the number of characters that would have been written had n been

sufficiently large, not counting the terminating null character, or a negative value if an encoding
error occurred. Thus, the null-terminated output has been completely written if and only if the
returned value is both nonnegative and less than n.

7.23.6.7 The sprintf function
Synopsis

1 #include <stdio.h>
int sprintf(char * restrict s, const char * restrict format, ...);

Description
2 The sprintf function is equivalent to fprintf, except that the output is written into an array

(specified by the argument s) rather than to a stream. A null character is written at the end of the
characters written; it is not counted as part of the returned value. If copying takes place between
objects that overlap, the behavior is undefined.

Returns
3 The sprintf function returns the number of characters written in the array, not counting the

terminating null character, or a negative value if an encoding error occurred.

7.23.6.8 The sscanf function
Synopsis

1 #include <stdio.h>
int sscanf(const char * restrict s, const char * restrict format, ...);

Description
2 The sscanf function is equivalent to fscanf, except that input is obtained from a string (specified

by the argument s) rather than from a stream. Reaching the end of the string is equivalent to
encountering end-of-file for the fscanf function. If copying takes place between objects that overlap,
the behavior is undefined.

Returns
3 The sscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the sscanf function returns the number of input

§ 7.23.6.8 © ISO/IEC 202y — All rights reserved

Library — 349

ISO/IEC 9899:202y (en) — n3299 working draft

items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.23.6.9 The vfprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE * restrict stream, const char * restrict format, va_list arg);

Description
2 The vfprintf function is equivalent to fprintf, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
invocations). The vfprintf function does not invoke the va_end macro.333)

Returns
3 The vfprintf function returns the number of characters transmitted, or a negative value if an

output or encoding error occurred.

4 EXAMPLE The following shows the use of the vfprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

void error(char *function_name, char *format, ...)
{

va_list args;

va_start(args, format);
// print out name of function causing error
fprintf(stderr, "ERROR in %s: ", function_name);
// print out remainder of message
vfprintf(stderr, format, args);
va_end(args);

}

7.23.6.10 The vfscanf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vfscanf(FILE * restrict stream, const char * restrict format, va_list arg);

Description
2 The vfscanf function is equivalent to fscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfscanf function does not invoke the va_end macro.333)

Returns
3 The vfscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vfscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.23.6.11 The vprintf function

333)As the functions vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, and vsscanf invoke the va_arg macro,
arg after the return has an indeterminate representation.

© ISO/IEC 202y — All rights reserved

Library — 350

§ 7.23.6.11

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vprintf(const char * restrict format, va_list arg);

Description
2 The vprintf function is equivalent to printf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vprintf function does not invoke the va_end macro.333)

Returns
3 The vprintf function returns the number of characters transmitted, or a negative value if an output

or encoding error occurred.

7.23.6.12 The vscanf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vscanf(const char * restrict format, va_list arg);

Description
2 The vscanf function is equivalent to scanf, with the variable argument list replaced by arg, which

shall have been initialized by the va_start macro (and possibly subsequent va_arg calls). The
vscanf function does not invoke the va_end macro.333)

Returns
3 The vscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.23.6.13 The vsnprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vsnprintf(char * restrict s, size_t n, const char * restrict format, va_list

arg);

Description
2 The vsnprintf function is equivalent to snprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsnprintf function does not invoke the va_end macro.333) If copying takes place between
objects that overlap, the behavior is undefined.

Returns
3 The vsnprintf function returns the number of characters that would have been written had n been

sufficiently large, not counting the terminating null character, or a negative value if an encoding
error occurred. Thus, the null-terminated output has been completely written if and only if the
returned value is both nonnegative and less than n.

7.23.6.14 The vsprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>

§ 7.23.6.14 © ISO/IEC 202y — All rights reserved

Library — 351

ISO/IEC 9899:202y (en) — n3299 working draft

int vsprintf(char * restrict s, const char * restrict format, va_list arg);

Description
2 The vsprintf function is equivalent to sprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsprintf function does not invoke the va_end macro.333) If copying takes place between objects
that overlap, the behavior is undefined.

Returns
3 The vsprintf function returns the number of characters written in the array, not counting the

terminating null character, or a negative value if an encoding error occurred.

7.23.6.15 The vsscanf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vsscanf(const char * restrict s, const char * restrict format, va_list arg);

Description
2 The vsscanf function is equivalent to sscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsscanf function does not invoke the va_end macro.333)

Returns
3 The vsscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vsscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.23.7 Character input/output functions
7.23.7.1 The fgetc function
Synopsis

1 #include <stdio.h>
int fgetc(FILE *stream);

Description
2 If the end-of-file indicator for the input stream pointed to by stream is not set and a next character

is present, the fgetc function obtains that character as an unsigned char converted to an int and
advances the associated file position indicator for the stream (if defined).

Returns
3 If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file

indicator for the stream is set and the fgetc function returns EOF. Otherwise, the fgetc function
returns the next character from the input stream pointed to by stream. If a read error occurs, the
error indicator for the stream is set and the fgetc function returns EOF.334)

7.23.7.2 The fgets function
Synopsis

1 #include <stdio.h>
char *fgets(char * restrict s, int n, FILE * restrict stream);

334)An end-of-file and a read error can be distinguished by use of the feof and ferror functions.

© ISO/IEC 202y — All rights reserved

Library — 352

§ 7.23.7.2

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The fgets function reads at most one less than the number of characters specified by n from the

stream pointed to by stream into the array pointed to by s. No additional characters are read after a
new-line character (which is retained) or after end-of-file. A null character is written immediately
after the last character read into the array. If n is negative or zero, the behavior is undefined.

Returns
3 The fgets function returns s if successful. If end-of-file is encountered and no characters have been

read into the array, the contents of the array remain unchanged and a null pointer is returned. If a
read error occurs during the operation, the members of the array have unspecified values and a null
pointer is returned.

7.23.7.3 The fputc function
Synopsis

1 #include <stdio.h>
int fputc(int c, FILE *stream);

Description
2 The fputc function writes the character specified by c (converted to an unsigned char) to the

output stream pointed to by stream, at the position indicated by the associated file position indicator
for the stream (if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is appended to
the output stream.

Returns
3 The fputc function returns the character written. If a write error occurs, the error indicator for the

stream is set and fputc returns EOF.

7.23.7.4 The fputs function
Synopsis

1 #include <stdio.h>
int fputs(const char * restrict s, FILE * restrict stream);

Description
2 The fputs function writes the string pointed to by s to the stream pointed to by stream. The

terminating null character is not written.

Returns
3 The fputs function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

7.23.7.5 The getc function
Synopsis

1 #include <stdio.h>
int getc(FILE *stream);

Description
2 The getc function is equivalent to fgetc, except that if it is implemented as a macro, it may evaluate

stream more than once, so the argument should never be an expression with side effects.

Returns
3 The getc function returns the next character from the input stream pointed to by stream. If the

stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns EOF. If a read
error occurs, the error indicator for the stream is set and getc returns EOF.

§ 7.23.7.5 © ISO/IEC 202y — All rights reserved

Library — 353

ISO/IEC 9899:202y (en) — n3299 working draft

7.23.7.6 The getchar function
Synopsis

1 #include <stdio.h>
int getchar(void);

Description
2 The getchar function is equivalent to getc with the argument stdin.

Returns
3 The getchar function returns the next character from the input stream pointed to by stdin. If the

stream is at end-of-file, the end-of-file indicator for the stream is set and getchar returns EOF. If a
read error occurs, the error indicator for the stream is set and getchar returns EOF.

7.23.7.7 The putc function
Synopsis

1 #include <stdio.h>
int putc(int c, FILE *stream);

Description
2 The putc function is equivalent to fputc, except that if it is implemented as a macro, it may evaluate

stream more than once, so that argument should never be an expression with side effects.

Returns
3 The putc function returns the character written. If a write error occurs, the error indicator for the

stream is set and putc returns EOF.

7.23.7.8 The putchar function
Synopsis

1 #include <stdio.h>
int putchar(int c);

Description
2 The putchar function is equivalent to putc with the second argument stdout.

Returns
3 The putchar function returns the character written. If a write error occurs, the error indicator for

the stream is set and putchar returns EOF.

7.23.7.9 The puts function
Synopsis

1 #include <stdio.h>
int puts(const char *s);

Description
2 The puts function writes the string pointed to by s to the stream pointed to by stdout, and appends

a new-line character to the output. The terminating null character is not written.

Returns
3 The puts function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

7.23.7.10 The ungetc function

© ISO/IEC 202y — All rights reserved

Library — 354

§ 7.23.7.10

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <stdio.h>
int ungetc(int c, FILE *stream);

Description
2 The ungetc function pushes the character specified by c (converted to an unsigned char) back

onto the input stream pointed to by stream. Pushed-back characters will be returned by subsequent
reads on that stream in the reverse order of their pushing. A successful intervening call (with the
stream pointed to by stream) to a file positioning function (fseek, fsetpos, or rewind) discards
any pushed-back characters for the stream. The external storage corresponding to the stream is
unchanged.

3 One character of pushback is guaranteed. If the ungetc function is called too many times on the
same stream without an intervening read or file positioning operation on that stream, the operation
can fail.

4 If the value of c equals that of the macro EOF, the operation fails and the input stream is unchanged.

5 A successful call to the ungetc function clears the end-of-file indicator for the stream. The value
of the file position indicator for the stream after reading or discarding all pushed-back characters
shall be the same as it was before the characters were pushed back.335) For a text stream, the value
of its file position indicator after a successful call to the ungetc function is unspecified until all
pushed-back characters are read or discarded. For a binary stream, its file position indicator is
decremented by each successful call to the ungetc function; if its value was zero before a call, it has
an indeterminate representation after the call.336)

Returns
6 The ungetc function returns the character pushed back after conversion, or EOF if the operation

fails.

Forward references: file positioning functions (7.23.9).

7.23.8 Direct input/output functions
7.23.8.1 The fread function
Synopsis

1 #include <stdio.h>
size_t fread(void * restrict ptr, size_t size, size_t nmemb,

FILE * restrict stream);

Description
2 The fread function reads, into the array pointed to by ptr, up to nmemb elements whose size is

specified by size, from the stream pointed to by stream. For each object, size calls are made to
the fgetc function and the results stored, in the order read, in an array of unsigned char exactly
overlaying the object. The file position indicator for the stream (if defined) is advanced by the
number of characters successfully read. If an error occurs, the resulting representation of the file
position indicator for the stream is indeterminate. If a partial element is read, its representation is
indeterminate.

Returns
3 The fread function returns the number of elements successfully read, which can be less than nmemb

if a read error or end-of-file is encountered. If size or nmemb is zero, fread returns zero and the
contents of the array and the state of the stream remain unchanged.

7.23.8.2 The fwrite function

335)A file positioning function can further modify the file position indicator after discarding any pushed-back characters.
336)See "future library directions" (7.33.16).

§ 7.23.8.2 © ISO/IEC 202y — All rights reserved

Library — 355

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <stdio.h>
size_t fwrite(const void * restrict ptr, size_t size, size_t nmemb,

FILE * restrict stream);

Description
2 The fwrite function writes, from the array pointed to by ptr, up to nmemb elements whose size is

specified by size, to the stream pointed to by stream. For each object, size calls are made to the
fputc function, taking the values (in order) from an array of unsigned char exactly overlaying the
object. The file position indicator for the stream (if defined) is advanced by the number of characters
successfully written. If an error occurs, the resulting representation of the file position indicator for
the stream is indeterminate.

Returns
3 The fwrite function returns the number of elements successfully written, which will be less than

nmemb only if a write error is encountered. If size or nmemb is zero, fwrite returns zero and the
state of the stream remains unchanged.

7.23.9 File positioning functions
7.23.9.1 The fgetpos function
Synopsis

1 #include <stdio.h>
int fgetpos(FILE * restrict stream, fpos_t * restrict pos);

Description
2 The fgetpos function stores the current values of the parse state (if any) and file position indicator

for the stream pointed to by stream in the object pointed to by pos. The values stored contain
unspecified information usable by the fsetpos function for repositioning the stream to its position
at the time of the call to the fgetpos function.

Returns
3 If successful, the fgetpos function returns zero; on failure, the fgetpos function returns nonzero

and stores an implementation-defined positive value in errno.

Forward references: the fsetpos function (7.23.9.3).

7.23.9.2 The fseek function
Synopsis

1 #include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);

Description
2 The fseek function sets the file position indicator for the stream pointed to by stream. If a read or

write error occurs, the error indicator for the stream is set and fseek fails.

3 For a binary stream, the new position, measured in characters from the beginning of the file, is
obtained by adding offset to the position specified by whence. The specified position is the
beginning of the file if whence is SEEK_SET, the current value of the file position indicator if
SEEK_CUR, or end-of-file if SEEK_END. A binary stream can fail to meaningfully support fseek calls
with a whence value of SEEK_END.

4 For a text stream, either offset shall be zero, or offset shall be a value returned by an earlier
successful call to the ftell function on a stream associated with the same file and whence shall be
SEEK_SET.

5 After determining the new position, a successful call to the fseek function undoes any effects of the

© ISO/IEC 202y — All rights reserved

Library — 356

§ 7.23.9.2

ISO/IEC 9899:202y (en) — n3299 working draft

ungetc function on the stream, clears the end-of-file indicator for the stream, and then establishes
the new position. After a successful fseek call, the next operation on an update stream may be
either input or output.

Returns
6 The fseek function returns nonzero only for a request that cannot be satisfied.

Forward references: the ftell function (7.23.9.4).

7.23.9.3 The fsetpos function
Synopsis

1 #include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Description
2 The fsetpos function sets the mbstate_t object (if any) and file position indicator for the stream

pointed to by stream according to the value of the object pointed to by pos, which shall be a value
obtained from an earlier successful call to the fgetpos function on a stream associated with the
same file. If a read or write error occurs, the error indicator for the stream is set and fsetpos fails.

3 A successful call to the fsetpos function undoes any effects of the ungetc function on the stream,
clears the end-of-file indicator for the stream, and then establishes the new parse state and position.
After a successful fsetpos call, the next operation on an update stream may be either input or
output.

Returns
4 If successful, the fsetpos function returns zero; on failure, the fsetpos function returns nonzero

and stores an implementation-defined positive value in errno.

7.23.9.4 The ftell function
Synopsis

1 #include <stdio.h>
long int ftell(FILE *stream);

Description
2 The ftell function obtains the current value of the file position indicator for the stream pointed to

by stream. For a binary stream, the value is the number of characters from the beginning of the file.
For a text stream, its file position indicator contains unspecified information, usable by the fseek
function for returning the file position indicator for the stream to its position at the time of the ftell
call; the difference between two such return values is not necessarily a meaningful measure of the
number of characters written or read.

Returns
3 If successful, the ftell function returns the current value of the file position indicator for the stream.

On failure, the ftell function returns -1L and stores an implementation-defined positive value in
errno.

7.23.9.5 The rewind function
Synopsis

1 #include <stdio.h>
void rewind(FILE *stream);

Description
2 The rewind function sets the file position indicator for the stream pointed to by stream to the

beginning of the file. It is equivalent to

§ 7.23.9.5 © ISO/IEC 202y — All rights reserved

Library — 357

ISO/IEC 9899:202y (en) — n3299 working draft

(void)fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared.

Returns
3 The rewind function returns no value.

7.23.10 Error-handling functions
7.23.10.1 The clearerr function
Synopsis

1 #include <stdio.h>
void clearerr(FILE *stream);

Description
2 The clearerr function clears the end-of-file and error indicators for the stream pointed to by

stream.

Returns
3 The clearerr function returns no value.

7.23.10.2 The feof function
Synopsis

1 #include <stdio.h>
int feof(FILE *stream);

Description
2 The feof function tests the end-of-file indicator for the stream pointed to by stream.

Returns
3 The feof function returns nonzero if and only if the end-of-file indicator is set for stream.

© ISO/IEC 202y — All rights reserved

Library — 358

§ 7.23.10.2

ISO/IEC 9899:202y (en) — n3299 working draft

7.23.10.3 The ferror function
Synopsis

1 #include <stdio.h>
int ferror(FILE *stream);

Description
2 The ferror function tests the error indicator for the stream pointed to by stream.

Returns
3 The ferror function returns nonzero if and only if the error indicator is set for stream.

7.23.10.4 The perror function
Synopsis

1 #include <stdio.h>
void perror(const char *s);

Description
2 The perror function maps the error number in the integer expression errno to an error message.

It writes a sequence of characters to the standard error stream thus: first (if s is not a null pointer
and the character pointed to by s is not the null character), the string pointed to by s followed by a
colon (:) and a space; then an appropriate error message string followed by a new-line character.
The contents of the error message strings are the same as those returned by the strerror function
with argument errno.

Returns
3 The perror function returns no value.

Forward references: the strerror function (7.26.6.3).

§ 7.23.10.4 © ISO/IEC 202y — All rights reserved

Library — 359

ISO/IEC 9899:202y (en) — n3299 working draft

7.24 General utilities <stdlib.h>
7.24.1 General

1 The header <stdlib.h> declares several types and functions of general utility, and defines several
macros.337)

2 The feature test macro __STDC_VERSION_STDLIB_H__ expands to the token 202311L.

3 The types declared are size_t and wchar_t (both described in 7.21), once_flag (described in 7.28),

div_t

which is a structure type that is the type of the value returned by the div function,

ldiv_t

which is a structure type that is the type of the value returned by the ldiv function, and

lldiv_t

which is a structure type that is the type of the value returned by the lldiv function.

4 The macros defined are NULL (described in 7.21); ONCE_FLAG_INIT (described in 7.28);

EXIT_FAILURE

and

EXIT_SUCCESS

which expand to integer constant expressions that can be used as the argument to the exit function
to return unsuccessful or successful termination status, respectively, to the host environment;

RAND_MAX

which expands to an integer constant expression that is the maximum value returned by the rand
function; and

MB_CUR_MAX

which expands to a positive integer expression with type size_t that is the maximum number of
bytes in a multibyte character for the extended character set specified by the current locale (category
LC_CTYPE), which is never greater than MB_LEN_MAX.

5 The function

#include <stdlib.h>
void call_once(once_flag *flag, void (*func)(void));

is described in 7.28.2.

7.24.2 Numeric conversion functions
7.24.2.1 General

1 The functions atof, atoi, atol, and atoll are not required to affect the value of the integer
expression errno on an error. If the value of the result cannot be represented, the behavior is
undefined.

7.24.2.2 The atof function
337)See "future library directions" (7.33.17).

© ISO/IEC 202y — All rights reserved

Library — 360

§ 7.24.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <stdlib.h>
double atof(const char *nptr);

Description
2 The atof function converts the initial portion of the string pointed to by nptr to double representa-

tion. Except for the behavior on error, it is equivalent to

strtod(nptr, nullptr)

Returns
3 The atof function returns the converted value.

Forward references: the strtod, strtof, and strtold functions (7.24.2.6).

7.24.2.3 The atoi, atol, and atoll functions
Synopsis

1 #include <stdlib.h>
int atoi(const char *nptr);
long int atol(const char *nptr);
long long int atoll(const char *nptr);

Description
2 The atoi, atol, and atoll functions convert the initial portion of the string pointed to by nptr to

int, long int, and long long int representation, respectively. Except for the behavior on error,
they are equivalent to

atoi: (int)strtol(nptr, nullptr, 10)
atol: strtol(nptr, nullptr, 10)
atoll: strtoll(nptr, nullptr, 10)

Returns
3 The atoi, atol, and atoll functions return the converted value.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.24.2.8).

7.24.2.4 The strfromd, strfromf, and strfroml functions
Synopsis

1 #include <stdlib.h>
int strfromd(char * restrict s, size_t n, const char * restrict format,

double fp);
int strfromf(char * restrict s, size_t n, const char * restrict format,

float fp);
int strfroml(char * restrict s, size_t n, const char * restrict format,

long double fp);

Description
2 The strfromd, strfromf, and strfroml functions are equivalent to snprintf(s, n, format,

fp) (7.23.6.6), except that the default argument promotions are not applied and the format string
shall only contain the character %, an optional precision that does not contain an asterisk *, and
one of the conversion specifiers a, A, e, E, f, F, g, or G, which applies to the type (double, float,
or long double) indicated by the function suffix (rather than by a length modifier). Use of these
functions with any other format string results in undefined behavior.

§ 7.24.2.4 © ISO/IEC 202y — All rights reserved

Library — 361

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The strfromd, strfromf, and strfroml functions return the number of characters that would

have been written had n been sufficiently large, not counting the terminating null character. Thus,
the null-terminated output has been completely written if and only if the returned value is both
nonnegative and less than n.

7.24.2.5 The strfromdN functions
Synopsis

1 #include <stdlib.h>
#ifdef __STDC_IEC_60559_DFP__

int strfromd32(char * restrict s, size_t n, const char * restrict format,
_Decimal32 fp);

int strfromd64(char * restrict s, size_t n, const char * restrict format,
_Decimal64 fp);

int strfromd128(char * restrict s, size_t n, const char * restrict format,
_Decimal128 fp);

#endif

Description
2 The strfromdN functions are equivalent to snprintf(s, n, format, fp) (7.23.6.6), except the

format string contains only the character %, an optional precision that does not contain an asterisk *,
and one of the conversion specifiers a, A, e, E, f, F, g, or G, which applies to the type (_Decimal32,
_Decimal64, or _Decimal128) indicated by the function suffix (rather than by a length modifier).
Use of these functions with any other format string results in undefined behavior.

Returns
3 The strfromdN functions return the number of characters that would have been written had n been

sufficiently large, not counting the terminating null character. Thus, the null-terminated output has
been completely written if and only if the returned value is both nonnegative and less than n.

7.24.2.6 The strtod, strtof, and strtold functions
Synopsis

1 #include <stdlib.h>
double strtod(const char * restrict nptr, char ** restrict endptr);
float strtof(const char * restrict nptr, char ** restrict endptr);
long double strtold(const char * restrict nptr, char ** restrict endptr);

Description
2 The strtod, strtof, and strtold functions convert the initial portion of the string pointed to by

nptr to double, float, and long double representation, respectively. First, they decompose the
input string into three parts: an initial, possibly empty, sequence of white-space characters, a subject
sequence resembling a floating constant or representing an infinity or NaN; and a final string of one
or more unrecognized characters, including the terminating null character of the input string. Then,
they attempt to convert the subject sequence to a floating-point number, and return the result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

— a nonempty sequence of decimal digits optionally containing a decimal-point character, then
an optional exponent part as defined in 6.4.5.3, excluding any digit separators (6.4.5.2);

— a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-
point character, then an optional binary exponent part as defined in 6.4.5.3, excluding any digit
separators;

— INF or INFINITY, ignoring case

© ISO/IEC 202y — All rights reserved

Library — 362

§ 7.24.2.6

ISO/IEC 9899:202y (en) — n3299 working draft

— NAN or NAN(n-char-sequenceopt), ignoring case in the NAN part, where:
n-char-sequence:

digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) is interpreted as a
floating constant according to the rules of 6.4.5.3, except that the decimal-point character is used
in place of a period, and that if neither an exponent part nor a decimal-point character appears in
a decimal floating-point number, or if a binary exponent part does not appear in a hexadecimal
floating-point number, an exponent part of the appropriate type with value zero is assumed to
follow the last digit in the string. If the subject sequence begins with a minus sign, the sequence is
interpreted as arithmetically negated.338)

5 A character sequence INF or INFINITY is interpreted as an infinity, if representable in the return type,
else like a floating constant that is too large for the range of the return type. A character sequence
NAN or NAN(n-char-sequenceopt) is interpreted as a quiet NaN, if supported in the return type, else like
a subject sequence part that does not have the expected form; the meaning of the n-char sequence is
implementation-defined.339) A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

6 If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value resulting
from the conversion is correctly rounded.

7 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

8 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Recommended practice
9 If the subject sequence has the hexadecimal form, FLT_RADIX is not a power of 2, and the result is

not exactly representable, the result should be one of the two numbers in the appropriate internal
format that are adjacent to the hexadecimal floating source value, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

10 If the subject sequence has the decimal form and at most M significant digits, where M is the
maximum value of the T_DECIMAL_DIGmacros (defined in <float.h>), the result should be correctly
rounded. If the subject sequence D has the decimal form and more than M significant digits, consider
the two bounding, adjacent decimal strings L and U, both having M significant digits, such that the
values of L, D, and U satisfy L ≤ D ≤ U. The result should be one of the (equal or adjacent) values
that would be obtained by correctly rounding L and U according to the current rounding direction,
with the extra stipulation that the error with respect to D should have a correct sign for the current
rounding direction.340)

Returns
11 The functions return the converted value, if any. If no conversion could be performed, positive or

unsigned zero is returned.

338)It is unspecified whether a minus-signed sequence is converted to a negative number directly or by arithmetically
negating the value resulting from converting the corresponding unsigned sequence (see F.5); the two methods can yield
different results if rounding is toward positive or negative infinity. In either case, the functions honor the sign of zero if
floating-point arithmetic supports signed zeros.
339)An implementation can use the n-char sequence to determine extra information to be represented in the NaN’s significand.
340)M is sufficiently large that L and U will usually correctly round to the same internal floating value, but if not will correctly

round to adjacent values.

§ 7.24.2.6 © ISO/IEC 202y — All rights reserved

Library — 363

ISO/IEC 9899:202y (en) — n3299 working draft

12 If the correct value overflows and default rounding is in effect (7.12.2), plus or minus HUGE_VAL,
HUGE_VALF, or HUGE_VALL is returned (according to the return type and sign of the value); if the
integer expression math_errhandling & MATH_ERRNO is nonzero, the integer expression errno
acquires the value of ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT is
nonzero, the "overflow" floating-point exception is raised.

13 If the result underflows (7.12.2), the functions return a value whose magnitude is no greater than the
smallest normalized positive number in the return type; if the integer expression math_errhandling
& MATH_ERRNO is nonzero, whether errno acquires the value ERANGE is implementation-defined; if

the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, whether the "underflow"
floating-point exception is raised is implementation-defined.

7.24.2.7 The strtodN functions
Synopsis

1 #include <stdlib.h>
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 strtod32(const char * restrict nptr, char ** restrict endptr);
_Decimal64 strtod64(const char * restrict nptr, char ** restrict endptr);
_Decimal128 strtod128(const char * restrict nptr, char ** restrict endptr);
#endif

Description
2 The strtodN functions convert the initial portion of the string pointed to by nptr to decimal floating

type representation. First, they decompose the input string into three parts: an initial, possibly
empty, sequence of white-space characters; a subject sequence resembling a floating constant or
representing an infinity or NaN; and a final string of one or more unrecognized characters, including
the terminating null character of the input string. Then, they attempt to convert the subject sequence
to a floating-point number, and return the result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

— a nonempty sequence of decimal digits optionally containing a decimal-point character, then
an optional exponent part as defined in 6.4.5.3, excluding any digit separators (6.4.5.2)

— a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-
point character, then an optional binary exponent part as defined in 6.4.5.3, excluding any digit
separators (6.4.5.2)

— INF or INFINITY, ignoring case

— NAN or NAN(d-char-sequenceopt), ignoring case in the NAN part, where:

d-char-sequence:
digit
nondigit
d-char-sequence digit
d-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) is interpreted as a
floating constant according to the rules of 6.4.5.3, except that the decimal-point character is used

© ISO/IEC 202y — All rights reserved

Library — 364

§ 7.24.2.7

ISO/IEC 9899:202y (en) — n3299 working draft

in place of a period, and that if neither an exponent part nor a decimal-point character appears in
a decimal floating-point number, or if a binary exponent part does not appear in a hexadecimal
floating-point number, an exponent part of the appropriate type with value zero is assumed to
follow the last digit in the string. If the subject sequence begins with a minus sign, the sequence is
interpreted as arithmetically negated before rounding and the sign s is set to −1, else s is set to 1.

5 If the subject sequence has the expected form for a decimal floating-point number, the value resulting
from the conversion is correctly rounded and the coefficient c and the quantum exponent q are
determined by the rules in 6.4.5.3 for a decimal floating constant of decimal type.

6 If the subject sequence has the expected form for a hexadecimal floating-point number, the value
resulting from the conversion is correctly rounded provided the subject sequence has at most
M significant hexadecimal digits, where M ≥ ⌈(P − 1)/4⌉ + 1 is implementation-defined, and
P is the maximum precision of the supported radix-2 floating types and binary non-arithmetic
interchange formats.341) If all subject sequences of hexadecimal form are correctly rounded, M may
be regarded as infinite. If the subject sequence has more than M significant hexadecimal digits, the
implementation may first round to M significant hexadecimal digits according to the applicable
decimal rounding direction mode, signaling exceptions as though converting from a wider format,
then correctly round the result of the shortened hexadecimal input to the result type. The preferred
quantum exponent for the result is 0 if the hexadecimal number is exactly represented in the decimal
type; the preferred quantum exponent for the result is the least possible if the hexadecimal number
is not exactly represented in the decimal type.

7 A character sequence INF or INFINITY is interpreted as an infinity. A character sequence NAN
or NAN(d-char-sequenceopt), is interpreted as a quiet NaN; the meaning of the d-char sequence is
implementation-defined.342) A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

8 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

9 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Returns
10 The strtodN functions return the converted value, if any. If no conversion could be performed, the

value of the triple (+1, 0, 0) is returned. If the correct value overflows:

— the value of the macro ERANGE is stored in errno if the integer expression math_errhandling
& MATH_ERRNO is nonzero;

— the "overflow" floating-point exception is raised if the integer expression math_errhandling
& MATH_ERREXCEPT is nonzero.

If the result underflows (7.12.2), whether errno acquires the value ERANGE if the integer expression
math_errhandling & MATH_ERRNO is nonzero is implementation-defined; if the integer expres-
sion math_errhandling & MATH_ERREXCEPT is nonzero, whether the "underflow" floating-point
exception is raised is implementation-defined.

11 EXAMPLE Following are subject sequences of the decimal form and the resulting triples (s, c, q) produced by
strtod64. For _Decimal64, the precision (maximum coefficient length) is 16 and the quantum exponent range
is −398 ≤ q ≤ 369.

"0" (+1, 0, 0)
"0.00" (+1, 0,−2)
"123" (+1, 123, 0)
"-123" (−1, 123, 0)
"1.23E3" (+1, 123, 1)
"1.23E+3" (+1, 123, 1)

341)Non-arithmetic interchange formats are an optional feature in Annex H.
342)An implementation can use the d-char sequence to determine extra information to be represented in the NaN’s significand.

§ 7.24.2.7 © ISO/IEC 202y — All rights reserved

Library — 365

ISO/IEC 9899:202y (en) — n3299 working draft

"12.3E+7" (+1, 123, 6)
"12.0" (+1, 120,−1)
"12.3" (+1, 123,−1)
"0.00123" (+1, 123,−5)
"-1.23E-12" (−1, 123,−14)
"1234.5E-4" (+1, 12345,−5)
"-0" (−1, 0, 0)
"-0.00" (−1, 0,−2)
"0E+7" (+1, 0, 7)
"-0E-7" (−1, 0,−7)
"12345678901234567890" (+1, 1234567890123457, 4) or (+1, 1234567890123456, 4) depending on

rounding mode
"1234E-400" (+1, 12,−398) or (+1, 13,−398) depending on rounding mode
"1234E-402" (+1, 0,−398) or (+1, 1,−398) depending on rounding mode
"1000." (+1, 1000, 0)
".0001" (+1, 1,−4)
"1000.e0" (+1, 1000, 0)
".0001e0" (+1, 1,−4)
"1000.0" (+1, 10000,−1)
"0.0001" (+1, 1,−4)
"1000.00" (+1, 100000,−2)
"00.0001" (+1, 1,−4)
"001000." (+1, 1000, 0)
"001000.0" (+1, 10000,−1)
"001000.00" (+1, 100000,−2)
"00.00" (+1, 0,−2)
"00." (+1, 0, 0)
".00" (+1, 0,−2)
"00.00e-5" (+1, 0,−7)
"00.e-5" (+1, 0,−5)
".00e-5" (+1, 0,−7)
"0x1.8p+4" (+1, 24, 0)
"infinite" infinity, and a pointer to "inite" is stored in the object pointed to by endptr,

provided endptr is not a null pointer

7.24.2.8 The strtol, strtoll, strtoul, and strtoull functions
Synopsis

1 #include <stdlib.h>
long int strtol(const char * restrict nptr, char ** restrict endptr, int base);
long long int strtoll(const char * restrict nptr, char ** restrict endptr,

int base);
unsigned long int strtoul(const char * restrict nptr, char ** restrict endptr,

int base);
unsigned long long int strtoull(const char * restrict nptr,

char ** restrict endptr, int base);

Description
2 The strtol, strtoll, strtoul, and strtoull functions convert the initial portion of the string

pointed to by nptr to long int, long long int, unsigned long int, and unsigned long long
int representation, respectively. First, they decompose the input string into three parts: an initial,

possibly empty, sequence of white-space characters, a subject sequence resembling an integer
represented in some radix determined by the value of base, and a final string of one or more
unrecognized characters, including the terminating null character of the input string. Then, they
attempt to convert the subject sequence to an integer, and return the result.

3 If the value of base is zero, the expected form of the subject sequence is that of an integer constant as
described in 6.4.5.2, optionally preceded by a plus or minus sign, but not including an integer suffix
or any optional digit separators. If the value of base is between 2 and 36 (inclusive), the expected
form of the subject sequence is a sequence of letters and digits representing an integer with the radix

© ISO/IEC 202y — All rights reserved

Library — 366

§ 7.24.2.8

ISO/IEC 9899:202y (en) — n3299 working draft

specified by base, optionally preceded by a plus or minus sign, but not including an integer suffix
or any optional digit separators. The letters from a (or A) through z (or Z) are ascribed the values 10
through 35; only letters and digits whose ascribed values are less than that of base are permitted.
If the value of base is 2, the characters 0b or 0B can optionally precede the sequence of letters and
digits, following the sign if present. If the value of base is 16, the characters 0x or 0X can optionally
precede the sequence of letters and digits, following the sign if present.

4 The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is empty or consists entirely of white-space characters, or if the first
non-white-space character is other than a sign or a permissible letter or digit.

5 If the subject sequence has the expected form and the value of base is zero, the sequence of characters
starting with the first digit is interpreted as an integer constant according to the rules of 6.4.5.2. If
the subject sequence has the expected form and the value of base is between 2 and 36, it is used as
the base for conversion, ascribing to each letter its value as previously given. If the subject sequence
begins with a minus sign, the resulting value is the negative of the converted value; for functions
whose return type is an unsigned integer type this action is performed in the return type. A pointer
to the final string is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

6 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

7 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Returns
8 The strtol, strtoll, strtoul, and strtoull functions return the converted value, if any. If

no conversion could be performed, zero is returned. If the correct value is outside the range of
representable values, LONG_MIN, LONG_MAX, LLONG_MIN, LLONG_MAX, ULONG_MAX, or ULLONG_MAX is
returned (according to the return type and sign of the value, if any), and the value of the macro
ERANGE is stored in errno.

7.24.3 Pseudo-random sequence generation functions
7.24.3.1 The rand function
Synopsis

1 #include <stdlib.h>
int rand(void);

Description
2 The rand function computes a sequence of pseudo-random integers in the range 0 to RAND_MAX

inclusive.

3 The rand function is not required to avoid data races with other calls to pseudo-random sequence
generation functions. The implementation shall behave as if no library function calls the rand
function.

4 NOTE There are no guarantees as to the quality of the random sequence produced and some implementations
are known to produce sequences with distressingly non-random low-order bits. Applications with particular
requirements should use a generator that is known to be sufficient for their needs.

Returns
5 The rand function returns a pseudo-random integer.

Environmental limits
6 The value of the RAND_MAX macro shall be at least 32767.

7.24.3.2 The srand function
Synopsis

1

§ 7.24.3.2 © ISO/IEC 202y — All rights reserved

Library — 367

ISO/IEC 9899:202y (en) — n3299 working draft

#include <stdlib.h>
void srand(unsigned int seed);

Description
2 The srand function uses the argument as a seed for a new sequence of pseudo-random numbers

to be returned by subsequent calls to rand. If srand is then called with the same seed value, the
sequence of pseudo-random numbers shall be repeated. If rand is called before any calls to srand
have been made, the same sequence shall be generated as when srand is first called with a seed
value of 1.

3 The srand function is not required to avoid data races with other calls to pseudo-random sequence
generation functions. The implementation shall behave as if no library function calls the srand
function.

Returns
4 The srand function returns no value.

5 EXAMPLE The following functions define a portable implementation of rand and srand.

static unsigned long int next = 1;

int rand(void) // RAND_MAX assumed to be 32767
{

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

void srand(unsigned int seed)
{

next = seed;
}

7.24.4 Memory management functions
7.24.4.1 General

1 The order and contiguity of storage allocated by successive calls to the aligned_alloc, calloc,
malloc, and realloc functions is unspecified. The pointer returned if the allocation succeeds is
suitably aligned so that it can be assigned to a pointer to any type of object with a fundamental
alignment requirement and size less than or equal to the size requested. It can then be used to
access such an object or an array of such objects in the space allocated (until the space is explicitly
deallocated). The lifetime of an allocated object extends from the allocation until the deallocation.
Each such allocation shall yield a pointer to an object disjoint from any other object. The pointer
returned points to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, a null pointer is returned. If the size of the space requested is zero, the behavior is
implementation-defined: either a null pointer is returned to indicate an error, or the behavior is as if
the size were some nonzero value, except that the returned pointer shall not be used to access an
object.

2 For purposes of determining the existence of a data race, memory allocation functions behave as
though they accessed only memory locations accessible through their arguments and not other
static duration storage. These functions may, however, visibly modify the storage that they allocate
or deallocate. Calls to these functions that allocate or deallocate a particular region of memory
shall occur in a single total order, and each such deallocation call shall synchronize with the next
allocation (if any) in this order.

7.24.4.2 The aligned_alloc function
Synopsis

1 #include <stdlib.h>

© ISO/IEC 202y — All rights reserved

Library — 368

§ 7.24.4.2

ISO/IEC 9899:202y (en) — n3299 working draft

void *aligned_alloc(size_t alignment, size_t size);

Description
2 The aligned_alloc function allocates space for an object whose alignment is specified by

alignment,343) whose size is specified by size, and whose representation is indeterminate. If
the value of alignment is not a valid alignment supported by the implementation the function shall
fail by returning a null pointer.

Returns
3 The aligned_alloc function returns either a null pointer or a pointer to the allocated space.

7.24.4.3 The calloc function
Synopsis

1 #include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description
2 The calloc function allocates space for an array of nmemb objects, each of whose size is size. The

space is initialized to all bits zero.344)

Returns
3 The calloc function returns either a pointer to the allocated space or a null pointer if the space

cannot be allocated or if the product nmemb * size would wraparound size_t.

7.24.4.4 The free function
Synopsis

1 #include <stdlib.h>
void free(void *ptr);

Description
2 The free function causes the space pointed to by ptr to be deallocated, that is, made available

for further allocation. If ptr is a null pointer, no action occurs. Otherwise, if the argument does
not match a pointer earlier returned by a memory management function, or if the space has been
deallocated by a call to free or realloc, the behavior is undefined.

Returns
3 The free function returns no value.

7.24.4.5 The free_sized function
Synopsis

1 #include <stdlib.h>
void free_sized(void *ptr, size_t size);

Description
2 If ptr is a null pointer or the result obtained from a call to malloc, realloc, or calloc, where size

size is equal to the requested allocation size, this function is equivalent to free(ptr). Otherwise,
the behavior is undefined. The result of an aligned_alloc call may not be passed to free_sized.

3 NOTE A conforming implementation can ignore size and call free.

343)The alignment requirements from 7.24.4 also apply even if the requested alignment is less strict.
344)This is not expected to be the same as the representation of floating-point zero or a null pointer constant.

§ 7.24.4.5 © ISO/IEC 202y — All rights reserved

Library — 369

ISO/IEC 9899:202y (en) — n3299 working draft

Recommended practice
4 Implementations may provide extensions to query the usable size of an allocation, or to determine

the usable size of the allocation that would result if a request for some other size were to succeed.
Such implementations should allow passing the resulting usable size as the size parameter, and
provide functionality equivalent to free in such cases.

Returns
5 The free_sized function returns no value.

7.24.4.6 The free_aligned_sized function
Synopsis

1 #include <stdlib.h>
void free_aligned_sized(void *ptr, size_t alignment, size_t size);

Description
2 If ptr is a null pointer or the result obtained from a call to aligned_alloc, where alignment is

equal to the requested allocation alignment and size is equal to the requested allocation size, this
function is equivalent to free(ptr). Otherwise, the behavior is undefined. The result of an malloc,
calloc, or realloc call may not be passed to free_aligned_sized.

3 NOTE A conforming implementation can ignore alignment and size and call free.

Recommended practice
4 Implementations may provide extensions to query the usable size of an allocation, or to determine

the usable size of the allocation that would result if a request for some other size were to succeed.
Such implementations should allow passing the resulting usable size as the size parameter, and
provide functionality equivalent to free in such cases.

Returns
5 The free_aligned_sized function returns no value.

7.24.4.7 The malloc function
Synopsis

1 #include <stdlib.h>
void *malloc(size_t size);

Description
2 The malloc function allocates space for an object whose size is specified by size and whose

representation is indeterminate.

Returns
3 The malloc function returns either a null pointer or a pointer to the allocated space.

7.24.4.8 The realloc function
Synopsis

1 #include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description
2 The realloc function deallocates the old object pointed to by ptr and returns a pointer to a new

object that has the size specified by size. The contents of the new object shall be the same as that of
the old object prior to deallocation, up to the lesser of the new and old sizes. Any bytes in the new
object beyond the size of the old object have unspecified values.

3 If ptr is a null pointer, the realloc function behaves like the malloc function for the specified size.

© ISO/IEC 202y — All rights reserved

Library — 370

§ 7.24.4.8

ISO/IEC 9899:202y (en) — n3299 working draft

Otherwise, if ptr does not match a pointer earlier returned by a memory management function, or
if the space has been deallocated by a call to the free or realloc function, or if the size is zero, the
behavior is undefined. If memory for the new object is not allocated, the old object is not deallocated
and its value is unchanged.

Returns
4 The realloc function returns a pointer to the new object (which can have the same value as a

pointer to the old object), or a null pointer if the new object has not been allocated.

7.24.5 Communication with the environment
7.24.5.1 The abort function
Synopsis

1 #include <stdlib.h>
[[noreturn]] void abort(void);

Description
2 The abort function causes abnormal program termination to occur, unless the signal SIGABRT is

being caught and the signal handler does not return. Whether open streams with unwritten buffered
data are flushed, open streams are closed, or temporary files are removed is implementation-
defined. An implementation-defined form of the status unsuccessful termination is returned to the
host environment by means of the function call raise(SIGABRT).

Returns
3 The abort function does not return to its caller.

7.24.5.2 The atexit function
Synopsis

1 #include <stdlib.h>
int atexit(void (*func)(void));

Description
2 The atexit function registers the function pointed to by func, to be called without arguments at

normal program termination.345) It is unspecified whether a call to the atexit function that does
not happen before the exit function is called will succeed.

Environmental limits
3 The implementation shall support the registration of at least 32 functions.

Returns
4 The atexit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the at_quick_exit function (7.24.5.3), the exit function (7.24.5.4).

7.24.5.3 The at_quick_exit function
Synopsis

1 #include <stdlib.h>
int at_quick_exit(void (*func)(void));

Description
2 The at_quick_exit function registers the function pointed to by func, to be called without ar-

guments should quick_exit be called.346) It is unspecified whether a call to the at_quick_exit

345)The atexit function registrations are distinct from the at_quick_exit registrations, so applications potentially need to
call both registration functions with the same argument.
346)The at_quick_exit function registrations are distinct from the atexit registrations, so applications potentially need to

call both registration functions with the same argument.

§ 7.24.5.3 © ISO/IEC 202y — All rights reserved

Library — 371

ISO/IEC 9899:202y (en) — n3299 working draft

function that does not happen before the quick_exit function is called will succeed.

Environmental limits
3 The implementation shall support the registration of at least 32 functions.

Returns
4 The at_quick_exit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the quick_exit function (7.24.5.7).

7.24.5.4 The exit function
Synopsis

1 #include <stdlib.h>
[[noreturn]] void exit(int status);

Description
2 The exit function causes normal program termination to occur. No functions registered by the

at_quick_exit function are called. If a program calls the exit function more than once, or calls the
quick_exit function in addition to the exit function, the behavior is undefined.

3 First, all functions registered by the atexit function are called, in the reverse order of their registra-
tion,347) except that a function is called after any previously registered functions that had already
been called at the time it was registered. If, during the call to any such function, a call to the longjmp
function is made that would terminate the call to the registered function, the behavior is undefined.

4 Next, all open streams with unwritten buffered data are flushed, all open streams are closed, and all
files created by the tmpfile function are removed.

5 Finally, control is returned to the host environment. If the value of status is zero or EXIT_SUCCESS,
an implementation-defined form of the status successful termination is returned. If the value of
status is EXIT_FAILURE, an implementation-defined form of the status unsuccessful termination is
returned. Otherwise the status returned is implementation-defined.

Returns
6 The exit function cannot return to its caller.

7.24.5.5 The _Exit function
Synopsis

1 #include <stdlib.h>
[[noreturn]] void _Exit(int status);

Description
2 The _Exit function causes normal program termination to occur and control to be returned to the

host environment. No functions registered by the atexit function, the at_quick_exit function,
or signal handlers registered by the signal function are called. The status returned to the host
environment is determined in the same way as for the exit function (7.24.5.4). Whether open
streams with unwritten buffered data are flushed, open streams are closed, or temporary files are
removed is implementation-defined.

Returns
3 The _Exit function cannot return to its caller.

7.24.5.6 The getenv function
Synopsis

1
347)Each function is called as many times as it was registered, and in the correct order with respect to other registered

functions.

© ISO/IEC 202y — All rights reserved

Library — 372

§ 7.24.5.6

ISO/IEC 9899:202y (en) — n3299 working draft

#include <stdlib.h>
char *getenv(const char *name);

Description
2 The getenv function searches an environment list, provided by the host environment, for a string that

matches the string pointed to by name. The set of environment names and the method for altering
the environment list are implementation-defined. The getenv function is not required to avoid data
races with other threads of execution that modify the environment list.348)

3 The implementation shall behave as if no library function calls the getenv function.

Returns
4 The getenv function returns a pointer to a string associated with the matched list member. The

string pointed to shall not be modified by the program, but can be overwritten by a subsequent call
to the getenv function. If the specified name cannot be found, a null pointer is returned.

7.24.5.7 The quick_exit function
Synopsis

1 #include <stdlib.h>
[[noreturn]] void quick_exit(int status);

Description
2 The quick_exit function causes normal program termination to occur. No functions registered by

the atexit function or signal handlers registered by the signal function are called. If a program calls
the quick_exit function more than once, or calls the exit function in addition to the quick_exit
function, the behavior is undefined. If a signal is raised while the quick_exit function is executing,
the behavior is undefined.

3 The quick_exit function first calls all functions registered by the at_quick_exit function, in the
reverse order of their registration,349) except that a function is called after any previously registered
functions that had already been called at the time it was registered. If, during the call to any such
function, a call to the longjmp function is made that would terminate the call to the registered
function, the behavior is undefined.

4 Then control is returned to the host environment by means of the function call _Exit(status).

Returns
5 The quick_exit function cannot return to its caller.

7.24.5.8 The system function
Synopsis

1 #include <stdlib.h>
int system(const char *string);

Description
2 If string is a null pointer, the system function determines whether the host environment has a

command processor. If string is not a null pointer, the system function passes the string pointed to
by string to that command processor to be executed in a manner which the implementation shall
document; this can then cause the program calling system to behave in a non-conforming manner
or to terminate.

348)Many implementations provide non-standard functions that modify the environment list.
349)Each function is called as many times as it was registered, and in the correct order with respect to other registered

functions.

§ 7.24.5.8 © ISO/IEC 202y — All rights reserved

Library — 373

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 If the argument is a null pointer, the system function returns nonzero only if a command processor

is available. If the argument is not a null pointer, and the system function does return, it returns an
implementation-defined value.

7.24.6 Searching and sorting utilities
7.24.6.1 General

1 These utilities make use of a comparison function to search or sort arrays of unspecified type. Where
an argument declared as size_t nmemb specifies the length of the array for a function, nmemb can
have the value zero on a call to that function; the comparison function is not called, a search finds no
matching element, and sorting performs no rearrangement. Pointer arguments on such a call shall
still have valid values, as described in 7.1.4.

2 The implementation shall ensure that the second argument of the comparison function (when called
from bsearch), or both arguments (when called from qsort), are pointers to elements of the array.350)

The first argument when called from bsearch shall equal key.

3 The comparison function shall not alter the contents of the array. The implementation may reorder
elements of the array between calls to the comparison function, but shall not alter the contents of
any individual element.

4 When the same objects (consisting of size bytes, irrespective of their current positions in the array)
are passed more than once to the comparison function, the results shall be consistent with one
another. That is, for qsort they shall define a total ordering on the array, and for bsearch the same
object shall always compare the same way with the key.

5 A sequence point occurs immediately before and immediately after each call to the comparison
function, and also between any call to the comparison function and any movement of the objects
passed as arguments to that call.

7.24.6.2 The bsearch generic function
Synopsis

1 #include <stdlib.h>
QVoid *bsearch(const void *key, QVoid *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Description
2 The bsearch generic function searches an array of nmemb objects, the initial element of which is

pointed to by base, for an element that matches the object pointed to by key. The size of each
element of the array is specified by size.

3 The comparison function pointed to by compar is called with two arguments that point to the key
object and to an array element, in that order. The function shall return an integer less than, equal to,
or greater than zero if the key object is considered, respectively, to be less than, to match, or to be
greater than the array element. The array shall consist of: all the elements that compare less than, all
the elements that compare equal to, and all the elements that compare greater than the key object, in
that order.351)

Returns
4 The bsearch generic function returns a pointer to a matching element of the array, or a null pointer

if no match is found. If two elements compare as equal, which element is matched is unspecified.

350)That is, if the value passed is p, then the following expressions are always nonzero:

((char *)p - (char *)base) % size == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nmemb * size

351)In practice, the entire array is sorted according to the comparison function.

© ISO/IEC 202y — All rights reserved

Library — 374

§ 7.24.6.2

ISO/IEC 9899:202y (en) — n3299 working draft

5 The bsearch function is generic in the qualification of the type pointed to by the argument base. If
this argument is a pointer to a const-qualified object type, the returned pointer will be a pointer to
const-qualified void. Otherwise, the argument shall be a pointer to an unqualified object type or a
null pointer constant,352) and the returned pointer will be a pointer to unqualified void.

The external declaration of bsearch has the concrete type:

void * (const void *, const void *, size_t, size_t,
int (*) (const void *, const void *))

which supports all correct uses. If a macro definition of this generic function is suppressed to access
an actual function, the external declaration with this concrete type is visible.353)

7.24.6.3 The qsort function
Synopsis

1 #include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Description
2 The qsort function sorts an array of nmemb objects, the initial element of which is pointed to by

base. The size of each object is specified by size.

3 The contents of the array are sorted into ascending order according to a comparison function pointed
to by compar, which is called with two arguments that point to the objects being compared. The
function shall return an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second.

4 If two elements compare as equal, their order in the resulting sorted array is unspecified.

Returns
5 The qsort function returns no value.

7.24.7 Integer arithmetic functions
7.24.7.1 The abs, labs, and llabs functions
Synopsis

1 #include <stdlib.h>
int abs(int j);
long int labs(long int j);
long long int llabs(long long int j);

Description
2 The abs, labs, and llabs functions compute the absolute value of an integer j. If the result cannot

be represented, the behavior is undefined.354)

Returns
3 The abs, labs, and llabs, functions return the absolute value.

7.24.7.2 The div, ldiv, and lldiv functions
Synopsis

1 #include <stdlib.h>
div_t div(int numer, int denom);
ldiv_t ldiv(long int numer, long int denom);

352)If the argument is a null pointer and the call is executed, the behavior is undefined.
353)This is an obsolescent feature.
354)The absolute value of the most negative number is not representable.

§ 7.24.7.2 © ISO/IEC 202y — All rights reserved

Library — 375

ISO/IEC 9899:202y (en) — n3299 working draft

lldiv_t lldiv(long long int numer, long long int denom);

Description
2 The div, ldiv, and lldiv, functions compute numer/denom and numer%denom in a single operation.

Returns
3 The div, ldiv, and lldiv functions return a structure of type div_t, ldiv_t, and lldiv_t, respec-

tively, comprising both the quotient and the remainder. The structures shall contain (in either order)
the members quot (the quotient) and rem (the remainder), each of which has the same type as
the arguments numer and denom. If either part of the result cannot be represented, the behavior is
undefined.

7.24.8 Multibyte/wide character conversion functions
7.24.8.1 General

1 The behavior of the multibyte character functions is affected by the LC_CTYPE category of the current
locale. For a state-dependent encoding, each of the mbtowc and wctomb functions is placed into its
initial conversion state prior to the first call to the function and can be returned to that state by a
call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as other
than a null pointer cause the internal conversion state of the function to be altered as necessary. It is
implementation-defined whether internal conversion state has thread storage duration, and whether
a newly created thread has the same state as the current thread at the time of creation, or the initial
conversion state. A call with s as a null pointer causes these functions to return a nonzero value
if encodings have state dependency, and zero otherwise.355) It is implementation-defined whether
these functions avoid data races with other calls to the same function.

2 Changing the LC_CTYPE category causes the internal object describing the conversion state of the
mbtowc and wctomb functions to have an indeterminate representation.

7.24.8.2 The mblen function
Synopsis

1 #include <stdlib.h>
int mblen(const char *s, size_t n);

Description
2 If s is not a null pointer, the mblen function determines the number of bytes contained in the

multibyte character pointed to by s. Except that the conversion state of the mbtowc function is not
affected, it is equivalent to

mbtowc((wchar_t *)0, (const char *)0, 0);
mbtowc((wchar_t *)0, s, n);

Returns
3 If s is a null pointer, the mblen function returns a nonzero or zero value, if multibyte character

encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
mblen function either returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the multibyte character (if the next n or fewer bytes form a valid multibyte
character), or returns -1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (7.24.8.3).

7.24.8.3 The mbtowc function
Synopsis

1 #include <stdlib.h>

355)If the locale employs special bytes to change the shift state, these bytes do not produce separate wide character codes, but
are grouped with an adjacent multibyte character.

© ISO/IEC 202y — All rights reserved

Library — 376

§ 7.24.8.3

ISO/IEC 9899:202y (en) — n3299 working draft

int mbtowc(wchar_t * restrict pwc, const char * restrict s, size_t n);

Description
2 If s is not a null pointer, the mbtowc function inspects at most n bytes beginning with the byte

pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the value of the corresponding wide character and then, if pwc
is not a null pointer, stores that value in the object pointed to by pwc. If the corresponding wide
character is the null wide character, the function is left in the initial conversion state.

3 The implementation shall behave as if no library function calls the mbtowc function.

Returns
4 If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte character

encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
mbtowc function either returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the converted multibyte character (if the next n or fewer bytes form a valid
multibyte character), or returns -1 (if they do not form a valid multibyte character).

5 In no case will the value returned be greater than n or the value of the MB_CUR_MAX macro.

7.24.8.4 The wctomb function
Synopsis

1 #include <stdlib.h>
int wctomb(char *s, wchar_t wc);

Description
2 The wctomb function determines the number of bytes needed to represent the multibyte character

corresponding to the wide character given by wc (including any shift sequences), and stores the
multibyte character representation in the array whose first element is pointed to by s (if s is not a
null pointer). At most MB_CUR_MAX characters are stored. If wc is a null wide character, a null byte is
stored, preceded by any shift sequence needed to restore the initial shift state, and the function is
left in the initial conversion state.

3 The implementation shall behave as if no library function calls the wctomb function.

Returns
4 If s is a null pointer, the wctomb function returns a nonzero or zero value, if multibyte character

encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
wctomb function returns -1 if the value of wc does not correspond to a valid multibyte character, or
returns the number of bytes that are contained in the multibyte character corresponding to the value
of wc.

5 In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

7.24.9 Multibyte/wide string conversion functions
7.24.9.1 General

1 The behavior of the multibyte string functions is affected by the LC_CTYPE category of the current
locale.

7.24.9.2 The mbstowcs function
Synopsis

1 #include <stdlib.h>
size_t mbstowcs(wchar_t * restrict pwcs, const char * restrict s, size_t n);

§ 7.24.9.2 © ISO/IEC 202y — All rights reserved

Library — 377

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The mbstowcs function converts a sequence of multibyte characters that begins in the initial shift

state from the array pointed to by s into a sequence of corresponding wide characters and stores not
more than n wide characters into the array pointed to by pwcs. No multibyte characters that follow
a null character (which is converted into a null wide character) will be examined or converted. Each
multibyte character is converted as if by a call to the mbtowc function, except that the conversion
state of the mbtowc function is not affected.

3 No more than n elements will be modified in the array pointed to by pwcs. If copying takes place
between objects that overlap, the behavior is undefined.

Returns
4 If an invalid multibyte character is encountered, the mbstowcs function returns (size_t)(-1).

Otherwise, the mbstowcs function returns the number of array elements modified, not including a
terminating null wide character, if any.356)

7.24.9.3 The wcstombs function
Synopsis

1 #include <stdlib.h>
size_t wcstombs(char * restrict s, const wchar_t * restrict pwcs, size_t n);

Description
2 The wcstombs function converts a sequence of wide characters from the array pointed to by pwcs

into a sequence of corresponding multibyte characters that begins in the initial shift state, and stores
these multibyte characters into the array pointed to by s, stopping if a multibyte character would
exceed the limit of n total bytes or if a null character is stored. Each wide character is converted
as if by a call to the wctomb function, except that the conversion state of the wctomb function is not
affected.

3 No more than n bytes will be modified in the array pointed to by s. If copying takes place between
objects that overlap, the behavior is undefined.

Returns
4 If a wide character is encountered that does not correspond to a valid multibyte character, the

wcstombs function returns (size_t)(-1). Otherwise, the wcstombs function returns the number of
bytes modified, not including a terminating null character, if any.356)

7.24.10 Alignment of memory
7.24.10.1 The memalignment function
Synopsis

1 #include <stdlib.h>
size_t memalignment(const void *p);

Description
2 The memalignment function accepts a pointer to any object and returns the maximum alignment

satisfied by its address value. The alignment may be an extended alignment and may also be beyond
the range supported by the implementation for explicit use by alignas.357) If so, it will satisfy all
alignments usable by the implementation. The value returned can be compared to the result of
alignof, and if it is greater or equal, the alignment requirement for the type operand is satisfied.

356)The array will not be null-terminated if the value returned is n.
357)The actual alignment of an object can be stricter than the alignment requested for an object by alignas or (implicitly) by

an allocation function, but will always satisfy it.

© ISO/IEC 202y — All rights reserved

Library — 378

§ 7.24.10.1

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The alignment of the pointer p, which is a power of two. If p is a null pointer, an alignment of zero is

returned.

4 NOTE An alignment of zero indicates that the tested pointer cannot be used to access an object of any type.

§ 7.24.10.1 © ISO/IEC 202y — All rights reserved

Library — 379

ISO/IEC 9899:202y (en) — n3299 working draft

7.25 _Noreturn <stdnoreturn.h>
1 The header <stdnoreturn.h> defines the macro

noreturn

which expands to _Noreturn.

2 The noreturn macro and the <stdnoreturn.h> header are obsolescent features.

© ISO/IEC 202y — All rights reserved

Library — 380

§ 7.25

ISO/IEC 9899:202y (en) — n3299 working draft

7.26 String handling <string.h>

7.26.1 String function conventions
1 The header <string.h> declares one type, several functions, several type-generic functions, and

defines two macros useful for manipulating arrays of character type and other objects treated as
arrays of character type.358) The type is size_t and one of the macros is NULL (both described in
7.21). Various methods are used for determining the lengths of the arrays, but in all cases a char *
or void * argument points to the initial (lowest addressed) character of the array. If an array is
accessed beyond the end of an object, the behavior is undefined.

2 The macro

__STDC_VERSION_STRING_H__

is an integer constant expression with a value equivalent to 202311L.

3 Where an argument declared as size_t n specifies the length of the array for a function, n can have
the value zero on a call to that function. Unless explicitly stated otherwise in the description of a
particular function in this subclause, pointer arguments on such a call shall still have valid values, as
described in 7.1.4. On such a call, a function that locates a character finds no occurrence, a function
that compares two character sequences returns zero, and a function that copies characters copies
zero characters.

4 For all functions in this subclause, each character shall be interpreted as if it had the type unsigned
char (and therefore every possible object representation is valid and has a different value).

7.26.2 Copying functions
7.26.2.1 The memcpy function
Synopsis

1 #include <string.h>
void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

Description
2 The memcpy function copies n characters from the object pointed to by s2 into the object pointed to

by s1. If copying takes place between objects that overlap, the behavior is undefined.

Returns
3 The memcpy function returns the value of s1.

7.26.2.2 The memccpy function
Synopsis

1 #include <string.h>
void *memccpy(void * restrict s1, const void * restrict s2, int c, size_t n);

Description
2 The memccpy function copies characters from the object pointed to by s2 into the object pointed to

by s1, stopping after the first occurrence of character c (converted to an unsigned char) is copied,
or after n characters are copied, whichever comes first. If copying takes place between objects that
overlap, the behavior is undefined.

Returns
3 The memccpy function returns a pointer to the character after the copy of c in s1, or a null pointer if

c was not found in the first n characters of s2.

7.26.2.3 The memmove function

358)See "future library directions" (7.33.18).

§ 7.26.2.3 © ISO/IEC 202y — All rights reserved

Library — 381

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Description
2 The memmove function copies n characters from the object pointed to by s2 into the object pointed to

by s1. Copying takes place as if the n characters from the object pointed to by s2 are first copied
into a temporary array of n characters that does not overlap the objects pointed to by s1 and s2, and
then the n characters from the temporary array are copied into the object pointed to by s1.

Returns
3 The memmove function returns the value of s1.

7.26.2.4 The strcpy function
Synopsis

1 #include <string.h>
char *strcpy(char * restrict s1, const char * restrict s2);

Description
2 The strcpy function copies the string pointed to by s2 (including the terminating null character)

into the array pointed to by s1. If copying takes place between objects that overlap, the behavior is
undefined.

Returns
3 The strcpy function returns the value of s1.

7.26.2.5 The strncpy function
Synopsis

1 #include <string.h>
char *strncpy(char * restrict s1, const char * restrict s2, size_t n);

Description
2 The strncpy function copies not more than n characters (characters that follow a null character are

not copied) from the array pointed to by s2 to the array pointed to by s1.359) If copying takes place
between objects that overlap, the behavior is undefined.

3 If the array pointed to by s2 is a string that is shorter than n characters, null characters are appended
to the copy in the array pointed to by s1, until n characters in all have been written.

Returns
4 The strncpy function returns the value of s1.

7.26.2.6 The strdup function
Synopsis

1 #include <string.h>
char *strdup(const char *s);

Description
2 The strdup function creates a copy of the string pointed to by s in a space allocated as if by a call to

malloc.

359)Thus, if there is no null character in the first n characters of the array pointed to by s2, the result will not be null-
terminated.

© ISO/IEC 202y — All rights reserved

Library — 382

§ 7.26.2.6

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The strdup function returns a pointer to the first character of the duplicate string. The returned

pointer can be passed to free. If no space can be allocated the strdup function returns a null pointer.

7.26.2.7 The strndup function
Synopsis

1 #include <string.h>
char *strndup(const char *s, size_t n);

Description
2 The strndup function creates a string initialized with no more than n initial characters of the array

pointed to by s and up to the first null character, whichever comes first, in a space allocated as if by
a call to malloc. If the array pointed to by s does not contain a null within the first n characters, a
null is appended to the copy of the array.

Returns
3 The strndup function returns a pointer to the first character of the created string. The returned

pointer can be passed to free. If space cannot be allocated the strndup function returns a null
pointer.

7.26.3 Concatenation functions
7.26.3.1 The strcat function
Synopsis

1 #include <string.h>
char *strcat(char * restrict s1, const char * restrict s2);

Description
2 The strcat function appends a copy of the string pointed to by s2 (including the terminating null

character) to the end of the string pointed to by s1. The initial character of s2 overwrites the null
character at the end of s1. If copying takes place between objects that overlap, the behavior is
undefined.

Returns
3 The strcat function returns the value of s1.

7.26.3.2 The strncat function
Synopsis

1 #include <string.h>
char *strncat(char * restrict s1, const char * restrict s2, size_t n);

Description
2 The strncat function appends not more than n characters (a null character and characters that

follow it are not appended) from the array pointed to by s2 to the end of the string pointed to by
s1. The initial character of s2 overwrites the null character at the end of s1. A terminating null
character is always appended to the result.360) If copying takes place between objects that overlap,
the behavior is undefined.

Returns
3 The strncat function returns the value of s1.

Forward references: the strlen function (7.26.6.4).

360)Thus, the maximum number of characters that can end up in the array pointed to by s1 is strlen(s1)+n+1.

§ 7.26.3.2 © ISO/IEC 202y — All rights reserved

Library — 383

ISO/IEC 9899:202y (en) — n3299 working draft

7.26.4 Comparison functions
7.26.4.1 General

1 The sign of a nonzero value returned by the comparison functions memcmp, strcmp, and strncmp
is determined by the sign of the difference between the values of the first pair of characters (both
interpreted as unsigned char) that differ in the objects being compared.

7.26.4.2 The memcmp function
Synopsis

1 #include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description
2 The memcmp function compares the first n characters of the object pointed to by s1 to the first n

characters of the object pointed to by s2.361)

Returns
3 The memcmp function returns an integer greater than, equal to, or less than zero, accordingly as the

object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

7.26.4.3 The strcmp function
Synopsis

1 #include <string.h>
int strcmp(const char *s1, const char *s2);

Description
2 The strcmp function compares the string pointed to by s1 to the string pointed to by s2.

Returns
3 The strcmp function returns an integer greater than, equal to, or less than zero, accordingly as the

string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

7.26.4.4 The strcoll function
Synopsis

1 #include <string.h>
int strcoll(const char *s1, const char *s2);

Description
2 The strcoll function compares the string pointed to by s1 to the string pointed to by s2, both

interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns
3 The strcoll function returns an integer greater than, equal to, or less than zero, accordingly as the

string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2 when both
are interpreted as appropriate to the current locale.

7.26.4.5 The strncmp function
Synopsis

1 #include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

361)The unused bytes used as padding for purposes of alignment within structure objects take on unspecified values when a
value is stored in the object (see 6.2.6.1). Strings shorter than their allocated space and unions can also cause problems in
comparison.

© ISO/IEC 202y — All rights reserved

Library — 384

§ 7.26.4.5

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The strncmp function compares not more than n characters (characters that follow a null character

are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns
3 The strncmp function returns an integer greater than, equal to, or less than zero, accordingly as the

possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.

7.26.4.6 The strxfrm function
Synopsis

1 #include <string.h>
size_t strxfrm(char * restrict s1, const char * restrict s2, size_t n);

Description
2 The strxfrm function transforms the string pointed to by s2 and places the resulting string into

the array pointed to by s1. The transformation is such that if the strcmp function is applied to two
transformed strings, it returns a value greater than, equal to, or less than zero, corresponding to the
result of the strcoll function applied to the same two original strings. No more than n characters
are placed into the resulting array pointed to by s1, including the terminating null character. If n is
zero, s1 is permitted to be a null pointer. If copying takes place between objects that overlap, the
behavior is undefined.

Returns
3 The strxfrm function returns the length of the transformed string (not including the terminating

null character). If the value returned is n or more, the members of the array pointed to by s1 have
an indeterminate representation.

4 EXAMPLE The value of the following expression is the size of the array needed to hold the transformation of
the string pointed to by s.

1 + strxfrm(nullptr, s, 0)

7.26.5 Search functions
7.26.5.1 Introduction

1 The stateless search functions in this section (memchr, strchr, strpbrk, strrchr, strstr) are generic
functions. These functions are generic in the qualification of the array to be searched and will return
a result pointer to an element with the same qualification as the passed array. If the array to be
searched is const-qualified, the result pointer will be to a const-qualified element. If the array to be
searched is not const-qualified,362) the result pointer will be to an unqualified element.

2 The external declarations of these generic functions have a concrete function type that returns a
pointer to an unqualified element (of type char when specified as QChar, and void when specified
as QVoid), and accepts a pointer to a const-qualified array of the same type to search. This signature
supports all correct uses. If a macro definition of any of these generic functions is suppressed to
access an actual function, the external declaration with the corresponding concrete type is visible.363)

3 The volatile and restrict qualifiers are not accepted on the elements of the array to search.

7.26.5.2 The memchr generic function
Synopsis

1 #include <string.h>
QVoid *memchr(QVoid *s, int c, size_t n);

362)The null pointer constant is not a pointer to a const-qualified type, and therefore the result expression has the type of a
pointer to an unqualified element; however, evaluating such a call is undefined.

363)This is an obsolescent feature.

§ 7.26.5.2 © ISO/IEC 202y — All rights reserved

Library — 385

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The memchr generic function locates the first occurrence of c (converted to an unsigned char)

in the initial n characters (each interpreted as unsigned char) of the object pointed to by s. The
implementation shall behave as if it reads the characters sequentially and stops as soon as a matching
character is found.

Returns
3 The memchr generic function returns a pointer to the located character, or a null pointer if the

character does not occur in the object.

7.26.5.3 The strchr generic function
Synopsis

1 #include <string.h>
QChar *strchr(QChar *s, int c);

Description
2 The strchr generic function locates the first occurrence of c (converted to a char) in the string

pointed to by s. The terminating null character is considered to be part of the string.

Returns
3 The strchr generic function returns a pointer to the located character, or a null pointer if the

character does not occur in the string.

7.26.5.4 The strcspn function
Synopsis

1 #include <string.h>
size_t strcspn(const char *s1, const char *s2);

Description
2 The strcspn function computes the length of the maximum initial segment of the string pointed to

by s1 which consists entirely of characters not from the string pointed to by s2.

Returns
3 The strcspn function returns the length of the segment.

7.26.5.5 The strpbrk generic function
Synopsis

1 #include <string.h>
QChar *strpbrk(QChar *s1, const char *s2);

Description
2 The strpbrk generic function locates the first occurrence in the string pointed to by s1 of any

character from the string pointed to by s2.

Returns
3 The strpbrk generic function returns a pointer to the character, or a null pointer if no character

from s2 occurs in s1.

7.26.5.6 The strrchr generic function
Synopsis

1 #include <string.h>
QChar *strrchr(QChar *s, int c);

© ISO/IEC 202y — All rights reserved

Library — 386

§ 7.26.5.6

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The strrchr generic function locates the last occurrence of c (converted to a char) in the string

pointed to by s. The terminating null character is considered to be part of the string.

Returns
3 The strrchr generic function returns a pointer to the character, or a null pointer if c does not occur

in the string.

7.26.5.7 The strspn function
Synopsis

1 #include <string.h>
size_t strspn(const char *s1, const char *s2);

Description
2 The strspn function computes the length of the maximum initial segment of the string pointed to

by s1 which consists entirely of characters from the string pointed to by s2.

Returns
3 The strspn function returns the length of the segment.

7.26.5.8 The strstr generic function
Synopsis

1 #include <string.h>
QChar *strstr(QChar *s1, const char *s2);

Description
2 The strstr generic function locates the first occurrence in the string pointed to by s1 of the sequence

of characters (excluding the terminating null character) in the string pointed to by s2.

Returns
3 The strstr generic function returns a pointer to the located string, or a null pointer if the string is

not found. If s2 points to a string with zero length, the function returns s1.

7.26.5.9 The strtok function
Synopsis

1 #include <string.h>
char *strtok(char * restrict s1, const char * restrict s2);

Description
2 A sequence of calls to the strtok function breaks the string pointed to by s1 into a sequence of

tokens, each of which is delimited by a character from the string pointed to by s2. The first call
in the sequence has a non-null first argument; subsequent calls in the sequence have a null first
argument. If any of the subsequent calls in the sequence is made by a different thread than the first,
the behavior is undefined. The separator string pointed to by s2 can be different from call to call.

3 The first call in the sequence searches the string pointed to by s1 for the first character that is not
contained in the current separator string pointed to by s2. If no such character is found, then there
are no tokens in the string pointed to by s1 and the strtok function returns a null pointer. If such a
character is found, it is the start of the first token.

4 The strtok function then searches from there for a character that is contained in the current separator
string. If no such character is found, the current token extends to the end of the string pointed to by
s1, and subsequent searches for a token will return a null pointer. If such a character is found, it is
overwritten by a null character, which terminates the current token. The strtok function saves a
pointer to the following character, from which the next search for a token will start.

§ 7.26.5.9 © ISO/IEC 202y — All rights reserved

Library — 387

ISO/IEC 9899:202y (en) — n3299 working draft

5 Each subsequent call, with a null pointer as the value of the first argument, starts searching from the
saved pointer and behaves as described previously.

6 The strtok function is not required to avoid data races with other calls to the strtok function.364)

The implementation shall behave as if no library function calls the strtok function.

Returns
7 The strtok function returns a pointer to the first character of a token, or a null pointer if there is no

token.

8 EXAMPLE

#include <string.h>
static char str[] = "?a???b,,,#c";
char *t;

t = strtok(str, "?"); // t points to the token "a"
t = strtok(nullptr, ","); // t points to the token "??b"
t = strtok(nullptr, "#,"); // t points to the token "c"
t = strtok(nullptr, "?"); // t is a null pointer

Forward references: The strtok_s function (K.3.7.4.1).

7.26.6 Miscellaneous functions
7.26.6.1 The memset function
Synopsis

1 #include <string.h>
void *memset(void *s, int c, size_t n);

Description
2 The memset function copies the value of c (converted to an unsigned char) into each of the first n

characters of the object pointed to by s.

Returns
3 The memset function returns the value of s.

7.26.6.2 The memset_explicit function
Synopsis

1 #include <string.h>
void *memset_explicit(void *s, int c, size_t n);

Description
2 The memset_explicit function copies the value of c (converted to an unsigned char) into each of

the first n characters of the object pointed to by s. The purpose of this function is to make sensitive
information stored in the object inaccessible.365)

Returns
3 The memset_explicit function returns the value of s.

7.26.6.3 The strerror function
Synopsis

1 #include <string.h>
char *strerror(int errnum);

364)The strtok_s function can be used instead to avoid data races.
365)The intention is that the memory store is always performed (i.e. never elided), regardless of optimizations. This is in

contrast to calls to the memset function (7.26.6.1)

© ISO/IEC 202y — All rights reserved

Library — 388

§ 7.26.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The strerror function maps the number in errnum to a message string. Typically, the values for

errnum come from errno, but strerror shall map any value of type int to a message.

3 The strerror function is not required to avoid data races with other calls to the strerror func-
tion.366) The implementation shall behave as if no library function calls the strerror function.

Returns
4 The strerror function returns a pointer to the string, the contents of which are locale-specific. The

array pointed to shall not be modified by the program. The behavior is undefined if the returned
value is used after a subsequent call to the strerror function, or after the thread which called the
function to obtain the returned value has exited.

Forward references: The strerror_s function (K.3.7.5.2).

7.26.6.4 The strlen function
Synopsis

1 #include <string.h>
size_t strlen(const char *s);

Description
2 The strlen function computes the length of the string pointed to by s.

Returns
3 The strlen function returns the number of characters that precede the terminating null character.

366)The strerror_s function can be used instead to avoid data races.

§ 7.26.6.4 © ISO/IEC 202y — All rights reserved

Library — 389

ISO/IEC 9899:202y (en) — n3299 working draft

7.27 Type-generic math <tgmath.h>
1 The header <tgmath.h> includes the headers <math.h> and <complex.h> and defines several

type-generic macros.

2 The feature test macro __STDC_VERSION_TGMATH_H__ expands to the token 202311L.

3 This clause specifies a many-to-one correspondence of functions in <math.h> and <complex.h> with
type-generic macros.367) Use of a type-generic macro invokes a corresponding function whose type is
determined by the types of the arguments for particular parameters called the generic parameters.368)

4 Of the <math.h> and <complex.h> functions without an f (float) or l (long double) suffix, several
have one or more parameters whose corresponding real type is double. For each such function,
except the functions that round result to narrower type (7.12.15) (which are covered subsequently
in this subclause) and modf, there is a corresponding type-generic macro. The parameters whose
corresponding real type is double in the function synopsis are generic parameters.

5 Some of the <math.h> functions for decimal floating types have no unsuffixed counterpart. Of these
functions with a d64 suffix, some have one or more parameters whose type is _Decimal64. For each
such function, except decodedecd64, encodedecd64, decodebind64, and encodebind64, there is a
corresponding type-generic macro. The parameters whose real type is _Decimal64 in the function
synopsis are generic parameters.

6 If arguments for generic parameters of a type-generic macro are such that some argument has a
corresponding real type that is of standard floating type and another argument is of decimal floating
type, the behavior is undefined.

7 Except for the macros for functions that round result to a narrower type (7.12.15), use of a type-
generic macro invokes a function whose generic parameters have the corresponding real type
determined by the types of the arguments for the generic parameters as follows:

— Arguments of integer type are regarded as having type _Decimal64 if any argument has
decimal floating type, and as having type double otherwise.

— If the function has exactly one generic parameter, the type determined is the corresponding
real type of the argument for the generic parameter.

— If the function has exactly two generic parameters, the type determined is the corresponding
real type determined by the usual arithmetic conversions (6.3.2.8) applied to the arguments for
the generic parameters.

— If the function has more than two generic parameters, the type determined is the corresponding
real type determined by repeatedly applying the usual arithmetic conversions, first to the first
two arguments for generic parameters, then to that result type and the next argument for a
generic parameter, and so forth until the usual arithmetic conversions have been applied to
the last argument for a generic parameter.

If neither <math.h> and <complex.h> define a function whose generic parameters have the deter-
mined corresponding real type, the behavior is undefined.

8 For each unsuffixed function in <math.h> for which there is a function in <complex.h> with the
same name except for a c prefix, the corresponding type-generic macro (for both functions) has the
same name as the function in <math.h>. The corresponding type-generic macro for fabs and cabs
is fabs. Table 7.8 shows the associations between functions and type-generic macros.

367)Like other function-like macros in standard libraries, each type-generic macro can be suppressed to make available the
corresponding ordinary function.
368)If the type of the argument is not compatible with the type of the parameter for the selected function, the behavior is

undefined.

© ISO/IEC 202y — All rights reserved

Library — 390

§ 7.27

ISO/IEC 9899:202y (en) — n3299 working draft

Table 7.8 — Functions and type-generic macro relations

<math.h> <complex.h> type-generic
function function macro
acos cacos acos
asin casin asin
atan catan atan
acosh cacosh acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
sinh csinh sinh
tanh ctanh tanh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs

If at least one argument for a generic parameter is complex, then use of the macro invokes a complex
function; otherwise, use of the macro invokes a real function.

9 For each unsuffixed function in <math.h> without a c-prefixed counterpart in <complex.h> (except
functions that round result to narrower type, modf, and canonicalize), the corresponding type-
generic macro has the same name as the function. These type-generic macros are:

acospi
asinpi
atan2pi
atan2
atanpi
cbrt
ceil
compoundn
copysign
cospi
erfc
erf
exp10m1
exp10
exp2m1

exp2
expm1
fdim
floor
fmax
fmaximum
fmaximum_mag
fmaximum_num
fmaximum_mag_num
fma
fmin
fminimum
fminimum_mag
fminimum_num
fminimum_mag_num

fmod
frexp
fromfpx
fromfp
hypot
ilogb
ldexp
lgamma
llogb
llrint
llround
log10p1
log10
log1p
log2p1

log2
logb
logp1
lrint
lround
nearbyint
nextafter
nextdown
nexttoward
nextup
pown
powr
remainder
remquo
rint

rootn
roundeven
round
rsqrt
scalbln
scalbn
sinpi
tanpi
tgamma
trunc
ufromfpx
ufromfp

If all arguments for generic parameters are real, then use of the macro invokes a real function
(provided <math.h> defines a function of the determined type); otherwise, use of the macro is
undefined.

10 For each unsuffixed function in <complex.h> that is not a c-prefixed counterpart to a function
in <math.h>, the corresponding type-generic macro has the same name as the function. These
type-generic macros are:

carg cimag conj cproj creal

Use of the macro with any argument of standard floating or complex type invokes a complex
function. Use of the macro with an argument of decimal floating type is undefined.

§ 7.27 © ISO/IEC 202y — All rights reserved

Library — 391

ISO/IEC 9899:202y (en) — n3299 working draft

11 The functions that round result to a narrower type have type-generic macros whose names are
obtained by omitting any suffix from the function names. Thus, the macros with f or d prefix are:

fadd
dadd

fsub
dsub

fmul
dmul

fdiv
ddiv

ffma
dfma

fsqrt
dsqrt

and the macros with d32 or d64 prefix are:

d32add
d64add

d32sub
d64sub

d32mul
d64mul

d32div
d64div

d32fma
d64fma

d32sqrt
d64sqrt

All arguments shall be real. If the macro prefix is f or d, use of an argument of decimal floating
type is undefined. If the macro prefix is d32 or d64, use of an argument of standard floating type is
undefined. The function invoked is determined as follows:

— If any argument has type _Decimal128, or if the macro prefix is d64, the function invoked has
the name of the macro, with a d128 suffix.

— Otherwise, if the macro prefix is d32, the function invoked has the name of the macro, with a
d64 suffix.

— Otherwise, if any argument has type long double, or if the macro prefix is d, the function
invoked has the name of the macro, with an l suffix.

— Otherwise, the function invoked has the name of the macro (with no suffix).

12 For each d64-suffixed function in <math.h>, except decodedecd64, encodedecd64, decodebind64,
and encodebind64, that does not have an unsuffixed counterpart, the corresponding type-generic
macro has the name of the function, but without the suffix. These type-generic macros are displayed
in Table 7.9:

Table 7.9 — Decimal functions and type-generic macro relations

<math.h> function type-generic macro
quantizedN quantize
samequantumdN samequantum
quantumdN quantum
llquantexpdN llquantexp

Use of the macro with an argument of standard floating or complex type or with only integer type
arguments is undefined.

13 A type-generic macro corresponding to a function indicated in Table 7.1 is affected by constant
rounding modes (7.6.5).

14 NOTE The type-generic macro definition in the example in 6.5.2.1 does not conform to this specification. A
conforming macro can be implemented as follows:

#define cbrt(X) \
_Generic((X), \
long double: _Roundwise_cbrtl, \
default: _Roundwise_cbrt, \
float: _Roundwise_cbrtf \

)(X)

where _Roundwise_cbrtl, _Roundwise_cbrt, and _Roundwise_cbrtf are pointers to functions that are equiv-
alent to cbrtl, cbrt, and cbrtf, respectively, but that are guaranteed to be affected by constant rounding
modes (7.6.3).

© ISO/IEC 202y — All rights reserved

Library — 392

§ 7.27

ISO/IEC 9899:202y (en) — n3299 working draft

15 EXAMPLE With the declarations

#include <tgmath.h>
int n;
float f;
double d;
long double ld;
float complex fc;
double complex dc;
long double complex ldc;
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32;
_Decimal64 d64;
_Decimal128 d128;
#endif

functions invoked by use of type-generic macros are shown in the Table 7.10:

Table 7.10 — Generic macro use to underlying invocation

macro use invocation
exp(n) exp(n), the function
acosh(f) acoshf(f)
sin(d) sin(d), the function
atan(ld) atanl(ld)
log(fc) clogf(fc)
sqrt(dc) csqrt(dc)
pow(ldc, f) cpowl(ldc, f)
remainder(n, n) remainder(n, n), the function
nextafter(d, f) nextafter(d, f), the function
nexttoward(f, ld) nexttowardf(f, ld)
copysign(n, ld) copysignl(n, ld)
ceil(fc) undefined
rint(dc) undefined
fmaximum(ldc, ld) undefined
carg(n) carg(n), the function
cproj(f) cprojf(f)
creal(d) creal(d), the function
cimag(ld) cimagl(ld)
fabs(fc) cabsf(fc)
carg(dc) carg(dc), the function
cproj(ldc) cprojl(ldc)
fsub(f, ld) fsubl(f, ld)
fdiv(d, n) fdiv(d, n), the function
dfma(f, d, ld) dfmal(f, d, ld)
dadd(f, f) daddl(f, f)
dsqrt(dc) undefined
exp(d64) expd64(d64)
sqrt(d32) sqrtd32(d32)
fmaximum(d64, d128) fmaximumd128(d64, d128)
pow(d32, n) powd64(d32, n)
remainder(d64, d) undefined
creal(d64) undefined
remquo(d32, d32, &n) undefined
llquantexp(d) undefined
quantize(dc) undefined
samequantum(n, n) undefined
d32sub(d32, d128) d32subd128(d32, d128)
d32div(d64, n) d32divd64(d64, n)
d64fma(d32, d64, d128) d64fmad128(d32, d64, d128)
d64add(d32, d32) d64addd128(d32, d32)

§ 7.27 © ISO/IEC 202y — All rights reserved

Library — 393

ISO/IEC 9899:202y (en) — n3299 working draft

d64sqrt(d) undefined
dadd(n, d64) undefined

© ISO/IEC 202y — All rights reserved

Library — 394

§ 7.27

ISO/IEC 9899:202y (en) — n3299 working draft

7.28 Threads <threads.h>
7.28.1 Introduction

1 The header <threads.h> includes the header <time.h>, defines macros, and declares types, enu-
meration constants, and functions that support multiple threads of execution.369)

2 Implementations that define the macro __STDC_NO_THREADS__ may not provide this header nor
support any of its facilities.

3 The macros are

ONCE_FLAG_INIT

which expands to a value that can be used to initialize an object of type once_flag; and

TSS_DTOR_ITERATIONS

which expands to an integer constant expression representing the maximum number of times that
destructors will be called when a thread terminates.

4 The types are

cnd_t

which is a complete object type that holds an identifier for a condition variable;

thrd_t

which is a complete object type that holds an identifier for a thread;

tss_t

which is a complete object type that holds an identifier for a thread-specific storage pointer;

mtx_t

which is a complete object type that holds an identifier for a mutex;

tss_dtor_t

which is the function pointer type void (*)(void*), used for a destructor for a thread-specific
storage pointer;

thrd_start_t

which is the function pointer type int (*)(void*) that is passed to thrd_create to create a new
thread; and

once_flag

which is a complete object type that holds a flag for use by call_once.

5 The enumeration constants are

mtx_plain

which is passed to mtx_init to create a mutex object that does not support timeout;

mtx_recursive

369)See "future library directions" (7.33.20).

§ 7.28.1 © ISO/IEC 202y — All rights reserved

Library — 395

ISO/IEC 9899:202y (en) — n3299 working draft

which is passed to mtx_init to create a mutex object that supports recursive locking;

mtx_timed

which is passed to mtx_init to create a mutex object that supports timeout;

thrd_timedout

which is returned by a timed wait function to indicate that the time specified in the call was reached
without acquiring the requested resource;

thrd_success

which is returned by a function to indicate that the requested operation succeeded;

thrd_busy

which is returned by a function to indicate that the requested operation failed because a resource
requested by a test and return function is already in use;

thrd_error

which is returned by a function to indicate that the requested operation failed; and

thrd_nomem

which is returned by a function to indicate that the requested operation failed because it was unable
to allocate memory.

Forward references: date and time (7.29).

7.28.2 Initialization functions
7.28.2.1 The call_once function
Synopsis

1 #include <threads.h>
void call_once(once_flag *flag, void (*func)(void));

Description
2 The call_once function uses the once_flag pointed to by flag to ensure that func is called exactly

once, the first time the call_once function is called with that value of flag. Completion of an
effective call to the call_once function synchronizes with all subsequent calls to the call_once
function with the same value of flag.

Returns
3 The call_once function returns no value.

7.28.3 Condition variable functions
7.28.3.1 The cnd_broadcast function
Synopsis

1 #include <threads.h>
int cnd_broadcast(cnd_t *cond);

© ISO/IEC 202y — All rights reserved

Library — 396

§ 7.28.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The cnd_broadcast function unblocks all the threads that are blocked on the condition variable

pointed to by cond at the time of the call. If no threads are blocked on the condition variable pointed
to by cond at the time of the call, the function does nothing.

Returns
3 The cnd_broadcast function returns thrd_success on success, or thrd_error if the request could

not be honored.

7.28.3.2 The cnd_destroy function
Synopsis

1 #include <threads.h>
void cnd_destroy(cnd_t *cond);

Description
2 The cnd_destroy function releases all resources used by the condition variable pointed to by cond.

The cnd_destroy function requires that no threads be blocked waiting for the condition variable
pointed to by cond.

Returns
3 The cnd_destroy function returns no value.

7.28.3.3 The cnd_init function
Synopsis

1 #include <threads.h>
int cnd_init(cnd_t *cond);

Description
2 The cnd_init function creates a condition variable. If it succeeds it sets the object pointed to by

cond to a value that uniquely identifies the newly created condition variable. A thread that calls
cnd_wait on a newly created condition variable will block.

Returns
3 The cnd_init function returns thrd_success on success, or thrd_nomem if no memory could be

allocated for the newly created condition, or thrd_error if the request could not be honored.

7.28.3.4 The cnd_signal function
Synopsis

1 #include <threads.h>
int cnd_signal(cnd_t *cond);

Description
2 The cnd_signal function unblocks one of the threads that are blocked on the condition variable

pointed to by cond at the time of the call. If no threads are blocked on the condition variable at the
time of the call, the function does nothing and returns success.

Returns
3 The cnd_signal function returns thrd_success on success or thrd_error if the request could not

be honored.

7.28.3.5 The cnd_timedwait function
Synopsis

1 #include <threads.h>
int cnd_timedwait(cnd_t * restrict cond, mtx_t * restrict mtx,

const struct timespec * restrict ts);

§ 7.28.3.5 © ISO/IEC 202y — All rights reserved

Library — 397

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The cnd_timedwait function atomically unlocks the mutex pointed to by mtx and blocks until the

condition variable pointed to by cond is signaled by a call to cnd_signal or to cnd_broadcast, or
until after the TIME_UTC-based calendar time pointed to by ts, or until it is unblocked due to an
unspecified reason. When the calling thread becomes unblocked it locks the object pointed to by mtx
before it returns. The cnd_timedwait function requires that the mutex pointed to by mtx be locked
by the calling thread.

Returns
3 The cnd_timedwait function returns thrd_success upon success, or thrd_timedout if the time

specified in the call was reached without acquiring the requested resource, or thrd_error if the
request could not be honored.

7.28.3.6 The cnd_wait function
Synopsis

1 #include <threads.h>
int cnd_wait(cnd_t *cond, mtx_t *mtx);

Description
2 The cnd_wait function atomically unlocks the mutex pointed to by mtx and blocks until the condi-

tion variable pointed to by cond is signaled by a call to cnd_signal or to cnd_broadcast, or until it
is unblocked due to an unspecified reason. When the calling thread becomes unblocked it locks the
mutex pointed to by mtx before it returns. The cnd_wait function requires that the mutex pointed
to by mtx be locked by the calling thread.

Returns
3 The cnd_wait function returns thrd_success on success or thrd_error if the request could not be

honored.

7.28.4 Mutex functions
7.28.4.1 General

1 For purposes of determining the existence of a data race, lock and unlock operations behave as
atomic operations. All lock and unlock operations on a particular mutex occur in some particular
total order.

2 NOTE This total order can be viewed as the modification order of the mutex.

7.28.4.2 The mtx_destroy function
Synopsis

1 #include <threads.h>
void mtx_destroy(mtx_t *mtx);

Description
2 The mtx_destroy function releases any resources used by the mutex pointed to by mtx. No threads

can be blocked waiting for the mutex pointed to by mtx.

Returns
3 The mtx_destroy function returns no value.

7.28.4.3 The mtx_init function
Synopsis

1 #include <threads.h>
int mtx_init(mtx_t *mtx, int type);

© ISO/IEC 202y — All rights reserved

Library — 398

§ 7.28.4.3

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The mtx_init function creates a mutex object with properties indicated by type, which shall have

one of these values:

mtx_plain for a simple non-recursive mutex,

mtx_timed for a non-recursive mutex that supports timeout,

mtx_plain | mtx_recursive for a simple recursive mutex, or

mtx_timed | mtx_recursive for a recursive mutex that supports timeout.

3 If the mtx_init function succeeds, it sets the mutex pointed to by mtx to a value that uniquely
identifies the newly created mutex.

Returns
4 The mtx_init function returns thrd_success on success, or thrd_error if the request could not

be honored.

7.28.4.4 The mtx_lock function
Synopsis

1 #include <threads.h>
int mtx_lock(mtx_t *mtx);

Description
2 The mtx_lock function blocks until it locks the mutex pointed to by mtx. If the mutex is non-

recursive, it shall not be locked by the calling thread. Prior calls to mtx_unlock on the same mutex
synchronize with this operation.

Returns
3 The mtx_lock function returns thrd_success on success, or thrd_error if the request could not

be honored.

7.28.4.5 The mtx_timedlock function
Synopsis

1 #include <threads.h>
int mtx_timedlock(mtx_t * restrict mtx, const struct timespec * restrict ts);

Description
2 The mtx_timedlock function endeavors to block until it locks the mutex pointed to by mtx or

until after the TIME_UTC-based calendar time pointed to by ts. The specified mutex shall support
timeout. If the operation succeeds, prior calls to mtx_unlock on the same mutex synchronize with
this operation.

Returns
3 The mtx_timedlock function returns thrd_success on success, or thrd_timedout if the time

specified was reached without acquiring the requested resource, or thrd_error if the request could
not be honored.

7.28.4.6 The mtx_trylock function
Synopsis

1 #include <threads.h>
int mtx_trylock(mtx_t *mtx);

§ 7.28.4.6 © ISO/IEC 202y — All rights reserved

Library — 399

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The mtx_trylock function endeavors to lock the mutex pointed to by mtx. If the mutex is already

locked, the function returns without blocking. If the operation succeeds, prior calls to mtx_unlock
on the same mutex synchronize with this operation.

Returns
3 The mtx_trylock function returns thrd_success on success, or thrd_busy if the resource requested

is already in use, or thrd_error if the request could not be honored. mtx_trylock can spuriously
fail to lock an unused resource, in which case it returns thrd_busy.

7.28.4.7 The mtx_unlock function
Synopsis

1 #include <threads.h>
int mtx_unlock(mtx_t *mtx);

Description
2 The mtx_unlock function unlocks the mutex pointed to by mtx. The mutex pointed to by mtx shall

be locked by the calling thread.

Returns
3 The mtx_unlock function returns thrd_success on success or thrd_error if the request could not

be honored.

7.28.5 Thread functions
7.28.5.1 The thrd_create function
Synopsis

1 #include <threads.h>
int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);

Description
2 The thrd_create function creates a new thread executing func(arg). If the thrd_create function

succeeds, it sets the object pointed to by thr to the identifier of the newly created thread. (A thread’s
identifier can be reused for a different thread once the original thread has exited and either been
detached or joined to another thread.) The completion of the thrd_create function synchronizes
with the beginning of the execution of the new thread.

3 Returning from func has the same behavior as invoking thrd_exit with the value returned from
func.

Returns
4 The thrd_create function returns thrd_success on success, or thrd_nomem if no memory could

be allocated for the thread requested, or thrd_error if the request could not be honored.

7.28.5.2 The thrd_current function
Synopsis

1 #include <threads.h>
thrd_t thrd_current(void);

Description
2 The thrd_current function identifies the thread that called it.

Returns
3 The thrd_current function returns the identifier of the thread that called it.

© ISO/IEC 202y — All rights reserved

Library — 400

§ 7.28.5.2

ISO/IEC 9899:202y (en) — n3299 working draft

7.28.5.3 The thrd_detach function
Synopsis

1 #include <threads.h>
int thrd_detach(thrd_t thr);

Description
2 The thrd_detach function tells the operating system to dispose of any resources allocated to the

thread identified by thr when that thread terminates. The thread identified by thr shall not have
been previously detached or joined with another thread.

Returns
3 The thrd_detach function returns thrd_success on success or thrd_error if the request could

not be honored.

7.28.5.4 The thrd_equal function
Synopsis

1 #include <threads.h>
int thrd_equal(thrd_t thr0, thrd_t thr1);

Description
2 The thrd_equal function will determine whether the thread identified by thr0 refers to the thread

identified by thr1.

Returns
3 The thrd_equal function returns zero if the thread thr0 and the thread thr1 refer to different

threads. Otherwise the thrd_equal function returns a nonzero value.

7.28.5.5 The thrd_exit function
Synopsis

1 #include <threads.h>
[[noreturn]] void thrd_exit(int res);

Description
2 For every thread-specific storage key which was created with a non-null destructor and for which

the value is non-null, thrd_exit sets the value associated with the key to a null pointer value and
then invokes the destructor with its previous value. The order in which destructors are invoked is
unspecified.

3 If after this process there remain keys with both non-null destructors and values, the implementation
repeats this process up to TSS_DTOR_ITERATIONS times.

4 Following this, the thrd_exit function terminates execution of the calling thread and sets its result
code to res.

5 The program terminates normally after the last thread has been terminated. The behavior is as if the
program called the exit function with the status EXIT_SUCCESS at thread termination time.

Returns
6 The thrd_exit function returns no value.

7.28.5.6 The thrd_join function
Synopsis

1 #include <threads.h>
int thrd_join(thrd_t thr, int *res);

§ 7.28.5.6 © ISO/IEC 202y — All rights reserved

Library — 401

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The thrd_join function joins the thread identified by thr with the current thread by blocking until

the other thread has terminated. If the parameter res is not a null pointer, it stores the thread’s result
code in the integer pointed to by res. The termination of the other thread synchronizes with the
completion of the thrd_join function. The thread identified by thr shall not have been previously
detached or joined with another thread.

Returns
3 The thrd_join function returns thrd_success on success or thrd_error if the request could not

be honored.

7.28.5.7 The thrd_sleep function
Synopsis

1 #include <threads.h>
int thrd_sleep(const struct timespec *duration, struct timespec *remaining);

Description
2 The thrd_sleep function suspends execution of the calling thread until either the interval specified

by duration has elapsed or a signal which is not being ignored is received. If interrupted by a signal
and the remaining argument is not null, the amount of time remaining (the requested interval
minus the time actually slept) is stored in the interval it points to. The duration and remaining
arguments can point to the same object.

3 The suspension time can be longer than requested because the interval is rounded up to an integer
multiple of the sleep resolution or because of the scheduling of other activity by the system. But,
except for the case of being interrupted by a signal, the suspension time will not be less than that
specified, as measured by the system clock TIME_UTC.

Returns
4 The thrd_sleep function returns zero if the requested time has elapsed, −1 if it has been interrupted

by a signal, or a negative value (which can also be −1) if it fails.

7.28.5.8 The thrd_yield function
Synopsis

1 #include <threads.h>
void thrd_yield(void);

Description
2 The thrd_yield function endeavors to permit other threads to run, even if the current thread would

ordinarily continue to run.

Returns
3 The thrd_yield function returns no value.

7.28.6 Thread-specific storage functions
7.28.6.1 The tss_create function
Synopsis

1 #include <threads.h>
int tss_create(tss_t *key, tss_dtor_t dtor);

Description
2 The tss_create function creates a thread-specific storage pointer with destructor dtor, which can

be null.

© ISO/IEC 202y — All rights reserved

Library — 402

§ 7.28.6.1

ISO/IEC 9899:202y (en) — n3299 working draft

3 A null pointer value is associated with the newly created key in all existing threads. Upon subsequent
thread creation, the value associated with all keys is initialized to a null pointer value in the new
thread.

4 Destructors associated with thread-specific storage are not invoked at program termination.

5 The tss_create function shall not be called from within a destructor.

Returns
6 If the tss_create function is successful, it sets the thread-specific storage pointed to by key to a

value that uniquely identifies the newly created pointer and returns thrd_success; otherwise,
thrd_error is returned and the thread-specific storage pointed to by key is set to an indeterminate
representation.

7.28.6.2 The tss_delete function
Synopsis

1 #include <threads.h>
void tss_delete(tss_t key);

Description
2 The tss_delete function releases any resources used by the thread-specific storage identified by

key. The tss_delete function shall only be called with a value for key that was returned by a call
to tss_create before the thread commenced executing destructors.

3 If tss_delete is called while another thread is executing destructors, whether this will affect the
number of invocations of the destructor associated with key on that thread is unspecified.

4 Calling tss_delete will not result in the invocation of any destructors.

Returns
5 The tss_delete function returns no value.

7.28.6.3 The tss_get function
Synopsis

1 #include <threads.h>
void *tss_get(tss_t key);

Description
2 The tss_get function returns the value for the current thread held in the thread-specific storage

identified by key. The tss_get function shall only be called with a value for key that was returned
by a call to tss_create before the thread commenced executing destructors.

Returns
3 The tss_get function returns the value for the current thread if successful, or zero if unsuccessful.

7.28.6.4 The tss_set function
Synopsis

1 #include <threads.h>
int tss_set(tss_t key, void *val);

Description
2 The tss_set function sets the value for the current thread held in the thread-specific storage

identified by key to val. The tss_set function shall only be called with a value for key that was
returned by a call to tss_create before the thread commenced executing destructors.

3 This action will not invoke the destructor associated with the key on the value being replaced.

§ 7.28.6.4 © ISO/IEC 202y — All rights reserved

Library — 403

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
4 The tss_set function returns thrd_success on success or thrd_error if the request could not be

honored.

© ISO/IEC 202y — All rights reserved

Library — 404

§ 7.28.6.4

ISO/IEC 9899:202y (en) — n3299 working draft

7.29 Date and time <time.h>

7.29.1 Components of time
1 The header <time.h> defines several macros, and declares types and functions for manipulating

time. Many functions deal with a calendar time that represents the current date (according to the
Gregorian calendar) and time. Some functions deal with local time, which is the calendar time
expressed for some specific time zone, and with Daylight Saving Time, which is a temporary change
in the algorithm for determining local time. The local time zone and Daylight Saving Time are
implementation-defined.

2 The feature test macro __STDC_VERSION_TIME_H__ expands to the token 202311L. The other macros
defined are NULL (described in 7.21);

CLOCKS_PER_SEC

which expands to an expression with type clock_t (described later in this subclause) that is the
number per second of the value returned by the clock function;

TIME_UTC
TIME_MONOTONIC

which expand to integer constants greater than 0 designating the calendar time and monotonic time
bases, respectively. Additional time base macro definitions, beginning with TIME_ and an uppercase
letter, may also be specified by the implementation;370) and,

TIME_ACTIVE
TIME_THREAD_ACTIVE

which, if defined, expand to integer values, designating overall execution and thread-specific active
processing time bases, respectively.

3 The definition of macros for time bases other than TIME_UTC are optional. If defined, the correspond-
ing time bases are supported by timespec_get and timespec_getres, and their values are positive.
If defined, the value of the optional macro TIME_ACTIVE shall be different from the constants
TIME_UTC and TIME_MONOTONIC and shall not change during the same program invocation. The
optional macro TIME_THREAD_ACTIVE shall not be defined if the implementation does not support
threads; its value shall be different from TIME_UTC, TIME_MONOTONIC, and TIME_ACTIVE, it shall be
the same for all expansions of the macro for the same thread, and the value provided for one thread
shall not be used by a different thread as the base argument of timespec_get or timespec_getres.

4 The types declared are size_t (described in 7.21);

clock_t

and

time_t

which are real types capable of representing times;

struct timespec

which holds an interval specified in seconds and nanoseconds (which may represent a calendar time
based on a particular epoch); and

struct tm

370)See future library directions (7.33). Implementations can define additional time bases, but are only required to support a
real time clock based on UTC.

§ 7.29.1 © ISO/IEC 202y — All rights reserved

Library — 405

ISO/IEC 9899:202y (en) — n3299 working draft

which holds the components of a calendar time, called the broken-down time.

5 The range and precision of times representable in clock_t and time_t are implementation-defined.
The timespec structure shall contain at least the following members, in any order. The semantics of
the members and their normal ranges are expressed in the comments.371)

time_t tv_sec; // whole seconds -- ≥ 0
/* see the following */ tv_nsec; // nanoseconds -- [0, 999999999]

The tv_nsec member shall be an implementation-defined signed integer type capable of represent-
ing the range [0, 999999999].

6 The tm structure shall contain at least the following members, in any order.372) The semantics of the
members and their normal ranges are expressed in the comments.

int tm_sec; // seconds after the minute -- [0, 60]
int tm_min; // minutes after the hour -- [0, 59]
int tm_hour; // hours since midnight -- [0, 23]
int tm_mday; // day of the month -- [1, 31]
int tm_mon; // months since January -- [0, 11]
int tm_year; // years since 1900
int tm_wday; // days since Sunday -- [0, 6]
int tm_yday; // days since January 1 -- [0, 365]
int tm_isdst; // Daylight Saving Time flag

The value of tm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight Saving Time
is not in effect, and negative if the information is not available.

7.29.2 Time manipulation functions
7.29.2.1 The clock function
Synopsis

1 #include <time.h>
clock_t clock(void);

Description
2 The clock function determines the processor time used.

Returns
3 The clock function returns the implementation’s best approximation of the active processing time

associated with the program execution since the beginning of an implementation-defined era related
only to the program invocation. To determine the time in seconds, the value returned by the clock
function should be divided by the value of the macro CLOCKS_PER_SEC. If the processor time used
is not available, the function returns the value (clock_t)(-1). If the value cannot be represented,
the function returns an unspecified value.373)

7.29.2.2 The difftime function
Synopsis

1 #include <time.h>
double difftime(time_t time1, time_t time0);

Description
2 The difftime function computes the difference between two calendar times: time1 - time0.

371)The tv_sec member is a linear count of seconds and potentially does not have the normal semantics of a time_t.
372)The range [0, 60] for tm_sec allows for a positive leap second.
373)This can be due to overflow of the clock_t type.

© ISO/IEC 202y — All rights reserved

Library — 406

§ 7.29.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The difftime function returns the difference expressed in seconds as a double.

7.29.2.3 The mktime function
Synopsis

1 #include <time.h>
time_t mktime(struct tm *timeptr);

Description
2 The mktime function converts the broken-down time, expressed as local time, in the structure pointed

to by timeptr into a calendar time value with the same encoding as that of the values returned by
the time function. The original values of the tm_wday and tm_yday components of the structure are
ignored, and the original values of the other components are not restricted to the ranges indicated
previously. If the local time to be used for the conversion is one that includes Daylight Saving
Time adjustments, a positive or zero value for tm_isdst causes the mktime function to perform the
conversion as if Daylight Saving Time, respectively, is or is not in effect for the specified time. A
negative value causes it to attempt to determine whether Daylight Saving Time is in effect for the
specified time; if it determines that Daylight Saving Time is in effect it produces the same result
as an equivalent call with a positive tm_isdst value, otherwise it produces the same result as an
equivalent call with a tm_isdst value of zero.374) On successful completion, the components of the
structure are set to the same values that would be returned by a call to the localtime function with
the calculated calendar time as its argument.

Returns
3 The mktime function returns the specified calendar time encoded as a value of type time_t. If

the calendar time cannot be represented in the time_t encoding used for the return value or the
value to be returned in the tm_year component of the structure pointed to by timeptr cannot be
represented as an int, the function returns the value (time_t)(-1) and does not change the value
of the tm_wday component of the structure.

4 EXAMPLE What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>
static const char *const wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

};
struct tm time_str;
/* ... */

time_str.tm_year = 2001 - 1900;
time_str.tm_mon = 7 - 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = -1;
time_str.tm_wday = 7;
mktime(&time_str);
printf("%s\n", wday[time_str.tm_wday]);

7.29.2.4 The timegm function
Synopsis

1 374)If the broken-down time specifies a time that is either skipped over or repeated when a transition to or from Daylight
Saving Time occurs, it is unspecified whether the mktime function produces the same result as an equivalent call with a
positive tm_isdst value or as an equivalent call with a tm_isdst value of zero.

§ 7.29.2.4 © ISO/IEC 202y — All rights reserved

Library — 407

ISO/IEC 9899:202y (en) — n3299 working draft

#include <time.h>
time_t timegm(struct tm *timeptr);

Description
2 The timegm function converts the broken-down time, expressed as UTC time, in the structure

pointed to by timeptr into a calendar time value with the same encoding as that of the values
returned by the time function. The original values of the tm_wday and tm_yday components of
the structure are ignored, and the original values of the other components are not restricted to the
ranges indicated previously. On successful completion, the values of the tm_wday and tm_yday
components of the structure are set appropriately, and the other components are set to represent the
specified calendar time, but with their values forced to the ranges indicated previously; the final
value of tm_mday is not set until tm_mon and tm_year are determined.

Returns
3 The timegm function returns the specified calendar time encoded as a value of type time_t. If

the calendar time cannot be represented in the time_t encoding used for the return value or the
value to be returned in the tm_year component of the structure pointed to by timeptr cannot be
represented as an int, the function returns the value (time_t)(-1) and does not change the value
of the tm_wday component of the structure.

7.29.2.5 The time function
Synopsis

1 #include <time.h>
time_t time(time_t *timer);

Description
2 The time function determines the current calendar time. The encoding of the value is unspecified.

Returns
3 The time function returns the implementation’s best approximation to the current calendar time.

The value (time_t)(-1) is returned if the calendar time is not available. If timer is not a null
pointer, the return value is also assigned to the object it points to.

7.29.2.6 The timespec_get function
Synopsis

1 #include <time.h>
int timespec_get(struct timespec *ts, int base);

Description
2 The timespec_get function sets the interval pointed to by ts to hold the current calendar time

based on the specified time base.

3 If base is TIME_UTC, the tv_sec member is set to the number of seconds since an implementation-
defined epoch, truncated to a whole value and the tv_nsec member is set to the integral num-
ber of nanoseconds, rounded to the resolution of the system clock.375) The optional time base
TIME_MONOTONIC is the same, but the reference point is an implementation-defined time point; differ-
ent program invocations can refer to the same or different reference points.376) For the same program
invocation, the results of two calls to timespec_get with TIME_MONOTONIC such that the first hap-
pens before the second shall not be decreasing. It is implementation-defined if TIME_MONOTONIC
accounts for time during which the execution environment is suspended.377) For the optional time
375)Although a struct timespec object describes times with nanosecond resolution, the available resolution is system

dependent and can even be greater than 1 second.
376)Commonly, this reference point is the boot time of the execution environment or the start of the execution.
377)The execution environment can, for example, lack the ability to track physical time that elapsed during suspension in a

low power consumption mode.

© ISO/IEC 202y — All rights reserved

Library — 408

§ 7.29.2.6

ISO/IEC 9899:202y (en) — n3299 working draft

bases TIME_ACTIVE and TIME_THREAD_ACTIVE the result is similar, but the call measures the amount
of active processing time associated with the whole program invocation or with the calling thread,
respectively.

Returns
4 If the timespec_get function is successful it returns the nonzero value base; otherwise, it returns

zero.

Recommended practice
5 It is recommended practice that timing results of calls to timespec_get with TIME_ACTIVE, if

defined, and of calls to clock are as close to each other as their types, value ranges, and resolutions
(obtained with timespec_getres and CLOCKS_PER_SEC, respectively) allow. Because of its wider
value range and improved indications on error, timespec_get with time base TIME_ACTIVE should
be used instead of clock by new code whenever possible.

7.29.2.7 The timespec_getres function
Synopsis

1 #include <time.h>
int timespec_getres(struct timespec *ts, int base);

Description
2 If ts is non-null and base is supported by the timespec_get function, the timespec_getres

function returns the resolution of the time provided by the timespec_get function for base
in the timespec structure pointed to by ts. For each supported base, multiple calls to the
timespec_getres function during the same program execution shall have identical results.

Returns
3 If the value base is supported by the timespec_get function, the timespec_getres function returns

the nonzero value base; otherwise, it returns zero.

7.29.3 Time conversion functions
7.29.3.1 General

1 Functions with a _r suffix place the result of the conversion into the buffer referred by buf and
return that pointer. These functions and the function strftime shall not be subject to data races,
unless the time or calendar state is changed in a multi-thread execution.378)

2 Functions gmtime and localtime are the same as their counterparts suffixed with _r. In place of
the parameter buf, they use a pointer to one or two broken-down time structures. Similarly, an array
of char is commonly used by asctime and ctime. Execution of any of the functions that return a
pointer to one of these objects may overwrite the information returned from any previous call to one
of these functions that uses the same object. These functions are not reentrant and are not required
to avoid data races with each other. Accessing the returned pointer after the thread that called the
function that returned it has exited results in undefined behavior. The implementation shall behave
as if no other library functions call these functions.

7.29.3.2 The asctime function
Synopsis

1 #include <time.h>
[[deprecated]] char *asctime(const struct tm *timeptr);

Description
2 This function is obsolescent and should be avoided in new code.

378)This does not mean that these functions are forbidden to read global state that describes the time and calendar settings of
the execution, such as the LC_TIME locale or the implementation-defined specification of the local time zone. Only the setting
of that state by setlocale or by means of implementation-defined functions can constitute races.

§ 7.29.3.2 © ISO/IEC 202y — All rights reserved

Library — 409

ISO/IEC 9899:202y (en) — n3299 working draft

3 The asctime function converts the broken-down time in the structure pointed to by timeptr into a
string in the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm.

[[deprecated]] char *asctime(const struct tm *timeptr)
{

static const char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static const char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

snprintf(result, 26, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;
}

4 If any of the members of the broken-down time contain values that are outside their normal
ranges,379) the behavior of the asctime function is undefined. Likewise, if the calculated year
exceeds four digits or is less than the year 1000, the behavior is undefined.

Returns
5 The asctime function returns a pointer to the string.

7.29.3.3 The ctime function
Synopsis

1 #include <time.h>
[[deprecated]] char *ctime(const time_t *timer);

Description
2 This function is obsolescent and should be avoided in new code.

3 The ctime function converts the calendar time pointed to by timer to local time in the form of a
string. They are equivalent to:

asctime(localtime(timer))

Returns
4 The ctime function returns the pointer returned by the asctime function with that broken-down

time as argument.

Forward references: the localtime functions (7.29.3.5).

7.29.3.4 The gmtime functions
Synopsis

1 #include <time.h>

379)See 7.29.1.

© ISO/IEC 202y — All rights reserved

Library — 410

§ 7.29.3.4

ISO/IEC 9899:202y (en) — n3299 working draft

struct tm *gmtime(const time_t *timer);
struct tm *gmtime_r(const time_t *timer, struct tm *buf);

Description
2 The gmtime functions convert the calendar time pointed to by timer into a broken-down time,

expressed as UTC.

Returns
3 The gmtime functions return a pointer to the broken-down time, or a null pointer if the specified

time cannot be converted to UTC.

7.29.3.5 The localtime functions
Synopsis

1 #include <time.h>
struct tm *localtime(const time_t *timer);
struct tm *localtime_r(const time_t *timer, struct tm *buf);

Description
2 The localtime functions convert the calendar time pointed to by timer into a broken-down time,

expressed as local time.

Returns
3 The localtime functions return a pointer to the broken-down time, or a null pointer if the specified

time cannot be converted to local time.

7.29.3.6 The strftime function
Synopsis

1 #include <time.h>
size_t strftime(char * restrict s, size_t maxsize, const char * restrict format,

const struct tm * restrict timeptr);

Description
2 The strftime function places characters into the array pointed to by s as controlled by the string

pointed to by format. The format shall be a multibyte character sequence, beginning and ending in
its initial shift state. The format string consists of zero or more conversion specifiers and ordinary
multibyte characters. A conversion specifier consists of a % character, possibly followed by an E or
O modifier character (described later), followed by a character that determines the behavior of the
conversion specifier. All ordinary multibyte characters (including the terminating null character) are
copied unchanged into the array. If copying takes place between objects that overlap, the behavior is
undefined. No more than maxsize characters are placed into the array.

3 Each conversion specifier shall be replaced by appropriate characters as described in the following
list. The appropriate characters shall be determined using the LC_TIME category of the current
locale and by the values of zero or more members of the broken-down time structure pointed to
by timeptr, as specified in brackets in the description. If any of the specified values is outside the
normal range, the characters stored are unspecified.

%a is replaced by the locale’s abbreviated weekday name. [tm_wday]

%A is replaced by the locale’s full weekday name. [tm_wday]

%b is replaced by the locale’s abbreviated month name. [tm_mon]

%B is replaced by the locale’s full month name. [tm_mon]

%c is replaced by the locale’s appropriate date and time representation. [all specified in 7.29.1]

%C is replaced by the year divided by 100 and truncated to an integer, as a decimal number (00–99).
[tm_year]

§ 7.29.3.6 © ISO/IEC 202y — All rights reserved

Library — 411

ISO/IEC 9899:202y (en) — n3299 working draft

%d is replaced by the day of the month as a decimal number (01–31). [tm_mday]

%D is equivalent to "%m/%d/%y". [tm_mon, tm_mday, tm_year]

%e is replaced by the day of the month as a decimal number (1–31); a single digit is preceded by a
space. [tm_mday]

%F is equivalent to "%Y-%m-%d" (the ISO 8601 date format, when the year is between 1000 and 9999
inclusive). [tm_year, tm_mon, tm_mday]

%g is replaced by the last 2 digits of the week-based year (see further in this subclause) as a decimal
number (00–99). [tm_year, tm_wday, tm_yday]

%G is replaced by the week-based year (see further in this subclause) as a decimal number (e.g.
1997). [tm_year, tm_wday, tm_yday]

%h is equivalent to "%b". [tm_mon]

%H is replaced by the hour (24-hour clock) as a decimal number (00–23). [tm_hour]

%I is replaced by the hour (12-hour clock) as a decimal number (01–12). [tm_hour]

%j is replaced by the day of the year as a decimal number (001–366). [tm_yday]

%m is replaced by the month as a decimal number (01–12). [tm_mon]

%M is replaced by the minute as a decimal number (00–59). [tm_min]

%n is replaced by a new-line character.

%p is replaced by the locale’s equivalent of the AM/PM designations associated with a 12-hour
clock. [tm_hour]

%r is replaced by the locale’s 12-hour clock time. [tm_hour, tm_min, tm_sec]

%R is equivalent to "%H:%M". [tm_hour, tm_min]

%S is replaced by the second as a decimal number (00–60). [tm_sec]

%t is replaced by a horizontal-tab character.

%T is equivalent to "%H:%M:%S" (the ISO 8601 time format). [tm_hour, tm_min, tm_sec]

%u is replaced by the ISO 8601 weekday as a decimal number (1–7), where Monday is 1. [tm_wday]

%U is replaced by the week number of the year (the first Sunday as the first day of week 1) as a
decimal number (00–53). [tm_year, tm_wday, tm_yday]

%V is replaced by the ISO 8601 week number (see further in this subclause) as a decimal number
(01–53). [tm_year, tm_wday, tm_yday]

%w is replaced by the weekday as a decimal number (0–6), where Sunday is 0. [tm_wday]

%W is replaced by the week number of the year (the first Monday as the first day of week 1) as a
decimal number (00–53). [tm_year, tm_wday, tm_yday]

%x is replaced by the locale’s appropriate date representation. [all specified in 7.29.1]

%X is replaced by the locale’s appropriate time representation. [all specified in 7.29.1]

%y is replaced by the last 2 digits of the year as a decimal number (00–99). [tm_year]

%Y is replaced by the year as a decimal number (e.g. 1997). [tm_year]

%z is replaced by the offset from UTC in the ISO 8601 format "-0430" (meaning 4 hours 30
minutes behind UTC, west of Greenwich), or by no characters if no time zone is determinable.
[tm_isdst]

%Z is replaced by the locale’s time zone name or abbreviation, or by no characters if no time zone is
determinable. [tm_isdst]

%% is replaced by %.

4 Some conversion specifiers can be modified by the inclusion of an E or O modifier character to
indicate an alternative format or specification. If the alternative format or specification does not
exist for the current locale, the modifier is ignored.

© ISO/IEC 202y — All rights reserved

Library — 412

§ 7.29.3.6

ISO/IEC 9899:202y (en) — n3299 working draft

%Ec is replaced by the locale’s alternative date and time representation.

%EC is replaced by the name of the base year (period) in the locale’s alternative representation.

%Ex is replaced by the locale’s alternative date representation.

%EX is replaced by the locale’s alternative time representation.

%Ey is replaced by the offset from %EC (year only) in the locale’s alternative representation.

%EY is replaced by the locale’s full alternative year representation.

%Ob is replaced by the locale’s abbreviated alternative month name.

%OB is replaced by the locale’s alternative appropriate full month name.

%Od is replaced by the day of the month, using the locale’s alternative numeric symbols (filled as
needed with leading zeros, or with leading spaces if there is no alternative symbol for zero).

%Oe is replaced by the day of the month, using the locale’s alternative numeric symbols (filled as
needed with leading spaces).

%OH is replaced by the hour (24-hour clock), using the locale’s alternative numeric symbols.

%OI is replaced by the hour (12-hour clock), using the locale’s alternative numeric symbols.

%Om is replaced by the month, using the locale’s alternative numeric symbols.

%OM is replaced by the minutes, using the locale’s alternative numeric symbols.

%OS is replaced by the seconds, using the locale’s alternative numeric symbols.

%Ou is replaced by the ISO 8601 weekday as a number in the locale’s alternative representation,
where Monday is 1.

%OU is replaced by the week number, using the locale’s alternative numeric symbols.

%OV is replaced by the ISO 8601 week number, using the locale’s alternative numeric symbols.

%Ow is replaced by the weekday as a number, using the locale’s alternative numeric symbols.

%OW is replaced by the week number of the year, using the locale’s alternative numeric symbols.

%Oy is replaced by the last 2 digits of the year, using the locale’s alternative numeric symbols.

5 %g, %G, and %V give values according to the ISO 8601 week-based year. In this system, weeks begin
on a Monday and week 1 of the year is the week that includes January 4th, which is also the week
that includes the first Thursday of the year, and is also the first week that contains at least four days
in the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of the
last week of the preceding year; thus, for Saturday 2nd January 1999, %G is replaced by 1998 and %V
is replaced by 53. If December 29th, 30th, or 31st is a Monday, it and any following days are part of
week 1 of the following year. Thus, for Tuesday 30th December 1997, %G is replaced by 1998 and %V
is replaced by 01.

6 If a conversion specifier is not one of the ones previously specified, the behavior is undefined.

7 In the "C" locale, the E and O modifiers are ignored and the replacement strings for the following
specifiers are:

%a the first three characters of %A.

%A one of "Sunday", "Monday", . . . , "Saturday".

%b the first three characters of %B.

%B one of "January", "February", . . . , "December".

%c equivalent to "%a %b %e %T %Y".

%p one of "AM" or "PM".

%r equivalent to "%I:%M:%S %p".

%x equivalent to "%m/%d/%y".

%X equivalent to %T.

%Z implementation-defined.

§ 7.29.3.6 © ISO/IEC 202y — All rights reserved

Library — 413

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
8 If the total number of resulting characters including the terminating null character is not more than

maxsize, the strftime function returns the number of characters placed into the array pointed to
by s not including the terminating null character. Otherwise, zero is returned and the members of
the array have an indeterminate representation.

© ISO/IEC 202y — All rights reserved

Library — 414

§ 7.29.3.6

ISO/IEC 9899:202y (en) — n3299 working draft

7.30 Unicode utilities <uchar.h>
7.30.1 General

1 The header <uchar.h> declares one macro, a few types, and several functions for manipulating
Unicode characters.

2 The macro

__STDC_VERSION_UCHAR_H__

is an integer constant expression with a value equivalent to 202311L.

3 The types declared are mbstate_t (described in 7.31.1) and size_t (described in 7.21);

char8_t

which is an unsigned integer type used for 8-bit characters and is the same type as unsigned char;

char16_t

which is an unsigned integer type used for 16-bit characters and is the same type as uint_least16_t
(described in 7.22.2.3); and

char32_t

which is an unsigned integer type used for 32-bit characters and is the same type as uint_least32_t
(also described in 7.22.2.3).

7.30.2 Restartable multibyte/wide character conversion functions
7.30.2.1 General

1 These functions have a parameter, ps, of type pointer to mbstate_t that points to an object that can
completely describe the current conversion state of the associated multibyte character sequence,
which the functions alter as necessary. If ps is a null pointer, each function uses its own internal
mbstate_t object instead, which is initialized prior to the first call to the function to the initial
conversion state; the functions are not required to avoid data races with other calls to the same
function in this case. It is implementation-defined whether the internal mbstate_t object has thread
storage duration; if it has thread storage duration, it is initialized to the initial conversion state
prior to the first call to the function on the new thread. The implementation behaves as if no library
function calls these functions with a null pointer for ps.

2 When used in the functions in this subclause, the encoding of char8_t, char16_t, and char32_t
objects, and sequences of such objects, is UTF-8, UTF-16, and UTF-32, respectively. Similarly, the
encoding of char and wchar_t, and sequences of such objects, is the execution and wide execution
encodings (6.2.9), respectively.

7.30.2.2 The mbrtoc8 function
Synopsis

1 #include <uchar.h>
size_t mbrtoc8(char8_t * restrict pc8, const char * restrict s, size_t n,

mbstate_t * restrict ps);

Description
2 If s is a null pointer, the mbrtoc8 function is equivalent to the call:

mbrtoc8(nullptr, "", 1, ps)

In this case, the values of the parameters pc8 and n are ignored.

§ 7.30.2.2 © ISO/IEC 202y — All rights reserved

Library — 415

ISO/IEC 9899:202y (en) — n3299 working draft

3 If s is not a null pointer, the mbrtoc8 function function inspects at most n bytes beginning with
the byte pointed to by s to determine the number of bytes needed to complete the next multibyte
character (including any shift sequences). If the function determines that the next multibyte character
is complete and valid, it determines the values of the corresponding characters and then, if pc8 is
not a null pointer, stores the value of the first (or only) such character in the object pointed to by pc8.
Subsequent calls will store successive characters without consuming any additional input until all
the characters have been stored. If the corresponding character is the null character, the resulting
state described is the initial conversion state.

Returns
4 The mbrtoc8 function returns the first of the following that applies (given the current conversion

state):

0 if the next n or fewer bytes complete the multibyte character that corresponds to the
null character (which is the value stored).

between 1 and n inclusive if the next n or fewer bytes complete a valid multibyte character (which is
the value stored); the value returned is the number of bytes that complete the multibyte
character.

(size_t)(-3) if the next character resulting from a previous call has been stored (no bytes from
the input have been consumed by this call).

(size_t)(-2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).380)

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored); the value of the macro
EILSEQ is stored in errno, and the conversion state is unspecified.

7.30.2.3 The c8rtomb function
Synopsis

1 #include <uchar.h>
size_t c8rtomb(char * restrict s, char8_t c8, mbstate_t * restrict ps);

Description
2 If s is a null pointer, the c8rtomb function is equivalent to the call

c8rtomb(buf, u8’\0’, ps)

where buf is an internal buffer.

3 If s is not a null pointer, the c8rtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the character given or completed by c8 (including any
shift sequences), and stores the multibyte character representation in the array whose first element is
pointed to by s, or stores nothing if c8 does not represent a complete character. At most MB_CUR_MAX
bytes are stored. If c8 is a null character, a null byte is stored, preceded by any shift sequence needed
to restore the initial shift state; the resulting state described is the initial conversion state.

Returns
4 The c8rtomb function returns the number of bytes stored in the array object (including any shift

sequences). When c8 is not a valid character, an encoding error occurs: the function stores the value
of the macro EILSEQ in errno and returns (size_t)(-1); the conversion state is unspecified.

7.30.2.4 The mbrtoc16 function
380)When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of redundant

shift sequences (for implementations with state-dependent encodings).

© ISO/IEC 202y — All rights reserved

Library — 416

§ 7.30.2.4

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <uchar.h>
size_t mbrtoc16(char16_t * restrict pc16, const char * restrict s, size_t n,

mbstate_t * restrict ps);

Description
2 If s is a null pointer, the mbrtoc16 function is equivalent to the call:

mbrtoc16(nullptr, "", 1, ps)

In this case, the values of the parameters pc16 and n are ignored.

3 If s is not a null pointer, the mbrtoc16 function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the values of the corresponding wide characters and then, if pc16
is not a null pointer, stores the value of the first (or only) such character in the object pointed to by
pc16. Subsequent calls will store successive wide characters without consuming any additional
input until all the characters have been stored. If the corresponding wide character is the null wide
character, the resulting state described is the initial conversion state.

Returns
4 The mbrtoc16 function returns the first of the following that applies (given the current conversion

state):

0 if the next n or fewer bytes complete the multibyte character that corresponds to the
null wide character (which is the value stored).

between 1 and n inclusive if the next n or fewer bytes complete a valid multibyte character (which is
the value stored); the value returned is the number of bytes that complete the multibyte
character.

(size_t)(-3) if the next character resulting from a previous call has been stored (no bytes from
the input have been consumed by this call).

(size_t)(-2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).381)

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored); the value of the macro
EILSEQ is stored in errno, and the conversion state is unspecified.

7.30.2.5 The c16rtomb function
Synopsis

1 #include <uchar.h>
size_t c16rtomb(char * restrict s, char16_t c16, mbstate_t * restrict ps);

Description
2 If s is a null pointer, the c16rtomb function is equivalent to the call

c16rtomb(buf, u’\0’, ps)

where buf is an internal buffer.

381)When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of redundant
shift sequences (for implementations with state-dependent encodings).

§ 7.30.2.5 © ISO/IEC 202y — All rights reserved

Library — 417

ISO/IEC 9899:202y (en) — n3299 working draft

3 If s is not a null pointer, the c16rtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given or completed by c16 (including
any shift sequences), and stores the multibyte character representation in the array whose first
element is pointed to by s, or stores nothing if c16 does not represent a complete character. At
most MB_CUR_MAX bytes are stored. If c16 is a null wide character, a null byte is stored, preceded by
any shift sequence needed to restore the initial shift state; the resulting state described is the initial
conversion state.

Returns
4 The c16rtomb function returns the number of bytes stored in the array object (including any shift

sequences). When c16 is not a valid wide character, an encoding error occurs: the function stores the
value of the macro EILSEQ in errno and returns (size_t)(-1); the conversion state is unspecified.

7.30.2.6 The mbrtoc32 function
Synopsis

1 #include <uchar.h>
size_t mbrtoc32(char32_t * restrict pc32, const char * restrict s, size_t n,

mbstate_t * restrict ps);

Description
2 If s is a null pointer, the mbrtoc32 function is equivalent to the call:

mbrtoc32(nullptr, "", 1, ps)

In this case, the values of the parameters pc32 and n are ignored.

3 If s is not a null pointer, the mbrtoc32 function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the values of the corresponding wide characters and then, if pc32
is not a null pointer, stores the value of the first (or only) such character in the object pointed to by
pc32. Subsequent calls will store successive wide characters without consuming any additional
input until all the characters have been stored. If the corresponding wide character is the null wide
character, the resulting state described is the initial conversion state.

Returns
4 The mbrtoc32 function returns the first of the following that applies (given the current conversion

state):

0 if the next n or fewer bytes complete the multibyte character that corresponds to the
null wide character (which is the value stored).

between 1 and n inclusive if the next n or fewer bytes complete a valid multibyte character (which is
the value stored); the value returned is the number of bytes that complete the multibyte
character.

(size_t)(-3) if the next character resulting from a previous call has been stored (no bytes from
the input have been consumed by this call).

(size_t)(-2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).382)

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored); the value of the macro
EILSEQ is stored in errno, and the conversion state is unspecified.

382)When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of redundant
shift sequences (for implementations with state-dependent encodings).

© ISO/IEC 202y — All rights reserved

Library — 418

§ 7.30.2.6

ISO/IEC 9899:202y (en) — n3299 working draft

7.30.2.7 The c32rtomb function
Synopsis

1 #include <uchar.h>
size_t c32rtomb(char * restrict s, char32_t c32, mbstate_t * restrict ps);

Description
2 If s is a null pointer, the c32rtomb function is equivalent to the call

c32rtomb(buf, U’\0’, ps)

where buf is an internal buffer.

3 If s is not a null pointer, the c32rtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given by c32 (including any shift
sequences), and stores the multibyte character representation in the array whose first element is
pointed to by s. At most MB_CUR_MAX bytes are stored. If c32 is a null wide character, a null byte is
stored, preceded by any shift sequence needed to restore the initial shift state; the resulting state
described is the initial conversion state.

Returns
4 The c32rtomb function returns the number of bytes stored in the array object (including any shift

sequences). When c32 is not a valid wide character, an encoding error occurs: the function stores the
value of the macro EILSEQ in errno and returns (size_t)(-1);the conversion state is unspecified.

§ 7.30.2.7 © ISO/IEC 202y — All rights reserved

Library — 419

ISO/IEC 9899:202y (en) — n3299 working draft

7.31 Extended multibyte and wide character utilities <wchar.h>
7.31.1 Introduction

1 The header <wchar.h> defines five macros, and declares four data types, one tag, and many
functions.383)

2 The macro

__STDC_VERSION_WCHAR_H__

is an integer constant expression with a value equivalent to 202311L.

3 The types declared are wchar_t and size_t (both described in 7.21);

mbstate_t

which is a complete object type other than an array type that can hold the conversion state informa-
tion necessary to convert between sequences of multibyte characters and wide characters;

wint_t

which is an integer type unchanged by default argument promotions that can hold any value
corresponding to members of the extended character set, as well as at least one value that does not
correspond to any member of the extended character set (see subsequent WEOF description);384) and

struct tm

which is declared as an incomplete structure type (the contents are described in 7.29.1).

4 The macros defined are NULL (described in 7.21); WCHAR_MIN, WCHAR_MAX, and WCHAR_WIDTH (de-
scribed in 7.22); and

WEOF

which expands to a constant expression of type wint_t whose value does not correspond to any
member of the extended character set.385) It is accepted (and returned) by several functions in this
subclause to indicate end-of-file, that is, no more input from a stream. It is also used as a wide
character value that does not correspond to any member of the extended character set.

5 The functions declared are grouped as follows:

— Functions that perform input and output of wide characters, or multibyte characters, or both;

— Functions that provide wide string numeric conversion;

— Functions that perform general wide string manipulation;

— Functions for wide string date and time conversion; and

— Functions that provide extended capabilities for conversion between multibyte and wide
character sequences.

6 Arguments to the functions in this subclause may point to arrays containing wchar_t values that do
not correspond to members of the extended character set. Such values shall be processed according
to the specified semantics, except that it is unspecified whether an encoding error occurs if such a
value appears in the format string for a function in 7.31.2 or 7.31.5 and the specified semantics do
not require that value to be processed by wcrtomb.

7 Unless explicitly stated otherwise, if the execution of a function described in this subclause causes
copying to take place between objects that overlap, the behavior is undefined.
383)See "future library directions" (7.33.21).
384)wchar_t and wint_t can be the same integer type.
385)The value of the macro WEOF can differ from that of EOF and the value can be positive.

© ISO/IEC 202y — All rights reserved

Library — 420

§ 7.31.1

ISO/IEC 9899:202y (en) — n3299 working draft

7.31.2 Formatted wide character input/output functions
7.31.2.1 General

1 The formatted wide character input/output functions shall behave as if there is a sequence point
after the actions associated with each specifier.386)

7.31.2.2 The fwprintf function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...);

Description
2 The fwprintf function writes output to the stream pointed to by stream, under control of the wide

string pointed to by format that specifies how subsequent arguments are converted for output. If
there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted
while arguments remain, the excess arguments are evaluated (as always) but are otherwise ignored.
The fwprintf function returns when the end of the format string is encountered.

3 The format is composed of zero or more directives: ordinary wide characters (not %), which are
copied unchanged to the output stream; and conversion specifications, each of which results in
fetching zero or more subsequent arguments, converting them, if applicable, according to the
corresponding conversion specifier, and then writing the result to the output stream.

4 Each conversion specification is introduced by the wide character %. After the %, the following
appear in sequence:

— Zero or more flags (in any order) that modify the meaning of the conversion specification.

— An optional minimum field width. If the converted value has fewer wide characters than the
field width, it is padded with spaces (by default) on the left (or right, if the left adjustment flag,
described later, has been given) to the field width. The field width takes the form of an asterisk
* (described later) or a nonnegative decimal integer.387)

— An optional precision that gives the minimum number of digits to appear for the b, B, d, i, o, u,
x, and X conversions, the number of digits to appear after the decimal-point wide character
for a, A, e, E, f, and F conversions, the maximum number of significant digits for the g and G
conversions, or the maximum number of wide characters to be written for s conversions. The
precision takes the form of a period (.) followed either by an asterisk * (described later) or by
an optional nonnegative decimal integer; if only the period is specified, the precision is taken
as zero. If a precision appears with any other conversion specifier, the behavior is undefined.

— An optional length modifier that specifies the size of the argument.

— A conversion specifier wide character that specifies the type of conversion to be applied.

5 As noted previously, a field width, or precision, or both, may be indicated by an asterisk. In this
case, an int argument supplies the field width or precision. The arguments specifying field width,
or precision, or both, shall appear (in that order) before the argument (if any) to be converted. A
negative field width argument is taken as a - flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

6 The flag wide characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if this flag is
not specified.)

386)The fwprintf functions perform writes to memory for the %n specifier.
387)0 is taken as a flag, not as the beginning of a field width.

§ 7.31.2.2 © ISO/IEC 202y — All rights reserved

Library — 421

ISO/IEC 9899:202y (en) — n3299 working draft

+ The result of a signed conversion always begins with a plus or minus sign. (It begins with a
sign only when a value with a negative sign is converted if this flag is not specified.)388)

space If the first wide character of a signed conversion is not a sign, or if a signed conversion results
in no wide characters, a space is prefixed to the result. If the space and + flags both appear,
the space flag is ignored.

The result is converted to an "alternative form". For o conversion, it increases the precision, if
and only if necessary, to force the first digit of the result to be a zero (if the value and precision
are both 0, a single 0 is printed). For b conversion, a nonzero result has 0b prefixed to it. For
the optional B conversion as described later in this subclause, a nonzero result has 0B prefixed
to it. For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to it. For a, A, e, E, f,
F, g, and G conversions, the result of converting a floating-point number always contains a
decimal-point wide character, even if no digits follow it. (Normally, a decimal-point wide
character appears in the result of these conversions only if a digit follows it.) For g and
G conversions, trailing zeros are not removed from the result. For other conversions, the
behavior is undefined.

0 For b, B, d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width rather than performing space
padding, except when converting an infinity or NaN. If the 0 and - flags both appear, the 0
flag is ignored. For b, B, d, i, o, u, x, and X conversions, if a precision is specified, the 0 flag is
ignored. For other conversions, the behavior is undefined.

7 The length modifiers and their meanings are:

hh Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have been promoted
according to the integer promotions, but its value shall be converted to signed char or
unsigned char before printing); or that a following n conversion specifier applies to a
pointer to a signed char argument.

h Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will have been promoted
according to the integer promotions, but its value shall be converted to short int or
unsigned short int before printing); or that a following n conversion specifier applies
to a pointer to a short int argument.

l (ell) Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a long
int or unsigned long int argument; that a following n conversion specifier applies
to a pointer to a long int argument; that a following c conversion specifier applies
to a wint_t argument; that a following s conversion specifier applies to a pointer to
a wchar_t argument; or has no effect on a following a, A, e, E, f, F, g, or G conversion
specifier.

ll (ell-ell) Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a long
long int or unsigned long long int argument; or that a following n conversion

specifier applies to a pointer to a long long int argument.

j Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to an
intmax_t or uintmax_t argument; or that a following n conversion specifier applies to
a pointer to an intmax_t argument.

z Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a size_t
or the corresponding signed integer type argument; or that a following n conversion
specifier applies to a pointer to a signed integer type corresponding to size_t argument.

388)The results of all floating conversions of a negative zero, and of negative values that round to zero, include a minus sign.

© ISO/IEC 202y — All rights reserved

Library — 422

§ 7.31.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

t Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument; or that a following n
conversion specifier applies to a pointer to a ptrdiff_t argument.

wN Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to an
integer argument with a specific width where N is a positive decimal integer with
no leading zeros (the argument will have been promoted according to the integer
promotions, but its value shall be converted to the unpromoted type); or that a following
n conversion specifier applies to a pointer to an integer type argument with a width
of N bits. All minimum-width integer types (7.22.2.3) and exact-width integer types
(7.22.2.2) defined in the header <stdint.h> shall be supported. Other supported values
of N are implementation-defined.

wfN Specifies that a following b, B, d, i, o, u, x, or X conversion specifier applies to a fastest
minimum-width integer argument with a specific width where N is a positive decimal
integer with no leading zeros (the argument will have been promoted according to
the integer promotions, but its value shall be converted to the unpromoted type); or
that a following n conversion specifier applies to a pointer to a fastest minimum-width
integer type argument with a width of N bits. All fastest minimum-width integer types
(7.22.2.4) defined in the header <stdint.h> shall be supported. Other supported values
of N are implementation-defined.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
long double argument.

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal32 argument.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal64 argument.

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal128 argument.

If a length modifier appears with any conversion specifier other than as specified previously, the
behavior is undefined.

8 The conversion specifiers and their meanings are:

d,i The int argument is converted to signed decimal in the style [-]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no wide characters.

b,B,o,u,x,X The unsigned int argument is converted to unsigned binary (b or B), unsigned octal
(o), unsigned decimal (u), or unsigned hexadecimal notation (x or X) in the style dddd;
the letters abcdef are used for x conversion and the letters ABCDEF for X conversion. The
precision specifies the minimum number of digits to appear; if the value being converted
can be represented in fewer digits, it is expanded with leading zeros. The default precision
is 1. The result of converting a zero value with a precision of zero is no wide characters.
The specifier B is optional and provides the same functionality as b, except for the # flag
as previously specified. The PRIB macros from <inttypes.h> shall only be defined if the
implementation follows the specification as given here.

f,F A double argument representing a floating-point number is converted to decimal notation
in the style [-]ddd.ddd, where the number of digits after the decimal-point wide character
is equal to the precision specification. If the precision is missing, it is taken as 6; if the
precision is zero and the # flag is not specified, no decimal-point wide character appears.
If a decimal-point wide character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.

§ 7.31.2.2 © ISO/IEC 202y — All rights reserved

Library — 423

ISO/IEC 9899:202y (en) — n3299 working draft

A double argument representing an infinity is converted in one of the styles [-]inf or
[-]infinity — which style is implementation-defined. A double argument representing a
NaN is converted in one of the styles [-]nan or [-]nan(n-wchar-sequence) — which style, and
the meaning of any n-wchar-sequence, is implementation-defined. The F conversion specifier
produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively.389)

e,E A double argument representing a floating-point number is converted in the style
[-]d.ddde±dd, where there is one digit (which is nonzero if the argument is nonzero)
before the decimal-point wide character and the number of digits after it is equal to the
precision; if the precision is missing, it is taken as 6; if the precision is zero and the #
flag is not specified, no decimal-point wide character appears. The value is rounded to
the appropriate number of digits. The E conversion specifier produces a number with E
instead of e introducing the exponent. The exponent always contains at least two digits,
and only as many more digits as necessary to represent the exponent. If the value is zero,
the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

g,G A double argument representing a floating-point number is converted in style f or e (or
in style F or E in the case of a G conversion specifier), depending on the value converted
and the precision. Let P equal the precision if nonzero, 6 if the precision is omitted, or 1 if
the precision is zero. Then, if a conversion with style E would have an exponent of X :

if P > X ≥ −4, the conversion is with style f (or F) and precision P − (X + 1).

otherwise, the conversion is with style e (or E) and precision P − 1.

Finally, unless the # flag is used, any trailing zeros are removed from the fractional portion
of the result and the decimal-point wide character is removed if there is no fractional
portion remaining.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

a,A A double argument representing a floating-point number is converted in the style
[-]0xh.hhhhp±d, where there is one hexadecimal digit (which is nonzero if the argument is a
normalized floating-point number and is otherwise unspecified) before the decimal-point
wide character 390) and the number of hexadecimal digits after it is equal to the precision;
if the precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient
for an exact representation of the value; if the precision is missing and FLT_RADIX is not a
power of 2, then the precision is sufficient to distinguish391) values of type double, except
that trailing zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point wide character appears. The letters abcdef are used for a conversion and
the letters ABCDEF for A conversion. The A conversion specifier produces a number with
X and P instead of x and p. The exponent always contains at least one digit, and only as

389)When applied to infinite and NaN values, the -, +, and space flag wide characters have their usual meaning; the # and 0
flag wide characters have no effect.
390)Binary implementations can choose the hexadecimal digit to the left of the decimal-point wide character so that subsequent

digits align to nibble (4-bit) boundaries. This implementation choice affects numerical values printed with a precision P
that is insufficient to represent all values exactly. Implementations with different conventions about the most significant
hexadecimal digit will round at different places, affecting the numerical value of the hexadecimal result. For example,
possible printed output for the code

#include <stdio.h>
/* ... */
double x = 123.0;
printf("%.1a", x);

include "0x1.fp+6 " and "0xf.6p+3 " whose numerical values are 124 and 123, respectively. Portable code seeking identical
numerical results on different platforms should avoid precisions P that require rounding.
391)The formatting precision P is sufficient to distinguish values of the source type if 16P > bp where b (not a power of 2) and
p are the base and precision of the source type (5.3.5.3.3). A smaller P potentially suffices depending on the implementation’s
scheme for determining the digit to the left of the decimal-point wide character.

© ISO/IEC 202y — All rights reserved

Library — 424

§ 7.31.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

many more digits as necessary to represent the decimal exponent of 2. If the value is zero,
the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

If an H, D, or DD modifier is present and the precision is missing, then for a decimal
floating type argument represented by a triple of integers (s, c, q), where n is the number
of significant digits in the coefficient c,

— if −(n + 5) ≤ q ≤ 0, use style f (or style F in the case of an A conversion specifier)
with formatting precision equal to −q,

— otherwise, use style e (or style E in the case of an A conversion specifier) with format-
ting precision equal to n− 1, with the exceptions that if c = 0 then the digit-sequence
in the exponent-part shall have the value q (rather than 0), and that the exponent is
always expressed with the minimum number of digits required to represent its value
(the exponent never contains a leading zero).

If the precision P is present (in the conversion specification) and is zero or at least as large
as the precision p (5.3.5.3.3) of the decimal floating type, the conversion is as if the precision
were missing. If the precision P is present (and nonzero) and less than the precision p of
the decimal floating type, the conversion first obtains an intermediate result as follows,
where n is the number of significant digits in the coefficient:

— If n ≤ P , set the intermediate result to the input.

— If n > P , round the input value, according to the current rounding direction for
decimal floating-point operations, to P decimal digits, with unbounded exponent
range, representing the result with a P -digit integer coefficient when in the form
(s, c, q).

Convert the intermediate result in the manner described previously for the case where the
precision is missing.

c If no l length modifier is present, the int argument is converted to a wide character as if
by calling btowc and the resulting wide character is written.

If an l length modifier is present, the wint_t argument is converted to wchar_t and
written.

s If no l length modifier is present, the argument shall be a pointer to storage of character
type containing a multibyte character sequence beginning in the initial shift state. Charac-
ters from the storage are converted as if by repeated calls to the mbrtowc function, with
the conversion state described by an mbstate_t object initialized to zero before the first
multibyte character is converted, and written up to (but not including) the terminating
null wide character. If the precision is specified, no more than that many wide characters
are written. If the precision is not specified or is greater than the size of the converted
storage, the converted storage shall contain a null wide character.

If an l length modifier is present, the argument shall be a pointer to storage of wchar_t
type. Wide characters from the storage are written up to (but not including) a terminating
null wide character. If the precision is specified, no more than that many wide characters
are written. If the precision is not specified or is greater than the size of the array, the
storage shall contain a null wide character.

p The argument shall be a pointer to void or a pointer to a character type. The value of
the pointer is converted to a sequence of printing wide characters, in an implementation-
defined manner.

n The argument shall be a pointer to signed integer whose type is specified by the length
modifier, if any, for the conversion specification, or shall be int if no length modifier is
specified for the conversion specification. The number of wide characters written to the
output stream so far by this call to fwprintf is stored into the integer object pointed to

§ 7.31.2.2 © ISO/IEC 202y — All rights reserved

Library — 425

ISO/IEC 9899:202y (en) — n3299 working draft

by the argument. No argument is converted, but one is consumed. If the conversion
specification includes any flags, a field width, or a precision, the behavior is undefined.

% A % wide character is written. No argument is converted. The complete conversion
specification shall be %%.

9 If a conversion specification is invalid, the behavior is undefined.392) fwprintf shall behave as if it
uses va_arg with a type argument naming the type resulting from applying the default argument
promotions to the type corresponding to the conversion specification and then converting the result
of the va_arg expansion to the type corresponding to the conversion specification.393)

10 In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

11 For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.

Recommended practice
12 For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable

in the given precision, the result should be one of the two adjacent numbers in hexadecimal floating
style with the given precision, with the extra stipulation that the error should have a correct sign for
the current rounding direction.

13 For e, E, f, F, g, and G conversions, if the number of significant decimal digits is at most the maximum
value M of the T_DECIMAL_DIG macros (defined in <float.h>), then the result should be correctly
rounded.394) If the number of significant decimal digits is more than M but the source value is
exactly representable with M digits, then the result should be an exact representation with trailing
zeros. Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
M significant digits; the value of the resultant decimal string D should satisfy L ≤ D ≤ U, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

14 The uppercase B format specifier is made optional by the previous description, because it used to be
available for extensions in previous versions of this document. Implementations that did not use an
uppercase B as their own extension before are encouraged to implement it as previously described.

Returns
15 The fwprintf function returns the number of wide characters transmitted, or a negative value if

an output or encoding error occurred or if the implementation does not support a specified width
length modifier.

Environmental limits
16 The number of wide characters that can be produced by any single conversion shall be at least 4095.

17 EXAMPLE To print a date and time in the form "Sunday, July 3, 10:02" followed by π to five decimal places:

#include <math.h>
#include <stdio.h>
#include <wchar.h>
/* ... */
wchar_t *weekday, *month; // pointers to wide strings
int day, hour, min;
fwprintf(stdout, L"%ls, %ls %d, %.2d:%.2d\n",

weekday, month, day, hour, min);
fwprintf(stdout, L"pi = %.5f\n", 4 * atan(1.0));

Forward references: the btowc function (7.31.6.2.1), the mbrtowc function (7.31.6.4.3).

392)See "future library directions" (7.33.21).
393)The behavior is undefined when the types differ as specified for va_arg 7.16.2.2.
394)For binary-to-decimal conversion, the result format’s values are the numbers representable with the given format specifier.

The number of significant digits is determined by the format specifier, and in the case of fixed-point conversion by the source
value as well.

© ISO/IEC 202y — All rights reserved

Library — 426

§ 7.31.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

7.31.2.3 The fwscanf function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fwscanf(FILE * restrict stream, const wchar_t * restrict format, ...);

Description
2 The fwscanf function reads input from the stream pointed to by stream, under control of the wide

string pointed to by format that specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to the objects to receive the
converted input. If there are insufficient arguments for the format, the behavior is undefined. If the
format is exhausted while arguments remain, the excess arguments are evaluated (as always) but
are otherwise ignored.

3 The format is composed of zero or more directives: one or more white-space wide characters, an
ordinary wide character (neither % nor a white-space wide character), or a conversion specification.
Each conversion specification is introduced by the wide character %. After the %, the following
appear in sequence:

— An optional assignment-suppressing wide character *.

— An optional decimal integer greater than zero that specifies the maximum field width (in wide
characters).

— An optional length modifier that specifies the size of the receiving object.

— A conversion specifier wide character that specifies the type of conversion to be applied.

4 The fwscanf function executes each directive of the format in turn. When all directives have been
executed, or if a directive fails (as detailed later in this subclause), the function returns. Failures are
described as input failures (due to the occurrence of an encoding error or the unavailability of input
characters), or matching failures (due to inappropriate input).

5 A directive composed of white-space wide character(s) is executed by reading input up to the first
non-white-space wide character (which remains unread), or until no more wide characters can be
read. The directive never fails.

6 A directive that is an ordinary wide character is executed by reading the next wide character of the
stream. If that wide character differs from the directive, the directive fails and the differing and
subsequent wide characters remain unread. Similarly, if end-of-file, an encoding error, or a read
error prevents a wide character from being read, the directive fails.

7 A directive that is a conversion specification defines a set of matching input sequences, as described
further in this subclause for each specifier. A conversion specification is executed in the following
steps:

8 Input white-space wide characters are skipped, unless the specification includes a [, c, or n speci-
fier.395)

9 An input item is read from the stream, unless the specification includes an n specifier. An input item
is defined as the longest sequence of input wide characters which does not exceed any specified
field width and which is, or is a prefix of, a matching input sequence.396) The first wide character, if
any, after the input item remains unread. If the length of the input item is zero, the execution of the
directive fails; this condition is a matching failure unless end-of-file, an encoding error, or a read
error prevented input from the stream, in which case it is an input failure.

10 Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input
wide characters) is converted to a type appropriate to the conversion specifier. If the input item is

395)These white-space wide characters are not counted against a specified field width.
396)fwscanf pushes back at most one input wide character onto the input stream. Therefore, some sequences that are

acceptable to wcstod, wcstol, etc., are unacceptable to fwscanf.

§ 7.31.2.3 © ISO/IEC 202y — All rights reserved

Library — 427

ISO/IEC 9899:202y (en) — n3299 working draft

not a matching sequence, the execution of the directive fails: this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the conversion is placed in the
object pointed to by the first argument following the format argument that has not already received
a conversion result. If this object does not have an appropriate type, or if the result of the conversion
cannot be represented in the object, the behavior is undefined.

11 The length modifiers and their meanings are:

hh Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to signed char or unsigned char.

h Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to short int or unsigned short int.

l (ell) Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to long int or unsigned long int; that a following a, A, e, E, f, F,
g, or G conversion specifier applies to an argument with type pointer to double; or that
a following c, s, or [conversion specifier applies to an argument with type pointer to
wchar_t.

ll (ell-ell) Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to long long int or unsigned long long int.

j Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to intmax_t or uintmax_t.

z Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to ptrdiff_t or the corresponding unsigned integer type.

wN Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
which is a pointer to an integer with a specific width where N is a positive decimal integer
with no leading zeros. All minimum-width integer types (7.22.2.3) and exact-width
integer types (7.22.2.2) defined in the header <stdint.h> shall be supported. Other
supported values of N are implementation-defined.

wfN Specifies that a following b, d, i, o, u, x, X, or n conversion specifier applies to an argument
which is a pointer to a fastest minimum-width integer with a specific width where N is a
positive decimal integer with no leading zeros. All fastest minimum-width integer types
(7.22.2.4) defined in the header <stdint.h> shall be supported. Other supported values
of N are implementation-defined.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to long double.

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal32.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal64.

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal128.

If a length modifier appears with any conversion specifier other than as specified previously, the
behavior is undefined.

12 In the following, the type of the corresponding argument for a conversion specifier shall be a pointer
to a type determined by the length modifiers, if any, or specified by the conversion specifier. The
conversion specifiers and their meanings are:

© ISO/IEC 202y — All rights reserved

Library — 428

§ 7.31.2.3

ISO/IEC 9899:202y (en) — n3299 working draft

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the wcstol function with the value 10 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
int.

b Matches an optionally signed binary integer, whose format is the same as expected for
the subject sequence of the wcstoul function with the value 2 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

i Matches an optionally signed integer, whose format is the same as expected for the subject
sequence of the wcstol function with the value 0 for the base argument. Unless a length
modifier is specified, the corresponding argument shall be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of the wcstoul function with the value 8 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the wcstoul function with the value 10 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the wcstoul function with the value 16 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

a,e,f,g Matches an optionally signed floating-point number, infinity, or NaN, whose format is
the same as expected for the subject sequence of the wcstod function. Unless a length
modifier is specified, the corresponding argument shall be a pointer to float.

c Matches a sequence of wide characters of exactly the number specified by the field width
(1 if no field width is present in the directive).

If no l length modifier is present, characters from the input field are converted as if
by repeated calls to the wcrtomb function, with the conversion state described by an
mbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to char, signed char, unsigned char, or
void that points to storage large enough to accept the sequence. No null character is
added.

If an l length modifier is present, the corresponding argument shall be a pointer to storage
of wchar_t large enough to accept the sequence. No null wide character is added.

s Matches a sequence of non-white-space wide characters.

If no l length modifier is present, characters from the input field are converted as if
by repeated calls to the wcrtomb function, with the conversion state described by an
mbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to char, signed char, unsigned char, or
void that points to storage large enough to accept the sequence and a terminating null
character, which will be added automatically.

If an l length modifier is present, the corresponding argument shall be a pointer to storage
of wchar_t large enough to accept the sequence and the terminating null wide character,
which will be added automatically.

[Matches a nonempty sequence of wide characters from a set of expected characters (the
scanset).

§ 7.31.2.3 © ISO/IEC 202y — All rights reserved

Library — 429

ISO/IEC 9899:202y (en) — n3299 working draft

If no l length modifier is present, characters from the input field are converted as if
by repeated calls to the wcrtomb function, with the conversion state described by an
mbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to char, signed char, unsigned char, or
void that points to storage large enough to accept the sequence and a terminating null
character, which will be added automatically.

If an l length modifier is present, the corresponding argument shall be a pointer that
points to storage of wchar_t large enough to accept the sequence and the terminating null
wide character, which will be added automatically.

The conversion specifier includes all subsequent wide characters in the format string,
up to and including the matching right bracket (]). The wide characters between the
brackets (the scanlist) compose the scanset, unless the wide character after the left bracket
is a circumflex (^), in which case the scanset contains all wide characters that do not
appear in the scanlist between the circumflex and the right bracket. If the conversion
specifier begins with [] or [^], the right bracket wide character is in the scanlist and
the next following right bracket wide character is the matching right bracket that ends
the specification; otherwise the first following right bracket wide character is the one
that ends the specification. If a - wide character is in the scanlist and is not the first, nor
the second where the first wide character is a ^, nor the last character, the behavior is
implementation-defined.

p Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the %p conversion of the fwprintf function.
The corresponding argument shall be a pointer to a pointer of void. The input item is
converted to a pointer value in an implementation-defined manner. If the input item is a
value converted earlier during the same program execution, the pointer that results shall
compare equal to that value; otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer of a signed integer
type. The number of wide characters read from the input stream so far by this call to the
fwscanf function is stored into the integer object pointed to by the argument. Execution
of a %n directive does not increment the assignment count returned at the completion of
execution of the fwscanf function. No argument is converted, but one is consumed. If
the conversion specification includes an assignment-suppressing wide character or a field
width, the behavior is undefined.

% Matches a single % wide character; no conversion or assignment occurs. The complete
conversion specification shall be %%.

13 If a conversion specification is invalid, the behavior is undefined.397)

14 The conversion specifiers A, E, F, G, and X are also valid and behave the same as, respectively, a, e, f,
g, and x.

15 Trailing white-space wide characters (including new-line wide characters) are left unread unless
matched by a directive. The success of literal matches and suppressed assignments is not directly
determinable other than via the %n directive.

Returns
16 The fwscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure or if the implementation does not support a specific width length modifier.

17 EXAMPLE 1 The call:

#include <stdio.h>

397)See "future library directions" (7.33.21).

© ISO/IEC 202y — All rights reserved

Library — 430

§ 7.31.2.3

ISO/IEC 9899:202y (en) — n3299 working draft

#include <wchar.h>
/* ... */
int n, i; float x; wchar_t name[50];
n = fwscanf(stdin, L"%d%f%ls", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence thompson\0.

18 EXAMPLE 2 The call:

#include <stdio.h>
#include <wchar.h>
/* ... */
int i; float x; double y;
fwscanf(stdin, L"%2d%f%*d %lf", &i, &x, &y);

with input:

56789 0123 56a72

will assign to i the value 56 and to x the value 789.0, will skip past 0123, and will assign to y the value 56.0.
The next wide character read from the input stream will be a.

Forward references: the wcstod, wcstof, and wcstold functions (7.31.4.2.2), the wcstol, wcstoll,
wcstoul, and wcstoull functions (7.31.4.2.4), the wcrtomb function (7.31.6.4.4).

7.31.2.4 The swprintf function
Synopsis

1 #include <wchar.h>
int swprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict format,

...);

Description
2 The swprintf function is equivalent to fwprintf, except that the argument s specifies an array of

wide characters into which the generated output is to be written, rather than written to a stream.
No more than n wide characters are written, including a terminating null wide character, which is
always added (unless n is zero).

Returns
3 The swprintf function returns the number of wide characters written in the array, not counting the

terminating null wide character, or a negative value if an encoding error occurred or if n or more
wide characters were requested to be written.

7.31.2.5 The swscanf function
Synopsis

1 #include <wchar.h>
int swscanf(const wchar_t * restrict s, const wchar_t * restrict format, ...);

Description
2 The swscanf function is equivalent to fwscanf, except that the argument s specifies a wide string

from which the input is to be obtained, rather than from a stream. Reaching the end of the wide
string is equivalent to encountering end-of-file for the fwscanf function.

§ 7.31.2.5 © ISO/IEC 202y — All rights reserved

Library — 431

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The swscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the swscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.31.2.6 The vfwprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwprintf(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);

Description
2 The vfwprintf function is equivalent to fwprintf, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
invocations). The vfwprintf function does not invoke the va_end macro.398)

Returns
3 The vfwprintf function returns the number of wide characters transmitted, or a negative value if

an output or encoding error occurred.

4 EXAMPLE The following shows the use of the vfwprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

void error(char *function_name, wchar_t *format, ...)
{

va_list args;

va_start(args, format);
// print out name of function causing error
fwprintf(stderr, L"ERROR in %s: ", function_name);
// print out remainder of message
vfwprintf(stderr, format, args);
va_end(args);

}

7.31.2.7 The vfwscanf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);

Description
2 The vfwscanf function is equivalent to fwscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfwscanf function does not invoke the va_end macro.398)

398)As the functions vfwprintf, vswprintf, vfwscanf, vwprintf, vwscanf, and vswscanf invoke the va_arg macro, the
representation of arg after the return is indeterminate.

© ISO/IEC 202y — All rights reserved

Library — 432

§ 7.31.2.7

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The vfwscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vfwscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.31.2.8 The vswprintf function
Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vswprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict format,

va_list arg);

Description
2 The vswprintf function is equivalent to swprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vswprintf function does not invoke the va_end macro.398)

Returns
3 The vswprintf function returns the number of wide characters written in the array, not counting

the terminating null wide character, or a negative value if an encoding error occurred or if n or more
wide characters were requested to be generated.

7.31.2.9 The vswscanf function
Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vswscanf(const wchar_t * restrict s, const wchar_t * restrict format,

va_list arg);

Description
2 The vswscanf function is equivalent to swscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vswscanf function does not invoke the va_end macro.398)

Returns
3 The vswscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vswscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.31.2.10 The vwprintf function
Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vwprintf(const wchar_t * restrict format, va_list arg);

Description
2 The vwprintf function is equivalent to wprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vwprintf function does not invoke the va_end macro.398)

§ 7.31.2.10 © ISO/IEC 202y — All rights reserved

Library — 433

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The vwprintf function returns the number of wide characters transmitted, or a negative value if an

output or encoding error occurred.

7.31.2.11 The vwscanf function
Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vwscanf(const wchar_t * restrict format, va_list arg);

Description
2 The vwscanf function is equivalent to wscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vwscanf function does not invoke the va_end macro.398)

Returns
3 The vwscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vwscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.31.2.12 The wprintf function
Synopsis

1 #include <wchar.h>
int wprintf(const wchar_t * restrict format, ...);

Description
2 The wprintf function is equivalent to fwprintf with the argument stdout interposed before the

arguments to wprintf.

Returns
3 The wprintf function returns the number of wide characters transmitted, or a negative value if an

output or encoding error occurred.

7.31.2.13 The wscanf function
Synopsis

1 #include <wchar.h>
int wscanf(const wchar_t * restrict format, ...);

Description
2 The wscanf function is equivalent to fwscanf with the argument stdin interposed before the

arguments to wscanf.

Returns
3 The wscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the wscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.31.3 Wide character input/output functions
7.31.3.1 The fgetwc function
Synopsis

1 #include <stdio.h>

© ISO/IEC 202y — All rights reserved

Library — 434

§ 7.31.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

#include <wchar.h>
wint_t fgetwc(FILE *stream);

Description
2 If the end-of-file indicator for the input stream pointed to by stream is not set and a next wide

character is present, the fgetwc function obtains that wide character as a wchar_t converted to a
wint_t and advances the associated file position indicator for the stream (if defined).

Returns
3 If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file

indicator for the stream is set and the fgetwc function returns WEOF. Otherwise, the fgetwc function
returns the next wide character from the input stream pointed to by stream. If a read error occurs,
the error indicator for the stream is set and the fgetwc function returns WEOF. If an encoding error
occurs (including too few bytes), the error indicator for the stream is set and the value of the macro
EILSEQ is stored in errno and the fgetwc function returns WEOF.399)

7.31.3.2 The fgetws function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wchar_t *fgetws(wchar_t * restrict s, int n, FILE * restrict stream);

Description
2 The fgetws function reads at most one less than the number of wide characters specified by n from

the stream pointed to by stream into the array pointed to by s. No additional wide characters are
read after a new-line wide character (which is retained) or after end-of-file. A null wide character
is written immediately after the last wide character read into the array. If n is negative or zero, the
behavior is undefined.

Returns
3 The fgetws function returns s if successful. If end-of-file is encountered and no characters have

been read into the array, the contents of the array remain unchanged and a null pointer is returned.
If a read or encoding error occurs during the operation, the array members have an indeterminate
representation and a null pointer is returned.

7.31.3.3 The fputwc function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t fputwc(wchar_t c, FILE *stream);

Description
2 The fputwc function writes the wide character specified by c to the output stream pointed to by

stream, at the position indicated by the associated file position indicator for the stream (if defined),
and advances the indicator appropriately. If the file cannot support positioning requests, or if the
stream was opened with append mode, the character is appended to the output stream.

Returns
3 The fputwc function returns the wide character written. If a write error occurs, the error indicator

for the stream is set and fputwc returns WEOF. If an encoding error occurs, the error indicator for the
stream is set and the value of the macro EILSEQ is stored in errno and fputwc returns WEOF.

7.31.3.4 The fputws function
399)An end-of-file and a read error can be distinguished by use of the feof and ferror functions. Also, errno will be set to
EILSEQ by input/output functions only if an encoding error occurs.

§ 7.31.3.4 © ISO/IEC 202y — All rights reserved

Library — 435

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fputws(const wchar_t * restrict s, FILE * restrict stream);

Description
2 The fputws function writes the wide string pointed to by s to the stream pointed to by stream. The

terminating null wide character is not written.

Returns
3 The fputws function returns EOF if a write or encoding error occurs; otherwise, it returns a nonnega-

tive value.

7.31.3.5 The fwide function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fwide(FILE *stream, int mode);

Description
2 The fwide function determines the orientation of the stream pointed to by stream. If mode is greater

than zero, the function first attempts to make the stream wide oriented. If mode is less than zero,
the function first attempts to make the stream byte oriented.400) Otherwise, mode is zero and the
function does not alter the orientation of the stream.

Returns
3 The fwide function returns a value greater than zero if, after the call, the stream has wide orientation,

a value less than zero if the stream has byte orientation, or zero if the stream has no orientation.

7.31.3.6 The getwc function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t getwc(FILE *stream);

Description
2 The getwc function is equivalent to fgetwc, except that if it is implemented as a macro, it may

evaluate stream more than once, so the argument should never be an expression with side effects.

Returns
3 The getwc function returns the next wide character from the input stream pointed to by stream, or

WEOF.

7.31.3.7 The getwchar function
Synopsis

1 #include <wchar.h>
wint_t getwchar(void);

Description
2 The getwchar function is equivalent to getwc with the argument stdin.

400)If the orientation of the stream has already been determined, fwide does not change it.

© ISO/IEC 202y — All rights reserved

Library — 436

§ 7.31.3.7

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The getwchar function returns the next wide character from the input stream pointed to by stdin,

or WEOF.

7.31.3.8 The putwc function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t putwc(wchar_t c, FILE *stream);

Description
2 The putwc function is equivalent to fputwc, except that if it is implemented as a macro, it may

evaluate stream more than once, so that argument should never be an expression with side effects.

Returns
3 The putwc function returns the wide character written, or WEOF.

7.31.3.9 The putwchar function
Synopsis

1 #include <wchar.h>
wint_t putwchar(wchar_t c);

Description
2 The putwchar function is equivalent to putwc with the second argument stdout.

Returns
3 The putwchar function returns the character written, or WEOF.

7.31.3.10 The ungetwc function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t ungetwc(wint_t c, FILE *stream);

Description
2 The ungetwc function pushes the wide character specified by c back onto the input stream pointed

to by stream. Pushed-back wide characters will be returned by subsequent reads on that stream
in the reverse order of their pushing. A successful intervening call (with the stream pointed to by
stream) to a file positioning function (fseek, fsetpos, or rewind) discards any pushed-back wide
characters for the stream. The external storage corresponding to the stream is unchanged.

3 One wide character of pushback is guaranteed, even if the call to the ungetwc function follows just
after a call to a formatted wide character input function fwscanf, vfwscanf, vwscanf, or wscanf. If
the ungetwc function is called too many times on the same stream without an intervening read or
file positioning operation on that stream, the operation may fail.

4 If the value of c equals that of the macro WEOF, the operation fails and the input stream is unchanged.

5 A successful call to the ungetwc function clears the end-of-file indicator for the stream. The value of
the file position indicator for the stream after reading or discarding all pushed-back wide characters
is the same as it was before the wide characters were pushed back.401) For a text or binary stream,
the value of its file position indicator after a successful call to the ungetwc function is unspecified
until all pushed-back wide characters are read or discarded.

401)A file positioning function can further modify the file position indicator after discarding any pushed-back wide characters.

§ 7.31.3.10 © ISO/IEC 202y — All rights reserved

Library — 437

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
6 The ungetwc function returns the wide character pushed back, or WEOF if the operation fails.

7.31.4 General wide string utilities
7.31.4.1 General

1 The header <wchar.h> declares functions for wide string manipulation. Various methods are used
for determining the lengths of the arrays, but in all cases a wchar_t* argument points to the initial
(lowest addressed) element of the array. If an array is accessed beyond the end of an object, the
behavior is undefined.

2 Where an argument declared as size_t n determines the length of the array for a function, n can
have the value zero on a call to that function. Unless explicitly stated otherwise in the description of
a particular function in this subclause, pointer arguments on such a call shall still have valid values,
as described in 7.1.4. On such a call, a function that locates a wide character finds no occurrence, a
function that compares two wide character sequences returns zero, and a function that copies wide
characters copies zero wide characters.

7.31.4.2 Wide string numeric conversion functions
7.31.4.2.1 General

1 This subclause describes wide string analogs of the strtod family of functions (7.24.2.6, 7.24.2.7).402)

7.31.4.2.2 The wcstod, wcstof, and wcstold functions
Synopsis

1 #include <wchar.h>
double wcstod(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
float wcstof(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
long double wcstold(const wchar_t * restrict nptr, wchar_t ** restrict endptr);

Description
2 The wcstod, wcstof, and wcstold functions convert the initial portion of the wide string pointed to

by nptr to double, float, and long double representation, respectively. First, they decompose the
input string into three parts: an initial, possibly empty, sequence of white-space wide characters, a
subject sequence resembling a floating constant or representing an infinity or NaN; and a final wide
string of one or more unrecognized wide characters, including the terminating null wide character
of the input wide string. Then, they attempt to convert the subject sequence to a floating-point
number, and return the result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

402)Wide string analogs of the strfromd family of functions (7.24.2.6, 7.24.2.7) are not provided because those conversions can
be done by using mbstowcs (7.24.9.2) to convert the result of strfromd, strfromf, and similar to wide string. For example,
the following converts double d to wide string ws with at most n-1 non-null wide characters, using style g formatting, and
computes the number nc of wide characters that would have been written had n been sufficiently large, not counting the
terminating null wide character.

#include <stdlib.h>
const size_t n = 20;
double d;
//...
// convert d to single-byte character string s
char s[n];
int nc = strfromd(s, n, "%g", d);
// convert s (regarded as a multi-byte character
// string) to wide string ws
wchar_t ws[n];
(void)mbstowcs(ws, s, n);

© ISO/IEC 202y — All rights reserved

Library — 438

§ 7.31.4.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

— a nonempty sequence of decimal digits optionally containing a decimal-point wide character,
then an optional exponent part as defined for the corresponding single-byte characters in
6.4.5.3, excluding any digit separators (6.4.5.2);

— a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-
point wide character, then an optional binary exponent part as defined in 6.4.5.3, excluding
any digit separators (6.4.5.2);

— INF or INFINITY, or any other wide string equivalent except for case

— NAN or NAN(n-wchar-sequenceopt), or any other wide string equivalent except for case in the NAN
part, where:

n-wchar-sequence:
digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide string, starting
with the first non-white-space wide character, that is of the expected form. The subject sequence
contains no wide characters if the input wide string is not of the expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of wide
characters starting with the first digit or the decimal-point wide character (whichever occurs first) is
interpreted as a floating constant according to the rules of 6.4.5.3, except that the decimal-point wide
character is used in place of a period, and that if neither an exponent part nor a decimal-point wide
character appears in a decimal floating-point number, or if a binary exponent part does not appear
in a hexadecimal floating-point number, an exponent part of the appropriate type with value zero is
assumed to follow the last digit in the string.

5 If the subject sequence begins with a minus sign, the sequence is interpreted as arithmetically
negated.403)

6 A wide character sequence INF or INFINITY is interpreted as an infinity, if representable in the
return type, else like a floating constant that is too large for the range of the return type. A wide
character sequence NAN or NAN(n-wchar-sequenceopt) is interpreted as a quiet NaN, if supported in
the return type, else like a subject sequence part that does not have the expected form; the meaning
of the n-wchar sequence is implementation-defined.404)

7 A pointer to the final wide string is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

8 If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value resulting
from the conversion is correctly rounded.

9 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

10 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Recommended practice
11 If the subject sequence has the hexadecimal form, FLT_RADIX is not a power of 2, and the result is

not exactly representable, the result should be one of the two numbers in the appropriate internal
format that are adjacent to the hexadecimal floating source value, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

403)It is unspecified whether a minus-signed sequence is converted to a negative number directly or by arithmetically
negating the value resulting from converting the corresponding unsigned sequence (see F.5); the two methods can yield
different results if rounding is toward positive or negative infinity. In either case, the functions honor the sign of zero if
floating-point arithmetic supports signed zeros.
404)An implementation can use the n-wchar sequence to determine extra information to be represented in the NaN’s

significand.

§ 7.31.4.2.2 © ISO/IEC 202y — All rights reserved

Library — 439

ISO/IEC 9899:202y (en) — n3299 working draft

12 If the subject sequence has the decimal form and at most M significant digits, where M is the
maximum value of the T_DECIMAL_DIGmacros (defined in <float.h>), the result should be correctly
rounded. If the subject sequence D has the decimal form and more than M significant digits, consider
the two bounding, adjacent decimal strings L and U, both having M significant digits, such that the
values of L, D, and U satisfy L ≤ D ≤ U. The result should be one of the (equal or adjacent) values
that would be obtained by correctly rounding L and U according to the current rounding direction,
with the extra stipulation that the error with respect to D should have a correct sign for the current
rounding direction.405)

Returns
13 The functions return the converted value, if any. If no conversion could be performed, positive or

unsigned zero is returned.

14 If the correct value overflows and default rounding is in effect (7.12.2), plus or minus HUGE_VAL,
HUGE_VALF, or HUGE_VALL is returned (according to the return type and sign of the value); if the
integer expression math_errhandling & MATH_ERRNO is nonzero, the integer expression errno
acquires the value of ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT is
nonzero, the "overflow" floating-point exception is raised.

15 If the result underflows (7.12.2), the functions return a value whose magnitude is no greater than the
smallest normalized positive number in the return type; if the integer expression math_errhandling
& MATH_ERRNO is nonzero, whether errno acquires the value ERANGE is implementation-defined; if

the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, whether the "underflow"
floating-point exception is raised is implementation-defined.

7.31.4.2.3 The wcstodN functions
Synopsis

1 #include <wchar.h>
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 wcstod32(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
_Decimal64 wcstod64(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
_Decimal128 wcstod128(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
#endif

Description
2 The wcstodN functions convert the initial portion of the wide string pointed to by nptr to decimal

floating type representation. First, they decompose the input wide string into three parts: an initial,
possibly empty, sequence of white-space wide characters; a subject sequence resembling a floating
constant or representing an infinity or NaN; and a final wide string of one or more unrecognized
wide characters, including the terminating null wide character of the input wide string. Then, they
attempt to convert the subject sequence to a floating-point number, and return the result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

— a nonempty sequence of decimal digits optionally containing a decimal-point wide character,
then an optional exponent part as defined in 6.4.5.3, excluding any digit separators (6.4.5.2)

— a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-
point wide character, then an optional binary exponent part as defined in 6.4.5.3, excluding
any digit separators (6.4.5.2)

— INF or INFINITY, ignoring case

— NAN or NAN(d-wchar-sequenceopt), ignoring case in the NAN part, where:

405)M is sufficiently large that L and U will usually correctly round to the same internal floating value, but if not will correctly
round to adjacent values.

© ISO/IEC 202y — All rights reserved

Library — 440

§ 7.31.4.2.3

ISO/IEC 9899:202y (en) — n3299 working draft

d-wchar-sequence:
digit
nondigit
d-wchar-sequence digit
d-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide string, starting
with the first non-white-space wide character, that is of the expected form. The subject sequence
contains no wide characters if the input wide string is not of the expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of wide
characters starting with the first digit or the decimal-point wide character (whichever occurs first) is
interpreted as a floating constant according to the rules of 6.4.5.3, except that the decimal-point wide
character is used in place of a period, and that if neither an exponent part nor a decimal-point wide
character appears in a decimal floating-point number, or if a binary exponent part does not appear
in a hexadecimal floating-point number, an exponent part of the appropriate type with value zero is
assumed to follow the last digit in the wide string. If the subject sequence begins with a minus sign,
the sequence is interpreted as arithmetically negated before rounding and the sign s is set to −1, else
s is set to 1.

5 If the subject sequence has the expected form for a decimal floating-point number, the value resulting
from the conversion is correctly rounded and the coefficient c and the quantum exponent q are
determined by the rules in 6.4.5.3 for a decimal floating constant of decimal type.

6 If the subject sequence has the expected form for a hexadecimal floating-point number, the value
resulting from the conversion is correctly rounded provided the subject sequence has at most
M significant hexadecimal digits, where M ≥ ⌈(P − 1)/4⌉ + 1 is implementation-defined, and
P is the maximum precision of the supported radix-2 floating types and binary non-arithmetic
interchange formats.406) If all subject sequences of hexadecimal form are correctly rounded, M may
be regarded as infinite. If the subject sequence has more than M significant hexadecimal digits, the
implementation may first round to M significant hexadecimal digits according to the applicable
decimal rounding direction mode, signaling exceptions as though converting from a wider format,
then correctly round the result of the shortened hexadecimal input to the result type. The preferred
quantum exponent for the result is 0 if the hexadecimal number is exactly represented in the decimal
type; the preferred quantum exponent for the result is the least possible if the hexadecimal number
is not exactly represented in the decimal type.

7 A wide character sequence INF or INFINITY is interpreted as an infinity. A wide character sequence
NAN or NAN(d-wchar-sequenceopt), is interpreted as a quiet NaN; the meaning of the d-wchar sequence
is implementation-defined.407) A pointer to the final wide string is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

8 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

9 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Returns
10 The wcstodN functions return the converted value, if any. If no conversion could be performed, the

value of the triple (+1, 0, 0) is returned. If the correct value overflows:

— the value of the macro ERANGE is stored in errno if the integer expression math_errhandling
& MATH_ERRNO is nonzero;

406)Non-arithmetic interchange formats are an optional feature in Annex H.
407)An implementation can use the d-wchar sequence to determine extra information to be represented in the NaN’s

significand.

§ 7.31.4.2.3 © ISO/IEC 202y — All rights reserved

Library — 441

ISO/IEC 9899:202y (en) — n3299 working draft

— the "overflow" floating-point exception is raised if the integer expression math_errhandling
& MATH_ERREXCEPT is nonzero.

If the result underflows (7.12.2), whether errno acquires the value ERANGE if the integer expression
math_errhandling & MATH_ERRNO is nonzero is implementation-defined; if the integer expres-
sion math_errhandling & MATH_ERREXCEPT is nonzero, whether the "underflow" floating-point
exception is raised is implementation-defined.

7.31.4.2.4 The wcstol, wcstoll, wcstoul, and wcstoull functions
Synopsis

1 #include <wchar.h>
long int wcstol(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);
long long int wcstoll(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);
unsigned long int wcstoul(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);
unsigned long long int wcstoull(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);

Description
2 The wcstol, wcstoll, wcstoul, and wcstoull functions convert the initial portion of the wide

string pointed to by nptr to long int, long long int, unsigned long int, and unsigned long
long int representation, respectively. First, they decompose the input string into three parts: an

initial, possibly empty, sequence of white-space wide characters, a subject sequence resembling an
integer represented in some radix determined by the value of base, and a final wide string of one
or more unrecognized wide characters, including the terminating null wide character of the input
wide string. Then, they attempt to convert the subject sequence to an integer, and return the result.

3 If the value of base is zero, the expected form of the subject sequence is that of an integer constant
as described for the corresponding single-byte characters in 6.4.5.2, optionally preceded by a plus or
minus sign, but not including an integer suffix or any optional digit separators (6.4.5.2). If the value
of base is between 2 and 36 (inclusive), the expected form of the subject sequence is a sequence of
letters and digits representing an integer with the radix specified by base, optionally preceded by a
plus or minus sign, but not including an integer suffix or any optional digit separators. The letters
from a (or A) through z (or Z) are ascribed the values 10 through 35; only letters and digits whose
ascribed values are less than that of base are permitted. If the value of base is 2, the characters 0b or
0B may optionally precede the sequence of letters and digits, following the sign if present. If the
value of base is 16, the wide characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.

4 The subject sequence is defined as the longest initial subsequence of the input wide string, starting
with the first non-white-space wide character, that is of the expected form. The subject sequence
contains no wide characters if the input wide string is empty or consists entirely of white-space
wide characters, or if the first non-white-space wide character is other than a sign or a permissible
letter or digit.

5 If the subject sequence has the expected form and the value of base is zero, the sequence of wide
characters starting with the first digit is interpreted as an integer constant according to the rules of
6.4.5.2. If the subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value as previously given. If the subject
sequence begins with a minus sign, the resulting value is the negative of the converted value; for
functions whose return type is an unsigned integer type this action is performed in the return type.
A pointer to the final wide string is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

6 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

7 If the subject sequence is empty or does not have the expected form, no conversion is performed; the

© ISO/IEC 202y — All rights reserved

Library — 442

§ 7.31.4.2.4

ISO/IEC 9899:202y (en) — n3299 working draft

value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Returns
8 The wcstol, wcstoll, wcstoul, and wcstoull functions return the converted value, if any. If

no conversion could be performed, zero is returned. If the correct value is outside the range of
representable values, LONG_MIN, LONG_MAX, LLONG_MIN, LLONG_MAX, ULONG_MAX, or ULLONG_MAX is
returned (according to the return type sign of the value, if any), and the value of the macro ERANGE
is stored in errno.

7.31.4.3 Wide string copying functions
7.31.4.3.1 The wcscpy function
Synopsis

1 #include <wchar.h>
wchar_t *wcscpy(wchar_t * restrict s1, const wchar_t * restrict s2);

Description
2 The wcscpy function copies the wide string pointed to by s2 (including the terminating null wide

character) into the array pointed to by s1.

Returns
3 The wcscpy function returns the value of s1.

7.31.4.3.2 The wcsncpy function
Synopsis

1 #include <wchar.h>
wchar_t *wcsncpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

Description
2 The wcsncpy function copies not more than n wide characters (those that follow a null wide character

are not copied) from the array pointed to by s2 to the array pointed to by s1.408)

3 If the array pointed to by s2 is a wide string that is shorter than n wide characters, null wide
characters are appended to the copy in the array pointed to by s1, until n wide characters in all have
been written.

Returns
4 The wcsncpy function returns the value of s1.

7.31.4.3.3 The wmemcpy function
Synopsis

1 #include <wchar.h>
wchar_t *wmemcpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

Description
2 The wmemcpy function copies n wide characters from the object pointed to by s2 to the object pointed

to by s1.

Returns
3 The wmemcpy function returns the value of s1.

7.31.4.3.4 The wmemmove function

408)Thus, if there is no null wide character in the first n wide characters of the array pointed to by s2, the result will not be
null-terminated.

§ 7.31.4.3.4 © ISO/IEC 202y — All rights reserved

Library — 443

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <wchar.h>
wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

Description
2 The wmemmove function copies n wide characters from the object pointed to by s2 to the object

pointed to by s1. Copying takes place as if the n wide characters from the object pointed to by s2
are first copied into a temporary array of n wide characters that does not overlap the objects pointed
to by s1 or s2, and then the n wide characters from the temporary array are copied into the object
pointed to by s1.

Returns
3 The wmemmove function returns the value of s1.

7.31.4.4 Wide string concatenation functions
7.31.4.4.1 The wcscat function
Synopsis

1 #include <wchar.h>
wchar_t *wcscat(wchar_t * restrict s1, const wchar_t * restrict s2);

Description
2 The wcscat function appends a copy of the wide string pointed to by s2 (including the terminating

null wide character) to the end of the wide string pointed to by s1. The initial wide character of s2
overwrites the null wide character at the end of s1.

Returns
3 The wcscat function returns the value of s1.

7.31.4.4.2 The wcsncat function
Synopsis

1 #include <wchar.h>
wchar_t *wcsncat(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

Description
2 The wcsncat function appends not more than n wide characters (a null wide character and those

that follow it are not appended) from the array pointed to by s2 to the end of the wide string pointed
to by s1. The initial wide character of s2 overwrites the null wide character at the end of s1. A
terminating null wide character is always appended to the result.409)

Returns
3 The wcsncat function returns the value of s1.

7.31.4.5 Wide string comparison functions
7.31.4.5.1 General

1 Unless explicitly stated otherwise, the functions described in this subclause order two wide charac-
ters the same way as two integers of the underlying integer type designated by wchar_t.

7.31.4.5.2 The wcscmp function
Synopsis

1 #include <wchar.h>
int wcscmp(const wchar_t *s1, const wchar_t *s2);

409)Thus, the maximum number of wide characters that can end up in the array pointed to by s1 is wcslen(s1)+n+1.

© ISO/IEC 202y — All rights reserved

Library — 444

§ 7.31.4.5.2

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The wcscmp function compares the wide string pointed to by s1 to the wide string pointed to by s2.

Returns
3 The wcscmp function returns an integer greater than, equal to, or less than zero, accordingly as the

wide string pointed to by s1 is greater than, equal to, or less than the wide string pointed to by s2.

7.31.4.5.3 The wcscoll function
Synopsis

1 #include <wchar.h>
int wcscoll(const wchar_t *s1, const wchar_t *s2);

Description
2 The wcscoll function compares the wide string pointed to by s1 to the wide string pointed to by

s2, both interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns
3 The wcscoll function returns an integer greater than, equal to, or less than zero, accordingly as the

wide string pointed to by s1 is greater than, equal to, or less than the wide string pointed to by s2
when both are interpreted as appropriate to the current locale.

7.31.4.5.4 The wcsncmp function
Synopsis

1 #include <wchar.h>
int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description
2 The wcsncmp function compares not more than n wide characters (those that follow a null wide

character are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns
3 The wcsncmp function returns an integer greater than, equal to, or less than zero, accordingly as the

possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.

7.31.4.5.5 The wcsxfrm function
Synopsis

1 #include <wchar.h>
size_t wcsxfrm(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

Description
2 The wcsxfrm function transforms the wide string pointed to by s2 and places the resulting wide

string into the array pointed to by s1. The transformation is such that if the wcscmp function is
applied to two transformed wide strings, it returns a value greater than, equal to, or less than zero,
corresponding to the result of the wcscoll function applied to the same two original wide strings.
No more than n wide characters are placed into the resulting array pointed to by s1, including the
terminating null wide character. If n is zero, s1 is permitted to be a null pointer.

Returns
3 The wcsxfrm function returns the length of the transformed wide string (not including the terminat-

ing null wide character). If the value returned is n or greater, the members of the array pointed to by
s1 have an indeterminate representation.

4 EXAMPLE The value of the following expression is the length of the array needed to hold the transformation
of the wide string pointed to by s:

§ 7.31.4.5.5 © ISO/IEC 202y — All rights reserved

Library — 445

ISO/IEC 9899:202y (en) — n3299 working draft

1 + wcsxfrm(nullptr, s, 0)

7.31.4.5.6 The wmemcmp function
Synopsis

1 #include <wchar.h>
int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description
2 The wmemcmp function compares the first n wide characters of the object pointed to by s1 to the first

n wide characters of the object pointed to by s2.

Returns
3 The wmemcmp function returns an integer greater than, equal to, or less than zero, accordingly as the

object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

7.31.4.6 Wide string search functions
7.31.4.6.1 Introduction

1 The stateless search functions in this section (wcschr, wcspbrk, wcsrchr, wmemchr, wcsstr) are
generic functions. These functions are generic in the qualification of the array to be searched and will
return a result pointer to an element with the same qualification as the passed array. If the array to
be searched is const-qualified, the result pointer will be to a const-qualified element. If the array to
be searched is not const-qualified,410) the result pointer will be to an unqualified element.

2 The external declarations of these generic functions have a concrete function type that returns a
pointer to an unqualified element of type wchar_t (indicated by QWchar_t), and accepts a pointer
to a const-qualified array of the same type to search. This signature supports all correct uses. If a
macro definition of any of these generic functions is suppressed to access an actual function, the
external declaration with this concrete type is visible.411)

3 The volatile and restrict qualifiers are not accepted on the elements of the array to search.

7.31.4.6.2 The wcschr generic function
Synopsis

1 #include <wchar.h>
QWchar_t *wcschr(QWchar_t *s, wchar_t c);

Description
2 The wcschr generic function locates the first occurrence of c in the wide string pointed to by s. The

terminating null wide character is considered to be part of the wide string.

Returns
3 The wcschr generic function returns a pointer to the located wide character, or a null pointer if the

wide character does not occur in the wide string.

7.31.4.6.3 The wcscspn function
Synopsis

1 #include <wchar.h>
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

410)The null pointer constant is not a pointer to a const-qualified type, and therefore the result expression has the type of a
pointer to an unqualified element; however, evaluating such a call is undefined.

411)This is an obsolescent feature.

© ISO/IEC 202y — All rights reserved

Library — 446

§ 7.31.4.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The wcscspn function computes the length of the maximum initial segment of the wide string

pointed to by s1 which consists entirely of wide characters not from the wide string pointed to by
s2.

Returns
3 The wcscspn function returns the length of the segment.

7.31.4.6.4 The wcspbrk generic function
Synopsis

1 #include <wchar.h>
QWchar_t *wcspbrk(QWchar_t *s1, const wchar_t *s2);

Description
2 The wcspbrk generic function locates the first occurrence in the wide string pointed to by s1 of any

wide character from the wide string pointed to by s2.

Returns
3 The wcspbrk generic function returns a pointer to the wide character in s1, or a null pointer if no

wide character from s2 occurs in s1.

7.31.4.6.5 The wcsrchr generic function
Synopsis

1 #include <wchar.h>
QWchar_t *wcsrchr(QWchar_t *s, wchar_t c);

Description
2 The wcsrchr generic function locates the last occurrence of c in the wide string pointed to by s. The

terminating null wide character is considered to be part of the wide string.

Returns
3 The wcsrchr generic function returns a pointer to the wide character, or a null pointer if c does not

occur in the wide string.

7.31.4.6.6 The wcsspn function
Synopsis

1 #include <wchar.h>
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

Description
2 The wcsspn function computes the length of the maximum initial segment of the wide string pointed

to by s1 which consists entirely of wide characters from the wide string pointed to by s2.

Returns
3 The wcsspn function returns the length of the segment.

7.31.4.6.7 The wcsstr generic function
Synopsis

1 #include <wchar.h>
QWchar_t *wcsstr(QWchar_t *s1, const wchar_t *s2);

§ 7.31.4.6.7 © ISO/IEC 202y — All rights reserved

Library — 447

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The wcsstr generic function locates the first occurrence in the wide string pointed to by s1 of the

sequence of wide characters (excluding the terminating null wide character) in the wide string
pointed to by s2.

Returns
3 The wcsstr generic function returns a pointer to the located wide string, or a null pointer if the

wide string is not found. If s2 points to a wide string with zero length, the function returns s1.

© ISO/IEC 202y — All rights reserved

Library — 448

§ 7.31.4.6.7

ISO/IEC 9899:202y (en) — n3299 working draft

7.31.4.6.8 The wcstok function
Synopsis

1 #include <wchar.h>
wchar_t *wcstok(wchar_t * restrict s1, const wchar_t * restrict s2,

wchar_t ** restrict ptr);

Description
2 A sequence of calls to the wcstok function breaks the wide string pointed to by s1 into a sequence

of tokens, each of which is delimited by a wide character from the wide string pointed to by s2. The
third argument points to a caller-provided wchar_t pointer into which the wcstok function stores
information necessary for it to continue scanning the same wide string.

3 The first call in a sequence has a non-null first argument and stores an initial value in the object
pointed to by ptr. Subsequent calls in the sequence have a null first argument and the object pointed
to by ptr is required to have the value stored by the previous call in the sequence, which is then
updated. The separator wide string pointed to by s2 may be different from call to call.

4 The first call in the sequence searches the wide string pointed to by s1 for the first wide character
that is not contained in the current separator wide string pointed to by s2. If no such wide character
is found, then there are no tokens in the wide string pointed to by s1 and the wcstok function
returns a null pointer. If such a wide character is found, it is the start of the first token.

5 The wcstok function then searches from there for a wide character that is contained in the current
separator wide string. If no such wide character is found, the current token extends to the end of the
wide string pointed to by s1, and subsequent searches in the same wide string for a token return
a null pointer. If such a wide character is found, it is overwritten by a null wide character, which
terminates the current token.

6 In all cases, the wcstok function stores sufficient information in the pointer pointed to by ptr so
that subsequent calls, with a null pointer for s1 and the unmodified pointer value for ptr, shall start
searching just past the element overwritten by a null wide character (if any).

Returns
7 The wcstok function returns a pointer to the first wide character of a token, or a null pointer if there

is no token.

8 EXAMPLE

#include <wchar.h>
static wchar_t str1[] = L"?a???b,,,#c";
static wchar_t str2[] = L"\t \t";
wchar_t *t, *ptr1, *ptr2;

t = wcstok(str1, L"?", &ptr1); // t points to the token L"a"
t = wcstok(nullptr, L",", &ptr1); // t points to the token L"??b"
t = wcstok(str2, L" \t", &ptr2); // t is a null pointer
t = wcstok(nullptr, L"#,", &ptr1); // t points to the token L"c"
t = wcstok(nullptr, L"?", &ptr1); // t is a null pointer

7.31.4.6.9 The wmemchr generic function
Synopsis

1 #include <wchar.h>
QWchar_t *wmemchr(QWchar_t *s, wchar_t c, size_t n);

Description
2 The wmemchr generic function locates the first occurrence of c in the initial n wide characters of the

object pointed to by s.

§ 7.31.4.6.9 © ISO/IEC 202y — All rights reserved

Library — 449

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The wmemchr generic function returns a pointer to the located wide character, or a null pointer if the

wide character does not occur in the object.

7.31.4.7 Miscellaneous functions
7.31.4.7.1 The wcslen function
Synopsis

1 #include <wchar.h>
size_t wcslen(const wchar_t *s);

Description
2 The wcslen function computes the length of the wide string pointed to by s.

Returns
3 The wcslen function returns the number of wide characters that precede the terminating null wide

character.

7.31.4.7.2 The wmemset function
Synopsis

1 #include <wchar.h>
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

Description
2 The wmemset function copies the value of c into each of the first n wide characters of the object

pointed to by s.

Returns
3 The wmemset function returns the value of s.

7.31.5 Wide character time conversion functions
7.31.5.1 The wcsftime function
Synopsis

1 #include <time.h>
#include <wchar.h>
size_t wcsftime(wchar_t * restrict s, size_t maxsize,

const wchar_t * restrict format, const struct tm * restrict timeptr);

Description
2 The wcsftime function is equivalent to the strftime function, except that:

— The argument s points to the initial element of an array of wide characters into which the
generated output is to be placed.

— The argument maxsize indicates the limiting number of wide characters.

— The argument format is a wide string and the conversion specifiers are replaced by corre-
sponding sequences of wide characters.

— The return value indicates the number of wide characters.

Returns
3 If the total number of resulting wide characters including the terminating null wide character is not

more than maxsize, the wcsftime function returns the number of wide characters placed into the
array pointed to by s not including the terminating null wide character. Otherwise, zero is returned
and the members of the array have an indeterminate representation.

© ISO/IEC 202y — All rights reserved

Library — 450

§ 7.31.5.1

ISO/IEC 9899:202y (en) — n3299 working draft

7.31.6 Extended multibyte/wide character conversion utilities
7.31.6.1 General

1 The header <wchar.h> declares an extended set of functions useful for conversion between multibyte
characters and wide characters.

2 Most of the following functions — those that are listed as "restartable", 7.31.6.4 and 7.31.6.5 — take
as a last argument a pointer to an object of type mbstate_t that is used to describe the current
conversion state from a particular multibyte character sequence to a wide character sequence (or the
reverse) under the rules of a particular setting for the LC_CTYPE category of the current locale.

3 The initial conversion state corresponds, for a conversion in either direction, to the beginning of a
new multibyte character in the initial shift state. A zero-valued mbstate_t object is (at least) one
way to describe an initial conversion state. A zero-valued mbstate_t object can be used to initiate
conversion involving any multibyte character sequence, in any LC_CTYPE category setting. If an
mbstate_t object has been altered by any of the functions described in this subclause, and is then
used with a different multibyte character sequence, or in the other conversion direction, or with a
different LC_CTYPE category setting than on earlier function calls, the behavior is undefined.412)

4 On entry, each function takes the described conversion state (either internal or pointed to by an
argument) as current. The conversion state described by the referenced object is altered as needed
to track the shift state, and the position within a multibyte character, for the associated multibyte
character sequence.

7.31.6.2 Single-byte/wide character conversion functions
7.31.6.2.1 The btowc function
Synopsis

1 #include <wchar.h>
wint_t btowc(int c);

Description
2 The btowc function determines whether c constitutes a valid single-byte character in the initial shift

state.

Returns
3 The btowc function returns WEOF if c has the value EOF or if (unsigned char)c does not constitute

a valid single-byte character in the initial shift state. Otherwise, it returns the wide character
representation of that character.

7.31.6.2.2 The wctob function
Synopsis

1 #include <wchar.h>
int wctob(wint_t c);

Description
2 The wctob function determines whether c corresponds to a member of the extended character set

whose multibyte character representation is a single byte when in the initial shift state.

Returns
3 The wctob function returns EOF if c does not correspond to a multibyte character with length one

in the initial shift state. Otherwise, it returns the single-byte representation of that character as an
unsigned char converted to an int.

7.31.6.3 Conversion state functions
7.31.6.3.1 The mbsinit function

412)Thus, a particular mbstate_t object can be used, for example, with both the mbrtowc and mbsrtowcs functions as long
as they are used to step sequentially through the same multibyte character string.

§ 7.31.6.3.1 © ISO/IEC 202y — All rights reserved

Library — 451

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #include <wchar.h>
int mbsinit(const mbstate_t *ps);

Description
2 If ps is not a null pointer, the mbsinit function determines whether the referenced mbstate_t object

describes an initial conversion state.

Returns
3 The mbsinit function returns nonzero if ps is a null pointer or if the referenced object describes an

initial conversion state; otherwise, it returns zero.

7.31.6.4 Restartable multibyte/wide character conversion functions
7.31.6.4.1 General

1 These functions differ from the corresponding multibyte character functions of 7.24.8 (mblen, mbtowc
, and wctomb) in that they have an extra parameter, ps, of type pointer to mbstate_t that points
to an object that can completely describe the current conversion state of the associated multibyte
character sequence. If ps is a null pointer, each function uses its own internal mbstate_t object
instead, which is initialized prior to the first call to the function to the initial conversion state; the
functions are not required to avoid data races with other calls to the same function in this case. It
is implementation-defined whether the internal mbstate_t object has thread storage duration; if
it has thread storage duration, it is initialized to the initial conversion state prior to the first call to
the function on the new thread. The implementation behaves as if no library function calls these
functions with a null pointer for ps.

2 Also unlike their corresponding functions, the return value does not represent whether the encoding
is state-dependent.

7.31.6.4.2 The mbrlen function
Synopsis

1 #include <wchar.h>
size_t mbrlen(const char * restrict s, size_t n, mbstate_t * restrict ps);

Description
2 The mbrlen function is equivalent to the call:

mbrtowc(nullptr, s, n, ps != nullptr ? ps: &internal)

where internal is the mbstate_t object for the mbrlen function, except that the expression desig-
nated by ps is evaluated only once.

Returns
3 The mbrlen function returns a value between zero and n, inclusive, (size_t)(-2), or (size_t)

(-1).

Forward references: the mbrtowc function (7.31.6.4.3).

7.31.6.4.3 The mbrtowc function
Synopsis

1 #include <wchar.h>
size_t mbrtowc(wchar_t * restrict pwc, const char * restrict s, size_t n,

mbstate_t * restrict ps);

Description
2 If s is a null pointer, the mbrtowc function is equivalent to the call:

© ISO/IEC 202y — All rights reserved

Library — 452

§ 7.31.6.4.3

ISO/IEC 9899:202y (en) — n3299 working draft

mbrtowc(nullptr, "", 1, ps)

In this case, the values of the parameters pwc and n are ignored.

3 If s is not a null pointer, the mbrtowc function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the value of the corresponding wide character and then, if pwc
is not a null pointer, stores that value in the object pointed to by pwc. If the corresponding wide
character is the null wide character, the resulting state described is the initial conversion state.

Returns
4 The mbrtowc function returns the first of the following that applies (given the current conversion

state):

0 if the next n or fewer bytes complete the multibyte character that corresponds to the
null wide character (which is the value stored).

between 1 and n inclusive if the next n or fewer bytes complete a valid multibyte character (which is
the value stored); the value returned is the number of bytes that complete the multibyte
character.

(size_t)(-2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).413)

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored); the value of the macro
EILSEQ is stored in errno, and the conversion state is unspecified.

7.31.6.4.4 The wcrtomb function
Synopsis

1 #include <wchar.h>
size_t wcrtomb(char * restrict s, wchar_t wc, mbstate_t * restrict ps);

Description
2 If s is a null pointer, the wcrtomb function is equivalent to the call

wcrtomb(buf, L’\0’, ps)

where buf is an internal buffer.

3 If s is not a null pointer, the wcrtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given by wc (including any shift
sequences), and stores the multibyte character representation in the array whose first element is
pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide character, a null byte is
stored, preceded by any shift sequence needed to restore the initial shift state; the resulting state
described is the initial conversion state.

Returns
4 The wcrtomb function returns the number of bytes stored in the array object (including any shift

sequences). When wc is not a valid wide character, an encoding error occurs: the function stores the
value of the macro EILSEQ in errno and returns (size_t)(-1); the conversion state is unspecified.

413)When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of redundant
shift sequences (for implementations with state-dependent encodings).

§ 7.31.6.4.4 © ISO/IEC 202y — All rights reserved

Library — 453

ISO/IEC 9899:202y (en) — n3299 working draft

7.31.6.5 Restartable multibyte/wide string conversion functions
7.31.6.5.1 General

1 These functions differ from the corresponding multibyte string functions of 7.24.9 (mbstowcs and
wcstombs) in that they have an extra parameter, ps, of type pointer to mbstate_t that points to
an object that can completely describe the current conversion state of the associated multibyte
character sequence. If ps is a null pointer, each function uses its own internal mbstate_t object
instead, which is initialized prior to the first call to the function to the initial conversion state; the
functions are not required to avoid data races with other calls to the same function in this case. It
is implementation-defined whether the internal mbstate_t object has thread storage duration; if
it has thread storage duration, it is initialized to the initial conversion state prior to the first call to
the function on the new thread. The implementation behaves as if no library function calls these
functions with a null pointer for ps.

2 Also unlike their corresponding functions, the conversion source parameter, src, has a pointer-to-
pointer type. When the function is storing the results of conversions (that is, when dst is not a null
pointer), the pointer object pointed to by this parameter is updated to reflect the amount of the
source processed by that invocation.

7.31.6.5.2 The mbsrtowcs function
Synopsis

1 #include <wchar.h>
size_t mbsrtowcs(wchar_t * restrict dst, const char ** restrict src, size_t len,

mbstate_t * restrict ps);

Description
2 The mbsrtowcs function converts a sequence of multibyte characters that begins in the conversion

state described by the object pointed to by ps, from the array indirectly pointed to by src into a
sequence of corresponding wide characters. If dst is not a null pointer, the converted characters are
stored into the array pointed to by dst. Conversion continues up to and including a terminating
null character, which is also stored. Conversion stops earlier in two cases: when a sequence of bytes
is encountered that does not form a valid multibyte character, or (if dst is not a null pointer) when
len wide characters have been stored into the array pointed to by dst.414) Each conversion takes
place as if by a call to the mbrtowc function.

3 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null character) or the address just past the last
multibyte character converted (if any). If conversion stopped due to reaching a terminating null
character and if dst is not a null pointer, the resulting state described is the initial conversion state.

Returns
4 If the input conversion encounters a sequence of bytes that do not form a valid multibyte character,

an encoding error occurs: the mbsrtowcs function stores the value of the macro EILSEQ in errno
and returns (size_t)(-1); the conversion state is unspecified. Otherwise, it returns the number of
multibyte characters successfully converted, not including the terminating null character (if any).

7.31.6.5.3 The wcsrtombs function
Synopsis

1 #include <wchar.h>
size_t wcsrtombs(char * restrict dst, const wchar_t ** restrict src, size_t len,

mbstate_t * restrict ps);

Description
2 The wcsrtombs function converts a sequence of wide characters from the array indirectly pointed to

by src into a sequence of corresponding multibyte characters that begins in the conversion state

414)Thus, the value of len is ignored if dst is a null pointer.

© ISO/IEC 202y — All rights reserved

Library — 454

§ 7.31.6.5.3

ISO/IEC 9899:202y (en) — n3299 working draft

described by the object pointed to by ps. If dst is not a null pointer, the converted characters are then
stored into the array pointed to by dst. Conversion continues up to and including a terminating null
wide character, which is also stored. Conversion stops earlier in two cases: when a wide character
is reached that does not correspond to a valid multibyte character, or (if dst is not a null pointer)
when the next multibyte character would exceed the limit of len total bytes to be stored into the
array pointed to by dst. Each conversion takes place as if by a call to the wcrtomb function.415)

3 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null wide character) or the address just past the
last wide character converted (if any). If conversion stopped due to reaching a terminating null wide
character, the resulting state described is the initial conversion state.

Returns
4 If conversion stops because a wide character is reached that does not correspond to a valid multibyte

character, an encoding error occurs: the wcsrtombs function stores the value of the macro EILSEQ
in errno and returns (size_t)(-1); the conversion state is unspecified. Otherwise, it returns the
number of bytes in the resulting multibyte character sequence, not including the terminating null
character (if any).

415)If conversion stops because a terminating null wide character has been reached, the bytes stored include those necessary
to reach the initial shift state immediately before the null byte.

§ 7.31.6.5.3 © ISO/IEC 202y — All rights reserved

Library — 455

ISO/IEC 9899:202y (en) — n3299 working draft

7.32 Wide character classification and mapping utilities <wctype.h>
7.32.1 Introduction

1 The header <wctype.h> defines one macro, and declares three data types and many functions.416)

2 The types declared are wint_t described in 7.31.1;

wctrans_t

which is a scalar type that can hold values which represent locale-specific character mappings; and

wctype_t

which is a scalar type that can hold values which represent locale-specific character classifications.

3 The macro defined is WEOF (described in 7.31.1).

4 The functions declared are grouped as follows:

— Functions that provide wide character classification;

— Extensible functions that provide wide character classification;

— Functions that provide wide character case mapping;

— Extensible functions that provide wide character mapping.

5 For all functions described in this subclause that accept an argument of type wint_t, the value shall
be representable as a wchar_t or shall equal the value of the macro WEOF. If this argument has any
other value, the behavior is undefined.

6 The behavior of these functions is affected by the LC_CTYPE category of the current locale.

7.32.2 Wide character classification utilities
7.32.2.1 General

1 The header <wctype.h> declares several functions useful for classifying wide characters.

2 The term printing wide character refers to a member of a locale-specific set of wide characters, each of
which occupies at least one printing position on a display device. The term control wide character
refers to a member of a locale-specific set of wide characters that are not printing wide characters.

7.32.2.2 Wide character classification functions
7.32.2.2.1 General

1 The functions in this subclause return nonzero (true) if and only if the value of the argument wc
conforms to that in the description of the function.

2 Each of the following functions returns true for each wide character that corresponds (as if by a call
to the wctob function) to a single-byte character for which the corresponding character classification
function from 7.4.2 returns true, except that the iswgraph and iswpunct functions may differ with
respect to wide characters other than L’’ that are both printing and white-space wide characters.417)

Forward references: the wctob function (7.31.6.2.2).

416)See "future library directions" (7.33.22).
417)For example, if the expression isalpha(wctob(wc)) evaluates to true, then the call iswalpha(wc) also returns true.

But, if the expression isgraph(wctob(wc)) evaluates to true (which cannot occur for wc == L’’ of course), then either
iswgraph(wc) or iswprint(wc)&& iswspace(wc) is true, but not both.

© ISO/IEC 202y — All rights reserved

Library — 456

§ 7.32.2.2.1

ISO/IEC 9899:202y (en) — n3299 working draft

7.32.2.2.2 The iswalnum function
Synopsis

1 #include <wctype.h>
int iswalnum(wint_t wc);

Description
2 The iswalnum function tests for any wide character for which iswalpha or iswdigit is true.

7.32.2.2.3 The iswalpha function
Synopsis

1 #include <wctype.h>
int iswalpha(wint_t wc);

Description
2 The iswalpha function tests for any wide character for which iswupper or iswlower is true, or any

wide character that is one of a locale-specific set of alphabetic wide characters for which none of
iswcntrl, iswdigit, iswpunct, or iswspace is true.418)

7.32.2.2.4 The iswblank function
Synopsis

1 #include <wctype.h>
int iswblank(wint_t wc);

Description
2 The iswblank function tests for any wide character that is a standard blank wide character or is one

of a locale-specific set of wide characters for which iswspace is true and that is used to separate
words within a line of text. The standard blank wide characters are the following: space (L’’),
and horizontal tab (L’\t’). In the "C" locale, iswblank returns true only for the standard blank
characters.

7.32.2.2.5 The iswcntrl function
Synopsis

1 #include <wctype.h>
int iswcntrl(wint_t wc);

Description
2 The iswcntrl function tests for any control wide character.

7.32.2.2.6 The iswdigit function
Synopsis

1 #include <wctype.h>
int iswdigit(wint_t wc);

Description
2 The iswdigit function tests for any wide character that corresponds to a decimal-digit character (as

defined in 5.3.1).

418)The functions iswlower and iswupper test true or false separately for each of these additional wide characters; all four
combinations are possible.

§ 7.32.2.2.6 © ISO/IEC 202y — All rights reserved

Library — 457

ISO/IEC 9899:202y (en) — n3299 working draft

7.32.2.2.7 The iswgraph function
Synopsis

1 #include <wctype.h>
int iswgraph(wint_t wc);

Description
2 The iswgraph function tests for any wide character for which iswprint is true and iswspace is

false.419)

7.32.2.2.8 The iswlower function
Synopsis

1 #include <wctype.h>
int iswlower(wint_t wc);

Description
2 The iswlower function tests for any wide character that corresponds to a lowercase letter or is one

of a locale-specific set of wide characters for which none of iswcntrl, iswdigit, iswpunct, or
iswspace is true.

7.32.2.2.9 The iswprint function
Synopsis

1 #include <wctype.h>
int iswprint(wint_t wc);

Description
2 The iswprint function tests for any printing wide character.

7.32.2.2.10 The iswpunct function
Synopsis

1 #include <wctype.h>
int iswpunct(wint_t wc);

Description
2 The iswpunct function tests for any printing wide character that is one of a locale-specific set of

punctuation wide characters for which neither iswspace nor iswalnum is true.419)

7.32.2.2.11 The iswspace function
Synopsis

1 #include <wctype.h>
int iswspace(wint_t wc);

Description
2 The iswspace function tests for any wide character that corresponds to a locale-specific set of

white-space wide characters for which none of iswalnum, iswgraph, or iswpunct is true.

7.32.2.2.12 The iswupper function
Synopsis

1 #include <wctype.h>
int iswupper(wint_t wc);

419)The behavior of the iswgraph and iswpunct functions can differ from their corresponding functions in 7.4.2 with respect
to printing, white-space, single-byte execution characters other than ’ ’.

© ISO/IEC 202y — All rights reserved

Library — 458

§ 7.32.2.2.12

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The iswupper function tests for any wide character that corresponds to an uppercase letter or is

one of a locale-specific set of wide characters for which none of iswcntrl, iswdigit, iswpunct, or
iswspace is true.

7.32.2.2.13 The iswxdigit function
Synopsis

1 #include <wctype.h>
int iswxdigit(wint_t wc);

Description
2 The iswxdigit function tests for any wide character that corresponds to a hexadecimal-digit

character (as defined in 6.4.5.2).

7.32.2.3 Extensible wide character classification functions
7.32.2.3.1 General

1 The functions wctype and iswctype provide extensible wide character classification as well as
testing equivalent to that performed by the functions described in the previous subclause (7.32.2.2).

7.32.2.3.2 The iswctype function
Synopsis

1 #include <wctype.h>
int iswctype(wint_t wc, wctype_t desc);

Description
2 The iswctype function determines whether the wide character wc has the property described by

desc. The current setting of the LC_CTYPE category shall be the same as during the call to wctype
that returned the value desc.

3 Each of the following expressions has a truth-value equivalent to the call to the wide character
classification function (7.32.2.2) in the comment that follows the expression:

iswctype(wc, wctype("alnum")) // iswalnum(wc)
iswctype(wc, wctype("alpha")) // iswalpha(wc)
iswctype(wc, wctype("blank")) // iswblank(wc)
iswctype(wc, wctype("cntrl")) // iswcntrl(wc)
iswctype(wc, wctype("digit")) // iswdigit(wc)
iswctype(wc, wctype("graph")) // iswgraph(wc)
iswctype(wc, wctype("lower")) // iswlower(wc)
iswctype(wc, wctype("print")) // iswprint(wc)
iswctype(wc, wctype("punct")) // iswpunct(wc)
iswctype(wc, wctype("space")) // iswspace(wc)
iswctype(wc, wctype("upper")) // iswupper(wc)
iswctype(wc, wctype("xdigit")) // iswxdigit(wc)

Returns
4 The iswctype function returns nonzero (true) if and only if the value of the wide character wc has

the property described by desc. If desc is zero, the iswctype function returns zero (false).

Forward references: the wctype function (7.32.2.3.3).

7.32.2.3.3 The wctype function
Synopsis

1 #include <wctype.h>
wctype_t wctype(const char *property);

§ 7.32.2.3.3 © ISO/IEC 202y — All rights reserved

Library — 459

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The wctype function constructs a value with type wctype_t that describes a class of wide characters

identified by the string argument property.

3 The strings listed in the description of the iswctype function shall be valid in all locales as property
arguments to the wctype function.

Returns
4 If property identifies a valid class of wide characters according to the LC_CTYPE category of the

current locale, the wctype function returns a nonzero value that is valid as the second argument to
the iswctype function; otherwise, it returns zero.

7.32.3 Wide character case mapping utilities
7.32.3.1 Wide character case mapping functions
7.32.3.1.1 The towlower function
Synopsis

1 #include <wctype.h>
wint_t towlower(wint_t wc);

Description
2 The towlower function converts an uppercase letter to a corresponding lowercase letter.

Returns
3 If the argument is a wide character for which iswupper is true and there are one or more correspond-

ing wide characters, as specified by the current locale, for which iswlower is true, the towlower
function returns one of the corresponding wide characters (always the same one for any given
locale); otherwise, the argument is returned unchanged.

7.32.3.1.2 The towupper function
Synopsis

1 #include <wctype.h>
wint_t towupper(wint_t wc);

Description
2 The towupper function converts a lowercase letter to a corresponding uppercase letter.

Returns
3 If the argument is a wide character for which iswlower is true and there are one or more correspond-

ing wide characters, as specified by the current locale, for which iswupper is true, the towupper
function returns one of the corresponding wide characters (always the same one for any given
locale); otherwise, the argument is returned unchanged.

7.32.3.2 Extensible wide character case mapping functions
7.32.3.2.1 General

1 The functions wctrans and towctrans provide extensible wide character mapping as well as case
mapping equivalent to that performed by the functions described in the previous subclause (7.32.3.1).

7.32.3.2.2 The towctrans function
Synopsis

1 #include <wctype.h>
wint_t towctrans(wint_t wc, wctrans_t desc);

© ISO/IEC 202y — All rights reserved

Library — 460

§ 7.32.3.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The towctrans function maps the wide character wc using the mapping described by desc. The

current setting of the LC_CTYPE category shall be the same as during the call to wctrans that returned
the value desc.

3 Each of the following expressions behaves the same as the call to the wide character case mapping
function (7.32.3.1) in the comment that follows the expression:

towctrans(wc, wctrans("tolower")) // towlower(wc)
towctrans(wc, wctrans("toupper")) // towupper(wc)

Returns
4 The towctrans function returns the mapped value of wc using the mapping described by desc. If

desc is zero, the towctrans function returns the value of wc.

7.32.3.2.3 The wctrans function
Synopsis

1 #include <wctype.h>
wctrans_t wctrans(const char *property);

Description
2 The wctrans function constructs a value with type wctrans_t that describes a mapping between

wide characters identified by the string argument property.

3 The strings listed in the description of the towctrans function shall be valid in all locales as
property arguments to the wctrans function.

Returns
4 If property identifies a valid mapping of wide characters according to the LC_CTYPE category of the

current locale, the wctrans function returns a nonzero value that is valid as the second argument to
the towctrans function; otherwise, it returns zero.

§ 7.32.3.2.3 © ISO/IEC 202y — All rights reserved

Library — 461

ISO/IEC 9899:202y (en) — n3299 working draft

7.33 Future library directions
7.33.1 General

1 Although grouped under individual headers, all the external names identified as reserved identifiers
or potentially reserved identifiers in this subclause remain so regardless of which headers are
included in the program.

7.33.2 Complex arithmetic <complex.h>
1 The function names

cacospi
casinpi
catanpi
ccompoundn
ccospi
cerfc
cerf

cexp10m1
cexp10
cexp2m1
cexp2
cexpm1
clgamma
clog10p1

clog10
clog1p
clog2p1
clog2
clogp1
cpown
cpowr

crootn
crsqrt
csinpi
ctanpi
ctgamma

and the same names suffixed with f or l are potentially reserved identifiers and may be added to
the declarations in the <complex.h> header.

7.33.3 Character handling <ctype.h>
1 Function names that begin with either is or to, and a lowercase letter are potentially reserved

identifiers and may be added to the declarations in the <ctype.h> header.

7.33.4 Errors <errno.h>
1 Macros that begin with E and a digit or E and an uppercase letter may be added to the macros

defined in the <errno.h> header by a future edition of this document or by an implementation.

7.33.5 Floating-point environment <fenv.h>
1 Macros that begin with FE_ and an uppercase letter may be added to the macros defined in the

<fenv.h> header by a future edition of this document or by an implementation.

7.33.6 Characteristics of floating types <float.h>
1 Macros that begin with DBL_, DEC32_, DEC64_, DEC128_, DEC_, FLT_, or LDBL_ and an uppercase

letter are potentially reserved identifiers and may be added to the macros defined in the <float.h>
header.

2 Use of the DECIMAL_DIG macro is an obsolescent feature. A similar type-specific macro, such as
LDBL_DECIMAL_DIG, can be used instead.

3 The use of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM macros is an obsolescent
feature.

7.33.7 Format conversion of integer types <inttypes.h>
1 Macros that begin with either PRI or SCN, and either a lowercase letter, B, or X are potentially reserved

identifiers and may be added to the macros defined in the <inttypes.h> header.

2 Function names that begin with str, or wcs and a lowercase letter are potentially reserved identifiers
may be added to the declarations in the <inttypes.h> header.

7.33.8 Localization <locale.h>
1 Macros that begin with LC_ and an uppercase letter may be added to the macros defined in the

<locale.h> header by a future edition of this document or by an implementation.

7.33.9 Mathematics <math.h>
1 Macros that begin with FP_ and an uppercase letter may be added to the macros defined in the

<math.h> header by a future edition of this document or by an implementation.

© ISO/IEC 202y — All rights reserved

Library — 462

§ 7.33.9

ISO/IEC 9899:202y (en) — n3299 working draft

2 Macros that begin with MATH_ and an uppercase letter are potentially reserved identifiers and may
be added to the macros in the <math.h> header.

3 Function names that begin with is and a lowercase letter are potentially reserved identifiers and
may be added to the declarations in the <math.h> header.

4 Function names that begin with cr_ are potentially reserved identifiers and may be added to the
<math.h> header. The cr_ prefix is intended to indicate a correctly rounded version of the function.

5 Use of the macros INFINITY, DEC_INFINITY, NAN, and DEC_NAN in <math.h> is an obsolescent
feature. Instead, use the same macros in <float.h>.

7.33.10 Signal handling <signal.h>
1 Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter may be

added to the macros defined in the <signal.h> header by a future edition of this document or by
an implementation.

7.33.11 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter are potentially reserved identifiers and

may be added to the macros defined in the <stdatomic.h> header. Typedef names that begin with
either atomic_ or memory_, and a lowercase letter are potentially reserved identifiers and may be
added to the declarations in the <stdatomic.h> header. Enumeration constants that begin with
memory_order_ and a lowercase letter are potentially reserved identifiers and may be added to
the definition of the memory_order type in the <stdatomic.h> header. Function names that begin
with atomic_ and a lowercase letter are potentially reserved identifiers and may be added to the
declarations in the <stdatomic.h> header.

7.33.12 Boolean type and values <stdbool.h>
1 The macro __bool_true_false_are_defined is an obsolescent feature.

7.33.13 Bit and byte utilities <stdbit.h>
1 Type and function names that begin with stdc_ are potentially reserved identifiers and may be

added to the declarations in the <stdbit.h> header.

7.33.14 Checked Arithmetic Functions <stdckdint.h>
1 Type and function names that begin with ckd_ are potentially reserved identifiers and may be added

to the declarations in the <stdckdint.h> header.

7.33.15 Integer types <stdint.h>
1 Typedef names beginning with int or uint and ending with _t are potentially reserved identifiers

and may be added to the types defined in the <stdint.h> header. Macro names beginning with
INT or UINT and ending with _MAX, _MIN, _WIDTH, or _C are potentially reserved identifiers and may
be added to the macros defined in the <stdint.h> header.

7.33.16 Input/output <stdio.h>
1 Lowercase letters may be added to the conversion specifiers and length modifiers in fprintf and

fscanf. Other characters may be used in extensions. The specifier B for printf may become
mandatory in future versions of this document.

2 The use of ungetc on a binary stream where the file position indicator is zero prior to the call is an
obsolescent feature.

7.33.17 General utilities <stdlib.h>
1 Function names that begin with str or wcs and a lowercase letter are potentially reserved identifiers

and may be added to the declarations in the <stdlib.h> header.

2 Suppressing the macro definition of bsearch to access the actual function is an obsolescent feature.

§ 7.33.17 © ISO/IEC 202y — All rights reserved

Library — 463

ISO/IEC 9899:202y (en) — n3299 working draft

7.33.18 String handling <string.h>
1 Function names that begin with str, mem, or wcs and a lowercase letter are potentially reserved

identifiers and may be added to the declarations in the <string.h> header.

2 Suppressing the macro definitions of memchr, strchr, strpbrk, strrchr, or strstr to access the
corresponding actual function is an obsolescent feature.

7.33.19 Date and time <time.h>
1 Macros beginning with TIME_ and an uppercase letter may be added to the macros in the <time.h>

header by a future edition of this document or by an implementation.

2 The time bases TIME_MONOTONIC, TIME_ACTIVE and TIME_THREAD_ACTIVE may become mandatory
in future versions of this standard.

7.33.20 Threads <threads.h>
1 Function names, type names, and enumeration constants that begin with either cnd_, mtx_, thrd_, or

tss_, and a lowercase letter are potentially reserved identifiers and may be added to the declarations
in the <threads.h> header.

7.33.21 Extended multibyte and wide character utilities <wchar.h>
1 Function names that begin with wcs and a lowercase letter are potentially reserved identifiers and

may be added to the declarations in the <wchar.h> header.

2 Lowercase letters may be added to the conversion specifiers and length modifiers in fwprintf and
fwscanf. Other characters may be used in extensions.

3 Suppressing the macro definitions of wcschr, wcspbrk, wcsrchr, wmemchr, or wcsstr to access the
corresponding actual function is an obsolescent feature.

7.33.22 Wide character classification and mapping utilities <wctype.h>
1 Function names that begin with is or to and a lowercase letter are potentially reserved identifiers

and may be added to the declarations in the <wctype.h> header.

© ISO/IEC 202y — All rights reserved

Library — 464

§ 7.33.22

ISO/IEC 9899:202y (en) — n3299 working draft

Annex A
(informative)

Language syntax summary

A.1 Notation
1 The notation is described in 6.1.

A.2 Lexical grammar
A.2.1 Lexical elements
(6.4.1) token:

keyword
identifier
constant
string-literal
punctuator

(6.4.1) preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator

each universal character name that cannot be one of the above
each non-white-space character that cannot be one of the above

A.2.2 Keywords
(6.4.2) keyword: one of

alignas
alignof
auto
bool
break
case
char
const

constexpr
continue
default

do
double
else
enum
extern
false
float
for
goto
if

inline

int
long

nullptr
register
restrict
return
short
signed
sizeof
static

static_assert

struct
switch

thread_local
true

typedef
typeof

typeof_unqual
union

unsigned
void

volatile

while
_Atomic
_BitInt
_Complex

_Decimal128
_Decimal32
_Decimal64
_Generic

_Imaginary
_Noreturn

A.2.3 Identifiers
(6.4.3.1) identifier:

identifier-start
identifier identifier-continue

(6.4.3.1) identifier-start:
nondigit

XID_Start character
universal character name of class XID_Start

(6.4.3.1) identifier-continue:
digit
nondigit

XID_Continue character
universal character name of class XID_Continue

§ A.2.3 © ISO/IEC 202y — All rights reserved

Language syntax summary — 465

ISO/IEC 9899:202y (en) — n3299 working draft

(6.4.3.1) nondigit: one of
_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

(6.4.3.1) digit: one of
0 1 2 3 4 5 6 7 8 9

A.2.4 Universal character names
(6.4.4) universal-character-name:

\u hex-quad
\U hex-quad hex-quad

(6.4.4) hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

A.2.5 Constants
(6.4.5.1) constant:

integer-constant
floating-constant
enumeration-constant
character-constant
predefined-constant

(6.4.5.2) integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt
binary-constant integer-suffixopt

(6.4.5.2) decimal-constant:
nonzero-digit
decimal-constant ’opt digit

(6.4.5.2) octal-constant:
0
octal-constant ’opt octal-digit

(6.4.5.2) hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit-sequence

(6.4.5.2) binary-constant:
binary-prefix binary-digit
binary-constant ’opt binary-digit

(6.4.5.2) hexadecimal-prefix: one of
0x 0X

(6.4.5.2) binary-prefix: one of
0b 0B

(6.4.5.2) nonzero-digit: one of
1 2 3 4 5 6 7 8 9

(6.4.5.2) octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence ’opt hexadecimal-digit

© ISO/IEC 202y — All rights reserved

Language syntax summary — 466

§ A.2.5

ISO/IEC 9899:202y (en) — n3299 working draft

(6.4.5.2) hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

(6.4.5.2) binary-digit: one of
0 1

(6.4.5.2) integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
unsigned-suffix bit-precise-int-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt
bit-precise-int-suffix unsigned-suffixopt

(6.4.5.2) bit-precise-int-suffix: one of
wb WB

(6.4.5.2) unsigned-suffix: one of
u U

(6.4.5.2) long-suffix: one of
l L

(6.4.5.2) long-long-suffix: one of
ll LL

(6.4.5.3) floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

(6.4.5.3) decimal-floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

(6.4.5.3) hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part floating-suffixopt

(6.4.5.3) fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

(6.4.5.3) exponent-part:
e signopt digit-sequence
E signopt digit-sequence

(6.4.5.3) sign: one of
+ -

(6.4.5.3) digit-sequence:
digit
digit-sequence ’opt digit

(6.4.5.3) hexadecimal-fractional-constant:
hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

(6.4.5.3) binary-exponent-part:
p signopt digit-sequence
P signopt digit-sequence

§ A.2.5 © ISO/IEC 202y — All rights reserved

Language syntax summary — 467

ISO/IEC 9899:202y (en) — n3299 working draft

(6.4.5.3) floating-suffix: one of
f l F L df dd dl DF DD DL

(6.4.5.4) enumeration-constant:
identifier

(6.4.5.5) character-constant:
encoding-prefixopt ’ c-char-sequence ’

(6.4.5.5) encoding-prefix: one of
u8 u U L

(6.4.5.5) c-char-sequence:
c-char
c-char-sequence c-char

(6.4.5.5) c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

(6.4.5.5) escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

(6.4.5.5) simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

(6.4.5.5) octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

(6.4.5.5) hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

(6.4.5.6) predefined-constant:
false
true
nullptr

A.2.6 String literals

(6.4.6) string-literal:
encoding-prefixopt " s-char-sequenceopt "

(6.4.6) s-char-sequence:
s-char
s-char-sequence s-char

(6.4.6) s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

© ISO/IEC 202y — All rights reserved

Language syntax summary — 468

§ A.2.6

ISO/IEC 9899:202y (en) — n3299 working draft

A.2.7 Punctuators
(6.4.7) punctuator: one of

[] () { } . ->
++ -- & * + - ~ !
/ % << >> < > <= >= == != ^ | && ||
? : :: ; ...
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
<: :> <% %> %: %:%:

A.2.8 Header names
(6.4.8) header-name:

< h-char-sequence >
" q-char-sequence "

(6.4.8) h-char-sequence:
h-char
h-char-sequence h-char

(6.4.8) h-char:
any member of the source character set except

the new-line character and >

(6.4.8) q-char-sequence:
q-char
q-char-sequence q-char

(6.4.8) q-char:
any member of the source character set except

the new-line character and "

A.2.9 Preprocessing numbers
(6.4.9) pp-number:

digit
. digit
pp-number identifier-continue
pp-number ’ digit
pp-number ’ nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

A.3 Phrase structure grammar
A.3.1 Expressions
(6.5.2) primary-expression:

identifier
constant
string-literal
(expression)
generic-selection

(6.5.2.1) generic-selection:
_Generic (assignment-expression , generic-assoc-list)

(6.5.2.1) generic-assoc-list:
generic-association
generic-assoc-list , generic-association

§ A.3.1 © ISO/IEC 202y — All rights reserved

Language syntax summary — 469

ISO/IEC 9899:202y (en) — n3299 working draft

(6.5.2.1) generic-association:
type-name : assignment-expression
default : assignment-expression

(6.5.3.1) postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --
compound-literal

(6.5.3.1) argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

(6.5.3.6) compound-literal:
(storage-class-specifiersopt type-name) braced-initializer

(6.5.3.6) storage-class-specifiers:
storage-class-specifier
storage-class-specifiers storage-class-specifier

(6.5.4.1) unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
alignof (type-name)

(6.5.4.1) unary-operator: one of
& * + - ~ !

(6.5.5) cast-expression:
unary-expression
(type-name) cast-expression

(6.5.6) multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

(6.5.7) additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

(6.5.8) shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

(6.5.9) relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

© ISO/IEC 202y — All rights reserved

Language syntax summary — 470

§ A.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

(6.5.10) equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

(6.5.11) AND-expression:
equality-expression

AND-expression & equality-expression

(6.5.12) exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression

(6.5.13) inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

(6.5.14) logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

(6.5.15) logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

(6.5.16) conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

(6.5.17.1) assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

(6.5.17.1) assignment-operator: one of
= *= /= %= += -= <<= >>= &= ^= |=

(6.5.18) expression:
assignment-expression
expression , assignment-expression

(6.6) constant-expression:
conditional-expression

A.3.2 Declarations
(6.7.1) declaration:

declaration-specifiers init-declarator-listopt ;
attribute-specifier-sequence declaration-specifiers init-declarator-list ;
static_assert-declaration
attribute-declaration

(6.7.1) declaration-specifiers:
declaration-specifier attribute-specifier-sequenceopt
declaration-specifier declaration-specifiers

(6.7.1) declaration-specifier:
storage-class-specifier
type-specifier-qualifier
function-specifier

(6.7.1) init-declarator-list:
init-declarator
init-declarator-list , init-declarator

§ A.3.2 © ISO/IEC 202y — All rights reserved

Language syntax summary — 471

ISO/IEC 9899:202y (en) — n3299 working draft

(6.7.1) init-declarator:
declarator
declarator = initializer

(6.7.1) attribute-declaration:
attribute-specifier-sequence ;

(6.7.2) storage-class-specifier:
auto
constexpr
extern
register
static
thread_local
typedef

(6.7.3.1) type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_BitInt (constant-expression)
bool
_Complex
_Decimal32
_Decimal64
_Decimal128
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name
typeof-specifier

(6.7.3.2) struct-or-union-specifier:
struct-or-union attribute-specifier-sequenceopt identifieropt { member-declaration-list }
struct-or-union attribute-specifier-sequenceopt identifier

(6.7.3.2) struct-or-union:
struct
union

(6.7.3.2) member-declaration-list:
member-declaration
member-declaration-list member-declaration

(6.7.3.2) member-declaration:
attribute-specifier-sequenceopt specifier-qualifier-list member-declarator-listopt ;
static_assert-declaration

(6.7.3.2) specifier-qualifier-list:
type-specifier-qualifier attribute-specifier-sequenceopt
type-specifier-qualifier specifier-qualifier-list

(6.7.3.2) type-specifier-qualifier:
type-specifier
type-qualifier
alignment-specifier

© ISO/IEC 202y — All rights reserved

Language syntax summary — 472

§ A.3.2

ISO/IEC 9899:202y (en) — n3299 working draft

(6.7.3.2) member-declarator-list:
member-declarator
member-declarator-list , member-declarator

(6.7.3.2) member-declarator:
declarator
declaratoropt : constant-expression

(6.7.3.3) enum-specifier:
enum attribute-specifier-sequenceopt identifieropt enum-type-specifieropt

{ enumerator-list }
enum attribute-specifier-sequenceopt identifieropt enum-type-specifieropt

{ enumerator-list , }
enum identifier enum-type-specifieropt

(6.7.3.3) enumerator-list:
enumerator
enumerator-list , enumerator

(6.7.3.3) enumerator:
enumeration-constant attribute-specifier-sequenceopt
enumeration-constant attribute-specifier-sequenceopt = constant-expression

(6.7.3.3) enum-type-specifier:
: specifier-qualifier-list

(6.7.3.5) atomic-type-specifier:
_Atomic (type-name)

(6.7.3.6) typeof-specifier:
typeof (typeof-specifier-argument)
typeof_unqual (typeof-specifier-argument)

(6.7.3.6) typeof-specifier-argument:
expression
type-name

(6.7.4.1) type-qualifier:
const
restrict
volatile
_Atomic

(6.7.5) function-specifier:
inline
_Noreturn

(6.7.6) alignment-specifier:
alignas (type-name)
alignas (constant-expression)

(6.7.7.1) declarator:
pointeropt direct-declarator

(6.7.7.1) direct-declarator:
identifier attribute-specifier-sequenceopt
(declarator)
array-declarator attribute-specifier-sequenceopt
function-declarator attribute-specifier-sequenceopt

(6.7.7.1) array-declarator:
direct-declarator [type-qualifier-listopt assignment-expressionopt]
direct-declarator [static type-qualifier-listopt assignment-expression]
direct-declarator [type-qualifier-list static assignment-expression]
direct-declarator [type-qualifier-listopt *]

§ A.3.2 © ISO/IEC 202y — All rights reserved

Language syntax summary — 473

ISO/IEC 9899:202y (en) — n3299 working draft

(6.7.7.1) function-declarator:
direct-declarator (parameter-type-listopt)

(6.7.7.1) pointer:
* attribute-specifier-sequenceopt type-qualifier-listopt

* attribute-specifier-sequenceopt type-qualifier-listopt pointer

(6.7.7.1) type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

(6.7.7.1) parameter-type-list:
parameter-list
parameter-list , ...
...

(6.7.7.1) parameter-list:
parameter-declaration
parameter-list , parameter-declaration

(6.7.7.1) parameter-declaration:
attribute-specifier-sequenceopt declaration-specifiers declarator
attribute-specifier-sequenceopt declaration-specifiers abstract-declaratoropt

(6.7.8) type-name:
specifier-qualifier-list abstract-declaratoropt

(6.7.8) abstract-declarator:
pointer
pointeropt direct-abstract-declarator

(6.7.8) direct-abstract-declarator:
(abstract-declarator)
array-abstract-declarator attribute-specifier-sequenceopt
function-abstract-declarator attribute-specifier-sequenceopt

(6.7.8) array-abstract-declarator:
direct-abstract-declaratoropt [type-qualifier-listopt assignment-expressionopt]
direct-abstract-declaratoropt [static type-qualifier-listopt assignment-expression]
direct-abstract-declaratoropt [type-qualifier-list static assignment-expression]
direct-abstract-declaratoropt [*]

(6.7.8) function-abstract-declarator:
direct-abstract-declaratoropt (parameter-type-listopt)

(6.7.9) typedef-name:
identifier

(6.7.11) braced-initializer:
{ }
{ initializer-list }
{ initializer-list , }

(6.7.11) initializer:
assignment-expression
braced-initializer

(6.7.11) initializer-list:
designationopt initializer
initializer-list , designationopt initializer

(6.7.11) designation:
designator-list =

(6.7.11) designator-list:
designator
designator-list designator

© ISO/IEC 202y — All rights reserved

Language syntax summary — 474

§ A.3.2

ISO/IEC 9899:202y (en) — n3299 working draft

(6.7.11) designator:
[constant-expression]
. identifier

(6.7.12) static_assert-declaration:
static_assert (constant-expression , string-literal) ;
static_assert (constant-expression) ;

(6.7.13.2) attribute-specifier-sequence:
attribute-specifier-sequenceopt attribute-specifier

(6.7.13.2) attribute-specifier:
[[attribute-list]]

(6.7.13.2) attribute-list:
attributeopt
attribute-list , attributeopt

(6.7.13.2) attribute:
attribute-token attribute-argument-clauseopt

(6.7.13.2) attribute-token:
standard-attribute
attribute-prefixed-token

(6.7.13.2) standard-attribute:
identifier

(6.7.13.2) attribute-prefixed-token:
attribute-prefix :: identifier

(6.7.13.2) attribute-prefix:
identifier

(6.7.13.2) attribute-argument-clause:
(balanced-token-sequenceopt)

(6.7.13.2) balanced-token-sequence:
balanced-token
balanced-token-sequence balanced-token

(6.7.13.2) balanced-token:
(balanced-token-sequenceopt)
[balanced-token-sequenceopt]
{ balanced-token-sequenceopt }

any token other than a parenthesis, a bracket, or a brace

A.3.3 Statements
(6.8.1) statement:

labeled-statement
unlabeled-statement

(6.8.1) unlabeled-statement:
expression-statement
attribute-specifier-sequenceopt primary-block
attribute-specifier-sequenceopt jump-statement

(6.8.1) primary-block:
compound-statement
selection-statement
iteration-statement

(6.8.1) secondary-block:
statement

§ A.3.3 © ISO/IEC 202y — All rights reserved

Language syntax summary — 475

ISO/IEC 9899:202y (en) — n3299 working draft

(6.8.2) label:
attribute-specifier-sequenceopt identifier :
attribute-specifier-sequenceopt case constant-expression :
attribute-specifier-sequenceopt default :

(6.8.2) labeled-statement:
label statement

(6.8.3) compound-statement:
{ block-item-listopt }

(6.8.3) block-item-list:
block-item
block-item-list block-item

(6.8.3) block-item:
declaration
unlabeled-statement
label

(6.8.4) expression-statement:
expressionopt ;
attribute-specifier-sequence expression ;

(6.8.5.1) selection-statement:
if (expression) secondary-block
if (expression) secondary-block else secondary-block
switch (expression) secondary-block

(6.8.6.1) iteration-statement:
while (expression) secondary-block
do secondary-block while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) secondary-block
for (declaration expressionopt ; expressionopt) secondary-block

(6.8.7.1) jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt ;

A.3.4 External definitions
(6.9.1) translation-unit:

external-declaration
translation-unit external-declaration

(6.9.1) external-declaration:
function-definition
declaration

(6.9.2) function-definition:
attribute-specifier-sequenceopt declaration-specifiers declarator function-body

(6.9.2) function-body:
compound-statement

A.4 Preprocessing directives
(6.10.1) preprocessing-file:

groupopt

(6.10.1) group:
group-part
group group-part

© ISO/IEC 202y — All rights reserved

Language syntax summary — 476

§ A.4

ISO/IEC 9899:202y (en) — n3299 working draft

(6.10.1) group-part:
if-section
control-line
text-line
non-directive

(6.10.1) if-section:
if-group elif-groupsopt else-groupopt endif-line

(6.10.1) if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

(6.10.1) elif-groups:
elif-group
elif-groups elif-group

(6.10.1) elif-group:
elif constant-expression new-line groupopt
elifdef identifier new-line groupopt
elifndef identifier new-line groupopt

(6.10.1) else-group:
else new-line groupopt

(6.10.1) endif-line:
endif new-line

(6.10.1) control-line:
include pp-tokens new-line
embed pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
warning pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

(6.10.1) text-line:
pp-tokensopt new-line

(6.10.1) non-directive:
pp-tokens new-line

(6.10.1) lparen:
a (character not immediately preceded by white space

(6.10.1) replacement-list:
pp-tokensopt

(6.10.1) pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

(6.10.1) new-line:
the new-line character

(6.10.1) identifier-list:
identifier
identifier-list , identifier

§ A.4 © ISO/IEC 202y — All rights reserved

Language syntax summary — 477

ISO/IEC 9899:202y (en) — n3299 working draft

(6.10.1) pp-parameter:
pp-parameter-name pp-parameter-clauseopt

(6.10.1) pp-parameter-name:
pp-standard-parameter
pp-prefixed-parameter

(6.10.1) pp-standard-parameter:
identifier

(6.10.1) pp-prefixed-parameter:
identifier :: identifier

(6.10.1) pp-parameter-clause:
(pp-balanced-token-sequenceopt)

(6.10.1) pp-balanced-token-sequence:
pp-balanced-token
pp-balanced-token-sequence pp-balanced-token

(6.10.1) pp-balanced-token:
(pp-balanced-token-sequenceopt)
[pp-balanced-token-sequenceopt]
{ pp-balanced-token-sequenceopt }

any pp-token other than a parenthesis, a bracket, or a brace

(6.10.1) embed-parameter-sequence:
pp-parameter
embed-parameter-sequence pp-parameter

defined-macro-expression:
defined identifier
defined (identifier)

h-preprocessing-token:
any preprocessing-token other than >

h-pp-tokens:
h-preprocessing-token
h-pp-tokens h-preprocessing-token

header-name-tokens:
string-literal
< h-pp-tokens >

has-include-expression:
__has_include (header-name)
__has_include (header-name-tokens)

has-embed-expression:
__has_embed (header-name embed-parameter-sequenceopt)
__has_embed (header-name-tokens pp-balanced-token-sequenceopt)

has-c-attribute-express:
__has_c_attribute (pp-tokens)

va-opt-replacement:
__VA_OPT__ (pp-tokensopt)

(6.10.8) standard-pragma:
pragma STDC FP_CONTRACT on-off-switch
pragma STDC FENV_ACCESS on-off-switch
pragma STDC FENV_DEC_ROUND dec-direction
pragma STDC FENV_ROUND direction
pragma STDC CX_LIMITED_RANGE on-off-switch

(6.10.8) on-off-switch: one of
ON OFF DEFAULT

© ISO/IEC 202y — All rights reserved

Language syntax summary — 478

§ A.4

ISO/IEC 9899:202y (en) — n3299 working draft

(6.10.8) direction: one of
FE_DOWNWARD FE_TONEAREST FE_TONEARESTFROMZERO
FE_TOWARDZERO FE_UPWARD FE_DYNAMIC

(6.10.8) dec-direction: one of
FE_DEC_DOWNWARD FE_DEC_TONEAREST FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO FE_DEC_UPWARD FE_DEC_DYNAMIC

A.5 Floating-point subject sequence
A.5.1 NaN char sequence
(7.24.2.6) n-char-sequence:

digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

A.5.2 NaN wchar_t sequence
(7.31.4.2.2) n-wchar-sequence:

digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit

A.6 Decimal floating-point subject sequence
A.6.1 NaN decimal char sequence
(7.24.2.7) d-char-sequence:

digit
nondigit
d-char-sequence digit
d-char-sequence nondigit

A.6.2 NaN decimal wchar_t sequence
(7.31.4.2.3) d-wchar-sequence:

digit
nondigit
d-wchar-sequence digit
d-wchar-sequence nondigit

§ A.6.2 © ISO/IEC 202y — All rights reserved

Language syntax summary — 479

ISO/IEC 9899:202y (en) — n3299 working draft

Annex B
(informative)

Library summary

B.1 Diagnostics <assert.h>

__STDC_VERSION_ASSERT_H__ NDEBUG

void assert(scalar expression);

B.2 Complex <complex.h>

__STDC_NO_COMPLEX__
__STDC_VERSION_COMPLEX_H__

complex
_Complex_I

imaginary
_Imaginary_I
I

#pragma STDC CX_LIMITED_RANGE on-off-switch
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);
double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);
double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);
double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);
double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);
double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);
double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);
double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);
double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

© ISO/IEC 202y — All rights reserved

Library summary — 480

§ B.2

ISO/IEC 9899:202y (en) — n3299 working draft

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);
double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x, long double complex y);
double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);
double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);
double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);
double complex CMPLX(double x, double y);
float complex CMPLXF(float x, float y);
long double complex CMPLXL(long double x, long double y);
double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);
double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);
double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

Only if the implementation defines __STDC_IEC_60559_TYPES__ and additionally the user code
defines __STDC_WANT_IEC_60559_TYPES_EXT__ before any inclusion of <complex.h>:

_FloatN complex cacosfN(_FloatN complex z);
_FloatNx complex cacosfNx(_FloatNx complex z);
_FloatN complex casinfN(_FloatN complex z);
_FloatNx complex casinfNx(_FloatNx complex z);
_FloatN complex catanfN(_FloatN complex z);
_FloatNx complex catanfNx(_FloatNx complex z);
_FloatN complex ccosfN(_FloatN complex z);
_FloatNx complex ccosfNx(_FloatNx complex z);
_FloatN complex csinfN(_FloatN complex z);
_FloatNx complex csinfNx(_FloatNx complex z);
_FloatN complex ctanfN(_FloatN complex z);
_FloatNx complex ctanfNx(_FloatNx complex z);
_FloatN complex cacoshfN(_FloatN complex z);
_FloatNx complex cacoshfNx(_FloatNx complex z);
_FloatN complex casinhfN(_FloatN complex z);
_FloatNx complex casinhfNx(_FloatNx complex z);
_FloatN complex catanhfN(_FloatN complex z);
_FloatNx complex catanhfNx(_FloatNx complex z);
_FloatN complex ccoshfN(_FloatN complex z);
_FloatNx complex ccoshfNx(_FloatNx complex z);
_FloatN complex csinhfN(_FloatN complex z);
_FloatNx complex csinhfNx(_FloatNx complex z);
_FloatN complex ctanhfN(_FloatN complex z);
_FloatNx complex ctanhfNx(_FloatNx complex z);
_FloatN complex cexpfN(_FloatN complex z);
_FloatNx complex cexpfNx(_FloatNx complex z);
_FloatN complex clogfN(_FloatN complex z);

§ B.2 © ISO/IEC 202y — All rights reserved

Library summary — 481

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatNx complex clogfNx(_FloatNx complex z);
_FloatN cabsfN(_FloatN complex z);
_FloatNx cabsfNx(_FloatNx complex z);
_FloatN complex cpowfN(_FloatN complex x, _FloatN complex y);
_FloatNx complex cpowfNx(_FloatNx complex x, _FloatNx complex y);
_FloatN complex csqrtfN(_FloatN complex z);
_FloatNx complex csqrtfNx(_FloatNx complex z);
_FloatN cargfN(_FloatN complex z);
_FloatNx cargfNx(_FloatNx complex z);
_FloatN cimagfN(_FloatN complex z);
_FloatNx cimagfNx(_FloatNx complex z);
_FloatN complex CMPLXFN(_FloatN x, _FloatN y);
_FloatNx complex CMPLXFNX(_FloatNx x, _FloatNx y);
_FloatN complex conjfN(_FloatN complex z);
_FloatNx complex conjfNx(_FloatNx complex z);
_FloatN complex cprojfN(_FloatN complex z);
_FloatNx complex cprojfNx(_FloatNx complex z);
_FloatN crealfN(_FloatN complex z);
_FloatNx crealfNx(_FloatNx complex z);

B.3 Character handling <ctype.h>

int isalnum(int c);
int isalpha(int c);
int isblank(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
int tolower(int c);
int toupper(int c);

B.4 Errors <errno.h>

EDOM EILSEQ ERANGE errno

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <errno.h>:

errno_t

B.5 Floating-point environment <fenv.h>

fenv_t
fexcept_t
femode_t
FE_DFL_MODE
FE_DIVBYZERO
FE_INEXACT

FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW
FE_ALL_EXCEPT
FE_DOWNWARD
FE_TONEAREST

FE_TONEARESTFROMZERO
FE_TOWARDZERO
FE_UPWARD
FE_DFL_ENV
__STDC_VERSION_FENV_H__

#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC FENV_ROUND direction

© ISO/IEC 202y — All rights reserved

Library summary — 482

§ B.5

ISO/IEC 9899:202y (en) — n3299 working draft

#pragma STDC FENV_ROUND FE_DYNAMIC
int feclearexcept(int excepts);
int fegetexceptflag(fexcept_t *flagp, int excepts);
int feraiseexcept(int excepts);
int fesetexcept(int excepts);
int fesetexceptflag(const fexcept_t *flagp, int excepts);
int fetestexceptflag(const fexcept_t *flagp, int excepts);
int fetestexcept(int excepts);
int fegetmode(femode_t *modep);
int fegetround(void);
int fesetmode(const femode_t *modep);
int fesetround(int rnd);
int fegetenv(fenv_t *envp);
int feholdexcept(fenv_t *envp);
int fesetenv(const fenv_t *envp);
int feupdateenv(const fenv_t *envp);

Only if the implementation defines __STDC_IEC_60559_DFP__:

FE_DEC_DOWNWARD
FE_DEC_TONEAREST

FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO

FE_DEC_UPWARD

#pragma STDC FENV_DEC_ROUND dec-direction
int fe_dec_getround(void);
int fe_dec_setround(int rnd);

Only if the implementation follows the recommended practice from F.2.2:

FE_SNANS_ALWAYS_SIGNAL

B.6 Characteristics of floating types <float.h>
B.6.1 Macros

__STDC_VERSION_FLOAT_H__

FLT_ROUNDS
FLT_EVAL_METHOD
FLT_HAS_SUBNORM
DBL_HAS_SUBNORM
LDBL_HAS_SUBNORM
FLT_RADIX
FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG
FLT_DECIMAL_DIG
DBL_DECIMAL_DIG
LDBL_DECIMAL_DIG
DECIMAL_DIG
FLT_IS_IEC_60559
DBL_IS_IEC_60559
LDBL_IS_IEC_60559
FLT_DIG

DBL_DIG
LDBL_DIG
FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP
FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP
FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP
FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP
FLT_MAX
DBL_MAX
LDBL_MAX
FLT_NORM_MAX

DBL_NORM_MAX
LDBL_NORM_MAX
FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON
FLT_MIN
DBL_MIN
LDBL_MIN
FLT_SNAN
DBL_SNAN
LDBL_SNAN
FLT_TRUE_MIN
DBL_TRUE_MIN
LDBL_TRUE_MIN
INFINITY
NAN

The following macro is provided only if the program defines __STDC_WANT_IEC_60559_EXT__

before inclusion of the header <float.h>:

§ B.6.1 © ISO/IEC 202y — All rights reserved

Library summary — 483

ISO/IEC 9899:202y (en) — n3299 working draft

CR_DECIMAL_DIG

B.6.2 Characteristics of decimal floating types
1 The following macros are provided only if the implementation defines __STDC_IEC_60559_DFP__.

N is 32, 64 and 128.

DEC_EVAL_METHOD
DEC_INFINITY
DEC_NAN

DECN_EPSILON
DECN_MANT_DIG
DECN_MAX_EXP

DECN_MAX
DECN_MIN_EXP
DECN_MIN

DECN_TRUE_MIN
DECN_SNAN

B.6.3 Characteristics of ISO/IEC 60559 interchange and extended types
The following macros are provided only if the implementation defines __STDC_IEC_60559_TYPES__
and additionally the user code defines __STDC_WANT_IEC_60559_TYPES_EXT__ before any inclusion
of <float.h>.

FLTN_DECIMAL_DIG
FLTN_DIG
FLTN_EPSILON
FLTN_MANT_DIG
FLTN_MAX_10_EXP
FLTN_MAX_EXP
FLTN_MAX
FLTN_MIN_10_EXP
FLTN_MIN_EXP
FLTN_MIN

FLTN_SNAN
FLTN_TRUE_MIN
FLTNX_DECIMAL_DIG
FLTNX_DIG
FLTNX_EPSILON
FLTNX_MANT_DIG
FLTNX_MAX_10_EXP
FLTNX_MAX_EXP
FLTNX_MAX
FLTNX_MIN_10_EXP

FLTNX_MIN_EXP
FLTNX_MIN
FLTNX_SNAN
FLTNX_TRUE_MIN
DECN_EPSILON
DECN_MANT_DIG
DECN_MAX_EXP
DECN_MAX
DECN_MIN_EXP
DECN_MIN

DECN_SNAN
DECN_TRUE_MIN
DECNX_EPSILON
DECNX_MANT_DIG
DECNX_MAX_EXP
DECNX_MAX
DECNX_MIN_EXP
DECNX_MIN
DECNX_SNAN
DECNX_TRUE_MIN

B.7 Format conversion of integer types <inttypes.h>

__STDC_VERSION_INTTYPES_H__ imaxdiv_t

PRIbN PRIbLEASTN PRIbFASTN PRIbMAX PRIbPTR
PRIBN PRIBLEASTN PRIBFASTN PRIBMAX PRIBPTR
PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR
PRIiN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR
PRIoN PRIoLEASTN PRIoFASTN PRIoMAX PRIoPTR
PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
PRIxN PRIxLEASTN PRIxFASTN PRIxMAX PRIxPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR
SCNbN SCNbLEASTN SCNbFASTN SCNbMAX SCNbPTR
SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR
SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxPTR

intmax_t imaxabs(intmax_t j);
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);
intmax_t strtoimax(const char * restrict nptr, char ** restrict endptr, int base);
uintmax_t strtoumax(const char * restrict nptr, char ** restrict endptr, int base);
intmax_t wcstoimax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);
uintmax_t wcstoumax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);

B.8 Alternative spellings <iso646.h>

© ISO/IEC 202y — All rights reserved

Library summary — 484

§ B.8

ISO/IEC 9899:202y (en) — n3299 working draft

and
and_eq
bitand

bitor
compl
not

not_eq
or
or_eq

xor
xor_eq

B.9 Sizes of integer types <limits.h>

__STDC_VERSION_LIMITS_H__

BITINT_MAXWIDTH
BOOL_WIDTH
CHAR_BIT
CHAR_WIDTH
SCHAR_WIDTH
UCHAR_WIDTH
SHRT_WIDTH
USHRT_WIDTH
INT_WIDTH
UINT_WIDTH
LONG_WIDTH

ULONG_WIDTH
LLONG_WIDTH
ULLONG_WIDTH
BOOL_MAX
SCHAR_MIN
SCHAR_MAX
UCHAR_MAX
CHAR_MIN
CHAR_MAX
MB_LEN_MAX
SHRT_MIN
SHRT_MAX

USHRT_MAX
INT_MIN
INT_MAX
UINT_MAX
LONG_MIN
LONG_MAX
ULONG_MAX
LLONG_MIN
LLONG_MAX
ULLONG_MAX

B.10 Localization <locale.h>

struct lconv
NULL

LC_ALL
LC_COLLATE

LC_CTYPE
LC_MONETARY

LC_NUMERIC
LC_TIME

char *setlocale(int category, const char *locale);
struct lconv *localeconv(void);

B.11 Mathematics <math.h>

__STDC_VERSION_MATH_H__

float_t
double_t
HUGE_VAL
HUGE_VALF
HUGE_VALL
INFINITY
NAN
FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO
FP_INT_UPWARD
FP_INT_DOWNWARD
FP_INT_TOWARDZERO

FP_INT_TONEARESTFROMZERO
FP_INT_TONEAREST
FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL
FP_FAST_FADD
FP_FAST_FADDL
FP_FAST_DADDL
FP_FAST_FSUB
FP_FAST_FSUBL
FP_FAST_DSUBL
FP_FAST_FMUL
FP_FAST_FMULL
FP_FAST_DMULL
FP_FAST_FDIV
FP_FAST_FDIVL

FP_FAST_DDIVL
FP_FAST_FSQRT
FP_FAST_FSQRTL
FP_FAST_DSQRTL
FP_FAST_FFMA
FP_FAST_FFMAL
FP_FAST_DFMAL
FP_ILOGB0
FP_ILOGBNAN
FP_LLOGB0
FP_LLOGBNAN
MATH_ERRNO
MATH_ERREXCEPT
math_errhandling

#pragma STDC FP_CONTRACT on-off-switch
int fpclassify(real-floating x);
int iscanonical(real-floating x);
int isfinite(real-floating x);
int isinf(real-floating x);
int isnan(real-floating x);
int isnormal(real-floating x);
int signbit(real-floating x);
int issignaling(real-floating x);

§ B.11 © ISO/IEC 202y — All rights reserved

Library summary — 485

ISO/IEC 9899:202y (en) — n3299 working draft

int issubnormal(real-floating x);
int iszero(real-floating x);
double acos(double x);
float acosf(float x);
long double acosl(long double x);
double asin(double x);
float asinf(float x);
long double asinl(long double x);
double atan(double x);
float atanf(float x);
long double atanl(long double x);
double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);
double cos(double x);
float cosf(float x);
long double cosl(long double x);
double sin(double x);
float sinf(float x);
long double sinl(long double x);
double tan(double x);
float tanf(float x);
long double tanl(long double x);
double acospi(double x);
float acospif(float x);
long double acospil(long double x);
double asinpi(double x);
float asinpif(float x);
long double asinpil(long double x);
double atanpi(double x);
float atanpif(float x);
long double atanpil(long double x);
double atan2pi(double y, double x);
float atan2pif(float y, float x);
long double atan2pil(long double y, long double x);
double cospi(double x);
float cospif(float x);
long double cospil(long double x);
double sinpi(double x);
float sinpif(float x);
long double sinpil(long double x);
double tanpi(double x);
float tanpif(float x);
long double tanpil(long double x);
double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);
double cosh(double x);
float coshf(float x);
long double coshl(long double x);
double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);
double tanh(double x);
float tanhf(float x);

© ISO/IEC 202y — All rights reserved

Library summary — 486

§ B.11

ISO/IEC 9899:202y (en) — n3299 working draft

long double tanhl(long double x);
double exp(double x);
float expf(float x);
long double expl(long double x);
double exp10(double x);
float exp10f(float x);
long double exp10l(long double x);
double exp10m1(double x);
float exp10m1f(float x);
long double exp10m1l(long double x);
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);
double exp2m1(double x);
float exp2m1f(float x);
long double exp2m1l(long double x);
double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);
double frexp(double value, int *p);
float frexpf(float value, int *p);
long double frexpl(long double value, int *p);
int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);
double ldexp(double x, int p);
float ldexpf(float x, int p);
long double ldexpl(long double x, int p);
long int llogb(double x);
long int llogbf(float x);
long int llogbl(long double x);
double log(double x);
float logf(float x);
long double logl(long double x);
double log10(double x);
float log10f(float x);
long double log10l(long double x);
double log10p1(double x);
float log10p1f(float x);
long double log10p1l(long double x);
double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);
double logp1(double x);
float logp1f(float x);
long double logp1l(long double x);
double log2(double x);
float log2f(float x);
long double log2l(long double x);
double log2p1(double x);
float log2p1f(float x);
long double log2p1l(long double x);
double logb(double x);
float logbf(float x);
long double logbl(long double x);
double modf(double value, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);

§ B.11 © ISO/IEC 202y — All rights reserved

Library summary — 487

ISO/IEC 9899:202y (en) — n3299 working draft

double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);
double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);
double compoundn(double x, long long int n);
float compoundnf(float x, long long int n);
long double compoundnl(long double x, long long int n);
double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);
double pown(double x, long long int n);
float pownf(float x, long long int n);
long double pownl(long double x, long long int n);
double powr(double y, double x);
float powrf(float y, float x);
long double powrl(long double y, long double x);
double rootn(double x, long long int n);
float rootnf(float x, long long int n);
long double rootnl(long double x, long long int n);
double rsqrt(double x);
float rsqrtf(float x);
long double rsqrtl(long double x);
double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);
double erf(double x);
float erff(float x);
long double erfl(long double x);
double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);
double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);
double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);
double ceil(double x);
float ceilf(float x);
long double ceill(long double x);
double floor(double x);
float floorf(float x);
long double floorl(long double x);
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);
double rint(double x);
float rintf(float x);
long double rintl(long double x);
long int lrint(double x);
long int lrintf(float x);
long int lrintl(long double x);
long long int llrint(double x);

© ISO/IEC 202y — All rights reserved

Library summary — 488

§ B.11

ISO/IEC 9899:202y (en) — n3299 working draft

long long int llrintf(float x);
long long int llrintl(long double x);
double round(double x);
float roundf(float x);
long double roundl(long double x);
long int lround(double x);
long int lroundf(float x);
long int lroundl(long double x);
long long int llround(double x);
long long int llroundf(float x);
long long int llroundl(long double x);
double roundeven(double x);
float roundevenf(float x);
long double roundevenl(long double x);
double trunc(double x);
float truncf(float x);
long double truncl(long double x);
double fromfp(double x, int rnd, unsigned int width);
float fromfpf(float x, int rnd, unsigned int width);
long double fromfpl(long double x, int rnd, unsigned int width);
double ufromfp(double x, int rnd, unsigned int width);
float ufromfpf(float x, int rnd, unsigned int width);
long double ufromfpl(long double x, int rnd, unsigned int width);
double fromfpx(double x, int rnd, unsigned int width);
float fromfpxf(float x, int rnd, unsigned int width);
long double fromfpxl(long double x, int rnd, unsigned int width);
double ufromfpx(double x, int rnd, unsigned int width);
float ufromfpxf(float x, int rnd, unsigned int width);
long double ufromfpxl(long double x, int rnd, unsigned int width);
double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);
double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);
double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);
double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);
double nextup(double x);
float nextupf(float x);
long double nextupl(long double x);
double nextdown(double x);
float nextdownf(float x);
long double nextdownl(long double x);
int canonicalize(double *cx, const double *x);
int canonicalizef(float *cx, const float *x);
int canonicalizel(long double *cx, const long double *x);
double fdim(double x, double y);
float fdimf(float x, float y);

§ B.11 © ISO/IEC 202y — All rights reserved

Library summary — 489

ISO/IEC 9899:202y (en) — n3299 working draft

long double fdiml(long double x, long double y);
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);
double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);
double fmaximum(double x, double y);
float fmaximumf(float x, float y);
long double fmaximuml(long double x, long double y);
double fminimum(double x, double y);
float fminimumf(float x, float y);
long double fminimuml(long double x, long double y);
double fmaximum_mag(double x, double y);
float fmaximum_magf(float x, float y);
long double fmaximum_magl(long double x, long double y);
double fminimum_mag(double x, double y);
float fminimum_magf(float x, float y);
long double fminimum_magl(long double x, long double y);
double fmaximum_num(double x, double y);
float fmaximum_numf(float x, float y);
long double fmaximum_numl(long double x, long double y);
double fminimum_num(double x, double y);
float fminimum_numf(float x, float y);
long double fminimum_numl(long double x, long double y);
double fmaximum_mag_num(double x, double y);
float fmaximum_mag_numf(float x, float y);
long double fmaximum_mag_numl(long double x, long double y);
double fminimum_mag_num(double x, double y);
float fminimum_mag_numf(float x, float y);
long double fminimum_mag_numl(long double x, long double y);
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);
float fadd(double x, double y);
float faddl(long double x, long double y);
double daddl(long double x, long double y);
float fsub(double x, double y);
float fsubl(long double x, long double y);
double dsubl(long double x, long double y);
float fmul(double x, double y);
float fmull(long double x, long double y);
double dmull(long double x, long double y);
float fdiv(double x, double y);
float fdivl(long double x, long double y);
double ddivl(long double x, long double y);
float ffma(double x, double y, double z);
float ffmal(long double x, long double y, long double z);
double dfmal(long double x, long double y, long double z);
float fsqrt(double x);
float fsqrtl(long double x);
double dsqrtl(long double x);
int isgreater(real-floating x, real-floating y);
int isgreaterequal(real-floating x, real-floating y);
int isless(real-floating x, real-floating y);
int islessequal(real-floating x, real-floating y);
int islessgreater(real-floating x, real-floating y);
int isunordered(real-floating x, real-floating y);
int iseqsig(real-floating x, real-floating y);

Only if the implementation defines __STDC_IEC_60559_DFP__:

© ISO/IEC 202y — All rights reserved

Library summary — 490

§ B.11

ISO/IEC 9899:202y (en) — n3299 working draft

DEC_INFINITY
DEC_NAN
FP_FAST_FMAD32
FP_FAST_FMAD64
FP_FAST_FMAD128
FP_FAST_D32ADDD64
FP_FAST_D32ADDD128
FP_FAST_D64ADDD128

FP_FAST_D32SUBD64
FP_FAST_D32SUBD128
FP_FAST_D64SUBD128
FP_FAST_D32MULD64
FP_FAST_D32MULD128
FP_FAST_D64MULD128
FP_FAST_D32DIVD64
FP_FAST_D32DIVD128

FP_FAST_D64DIVD128
FP_FAST_D32FMAD64
FP_FAST_D32FMAD128
FP_FAST_D64FMAD128
FP_FAST_D32SQRTD64
FP_FAST_D32SQRTD128
FP_FAST_D64SQRTD128

_Decimal32 acosd32(_Decimal32 x);
_Decimal64 acosd64(_Decimal64 x);
_Decimal128 acosd128(_Decimal128 x);
_Decimal32 asind32(_Decimal32 x);
_Decimal64 asind64(_Decimal64 x);
_Decimal128 asind128(_Decimal128 x);
_Decimal32 atand32(_Decimal32 x);
_Decimal64 atand64(_Decimal64 x);
_Decimal128 atand128(_Decimal128 x);
_Decimal32 atan2d32(_Decimal32 y, _Decimal32 x);
_Decimal64 atan2d64(_Decimal64 y, _Decimal64 x);
_Decimal128 atan2d128(_Decimal128 y, _Decimal128 x);
_Decimal32 cosd32(_Decimal32 x);
_Decimal64 cosd64(_Decimal64 x);
_Decimal128 cosd128(_Decimal128 x);
_Decimal32 sind32(_Decimal32 x);
_Decimal64 sind64(_Decimal64 x);
_Decimal128 sind128(_Decimal128 x);
_Decimal32 tand32(_Decimal32 x);
_Decimal64 tand64(_Decimal64 x);
_Decimal128 tand128(_Decimal128 x);
_Decimal32 acospid32(_Decimal32 x);
_Decimal64 acospid64(_Decimal64 x);
_Decimal128 acospid128(_Decimal128 x);
_Decimal32 asinpid32(_Decimal32 x);
_Decimal64 asinpid64(_Decimal64 x);
_Decimal128 asinpid128(_Decimal128 x);
_Decimal32 atanpid32(_Decimal32 x);
_Decimal64 atanpid64(_Decimal64 x);
_Decimal128 atanpid128(_Decimal128 x);
_Decimal32 atan2pid32(_Decimal32 y, _Decimal32 x);
_Decimal64 atan2pid64(_Decimal64 y, _Decimal64 x);
_Decimal128 atan2pid128(_Decimal128 y, _Decimal128 x);
_Decimal32 cospid32(_Decimal32 x);
_Decimal64 cospid64(_Decimal64 x);
_Decimal128 cospid128(_Decimal128 x);
_Decimal32 sinpid32(_Decimal32 x);
_Decimal64 sinpid64(_Decimal64 x);
_Decimal128 sinpid128(_Decimal128 x);
_Decimal32 tanpid32(_Decimal32 x);
_Decimal64 tanpid64(_Decimal64 x);
_Decimal128 tanpid128(_Decimal128 x);
_Decimal32 acoshd32(_Decimal32 x);
_Decimal64 acoshd64(_Decimal64 x);
_Decimal128 acoshd128(_Decimal128 x);
_Decimal32 asinhd32(_Decimal32 x);
_Decimal64 asinhd64(_Decimal64 x);
_Decimal128 asinhd128(_Decimal128 x);
_Decimal32 atanhd32(_Decimal32 x);
_Decimal64 atanhd64(_Decimal64 x);
_Decimal128 atanhd128(_Decimal128 x);

§ B.11 © ISO/IEC 202y — All rights reserved

Library summary — 491

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal32 coshd32(_Decimal32 x);
_Decimal64 coshd64(_Decimal64 x);
_Decimal128 coshd128(_Decimal128 x);
_Decimal32 sinhd32(_Decimal32 x);
_Decimal64 sinhd64(_Decimal64 x);
_Decimal128 sinhd128(_Decimal128 x);
_Decimal32 tanhd32(_Decimal32 x);
_Decimal64 tanhd64(_Decimal64 x);
_Decimal128 tanhd128(_Decimal128 x);
_Decimal32 expd32(_Decimal32 x);
_Decimal64 expd64(_Decimal64 x);
_Decimal128 expd128(_Decimal128 x);
_Decimal32 exp10d32(_Decimal32 x);
_Decimal64 exp10d64(_Decimal64 x);
_Decimal128 exp10d128(_Decimal128 x);
_Decimal32 exp10m1d32(_Decimal32 x);
_Decimal64 exp10m1d64(_Decimal64 x);
_Decimal128 exp10m1d128(_Decimal128 x);
_Decimal32 exp2d32(_Decimal32 x);
_Decimal64 exp2d64(_Decimal64 x);
_Decimal128 exp2d128(_Decimal128 x);
_Decimal32 exp2m1d32(_Decimal32 x);
_Decimal64 exp2m1d64(_Decimal64 x);
_Decimal128 exp2m1d128(_Decimal128 x);
_Decimal32 expm1d32(_Decimal32 x);
_Decimal64 expm1d64(_Decimal64 x);
_Decimal128 expm1d128(_Decimal128 x);
_Decimal32 frexpd32(_Decimal32 value, int *p);
_Decimal64 frexpd64(_Decimal64 value, int *p);
_Decimal128 frexpd128(_Decimal128 value, int *p);
int ilogbd32(_Decimal32 x);
int ilogbd64(_Decimal64 x);
int ilogbd128(_Decimal128 x);
_Decimal32 ldexpd32(_Decimal32 x, int p);
_Decimal64 ldexpd64(_Decimal64 x, int p);
_Decimal128 ldexpd128(_Decimal128 x, int p);
long int llogbd32(_Decimal32 x);
long int llogbd64(_Decimal64 x);
long int llogbd128(_Decimal128 x);
_Decimal32 logd32(_Decimal32 x);
_Decimal64 logd64(_Decimal64 x);
_Decimal128 logd128(_Decimal128 x);
_Decimal32 log10d32(_Decimal32 x);
_Decimal64 log10d64(_Decimal64 x);
_Decimal128 log10d128(_Decimal128 x);
_Decimal32 log10p1d32(_Decimal32 x);
_Decimal64 log10p1d64(_Decimal64 x);
_Decimal128 log10p1d128(_Decimal128 x);
_Decimal32 log1pd32(_Decimal32 x);
_Decimal64 log1pd64(_Decimal64 x);
_Decimal128 log1pd128(_Decimal128 x);
_Decimal32 logp1d32(_Decimal32 x);
_Decimal64 logp1d64(_Decimal64 x);
_Decimal128 logp1d128(_Decimal128 x);
_Decimal32 log2d32(_Decimal32 x);
_Decimal64 log2d64(_Decimal64 x);
_Decimal128 log2d128(_Decimal128 x);
_Decimal32 log2p1d32(_Decimal32 x);
_Decimal64 log2p1d64(_Decimal64 x);
_Decimal128 log2p1d128(_Decimal128 x);
_Decimal32 logbd32(_Decimal32 x);

© ISO/IEC 202y — All rights reserved

Library summary — 492

§ B.11

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal64 logbd64(_Decimal64 x);
_Decimal128 logbd128(_Decimal128 x);
_Decimal32 modfd32(_Decimal32 x, _Decimal32 *iptr);
_Decimal64 modfd64(_Decimal64 x, _Decimal64 *iptr);
_Decimal128 modfd128(_Decimal128 x, _Decimal128 *iptr);
_Decimal32 scalbnd32(_Decimal32 x, int n);
_Decimal64 scalbnd64(_Decimal64 x, int n);
_Decimal128 scalbnd128(_Decimal128 x, int n);
_Decimal32 scalblnd32(_Decimal32 x, long int n);
_Decimal64 scalblnd64(_Decimal64 x, long int n);
_Decimal128 scalblnd128(_Decimal128 x, long int n);
_Decimal32 cbrtd32(_Decimal32 x);
_Decimal64 cbrtd64(_Decimal64 x);
_Decimal128 cbrtd128(_Decimal128 x);
_Decimal32 compoundnd32(_Decimal32 x, long long int n);
_Decimal64 compoundnd64(_Decimal64 x, long long int n);
_Decimal128 compoundnd128(_Decimal128 x, long long int n);
_Decimal32 fabsd32(_Decimal32 x);
_Decimal64 fabsd64(_Decimal64 x);
_Decimal128 fabsd128(_Decimal128 x);
_Decimal32 hypotd32(_Decimal32 x, _Decimal32 y);
_Decimal64 hypotd64(_Decimal64 x, _Decimal64 y);
_Decimal128 hypotd128(_Decimal128 x, _Decimal128 y);
_Decimal32 powd32(_Decimal32 x, _Decimal32 y);
_Decimal64 powd64(_Decimal64 x, _Decimal64 y);
_Decimal128 powd128(_Decimal128 x, _Decimal128 y);
_Decimal32 pownd32(_Decimal32 x, long long int n);
_Decimal64 pownd64(_Decimal64 x, long long int n);
_Decimal128 pownd128(_Decimal128 x, long long int n);
_Decimal32 powrd32(_Decimal32 y, _Decimal32 x);
_Decimal64 powrd64(_Decimal64 y, _Decimal64 x);
_Decimal128 powrd128(_Decimal128 y, _Decimal128 x);
_Decimal32 rootnd32(_Decimal32 x, long long int n);
_Decimal64 rootnd64(_Decimal64 x, long long int n);
_Decimal128 rootnd128(_Decimal128 x, long long int n);
_Decimal32 rsqrtd32(_Decimal32 x);
_Decimal64 rsqrtd64(_Decimal64 x);
_Decimal128 rsqrtd128(_Decimal128 x);
_Decimal32 sqrtd32(_Decimal32 x);
_Decimal64 sqrtd64(_Decimal64 x);
_Decimal128 sqrtd128(_Decimal128 x);
_Decimal32 erfd32(_Decimal32 x);
_Decimal64 erfd64(_Decimal64 x);
_Decimal128 erfd128(_Decimal128 x);
_Decimal32 erfcd32(_Decimal32 x);
_Decimal64 erfcd64(_Decimal64 x);
_Decimal128 erfcd128(_Decimal128 x);
_Decimal32 lgammad32(_Decimal32 x);
_Decimal64 lgammad64(_Decimal64 x);
_Decimal128 lgammad128(_Decimal128 x);
_Decimal32 tgammad32(_Decimal32 x);
_Decimal64 tgammad64(_Decimal64 x);
_Decimal128 tgammad128(_Decimal128 x);
_Decimal32 ceild32(_Decimal32 x);
_Decimal64 ceild64(_Decimal64 x);
_Decimal128 ceild128(_Decimal128 x);
_Decimal32 floord32(_Decimal32 x);
_Decimal64 floord64(_Decimal64 x);
_Decimal128 floord128(_Decimal128 x);
_Decimal32 nearbyintd32(_Decimal32 x);
_Decimal64 nearbyintd64(_Decimal64 x);

§ B.11 © ISO/IEC 202y — All rights reserved

Library summary — 493

ISO/IEC 9899:202y (en) — n3299 working draft

_Decimal128 nearbyintd128(_Decimal128 x);
_Decimal32 rintd32(_Decimal32 x);
_Decimal64 rintd64(_Decimal64 x);
_Decimal128 rintd128(_Decimal128 x);
long int lrintd32(_Decimal32 x);
long int lrintd64(_Decimal64 x);
long int lrintd128(_Decimal128 x);
long long int llrintd32(_Decimal32 x);
long long int llrintd64(_Decimal64 x);
long long int llrintd128(_Decimal128 x);
_Decimal32 roundd32(_Decimal32 x);
_Decimal64 roundd64(_Decimal64 x);
_Decimal128 roundd128(_Decimal128 x);
long int lroundd32(_Decimal32 x);
long int lroundd64(_Decimal64 x);
long int lroundd128(_Decimal128 x);
long long int llroundd32(_Decimal32 x);
long long int llroundd64(_Decimal64 x);
long long int llroundd128(_Decimal128 x);
_Decimal32 roundevend32(_Decimal32 x);
_Decimal64 roundevend64(_Decimal64 x);
_Decimal128 roundevend128(_Decimal128 x);
_Decimal32 truncd32(_Decimal32 x);
_Decimal64 truncd64(_Decimal64 x);
_Decimal128 truncd128(_Decimal128 x);
_Decimal32 fromfpd32(_Decimal32 x, int rnd, unsigned int width);
_Decimal64 fromfpd64(_Decimal64 x, int rnd, unsigned int width);
_Decimal128 fromfpd128(_Decimal128 x, int rnd, unsigned int width);
_Decimal32 ufromfpd32(_Decimal32 x, int rnd, unsigned int width);
_Decimal64 ufromfpd64(_Decimal64 x, int rnd, unsigned int width);
_Decimal128 ufromfpd128(_Decimal128 x, int rnd, unsigned int width);
_Decimal32 fromfpxd32(_Decimal32 x, int rnd, unsigned int width);
_Decimal64 fromfpxd64(_Decimal64 x, int rnd, unsigned int width);
_Decimal128 fromfpxd128(_Decimal128 x, int rnd, unsigned int width);
_Decimal32 ufromfpxd32(_Decimal32 x, int rnd, unsigned int width);
_Decimal64 ufromfpxd64(_Decimal64 x, int rnd, unsigned int width);
_Decimal128 ufromfpxd128(_Decimal128 x, int rnd, unsigned int width);
_Decimal32 fmodd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmodd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmodd128(_Decimal128 x, _Decimal128 y);
_Decimal32 remainderd32(_Decimal32 x, _Decimal32 y);
_Decimal64 remainderd64(_Decimal64 x, _Decimal64 y);
_Decimal128 remainderd128(_Decimal128 x, _Decimal128 y);
_Decimal32 copysignd32(_Decimal32 x, _Decimal32 y);
_Decimal64 copysignd64(_Decimal64 x, _Decimal64 y);
_Decimal128 copysignd128(_Decimal128 x, _Decimal128 y);
_Decimal32 nand32(const char *tagp);
_Decimal64 nand64(const char *tagp);
_Decimal128 nand128(const char *tagp);
_Decimal32 nextafterd32(_Decimal32 x, _Decimal32 y);
_Decimal64 nextafterd64(_Decimal64 x, _Decimal64 y);
_Decimal128 nextafterd128(_Decimal128 x, _Decimal128 y);
_Decimal32 nexttowardd32(_Decimal32 x, _Decimal128 y);
_Decimal64 nexttowardd64(_Decimal64 x, _Decimal128 y);
_Decimal128 nexttowardd128(_Decimal128 x, _Decimal128 y);
_Decimal32 nextupd32(_Decimal32 x);
_Decimal64 nextupd64(_Decimal64 x);
_Decimal128 nextupd128(_Decimal128 x);
_Decimal32 nextdownd32(_Decimal32 x);
_Decimal64 nextdownd64(_Decimal64 x);
_Decimal128 nextdownd128(_Decimal128 x);

© ISO/IEC 202y — All rights reserved

Library summary — 494

§ B.11

ISO/IEC 9899:202y (en) — n3299 working draft

int canonicalized32(_Decimal32 *cx, const _Decimal32 *x);
int canonicalized64(_Decimal64 *cx, const _Decimal64 *x);
int canonicalized128(_Decimal128 *cx, const _Decimal128 *x);
_Decimal32 fdimd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fdimd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fdimd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fmaxd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaxd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaxd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fmind32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmind64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmind128(_Decimal128 x, _Decimal128 y);
_Decimal32 fmaximumd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximumd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximumd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fminimumd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimumd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimumd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fmaximum_magd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximum_magd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximum_magd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fminimum_magd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimum_magd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimum_magd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fmaximum_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximum_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximum_numd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fminimum_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimum_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimum_numd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fmaximum_mag_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximum_mag_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximum_mag_numd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fminimum_mag_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimum_mag_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimum_mag_numd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fmad32(_Decimal32 x, _Decimal32 y, _Decimal32 z);
_Decimal64 fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z);
_Decimal128 fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
_Decimal32 d32addd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32addd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64addd128(_Decimal128 x, _Decimal128 y);
_Decimal32 d32subd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32subd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64subd128(_Decimal128 x, _Decimal128 y);
_Decimal32 d32muld64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32muld128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64muld128(_Decimal128 x, _Decimal128 y);
_Decimal32 d32divd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32divd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64divd128(_Decimal128 x, _Decimal128 y);
_Decimal32 d32fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z);
_Decimal32 d32fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
_Decimal64 d64fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
_Decimal32 d32sqrtd64(_Decimal64 x);
_Decimal32 d32sqrtd128(_Decimal128 x);
_Decimal64 d64sqrtd128(_Decimal128 x);
_Decimal32 quantized32(_Decimal32 x, _Decimal32 y);
_Decimal64 quantized64(_Decimal64 x, _Decimal64 y);
_Decimal128 quantized128(_Decimal128 x, _Decimal128 y);
bool samequantumd32(_Decimal32 x, _Decimal32 y);

§ B.11 © ISO/IEC 202y — All rights reserved

Library summary — 495

ISO/IEC 9899:202y (en) — n3299 working draft

bool samequantumd64(_Decimal64 x, _Decimal64 y);
bool samequantumd128(_Decimal128 x, _Decimal128 y);
_Decimal32 quantumd32(_Decimal32 x);
_Decimal64 quantumd64(_Decimal64 x);
_Decimal128 quantumd128(_Decimal128 x);
long long int llquantexpd32(_Decimal32 x);
long long int llquantexpd64(_Decimal64 x);
long long int llquantexpd128(_Decimal128 x);
void encodedecd32(unsigned char encptr[restrict static 4],

const _Decimal32 * restrict xptr);
void encodedecd64(unsigned char encptr[restrict static 8],

const _Decimal64 * restrict xptr);
void encodedecd128(unsigned char encptr[restrict static 16],

const _Decimal128 * restrict xptr);
void decodedecd32(_Decimal32 * restrict xptr,

const unsigned char encptr[restrict static 4]);
void decodedecd64(_Decimal64 * restrict xptr,

const unsigned char encptr[restrict static 8]);
void decodedecd128(_Decimal128 * restrict xptr,

const unsigned char encptr[restrict static 16]);
void encodebind32(unsigned char encptr[restrict static 4],

const _Decimal32 * restrict xptr);
void encodebind64(unsigned char encptr[restrict static 8],

const _Decimal64 * restrict xptr);
void encodebind128(unsigned char encptr[restrict static 16],

const _Decimal128 * restrict xptr);
void decodebind32(_Decimal32 * restrict xptr,

const unsigned char encptr[restrict static 4]);
void decodebind64(_Decimal64 * restrict xptr,

const unsigned char encptr[restrict static 8]);
void decodebind128(_Decimal128 * restrict xptr,

const unsigned char encptr[restrict static 16]);

Only if the implementation defines __STDC_IEC_60559_BFP__ or __STDC_IEC_559__ and addition-
ally the user code defines __STDC_WANT_IEC_60559_EXT__ before any inclusion of <math.h>:

int totalorder(const double *x, const double *y);
int totalorderf(const float *x, const float *y);
int totalorderl(const long double *x, const long double *y);
int totalordermag(const double *x, const double *y);
int totalordermagf(const float *x, const float *y);
int totalordermagl(const long double *x, const long double *y);
double getpayload(const double *x);
float getpayloadf(const float *x);
long double getpayloadl(const long double *x);
int setpayload(double *res, double pl);
int setpayloadf(float *res, float pl);
int setpayloadl(long double *res, long double pl);
int setpayloadsig(double *res, double pl);
int setpayloadsigf(float *res, float pl);
int setpayloadsigl(long double *res, long double pl);

Only if the implementation defines __STDC_IEC_60559_DFP__ and additionally the user code
defines __STDC_WANT_IEC_60559_EXT__ before any inclusion of <math.h>:

_Decimal32_t _Decimal64_t HUGE_VAL_D32 HUGE_VAL_D64 HUGE_VAL_D128

int totalorderd32(const _Decimal32 *x, const _Decimal32 *y);
int totalorderd64(const _Decimal64 *x, const _Decimal64 *y);
int totalorderd128(const _Decimal128 *x, const _Decimal128 *y);

© ISO/IEC 202y — All rights reserved

Library summary — 496

§ B.11

ISO/IEC 9899:202y (en) — n3299 working draft

int totalordermagd32(const _Decimal32 *x, const _Decimal32 *y);
int totalordermagd64(const _Decimal64 *x, const _Decimal64 *y);
int totalordermagd128(const _Decimal128 *x, const _Decimal128 *y);
_Decimal32 getpayloadd32(const _Decimal32 *x);
_Decimal64 getpayloadd64(const _Decimal64 *x);
_Decimal128 getpayloadd128(const _Decimal128 *x);
int setpayloadd32(_Decimal32 *res, _Decimal32 pl);
int setpayloadd64(_Decimal64 *res, _Decimal64 pl);
int setpayloadd128(_Decimal128 *res, _Decimal128 pl);
int setpayloadsigd32(_Decimal32 *res, _Decimal32 pl);
int setpayloadsigd64(_Decimal64 *res, _Decimal64 pl);
int setpayloadsigd128(_Decimal128 *res, _Decimal128 pl);

Only if the implementation defines __STDC_IEC_60559_TYPES__ and additionally the user code
defines __STDC_WANT_IEC_60559_TYPES_EXT__ before any inclusion of <math.h>:

long_double_t
_FloatN_t
_DecimalN_t
HUGE_VAL_FN
HUGE_VAL_DN
HUGE_VAL_FNX
HUGE_VAL_DNX
FP_FAST_FMAFN
FP_FAST_FMADN
FP_FAST_FMAFNX
FP_FAST_FMADNX
FP_FAST_FMADDFN
FP_FAST_FMADDFNX
FP_FAST_FMXADDFN
FP_FAST_FMXADDFNX
FP_FAST_DMADDDN
FP_FAST_DMADDDNX
FP_FAST_DMXADDDN
FP_FAST_DMXADDDNX
FP_FAST_FMSUBFN

FP_FAST_FMSUBFNX
FP_FAST_FMXSUBFN
FP_FAST_FMXSUBFNX
FP_FAST_DMSUBDN
FP_FAST_DMSUBDNX
FP_FAST_DMXSUBDN
FP_FAST_DMXSUBDNX
FP_FAST_FMMULFN
FP_FAST_FMMULFNX
FP_FAST_FMXMULFN
FP_FAST_FMXMULFNX
FP_FAST_DMMULDN
FP_FAST_DMMULDNX
FP_FAST_DMXMULDN
FP_FAST_DMXMULDNX
FP_FAST_FMDIVFN
FP_FAST_FMDIVFNX
FP_FAST_FMXDIVFN
FP_FAST_FMXDIVFNX
FP_FAST_DMDIVDN

FP_FAST_DMDIVDNX
FP_FAST_DMXDIVDN
FP_FAST_DMXDIVDNX
FP_FAST_FMFMAFN
FP_FAST_FMFMAFNX
FP_FAST_FMXFMAFN
FP_FAST_FMXFMAFNX
FP_FAST_DMFMADN
FP_FAST_DMFMADNX
FP_FAST_DMXFMADN
FP_FAST_DMXFMADNX
FP_FAST_FMSQRTFN
FP_FAST_FMSQRTFNX
FP_FAST_FMXSQRTFN
FP_FAST_FMXSQRTFNX
FP_FAST_DMSQRTDN
FP_FAST_DMSQRTDNX
FP_FAST_DMXSQRTDN
FP_FAST_DMXSQRTDNX

_FloatN acosfN(_FloatN x);
_FloatNx acosfNx(_FloatNx x);
_DecimalN acosdN(_DecimalN x);
_DecimalNx acosdNx(_DecimalNx x);
_FloatN asinfN(_FloatN x);
_FloatNx asinfNx(_FloatNx x);
_DecimalN asindN(_DecimalN x);
_DecimalNx asindNx(_DecimalNx x);
_FloatN atanfN(_FloatN x);
_FloatNx atanfNx(_FloatNx x);
_DecimalN atandN(_DecimalN x);
_DecimalNx atandNx(_DecimalNx x);
_FloatN atan2fN(_FloatN y, _FloatN x);
_FloatNx atan2fNx(_FloatNx y, _FloatNx x);
_DecimalN atan2dN(_DecimalN y, _DecimalN x);
_DecimalNx atan2dNx(_DecimalNx y, _DecimalNx x);
_FloatN cosfN(_FloatN x);
_FloatNx cosfNx(_FloatNx x);
_DecimalN cosdN(_DecimalN x);
_DecimalNx cosdNx(_DecimalNx x);
_FloatN sinfN(_FloatN x);

§ B.11 © ISO/IEC 202y — All rights reserved

Library summary — 497

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatNx sinfNx(_FloatNx x);
_DecimalN sindN(_DecimalN x);
_DecimalNx sindNx(_DecimalNx x);
_FloatN tanfN(_FloatN x);
_FloatNx tanfNx(_FloatNx x);
_DecimalN tandN(_DecimalN x);
_DecimalNx tandNx(_DecimalNx x);
_FloatN acospifN(_FloatN x);
_FloatNx acospifNx(_FloatNx x);
_DecimalN acospidN(_DecimalN x);
_DecimalNx acospidNx(_DecimalNx x);
_FloatN asinpifN(_FloatN x);
_FloatNx asinpifNx(_FloatNx x);
_DecimalN asinpidN(_DecimalN x);
_DecimalNx asinpidNx(_DecimalNx x);
_FloatN atanpifN(_FloatN x);
_FloatNx atanpifNx(_FloatNx x);
_DecimalN atanpidN(_DecimalN x);
_DecimalNx atanpidNx(_DecimalNx x);
_FloatN atan2pifN(_FloatN y, _FloatN x);
_FloatNx atan2pifNx(_FloatNx y, _FloatNx x);
_DecimalN atan2pidN(_DecimalN y, _DecimalN x);
_DecimalNx atan2pidNx(_DecimalNx y, _DecimalNx x);
_FloatN cospifN(_FloatN x);
_FloatNx cospifNx(_FloatNx x);
_DecimalN cospidN(_DecimalN x);
_DecimalNx cospidNx(_DecimalNx x);
_FloatN sinpifN(_FloatN x);
_FloatNx sinpifNx(_FloatNx x);
_DecimalN sinpidN(_DecimalN x);
_DecimalNx sinpidNx(_DecimalNx x);
_FloatN tanpifN(_FloatN x);
_FloatNx tanpifNx(_FloatNx x);
_DecimalN tanpidN(_DecimalN x);
_DecimalNx tanpidNx(_DecimalNx x);
_FloatN acoshfN(_FloatN x);
_FloatNx acoshfNx(_FloatNx x);
_DecimalN acoshdN(_DecimalN x);
_DecimalNx acoshdNx(_DecimalNx x);
_FloatN asinhfN(_FloatN x);
_FloatNx asinhfNx(_FloatNx x);
_DecimalN asinhdN(_DecimalN x);
_DecimalNx asinhdNx(_DecimalNx x);
_FloatN atanhfN(_FloatN x);
_FloatNx atanhfNx(_FloatNx x);
_DecimalN atanhdN(_DecimalN x);
_DecimalNx atanhdNx(_DecimalNx x);
_FloatN coshfN(_FloatN x);
_FloatNx coshfNx(_FloatNx x);
_DecimalN coshdN(_DecimalN x);
_DecimalNx coshdNx(_DecimalNx x);
_FloatN sinhfN(_FloatN x);
_FloatNx sinhfNx(_FloatNx x);
_DecimalN sinhdN(_DecimalN x);
_DecimalNx sinhdNx(_DecimalNx x);
_FloatN tanhfN(_FloatN x);
_FloatNx tanhfNx(_FloatNx x);
_DecimalN tanhdN(_DecimalN x);
_DecimalNx tanhdNx(_DecimalNx x);
_FloatN expfN(_FloatN x);
_FloatNx expfNx(_FloatNx x);

© ISO/IEC 202y — All rights reserved

Library summary — 498

§ B.11

ISO/IEC 9899:202y (en) — n3299 working draft

_DecimalN expdN(_DecimalN x);
_DecimalNx expdNx(_DecimalNx x);
_FloatN exp10fN(_FloatN x);
_FloatNx exp10fNx(_FloatNx x);
_DecimalN exp10dN(_DecimalN x);
_DecimalNx exp10dNx(_DecimalNx x);
_FloatN exp10m1fN(_FloatN x);
_FloatNx exp10m1fNx(_FloatNx x);
_DecimalN exp10m1dN(_DecimalN x);
_DecimalNx exp10m1dNx(_DecimalNx x);
_FloatN exp2fN(_FloatN x);
_FloatNx exp2fNx(_FloatNx x);
_DecimalN exp2dN(_DecimalN x);
_DecimalNx exp2dNx(_DecimalNx x);
_FloatN exp2m1fN(_FloatN x);
_FloatNx exp2m1fNx(_FloatNx x);
_DecimalN exp2m1dN(_DecimalN x);
_DecimalNx exp2m1dNx(_DecimalNx x);
_FloatN expm1fN(_FloatN x);
_FloatNx expm1fNx(_FloatNx x);
_DecimalN expm1dN(_DecimalN x);
_DecimalNx expm1dNx(_DecimalNx x);
_FloatN frexpfN(_FloatN value, int *exp);
_FloatNx frexpfNx(_FloatNx value, int *exp);
_DecimalN frexpdN(_DecimalN value, int *exp);
_DecimalNx frexpdNx(_DecimalNx value, int *exp);
int ilogbfN(_FloatN x);
int ilogbfNx(_FloatNx x);
int ilogbdN(_DecimalNx x);
int ilogbdNx(_DecimalNx x);
_FloatN ldexpfN(_FloatN value, int exp);
_FloatNx ldexpfNx(_FloatNx value, int exp);
_DecimalN ldexpdN(_DecimalN value, int exp);
_DecimalNx ldexpdNx(_DecimalNx value, int exp);
long int llogbfN(_FloatN x);
long int llogbfNx(_FloatNx x);
long int llogbdN(_DecimalN x);
long int llogbdNx(_DecimalNx x);
_FloatN logfN(_FloatN x);
_FloatNx logfNx(_FloatNx x);
_DecimalN logdN(_DecimalN x);
_DecimalNx logdNx(_DecimalNx x);
_FloatN log10fN(_FloatN x);
_FloatNx log10fNx(_FloatNx x);
_DecimalN log10dN(_DecimalN x);
_DecimalNx log10dNx(_DecimalNx x);
_FloatN log10p1fN(_FloatN x);
_FloatNx log10p1fNx(_FloatNx x);
_DecimalN log10p1dN(_DecimalN x);
_DecimalNx log10p1dNx(_DecimalNx x);
_FloatN log1pfN(_FloatN x);
_FloatNx log1pfNx(_FloatNx x);
_FloatN logp1fN(_FloatN x);
_FloatNx logp1fNx(_FloatNx x);
_DecimalN log1pdN(_DecimalN x);
_DecimalNx log1pdNx(_DecimalNx x);
_DecimalN logp1dN(_DecimalN x);
_DecimalNx logp1dNx(_DecimalNx x);
_FloatN log2fN(_FloatN x);
_FloatNx log2fNx(_FloatNx x);
_DecimalN log2dN(_DecimalN x);

§ B.11 © ISO/IEC 202y — All rights reserved

Library summary — 499

ISO/IEC 9899:202y (en) — n3299 working draft

_DecimalNx log2dNx(_DecimalNx x);
_FloatN log2p1fN(_FloatN x);
_FloatNx log2p1fNx(_FloatNx x);
_DecimalN log2p1dN(_DecimalN x);
_DecimalNx log2p1dNx(_DecimalNx x);
_FloatN logbfN(_FloatN x);
_FloatNx logbfNx(_FloatNx x);
_DecimalN logbdN(_DecimalN x);
_DecimalNx logbdNx(_DecimalNx x);
_FloatN modffN(_FloatN x, _FloatN *iptr);
_FloatNx modffNx(_FloatNx x, _FloatNx *iptr);
_DecimalN modfdN(_DecimalN x, _DecimalN *iptr);
_DecimalNx modfdNx(_DecimalNx x, _DecimalNx *iptr);
_FloatN scalbnfN(_FloatN value, int exp);
_FloatNx scalbnfNx(_FloatNx value, int exp);
_DecimalN scalbndN(_DecimalN value, int exp);
_DecimalNx scalbndNx(_DecimalNx value, int exp);
_FloatN scalblnfN(_FloatN value, long int exp);
_FloatNx scalblnfNx(_FloatNx value, long int exp);
_DecimalN scalblndN(_DecimalN value, long int exp);
_DecimalNx scalblndNx(_DecimalNx value, long int exp);
_FloatN cbrtfN(_FloatN x);
_FloatNx cbrtfNx(_FloatNx x);
_DecimalN cbrtdN(_DecimalN x);
_DecimalNx cbrtdNx(_DecimalNx x);
_FloatN compoundnfN(_FloatN x, long long int n);
_FloatNx compoundnfNx(_FloatNx x, long long int n);
_DecimalN compoundndN(_DecimalN x, long long int n);
_DecimalNx compoundndNx(_DecimalNx x, long long int n);
_FloatN fabsfN(_FloatN x);
_FloatNx fabsfNx(_FloatNx x);
_DecimalN fabsdN(_DecimalN x);
_DecimalNx fabsdNx(_DecimalNx x);
_FloatN hypotfN(_FloatN x, _FloatN y);
_FloatNx hypotfNx(_FloatNx x, _FloatNx y);
_DecimalN hypotdN(_DecimalN x, _DecimalN y);
_DecimalNx hypotdNx(_DecimalNx x, _DecimalNx y);
_FloatN powfN(_FloatN x, _FloatN y);
_FloatNx powfNx(_FloatNx x, _FloatNx y);
_DecimalN powdN(_DecimalN x, _DecimalN y);
_DecimalNx powdNx(_DecimalNx x, _DecimalNx y);
_FloatN pownfN(_FloatN x, long long int n);
_FloatNx pownfNx(_FloatNx x, long long int n);
_DecimalN powndN(_DecimalN x, long long int n);
_DecimalNx powndNx(_DecimalNx x, long long int n);
_FloatN powrfN(_FloatN x, _FloatN y);
_FloatNx powrfNx(_FloatNx x, _FloatNx y);
_DecimalN powrdN(_DecimalN x, _DecimalN y);
_DecimalNx powrdNx(_DecimalNx x, _DecimalNx y);
_FloatN rootnfN(_FloatN x, long long int n);
_FloatNx rootnfNx(_FloatNx x, long long int n);
_DecimalN rootndN(_DecimalN x, long long int n);
_DecimalNx rootndNx(_DecimalNx x, long long int n);
_FloatN rsqrtfN(_FloatN x);
_FloatNx rsqrtfNx(_FloatNx x);
_DecimalN rsqrtdN(_DecimalN x);
_DecimalNx rsqrtdNx(_DecimalNx x);
_FloatN sqrtfN(_FloatN x);
_FloatNx sqrtfNx(_FloatNx x);
_DecimalN sqrtdN(_DecimalN x);
_DecimalNx sqrtdNx(_DecimalNx x);

© ISO/IEC 202y — All rights reserved

Library summary — 500

§ B.11

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatN erffN(_FloatN x);
_FloatNx erffNx(_FloatNx x);
_DecimalN erfdN(_DecimalN x);
_DecimalNx erfdNx(_DecimalNx x);
_FloatN erfcfN(_FloatN x);
_FloatNx erfcfNx(_FloatNx x);
_DecimalN erfcdN(_DecimalN x);
_DecimalNx erfcdNx(_DecimalNx x);
_FloatN lgammafN(_FloatN x);
_FloatNx lgammafNx(_FloatNx x);
_DecimalN lgammadN(_DecimalN x);
_DecimalNx lgammadNx(_DecimalNx x);
_FloatN tgammafN(_FloatN x);
_FloatNx tgammafNx(_FloatNx x);
_DecimalN tgammadN(_DecimalN x);
_DecimalNx tgammadNx(_DecimalNx x);
_FloatN ceilfN(_FloatN x);
_FloatNx ceilfNx(_FloatNx x);
_DecimalN ceildN(_DecimalN x);
_DecimalNx ceildNx(_DecimalNx x);
_FloatN floorfN(_FloatN x);
_FloatNx floorfNx(_FloatNx x);
_DecimalN floordN(_DecimalN x);
_DecimalNx floordNx(_DecimalNx x);
_FloatN nearbyintfN(_FloatN x);
_FloatNx nearbyintfNx(_FloatNx x);
_DecimalN nearbyintdN(_DecimalN x);
_DecimalNx nearbyintdNx(_DecimalNx x);
_FloatN rintfN(_FloatN x);
_FloatNx rintfNx(_FloatNx x);
_DecimalN rintdN(_DecimalN x);
_DecimalNx rintdNx(_DecimalNx x);
long int lrintfN(_FloatN x);
long int lrintfNx(_FloatNx x);
long int lrintdN(_DecimalN x);
long int lrintdNx(_DecimalNx x);
long long int llrintfN(_FloatN x);
long long int llrintfNx(_FloatNx x);
long long int llrintdN(_DecimalN x);
long long int llrintdNx(_DecimalNx x);
_FloatN roundfN(_FloatN x);
_FloatNx roundfNx(_FloatNx x);
_DecimalN rounddN(_DecimalN x);
_DecimalNx rounddNx(_DecimalNx x);
long int lroundfN(_FloatN x);
long int lroundfNx(_FloatNx x);
long int lrounddN(_DecimalN x);
long int lrounddNx(_DecimalNx x);
long long int llroundfN(_FloatN x);
long long int llroundfNx(_FloatNx x);
long long int llrounddN(_DecimalN x);
long long int llrounddNx(_DecimalNx x);
_FloatN roundevenfN(_FloatN x);
_FloatNx roundevenfNx(_FloatNx x);
_DecimalN roundevendN(_DecimalN x);
_DecimalNx roundevendNx(_DecimalNx x);
_FloatN truncfN(_FloatN x);
_FloatNx truncfNx(_FloatNx x);
_DecimalN truncdN(_DecimalN x);
_DecimalNx truncdNx(_DecimalNx x);
_FloatN fromfpfN(_FloatN x, int rnd, unsigned int width);

§ B.11 © ISO/IEC 202y — All rights reserved

Library summary — 501

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatNx fromfpfNx(_FloatNx x, int rnd, unsigned int width);
_DecimalN fromfpdN(_DecimalN x, int rnd, unsigned int width);
_DecimalNx fromfpdNx(_DecimalNx x, int rnd, unsigned int width);
_FloatN ufromfpfN(_FloatN x, int rnd, unsigned int width);
_FloatNx ufromfpfNx(_FloatNx x, int rnd, unsigned int width);
_DecimalN ufromfpdN(_DecimalN x, int rnd, unsigned int width);
_DecimalNx ufromfpdNx(_DecimalNx x, int rnd, unsigned int width);
_FloatN fromfpxfN(_FloatN x, int rnd, unsigned int width);
_FloatNx fromfpxfNx(_FloatNx x, int rnd, unsigned int width);
_DecimalN fromfpxdN(_DecimalN x, int rnd, unsigned int width);
_DecimalNx fromfpxdNx(_DecimalNx x, int rnd, unsigned int width);
_FloatN ufromfpxfN(_FloatN x, int rnd, unsigned int width);
_FloatNx ufromfpxfNx(_FloatNx x, int rnd, unsigned int width);
_DecimalN ufromfpxdN(_DecimalN x, int rnd, unsigned int width);
_DecimalNx ufromfpxdNx(_DecimalNx x, int rnd, unsigned int width);
_FloatN fmodfN(_FloatN x, _FloatN y);
_FloatNx fmodfNx(_FloatNx x, _FloatNx y);
_DecimalN fmoddN(_DecimalN x, _DecimalN y);
_DecimalNx fmoddNx(_DecimalNx x, _DecimalNx y);
_FloatN remainderfN(_FloatN x, _FloatN y);
_FloatNx remainderfNx(_FloatNx x, _FloatNx y);
_DecimalN remainderdN(_DecimalN x, _DecimalN y);
_DecimalNx remainderdNx(_DecimalNx x, _DecimalNx y);
_FloatN remquofN(_FloatN x, _FloatN y, int *quo);
_FloatNx remquofNx(_FloatNx x, _FloatNx y, int *quo);
_FloatN copysignfN(_FloatN x, _FloatN y);
_FloatNx copysignfNx(_FloatNx x, _FloatNx y);
_DecimalN copysigndN(_DecimalN x, _DecimalN y);
_DecimalNx copysigndNx(_DecimalNx x, _DecimalNx y);
_FloatN nanfN(const char *tagp);
_FloatNx nanfNx(const char *tagp);
_DecimalN nandN(const char *tagp);
_DecimalNx nandNx(const char *tagp);
_FloatN nextafterfN(_FloatN x, _FloatN y);
_FloatNx nextafterfNx(_FloatNx x, _FloatNx y);
_DecimalN nextafterdN(_DecimalN x, _DecimalN y);
_DecimalNx nextafterdNx(_DecimalNx x, _DecimalNx y);
_FloatN nextupfN(_FloatN x);
_FloatNx nextupfNx(_FloatNx x);
_DecimalN nextupdN(_DecimalN x);
_DecimalNx nextupdNx(_DecimalNx x);
_FloatN nextdownfN(_FloatN x);
_FloatNx nextdownfNx(_FloatNx x);
_DecimalN nextdowndN(_DecimalN x);
_DecimalNx nextdowndNx(_DecimalNx x);
int canonicalizefN(_FloatN *cx, const _FloatN *x);
int canonicalizefNx(_FloatNx *cx, const _FloatNx *x);
int canonicalizedN(_DecimalN *cx, const _DecimalN *x);
int canonicalizedNx(_DecimalNx *cx, const _DecimalNx *x);
_FloatN fdimfN(_FloatN x, _FloatN y);
_FloatNx fdimfNx(_FloatNx x, _FloatNx y);
_DecimalN fdimdN(_DecimalN x, _DecimalN y);
_DecimalNx fdimdNx(_DecimalNx x, _DecimalNx y);
_FloatN fmaximumfN(_FloatN x, _FloatN y);
_FloatNx fmaximumfNx(_FloatNx x, _FloatNx y);
_DecimalN fmaximumdN(_DecimalN x, _DecimalN y);
_DecimalNx fmaximumdNx(_DecimalNx x, _DecimalNx y);
_FloatN fminimumfN(_FloatN x, _FloatN y);
_FloatNx fminimumfNx(_FloatNx x, _FloatNx y);
_DecimalN fminimumdN(_DecimalN x, _DecimalN y);
_DecimalNx fminimumdNx(_DecimalNx x, _DecimalNx y);

© ISO/IEC 202y — All rights reserved

Library summary — 502

§ B.11

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatN fmaximum_magfN(_FloatN x, _FloatN y);
_FloatNx fmaximum_magfNx(_FloatNx x, _FloatNx y);
_DecimalN fmaximum_magdN(_DecimalN x, _DecimalN y);
_DecimalNx fmaximum_magdNx(_DecimalNx x, _DecimalNx y);
_FloatN fminimum_magfN(_FloatN x, _FloatN y);
_FloatNx fminimum_magfNx(_FloatNx x, _FloatNx y);
_DecimalN fminimum_magdN(_DecimalN x, _DecimalN y);
_DecimalNx fminimum_magdNx(_DecimalNx x, _DecimalNx y);
_FloatN fmaximum_numfN(_FloatN x, _FloatN y);
_FloatNx fmaximum_numfNx(_FloatNx x, _FloatNx y);
_DecimalN fmaximum_numdN(_DecimalN x, _DecimalN y);
_DecimalNx fmaximum_numdNx(_DecimalNx x, _DecimalNx y);
_FloatN fminimum_numfN(_FloatN x, _FloatN y);
_FloatNx fminimum_numfNx(_FloatNx x, _FloatNx y);
_DecimalN fminimum_numdN(_DecimalN x, _DecimalN y);
_DecimalNx fminimum_numdNx(_DecimalNx x, _DecimalNx y);
_FloatN fmaximum_mag_numfN(_FloatN x, _FloatN y);
_FloatNx fmaximum_mag_numfNx(_FloatNx x, _FloatNx y);
_DecimalN fmaximum_mag_numdN(_DecimalN x, _DecimalN y);
_DecimalNx fmaximum_mag_numdNx(_DecimalNx x, _DecimalNx y);
_FloatN fminimum_mag_numfN(_FloatN x, _FloatN y);
_FloatNx fminimum_mag_numfNx(_FloatNx x, _FloatNx y);
_DecimalN fminimum_mag_numdN(_DecimalN x, _DecimalN y);
_DecimalNx fminimum_mag_numdNx(_DecimalNx x, _DecimalNx y);
_FloatN fmafN(_FloatN x, _FloatN y, _FloatN z);
_FloatNx fmafNx(_FloatNx x, _FloatNx y, _FloatNx z);
_DecimalN fmadN(_DecimalN x, _DecimalN y, _DecimalN z);
_DecimalNx fmadNx(_DecimalNx x, _DecimalNx y, _DecimalNx z);
_FloatM fMaddfN(_FloatN x, _FloatN y); // M < N
_FloatM fMaddfNx(_FloatNx x, _FloatNx y); // M ≤ N
_FloatMx fMxaddfN(_FloatN x, _FloatN y); // M < N
_FloatMx fMxaddfNx(_FloatNx x, _FloatNx y); // M < N
_DecimalM dMadddN(_DecimalN x, _DecimalN y); // M < N
_DecimalM dMadddNx(_DecimalNx x, _DecimalNx y); // M ≤ N
_DecimalMx dMxadddN(_DecimalN x, _DecimalN y); // M < N
_DecimalMx dMxadddNx(_DecimalNx x, _DecimalNx y); // M < N
_FloatM fMsubfN(_FloatN x, _FloatN y); // M < N
_FloatM fMsubfNx(_FloatNx x, _FloatNx y); // M ≤ N
_FloatMx fMxsubfN(_FloatN x, _FloatN y); // M < N
_FloatMx fMxsubfNx(_FloatNx x, _FloatNx y); // M < N
_DecimalM dMsubdN(_DecimalN x, _DecimalN y); // M < N
_DecimalM dMsubdNx(_DecimalNx x, _DecimalNx y); // M ≤ N
_DecimalMx dMxsubdN(_DecimalN x, _DecimalN y); // M < N
_DecimalMx dMxsubdNx(_DecimalNx x, _DecimalNx y); // M < N
_FloatM fMmulfN(_FloatN x, _FloatN y); // M < N
_FloatM fMmulfNx(_FloatNx x, _FloatNx y); // M ≤ N
_FloatMx fMxmulfN(_FloatN x, _FloatN y); // M < N
_FloatMx fMxmulfNx(_FloatNx x, _FloatNx y); // M < N
_DecimalM dMmuldN(_DecimalN x, _DecimalN y); // M < N
_DecimalM dMmuldNx(_DecimalNx x, _DecimalNx y); // M ≤ N
_DecimalMx dMxmuldN(_DecimalN x, _DecimalN y); // M < N
_DecimalMx dMxmuldNx(_DecimalNx x, _DecimalNx y); // M < N
_FloatM fMdivfN(_FloatN x, _FloatN y); // M < N
_FloatM fMdivfNx(_FloatNx x, _FloatNx y); // M ≤ N
_FloatMx fMxdivfN(_FloatN x, _FloatN y); // M < N
_FloatMx fMxdivfNx(_FloatNx x, _FloatNx y); // M < N
_DecimalM dMdivdN(_DecimalN x, _DecimalN y); // M < N
_DecimalM dMdivdNx(_DecimalNx x, _DecimalNx y); // M ≤ N
_DecimalMx dMxdivdN(_DecimalN x, _DecimalN y); // M < N
_DecimalMx dMxdivdNx(_DecimalNx x, _DecimalNx y); // M < N
_FloatM fMfmafN(_FloatN x, _FloatN y, _FloatN z); // M < N

§ B.11 © ISO/IEC 202y — All rights reserved

Library summary — 503

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatM fMfmafNx(_FloatNx x, _FloatNx y, _FloatNx z); // M ≤ N
_FloatMx fMxfmafN(_FloatN x, _FloatN y, _FloatN z); // M < N
_FloatMx fMxfmafNx(_FloatNx x, _FloatNx y, _FloatNx z); // M < N
_DecimalM dMfmadN(_DecimalN x, _DecimalN y, _DecimalN z); // M < N
_DecimalM dMfmadNx(_DecimalNx x, _DecimalNx y, _DecimalNx z); // M ≤ N
_DecimalMx dMxfmadN(_DecimalN x, _DecimalN y, _DecimalN z); // M < N
_DecimalMx dMxfmadNx(_DecimalNx x, _DecimalNx y, _DecimalNx z); // M < N
_FloatM fMsqrtfN(_FloatN x); // M < N
_FloatM fMsqrtfNx(_FloatNx x); // M ≤ N
_FloatMx fMxsqrtfN(_FloatN x); // M < N
_FloatMx fMxsqrtfNx(_FloatNx x); // M < N
_DecimalM dMsqrtdN(_DecimalN x); // M < N
_DecimalM dMsqrtdNx(_DecimalNx x); // M ≤ N
_DecimalMx dMxsqrtdN(_DecimalN x); // M < N
_DecimalMx dMxsqrtdNx(_DecimalNx x); // M < N
_DecimalN quantizedN(_DecimalN x, _DecimalN y);
_DecimalNx quantizedNx(_DecimalNx x, _DecimalNx y);
bool samequantumdN(_DecimalN x, _DecimalN y);
bool samequantumdNx(_DecimalNx x, _DecimalNx y);
_DecimalN quantumdN(_DecimalN x);
_DecimalNx quantumdNx(_DecimalNx x);
long long int llquantexpdN(_DecimalN x);
long long int llquantexpdNx(_DecimalNx x);
void encodedecdN(unsigned char * restrict encptr,

const _DecimalN * restrict xptr);
void decodedecdN(_DecimalN * restrict xptr,

const unsigned char * restrict encptr);
void encodebindN(unsigned char * restrict encptr,

const _DecimalN * restrict xptr);
void decodebindN(_DecimalN * restrict xptr,

const unsigned char * restrict encptr);
int totalorderfN(const _FloatN *x, const _FloatN *y);
int totalorderfNx(const _FloatNx *x, const _FloatNx *y);
int totalorderdN(const _DecimalN *x, const _DecimalN *y);
int totalorderdNx(const _DecimalNx *x, const _DecimalNx *y);
int totalordermagfN(const _FloatN *x, const _FloatN *y);
int totalordermagfNx(const _FloatNx *x, const _FloatNx *y);
int totalordermagdN(const _DecimalN *x, const _DecimalN *y);
int totalordermagdNx(const _DecimalNx *x, const _DecimalNx *y);
_FloatN getpayloadfN(const _FloatN *x);
_FloatNx getpayloadfNx(const _FloatNx *x);
_DecimalN getpayloaddN(const _DecimalN *x);
_DecimalNx getpayloaddNx(const _DecimalNx *x);
int setpayloadfN(_FloatN *res, _FloatN pl);
int setpayloadfNx(_FloatNx *res, _FloatNx pl);
int setpayloaddN(_DecimalN *res, _DecimalN pl);
int setpayloaddNx(_DecimalNx *res, _DecimalNx pl);
int setpayloadsigfN(_FloatN *res, _FloatN pl);
int setpayloadsigfNx(_FloatNx *res, _FloatNx pl);
int setpayloadsigdN(_DecimalN *res, _DecimalN pl);
int setpayloadsigdNx(_DecimalNx *res, _DecimalNx pl);
void encodefN(unsigned char encptr[restrict static N/8],

const _FloatN * restrict xptr);
void decodefN(_FloatN * restrict xptr,

const unsigned char encptr[restrict static N/8]);
void fMencfN(unsigned char encMptr[restrict static M/8],

const unsigned char encNptr[restrict static N/8]);
void dMencdecdN(unsigned char encMptr[restrict static M/8],

const unsigned char encNptr[restrict static N/8]);
void dMencbindN(unsigned char encMptr[restrict static M/8],

const unsigned char encNptr[restrict static N/8]);

© ISO/IEC 202y — All rights reserved

Library summary — 504

§ B.11

ISO/IEC 9899:202y (en) — n3299 working draft

B.12 Non-local jumps <setjmp.h>

__STDC_VERSION_SETJMP_H__ jmp_buf

int setjmp(jmp_buf env);
[[noreturn]] void longjmp(jmp_buf env, int val);

B.13 Signal handling <signal.h>

sig_atomic_t
SIG_DFL
SIG_ERR

SIG_IGN
SIGABRT
SIGFPE

SIGILL
SIGINT
SIGSEGV

SIGTERM

void (*signal(int sig, void (*func)(int)))(int);
int raise(int sig);

B.14 Alignment <stdalign.h>
The header <stdalign.h> provides no content.

B.15 Variable arguments <stdarg.h>

va_list __STDC_VERSION_STDARG_H__

type va_arg(va_list ap, type);
void va_copy(va_list dest, va_list src);
void va_end(va_list ap);
void va_start(va_list ap, ...);

B.16 Atomics <stdatomic.h>

__STDC_NO_ATOMICS__
__STDC_VERSION_STDATOMIC_H__

ATOMIC_BOOL_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
ATOMIC_CHAR8_T_LOCK_FREE
ATOMIC_CHAR16_T_LOCK_FREE
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_WCHAR_T_LOCK_FREE
ATOMIC_SHORT_LOCK_FREE
ATOMIC_INT_LOCK_FREE
ATOMIC_LONG_LOCK_FREE
ATOMIC_LLONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE
ATOMIC_FLAG_INIT
memory_order
atomic_flag
memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_acq_rel
memory_order_seq_cst
atomic_bool

atomic_char
atomic_schar
atomic_uchar
atomic_short
atomic_ushort
atomic_int
atomic_uint
atomic_long
atomic_ulong
atomic_llong
atomic_ullong
atomic_char8_t
atomic_char16_t
atomic_char32_t
atomic_wchar_t
atomic_int_least8_t
atomic_uint_least8_t
atomic_int_least16_t
atomic_uint_least16_t
atomic_int_least32_t
atomic_uint_least32_t
atomic_int_least64_t
atomic_uint_least64_t

§ B.16 © ISO/IEC 202y — All rights reserved

Library summary — 505

ISO/IEC 9899:202y (en) — n3299 working draft

atomic_int_fast8_t
atomic_uint_fast8_t
atomic_int_fast16_t
atomic_uint_fast16_t
atomic_int_fast32_t
atomic_uint_fast32_t
atomic_int_fast64_t

atomic_uint_fast64_t
atomic_intptr_t
atomic_uintptr_t
atomic_size_t
atomic_ptrdiff_t
atomic_intmax_t
atomic_uintmax_t

void atomic_init(volatile A *obj, C value);
type kill_dependency(type y);
void atomic_thread_fence(memory_order order);
void atomic_signal_fence(memory_order order);
bool atomic_is_lock_free(const volatile A *obj);
void atomic_store(volatile A *object, C desired);
void atomic_store_explicit(volatile A *object, C desired, memory_order order);
C atomic_load(const volatile A *object);
C atomic_load_explicit(const volatile A *object, memory_order order);
C atomic_exchange(volatile A *object, C desired);
C atomic_exchange_explicit(volatile A *object, C desired, memory_order order);
bool atomic_compare_exchange_strong(volatile A *object, C *expected, C desired);
bool atomic_compare_exchange_strong_explicit(volatile A *object, C *expected,

C desired, memory_order success, memory_order failure);
bool atomic_compare_exchange_weak(volatile A *object, C *expected, C desired);
bool atomic_compare_exchange_weak_explicit(volatile A *object, C *expected,

C desired, memory_order success, memory_order failure);
C atomic_fetch_key(volatile A *object, M operand);
C atomic_fetch_key_explicit(volatile A *object, M operand, memory_order order);
bool atomic_flag_test_and_set(volatile atomic_flag *object);
bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object,

memory_order order);
void atomic_flag_clear(volatile atomic_flag *object);
void atomic_flag_clear_explicit(volatile atomic_flag *object,

memory_order order);

B.17 Bit and byte utilities <stdbit.h>

__STDC_ENDIAN_BIG__
__STDC_ENDIAN_LITTLE__

__STDC_ENDIAN_NATIVE__
__STDC_VERSION_STDBIT_H__

unsigned int stdc_leading_zeros_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_leading_zeros_us(unsigned short value) [[unsequenced]];
unsigned int stdc_leading_zeros_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_leading_zeros_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_leading_zeros_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_leading_zeros(generic_value_type value) [[unsequenced]];
unsigned int stdc_leading_ones_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_leading_ones_us(unsigned short value) [[unsequenced]];
unsigned int stdc_leading_ones_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_leading_ones_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_leading_ones_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_leading_ones(generic_value_type value) [[unsequenced]];
unsigned int stdc_trailing_zeros_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_trailing_zeros_us(unsigned short value) [[unsequenced]];
unsigned int stdc_trailing_zeros_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_trailing_zeros_ul(unsigned long int value) [[unsequenced]];
unsigned int

© ISO/IEC 202y — All rights reserved

Library summary — 506

§ B.17

ISO/IEC 9899:202y (en) — n3299 working draft

stdc_trailing_zeros_ull(unsigned long long int value) [[unsequenced]];
generic_return_type
stdc_trailing_zeros(generic_value_type value) [[unsequenced]];
unsigned int stdc_trailing_ones_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_trailing_ones_us(unsigned short value) [[unsequenced]];
unsigned int stdc_trailing_ones_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_trailing_ones_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_trailing_ones_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_trailing_ones(generic_value_type value) [[unsequenced]];
unsigned int stdc_first_leading_zero_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_first_leading_zero_us(unsigned short value) [[unsequenced]];
unsigned int stdc_first_leading_zero_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_first_leading_zero_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_first_leading_zero_ull(unsigned long long int value) [[unsequenced]];
generic_return_type
stdc_first_leading_zero(generic_value_type value) [[unsequenced]];
unsigned int stdc_first_leading_one_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_first_leading_one_us(unsigned short value) [[unsequenced]];
unsigned int stdc_first_leading_one_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_first_leading_one_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_first_leading_one_ull(unsigned long long int value) [[unsequenced]];
generic_return_type
stdc_first_leading_one(generic_value_type value) [[unsequenced]];
unsigned int stdc_first_trailing_zero_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_first_trailing_zero_us(unsigned short value) [[unsequenced]];
unsigned int stdc_first_trailing_zero_ui(unsigned int value) [[unsequenced]];
unsigned int
stdc_first_trailing_zero_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_first_trailing_zero_ull(unsigned long long int value) [[unsequenced]];
generic_return_type
stdc_first_trailing_zero(generic_value_type value) [[unsequenced]];
unsigned int stdc_first_trailing_one_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_first_trailing_one_us(unsigned short value) [[unsequenced]];
unsigned int stdc_first_trailing_one_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_first_trailing_one_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_first_trailing_one_ull(unsigned long long int value) [[unsequenced]];
generic_return_type
stdc_first_trailing_one(generic_value_type value) [[unsequenced]];
unsigned int stdc_count_zeros_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_count_zeros_us(unsigned short value) [[unsequenced]];
unsigned int stdc_count_zeros_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_count_zeros_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_count_zeros_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_count_zeros(generic_value_type value) [[unsequenced]];
unsigned int stdc_count_ones_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_count_ones_us(unsigned short value) [[unsequenced]];
unsigned int stdc_count_ones_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_count_ones_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_count_ones_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_count_ones(generic_value_type value) [[unsequenced]];
bool stdc_has_single_bit_uc(unsigned char value) [[unsequenced]];
bool stdc_has_single_bit_us(unsigned short value) [[unsequenced]];
bool stdc_has_single_bit_ui(unsigned int value) [[unsequenced]];
bool stdc_has_single_bit_ul(unsigned long int value) [[unsequenced]];

§ B.17 © ISO/IEC 202y — All rights reserved

Library summary — 507

ISO/IEC 9899:202y (en) — n3299 working draft

bool stdc_has_single_bit_ull(unsigned long long int value) [[unsequenced]];
bool stdc_has_single_bit(generic_value_type value) [[unsequenced]];
unsigned int stdc_bit_width_uc(unsigned char value) [[unsequenced]];
unsigned int stdc_bit_width_us(unsigned short value) [[unsequenced]];
unsigned int stdc_bit_width_ui(unsigned int value) [[unsequenced]];
unsigned int stdc_bit_width_ul(unsigned long int value) [[unsequenced]];
unsigned int
stdc_bit_width_ull(unsigned long long int value) [[unsequenced]];
generic_return_type stdc_bit_width(generic_value_type value) [[unsequenced]];
unsigned char stdc_bit_floor_uc(unsigned char value) [[unsequenced]];
unsigned short stdc_bit_floor_us(unsigned short value) [[unsequenced]];
unsigned int stdc_bit_floor_ui(unsigned int value) [[unsequenced]];
unsigned long int stdc_bit_floor_ul(unsigned long int value) [[unsequenced]];
unsigned long long int
stdc_bit_floor_ull(unsigned long long int value) [[unsequenced]];
generic_value_type stdc_bit_floor(generic_value_type value) [[unsequenced]];
unsigned char stdc_bit_ceil_uc(unsigned char value) [[unsequenced]];
unsigned short stdc_bit_ceil_us(unsigned short value) [[unsequenced]];
unsigned int stdc_bit_ceil_ui(unsigned int value) [[unsequenced]];
unsigned long int stdc_bit_ceil_ul(unsigned long int value) [[unsequenced]];
unsigned long long int
stdc_bit_ceil_ull(unsigned long long int value) [[unsequenced]];
generic_value_type stdc_bit_ceil(generic_value_type value) [[unsequenced]];

B.18 Boolean type and values <stdbool.h>

__bool_true_false_are_defined

B.19 Checked Integer Operations <stdckdint.h>

__STDC_VERSION_STDCKDINT_H__

bool ckd_add(type1 *result, type2 a, type3 b);
bool ckd_sub(type1 *result, type2 a, type3 b);
bool ckd_mul(type1 *result, type2 a, type3 b);

B.20 Common definitions <stddef.h>

ptrdiff_t
nullptr_t
size_t

max_align_t
wchar_t
__STDC_VERSION_STDDEF_H__

NULL

offsetof(type, member-designator)

unreachable()

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <stddef.h>:

rsize_t

B.21 Integer types <stdint.h>

© ISO/IEC 202y — All rights reserved

Library summary — 508

§ B.21

ISO/IEC 9899:202y (en) — n3299 working draft

intN_t
uintN_t
int_leastN_t
uint_leastN_t
int_fastN_t
uint_fastN_t
intptr_t
uintptr_t
intmax_t
uintmax_t
__STDC_VERSION_STDINT_H__

INTN_MIN
INTN_MAX
INTN_WIDTH
UINTN_MAX
UINTN_WIDTH
INT_LEASTN_MIN
INT_LEASTN_MAX

INT_LEASTN_WIDTH
UINT_LEASTN_MAX
UINT_LEASTN_WIDTH
INT_FASTN_MIN
INT_FASTN_MAX
INT_FASTN_WIDTH
UINT_FASTN_MAX
UINT_FASTN_WIDTH
INTPTR_MIN
INTPTR_MAX
INTPTR_WIDTH
UINTPTR_MAX
UINTPTR_WIDTH
INTMAX_MIN
INTMAX_MAX
INTMAX_WIDTH
UINTMAX_MAX
UINTMAX_WIDTH

PTRDIFF_MIN
PTRDIFF_MAX
SIG_ATOMIC_MIN
SIG_ATOMIC_MAX
SIG_ATOMIC_WIDTH
SIZE_MAX
SIZE_WIDTH
WCHAR_MIN
WCHAR_MAX
WCHAR_WIDTH
WINT_MIN
WINT_MAX
WINT_WIDTH
INTN_C(value)
UINTN_C(value)
INTMAX_C(value)
UINTMAX_C(value)

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <stdint.h>:

RSIZE_MAX

B.22 Input/output <stdio.h>

size_t
FILE
fpos_t
NULL
_IOFBF
_IOLBF

_IONBF
BUFSIZ
EOF
FOPEN_MAX
FILENAME_MAX
L_tmpnam

SEEK_CUR
SEEK_END
SEEK_SET
TMP_MAX
stderr
stdin

stdout
_PRINTF_NAN_LEN_MAX

__STDC_VERSION_STDIO_H__

int remove(const char *filename);
int rename(const char *old, const char *new);
FILE *tmpfile(void);
char *tmpnam(char *s);
int fclose(FILE *stream);
int fflush(FILE *stream);
FILE *fopen(const char * restrict filename, const char * restrict mode);
FILE *freopen(const char * restrict filename, const char * restrict mode,

FILE * restrict stream);
void setbuf(FILE * restrict stream, char * restrict buf);
int setvbuf(FILE * restrict stream, char * restrict buf, int mode, size_t size);
int printf(const char * restrict format, ...);
int scanf(const char * restrict format, ...);
int snprintf(char * restrict s, size_t n, const char * restrict format, ...);
int sprintf(char * restrict s, const char * restrict format, ...);
int sscanf(const char * restrict s, const char * restrict format, ...);
int vfprintf(FILE * restrict stream, const char * restrict format, va_list arg);
int vfscanf(FILE * restrict stream, const char * restrict format, va_list arg);
int vprintf(const char * restrict format, va_list arg);
int vscanf(const char * restrict format, va_list arg);
int vsnprintf(char * restrict s, size_t n, const char * restrict format, va_list arg);
int vsprintf(char * restrict s, const char * restrict format, va_list arg);
int vsscanf(const char * restrict s, const char * restrict format, va_list arg);
int fgetc(FILE *stream);

§ B.22 © ISO/IEC 202y — All rights reserved

Library summary — 509

ISO/IEC 9899:202y (en) — n3299 working draft

char *fgets(char * restrict s, int n, FILE * restrict stream);
int fputc(int c, FILE *stream);
int fputs(const char * restrict s, FILE * restrict stream);
int getc(FILE *stream);
int getchar(void);
int putc(int c, FILE *stream);
int putchar(int c);
int puts(const char *s);
int ungetc(int c, FILE *stream);
size_t fread(void * restrict ptr, size_t size, size_t nmemb,

FILE * restrict stream);
size_t fwrite(const void * restrict ptr, size_t size, size_t nmemb,

FILE * restrict stream);
int fgetpos(FILE * restrict stream, fpos_t * restrict pos);
int fseek(FILE *stream, long int offset, int whence);
int fsetpos(FILE *stream, const fpos_t *pos);
long int ftell(FILE *stream);
void rewind(FILE *stream);
void clearerr(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);
void perror(const char *s);
int fprintf(FILE * restrict stream, const char * restrict format, ...);
int fscanf(FILE * restrict stream, const char * restrict format, ...);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <stdio.h>:

L_tmpnam_s TMP_MAX_S errno_t rsize_t

errno_t tmpfile_s(FILE * restrict * restrict streamptr);
errno_t tmpnam_s(char *s, rsize_t maxsize);
errno_t fopen_s(FILE * restrict * restrict streamptr,

const char * restrict filename, const char * restrict mode);
errno_t freopen_s(FILE * restrict * restrict newstreamptr,

const char * restrict filename, const char * restrict mode,
FILE * restrict stream);

int fprintf_s(FILE * restrict stream, const char * restrict format, ...);
int fscanf_s(FILE * restrict stream, const char * restrict format, ...);
int printf_s(const char * restrict format, ...);
int scanf_s(const char * restrict format, ...);
int snprintf_s(char * restrict s, rsize_t n, const char * restrict format, ...);
int sprintf_s(char * restrict s, rsize_t n, const char * restrict format, ...);
int sscanf_s(const char * restrict s, const char * restrict format, ...);
int vfprintf_s(FILE * restrict stream, const char * restrict format, va_list arg);
int vfscanf_s(FILE * restrict stream, const char * restrict format, va_list arg);
int vprintf_s(const char * restrict format, va_list arg);
int vscanf_s(const char * restrict format, va_list arg);
int vsnprintf_s(char * restrict s, rsize_t n, const char * restrict format,

va_list arg);
int vsprintf_s(char * restrict s, rsize_t n, const char * restrict format,

va_list arg);
int vsscanf_s(const char * restrict s, const char * restrict format, va_list arg);
char *gets_s(char *s, rsize_t n);

B.23 General utilities <stdlib.h>

© ISO/IEC 202y — All rights reserved

Library summary — 510

§ B.23

ISO/IEC 9899:202y (en) — n3299 working draft

size_t
wchar_t
div_t
ldiv_t
lldiv_t

once_flag
__STDC_VERSION_STDLIB_H__

EXIT_FAILURE
EXIT_SUCCESS
MB_CUR_MAX

NULL
ONCE_FLAG_INIT
RAND_MAX

void call_once(once_flag *flag, void (*func)(void));
double atof(const char *nptr);
int atoi(const char *nptr);
long int atol(const char *nptr);
long long int atoll(const char *nptr);
int strfromd(char * restrict s, size_t n, const char * restrict format,

double fp);
int strfromf(char * restrict s, size_t n, const char * restrict format,

float fp);
int strfroml(char * restrict s, size_t n, const char * restrict format,

long double fp);
double strtod(const char * restrict nptr, char ** restrict endptr);
float strtof(const char * restrict nptr, char ** restrict endptr);
long double strtold(const char * restrict nptr, char ** restrict endptr);
long int strtol(const char * restrict nptr, char ** restrict endptr, int base);
long long int strtoll(const char * restrict nptr, char ** restrict endptr,

int base);
unsigned long int strtoul(const char * restrict nptr, char ** restrict endptr,

int base);
unsigned long long int strtoull(const char * restrict nptr,

char ** restrict endptr, int base);
int rand(void);
void srand(unsigned int seed);
void *aligned_alloc(size_t alignment, size_t size);
void *calloc(size_t nmemb, size_t size);
void free(void *ptr);
void free_sized(void *ptr, size_t size);
void free_aligned_sized(void *ptr, size_t alignment, size_t size);
void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
[[noreturn]] void abort(void);
int atexit(void (*func)(void));
int at_quick_exit(void (*func)(void));
[[noreturn]] void exit(int status);
[[noreturn]] void _Exit(int status);
char *getenv(const char *name);
[[noreturn]] void quick_exit(int status);
int system(const char *string);
QVoid *bsearch(const void *key, QVoid *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));
int abs(int j);
long int labs(long int j);
long long int llabs(long long int j);
div_t div(int numer, int denom);
ldiv_t ldiv(long int numer, long int denom);
lldiv_t lldiv(long long int numer, long long int denom);
int mblen(const char *s, size_t n);
int mbtowc(wchar_t * restrict pwc, const char * restrict s, size_t n);
int wctomb(char *s, wchar_t wc);
size_t mbstowcs(wchar_t * restrict pwcs, const char * restrict s, size_t n);
size_t wcstombs(char * restrict s, const wchar_t * restrict pwcs, size_t n);
size_t memalignment(const void *p);

§ B.23 © ISO/IEC 202y — All rights reserved

Library summary — 511

ISO/IEC 9899:202y (en) — n3299 working draft

Only if the implementation defines __STDC_IEC_60559_DFP__:

int strfromd32(char * restrict s, size_t n, const char * restrict format,
_Decimal32 fp);

int strfromd64(char * restrict s, size_t n, const char * restrict format,
_Decimal64 fp);

int strfromd128(char * restrict s, size_t n, const char * restrict format,
_Decimal128 fp);

_Decimal32 strtod32(const char * restrict nptr, char ** restrict endptr);
_Decimal64 strtod64(const char * restrict nptr, char ** restrict endptr);
_Decimal128 strtod128(const char * restrict nptr, char ** restrict endptr);

Only if the implementation defines __STDC_IEC_60559_TYPES__ and additionally the user code
defines __STDC_WANT_IEC_60559_TYPES_EXT__ before any inclusion of <stdlib.h>:

int strfromfN(char * restrict s, size_t n,
const char * restrict format, _FloatN fp);

int strfromfNx(char * restrict s, size_t n,
const char * restrict format, _FloatNx fp);

int strfromdN(char * restrict s, size_t n,
const char * restrict format, _DecimalN fp);

int strfromdNx(char * restrict s, size_t n,
const char * restrict format, _DecimalNx fp);

_FloatN strtofN(const char * restrict nptr,
char ** restrict endptr);

_FloatNx strtofNx(const char * restrict nptr,
char ** restrict endptr);

_DecimalN strtodN(const char * restrict nptr,
char ** restrict endptr);

_DecimalNx strtodNx(const char * restrict nptr,
char ** restrict endptr);

int strfromencfN(char * restrict s, size_t n, const char * restrict format,
const unsigned char encptr[restrict static N/8]);

int strfromencdecdN(char * restrict s, size_t n, const char * restrict format,
const unsigned char encptr[restrict static N/8]);

int strfromencbindN(char * restrict s, size_t n, const char * restrict format,
const unsigned char encptr[restrict static N/8]);

void strtoencfN(unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

void strtoencdecdN(unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

void strtoencbindN(unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <stdlib.h>:

errno_t rsize_t constraint_handler_t

constraint_handler_t set_constraint_handler_s(constraint_handler_t handler);
void abort_handler_s(const char * restrict msg, void * restrict ptr,

errno_t error);
void ignore_handler_s(const char * restrict msg, void * restrict ptr,

errno_t error);
errno_t getenv_s(size_t * restrict len, char * restrict value, rsize_t maxsize,

const char * restrict name);
QVoid *bsearch_s(const void *key, QVoid *base, rsize_t nmemb, rsize_t size,

int (*compar)(const void *k, const void *y, void *context),
void *context);

errno_t qsort_s(void *base, rsize_t nmemb, rsize_t size,

© ISO/IEC 202y — All rights reserved

Library summary — 512

§ B.23

ISO/IEC 9899:202y (en) — n3299 working draft

int (*compar)(const void *x, const void *y, void *context),
void *context);

errno_t wctomb_s(int * restrict status, char * restrict s, rsize_t smax,
wchar_t wc);

errno_t mbstowcs_s(size_t * restrict retval, wchar_t * restrict dst,
rsize_t dstmax, const char * restrict src, rsize_t len);

errno_t wcstombs_s(size_t * restrict retval, char * restrict dst, rsize_t dstmax,
const wchar_t * restrict src, rsize_t len);

B.24 _Noreturn <stdnoreturn.h>

noreturn

B.25 String handling <string.h>

size_t
__STDC_VERSION_STRING_H__

NULL

void *memcpy(void * restrict s1, const void * restrict s2, size_t n);
void *memccpy(void * restrict s1, const void * restrict s2, int c, size_t n);
void *memmove(void *s1, const void *s2, size_t n);
char *strcpy(char * restrict s1, const char * restrict s2);
char *strncpy(char * restrict s1, const char * restrict s2, size_t n);
char *strdup(const char *s);
char *strndup(const char *s, size_t n);
char *strcat(char * restrict s1, const char * restrict s2);
char *strncat(char * restrict s1, const char * restrict s2, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
int strcmp(const char *s1, const char *s2);
int strcoll(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);
size_t strxfrm(char * restrict s1, const char * restrict s2, size_t n);
QVoid *memchr(QVoid *s, int c, size_t n);
QChar *strchr(QChar *s, int c);
size_t strcspn(const char *s1, const char *s2);
QChar *strpbrk(QChar *s1, const char *s2);
QChar *strrchr(QChar *s, int c);
size_t strspn(const char *s1, const char *s2);
QChar *strstr(QChar *s1, const char *s2);
char *strtok(char * restrict s1, const char * restrict s2);
void *memset(void *s, int c, size_t n);
void *memset_explicit(void *s, int c, size_t n);
char *strerror(int errnum);
size_t strlen(const char *s);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <string.h>:

errno_t rsize_t

errno_t memcpy_s(void * restrict s1, rsize_t s1max, const void * restrict s2,
rsize_t n);

errno_t memmove_s(void *s1, rsize_t s1max, const void *s2, rsize_t n);
errno_t strcpy_s(char * restrict s1, rsize_t s1max, const char * restrict s2);
errno_t strncpy_s(char * restrict s1, rsize_t s1max, const char * restrict s2,

rsize_t n);
errno_t strcat_s(char * restrict s1, rsize_t s1max, const char * restrict s2);
errno_t strncat_s(char * restrict s1, rsize_t s1max, const char * restrict s2,

rsize_t n);

§ B.25 © ISO/IEC 202y — All rights reserved

Library summary — 513

ISO/IEC 9899:202y (en) — n3299 working draft

char *strtok_s(char * restrict s1, rsize_t * restrict s1max,
const char * restrict s2, char ** restrict ptr);

errno_t memset_s(void *s, rsize_t smax, int c, rsize_t n)
errno_t strerror_s(char *s, rsize_t maxsize, errno_t errnum);
size_t strerrorlen_s(errno_t errnum);
size_t strnlen_s(const char *s, size_t maxsize);

B.26 Type-generic math <tgmath.h>

__STDC_VERSION_TGMATH_H__

acos
asin
atan
acosh
asinh
atanh
cos
sin
tan
cosh
sinh
tanh
exp
log
pow
sqrt
fabs
acospi
asinpi
atan2pi
atan2
atanpi
cbrt
ceil
compoundn
copysign
cospi
erfc
erf
exp10m1
exp10
exp2m1
exp2

expm1
fdim
floor
fmax
fmaximum
fmaximum_mag
fmaximum_num
fmaximum_mag_num
fma
fmin
fminimum
fminimum_mag
fminimum_num
fminimum_mag_num
fmod
frexp
fromfpx
fromfp
hypot
ilogb
ldexp
lgamma
llogb
llrint
llround
log10p1
log10
log1p
log2p1
log2
logb
logp1
lrint
lround

nearbyint
nextafter
nextdown
nexttoward
nextup
pown
powr
remainder
remquo
rint
rootn
roundeven
round
rsqrt
scalbln
scalbn
sinpi
tanpi
tgamma
trunc
ufromfpx
ufromfp
fadd
dadd
fsub
dsub
fmul
dmul
fdiv
ddiv
ffma
dfma
fsqrt
dsqrt

Only if the implementation does not define __STDC_NO_COMPLEX__:

carg cimag conj cproj creal

Only if the implementation defines __STDC_IEC_60559_DFP__:

d32add
d64add
d32sub

d64sub
d32mul
d64mul

d32div
d64div
d32fma

d64fma
d32sqrt
d64sqrt

quantize
samequantum
quantum

llquantexp

Only if the implementation defines __STDC_IEC_60559_TYPES__ and additionally the user code
defines __STDC_WANT_IEC_60559_TYPES_EXT__ before any inclusion of <tgmath.h>:

© ISO/IEC 202y — All rights reserved

Library summary — 514

§ B.26

ISO/IEC 9899:202y (en) — n3299 working draft

fMadd
fMxadd
dMadd
dMxadd

fMsub
fMxsub
dMsub
dMxsub

fMmul
fMxmul
dMmul
dMxmul

fMdiv
fMxdiv
dMdiv
dMxdiv

fMfma
fMxfma
dMfma
dMxfma

fMsqrt
fMxsqrt
dMsqrt
dMxsqrt

B.27 Threads <threads.h>

__STDC_NO_THREADS__

ONCE_FLAG_INIT
TSS_DTOR_ITERATIONS
cnd_t
thrd_t
tss_t

mtx_t
tss_dtor_t
thrd_start_t
once_flag
mtx_plain
mtx_recursive

mtx_timed
thrd_timedout
thrd_success
thrd_busy
thrd_error
thrd_nomem

void call_once(once_flag *flag, void (*func)(void));
int cnd_broadcast(cnd_t *cond);
void cnd_destroy(cnd_t *cond);
int cnd_init(cnd_t *cond);
int cnd_signal(cnd_t *cond);
int cnd_timedwait(cnd_t * restrict cond, mtx_t * restrict mtx,

const struct timespec * restrict ts);
int cnd_wait(cnd_t *cond, mtx_t *mtx);
void mtx_destroy(mtx_t *mtx);
int mtx_init(mtx_t *mtx, int type);
int mtx_lock(mtx_t *mtx);
int mtx_timedlock(mtx_t * restrict mtx, const struct timespec * restrict ts);
int mtx_trylock(mtx_t *mtx);
int mtx_unlock(mtx_t *mtx);
int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);
thrd_t thrd_current(void);
int thrd_detach(thrd_t thr);
int thrd_equal(thrd_t thr0, thrd_t thr1);
[[noreturn]] void thrd_exit(int res);
int thrd_join(thrd_t thr, int *res);
int thrd_sleep(const struct timespec *duration, struct timespec *remaining);
void thrd_yield(void);
int tss_create(tss_t *key, tss_dtor_t dtor);
void tss_delete(tss_t key);
void *tss_get(tss_t key);
int tss_set(tss_t key, void *val);

B.28 Date and time <time.h>

__STDC_VERSION_TIME_H__

NULL
CLOCKS_PER_SEC

TIME_UTC
size_t
clock_t

time_t
struct timespec
struct tm

clock_t clock(void);
double difftime(time_t time1, time_t time0);
time_t mktime(struct tm *timeptr);
time_t timegm(struct tm *timeptr);
time_t time(time_t *timer);
int timespec_get(struct timespec *ts, int base);
int timespec_getres(struct timespec *ts, int base);
[[deprecated]] char *asctime(const struct tm *timeptr);
[[deprecated]] char *ctime(const time_t *timer);
struct tm *gmtime(const time_t *timer);

§ B.28 © ISO/IEC 202y — All rights reserved

Library summary — 515

ISO/IEC 9899:202y (en) — n3299 working draft

struct tm *gmtime_r(const time_t *timer, struct tm *buf);
struct tm *localtime(const time_t *timer);
struct tm *localtime_r(const time_t *timer, struct tm *buf);
size_t strftime(char * restrict s, size_t maxsize, const char * restrict format,

const struct tm * restrict timeptr);

Only if supported by the implementation:

TIME_MONOTONIC TIME_ACTIVE

Only if threads are supported and it is supported by the implementation:

TIME_THREAD_ACTIVE

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <time.h>:

errno_t rsize_t

errno_t asctime_s(char *s, rsize_t maxsize, const struct tm *timeptr);
errno_t ctime_s(char *s, rsize_t maxsize, const time_t *timer);
struct tm *gmtime_s(const time_t * restrict timer, struct tm * restrict result);
struct tm *localtime_s(const time_t * restrict timer, struct tm * restrict result);

B.29 Unicode utilities <uchar.h>

__STDC_VERSION_UCHAR_H__

mbstate_t
size_t
char8_t

char16_t
char32_t

size_t mbrtoc8(char8_t * restrict pc8, const char * restrict s, size_t n,
mbstate_t * restrict ps);

size_t c8rtomb(char * restrict s, char8_t c8, mbstate_t * restrict ps);
size_t mbrtoc16(char16_t * restrict pc16, const char * restrict s, size_t n,

mbstate_t * restrict ps);
size_t c16rtomb(char * restrict s, char16_t c16, mbstate_t * restrict ps);
size_t mbrtoc32(char32_t * restrict pc32, const char * restrict s, size_t n,

mbstate_t * restrict ps);
size_t c32rtomb(char * restrict s, char32_t c32, mbstate_t * restrict ps);

B.30 Extended multibyte/wide character utilities <wchar.h>

wchar_t
size_t
mbstate_t
wint_t

struct tm
__STDC_VERSION_WCHAR_H__

NULL
WCHAR_MAX

WCHAR_MIN
WEOF

int fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...);
int fwscanf(FILE * restrict stream, const wchar_t * restrict format, ...);
int swprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict format,

...);
int swscanf(const wchar_t * restrict s, const wchar_t * restrict format, ...);
int vfwprintf(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);
int vfwscanf(FILE * restrict stream, const wchar_t * restrict format,

© ISO/IEC 202y — All rights reserved

Library summary — 516

§ B.30

ISO/IEC 9899:202y (en) — n3299 working draft

va_list arg);
int vswprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict format,

va_list arg);
int vswscanf(const wchar_t * restrict s, const wchar_t * restrict format,

va_list arg);
int vwprintf(const wchar_t * restrict format, va_list arg);
int vwscanf(const wchar_t * restrict format, va_list arg);
int wprintf(const wchar_t * restrict format, ...);
int wscanf(const wchar_t * restrict format, ...);
wint_t fgetwc(FILE *stream);
wchar_t *fgetws(wchar_t * restrict s, int n, FILE * restrict stream);
wint_t fputwc(wchar_t c, FILE *stream);
int fputws(const wchar_t * restrict s, FILE * restrict stream);
int fwide(FILE *stream, int mode);
wint_t getwc(FILE *stream);
wint_t getwchar(void);
wint_t putwc(wchar_t c, FILE *stream);
wint_t putwchar(wchar_t c);
wint_t ungetwc(wint_t c, FILE *stream);
double wcstod(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
float wcstof(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
long double wcstold(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
long int wcstol(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);
long long int wcstoll(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);
unsigned long int wcstoul(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);
unsigned long long int wcstoull(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);
wchar_t *wcscpy(wchar_t * restrict s1, const wchar_t * restrict s2);
wchar_t *wcsncpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);
wchar_t *wmemcpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);
wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);
wchar_t *wcscat(wchar_t * restrict s1, const wchar_t * restrict s2);
wchar_t *wcsncat(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);
int wcscmp(const wchar_t *s1, const wchar_t *s2);
int wcscoll(const wchar_t *s1, const wchar_t *s2);
int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);
size_t wcsxfrm(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);
int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);
QWchar_t *wcschr(QWchar_t *s, wchar_t c);
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);
QWchar_t *wcspbrk(QWchar_t *s1, const wchar_t *s2);
QWchar_t *wcsrchr(QWchar_t *s, wchar_t c);
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);
QWchar_t *wcsstr(QWchar_t *s1, const wchar_t *s2);
wchar_t *wcstok(wchar_t * restrict s1, const wchar_t * restrict s2,

wchar_t ** restrict ptr);
QWchar_t *wmemchr(QWchar_t *s, wchar_t c, size_t n);
size_t wcslen(const wchar_t *s);
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);
size_t wcsftime(wchar_t * restrict s, size_t maxsize,

const wchar_t * restrict format, const struct tm * restrict timeptr);
wint_t btowc(int c);
int wctob(wint_t c);
int mbsinit(const mbstate_t *ps);
size_t mbrlen(const char * restrict s, size_t n, mbstate_t * restrict ps);
size_t mbrtowc(wchar_t * restrict pwc, const char * restrict s, size_t n,

mbstate_t * restrict ps);
size_t wcrtomb(char * restrict s, wchar_t wc, mbstate_t * restrict ps);

§ B.30 © ISO/IEC 202y — All rights reserved

Library summary — 517

ISO/IEC 9899:202y (en) — n3299 working draft

size_t mbsrtowcs(wchar_t * restrict dst, const char ** restrict src, size_t len,
mbstate_t * restrict ps);

size_t wcsrtombs(char * restrict dst, const wchar_t ** restrict src, size_t len,
mbstate_t * restrict ps);

Only if the implementation defines __STDC_IEC_60559_DFP__:

_Decimal32 wcstod32(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
_Decimal64 wcstod64(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
_Decimal128 wcstod128(const wchar_t * restrict nptr, wchar_t ** restrict endptr);

Only if the implementation defines __STDC_IEC_60559_TYPES__ and additionally the user code
defines __STDC_WANT_IEC_60559_TYPES_EXT__ before any inclusion of <wchar.h>:

_FloatN wcstofN(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

_FloatNx wcstofNx(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

_DecimalN wcstodN(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

_DecimalNx wcstodNx(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

void wcstoencfN(unsigned char encptr[restrict static N/8],
const wchar_t * restrict nptr, wchar_t ** restrict endptr);

void wcstoencdecdN(unsigned char encptr[restrict static N/8],
const wchar_t * restrict nptr, wchar_t ** restrict endptr);

void wcstoencbindN(unsigned char encptr[restrict static N/8],
const wchar_t * restrict nptr, wchar_t ** restrict endptr);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <wchar.h>:

errno_t rsize_t

int fwprintf_s(FILE * restrict stream, const wchar_t * restrict format, ...);
int fwscanf_s(FILE * restrict stream, const wchar_t * restrict format, ...);
int snwprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

...);
int swprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

...);
int swscanf_s(const wchar_t * restrict s, const wchar_t * restrict format, ...);
int vfwprintf_s(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);
int vfwscanf_s(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);
int vsnwprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

va_list arg);
int vswprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

va_list arg);
int vswscanf_s(const wchar_t * restrict s, const wchar_t * restrict format,

va_list arg);
int vwprintf_s(const wchar_t * restrict format, va_list arg);
int vwscanf_s(const wchar_t * restrict format, va_list arg);
int wprintf_s(const wchar_t * restrict format, ...);
int wscanf_s(const wchar_t * restrict format, ...);
errno_t wcscpy_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2);
errno_t wcsncpy_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2, rsize_t n);

© ISO/IEC 202y — All rights reserved

Library summary — 518

§ B.30

ISO/IEC 9899:202y (en) — n3299 working draft

errno_t wmemcpy_s(wchar_t * restrict s1, rsize_t s1max,
const wchar_t * restrict s2, rsize_t n);

errno_t wmemmove_s(wchar_t *s1, rsize_t s1max, const wchar_t *s2, rsize_t n);
errno_t wcscat_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2);
errno_t wcsncat_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2, rsize_t n);
wchar_t *wcstok_s(wchar_t * restrict s1, rsize_t * restrict s1max,

const wchar_t * restrict s2, wchar_t ** restrict ptr);
size_t wcsnlen_s(const wchar_t *s, size_t maxsize);
errno_t wcrtomb_s(size_t * restrict retval, char * restrict s, rsize_t smax,

wchar_t wc, mbstate_t * restrict ps);
errno_t mbsrtowcs_s(size_t * restrict retval, wchar_t * restrict dst,

rsize_t dstmax, const char ** restrict src, rsize_t len,
mbstate_t * restrict ps);

errno_t wcsrtombs_s(size_t * restrict retval, char * restrict dst,
rsize_t dstmax, const wchar_t ** restrict src, rsize_t len,
mbstate_t * restrict ps);

B.31 Wide character classification and mapping utilities <wctype.h>

wint_t wctrans_t wctype_t WEOF

int iswalnum(wint_t wc);
int iswalpha(wint_t wc);
int iswblank(wint_t wc);
int iswcntrl(wint_t wc);
int iswdigit(wint_t wc);
int iswgraph(wint_t wc);
int iswlower(wint_t wc);
int iswprint(wint_t wc);
int iswpunct(wint_t wc);
int iswspace(wint_t wc);
int iswupper(wint_t wc);
int iswxdigit(wint_t wc);
int iswctype(wint_t wc, wctype_t desc);
wctype_t wctype(const char *property);
wint_t towlower(wint_t wc);
wint_t towupper(wint_t wc);
wint_t towctrans(wint_t wc, wctrans_t desc);
wctrans_t wctrans(const char *property);

§ B.31 © ISO/IEC 202y — All rights reserved

Library summary — 519

ISO/IEC 9899:202y (en) — n3299 working draft

Annex C
(informative)

Sequence points

C.1 Known Sequence Points
1 The following are the sequence points described in 5.2.2.4:

— Between the evaluations of the function designator and actual arguments in a function call
and the actual call. (6.5.3.3).

— Between the evaluations of the first and second operands of the following operators: logical
AND && (6.5.14); logical OR || (6.5.15); comma , (6.5.18).

— Between the evaluations of the first operand of the conditional ?: operator and whichever of
the second and third operands is evaluated (6.5.16).

— Between the evaluation of a full expression and the next full expression to be evaluated. The
following are full expressions: a full declarator for a variably modified type; an initializer that
is not part of a compound literal (6.7.11); the expression in an expression statement (6.8.4); the
controlling expression of a selection statement (if or switch) (6.8.5); the controlling expression
of a while or do statement (6.8.6); each of the (optional) expressions of a for statement (6.8.6.4);
the (optional) expression in a return statement (6.8.7.5).

— Immediately before a library function returns (7.1.4).

— After the actions associated with each formatted input/output function conversion specifier
(7.23.6, 7.31.2).

— Immediately before and immediately after each call to a comparison function, and also between
any call to a comparison function and any movement of the objects passed as arguments to
that call (7.24.6).

© ISO/IEC 202y — All rights reserved

Sequence points — 520

§ C.1

ISO/IEC 9899:202y (en) — n3299 working draft

Annex D
(informative)

Universal character names for identifiers

D.1 Introduction
1 This subclause describes the choices made in application of UAX #31 ("Unicode Identifier and

Pattern Syntax") to C of the requirements from UAX #31 and how they do or do not apply to C.
For UAX #31, C conforms by meeting the requirements "Default Identifiers" (D.2) and "Equivalent
Normalized Identifiers" (D.2). The other requirements, also listed in the following subclauses, are
either alternatives not taken or do not apply to C.

D.2 Default Identifiers
D.2.1 General

1 UAX #31 specifies a default syntax for identifiers based on properties from the Unicode Character
Database, UAX #44. The general syntax is

<Identifier> := <Start> <Continue>* (<Medial> <Continue>+)*

where <Start> has the XID_Start property, <Continue> has the XID_Continue property, and
<Medial> is a list of characters permitted between continue characters. For C we add the character _
(U+005F, LOW LINE) to the set of permitted Start characters, the Medial set is empty, and the
Continue characters are unmodified. In the grammar used in UAX #31, this is

<Identifier> := <Start> <Continue>*
<Start> := XID_Start + U+005F
<Continue> := <Start> + XID_Continue

Additionally, implementations may add the character $ (U+0024, DOLLAR SIGN) to the set of
permitted Start and Continue characters. This is described in the C grammar (6.4.3.1), where
identifier is formed from identifier-start or identifier followed by identifier-continue.

D.2.2 Restricted Format Characters
1 If an implementation of UAX #31 wishes to allow format characters such as ZERO WIDTH JOINER

or ZERO WIDTH NON-JOINER it shall define a profile allowing them, or describe precisely which
combinations are permitted.

2 C does not allow format characters in identifiers, so this does not apply.

D.2.3 Stable Identifiers
1 An implementation of UAX #31 may choose to guarantee that identifiers are stable across versions

of the Unicode Standard. Once a string qualifies as an identifier it does so in all future versions.
C does not make this guarantee, except to the extent that UAX #31 guarantees the stability of the
XID_Start and XID_Continue properties.

D.3 Immutable Identifiers
1 An implementation may choose to guarantee that the set of identifiers will never change by fixing

the set of code points allowed in identifiers forever.

2 C does not choose to make this guarantee. As scripts are added to Unicode, additional characters in
those scripts may become available for use in identifiers.

D.4 Pattern_White_Space and Pattern_Syntax Characters
1 UAX #31 describes how languages that use or interpret patterns of characters, such as regular

expressions or number formats, may describe that syntax with Unicode properties.

2 C does not do this as part of the language, deferring to library components for such usage of patterns.
This requirement does not apply to C.

§ D.4 © ISO/IEC 202y — All rights reserved

Universal character names for identifiers — 521

ISO/IEC 9899:202y (en) — n3299 working draft

D.5 Equivalent Normalized Identifiers
1 UAX #31 requires that implementations describe how identifiers are compared and considered

equivalent.

2 C requires that identifiers be in Normalization Form C and therefore identifiers that compare the
same under NFC are equivalent. This is described in 6.4.3.

D.6 Equivalent Case-Insensitive Identifiers
1 C considers case to be significant in identifier comparison, and does not do any case folding. This

requirement does not apply to C

D.7 Filtered Normalized Identifiers
1 If any characters are excluded from normalization, UAX #31 requires a precise specification of those

exclusions.

2 C does not make any such exclusions.

D.8 Filtered Case-Insensitive Identifiers
1 C identifiers are case sensitive, and therefore this requirement does not apply.

D.9 Hashtag Identifiers
1 There are no hashtags in C, so this requirement does not apply.

© ISO/IEC 202y — All rights reserved

Universal character names for identifiers — 522

§ D.9

ISO/IEC 9899:202y (en) — n3299 working draft

Annex E
(informative)

Implementation limits

E.1 Introduction
1 The contents of the header <limits.h> are given in the following subclauses. The values shall all

be constant expressions suitable for use in conditional expression inclusion preprocessing directives.
The components are described further in 5.3.5.3.2.

E.2 Minimum values
1 For the following macros, the minimum values shown shall be replaced by implementation-defined

values.

#define BOOL_WIDTH 1 // exact value
#define CHAR_BIT 8
#define USHRT_WIDTH 16
#define UINT_WIDTH 16
#define ULONG_WIDTH 32
#define ULLONG_WIDTH 64
#define BITINT_MAXWIDTH ULLONG_WIDTH // at minimum as large

// as unsigned long long
#define MB_LEN_MAX 1

2 For the following macros, the minimum magnitudes shown shall be replaced by implementation-
defined magnitudes with the same sign that are deduced from the prior macros as indicated.420)

#define BOOL_MAX 1 // 2BOOL
_WIDTH − 1

#define CHAR_MAX UCHAR_MAX or SCHAR_MAX
#define CHAR_MIN 0 or SCHAR_MIN
#define CHAR_WIDTH 8 // CHAR_BIT
#define UCHAR_MAX 255 // 2UCHAR

_WIDTH − 1
#define UCHAR_WIDTH 8 // CHAR_BIT
#define USHRT_MAX 65535 // 2USHRT

_WIDTH − 1
#define SCHAR_MAX +127 // 2SCHAR

_WIDTH−1 − 1
#define SCHAR_MIN -128 // −2SCHAR

_WIDTH−1

#define SCHAR_WIDTH 8 // CHAR_BIT
#define SHRT_MAX +32767 // 2SHRT

_WIDTH−1 − 1
#define SHRT_MIN -32768 // −2SHRT

_WIDTH−1

#define SHRT_WIDTH 16 // USHRT_WIDTH
#define INT_MAX +32767 // 2INT

_WIDTH−1 − 1
#define INT_MIN -32768 // −2INT

_WIDTH−1

#define INT_WIDTH 16 // UINT_WIDTH
#define UINT_MAX 65535 // 2UINT

_WIDTH − 1
#define LONG_MAX +2147483647 // 2LONG

_WIDTH−1 − 1
#define LONG_MIN -2147483648 // −2LONG

_WIDTH−1

#define LONG_WIDTH 32 // ULONG_WIDTH
#define LLONG_MAX +9223372036854775807 // 2LLONG

_WIDTH−1 − 1
#define LLONG_MIN -9223372036854775808 // −2LLONG

_WIDTH−1

#define LLONG_WIDTH 64 // ULLONG_WIDTH
#define ULONG_MAX 4294967295 // 2ULONG

_WIDTH − 1
#define ULLONG_MAX 18446744073709551615 // 2ULLONG

_WIDTH − 1

3 The contents of the header <float.h> are given in the following subclauses. All integer values,
except FLT_ROUNDS, shall be constant expressions suitable for use in #if preprocessing directives;

420)For the minimum value of a signed integer type there is no expression consisting of a minus sign and a decimal literal of
that same type. The numbers in the table are only given as indications for the values and do not represent suitable expressions
to be used for these macros.

§ E.2 © ISO/IEC 202y — All rights reserved

Implementation limits — 523

ISO/IEC 9899:202y (en) — n3299 working draft

all floating values shall be arithmetic constant expressions. The components are described further
in 5.3.5.3.3 and 5.3.5.3.4.

4 The values given in the following list shall be replaced by implementation-defined expressions:

#define FLT_EVAL_METHOD
#define FLT_ROUNDS
#ifdef __STDC_IEC_60559_DFP__

#define DEC_EVAL_METHOD
#endif

5 The values given in the following list shall be replaced by implementation-defined constant ex-
pressions that are greater or equal in magnitude (absolute value) to those shown, with the same
sign:

#define DBL_DECIMAL_DIG 10
#define DBL_DIG 10
#define DBL_MANT_DIG
#define DBL_MAX_10_EXP +37
#define DBL_MAX_EXP
#define DBL_MIN_10_EXP -37
#define DBL_MIN_EXP
#define DECIMAL_DIG 10
#define FLT_DECIMAL_DIG 6
#define FLT_DIG 6
#define FLT_MANT_DIG
#define FLT_MAX_10_EXP +37
#define FLT_MAX_EXP
#define FLT_MIN_10_EXP -37
#define FLT_MIN_EXP
#define FLT_RADIX 2
#define LDBL_DECIMAL_DIG 10
#define LDBL_DIG 10
#define LDBL_MANT_DIG
#define LDBL_MAX_10_EXP +37
#define LDBL_MAX_EXP
#define LDBL_MIN_10_EXP -37
#define LDBL_MIN_EXP

6 The values given in the following list shall be replaced by implementation-defined constant expres-
sions with values that are greater than or equal to those shown:

#define DBL_MAX 1E+37
#define DBL_NORM_MAX 1E+37
#define FLT_MAX 1E+37
#define FLT_NORM_MAX 1E+37
#define LDBL_MAX 1E+37
#define LDBL_NORM_MAX 1E+37

7 The values given in the following list shall be replaced by implementation-defined constant expres-
sions with (positive) values that are less than or equal to those shown:

#define DBL_EPSILON 1E-9
#define DBL_MIN 1E-37
#define FLT_EPSILON 1E-5
#define FLT_MIN 1E-37
#define LDBL_EPSILON 1E-9
#define LDBL_MIN 1E-37

8 If the implementation supports decimal floating types, the following macros provide the parameters
of these types as exact values.

© ISO/IEC 202y — All rights reserved

Implementation limits — 524

§ E.2

ISO/IEC 9899:202y (en) — n3299 working draft

#ifdef __STDC_IEC_60559_DFP__

#define DEC32_EPSILON 1E-6DF
#define DEC32_MANT_DIG 7
#define DEC32_MAX 9.999999E96DF
#define DEC32_MAX_EXP 97
#define DEC32_MIN 1E-95DF
#define DEC32_MIN_EXP -94
#define DEC32_TRUE_MIN 0.000001E-95DF
#define DEC64_EPSILON 1E-15DD
#define DEC64_MANT_DIG 16
#define DEC64_MAX 9.999999999999999E384DD
#define DEC64_MAX_EXP 385
#define DEC64_MIN 1E-383DD
#define DEC64_MIN_EXP -382
#define DEC64_TRUE_MIN 0.000000000000001E-383DD
#define DEC128_EPSILON 1E-33DL
#define DEC128_MANT_DIG 34
#define DEC128_MAX 9.999999999999999999999999999999999E6144DL
#define DEC128_MAX_EXP 6145
#define DEC128_MIN 1E-6143DL
#define DEC128_MIN_EXP -6142
#define DEC128_TRUE_MIN 0.000000000000000000000000000000001E-6143DL
#endif

§ E.2 © ISO/IEC 202y — All rights reserved

Implementation limits — 525

ISO/IEC 9899:202y (en) — n3299 working draft

Annex F
(normative)

ISO/IEC 60559 floating-point arithmetic

F.1 Introduction
1 This annex specifies C language support for the ISO/IEC 60559 floating-point standard. The

ISO/IEC 60559 floating-point standard is specifically Floating-point arithmetic (ISO/IEC 60559:2020),
also designated as IEEE Standard for Floating-Point Arithmetic (IEEE 754–2019). ISO/IEC 60559 gen-
erally refers to the floating-point standard, as in ISO/IEC 60559 operation, ISO/IEC 60559 format,
etc.

2 The ISO/IEC 60559 floating-point standard is a minor upgrade to ISO/IEC/IEEE 60559:2011
(IEEE 754-2008). ISO/IEC/IEEE 60559:2011 was a major upgrade to IEC 60559:1989 (IEEE 754–1985),
specifying decimal as well as binary floating-point arithmetic.

3 An implementation that defines __STDC_IEC_60559_BFP__ to 202ymmL shall conform to the specifi-
cations in this annex for binary floating-point arithmetic and shall also define __STDC_IEC_559__
to 1.421)

4 An implementation that defines __STDC_IEC_60559_DFP__ to 202ymmL shall conform to the
specifications for decimal floating-point arithmetic in the following subclauses of this annex:

— F.2.2 Infinities and NaNs
— F.3 Operations
— F.4 Floating to integer conversions
— F.6 The return statement
— F.7 Contracted expressions
— F.8 Floating-point environment
— F.9 Optimization
— F.10 Mathematics <math.h> and <tgmath.h>

For the purpose of specifying these conformance requirements, the macros, functions, and values
mentioned in the subclauses listed prior are understood to refer to the corresponding macros,
functions, and values for decimal floating types. Likewise, the "rounding direction mode" is
understood to refer to the rounding direction mode for decimal floating-point arithmetic.

5 Where a binding between the C language and ISO/IEC 60559 is indicated, the ISO/IEC 60559-
specified behavior is adopted by reference, unless stated otherwise.

F.2 Types
F.2.1 General

1 The C floating types match the ISO/IEC 60559 formats as follows:

— The float type matches the ISO/IEC 60559 binary32 format.

— The double type matches the ISO/IEC 60559 binary64 format.

— The long double type matches the ISO/IEC 60559 binary128 format, else an ISO/IEC 60559
binary64-extended format,422) else a non-ISO/IEC 60559 extended format, else the
ISO/IEC 60559 binary64 format.

Any non-ISO/IEC 60559 extended format used for the long double type shall have more precision
than ISO/IEC 60559 binary64 and at least the range of ISO/IEC 60559 binary64.423) The value
421)Implementations that do not define either of __STDC_IEC_60559_BFP__ and __STDC_IEC_559__ are not required to

conform to these specifications. New code should not use the obsolescent macro __STDC_IEC_559__ to test for conformance
to this annex.
422)ISO/IEC 60559 binary64-extended formats include the common 80-bit ISO/IEC 60559 format.
423)A non-ISO/IEC 60559 long double type provides signed infinities, signed zeros, and NaNs, as its values include all
double values.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 526

§ F.2.1

ISO/IEC 9899:202y (en) — n3299 working draft

of FLT_ROUNDS applies to all ISO/IEC 60559 types supported by the implementation, but is not
required to apply to non-ISO/IEC 60559 types.

Recommended practice
2 The long double type should match the ISO/IEC 60559 binary128 format, else an ISO/IEC 60559

binary64-extended format.

F.2.2 Infinities and NaNs
1 Since negative and positive infinity are representable in ISO/IEC 60559 formats, all real numbers lie

within the range of representable values (5.3.5.3.3).

2 The NAN and INFINITY macros in <float.h> and the nan functions in <math.h> provide desig-
nations for ISO/IEC 60559 quiet NaNs and infinities. The FLT_SNAN, DBL_SNAN, and LDBL_SNAN
macros in <float.h> provide designations for ISO/IEC 60559 signaling NaNs.

3 This annex does not require the full support for signaling NaNs specified in ISO/IEC 60559. This
annex uses the term NaN, unless explicitly qualified, to denote quiet NaNs. Where specification of
signaling NaNs is not provided, the behavior of signaling NaNs is implementation-defined (either
treated as an ISO/IEC 60559 quiet NaN or treated as an ISO/IEC 60559 signaling NaN).424)

4 Any operator or <math.h> function that raises an "invalid" floating-point exception, if delivering a
floating type result, shall return a quiet NaN, unless explicitly specified otherwise.

5 To support signaling NaNs as specified in ISO/IEC 60559, an implementation should adhere to the
following recommended practice.

Recommended practice
6 Any floating-point operator or <math.h> function or macro with a signaling NaN input, unless

explicitly specified otherwise, raises an "invalid" floating-point exception.

7 NOTE Some functions do not propagate quiet NaN arguments. For example, hypot(x, y) returns infinity if
x or y is infinite and the other is a quiet NaN. The recommended practice in this subclause specifies that such
functions (and others) raise the "invalid" floating-point exception if an argument is a signaling NaN, which
also implies they return a quiet NaN in these cases.

8 The <fenv.h> header defines the macro FE_SNANS_ALWAYS_SIGNAL if and only if the implemen-
tation follows the recommended practice in this subclause. If defined, FE_SNANS_ALWAYS_SIGNAL
expands to the integer constant 1.

F.3 Operations
1 C operators, functions, and function-like macros provide operations specified by ISO/IEC 60559 as

shown in Table F.2. In the table, C functions are represented by the function name without a type
suffix. Specifications for the C facilities are provided in the listed clauses. The C specifications are
intended to match ISO/IEC 60559, unless stated otherwise.

Table F.2 — Operation binding — mathematical operations

ISO/IEC 60559 operation C operation Clause
roundToIntegralTiesToEven

roundeven
7.12.10.8, F.10.7.8

roundToIntegralTiesAway
round

7.12.10.6, F.10.7.6

roundToIntegralTowardZero
trunc

7.12.10.9, F.10.7.9

roundToIntegralTowardPositive
ceil

7.12.10.1, F.10.7.1

roundToIntegralTowardNegative
floor

7.12.10.2, F.10.7.2

424)Since NaNs created by ISO/IEC 60559 arithmetic operations are always quiet, quiet NaNs (along with infinities) are
sufficient for closure of the arithmetic.

§ F.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 527

ISO/IEC 9899:202y (en) — n3299 working draft

roundToIntegralExact
rint

7.12.10.4, F.10.7.4

nextUp
nextup

7.12.12.5, F.10.9.5

nextDown
nextdown

7.12.12.6, F.10.9.6

getPayload
getpayload

F.10.14.2

setPayload
setpayload

F.10.14.3

setPayloadSignaling
setpayloadsig

F.10.14.4

quantize
quantize

7.12.16.1

sameQuantum
samequantum

7.12.16.2

quantum
quantum

7.12.16.3

encodeDecimal
encodedec

7.12.17.2

decodeDecimal
decodedec

7.12.17.3

encodeBinary
encodebin

7.12.17.4

decodeBinary
decodebin

7.12.17.5

remainder
remainder, remquo

7.12.11.2, F.10.8.2,
7.12.11.3, F.10.8.3

maximum
fmaximum

7.12.13.4, F.10.10.4

minimum
fminimum

7.12.13.5, F.10.10.4

maximumMagnitude
fmaximum_mag

7.12.13.6, F.10.10.4

minimumMagnitude
fminimum_mag

7.12.13.7, F.10.10.4

maximumNumber
fmaximum_num

7.12.13.8, F.10.10.5

minimumNumber
fminimum_num

7.12.13.9, F.10.10.5

maximumMagnitudeNumber
fmaximum_mag_num

7.12.13.10, F.10.10.5

minimumMagnitudeNumber
fminimum_mag_num

7.12.13.11, F.10.10.5

scaleB
scalbn, scalbln

7.12.7.19, F.10.4.19

logB
logb, ilogb, llogb

7.12.7.17, F.10.4.17,
7.12.7.8, F.10.4.8,
7.12.7.10, F.10.4.10

addition
+ , fadd, faddl, daddl

6.5.7, 7.12.15.2,
F.10.12

subtraction
- , fsub, fsubl, dsubl

6.5.7, 7.12.15.3,
F.10.12

multiplication
* , fmul, fmull, dmull

6.5.6, 7.12.15.4,
F.10.12

division
/, fdiv, fdivl, ddivl

6.5.6, 7.12.15.5,
F.10.12

squareRoot
sqrt, fsqrt, fsqrtl, dsqrtl

7.12.8.10, F.10.5.10,
7.12.15.7, F.10.12

fusedMultiplyAdd
fma, ffma, ffmal, dfmal

7.12.14.1, F.10.11.1,
7.12.15.6, F.10.12

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 528

§ F.3

ISO/IEC 9899:202y (en) — n3299 working draft

convertFromInt cast and implicit conversion 6.3.2.4, 6.5.5
convertToIntegerTiesToEven
convertToIntegerTowardZero
convertToIntegerTowardPositive
convertToIntegerTowardNegative

fromfp, ufromfp
7.12.10.10, F.10.7.10

convertToIntegerTiesToAway
fromfp, ufromfp, lround,
llround

7.12.10.10, F.10.7.10,
7.12.10.7, F.10.7.7

convertToIntegerExactTiesToEven
convertToIntegerExactTowardZero
convertToIntegerExactTowardPositive
convertToIntegerExactTowardNegative
convertToIntegerExactTiesToAway

fromfpx, ufromfpx
7.12.10.11, F.10.7.11

convertFormat - different formats cast and implicit conversions 6.3.2.5, 6.5.5
convertFormat - same format

canonicalize
7.12.12.7, F.10.9.7

convertFromDecimalCharacter
strtod, wcstod, scanf, wscanf,
decimal floating constants

7.24.2.6, 7.31.4.2.2,
7.23.6.5, 7.31.2.13,
F.5

convertToDecimalCharacter
printf, wprintf, strfromd

7.23.6.4, 7.31.2.12,
7.24.2.4, F.5

convertFromHexCharacter
strtod, wcstod, scanf, wscanf,
hexadecimal floating constants

7.24.2.6, 7.31.4.2.2,
7.23.6.5, 7.31.2.13,
F.5

convertToHexCharacter
printf, wprintf, strfromd

7.23.6.4, 7.31.2.12,
7.24.2.4, F.5

copy
memcpy, memmove, +(x)

7.26.2.1, 7.26.2.3

negate
-(x)

6.5.4.4

abs
fabs

7.12.8.3, F.10.5.3

copySign
copysign

7.12.12.1, F.10.9.1

compareQuietEqual
==

6.5.10, F.9.4

compareQuietNotEqual
!=

6.5.10, F.9.4

compareSignalingEqual
iseqsig

7.12.18.8, F.10.15.2

compareSignalingGreater
>

6.5.9, F.9.4

compareSignalingGreaterEqual
>=

6.5.9, F.9.4

compareSignalingLess
<

6.5.9, F.9.4

compareSignalingLessEqual
<=

6.5.9, F.9.4

compareSignalingNotEqual
! iseqsig(x)

7.12.18.8, F.10.15.2

compareSignalingNotGreater
! (x > y)

6.5.9, F.9.4

compareSignalingLessUnordered
! (x >= y)

6.5.9, F.9.4

compareSignalingNotLess
! (x < y)

6.5.9, F.9.4

compareSignalingGreaterUnordered
! (x <= y)

6.5.9, F.9.4

compareQuietGreater
isgreater

7.12.18.2

§ F.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 529

ISO/IEC 9899:202y (en) — n3299 working draft

compareQuietGreaterEqual
isgreaterequal

7.12.18.3

compareQuietLess
isless

7.12.18.4

compareQuietLessEqual
islessequal

7.12.18.5

compareQuietUnordered
isunordered

7.12.18.7

compareQuietNotGreater
! isgreater(x, y)

7.12.18.2

compareQuietLessUnordered
! isgreaterequal(x, y)

7.12.18.3

compareQuietNotLess
! isless(x, y)

7.12.18.4

compareQuietGreaterUnordered
! islessequal(x, y)

7.12.18.5

compareQuietOrdered
! isunordered(x, y)

7.12.18.7

class
fpclassify, signbit,
issignaling

7.12.4.2, 7.12.4.8,
7.12.4.9

isSignMinus
signbit

7.12.4.8

isNormal
isnormal

7.12.4.7

isFinite
isfinite

7.12.4.4

isZero
iszero

7.12.4.11

isSubnormal
issubnormal

7.12.4.10

isInfinite
isinf

7.12.4.5

isNaN
isnan

7.12.4.6

isSignaling
issignaling

7.12.4.9

isCanonical
iscanonical

7.12.4.3

radix
FLT_RADIX

5.3.5.3.3

totalOrder
totalorder

F.10.13.2

totalOrderMag
totalordermag

F.10.13.3

lowerFlags
feclearexcept

7.6.5.2

raiseFlags
fesetexcept

7.6.5.5

testFlags
fetestexcept

7.6.5.8

testSavedFlags
fetestexceptflag

7.6.5.7

restoreFlags
fesetexceptflag

7.6.5.6

saveAllFlags
fegetexceptflag

7.6.5.3

getBinaryRoundingDirection
fegetround

7.6.6.3

setBinaryRoundingDirection
fesetround

7.6.6.6

saveModes
fegetmode

7.6.6.2

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 530

§ F.3

ISO/IEC 9899:202y (en) — n3299 working draft

restoreModes
fesetmode

7.6.6.5

defaultModes
fesetmode(FE_DFL_MODE)

7.6.6.5, 7.6

2 The ISO/IEC 60559 requirement that certain of its operations be provided for operands of different
formats (of the same radix) is satisfied by C’s usual arithmetic conversions (6.3.2.8) and function-call
argument conversions (6.5.3.3). For example, the following operations take float f and double d
inputs and produce a long double result:

(long double)f * d
powl(f, d)

3 The functions fmin and fmax have been superseded by fminimum_num and fmaximum_num. The fmin
and fmax functions provide the minNum and maxNum operations specified in (the superseded)
ISO/IEC/IEEE 60559:2011.

4 Whether C assignment (6.5.17) (and conversion as if by assignment) to the same format is an
ISO/IEC 60559 convertFormat or copy operation425) is implementation-defined, even if <fenv.h>
defines the macro FE_SNANS_ALWAYS_SIGNAL (F.2.2). If the return expression of a return statement
is evaluated to the floating-point format of the return type, it is implementation-defined whether a
convertFormat operation is applied to the result of the return expression.

5 The unary + and - operators raise no floating-point exceptions, even if the operand is a signaling
NaN.

6 The C classification macros fpclassify, iscanonical, isfinite, isinf, isnan, isnormal,
issignaling, issubnormal, iszero, and signbit provide the ISO/IEC 60559 operations indi-
cated in Table F.2 provided their arguments are in the format of their semantic type. Then these
macros raise no floating-point exceptions, even if an argument is a signaling NaN.

7 The signbit macro, providing the ISO/IEC 60559 isSignMinus operation, determines the sign of
its argument value as the sign bit of the value’s representation. This applies to all values, including
NaNs whose sign bit is not generally interpreted by ISO/IEC 60559.

8 The C nearbyint functions (7.12.10.3, F.10.7.3) provide the nearbyinteger function recommended in
the Appendix to (superseded) ANSI/IEEE 854–1987.

9 The C nextafter (7.12.12.3, F.10.9.3) and nexttoward (7.12.12.4, F.10.9.4) functions provide the
nextafter function recommended in the Appendix to (superseded) IEC 60559:1989 (but with a
minor change to better handle signed zeros).

10 The macros (7.6) FE_DOWNWARD, FE_TONEAREST, FE_TONEARESTFROMZERO, FE_TOWARDZERO, and
FE_UPWARD, which are used in conjunction with the fegetround and fesetround functions and
the FENV_ROUND pragma, represent the ISO/IEC 60559 rounding-direction attributes roundToward-
Negative, roundTiesToEven, roundTiesToAway, roundTowardZero, and roundTowardPositive,
respectively, for binary floating-point arithmetic. Support for the roundTiesToAway attribute for
binary floating-point arithmetic, and hence for the FE_TONEARESTFROMZERO macro, is optional.

11 The C fegetenv (7.6.7.2), feholdexcept (7.6.7.3), fesetenv (7.6.7.4) and feupdateenv (7.6.7.5)
functions provide a facility to manage the dynamic floating-point environment, comprising the
ISO/IEC 60559 status flags and dynamic control modes.

12 ISO/IEC 60559 requires operations with specified operand and result formats. Therefore, math
functions that are bound to ISO/IEC 60559 operations (see Table F.2) shall remove any extra range
and precision from arguments or results.

13 ISO/IEC 60559 requires operations that round their result to formats the same as and wider than
the operands, in addition to the operations that round their result to narrower formats (see 7.12.15).

425)Where the source and destination formats are the same, convertFormat operations differ from copy operations in
that convertFormat operations raise the "invalid" floating-point exception on signaling NaN inputs and do not propagate
non-canonical encodings.

§ F.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 531

ISO/IEC 9899:202y (en) — n3299 working draft

Operators (+, -, *, and /) whose evaluation formats are wider than the semantic type (5.3.5.3.3)
may not support some of the ISO/IEC 60559 operations, because getting a result in a given format
can require a cast that can introduce an extra rounding error. The functions that round result to
narrower type (7.12.15) provide the ISO/IEC 60559 operations that round result to same and wider
(as well as narrower) formats, in those cases where built-in operators and casts do not. For example,
ddivl(x, y) computes a correctly rounded double divide of float x by float y, regardless of
the evaluation method.

14 Decimal versions of the remquo library function are not provided. (The decimal remainder functions
provide the remainder operation defined by ISO/IEC 60559.)

15 The binding for the convertFormat operation applies to all conversions among ISO/IEC 60559
formats. Therefore, for implementations that conform to this annex, conversions between decimal
floating types and standard floating types with ISO/IEC 60559 formats are correctly rounded and
raise floating-point exceptions as specified in ISO/IEC 60559.

16 ISO/IEC 60559 specifies the convertFromHexCharacter and convertToHexCharacter operations only
for binary floating-point arithmetic.

17 The integer constant 10 provides the radix operation defined in ISO/IEC 60559 for decimal floating-
point arithmetic.

18 The fe_dec_getround (7.6.6.4) and fe_dec_setround (7.6.6.7) functions provide the getDeci-
malRoundingDirection and setDecimalRoundingDirection operations defined in ISO/IEC 60559
for decimal floating-point arithmetic. The macros (7.6) FE_DEC_DOWNWARD, FE_DEC_TONEAREST,
FE_DEC_TONEARESTFROMZERO, FE_DEC_TOWARDZERO, and FE_DEC_UPWARD, which are used in con-
junction with the fe_dec_getround and fe_dec_setround functions and the FENV_DEC_ROUND
pragma, represent the ISO/IEC 60559 rounding-direction attributes roundTowardNegative,

roundTiesToEven, roundTiesToAway, roundTowardZero, and roundTowardPositive, respectively,
for decimal floating-point arithmetic.

19 The llquantexpdN (7.12.16.4) functions compute the (quantum) exponent q defined in
ISO/IEC 60559 for decimal numbers viewed as having integer significands.

20 The C functions in Table F.3 correspond to mathematical operations recommended by ISO/IEC 60559.
However, correct rounding, which ISO/IEC 60559 specifies for its operations, is not required for the
C functions in the table. 7.33.9 (potentially) reserves cr_ prefixed names for functions fully matching
the ISO/IEC 60559 mathematical operations. In the table, the C functions are represented by the
function name without a type suffix.

Table F.3 — ISO/IEC 60559 operation to C function

ISO/IEC 60559 operation C function Clause
exp exp 7.12.7.1, F.10.4.1
expm1 expm1 7.12.7.6, F.10.4.6
exp2 exp2 7.12.7.4, F.10.4.4
exp2m1 exp2m1 7.12.7.5, F.10.4.5
exp10 exp10 7.12.7.2, F.10.4.2
exp10m1 exp10m1 7.12.7.3, F.10.4.3
log log 7.12.7.11, F.10.4.11
log2 log2 7.12.7.15, F.10.4.15
log10 log10 7.12.7.12, F.10.4.12
logp1 log1p, logp1 7.12.7.14, F.10.4.14
log2p1 log2p1 7.12.7.16, F.10.4.16
log10p1 log10p1 7.12.7.13, F.10.4.13
hypot hypot 7.12.8.4, F.10.5.4
rSqrt rsqrt 7.12.8.9, F.10.5.9
compound compoundn 7.12.8.2, F.10.5.2
rootn rootn 7.12.8.8, F.10.5.8
pown pown 7.12.8.6, F.10.5.6

... continued ...

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 532

§ F.3

ISO/IEC 9899:202y (en) — n3299 working draft

... continued ...
ISO/IEC 60559 operation C function Clause
pow pow 7.12.8.5, F.10.5.5
powr powr 7.12.8.7, F.10.5.7
sin sin 7.12.5.6, F.10.2.6
cos cos 7.12.5.5, F.10.2.5
tan tan 7.12.5.7, F.10.2.7
sinPi sinpi 7.12.5.13, F.10.2.13
cosPi cospi 7.12.5.12, F.10.2.12
tanPi tanpi 7.12.5.14, F.10.2.14
asinPi asinpi 7.12.5.9, F.10.2.9
acosPi acospi 7.12.5.8, F.10.2.8
atanPi atanpi 7.12.5.10, F.10.2.10
atan2Pi atan2pi 7.12.5.11, F.10.2.11
asin asin 7.12.5.2, F.10.2.2
acos acos 7.12.5.1, F.10.2.1
atan atan 7.12.5.3, F.10.2.3
atan2 atan2 7.12.5.4, F.10.2.4
sinh sinh 7.12.6.5, F.10.3.5
cosh cosh 7.12.6.4, F.10.3.4
tanh tanh 7.12.6.6, F.10.3.6
asinh asinh 7.12.6.2, F.10.3.2
acosh acosh 7.12.6.1, F.10.3.1
atanh atanh 7.12.6.3, F.10.3.3

F.4 Floating to integer conversion
1 If the integer type is bool, 6.3.2.2 applies and the conversion raises no floating-point exceptions if

the floating-point value is not a signaling NaN. Otherwise, if the floating value is infinite or NaN
or if the integral part of the floating value exceeds the range of the integer type, then the "invalid"
floating-point exception is raised and the resulting value is unspecified. Otherwise, the resulting
value is determined by 6.3.2.4. Conversion of an integral floating value that does not exceed the
range of the integer type raises no floating-point exceptions; whether conversion of a non-integral
floating value raises the "inexact" floating-point exception is unspecified.426)

F.5 Conversions between binary floating types and decimal character sequences
1 The <float.h> header defines the macro

CR_DECIMAL_DIG

if and only if __STDC_WANT_IEC_60559_EXT__ is defined as a macro at the point in the source file
where <float.h> is first included. If defined, CR_DECIMAL_DIG expands to an integer constant
expression suitable for use in conditional expression inclusion preprocessing directives whose
value is a number such that conversions between all supported ISO/IEC 60559 binary formats and
character sequences with at most CR_DECIMAL_DIG significant decimal digits are correctly rounded.
The value of CR_DECIMAL_DIG shall be at least M + 3, where M is the maximum value of the
T_DECIMAL_DIG macros for ISO/IEC 60559 binary formats. If the implementation correctly rounds
for all numbers of significant decimal digits, then CR_DECIMAL_DIG shall have the value of the macro
UINTMAX_MAX.

2 Conversions of types with ISO/IEC 60559 binary formats to character sequences with more than
CR_DECIMAL_DIG significant decimal digits shall correctly round to CR_DECIMAL_DIG significant
digits and pad zeros on the right.

426)ISO/IEC 60559 recommends that implicit floating-to-integer conversions raise the "inexact" floating-point exception for
non-integer in-range values. In those cases where it matters, library functions can be used to effect such conversions with or
without raising the "inexact" floating- point exception. See fromfp, ufromfp, fromfpx, ufromfpx, rint, lrint, llrint, and
nearbyint in <math.h>.

§ F.5 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 533

ISO/IEC 9899:202y (en) — n3299 working draft

3 Conversions from character sequences with more than CR_DECIMAL_DIG significant decimal digits to
types with ISO/IEC 60559 binary formats shall correctly round to an intermediate character sequence
with CR_DECIMAL_DIG significant decimal digits, according to the applicable rounding direction,
and correctly round the intermediate result (having CR_DECIMAL_DIG significant decimal digits) to
the destination type. The "inexact" floating-point exception is raised (once) if either conversion
is inexact.427) (The second conversion can raise the "overflow" or "underflow" floating-point
exception.)

4 The specification in this subclause assures conversion between ISO/IEC 60559 binary format and
decimal character sequence follows all pertinent recommended practice. It also assures conversion
from ISO/IEC 60559 format to decimal character sequence with at least T_DECIMAL_DIG digits and
back, using to-nearest rounding, is the identity function, where T is the macro prefix for the format.

5 Functions such as strtod that convert character sequences to floating types honor the rounding
direction. Hence, if the rounding direction can be upward or downward, the implementation cannot
convert a minus-signed sequence by arithmetically negating the converted unsigned sequence.

6 NOTE ISO/IEC 60559 specifies that conversion to one-digit character strings using roundTiesToEven, when
both choices have an odd least significant digit, produce the value with the larger magnitude. This can happen
with 9.5e2 whose nearest neighbors are 9.e2 and 1.e3, both of which have a single odd digit in the significand
part.

F.6 The return statement
If the return expression is evaluated in a floating-point format different from the return type, the
expression is converted as if by assignment428) to the return type of the function and the resulting
value is returned to the caller.

F.7 Contracted expressions
1 A contracted expression is correctly rounded (once) and treats infinities, NaNs, signed zeros, sub-

normals, and the rounding directions in a manner consistent with the basic arithmetic operations
covered by ISO/IEC 60559.

Recommended practice
2 A contracted expression should raise floating-point exceptions in a manner generally consistent

with the basic arithmetic operations.

F.8 Floating-point environment
F.8.1 General

1 The floating-point environment defined in <fenv.h> includes the ISO/IEC 60559 floating-point
exception status flags and rounding-direction control modes. It may also include other floating-point
status or modes that the implementation provides as extensions.429)

2 This annex does not include support for ISO/IEC 60559’s optional alternate exception handling.
The specification in this annex assumes ISO/IEC 60559 default exception handling: the flag is set,
a default result is delivered, and execution continues. Implementations may provide alternate
exception handling as an extension.

F.8.2 Environment management
1 ISO/IEC 60559 requires that floating-point operations implicitly raise floating-point exception status

flags, and that rounding control modes can be set explicitly to affect result values of floating-point
operations. These changes to the floating-point state are treated as side effects which respect
sequence points.430)

427)The intermediate conversion is exact only if all input digits after the first CR_DECIMAL_DIG digits are 0.
428)Assignment removes any extra range and precision.
429)Dynamic rounding precision and trap enablement modes are examples of such extensions.
430)If the state for the FENV_ACCESS pragma is "off", the implementation is free to assume the dynamic floating-point control

modes will be the default ones and the floating-point status flags will not be tested, which allows certain optimizations (see
F.9).

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 534

§ F.8.2

ISO/IEC 9899:202y (en) — n3299 working draft

F.8.3 Translation
1 During translation, constant rounding direction modes (7.6.3) are in effect where specified. Else-

where, during translation the ISO/IEC 60559 default modes are in effect:

— The rounding direction mode is rounding to nearest.

— The rounding precision mode (if supported) is set so that results are not shortened.

— Trapping or stopping (if supported) is disabled on all floating-point exceptions.

Recommended practice
2 The implementation should produce a diagnostic message for each translation-time floating-point

exception, other than "inexact";431) the implementation should then proceed with the translation of
the program.

F.8.4 Execution
1 At program startup the dynamic floating-point environment is initialized as prescribed by

ISO/IEC 60559:

— All floating-point exception status flags are cleared.

— The dynamic rounding direction mode is rounding to nearest.

— The dynamic rounding precision mode (if supported) is set so that results are not shortened.

— Trapping or stopping (if supported) is disabled on all floating-point exceptions.

F.8.5 Constant expressions
1 An arithmetic constant expression of floating type, other than one in an initializer for an object

that has static or thread storage duration or that is declared with storage-class specifier constexpr,
is evaluated (as if) during execution; thus, it is affected by any operative floating-point control
modes and raises floating-point exceptions as required by ISO/IEC 60559 (provided the state for the
FENV_ACCESS pragma is "on").432)

2 EXAMPLE

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
void f(void)
{

constexpr double v = 0.0/0.0; // does not raise an exception
float w[] = { 0.0/0.0 }; // raises an exception
static float x = 0.0/0.0; // does not raise an exception
float y = 0.0/0.0; // raises an exception
double z = 0.0/0.0; // raises an exception
/* ... */

}

3 For the static and constexpr initializations, the division is done at translation time, raising no (execution-
time) floating-point exceptions. On the other hand, for the three automatic initializations the invalid division
occurs at execution time.
431)As floating constants are converted to appropriate internal representations at translation time, their conversion is subject

to constant or default rounding modes and raises no execution-time floating-point exceptions (even where the state of the
FENV_ACCESS pragma is "on"). Library functions, for example strtod, provide execution-time conversion of numeric strings.
432)Where the state for the FENV_ACCESS pragma is "on", results of inexact expressions like 1.0/3.0 are affected by rounding

modes set at execution time, and expressions such as 0.0/0.0 and 1.0/0.0 generate execution-time floating-point exceptions.
The programmer can achieve the efficiency of translation-time evaluation through static initialization, such as

const static double one_third = 1.0/3.0;

§ F.8.5 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 535

ISO/IEC 9899:202y (en) — n3299 working draft

F.8.6 Initialization
1 All computation for automatic initialization is done (as if) at execution time; thus, it is affected by

any operative modes and raises floating-point exceptions as required by ISO/IEC 60559 (provided
the state for the FENV_ACCESS pragma is "on"). All computation for initialization of objects that
have static or thread storage duration, or that are declared with storage-class specifier constexpr, is
done (as if) at translation time.

2 EXAMPLE

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
void f(void)
{

constexpr float t = (float)1.1e75; // does not raise exceptions
float u[] = { 1.1e75 }; // raises exceptions
static float v = 1.1e75; // does not raise exceptions
float w = 1.1e75; // raises exceptions
double x = 1.1e75; // may raise exceptions
float y = 1.1e75f; // may raise exceptions
long double z = 1.1e75; // does not raise exceptions
/* ... */

}

3 The constexpr initialization of t and the static initialization of v raise no (execution-time) floating-point
exceptions because their computation is done at translation time. The automatic initialization of u and w require
an execution-time conversion to float of the wider value 1.1e75, which raises floating-point exceptions. The
automatic initializations of x and y entail execution-time conversion; however, in some expression evaluation
methods, the conversions are not to a narrower format, in which case no floating-point exception is raised.433)

The automatic initialization of z entails execution-time conversion, but not to a narrower format, so no floating-
point exception is raised. The conversions of the floating constants 1.1e75 and 1.1e75f to their internal
representations occur at translation time in all cases.

F.8.7 Changing the environment
1 Operations defined in 6.5.1 and functions and macros defined for the standard libraries change

floating-point status flags and control modes just as indicated by their specifications (including
conformance to ISO/IEC 60559). They do not change flags or modes (so as to be detectable by the
user) in any other cases.

2 If the floating-point exceptions represented by the argument to the feraiseexcept function in
<fenv.h> include both "overflow" and "inexact", then "overflow" is raised before "inexact". Simi-
larly, if the represented exceptions include both "underflow" and "inexact", then "underflow" is
raised before "inexact".

F.9 Optimization
F.9.1 General

1 This section identifies code transformations that can subvert ISO/IEC 60559-specified behavior, and
others that do not.

F.9.2 Global transformations
1 Floating-point arithmetic operations and external function calls can entail side effects which op-

timization shall honor, at least where the state of the FENV_ACCESS pragma is "on". The flags
and modes in the floating-point environment can be regarded as global variables; floating-point
operations (+, *, etc.) implicitly read the modes and write the flags.

433)Use of float_t and double_t variables increases the likelihood of translation-time computation. For example, the
automatic initialization

double_t x = 1.1e75;

can be done at translation time, regardless of the expression evaluation method.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 536

§ F.9.2

ISO/IEC 9899:202y (en) — n3299 working draft

2 Concern about side effects can inhibit code motion and removal of seemingly useless code. For
example, in

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
void f(double x)
{

/* ... */
for (i = 0; i < n; i++) x + 1;
/* ... */

}

x+1 may raise floating-point exceptions, so cannot be removed. And since the loop body may not
execute (maybe 0 ≥ n), x+1 cannot be moved out of the loop. (Of course these optimizations are
valid if the implementation can rule out the nettlesome cases.)

3 This specification does not require support for trap handlers that maintain information about the
order or count of floating-point exceptions. Therefore, between function calls, the side effects due to
floating-point exceptions are not required be precise: the actual order and number of occurrences of
floating-point exceptions (> 1) may vary from what the source code expresses. Thus, the preceding
loop could be treated as

if (0 < n) x + 1;

F.9.3 Expression transformations
1 Valid expression transformations shall preserve numerical values.

2 The equivalences noted in the following description apply to expressions of standard floating types.

x/2 ↔ x× 0.5 Although similar transformations involving inexact constants generally do
not yield equivalent expressions, if the constants are exact then such trans-
formations can be made on ISO/IEC 60559 machines and others that round
perfectly.

1× x and x/1 → x The expressions 1 × x, x/1, and x may be regarded as equivalent (on
ISO/IEC 60559 machines, among others).434)

x/x → 1.0 The expressions x/x and 1.0 are not equivalent if x can be zero, infinite, or NaN.

x− y ↔ x+ (−y) The expressions x− y, x+(−y), and (−y)+x are equivalent (on ISO/IEC 60559
machines, among others).

x− y ↔−(y − x) The expressions x− y and −(y − x) are not equivalent because 1− 1 is +0 but
−(1− 1) is −0 (in the default rounding direction).435)

x− x → 0.0 The expressions x− x and 0.0 are not equivalent if x is a NaN or infinite.

0× x → 0.0 The expressions 0× x and 0.0 are not equivalent if x is a NaN, infinite, or −0.

x+ 0 → x The expressions x+ 0 and x are not equivalent if x is −0, because (−0) + (+0)
yields +0 (in the default rounding direction), not −0.

434)Implementations can have non-required features that invalidate these and other transformations that remove arithmetic
operators. Examples include strict support for signaling NaNs (an optional feature) and alternate exception handling (not
included in this specification).
435)ISO/IEC 60559 prescribes a signed zero to preserve mathematical identities across certain discontinuities. Examples

include:
1/(1/±∞) is ±∞

and
conj(csqrt(z)) is csqrt(conj(z)),

for complex z.

§ F.9.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 537

ISO/IEC 9899:202y (en) — n3299 working draft

x− 0 → x (+0) − (+0) yields −0 when rounding is downward (toward −∞), but +0
otherwise, and (−0)−(+0) always yields −0; so, if the state of the FENV_ACCESS
pragma is "off", promising default rounding, then the implementation can

replace x− 0 by x, even if x may be zero.

−x ↔ 0− x The expressions −x and 0−x are not equivalent if x is +0, because −(+0) yields
−0, but 0− (+0) yields +0 (unless rounding is downward).

3 For expressions of decimal floating types, transformations shall preserve quantum exponents, as
well as numerical values (5.3.5.3.4).

4 EXAMPLE The computation 1.× x→ x is valid for decimal floating-point expressions x, but 1.0× x → x is
not:

1.× 12.34 = (+1, 1, 0)× (+1, 1234,−2) yields (+1, 1234,−2) = 12.34
1.0× 12.34 = (+1, 10,−1)× (+1, 1234,−2) yields (+1, 12340,−3) = 12.340

In the second case, the factor 12.34 and the result 12.340 have different quantum exponents, demonstrating
that 1.0× x and x are not equivalent expressions.

F.9.4 Relational operators
1 x ̸= x → false The expression x ̸= x is true if x is a NaN.

x = x → true The expression x = x is false if x is a NaN.

x < y → isless(x, y) (and similarly for ≤, >, ≥) Though equal, these expressions are not equiv-
alent because of side effects when x or y is a NaN and the state of the
FENV_ACCESS pragma is "on". This transformation, which would be de-
sirable if extra code were required to cause the "invalid" floating-point
exception for unordered cases, could be performed provided the state of the
FENV_ACCESS pragma is "off".

The sense of relational operators shall be maintained. This includes handling unordered cases as
expressed by the source code.

2 EXAMPLE

// calls g and raises "invalid" if a and b are unordered
if (a < b)

f();
else

g();

is not equivalent to

// calls f and raises "invalid" if a and b are unordered
if (a >= b)

g();
else

f();

nor to

// calls f without raising "invalid" if a and b are unordered
if (isgreaterequal(a,b))

g();
else

f();

nor, unless the state of the FENV_ACCESS pragma is "off", to

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 538

§ F.9.4

ISO/IEC 9899:202y (en) — n3299 working draft

// calls g without raising "invalid" if a and b are unordered
if (isless(a,b))

f();
else

g();

but is equivalent to

if (!(a < b))
g();

else
f();

F.9.5 Constant arithmetic
1 The implementation shall honor floating-point exceptions raised by execution-time constant arith-

metic wherever the state of the FENV_ACCESS pragma is "on". (See F.8.5 and F.8.6.) An operation
on constants that raises no floating-point exception can be folded during translation, except, if the
state of the FENV_ACCESS pragma is "on", a further check is required to assure that changing the
rounding direction to downward does not alter the sign of the result,436) and implementations that
support dynamic rounding precision modes shall assure further that the result of the operation
raises no floating-point exception when converted to the semantic type of the operation.

F.10 Mathematics <math.h> and <tgmath.h>

F.10.1 General
1 This subclause contains specifications of <math.h> and <tgmath.h> facilities that are particularly

suited for ISO/IEC 60559 implementations.

2 The Standard C macro HUGE_VAL and its float and long double analogs, HUGE_VALF and
HUGE_VALL, expand to expressions whose values are positive infinities.

3 For each single-argument function f in <math.h> whose mathematical counterpart is symmetric
(even), f(-x) is f(x) for all rounding modes and for all x in the (valid) domain of the function. For
each single-argument function f in <math.h> whose mathematical counterpart is antisymmetric
(odd), f(-x) is -f(x) for the ISO/IEC 60559 rounding modes roundTiesToEven, roundTiesToAway,
and roundTowardZero, and for all x in the (valid) domain of the function. The atan2 and atan2pi
functions are odd in their first argument.

4 Special cases for functions in <math.h> are covered directly or indirectly by ISO/IEC 60559. The
functions that ISO/IEC 60559 specifies directly are identified in F.3. The other functions in <math.h>
treat infinities, NaNs, signed zeros, subnormals, and (provided the state of the FENV_ACCESS pragma
is "on") the floating-point status flags in a manner consistent with ISO/IEC 60559 operations.

5 The expression math_errhandling & MATH_ERREXCEPT shall evaluate to a nonzero value.

6 The functions bound to operations in ISO/IEC 60559 (F.3) are fully specified by ISO/IEC 60559,
including rounding behaviors and floating-point exceptions.

7 The "invalid" and "divide-by-zero" floating-point exceptions are raised as specified in subsequent
subclauses of this annex.

8 The "overflow" floating-point exception is raised whenever an infinity — or, because of rounding di-
rection, a maximal-magnitude finite number — is returned in lieu of a finite value whose magnitude
is too large.

9 The "underflow" floating-point exception is raised whenever a computed result is tiny437) and the
returned result is inexact.

436)0-0 yields -0 instead of +0 just when the rounding direction is downward.
437)Tiny generally indicates having a magnitude in the subnormal range. See ISO/IEC 60559 for details about detecting

tininess.

§ F.10.1 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 539

ISO/IEC 9899:202y (en) — n3299 working draft

10 Whether or when library functions not listed in Table F.2 raise the "inexact" floating-point exception
is unspecified, unless stated otherwise.

11 Whether or when library functions not listed in Table F.2 raise a spurious "underflow" floating-point
exception is not specified by this annex.438)

12 As implied by F.8.7, library functions do not raise spurious "invalid", "overflow", or "divide-by-zero"
floating-point exceptions (detectable by the user).

13 Whether the functions not listed in Table F.2 honor the rounding direction mode is implementation-
defined, unless explicitly specified otherwise.

14 Functions with a NaN argument return a NaN result and raise no floating-point exception, except
where explicitly stated otherwise.

15 The specifications in the following subclauses append to the definitions in <math.h>. For families
of functions, the specifications apply to all the functions even though only the principal function
is shown. Unless otherwise specified, where the symbol "±" occurs in both an argument and the
result, the result has the same sign as the argument.

Recommended practice
16 ISO/IEC 60559 specifies correct rounding for the operations in Table F.2 recommended by

ISO/IEC 60559, and thereby preserves useful mathematical properties such as symmetry, mono-
tonicity, and periodicity. The corresponding functions with (potentially) reserved cr_-prefixed
names (7.33.9) do the same. The C functions in the table, however, are not required to be correctly
rounded, but implementations should still preserve as many of these useful mathematical properties
as possible.

17 If a function with one or more NaN arguments returns a NaN result, the result should be the same
as one of the NaN arguments (after possible type conversion), except perhaps for the sign.

F.10.2 Trigonometric functions
F.10.2.1 The acos functions

1 — acos(1) returns +0.

— acos(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1.

F.10.2.2 The asin functions
1 — asin(±0) returns ±0.

— asin(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1.

F.10.2.3 The atan functions
1 — atan(±0) returns ±0.

— atan(±∞) returns ±π
2 .

F.10.2.4 The atan2 functions
1 — atan2(±0,−0) returns ±π.439)

— atan2(±0,+0) returns ±0.

— atan2(±0, x) returns ±π for x < 0.

— atan2(±0, x) returns ±0 for x > 0.

438)It is intended that spurious "underflow" and "inexact" floating-point exceptions are raised only if avoiding them would
be too costly. 7.12.2 specifies that if math_errhandling & MATH_ERREXCEPT is nonzero, then an "underflow" floating-point
exception shall not be raised unless an underflow range error occurs.
439)atan2(0, 0) does not raise the "invalid" floating-point exception, nor does atan2(y, 0) raise the "divide-by-zero" floating-

point exception.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 540

§ F.10.2.4

ISO/IEC 9899:202y (en) — n3299 working draft

— atan2(y,±0) returns −π
2 for y < 0.

— atan2(y,±0) returns π
2 for y > 0.

— atan2(±y,−∞) returns ±π for finite y > 0.

— atan2(±y,+∞) returns ±0 for finite y > 0.

— atan2(±∞, x) returns ±π
2 for finite x.

— atan2(±∞,−∞) returns ± 3π
4 .

— atan2(±∞,+∞) returns ±π
4 .

F.10.2.5 The cos functions
1 — cos(±0) returns 1.

— cos(±∞) returns a NaN and raises the "invalid" floating-point exception.

F.10.2.6 The sin functions
1 — sin(±0) returns ±0.

— sin(±∞) returns a NaN and raises the "invalid" floating-point exception.

F.10.2.7 The tan functions
1 — tan(±0) returns ±0.

— tan(±∞) returns a NaN and raises the "invalid" floating-point exception.

F.10.2.8 The acospi functions
1 — acospi(+1) returns +0.

— acospi(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1.

F.10.2.9 The asinpi functions
1 — asinpi(±0) returns ±0.

— asinpi(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1.

F.10.2.10 The atanpi functions
1 — atanpi(±0) returns ±0.

— atanpi(±∞) returns ± 1
2 .

F.10.2.11 The atan2pi functions
1 — atan2pi(±0,−0) returns ±1.440)

— atan2pi(±0,+0) returns ±0.

— atan2pi(±0, x) returns ±1 for x < 0.

— atan2pi(±0, x) returns ±0 for x > 0.

— atan2pi(y,±0) returns − 1
2 for y < 0.

— atan2pi(y,±0) returns + 1
2 for y > 0.

— atan2pi(±y,−∞) returns ±1 for finite y > 0.

— atan2pi(±y,+∞) returns ±0 for finite y > 0.

— atan2pi(±∞, x) returns ± 1
2 for finite x.

— atan2pi(±∞,−∞) returns ± 3
4 .

— atan2pi(±∞,+∞) returns ± 1
4 .

440)atan2pi(0, 0) does not raise the "invalid" floating-point exception, nor does atan2pi(y, 0) raise the "divide-by-zero"
floating-point exception.

§ F.10.2.11 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 541

ISO/IEC 9899:202y (en) — n3299 working draft

F.10.2.12 The cospi functions
1 — cospi(±0) returns 1.

— cospi(n+ 1
2) returns +0, for integers n.

— cospi(±∞) returns a NaN and raises the "invalid" floating-point exception.

F.10.2.13 The sinpi functions
1 — sinpi(±0) returns ±0.

— sinpi(±n) returns ±0, for positive integers n.

— sinpi(±∞) returns a NaN and raises the "invalid" floating-point exception.

F.10.2.14 The tanpi functions
1 — tanpi(±0) returns ±0.

— tanpi(n) returns +0, for positive even and negative odd integers n.

— tanpi(n) returns −0, for positive odd and negative even integers n.

— tanpi(n+ 1
2) returns +∞ and raises the "divide-by-zero" floating-point exception, for even

integers n.

— tanpi(n+ 1
2) returns −∞ and raises the "divide-by-zero" floating-point exception, for odd

integers n.

— tanpi(±∞) returns a NaN and raises the "invalid" floating-point exception.

F.10.3 Hyperbolic functions
F.10.3.1 The acosh functions

1 — acosh(1) returns +0.

— acosh(x) returns a NaN and raises the "invalid" floating-point exception for x < 1.

— acosh(+∞) returns +∞.

F.10.3.2 The asinh functions
1 — asinh(±0) returns ±0.

— asinh(±∞) returns ±∞.

F.10.3.3 The atanh functions
1 — atanh(±0) returns ±0.

— atanh(±1) returns ±∞ and raises the "divide-by-zero" floating-point exception.

— atanh(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1.

F.10.3.4 The cosh functions
1 — cosh(±0) returns 1.

— cosh(±∞) returns +∞.

F.10.3.5 The sinh functions
1 — sinh(±0) returns ±0.

— sinh(±∞) returns ±∞.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 542

§ F.10.3.5

ISO/IEC 9899:202y (en) — n3299 working draft

F.10.3.6 The tanh functions
1 — tanh(±0) returns ±0.

— tanh(±∞) returns ±1.

F.10.4 Exponential and logarithmic functions
F.10.4.1 The exp functions

1 — exp(±0) returns 1.

— exp(−∞) returns +0.

— exp(+∞) returns +∞.

F.10.4.2 The exp10 functions
1 — exp10(±0) returns 1.

— exp10(−∞) returns +0.

— exp10(+∞) returns +∞.

F.10.4.3 The exp10m1 functions
1 — exp10m1(±0) returns ±0.

— exp10m1(−∞) returns −1.

— exp10m1(+∞) returns +∞.

F.10.4.4 The exp2 functions
1 — exp2(±0) returns 1.

— exp2(−∞) returns +0.

— exp2(+∞) returns +∞.

F.10.4.5 The exp2m1 functions
1 — exp2m1(±0) returns ±0.

— exp2m1(−∞) returns −1.

— exp2m1(+∞) returns +∞.

F.10.4.6 The expm1 functions
1 — expm1(±0) returns ±0.

— expm1(−∞) returns −1.

— expm1(+∞) returns +∞.

F.10.4.7 The frexp functions
1 — frexp(±0, p) returns ±0, and stores 0 in the object pointed to by p.

— frexp(±∞, p) returns ±∞, and stores an unspecified value in the object pointed to by p.

— frexp(NaN, p) stores an unspecified value in the object pointed to by p (and returns a NaN).

2 frexp raises no floating-point exceptions if value is not a signaling NaN.

3 The returned value is independent of the current rounding direction mode.

4 On a binary system, the body of the frexp function may be

{

*p = (value == 0 || !isfinite(value)) ? 0: (int)(1 + logb(value));
return scalbn(value, -(*p));

}

§ F.10.4.7 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 543

ISO/IEC 9899:202y (en) — n3299 working draft

F.10.4.8 The ilogb functions
1 When the correct result is representable in the range of the return type, the returned value is exact

and is independent of the current rounding direction mode.

2 If the correct result is outside the range of the return type, the numeric result is unspecified and the
"invalid" floating-point exception is raised.

3 ilogb(x), for x zero, infinite, or NaN, raises the "invalid" floating-point exception and returns the
value specified in 7.12.7.8.

F.10.4.9 The ldexp functions
1 On a binary system, ldexp(x, exp) is equivalent to scalbn(x, exp).

F.10.4.10 The llogb functions
1 The llogb functions are equivalent to the ilogb functions, except that the llogb functions determine

a result in the long int type.

F.10.4.11 The log functions
1 — log(±0) returns −∞ and raises the "divide-by-zero" floating-point exception.

— log(1) returns +0.

— log(x) returns a NaN and raises the "invalid" floating-point exception for x < 0.

— log(+∞) returns +∞.

F.10.4.12 The log10 functions
1 — log10(±0) returns −∞ and raises the "divide-by-zero" floating-point exception.

— log10(1) returns +0.

— log10(x) returns a NaN and raises the "invalid" floating-point exception for x < 0.

— log10(+∞) returns +∞.

F.10.4.13 The log10p1 functions
1 — log10p1(±0) returns ±0.

— log10p1(−1) returns −∞ and raises the "divide-by-zero" floating-point exception.

— log10p1(x) returns a NaN and raises the "invalid" floating-point exception for x < −1.

— log10p1(+∞) returns +∞.

F.10.4.14 The log1p and logp1 functions
1 — logp1(±0) returns ±0.

— logp1(−1) returns −∞ and raises the "divide-by-zero" floating-point exception.

— logp1(x) returns a NaN and raises the "invalid" floating-point exception for x < −1.

— logp1(+∞) returns +∞.

The log1p functions are equivalent to the logp1 functions.

F.10.4.15 The log2 functions
1 — log2(±0) returns −∞ and raises the "divide-by-zero" floating-point exception.

— log2(1) returns +0.

— log2(x) returns a NaN and raises the "invalid" floating-point exception for x < 0.

— log2(+∞) returns +∞.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 544

§ F.10.4.15

ISO/IEC 9899:202y (en) — n3299 working draft

F.10.4.16 The log2p1 functions
1 — log2p1(±0) returns ±0.

— log2p1(−1) returns −∞ and raises the "divide-by-zero" floating-point exception.

— log2p1(x) returns a NaN and raises the "invalid" floating-point exception for x < −1.

— log2p1(+∞) returns +∞.

F.10.4.17 The logb functions
1 — logb(±0) returns −∞ and raises the "divide-by-zero" floating-point exception.

— logb(±∞) returns +∞.

2 The returned value is exact and is independent of the current rounding direction mode.

F.10.4.18 The modf functions
1 — modf(±x, iptr) returns a result with the same sign as x.

— modf(±∞, iptr) returns ±0 and stores ±∞ in the object pointed to by iptr.

— modf(NaN, iptr) stores a NaN in the object pointed to by iptr (and returns a NaN).

2 The returned values are exact and are independent of the current rounding direction mode.

3 modf behaves as though implemented by

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double modf(double value, double *iptr)
{

int save_round = fegetround();
fesetround(FE_TOWARDZERO);

*iptr = nearbyint(value);
fesetround(save_round);
return copysign(

isinf(value) ? 0.0:
value - (*iptr), value);

}

F.10.4.19 The scalbn and scalbln functions
1 — scalbn(±0, n) returns ±0.

— scalbn(x, 0) returns x.

— scalbn(±∞, n) returns ±∞.

2 If the calculation does not overflow or underflow, the returned value is exact and independent of
the current rounding direction mode.

F.10.5 Power and absolute value functions
F.10.5.1 The cbrt functions

1 — cbrt(±0) returns ±0.

— cbrt(±∞) returns ±∞.

§ F.10.5.1 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 545

ISO/IEC 9899:202y (en) — n3299 working draft

F.10.5.2 The compoundn functions
1 — compoundn(x, 0) returns 1 for x ≥ −1 or x a NaN.

— compoundn(x, n) returns a NaN and raises the "invalid" floating-point exception for x < −1.

— compoundn(−1, n) returns +∞ and raises the divide-by-zero floating-point exception for n < 0.

— compoundn(−1, n) returns +0 for n > 0.

— compoundn(+∞, n) returns +∞ for n > 0.

— compoundn(+∞, n) returns +0 for n < 0.

F.10.5.3 The fabs functions
1 — fabs(±0) returns +0.

— fabs(±∞) returns +∞.

2 fabs(x) raises no floating-point exceptions, even if x is a signaling NaN. The returned value is
independent of the current rounding direction mode.

F.10.5.4 The hypot functions
1 — hypot(x, y), hypot(y, x), and hypot(x,−y) are equivalent.

— hypot(x,±0) returns the absolute value of x, if x is not a NaN.

— hypot(±∞, y) returns +∞, even if y is a NaN.

— hypot(x,NaN) returns a NaN, if x is not ±∞.

F.10.5.5 The pow functions
1 — pow(±0, y) returns ±∞ and raises the "divide-by-zero" floating-point exception for y an odd

integer < 0.

— pow(±0, y) returns +∞ and raises the "divide-by-zero" floating-point exception for y < 0,
finite, and not an odd integer.

— pow(±0,−∞) returns +∞.

— pow(±0, y) returns ±0 for y an odd integer > 0.

— pow(±0, y) returns +0 for y > 0 and not an odd integer.

— pow(−1,±∞) returns 1.

— pow(+1, y) returns 1 for any y, even a NaN.

— pow(x,±0) returns 1 for any x, even a NaN.

— pow(x, y) returns a NaN and raises the "invalid" floating-point exception for finite x < 0 and
finite non-integer y.

— pow(x,−∞) returns +∞ for |x| < 1.

— pow(x,−∞) returns +0 for |x| > 1.

— pow(x,+∞) returns +0 for |x| < 1.

— pow(x,+∞) returns +∞ for |x| > 1.

— pow(−∞, y) returns −0 for y an odd integer < 0.

— pow(−∞, y) returns +0 for y < 0 and not an odd integer.

— pow(−∞, y) returns −∞ for y an odd integer > 0.

— pow(−∞, y) returns +∞ for y > 0 and not an odd integer.

— pow(+∞, y) returns +0 for y < 0.

— pow(+∞, y) returns +∞ for y > 0.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 546

§ F.10.5.5

ISO/IEC 9899:202y (en) — n3299 working draft

F.10.5.6 The pown functions
1 — pown(x, 0) returns 1 for all x not a signaling NaN.

— pown(±0, n) returns ±∞ and raises the "divide-by-zero" floating-point exception for odd
n < 0.

— pown(±0, n) returns +∞ and raises the "divide-by-zero" floating-point exception for even
n < 0.

— pown(±0, n) returns +0 for even n > 0.

— pown(±0, n) returns ±0 for odd n > 0.

— pown(±∞, n) is equivalent to pown(±0,−n) for n not 0, except that the "divide-by-zero"
floating-point exception is not raised.

F.10.5.7 The powr functions
1 — powr(x,±0) returns 1 for finite x > 0.

— powr(±0, y) returns +∞ and raises the "divide-by-zero" floating-point exception for finite
y < 0.

— powr(±0,−∞) returns +∞.

— powr(±0, y) returns +0 for y > 0.

— powr(+1, y) returns 1 for finite y.

— powr(+1,±∞) returns a NaN and raises the "invalid" floating-point exception.

— powr(x, y) returns a NaN and raises the "invalid" floating-point exception for x < 0.

— powr(±0,±0) returns a NaN and raises the "invalid" floating-point exception.

— powr(+∞,±0) returns a NaN and raises the "invalid" floating-point exception.

F.10.5.8 The rootn functions
1 — rootn(±0, n) returns ±∞ and raises the "divide-by-zero" floating-point exception for odd

n < 0.

— rootn(±0, n) returns +∞ and raises the "divide-by-zero" floating-point exception for even
n < 0.

— rootn(±0, n) returns +0 for even n > 0.

— rootn(±0, n) returns ±0 for odd n > 0.

— rootn(+∞, n) returns +∞ for n > 0.

— rootn(−∞, n) returns −∞ for odd n > 0.

— rootn(−∞, n) returns a NaN and raises the "invalid" floating-point exception for even n > 0.

— rootn(+∞, n) returns +0 for n < 0.

— rootn(−∞, n) returns −0 for odd n < 0.

— rootn(−∞, n) returns a NaN and raises the "invalid" floating-point exception for even n < 0.

— rootn(x, 0) returns a NaN and raises the "invalid" floating-point exception for all x (including
NaN).

— rootn(x, n) returns a NaN and raises the "invalid" floating-point exception for x < 0 and n
even.

§ F.10.5.8 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 547

ISO/IEC 9899:202y (en) — n3299 working draft

F.10.5.9 The rsqrt functions
1 — rsqrt(±0) returns ±∞ and raises the "divide-by-zero" floating-point exception.

— rsqrt(x) returns a NaN and raises the "invalid" floating-point exception for x < 0.

— rsqrt(+∞) returns +0.

F.10.5.10 The sqrt functions
1 — sqrt(±0) returns ±0.

— sqrt(+∞) returns +∞.

— sqrt(x) returns a NaN and raises the "invalid" floating-point exception for x < 0.

2 The returned value is dependent on the current rounding direction mode.

F.10.6 Error and gamma functions
F.10.6.1 The erf functions

1 — erf(±0) returns ±0.

— erf(±∞) returns ±1.

F.10.6.2 The erfc functions
1 — erfc(−∞) returns 2.

— erfc(+∞) returns +0.

F.10.6.3 The lgamma functions
1 — lgamma(1) returns +0.

— lgamma(2) returns +0.

— lgamma(x) returns +∞ and raises the "divide-by-zero" floating-point exception for x a negative
integer or zero.

— lgamma(−∞) returns +∞.

— lgamma(+∞) returns +∞.

F.10.6.4 The tgamma functions
1 — tgamma(±0) returns ±∞ and raises the "divide-by-zero" floating-point exception.

— tgamma(x) returns a NaN and raises the "invalid" floating-point exception for x a negative
integer.

— tgamma(−∞) returns a NaN and raises the "invalid" floating-point exception.

— tgamma(+∞) returns +∞.

F.10.7 Nearest integer functions
F.10.7.1 The ceil functions

1 — ceil(±0) returns ±0.

— ceil(±∞) returns ±∞.

2 The returned value is exact and is independent of the current rounding direction mode.

3 The double version of ceil behaves as though implemented by

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 548

§ F.10.7.1

ISO/IEC 9899:202y (en) — n3299 working draft

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double ceil(double x)
{

double result;
int save_round = fegetround();
fesetround(FE_UPWARD);
result = nearbyint(x);
fesetround(save_round);
return result;

}

F.10.7.2 The floor functions
1 — floor(±0) returns ±0.

— floor(±∞) returns ±∞.

2 The returned value is exact and is independent of the current rounding direction mode.

3 See the sample implementation for ceil in F.10.7.1.

F.10.7.3 The nearbyint functions
1 The nearbyint functions use ISO/IEC 60559 rounding according to the current rounding direction.

They do not raise the "inexact" floating-point exception if the result differs in value from the
argument.

— nearbyint(±0) returns ±0 (for all rounding directions).

— nearbyint(±∞) returns ±∞ (for all rounding directions).

F.10.7.4 The rint functions
1 The rint functions differ from the nearbyint functions only in that they do raise the "inexact"

floating-point exception if the result differs in value from the argument.

F.10.7.5 The lrint and llrint functions
1 The lrint and llrint functions provide floating-to-integer conversion as prescribed by

ISO/IEC 60559. They round according to the current rounding direction. If the rounded value
is outside the range of the return type, the numeric result is unspecified and the "invalid"
floating-point exception is raised. When they raise no other floating-point exception and the result
differs from the argument, they raise the "inexact" floating-point exception.

F.10.7.6 The round functions
1 — round(±0) returns ±0.

— round(±∞) returns ±∞.

2 The returned value is independent of the current rounding direction mode.

3 The double version of round behaves as though implemented by:441)

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double round(double x)
{

double result;

441)This code does not handle signaling NaNs as required of implementations that define FE_SNANS_ALWAYS_SIGNAL.

§ F.10.7.6 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 549

ISO/IEC 9899:202y (en) — n3299 working draft

fenv_t save_env;
feholdexcept(&save_env);
result = rint(x);
if (fetestexcept(FE_INEXACT)) {

fesetround(FE_TOWARDZERO);
result = rint(copysign(0.5 + fabs(x), x));
feclearexcept(FE_INEXACT);

}
feupdateenv(&save_env);
return result;

}

F.10.7.7 The lround and llround functions
1 The lround and llround functions differ from the lrint and llrint functions with the default

rounding direction just in that the lround and llround functions round halfway cases away from
zero and are not required to raise the "inexact" floating-point exception for non-integer arguments
that round to within the range of the return type.

F.10.7.8 The roundeven functions
1 — roundeven(±0) returns ±0.

— roundeven(±∞) returns ±∞.

2 The returned value is exact and is independent of the current rounding direction mode.

3 See the sample implementation for ceil in F.10.7.1.

F.10.7.9 The trunc functions
1 The trunc functions use ISO/IEC 60559 rounding toward zero (regardless of the current rounding

direction).

— trunc(±0) returns ±0.

— trunc(±∞) returns ±∞.

2 The returned value is exact and is independent of the current rounding direction mode.

F.10.7.10 The fromfp and ufromfp functions
1 The fromfp and ufromfp functions raise the "invalid" floating-point exception and return a NaN if

the argument width is zero or if the floating-point argument x is infinite or NaN or rounds to an
integral value that is outside the range determined by the argument width (see 7.12.10.10).

2 These functions do not raise the "inexact" floating-point exception.

F.10.7.11 The fromfpx and ufromfpx functions
1 The fromfpx and ufromfpx functions raise the "invalid" floating-point exception and return a NaN

if the argument width is zero or if the floating-point argument x is infinite or NaN or rounds to an
integral value that is outside the range determined by the argument width (see 7.12.10.11).

2 These functions raise the "inexact" floating-point exception if a valid result differs in value from the
floating-point argument x.

F.10.8 Remainder functions
F.10.8.1 The fmod functions

1 — fmod(±0, y) returns ±0 for y not zero.

— fmod(x, y) returns a NaN and raises the "invalid" floating-point exception for x infinite or y
zero (and neither is a NaN).

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 550

§ F.10.8.1

ISO/IEC 9899:202y (en) — n3299 working draft

— fmod(x,±∞) returns x for finite x.

2 When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

3 The double version of fmod behaves as though implemented by

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double fmod(double x, double y)
{

double result;
result = remainder(fabs(x), (y = fabs(y)));
if (signbit(result)) result += y;
return copysign(result, x);

}

F.10.8.2 The remainder functions
1 — remainder(±0, y) returns ±0 for y not zero.

— remainder(x, y) returns a NaN and raises the "invalid" floating-point exception for x infinite
or y zero (and neither is a NaN).

— remainder(x,±∞) returns x for finite x.

2 When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

F.10.8.3 The remquo functions
1 The remquo functions follow the specifications for the remainder functions.

2 If a NaN is returned, the value stored in the object pointed to by quo is unspecified.

3 When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

F.10.9 Manipulation functions
F.10.9.1 The copysign functions

1 copysign(x, y) raises no floating-point exceptions, even if x or y is a signaling NaN. The returned
value is independent of the current rounding direction mode.

F.10.9.2 The nan functions
1 All ISO/IEC 60559 implementations support quiet NaNs, in all floating formats.

2 The returned value is exact and is independent of the current rounding direction mode.

F.10.9.3 The nextafter functions
1 — nextafter(x, y) raises the "overflow" and "inexact" floating-point exceptions for x finite and

the function value infinite.

— nextafter(x, y) raises the "underflow" and "inexact" floating-point exceptions for the func-
tion value subnormal or zero and x ̸= y.

2 Even though underflow or overflow can occur, the returned value is independent of the current
rounding direction mode.

F.10.9.4 The nexttoward functions
1 No additional requirements beyond those on nextafter.

2 Even though underflow or overflow can occur, the returned value is independent of the current
rounding direction mode.

§ F.10.9.4 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 551

ISO/IEC 9899:202y (en) — n3299 working draft

F.10.9.5 The nextup functions
1 — nextup(+∞) returns +∞.

— nextup(−∞) returns the largest-magnitude negative finite number in the return type of the
function.

2 nextup(x) raises no floating-point exceptions if x is not a signaling NaN. The returned value is
independent of the current rounding direction mode.

F.10.9.6 The nextdown functions
1 — nextdown(−∞) returns −∞.

— nextdown(+∞) returns the largest-magnitude positive finite number in the type of the func-
tion.

2 nextdown(x) raises no floating-point exceptions if x is not a signaling NaN. The returned value is
independent of the current rounding direction mode.

F.10.9.7 The canonicalize functions

1 The canonicalize functions produce442) the canonical version of the representation in the object
pointed to by the argument x. If the input *x is a signaling NaN, the "invalid" floating-point
exception is raised and a (canonical) quiet NaN (which should be the canonical version of that
signaling NaN made quiet) is produced. For quiet NaN, infinity, and finite inputs, the functions
raise no floating-point exceptions.

F.10.10 Maximum, minimum, and positive difference functions
F.10.10.1 The fdim functions

1 No additional requirements.

F.10.10.2 The fmax functions
1 If just one argument is a NaN, the fmax functions return the other argument (if both arguments are

NaNs, the functions return a NaN).

2 The returned value is exact and is independent of the current rounding direction mode.

3 The body of the fmax function may be:443)

{
double r = (isgreaterequal(x, y) || isnan(y)) ? x : y;
(void) canonicalize(&r, &r);
return r;

}

F.10.10.3 The fmin functions
1 The fmin functions are analogous to the fmax functions (see F.10.10.2).

2 The returned value is exact and is independent of the current rounding direction mode.

F.10.10.4 The fmaximum, fminimum, fmaximum_mag, and fminimum_mag functions
1 These functions treat NaNs like other functions in <math.h> (see F.10). They differ from the cor-

responding fmaximum_num, fminimum_num, fmaximum_mag_num, and fminimum_mag_num functions
only in their treatment of NaNs.

442)As if *x * 1e0 were computed.
443)If possible, fmax is sensitive to the sign of zero, for example fmax(−0.0,+0.0) ideally returns +0. Note also that this

implementation does not handle signaling NaNs as required of implementations that define FE_SNANS_ALWAYS_SIGNAL.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 552

§ F.10.10.4

ISO/IEC 9899:202y (en) — n3299 working draft

F.10.10.5 The fmaximum_num, fminimum_num, fmaximum_mag_num, and fminimum_mag_num func-
tions

1 These functions return the number if one argument is a number and the other is a quiet or signaling
NaN. If both arguments are NaNs, a quiet NaN is returned. If an argument is a signaling NaN, the
"invalid" floating-point exception is raised (even though the function returns the number when the
other argument is a number).

F.10.11 Fused multiply-add
F.10.11.1 The fma functions

1 — fma(x, y, z) computes xy + z, correctly rounded once.

— fma(x, y, z) returns a NaN and optionally raises the "invalid" floating-point exception if one
of x and y is infinite, the other is zero, and z is a NaN.

— fma(x, y, z) returns a NaN and raises the "invalid" floating-point exception if one of x and y is
infinite, the other is zero, and z is not a NaN.

— fma(x, y, z) returns a NaN and raises the "invalid" floating-point exception if x times y is an
exact infinity and z is also an infinity but with the opposite sign.

F.10.12 Functions that round result to narrower type
1 The functions that round their result to narrower type (7.12.15) are fully specified in ISO/IEC 60559.

The returned value is dependent on the current rounding direction mode.

2 These functions treat zero and infinite arguments like the corresponding operation or function: +, -,
*, /, fma, or sqrt.

F.10.13 Total order functions
F.10.13.1 General

1 This subclause specifies the total order functions required by ISO/IEC 60559.

2 NOTE These functions are specified only in this annex because the functions for standard floating types
depend on details of ISO/IEC 60559 formats that are conditionally supported based on if the relevant feature
test macro, __STDC_IEC_60559_BFP__ or __STDC_IEC_60559_DFP__, is defined or not.

F.10.13.2 The totalorder functions
Synopsis

1 #define __STDC_WANT_IEC_60559_EXT__

#include <math.h>
#ifdef __STDC_IEC_60559_BFP__

int totalorder(const double *x, const double *y);
int totalorderf(const float *x, const float *y);
int totalorderl(const long double *x, const long double *y);
#endif
#ifdef __STDC_IEC_60559_DFP__

int totalorderd32(const _Decimal32 *x, const _Decimal32 *y);
int totalorderd64(const _Decimal64 *x, const _Decimal64 *y);
int totalorderd128(const _Decimal128 *x, const _Decimal128 *y);
#endif

Description
2 The totalorder functions determine whether the total order relationship, defined by ISO/IEC 60559,

is true for the ordered pair of *x, *y. These functions are fully specified in ISO/IEC 60559. These
functions are independent of the current rounding direction mode and raise no floating-point
exceptions, even if *x or *y is a signaling NaN.

§ F.10.13.2 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 553

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The totalorder functions return nonzero if and only if the total order relation is true for the ordered

pair of *x, *y.

F.10.13.3 The totalordermag functions
Synopsis

1 #define __STDC_WANT_IEC_60559_EXT__

#include <math.h>
#ifdef __STDC_IEC_60559_BFP__

int totalordermag(const double *x, const double *y);
int totalordermagf(const float *x, const float *y);
int totalordermagl(const long double *x, const long double *y);
#endif
#ifdef __STDC_IEC_60559_DFP__

int totalordermagd32(const _Decimal32 *x, const _Decimal32 *y);
int totalordermagd64(const _Decimal64 *x, const _Decimal64 *y);
int totalordermagd128(const _Decimal128 *x, const _Decimal128 *y);
#endif

Description
2 The totalordermag functions determine whether the total order relationship, defined by

ISO/IEC 60559, is true for the ordered pair of the magnitudes of *x, *y. These functions are fully
specified in ISO/IEC 60559. These functions are independent of the current rounding direction
mode and raise no floating-point exceptions, even if *x or *y is a signaling NaN.

Returns
3 The totalordermag functions return nonzero if and only if the total order relation is true for the

ordered pair of the magnitudes of *x, *y.

F.10.14 Payload functions
F.10.14.1 General

1 ISO/IEC 60559 defines the payload to be information contained in a quiet or signaling NaN. The
payload is intended for implementation-defined diagnostic information about the NaN, such as
where or how the NaN was created.444) The implementation interprets the payload as a nonnegative
integer suitable for use with the functions in this subclause, which get and set payloads. The
implementation may restrict which payloads are admissible for the user to set.

2 NOTE These functions are specified only in this annex because the functions for standard floating types
depend on details of ISO/IEC 60559 formats that are conditionally supported based on if the relevant feature
test macro, __STDC_IEC_60559_BFP__ or __STDC_IEC_60559_DFP__, is defined or not.

F.10.14.2 The getpayload functions
Synopsis

1 #define __STDC_WANT_IEC_60559_EXT__

#include <math.h>
#ifdef __STDC_IEC_60559_BFP__

double getpayload(const double *x);
float getpayloadf(const float *x);
long double getpayloadl(const long double *x);
#endif
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 getpayloadd32(const _Decimal32 *x);
_Decimal64 getpayloadd64(const _Decimal64 *x);
_Decimal128 getpayloadd128(const _Decimal128 *x);
#endif

444)For the purpose of determining value inclusion (as in 6.2.5, 7.12, and H.11), quiet NaN representations can be regarded
as having the same value, regardless of payloads.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 554

§ F.10.14.2

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The getpayload functions extract the payload of a quiet or signaling NaN input and return it as a

positive-signed floating-point integer. If *x is not a NaN, the return result is −1. These functions
raise no floating-point exceptions, even if *x is a signaling NaN.

Returns
3 The getpayload functions return the payload of the NaN input as a positive-signed floating-point

integer.

F.10.14.3 The setpayload functions
Synopsis

1 #define __STDC_WANT_IEC_60559_EXT__

#include <math.h>
#ifdef __STDC_IEC_60559_BFP__

int setpayload(double *res, double pl);
int setpayloadf(float *res, float pl);
int setpayloadl(long double *res, long double pl);
#endif
#ifdef __STDC_IEC_60559_DFP__

int setpayloadd32(_Decimal32 *res, _Decimal32 pl);
int setpayloadd64(_Decimal64 *res, _Decimal64 pl);
int setpayloadd128(_Decimal128 *res, _Decimal128 pl);
#endif

Description
2 The setpayload functions create a quiet NaN with the payload specified by pl and a zero sign bit

and store that NaN in the object pointed to by *res. If pl is not a floating-point integer representing
an admissible payload, *res is set to +0.

Returns
3 If the setpayload functions stored the specified NaN, they return a zero value, otherwise a nonzero

value (and *res is set to +0).

F.10.14.4 The setpayloadsig functions
Synopsis

1 #define __STDC_WANT_IEC_60559_EXT__

#include <math.h>
#ifdef __STDC_IEC_60559_BFP__

int setpayloadsig(double *res, double pl);
int setpayloadsigf(float *res, float pl);
int setpayloadsigl(long double *res, long double pl);
#endif
#ifdef __STDC_IEC_60559_DFP__

int setpayloadsigd32(_Decimal32 *res, _Decimal32 pl);
int setpayloadsigd64(_Decimal64 *res, _Decimal64 pl);
int setpayloadsigd128(_Decimal128 *res, _Decimal128 pl);
#endif

Description
2 The setpayloadsig functions create a signaling NaN with the payload specified by pl and a zero

sign bit and store that NaN in the object pointed to by *res. If pl is not a floating-point integer
representing an admissible payload, *res is set to +0.

Returns
3 If the setpayloadsig functions stored the specified NaN, they return a zero value, otherwise a

nonzero value (and *res is set to +0).

§ F.10.14.4 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 555

ISO/IEC 9899:202y (en) — n3299 working draft

F.10.15 Comparison macros
F.10.15.1 General

1 Relational operators and their corresponding comparison macros (7.12.18) produce equivalent result
values, even if argument values are represented in wider formats. Thus, comparison macro argu-
ments represented in formats wider than their semantic types are not converted to the semantic types,
unless the wide evaluation method converts operands of relational operators to their semantic types.
The standard wide evaluation methods characterized by FLT_EVAL_METHOD and DEC_EVAL_METHOD
equal to 1 or 2 (5.3.5.3.3, 5.3.5.3.4), do not convert operands of relational operators to their semantic
types.

F.10.15.2 The iseqsig macro
1 The equality operator == and the iseqsig macro produce equivalent results, except that the iseqsig

macro raises the "invalid" floating-point exception if an argument is a NaN.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 floating-point arithmetic — 556

§ F.10.15.2

ISO/IEC 9899:202y (en) — n3299 working draft

Annex G
(normative)

ISO/IEC 60559-compatible complex arithmetic

G.1 Introduction
1 This annex supplements Annex F to specify complex arithmetic for compatibility with ISO/IEC 60559

real floating-point arithmetic. An implementation that defines __STDC_IEC_60559_COMPLEX__ or
__STDC_IEC_559_COMPLEX__ shall conform to the specifications in this annex.445)

G.2 Types
1 There is a new keyword _Imaginary, which is used to specify imaginary types. It is used as a type

specifier within declaration specifiers in the same way as _Complex is (thus, float _Imaginary is a
valid type name).

2 There are three imaginary type, designated as float _Imaginary, double _Imaginary, and long
double _Imaginary. The imaginary types (along with the real floating and complex types) are

floating types.

3 For imaginary types, the corresponding real type is given by deleting the keyword _Imaginary
from the type name.

4 Each imaginary type has the same representation and alignment requirements as the corresponding
real type. The value of an object of imaginary type is the value of the real representation times the
imaginary unit.

5 The imaginary type domain comprises the imaginary types.

G.3 Conventions
1 A complex or imaginary value with at least one infinite part is regarded as an infinity (even if its

other part is a quiet NaN). A complex or imaginary value is a finite number if each of its parts is a
finite number (neither infinite nor NaN). A complex or imaginary value is a zero if each of its parts is
a zero.

G.4 Conversions
G.4.1 Imaginary types

1 Conversions among imaginary types follow rules analogous to those for real floating types.

G.4.2 Real and imaginary
1 When a value of imaginary type is converted to a real type other than bool,446) the result is a positive

zero.

2 When a value of real type is converted to an imaginary type, the result is a positive imaginary zero.

G.4.3 Imaginary and complex
1 When a value of imaginary type is converted to a complex type, the real part of the complex result

value is a positive zero and the imaginary part of the complex result value is determined by the
conversion rules for the corresponding real types.

2 When a value of complex type is converted to an imaginary type, the real part of the complex value
is discarded and the value of the imaginary part is converted according to the conversion rules for
the corresponding real types.

445)Implementations that do not define __STDC_IEC_60559_COMPLEX__ or __STDC_IEC_559_COMPLEX__ are not required
to conform to these specifications. The use of __STDC_IEC_559_COMPLEX__ for this purpose is obsolescent and should be
avoided in new code.
446)See 6.3.2.2.

§ G.4.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 557

ISO/IEC 9899:202y (en) — n3299 working draft

G.5 Binary operators
G.5.1 General

1 The following subclauses supplement 6.5.1 to specify the type of the result for an operation with an
imaginary operand.

2 For most operand types, the value of the result of a binary operator with an imaginary or complex
operand is completely determined, with reference to real arithmetic, by the usual mathematical
formula. For some operand types, the usual mathematical formula is problematic because of its
treatment of infinities and because of undue overflow or underflow; in these cases the result satisfies
certain properties (specified in G.5.2), but is not completely determined.

G.5.2 Multiplicative operators
Semantics

1 If one operand has real type and the other operand has imaginary type, then the result has imaginary
type. If both operands have imaginary type, then the result has real type. (If either operand has
complex type, then the result has complex type.)

2 If the operands are not both complex, then the result and floating-point exception behavior of the *
operator is defined by the usual mathematical formula shown in Table G.1:

Table G.1 — Results of multiplication operations

* u iv u+ iv

x xu i(xv) (xu) + i(xv)
iy i(yu) (−y)v ((−y)v) + i(yu)
x+ iy (xu) + i(yu) ((−y)v) + i(xv)

3 If the second operand is not complex, then the result and floating-point exception behavior of the /
operator is defined by the usual mathematical formula as in Table G.2:

Table G.2 — Results of division operations

/ u iv

x x/u i((−x)/v)
iy i(y/u) y/v
x+ iy (x/u) + i(y/u) (y/v) + i((−x)/v)

4 The * and / operators satisfy the following infinity properties for all real, imaginary, and complex
operands:447)

— if one operand is an infinity and the other operand is a nonzero finite number or an infinity,
then the result of the * operator is an infinity;

— if the first operand is an infinity and the second operand is a finite number, then the result of
the / operator is an infinity;

— if the first operand is a finite number and the second operand is an infinity, then the result of
the / operator is a zero;

— if the first operand is a nonzero finite number or an infinity and the second operand is a zero,
then the result of the / operator is an infinity.

5 If both operands of the * operator are complex or if the second operand of the / operator is complex,
the operator raises floating-point exceptions if appropriate for the calculation of the parts of the
result, and may raise spurious floating-point exceptions.

447)These properties are already implied for those cases covered in Table G.1 and Table G.2, but are required for all cases (at
least where the state for CX_LIMITED_RANGE is "off").

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 558

§ G.5.2

ISO/IEC 9899:202y (en) — n3299 working draft

6 EXAMPLE 1 Multiplication of double _Complex operands can be implemented as follows. The imaginary
unit I has imaginary type (see G.6).

#include <math.h>
#include <complex.h>

/* Multiply z * w ...*/
double complex _Cmultd(double complex z, double complex w)
{

#pragma STDC FP_CONTRACT OFF
double a, b, c, d, ac, bd, ad, bc, x, y;
a = creal(z); b = cimag(z);
c = creal(w); d = cimag(w);
ac = a * c; bd = b * d;
ad = a * d; bc = b * c;
x = ac - bd; y = ad + bc;
if (isnan(x) && isnan(y)) {

/* Recover infinities that computed as NaN+iNaN ... */
int recalc = 0;
if (isinf(a) || isinf(b)) { // z is infinite

/* "Box" the infinity and change NaNs in the other factor to 0 */
a = copysign(isinf(a) ? 1.0: 0.0, a);
b = copysign(isinf(b) ? 1.0: 0.0, b);
if (isnan(c)) c = copysign(0.0, c);
if (isnan(d)) d = copysign(0.0, d);
recalc = 1;

}
if (isinf(c) || isinf(d)) { // w is infinite

/* "Box" the infinity and change NaNs in the other factor to 0 */
c = copysign(isinf(c) ? 1.0: 0.0, c);
d = copysign(isinf(d) ? 1.0: 0.0, d);
if (isnan(a)) a = copysign(0.0, a);
if (isnan(b)) b = copysign(0.0, b);
recalc = 1;

}
if (!recalc && (isinf(ac) || isinf(bd) ||

isinf(ad) || isinf(bc))) {
/* Recover infinities from overflow by changing NaNs to 0 ... */
if (isnan(a)) a = copysign(0.0, a);
if (isnan(b)) b = copysign(0.0, b);
if (isnan(c)) c = copysign(0.0, c);
if (isnan(d)) d = copysign(0.0, d);
recalc = 1;

}
if (recalc) {

x = INFINITY * (a * c - b * d);
y = INFINITY * (a * d + b * c);

}
}
return x + I * y;

}

7 This implementation achieves the required treatment of infinities at the cost of only one isnan test in ordinary
(finite) cases. It is less than ideal in that undue overflow and underflow can occur.

8 EXAMPLE 2 Division of two double _Complex operands can be implemented as follows.

#include <math.h>
#include <complex.h>

/* Divide z / w ... */
double complex _Cdivd(double complex z, double complex w)

§ G.5.2 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 559

ISO/IEC 9899:202y (en) — n3299 working draft

{
#pragma STDC FP_CONTRACT OFF
double a, b, c, d, logbw, denom, x, y;
int ilogbw = 0;
a = creal(z); b = cimag(z);
c = creal(w); d = cimag(w);
logbw = logb(fmaximum_num(fabs(c), fabs(d)));
if (isfinite(logbw)) {

ilogbw = (int)logbw;
c = scalbn(c, -ilogbw); d = scalbn(d, -ilogbw);

}
denom = c * c + d * d;
x = scalbn((a * c + b * d) / denom, -ilogbw);
y = scalbn((b * c - a * d) / denom, -ilogbw);

/* Recover infinities and zeros that computed as NaN+iNaN; */
/* the only cases are nonzero/zero, infinite/finite, and finite/infinite, ... */

if (isnan(x) && isnan(y)) {
if ((denom == 0.0) &&

(!isnan(a) || !isnan(b))) {
x = copysign(INFINITY, c) * a;
y = copysign(INFINITY, c) * b;

}
else if ((isinf(a) || isinf(b)) &&

isfinite(c) && isfinite(d)) {
a = copysign(isinf(a) ? 1.0: 0.0, a);
b = copysign(isinf(b) ? 1.0: 0.0, b);
x = INFINITY * (a * c + b * d);
y = INFINITY * (b * c - a * d);

}
else if ((logbw == INFINITY) &&

isfinite(a) && isfinite(b)) {
c = copysign(isinf(c) ? 1.0: 0.0, c);
d = copysign(isinf(d) ? 1.0: 0.0, d);
x = 0.0 * (a * c + b * d);
y = 0.0 * (b * c - a * d);

}
}
return x + I * y;

}

9 Scaling the denominator alleviates the main overflow and underflow problem, which is more serious than for
multiplication. In the spirit of the preceding multiplication example, this code does not defend against overflow
and underflow in the calculation of the numerator. Scaling with the scalbn function, instead of with division,
provides better roundoff characteristics.

G.5.3 Additive operators
Semantics

1 If both operands have imaginary type, then the result has imaginary type. (If one operand has real
type and the other operand has imaginary type, or if either operand has complex type, then the
result has complex type.)

2 In all cases the result and floating-point exception behavior of a + or - operator is defined by the
usual mathematical formula in Table G.3:

Table G.3 — Results of addition or subtraction operations

+ or - u iv u+ iv

x x±u x±iv (x±u)±iv

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 560

§ G.5.3

ISO/IEC 9899:202y (en) — n3299 working draft

iy ±u+ iy i(y±v) ±u+ i(y±v)
x+ iy (x±u) + iy x+ i(y±v) (x±u) + i(y±v)

G.6 Complex arithmetic <complex.h>
G.6.1 General

1 The macros

imaginary

and

_Imaginary_I

are defined, respectively, as _Imaginary and a constant expression of type float _Imaginary with
the value of the imaginary unit. The macro

I

is defined to be _Imaginary_I (not _Complex_I as stated in 7.3). Notwithstanding the provisions of
7.1.3, a program can undefine and then perhaps redefine the macro imaginary.

2 This subclause contains specifications for the <complex.h> functions that are particularly suited
to ISO/IEC 60559 implementations. For families of functions, the specifications apply to all of the
functions even though only the principal function is shown. Unless otherwise specified, where the
symbol "±" occurs in both an argument and the result, the result has the same sign as the argument.

3 The functions are continuous onto both sides of their branch cuts, taking into account the sign of
zero. For example, csqrt(−2±i0) = ±i

√
2.

4 Since complex and imaginary values are composed of real values, each function can be regarded as
computing real values from real values. Except as noted, the functions treat real infinities, NaNs,
signed zeros, subnormals, and the floating-point exception flags in a manner consistent with the
specifications for real functions in F.10.448)

5 In subsequent subclauses in G.6 "NaN" refers to a quiet NaN. The behavior of signaling NaNs in
this annex is implementation-defined.

6 The functions cimag, conj, cproj, and creal are fully specified for all implementations, including
ISO/IEC 60559 ones, in 7.3.9. These functions raise no floating-point exceptions.

7 Each of the functions cabs and carg is specified by a formula in terms of a real function (whose
special cases are covered in Annex F):

cabs(x+ iy) = hypot(x, y)
carg(x+ iy) = atan2(y, x)

8 Each of the functions casin, catan, ccos, csin, and ctan is specified implicitly by a formula in
terms of other complex functions (whose special cases are specified below):

casin(z) = −i casinh(iz)
catan(z) = −i catanh(iz)
ccos(z) = ccosh(iz)
csin(z) = −i csinh(iz)
ctan(z) = −i ctanh(iz)

9 For the other functions, the following subclauses specify behavior for special cases, including
treatment of the "invalid" and "divide-by-zero" floating-point exceptions. For families of functions,
448)As noted in G.3, a complex value with at least one infinite part is regarded as an infinity even if its other part is a quiet

NaN.

§ G.6.1 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 561

ISO/IEC 9899:202y (en) — n3299 working draft

the specifications apply to all of the functions even though only the principal function is shown. For
a function f satisfying f(conj(z)) = conj(f(z)), the specifications for the upper half-plane imply the
specifications for the lower half-plane; if the function f is also either even, f(−z) = f(z), or odd,
f(−z) = −f(z), then the specifications for the first quadrant imply the specifications for the other
three quadrants.

10 In the following subclauses, cis(y) is defined as cos(y) + i sin(y).

G.6.2 Trigonometric functions
G.6.2.1 The cacos functions

1 — cacos(conj(z)) = conj(cacos(z)).

— cacos(±0 + i0) returns π
2 − i0.

— cacos(±0 + iNaN) returns π
2 + iNaN.

— cacos(x+ i∞) returns π
2 − i∞, for finite x.

— cacos(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for nonzero finite x.

— cacos(−∞+ iy) returns π − i∞, for positive-signed finite y.

— cacos(+∞+ iy) returns +0− i∞, for positive-signed finite y.

— cacos(−∞+ i∞) returns 3π
4 − i∞.

— cacos(+∞+ i∞) returns π
4 − i∞.

— cacos(±∞ + iNaN) returns NaN±i∞ (where the sign of the imaginary part of the result is
unspecified).

— cacos(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite y.

— cacos(NaN + i∞) returns NaN − i∞.

— cacos(NaN + iNaN) returns NaN + iNaN.

G.6.3 Hyperbolic functions
G.6.3.1 The cacosh functions

1 — cacosh(conj(z)) = conj(cacosh(z)).

— cacosh(±0 + i0) returns +0 + iπ
2 .

— cacosh(x+ i∞) returns +∞+ iπ
2 , for finite x.

— cacosh(0 + iNaN) returns NaN± iπ
2 (where the sign of the imaginary part of the result is

unspecified).

— cacosh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite nonzero x.

— cacosh(−∞+ iy) returns +∞+ iπ, for positive-signed finite y.

— cacosh(+∞+ iy) returns +∞+ i0, for positive-signed finite y.

— cacosh(−∞+ i∞) returns +∞+ i 3π4 .

— cacosh(+∞+ i∞) returns +∞+ iπ
4 .

— cacosh(±∞+ iNaN) returns +∞+ iNaN.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 562

§ G.6.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

— cacosh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite y.

— cacosh(NaN + i∞) returns +∞+ iNaN.

— cacosh(NaN + iNaN) returns NaN + iNaN.

G.6.3.2 The casinh functions
1 — casinh(conj(z)) = conj(casinh(z)) and casinh is odd.

— casinh(+0 + i0) returns 0 + i0.

— casinh(x+ i∞) returns +∞+ iπ
2 for positive-signed finite x.

— casinh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite x.

— casinh(+∞+ iy) returns +∞+ i0 for positive-signed finite y.

— casinh(+∞+ i∞) returns +∞+ iπ
4 .

— casinh(+∞+ iNaN) returns +∞+ iNaN.

— casinh(NaN + i0) returns NaN + i0.

— casinh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite nonzero y.

— casinh(NaN + i∞) returns ±∞ + iNaN (where the sign of the real part of the result is
unspecified).

— casinh(NaN + iNaN) returns NaN + iNaN.

G.6.3.3 The catanh functions
1 — catanh(conj(z)) = conj(catanh(z)) and catanh is odd.

— catanh(+0 + i0) returns +0 + i0.

— catanh(+0 + iNaN) returns +0 + iNaN.

— catanh(+1 + i0) returns +∞+ i0 and raises the "divide-by-zero" floating-point exception.

— catanh(x+ i∞) returns +0 + iπ
2 , for finite positive-signed x.

— catanh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for nonzero finite x.

— catanh(+∞+ iy) returns +0 + iπ
2 , for finite positive-signed y.

— catanh(+∞+ i∞) returns +0 + iπ
2 .

— catanh(+∞+ iNaN) returns +0 + iNaN.

— catanh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite y.

— catanh(NaN+ i∞) returns ±0+ iπ
2 (where the sign of the real part of the result is unspecified).

— catanh(NaN + iNaN) returns NaN + iNaN.

§ G.6.3.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 563

ISO/IEC 9899:202y (en) — n3299 working draft

G.6.3.4 The ccosh functions
1 — ccosh(conj(z)) = conj(ccosh(z)) and ccosh is even.

— ccosh(+0 + i0) returns 1 + i0.

— ccosh(+0+ i∞) returns NaN±i0 (where the sign of the imaginary part of the result is unspec-
ified) and raises the "invalid" floating-point exception.

— ccosh(+0 + iNaN) returns NaN±i0 (where the sign of the imaginary part of the result is
unspecified).

— ccosh(x + i∞) returns NaN + iNaN and raises the "invalid" floating-point exception, for
finite nonzero x.

— ccosh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite nonzero x.

— ccosh(+∞+ i0) returns +∞+ i0.

— ccosh(+∞+ iy) returns +∞ cis(y), for finite nonzero y.

— ccosh(+∞+i∞) returns ±∞+iNaN (where the sign of the real part of the result is unspecified)
and raises the "invalid" floating-point exception.

— ccosh(+∞+ iNaN) returns +∞+ iNaN.

— ccosh(NaN + i0) returns NaN±i0 (where the sign of the imaginary part of the result is
unspecified).

— ccosh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for all nonzero numbers y.

— ccosh(NaN + iNaN) returns NaN + iNaN.

G.6.3.5 The csinh functions
1 — csinh(conj(z)) = conj(csinh(z)) and csinh is odd.

— csinh(+0 + i0) returns +0 + i0.

— csinh(+0+ i∞) returns ±0+ iNaN (where the sign of the real part of the result is unspecified)
and raises the "invalid" floating-point exception.

— csinh(+0 + iNaN) returns ±0 + iNaN (where the sign of the real part of the result is unspeci-
fied).

— csinh(x + i∞) returns NaN + iNaN and raises the "invalid" floating-point exception, for
positive finite x.

— csinh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite nonzero x.

— csinh(+∞+ i0) returns +∞+ i0.

— csinh(+∞+ iy) returns +∞ cis(y), for positive finite y.

— csinh(+∞+i∞) returns ±∞+iNaN (where the sign of the real part of the result is unspecified)
and raises the "invalid" floating-point exception.

— csinh(+∞ + iNaN) returns ±∞ + iNaN (where the sign of the real part of the result is
unspecified).

— csinh(NaN + i0) returns NaN + i0.

— csinh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for all nonzero numbers y.

— csinh(NaN + iNaN) returns NaN + iNaN.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 564

§ G.6.3.5

ISO/IEC 9899:202y (en) — n3299 working draft

G.6.3.6 The ctanh functions
1 — ctanh(conj(z)) = conj(ctanh(z)) and ctanh is odd.

— ctanh(+0 + i0) returns +0 + i0.

— ctanh(0 + i∞) returns 0 + iNaN and raises the "invalid" floating-point exception.

— ctanh(x + i∞) returns NaN + iNaN and raises the "invalid" floating-point exception, for
finite nonzero x.

— ctanh(0 + iNaN) returns 0 + iNaN.

— ctanh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite nonzero x.

— ctanh(+∞+ iy) returns 1 + i0 sin(2y), for positive-signed finite y.

— ctanh(+∞+ i∞) returns 1±i0 (where the sign of the imaginary part of the result is unspeci-
fied).

— ctanh(+∞+ iNaN) returns 1±i0 (where the sign of the imaginary part of the result is unspec-
ified).

— ctanh(NaN + i0) returns NaN + i0.

— ctanh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for all nonzero numbers y.

— ctanh(NaN + iNaN) returns NaN + iNaN.

G.6.4 Exponential and logarithmic functions
G.6.4.1 The cexp functions

1 — cexp(conj(z)) = conj(cexp(z)).

— cexp(±0 + i0) returns 1 + i0.

— cexp(x+ i∞) returns NaN + iNaN and raises the "invalid" floating-point exception, for finite
x.

— cexp(x+ iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point excep-
tion, for finite x.

— cexp(+∞+ i0) returns +∞+ i0.

— cexp(−∞+ iy) returns +0 cis(y), for finite y.

— cexp(+∞+ iy) returns +∞ cis(y), for finite nonzero y.

— cexp(−∞+ i∞) returns ±0±i0 (where the signs of the real and imaginary parts of the result
are unspecified).

— cexp(+∞+ i∞) returns ±∞+ iNaN and raises the "invalid" floating-point exception (where
the sign of the real part of the result is unspecified).

— cexp(−∞+ iNaN) returns ±0±i0 (where the signs of the real and imaginary parts of the result
are unspecified).

— cexp(+∞+ iNaN) returns ±∞+ iNaN (where the sign of the real part of the result is unspec-
ified).

— cexp(NaN + i0) returns NaN + i0.

— cexp(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point excep-
tion, for all nonzero numbers y.

— cexp(NaN + iNaN) returns NaN + iNaN.

§ G.6.4.1 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 565

ISO/IEC 9899:202y (en) — n3299 working draft

G.6.4.2 The clog functions
1 — clog(conj(z)) = conj(clog(z)).

— clog(−0 + i0) returns −∞+ iπ and raises the "divide-by-zero" floating-point exception.

— clog(+0 + i0) returns −∞+ i0 and raises the "divide-by-zero" floating-point exception.

— clog(x+ i∞) returns +∞+ iπ
2 , for finite x.

— clog(x+ iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point excep-
tion, for finite x.

— clog(−∞+ iy) returns +∞+ iπ, for finite positive-signed y.

— clog(+∞+ iy) returns +∞+ i0, for finite positive-signed y.

— clog(−∞+ i∞) returns +∞+ i 3π4 .

— clog(+∞+ i∞) returns +∞+ iπ
4 .

— clog(±∞+ iNaN) returns +∞+ iNaN.

— clog(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point excep-
tion, for finite y.

— clog(NaN + i∞) returns +∞+ iNaN.

— clog(NaN + iNaN) returns NaN + iNaN.

G.6.5 Power and absolute-value functions
G.6.5.1 The cpow functions

1 The cpow functions raise floating-point exceptions if appropriate for the calculation of the parts of
the result, and may also raise spurious floating-point exceptions.449)

G.6.5.2 The csqrt functions
1 — csqrt(conj(z)) = conj(csqrt(z)).

— csqrt(±0 + i0) returns +0 + i0.

— csqrt(x+ i∞) returns +∞+ i∞, for all x (including NaN).

— csqrt(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite x.

— csqrt(−∞+ iy) returns +0 + i∞, for finite positive-signed y.

— csqrt(+∞+ iy) returns +∞+ i0, for finite positive-signed y.

— csqrt(−∞ + iNaN) returns NaN±i∞ (where the sign of the imaginary part of the result is
unspecified).

— csqrt(+∞+ iNaN) returns +∞+ iNaN.

— csqrt(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite y.

— csqrt(NaN + iNaN) returns NaN + iNaN.
449)This allows cpow(z, c) to be implemented as cexp(cclog(z)) without precluding implementations that treat special cases

more carefully.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 566

§ G.6.5.2

ISO/IEC 9899:202y (en) — n3299 working draft

G.7 Type-generic math <tgmath.h>
1 Type-generic macros that accept complex arguments also accept imaginary arguments. If an argu-

ment is imaginary, the macro expands to an expression whose type is real, imaginary, or complex, as
appropriate for the particular function: if the argument is imaginary, then the types of cos, cosh,
fabs, carg, cimag, and creal are real; the types of sin, tan, sinh, tanh, asin, atan, asinh, and
atanh are imaginary; and the types of the others are complex.

2 Given an imaginary argument, each of the type-generic macros cos, sin, tan, cosh, sinh, tanh,
asin, atan, asinh, atanh is specified by a formula in terms of real functions:

cos(iy) = cosh(y)
sin(iy) = i sinh(y)
tan(iy) = i tanh(y)
cosh(iy) = cos(y)
sinh(iy) = i sin(y)
tanh(iy) = i tan(y)
asin(iy) = i asinh(y)
atan(iy) = i atanh(y)
asinh(iy) = i asin(y)
atanh(iy) = i atan(y)

§ G.7 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559-compatible complex arithmetic — 567

ISO/IEC 9899:202y (en) — n3299 working draft

Annex H
(normative)

ISO/IEC 60559 interchange and extended types

H.1 Introduction
1 This annex specifies extension types for programming language C that have the arithmetic inter-

change and extended floating-point formats specified in ISO/IEC 60559. This annex also includes
functions that support the non-arithmetic interchange formats in that standard. This annex was
adapted from ISO/IEC TS 18661-3:2015, Floating-point extensions for C —Interchange and extended
types.

2 An implementation that defines __STDC_IEC_60559_TYPES__ to 202ymmL shall conform to the
specifications in this annex. An implementation may define __STDC_IEC_60559_TYPES__ only if it
defines __STDC_IEC_60559_BFP__, indicating support for ISO/IEC 60559 binary floating-point arith-
metic, or defines __STDC_IEC_60559_DFP__, indicating support for ISO/IEC 60559 decimal floating-
point arithmetic (or defines both). Where a binding between the C language and ISO/IEC 60559 is
indicated, the ISO/IEC 60559-specified behavior is adopted by reference, unless stated otherwise.

H.2 Types
H.2.1 General

1 This clause specifies types that support ISO/IEC 60559 arithmetic interchange and extended formats.
The encoding conversion functions (H.11.4) and numeric conversion functions for encodings (H.12.4,
H.12.5) support the non-arithmetic interchange formats specified in ISO/IEC 60559.

H.2.2 Interchange floating types
1 ISO/IEC 60559 specifies interchange formats, and their encodings, which can be used for the

exchange of floating-point data between implementations. These formats are identified by their
radix (binary or decimal) and their storage width N. Table H.1, Table H.2, Table H.3, and Table H.4
give the C floating-point model parameters450) (5.3.5.3.3) for the ISO/IEC 60559 interchange formats,
where the function round() rounds to the nearest integer.

Table H.1 — Binary interchange format parameters

Parameter binary16 binary32 binary64 binary128
N , storage width in bits 16 32 64 128

p, precision in binary digits (bits) 11 24 53 113
emax , maximum exponent e 16 128 1024 16384
emin , minimum exponent e −13 −125 −1021 −16381

Table H.2 — Binary interchange format parameters for arbitrary N

Parameter binaryN (N ≥ 128)
N , storage width in bits N, a multiple of 32

p, precision in binary digits (bits) N − round(4× log2(N)) + 13

emax , maximum exponent e 2(N−p−1)

emin , minimum exponent e 3− emax

450)In ISO/IEC 60559, normal floating-point numbers are expressed with the first significant digit to the left of the radix point.
Hence the exponent in the C model (shown in Table H.1, Table H.2 Table H.3, and Table H.4) is 1 more than the exponent of
the same number in the ISO/IEC 60559 model.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 568

§ H.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

Table H.3 — Decimal interchange format parameters

Parameter decimal32 decimal64 decimal128
N , storage width in bits 32 64 128

p, precision in decimal digits 7 16 34
emax , maximum exponent e 97 385 6145
emin , minimum exponent e −94 −382 −6142

Table H.4 — Decimal interchange format parameters for arbritrary N

Parameter decimalN (N ≥ 32)
N , storage width in bits N, a multiple of 32

p, precision in decimal digits 9× (N ÷ 32)− 2

emax , maximum exponent e 3× 2((N÷16)+3) + 1
emin , minimum exponent e 3− emax

2 EXAMPLE For the binary160 format, p = 144, emax = 32678 and emin = −32765. For the decimal160 format,
p = 43, emax = 24577 and emin = −24574.

3 Types designated:

_FloatN

where N is 16, 32, 64, or ≥ 128 and a multiple of 32; and, types designated

_DecimalN

where N ≥ 32 and a multiple of 32, are collectively called the interchange floating types. Each
interchange floating type has the ISO/IEC 60559 interchange format corresponding to its width (N)
and radix (2 for _FloatN, 10 for _DecimalN). Each interchange floating type is not compatible with
any other type.

4 An implementation that defines __STDC_IEC_60559_BFP__ and __STDC_IEC_60559_TYPES__ shall
provide _Float32 and _Float64 as interchange floating types with the same representation and
alignment requirements as float and double, respectively. If the implementation’s long double
type supports an ISO/IEC 60559 interchange format of width N > 64, then the implementation
shall also provide the type _FloatN as an interchange floating type with the same representation
and alignment requirements as long double. The implementation may provide other radix-2
interchange floating types _FloatN; the set of such types supported is implementation-defined.

5 An implementation that defines __STDC_IEC_60559_DFP__ provides the decimal floating
types _Decimal32, _Decimal64, and _Decimal128 (6.2.5). If the implementation also defines
__STDC_IEC_60559_TYPES__, it may provide other radix-10 interchange floating types _DecimalN;
the set of such types supported is implementation-defined.

H.2.3 Non-arithmetic interchange formats
1 An implementation supports ISO/IEC 60559 non-arithmetic interchange formats by providing the

associated encoding-to-encoding conversion functions (H.11.4.3) in <math.h> and the string-from-
encoding functions (H.12.4) and string-to-encoding functions (H.12.5) in <stdlib.h>.

2 An implementation that defines __STDC_IEC_60559_BFP__ and __STDC_IEC_60559_TYPES__ sup-
ports some ISO/IEC 60559 radix-2 interchange formats as arithmetic formats by providing types
_FloatN (as well as float and double) with those formats. The implementation may support
other ISO/IEC 60559 radix-2 interchange formats as non-arithmetic formats; the set of such formats
supported is implementation-defined.

3 An implementation that defines __STDC_IEC_60559_DFP__ and __STDC_IEC_60559_TYPES__ sup-
ports some ISO/IEC 60559 radix-10 interchange formats as arithmetic formats by providing types

§ H.2.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 569

ISO/IEC 9899:202y (en) — n3299 working draft

_DecimalN with those formats. The implementations may support other ISO/IEC 60559 radix-10
interchange formats as non-arithmetic formats; the set of such formats supported is implementation-
defined.

H.2.4 Extended floating types
1 For each of its basic formats, ISO/IEC 60559 specifies an extended format whose maximum exponent

and precision exceed those of the basic format it is associated with. Extended formats are intended
for arithmetic with more precision and exponent range than is available in the basic formats used
for the input data. The extra precision and range often mitigate round-off error and eliminate
overflow and underflow in intermediate computations. Table H.5 gives the minimum values of these
parameters, as defined for the C floating-point model (5.3.5.3.3). For all ISO/IEC 60559 extended
(and interchange) formats, emin = 3− emax .

Table H.5 — Extended format parameters for floating-point numbers

Extended formats associated with:
Parameter binary32 binary64 binary128 decimal64 decimal128
p digits ≥ 32 64 128 22 40
emax ≥ 1024 16384 65536 6145 24577

2 Types designated _Float32x, _Float64x, _Float128x, _Decimal64x, and _Decimal128x support
the corresponding ISO/IEC 60559 extended formats and are collectively called the extended float-
ing types. The set of values of _Float32x is a subset of the set of values of _Float64x; the set
of values of _Float64x is a subset of the set of values of _Float128x. The set of values of
_Decimal64x is a subset of the set of values of _Decimal128x. Each extended floating type is
not compatible with any other type. An implementation that defines __STDC_IEC_60559_BFP__
and __STDC_IEC_60559_TYPES__ shall provide _Float32x, and may provide one or both of the
types _Float64x and _Float128x. An implementation that defines __STDC_IEC_60559_DFP__ and
__STDC_IEC_60559_TYPES__ shall provide _Decimal64x, and may provide _Decimal128x. Which
(if any) of the optional extended floating types are provided is implementation-defined.

3 NOTE 1 ISO/IEC 60559 does not specify an extended format associated with the decimal32 format, nor does
this annex specify an extended type associated with the _Decimal32 type.

4 NOTE 2 The _Float32x type can have the same format as double. The _Decimal64x type can have the same
format as _Decimal128.

H.2.5 Classification of real floating types
1 6.2.5 defines standard floating types as a collective name for the types float, double and long

double and it defines decimal floating types as a collective name for the types _Decimal32,
_Decimal64, and _Decimal128.

2 H.2.2 defines interchange floating types and H.2.4 defines extended floating types.

3 The types _FloatN and _FloatNx are collectively called binary floating types..

4 This subclause broadens decimal floating types to include the types _DecimalN and _DecimalNx,
introduced in this annex, as well as _Decimal32, _Decimal64, and _Decimal128.

5 This subclause broadens real floating types to include all interchange floating types and extended
floating types, as well as standard floating types.

6 Thus, in this annex, real floating types are classified as follows:

— standard floating types, composed of float, double, long double;

— decimal floating types, composed of _DecimalN, _DecimalNx;

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 570

§ H.2.5

ISO/IEC 9899:202y (en) — n3299 working draft

— binary floating types, composed of _FloatN, _FloatNx;

— interchange floating types, composed of _FloatN, _DecimalN; and,

— extended floating types, composed of _FloatNx, _DecimalNx.

7 NOTE Standard floating types (which have an implementation-defined radix) are not included in either binary
floating types (which always have radix 2) or decimal floating types (which always have radix 10).

H.2.6 Complex types
1 This subclause broadens the C complex types (6.2.5) to also include similar types whose correspond-

ing real parts have binary floating types. For the types _FloatN and _FloatNx, there are complex
types designated respectively as _FloatN _Complex and _FloatNx _Complex. (Complex types are
a conditional feature that implementations are not required to support; see 6.10.10.4.)

H.2.7 Imaginary types
1 This subclause broadens the C imaginary types (G.2) to also include similar types whose corre-

sponding real parts have binary floating types. For the types _FloatN and _FloatNx, there are
imaginary types designated respectively as _FloatN _Imaginary and _FloatNx _Imaginary. The
imaginary types (along with the real floating and complex types) are floating types. (Annex G,
including imaginary types, is a conditional feature that implementations are not required to support;
see 6.10.10.4.)

H.3 Characteristics in <float.h>
1 This subclause enhances the FLT_EVAL_METHOD and DEC_EVAL_METHOD macros to apply to the types

introduced in this annex.

2 If FLT_RADIX is 2, the value of FLT_EVAL_METHOD (5.3.5.3.3) characterizes the use of evaluation
formats for standard floating types and for binary floating types:

-1 indeterminable;

0 evaluate all operations and constants, whose semantic type comprises a set of values
that is a strict subset of the values of float, to the range and precision of float; evaluate
all other operations and constants to the range and precision of the semantic type;

1 evaluate operations and constants, whose semantic type comprises a set of values that
is a strict subset of the values of double, to the range and precision of double; evaluate
all other operations and constants to the range and precision of the semantic type;

2 evaluate operations and constants, whose semantic type comprises a set of values that is
a strict subset of the values of long double, to the range and precision of long double;
evaluate all other operations and constants to the range and precision of the semantic
type;

N where _FloatN is a supported interchange floating type, evaluate operations and
constants, whose semantic type comprises a set of values that is a strict subset of the
values of _FloatN, to the range and precision of _FloatN; evaluate all other operations
and constants to the range and precision of the semantic type;

N + 1 where _FloatNx is a supported extended floating type, evaluate operations and con-
stants, whose semantic type comprises a set of values that is a strict subset of the values
of _FloatNx, to the range and precision of _FloatNx; evaluate all other operations and
constants to the range and precision of the semantic type.

If FLT_RADIX is not 2, the use of evaluation formats for operations and constants of binary floating
types is implementation-defined.

3 The implementation-defined value of DEC_EVAL_METHOD (5.3.5.3.4) characterizes the use of evalua-
tion formats for decimal floating types:

§ H.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 571

ISO/IEC 9899:202y (en) — n3299 working draft

-1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants, whose semantic type comprises a set of values that
is a strict subset of the values of _Decimal64, to the range and precision of _Decimal64;
evaluate all other operations and constants to the range and precision of the semantic
type;

2 evaluate operations and constants, whose semantic type comprises a set of values that is
a strict subset of the values of _Decimal128, to the range and precision of _Decimal128;
evaluate all other operations and constants to the range and precision of the semantic
type;

N where _DecimalN is a supported interchange floating type, evaluate operations and
constants, whose semantic type comprises a set of values that is a strict subset of the
values of _DecimalN, to the range and precision of _DecimalN; evaluate all other
operations and constants to the range and precision of the semantic type;

N + 1 where _DecimalNx is a supported extended floating type, evaluate operations and
constants, whose semantic type comprises a set of values that is a strict subset of the
values of _DecimalNx, to the range and precision of _DecimalNx; evaluate all other
operations and constants to the range and precision of the semantic type.

4 This subclause also specifies <float.h> macros, analogous to the macros for standard floating
types, that characterize binary floating types in terms of the model presented in 5.3.5.3.3. This
subclause generalizes the specification of characteristics in 5.3.5.3.4 to include the decimal floating
types introduced in this annex. The prefix FLTN_ indicates the type _FloatN or the non-arithmetic
binary interchange format of width N . The prefix FLTNX_ indicates the type _FloatNx. The prefix
DECN_ indicates the type _DecimalN or the non-arithmetic decimal interchange format of width
N . The prefix DECNX_ indicates the type _DecimalNx. The type parameters p, emax , and emin for
extended floating types are for the extended floating type itself, not for the basic format that it
extends.

5 If __STDC_WANT_IEC_60559_TYPES_EXT__ is defined (by the user) at the point in the code where
<float.h> is first included, the following applies (H.8). For each interchange or extended floating
type that the implementation provides, <float.h> shall define the associated macros in the follow-
ing lists. Conversely, for each such type that the implementation does not provide, <float.h> shall
not define the associated macros in the following list, except, the implementation shall define the
macros FLTN_DECIMAL_DIG and FLTN_DIG if it supports the ISO/IEC 60559 non-arithmetic binary
interchange format of width N (H.2.3).

6 The signaling NaN macros

FLTN_SNAN
DECN_SNAN
FLTNX_SNAN
DECNX_SNAN

expand to constant expressions of types _FloatN, _DecimalN, _FloatNx, and _DecimalNx respec-
tively, representing a signaling NaN. If an optional unary + or - operator followed by a signaling
NaN macro is used for initializing an object of the same type that has static or thread storage
duration, the object is initialized with a signaling NaN value.

7 The integer values given in the following lists shall be replaced by integer constant expressions:

— radix of exponent representation, b (2 for binary, 10 for decimal)

For the standard floating types, this value is implementation-defined and is specified
by the macro FLT_RADIX. For the interchange and extended floating types there is no
corresponding macro; the radix is an inherent property of the types.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 572

§ H.3

ISO/IEC 9899:202y (en) — n3299 working draft

— The number of bits in the floating-point significand, p

FLTN_MANT_DIG
FLTNX_MANT_DIG

— The number of digits in the coefficient, p

DECN_MANT_DIG
DECNX_MANT_DIG

— number of decimal digits, n, such that any floating-point number with p bits can be rounded
to a floating-point number with n decimal digits and back again without change to the value,
⌈1 + p log10(2)⌉

FLTN_DECIMAL_DIG
FLTNX_DECIMAL_DIG

— number of decimal digits, q, such that any floating-point number with q decimal digits can
be rounded to a floating-point number with p bits and back again without a change to the q
decimal digits, ⌊(p− 1) log10(2)⌋

FLTN_DIG
FLTNX_DIG

— minimum negative integer such that the radix raised to one less than that power is a normalized
floating-point number, emin

FLTN_MIN_EXP
FLTNX_MIN_EXP
DECN_MIN_EXP
DECNX_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers, ⌈ log10(2)emin −1⌉

FLTN_MIN_10_EXP
FLTNX_MIN_10_EXP

— maximum positive integer such that the radix raised to one less than that power is a repre-
sentable finite floating-point number, emax

FLTN_MAX_EXP
FLTNX_MAX_EXP
DECN_MAX_EXP
DECNX_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, ⌊ log10((1− 2−p)2emax)⌋

FLTN_MAX_10_EXP
FLTNX_MAX_10_EXP

— maximum representable finite floating-pointer number, (1− b−p)bemax

FLTN_MAX
FLTNX_MAX
DECN_MAX
DECNX_MAX

§ H.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 573

ISO/IEC 9899:202y (en) — n3299 working draft

— the difference between 1 and the least normalized value greater than 1 that is representable in
the given floating type, b1−p

FLTN_EPSILON
FLTNX_EPSILON
DECN_EPSILON
DECNX_EPSILON

— minimum normalized positive floating-point number, bemin −1

FLTN_MIN
FLTNX_MIN
DECN_MIN
DECNX_MIN

— minimum positive floating-point number, bemin −p

FLTN_TRUE_MIN
FLTNX_TRUE_MIN
DECN_TRUE_MIN
DECNX_TRUE_MIN

H.4 Conversions
H.4.1 General

1 This subclause enhances the usual arithmetic conversions (6.3.2.8) to handle interchange and ex-
tended floating types. It supports the ISO/IEC 60559 recommendation against allowing implicit
conversions of operands to obtain a common type where the conversion is between types where
neither is a subset of (or equivalent to) the other.

2 This subclause also broadens the operation binding in F.3 for the ISO/IEC 60559 convertFormat
operation to apply to ISO/IEC 60559 arithmetic and non-arithmetic formats.

H.4.2 Real floating and integer
1 When a finite value of interchange or extended floating type is converted to an integer type other

than bool, the fractional part is discarded (i.e. the value is truncated toward zero). If the value of
the integral part cannot be represented by the integer type, the "invalid" floating-point exception
shall be raised and the result of the conversion is unspecified.

2 When a value of integer type is converted to an interchange or extended floating type, if the value
being converted can be represented exactly in the new type, it is unchanged. If the value being
converted cannot be represented exactly, the result shall be correctly rounded with exceptions raised
as specified in ISO/IEC 60559.

H.4.3 Usual arithmetic conversions
1 If either operand is of floating type, the common real type is determined as follows:

— If one operand has decimal floating type, the other operand shall not have standard floating
type, binary floating type, complex type, or imaginary type.

— If only one operand has a floating type, the other operand is converted to the corresponding
real type of the operand of floating type.

— If both operands have the same corresponding real type, no further conversion is needed.

— If both operands have floating types and neither of the sets of values of their corresponding
real types is a subset of (or equivalent to) the other, the behavior is undefined.

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 574

§ H.4.3

ISO/IEC 9899:202y (en) — n3299 working draft

— Otherwise, if both operands are floating types and the sets of values of their corresponding
real types are not equivalent, the operand whose set of values of its corresponding real type
is a strict subset of the set of values of the corresponding real type of the other operand is
converted, without change of type domain, to a type with the corresponding real type of that
other operand.

— Otherwise, if both operands are floating types and the sets of values of their corresponding
real types are equivalent, then the following rules are applied:

– If the corresponding real type of either operand is an interchange floating type, the other
operand is converted, without change of type domain, to a type whose corresponding
real type is that same interchange floating type.

– Otherwise, if the corresponding real type of either operand is long double, the other
operand is converted, without change of type domain, to a type whose corresponding
real type is long double.

– Otherwise, if the corresponding real type of either operand is double, the other operand
is converted, without change of type domain, to a type whose corresponding real type is
double.451)

– Otherwise, if the corresponding real type of either operand is _Float128x or
_Decimal128x, the other operand is converted, without change of type domain, to a type
whose corresponding real type is _Float128x or _Decimal128x, respectively.

– Otherwise, if the corresponding real type of either operand is _Float64x or _Decimal64x
, the other operand is converted, without change of type domain, to a type whose
corresponding real type is _Float64x or _Decimal64x, respectively.

H.4.4 Arithmetic and non-arithmetic formats
1 The operation binding in F.3 for the ISO/IEC 60559 convertFormat operation applies to

ISO/IEC 60559 arithmetic and non-arithmetic formats as follows:

— For conversions between arithmetic formats supported by floating types (same or different
radix) – casts and implicit conversions.

— For same-radix conversions between non-arithmetic interchange formats – encoding-to-
encoding conversion functions (H.11.4.3).

— For conversions between non-arithmetic interchange formats (same or different radix) – compo-
sitions of string-from-encoding functions (H.12.4) (converting exactly) and string-to-encoding
functions (H.12.5).

— For same-radix conversions from interchange formats supported by interchange floating types
to non-arithmetic interchange formats – compositions of encode functions (H.11.4.2.2, 7.12.17.2,
7.12.17.4) and encoding-to-encoding functions (H.11.4.3).

— For same radix conversions from non-arithmetic interchange formats to interchange formats
supported by interchange floating types – compositions of encoding-to-encoding conversion
functions (H.11.4.3) and decode functions (H.11.4.2.3, 7.12.17.3, 7.12.17.5). See the example in
H.11.4.3.2.

— For conversions from non-arithmetic interchange formats to arithmetic formats supported
by floating types (same or different radix) – compositions of string-from-encoding functions
(H.12.4) (converting exactly) and numeric conversion functions strtod, etc. (7.24.2.6, 7.24.2.7).
See the example in H.12.3.

— For conversions from arithmetic formats supported by floating types to non-arithmetic in-
terchange formats (same or different radix) – compositions of numeric conversion func-
tions strfromd, etc. (7.24.2.4, 7.24.2.5) (converting exactly) and string-to-encoding functions
(H.12.5).

451)All cases where float is expected to have the same format as another type are covered in the preceding paragraphs.

§ H.4.4 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 575

ISO/IEC 9899:202y (en) — n3299 working draft

H.5 Lexical Elements
H.5.1 Keywords

1 This subclause expands the list of keywords (6.4.2) to also include:

— _FloatN, where N is 16, 32, 64, or ≥ 128 and a multiple of 32

— _Float32x

— _Float64x

— _Float128x

— _DecimalN, where N is 96 or > 128 and a multiple of 32

— _Decimal64x

— _Decimal128x

H.5.2 Constants
1 This subclause specifies constants of interchange and extended floating types.

2 This subclause expands floating-suffix (6.4.5.3) to also include: fN, FN, fNx, FNx, dN, DN, dNx, or
DNx.

3 A floating suffix dN, DN, dNx, or DNx shall not be used in a hexadecimal-floating-constant.

4 A floating suffix shall not designate a type that the implementation does not provide.

5 If a floating constant is suffixed by fN or FN, it has type _FloatN. If suffixed by fNx or FNx, it has
type _FloatNx. If suffixed by dN or DN, it has type _DecimalN. If suffixed by dNx or DNx, it has
type _DecimalNx.

6 The quantum exponent of a floating constant of decimal floating type is the same as for the result
value of the corresponding strtodN or strtodNx function (H.12.3) for the same numeric string.

7 NOTE For N = 32, 64, and 128, the suffixes dN and DN in this subclause for constants of type _DecimalN are
equivalent alternatives to the suffixes df, dd, dl, DF, DD, and DL in 6.4.5.3 for the same types.

H.6 Expressions
1 This subclause expands the specification of expressions to also cover interchange and extended

floating types.

2 Operators involving operands of interchange or extended floating type are evaluated according to
the semantics of ISO/IEC 60559, including production of decimal floating-point results with the
preferred quantum exponent as specified in ISO/IEC 60559 (see 5.3.5.3.4).

3 For multiplicative operators (6.5.6), additive operators (6.5.7), relational operators (6.5.9), equality
operators (6.5.10), and compound assignment operators (6.5.17.3), if either operand has decimal
floating type, the other operand shall not have standard floating type, binary floating type, complex
type, or imaginary type.

4 For conditional operators (6.5.16), if the second or third operand has decimal floating type, the
other of those operands shall not have standard floating type, binary floating type, complex type, or
imaginary type.

5 The equivalence of expressions noted in F.9.3 apply to expressions of binary floating types, as well
as standard floating types.

H.7 Declarations
1 This subclause expands the list of type specifiers (6.7.3) to also include:

— _FloatN, where N is 16, 32, 64, or ≥ 128 and a multiple of 32

— _Float32x

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 576

§ H.7

ISO/IEC 9899:202y (en) — n3299 working draft

— _Float64x

— _Float128x

— _DecimalN, where N is 96 or > 128 and a multiple of 32

— _Decimal64x

— _Decimal128x

2 The type specifiers _FloatN (where N is 16, 32, 64, or ≥ 128 and a multiple of 32), _Float32x,
_Float64x, _Float128x, _DecimalN (where N is 96 or > 128 and a multiple of 32), _Decimal64x,
and _Decimal128x shall not be used if the implementation does not support the corresponding
types (see 6.10.10.4 and H.2).

3 This subclause also expands the list under Constraints in 6.7.3 to also include:

— _FloatN, where N is 16, 32, 64, or ≥ 128 and a multiple of 32

— _Float32x

— _Float64x

— _Float128x

— _DecimalN, where N is 96 or > 128 and a multiple of 32

— _Decimal64x

— _Decimal128x

— _FloatN _Complex, where N is 16, 32, 64, or ≥ 128 and a multiple of 32

— _Float32x _Complex

— _Float64x _Complex

— _Float128x _Complex

H.8 Identifiers in standard headers
1 The identifiers added to library headers by this annex are defined or declared by their respective

headers only if the macro __STDC_WANT_IEC_60559_TYPES_EXT__ is defined (by the user) at the
point in the code where the appropriate header is first included.

H.9 Complex arithmetic <complex.h>
1 This subclause specifies complex functions for corresponding real types that are binary floating

types.

2 Each function synopsis in 7.3 specifies a family of functions including a principal function with
one or more double complex parameters and a double complex or double return value. This
subclause expands the synopsis to also include other functions, with the same name as the principal
function but with fN and fNx suffixes, which are corresponding functions whose parameters and
return values have corresponding real types _FloatN and _FloatNx.

3 The following function prototypes are added to the synopses of the respective subclauses in 7.3.
For each binary floating type that the implementation provides, <complex.h> shall declare the
associated functions (see H.8). Conversely, for each such type that the implementation does not
provide, <complex.h> shall not declare the associated functions.

7.3.5 Trigonometric functions

§ H.9 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 577

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatN complex cacosfN(_FloatN complex z);
_FloatNx complex cacosfNx(_FloatNx complex z);
_FloatN complex casinfN(_FloatN complex z);
_FloatNx complex casinfNx(_FloatNx complex z);
_FloatN complex catanfN(_FloatN complex z);
_FloatNx complex catanfNx(_FloatNx complex z);
_FloatN complex ccosfN(_FloatN complex z);
_FloatNx complex ccosfNx(_FloatNx complex z);
_FloatN complex csinfN(_FloatN complex z);
_FloatNx complex csinfNx(_FloatNx complex z);
_FloatN complex ctanfN(_FloatN complex z);
_FloatNx complex ctanfNx(_FloatNx complex z);

7.3.6 Hyperbolic functions

_FloatN complex cacoshfN(_FloatN complex z);
_FloatNx complex cacoshfNx(_FloatNx complex z);
_FloatN complex casinhfN(_FloatN complex z);
_FloatNx complex casinhfNx(_FloatNx complex z);
_FloatN complex catanhfN(_FloatN complex z);
_FloatNx complex catanhfNx(_FloatNx complex z);
_FloatN complex ccoshfN(_FloatN complex z);
_FloatNx complex ccoshfNx(_FloatNx complex z);
_FloatN complex csinhfN(_FloatN complex z);
_FloatNx complex csinhfNx(_FloatNx complex z);
_FloatN complex ctanhfN(_FloatN complex z);
_FloatNx complex ctanhfNx(_FloatNx complex z);

7.3.7 Exponential and logarithmic functions

_FloatN complex cexpfN(_FloatN complex z);
_FloatNx complex cexpfNx(_FloatNx complex z);
_FloatN complex clogfN(_FloatN complex z);
_FloatNx complex clogfNx(_FloatNx complex z);

7.3.8 Power and absolute value functions

_FloatN cabsfN(_FloatN complex z);
_FloatNx cabsfNx(_FloatNx complex z);
_FloatN complex cpowfN(_FloatN complex x, _FloatN complex y);
_FloatNx complex cpowfNx(_FloatNx complex x, _FloatNx complex y);
_FloatN complex csqrtfN(_FloatN complex z);
_FloatNx complex csqrtfNx(_FloatNx complex z);

7.3.9 Manipulation functions

_FloatN cargfN(_FloatN complex z);
_FloatNx cargfNx(_FloatNx complex z);
_FloatN cimagfN(_FloatN complex z);
_FloatNx cimagfNx(_FloatNx complex z);
_FloatN complex CMPLXFN(_FloatN x, _FloatN y);
_FloatNx complex CMPLXFNX(_FloatNx x, _FloatNx y);
_FloatN complex conjfN(_FloatN complex z);
_FloatNx complex conjfNx(_FloatNx complex z);
_FloatN complex cprojfN(_FloatN complex z);
_FloatNx complex cprojfNx(_FloatNx complex z);
_FloatN crealfN(_FloatN complex z);
_FloatNx crealfNx(_FloatNx complex z);

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 578

§ H.9

ISO/IEC 9899:202y (en) — n3299 working draft

4 For the functions listed in "future library directions" for <complex.h> (7.33.2), the possible suffixes
are expanded to also include fN and fNx.

H.10 Floating-point environment
1 This subclause broadens the effects of the floating-point environment (7.6) to apply to types and

formats specified in this annex.

2 The same floating-point status flags are used by floating-point operations for all floating types,
including those types introduced in this annex, and by conversions for ISO/IEC 60559 non-arithmetic
interchange formats.

3 Both the dynamic rounding direction mode accessed by fegetround and fesetround and the
FENV_ROUND rounding control pragma apply to operations for binary floating types, as well as
for standard floating types, and also to conversions for radix-2 non-arithmetic interchange for-
mats. Likewise, both the dynamic rounding direction mode accessed by fe_dec_getround and
fe_dec_setround and the FENV_DEC_ROUND rounding control pragmas apply to operations for all
the decimal floating types, including those decimal floating types introduced in this annex, and to
conversions for radix-10 non-arithmetic interchange formats.

4 Table 7.1, which describes functions affected by constant rounding modes for standard floating types,
applies also for binary floating types. Each <math.h> function family listed in the table indicates
the family of functions of all standard and binary floating types (for example, the acos family
includes acosf, acosl, acosfN, and acosfNx as well as acos). The fMencfN, strfromencfN, and
strtoencfN functions are also affected by these constant rounding modes.

5 Table 7.2, which desctibes functions affected by constant rounding modes for decimal floating
types, each <math.h> function family indicates the family of functions of all decimal floating types
(for example, the acos family includes acosdN and acosdNx). The dMencbindN, dMencdecdN,
strfromencbindN, strfromencdecdN, strtoencbindN, and strtoencdecdN functions are also
affected by these constant rounding modes.

H.11 Mathematics <math.h>
H.11.1 General

1 This subclause specifies types, functions, and macros for interchange and extended floating types,
generally corresponding to those specified in 7.12 and F.10.

2 All classification macros (7.12.4) and comparison macros (7.12.18) naturally extend to handle inter-
change and extended floating types. For comparison macros, if neither of the sets of values of the
argument formats is a subset of (or equivalent to) the other, the behavior is undefined.

3 This subclause also specifies encoding conversion functions that are part of support for the non-
arithmetic interchange formats in ISO/IEC 60559 (see H.2.3).

4 Most function synopses in 7.12 specify a family of functions including a principal function with
one or more double parameters, a double return value, or both. The synopses are expanded to also
include functions with the same name as the principal function but with fN, fNx, dN, and dNx
suffixes, which are corresponding functions whose parameters, return values, or both are of types
_FloatN, _FloatNx, _DecimalN, and _DecimalNx, respectively.

5 For each interchange or extended floating type that the implementation provides, <math.h> shall
define the associated types and macros and declare the associated functions (see H.8). Conversely, for
each such type that the implementation does not provide, <math.h> shall not define the associated
types and macros or declare the associated functions unless explicitly specified otherwise.

6 With the types

float_t
double_t

in 7.12 are included the type

§ H.11.1 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 579

ISO/IEC 9899:202y (en) — n3299 working draft

long_double_t

and for each supported type _FloatN, the type

_FloatN_t

and for each supported type _DecimalN, the type

_DecimalN_t

These are floating types, such that:

— the values of long double are a subset of the values of long_double_t;

— the values of _FloatN are a subset of the values of _FloatN_t;

— the values of _DecimalN are a subset of the values of _DecimalN_t;

— the values of double_t are a subset of the values of long_double_t;

— the values of _FloatM_t are a subset of the values of _FloatN_t if M < N ;

— the values of _DecimalM_t are a subset of the values of _DecimalN_t if M < N .

If FLT_RADIX is 2 and FLT_EVAL_METHOD (H.3) is nonnegative, then each of the types corresponding
to a standard or binary floating type is the type whose range and precision are specified by
FLT_EVAL_METHOD to be used for evaluating operations and constants of that standard or binary
floating type. If DEC_EVAL_METHOD (H.3) is nonnegative, then each of the types corresponding to a
decimal floating type is the type whose range and precision are specified by DEC_EVAL_METHOD to
be used for evaluating operations and constants of that decimal floating type.

7 EXAMPLE If the supported standard and binary floating types are as shown in Table H.6:

Table H.6 — Example supported types

Type ISO/IEC 60559 format
_Float16 binary16

float, _Float32 binary32
double, _Float64, _Float32x binary64
long double, _Float64x 80-bit binary64-extended

_Float128 binary128

then Table H.7 gives the types with _t suffixes for various values for a FLT_EVAL_METHOD of a given value m:

Table H.7 — _t type (vertical) vs. m (horizontal) relation

m
_t type 0 1 2 32

_Float16_t float double long double _Float32
float_t float double long double float

_Float32_t _Float32 double long double _Float32
double_t double double long double double

_Float64_t _Float64 _Float64 long double _Float64
long_double_t long double long double long double long double
_Float128_t _Float128 _Float128 _Float128 _Float128

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 580

§ H.11.1

ISO/IEC 9899:202y (en) — n3299 working draft

m
_t type 64 128 33 65

_Float16_t _Float64 _Float128 _Float32x _Float64x
float_t _Float64 _Float128 _Float32x _Float64x

_Float32_t _Float64 _Float128 _Float32x _Float64x
double_t double _Float128 double _Float64x

_Float64_t _Float64 _Float128 _Float64 _Float64x
long_double_t long double _Float128 long double long double
_Float128_t _Float128 _Float128 _Float128 _Float128

H.11.2 Macros
1 This subclause adds macros in 7.12 as follows.

2 The macros

HUGE_VAL_FN
HUGE_VAL_DN
HUGE_VAL_FNX
HUGE_VAL_DNX

expand to constant expressions of types _FloatN, _DecimalN, _FloatNx, and _DecimalNx, re-
spectively, representing positive infinity.

3 The macros

FP_FAST_FMAFN
FP_FAST_FMADN
FP_FAST_FMAFNX
FP_FAST_FMADNX

are, respectively, _FloatN, _DecimalN, _FloatNx, and _DecimalNx analogues of FP_FAST_FMA.

4 The macros in the following lists are interchange and extended floating type analogues of
FP_FAST_FADD, FP_FAST_FADDL, FP_FAST_DADDL, etc.

5 For M < N , the macros

FP_FAST_FMADDFN
FP_FAST_FMSUBFN
FP_FAST_FMMULFN
FP_FAST_FMDIVFN
FP_FAST_FMFMAFN
FP_FAST_FMSQRTFN
FP_FAST_DMADDDN
FP_FAST_DMSUBDN
FP_FAST_DMMULDN
FP_FAST_DMDIVDN
FP_FAST_DMFMADN
FP_FAST_DMSQRTDN

characterize the corresponding functions whose arguments are of an interchange floating type of
width N and whose return type is an interchange floating type of width M .

6 For M ≤ N , the macros

FP_FAST_FMADDFNX
FP_FAST_FMSUBFNX
FP_FAST_FMMULFNX
FP_FAST_FMDIVFNX
FP_FAST_FMFMAFNX
FP_FAST_FMSQRTFNX

§ H.11.2 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 581

ISO/IEC 9899:202y (en) — n3299 working draft

FP_FAST_DMADDDNX
FP_FAST_DMSUBDNX
FP_FAST_DMMULDNX
FP_FAST_DMDIVDNX
FP_FAST_DMFMADNX
FP_FAST_DMSQRTDNX

characterize the corresponding functions whose arguments are of an extended floating type that
extends a format of width N and whose return type is an interchange floating type of width M .

7 For M < N , the macros

FP_FAST_FMXADDFN
FP_FAST_FMXSUBFN
FP_FAST_FMXMULFN
FP_FAST_FMXDIVFN
FP_FAST_FMXFMAFN
FP_FAST_FMXSQRTFN
FP_FAST_DMXADDDN
FP_FAST_DMXSUBDN
FP_FAST_DMXMULDN
FP_FAST_DMXDIVDN
FP_FAST_DMXFMADN
FP_FAST_DMXSQRTDN

characterize the corresponding functions whose arguments are of an interchange floating type of
width N and whose return type is an extended floating type that extends a format of width M .

8 For M < N , the macros

FP_FAST_FMXADDFNX
FP_FAST_FMXSUBFNX
FP_FAST_FMXMULFNX
FP_FAST_FMXDIVFNX
FP_FAST_FMXFMAFNX
FP_FAST_FMXSQRTFNX
FP_FAST_DMXADDDNX
FP_FAST_DMXSUBDNX
FP_FAST_DMXMULDNX
FP_FAST_DMXDIVDNX
FP_FAST_DMXFMADNX
FP_FAST_DMXSQRTDNX

characterize the corresponding functions whose arguments are of an extended floating type that
extends a format of width N and whose return type is an extended floating type that extends a
format of width M .

H.11.3 Functions
1 This subclause adds the following functions to the synopses of the respective subclauses in 7.12.

7.12.5 Trigonometric functions

_FloatN acosfN(_FloatN x);
_FloatNx acosfNx(_FloatNx x);
_DecimalN acosdN(_DecimalN x);
_DecimalNx acosdNx(_DecimalNx x);

_FloatN asinfN(_FloatN x);
_FloatNx asinfNx(_FloatNx x);
_DecimalN asindN(_DecimalN x);
_DecimalNx asindNx(_DecimalNx x);

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 582

§ H.11.3

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatN atanfN(_FloatN x);
_FloatNx atanfNx(_FloatNx x);
_DecimalN atandN(_DecimalN x);
_DecimalNx atandNx(_DecimalNx x);

_FloatN atan2fN(_FloatN y, _FloatN x);
_FloatNx atan2fNx(_FloatNx y, _FloatNx x);
_DecimalN atan2dN(_DecimalN y, _DecimalN x);
_DecimalNx atan2dNx(_DecimalNx y, _DecimalNx x);

_FloatN cosfN(_FloatN x);
_FloatNx cosfNx(_FloatNx x);
_DecimalN cosdN(_DecimalN x);
_DecimalNx cosdNx(_DecimalNx x);

_FloatN sinfN(_FloatN x);
_FloatNx sinfNx(_FloatNx x);
_DecimalN sindN(_DecimalN x);
_DecimalNx sindNx(_DecimalNx x);

_FloatN tanfN(_FloatN x);
_FloatNx tanfNx(_FloatNx x);
_DecimalN tandN(_DecimalN x);
_DecimalNx tandNx(_DecimalNx x);

_FloatN acospifN(_FloatN x);
_FloatNx acospifNx(_FloatNx x);
_DecimalN acospidN(_DecimalN x);
_DecimalNx acospidNx(_DecimalNx x);

_FloatN asinpifN(_FloatN x);
_FloatNx asinpifNx(_FloatNx x);
_DecimalN asinpidN(_DecimalN x);
_DecimalNx asinpidNx(_DecimalNx x);

_FloatN atanpifN(_FloatN x);
_FloatNx atanpifNx(_FloatNx x);
_DecimalN atanpidN(_DecimalN x);
_DecimalNx atanpidNx(_DecimalNx x);

_FloatN atan2pifN(_FloatN y, _FloatN x);
_FloatNx atan2pifNx(_FloatNx y, _FloatNx x);
_DecimalN atan2pidN(_DecimalN y, _DecimalN x);
_DecimalNx atan2pidNx(_DecimalNx y, _DecimalNx x);

_FloatN cospifN(_FloatN x);
_FloatNx cospifNx(_FloatNx x);
_DecimalN cospidN(_DecimalN x);
_DecimalNx cospidNx(_DecimalNx x);

_FloatN sinpifN(_FloatN x);
_FloatNx sinpifNx(_FloatNx x);
_DecimalN sinpidN(_DecimalN x);
_DecimalNx sinpidNx(_DecimalNx x);

_FloatN tanpifN(_FloatN x);
_FloatNx tanpifNx(_FloatNx x);
_DecimalN tanpidN(_DecimalN x);
_DecimalNx tanpidNx(_DecimalNx x);

§ H.11.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 583

ISO/IEC 9899:202y (en) — n3299 working draft

7.12.6 Hyperbolic functions

_FloatN acoshfN(_FloatN x);
_FloatNx acoshfNx(_FloatNx x);
_DecimalN acoshdN(_DecimalN x);
_DecimalNx acoshdNx(_DecimalNx x);

_FloatN asinhfN(_FloatN x);
_FloatNx asinhfNx(_FloatNx x);
_DecimalN asinhdN(_DecimalN x);
_DecimalNx asinhdNx(_DecimalNx x);

_FloatN atanhfN(_FloatN x);
_FloatNx atanhfNx(_FloatNx x);
_DecimalN atanhdN(_DecimalN x);
_DecimalNx atanhdNx(_DecimalNx x);

_FloatN coshfN(_FloatN x);
_FloatNx coshfNx(_FloatNx x);
_DecimalN coshdN(_DecimalN x);
_DecimalNx coshdNx(_DecimalNx x);

_FloatN sinhfN(_FloatN x);
_FloatNx sinhfNx(_FloatNx x);
_DecimalN sinhdN(_DecimalN x);
_DecimalNx sinhdNx(_DecimalNx x);

_FloatN tanhfN(_FloatN x);
_FloatNx tanhfNx(_FloatNx x);
_DecimalN tanhdN(_DecimalN x);
_DecimalNx tanhdNx(_DecimalNx x);

7.12.7 Exponential and logarithmic functions

_FloatN expfN(_FloatN x);
_FloatNx expfNx(_FloatNx x);
_DecimalN expdN(_DecimalN x);
_DecimalNx expdNx(_DecimalNx x);

_FloatN exp10fN(_FloatN x);
_FloatNx exp10fNx(_FloatNx x);
_DecimalN exp10dN(_DecimalN x);
_DecimalNx exp10dNx(_DecimalNx x);

_FloatN exp10m1fN(_FloatN x);
_FloatNx exp10m1fNx(_FloatNx x);
_DecimalN exp10m1dN(_DecimalN x);
_DecimalNx exp10m1dNx(_DecimalNx x);

_FloatN exp2fN(_FloatN x);
_FloatNx exp2fNx(_FloatNx x);
_DecimalN exp2dN(_DecimalN x);
_DecimalNx exp2dNx(_DecimalNx x);

_FloatN exp2m1fN(_FloatN x);
_FloatNx exp2m1fNx(_FloatNx x);
_DecimalN exp2m1dN(_DecimalN x);
_DecimalNx exp2m1dNx(_DecimalNx x);

_FloatN expm1fN(_FloatN x);
_FloatNx expm1fNx(_FloatNx x);

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 584

§ H.11.3

ISO/IEC 9899:202y (en) — n3299 working draft

_DecimalN expm1dN(_DecimalN x);
_DecimalNx expm1dNx(_DecimalNx x);

_FloatN frexpfN(_FloatN value, int *exp);
_FloatNx frexpfNx(_FloatNx value, int *exp);
_DecimalN frexpdN(_DecimalN value, int *exp);
_DecimalNx frexpdNx(_DecimalNx value, int *exp);

int ilogbfN(_FloatN x);
int ilogbfNx(_FloatNx x);
int ilogbdN(_DecimalNx x);
int ilogbdNx(_DecimalNx x);

_FloatN ldexpfN(_FloatN value, int exp);
_FloatNx ldexpfNx(_FloatNx value, int exp);
_DecimalN ldexpdN(_DecimalN value, int exp);
_DecimalNx ldexpdNx(_DecimalNx value, int exp);

long int llogbfN(_FloatN x);
long int llogbfNx(_FloatNx x);
long int llogbdN(_DecimalN x);
long int llogbdNx(_DecimalNx x);

_FloatN logfN(_FloatN x);
_FloatNx logfNx(_FloatNx x);
_DecimalN logdN(_DecimalN x);
_DecimalNx logdNx(_DecimalNx x);

_FloatN log10fN(_FloatN x);
_FloatNx log10fNx(_FloatNx x);
_DecimalN log10dN(_DecimalN x);
_DecimalNx log10dNx(_DecimalNx x);

_FloatN log10p1fN(_FloatN x);
_FloatNx log10p1fNx(_FloatNx x);
_DecimalN log10p1dN(_DecimalN x);
_DecimalNx log10p1dNx(_DecimalNx x);

_FloatN log1pfN(_FloatN x);
_FloatNx log1pfNx(_FloatNx x);
_FloatN logp1fN(_FloatN x);
_FloatNx logp1fNx(_FloatNx x);
_DecimalN log1pdN(_DecimalN x);
_DecimalNx log1pdNx(_DecimalNx x);
_DecimalN logp1dN(_DecimalN x);
_DecimalNx logp1dNx(_DecimalNx x);

_FloatN log2fN(_FloatN x);
_FloatNx log2fNx(_FloatNx x);
_DecimalN log2dN(_DecimalN x);
_DecimalNx log2dNx(_DecimalNx x);

_FloatN log2p1fN(_FloatN x);
_FloatNx log2p1fNx(_FloatNx x);
_DecimalN log2p1dN(_DecimalN x);
_DecimalNx log2p1dNx(_DecimalNx x);

_FloatN logbfN(_FloatN x);
_FloatNx logbfNx(_FloatNx x);
_DecimalN logbdN(_DecimalN x);
_DecimalNx logbdNx(_DecimalNx x);

§ H.11.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 585

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatN modffN(_FloatN x, _FloatN *iptr);
_FloatNx modffNx(_FloatNx x, _FloatNx *iptr);
_DecimalN modfdN(_DecimalN x, _DecimalN *iptr);
_DecimalNx modfdNx(_DecimalNx x, _DecimalNx *iptr);

_FloatN scalbnfN(_FloatN value, int exp);
_FloatNx scalbnfNx(_FloatNx value, int exp);
_DecimalN scalbndN(_DecimalN value, int exp);
_DecimalNx scalbndNx(_DecimalNx value, int exp);

_FloatN scalblnfN(_FloatN value, long int exp);
_FloatNx scalblnfNx(_FloatNx value, long int exp);
_DecimalN scalblndN(_DecimalN value, long int exp);
_DecimalNx scalblndNx(_DecimalNx value, long int exp);

7.12.8 Power and absolute-value functions

_FloatN cbrtfN(_FloatN x);
_FloatNx cbrtfNx(_FloatNx x);
_DecimalN cbrtdN(_DecimalN x);
_DecimalNx cbrtdNx(_DecimalNx x);

_FloatN compoundnfN(_FloatN x, long long int n);
_FloatNx compoundnfNx(_FloatNx x, long long int n);
_DecimalN compoundndN(_DecimalN x, long long int n);
_DecimalNx compoundndNx(_DecimalNx x, long long int n);

_FloatN fabsfN(_FloatN x);
_FloatNx fabsfNx(_FloatNx x);
_DecimalN fabsdN(_DecimalN x);
_DecimalNx fabsdNx(_DecimalNx x);

_FloatN hypotfN(_FloatN x, _FloatN y);
_FloatNx hypotfNx(_FloatNx x, _FloatNx y);
_DecimalN hypotdN(_DecimalN x, _DecimalN y);
_DecimalNx hypotdNx(_DecimalNx x, _DecimalNx y);

_FloatN powfN(_FloatN x, _FloatN y);
_FloatNx powfNx(_FloatNx x, _FloatNx y);
_DecimalN powdN(_DecimalN x, _DecimalN y);
_DecimalNx powdNx(_DecimalNx x, _DecimalNx y);

_FloatN pownfN(_FloatN x, long long int n);
_FloatNx pownfNx(_FloatNx x, long long int n);
_DecimalN powndN(_DecimalN x, long long int n);
_DecimalNx powndNx(_DecimalNx x, long long int n);

_FloatN powrfN(_FloatN x, _FloatN y);
_FloatNx powrfNx(_FloatNx x, _FloatNx y);
_DecimalN powrdN(_DecimalN x, _DecimalN y);
_DecimalNx powrdNx(_DecimalNx x, _DecimalNx y);

_FloatN rootnfN(_FloatN x, long long int n);
_FloatNx rootnfNx(_FloatNx x, long long int n);
_DecimalN rootndN(_DecimalN x, long long int n);
_DecimalNx rootndNx(_DecimalNx x, long long int n);

_FloatN rsqrtfN(_FloatN x);
_FloatNx rsqrtfNx(_FloatNx x);
_DecimalN rsqrtdN(_DecimalN x);

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 586

§ H.11.3

ISO/IEC 9899:202y (en) — n3299 working draft

_DecimalNx rsqrtdNx(_DecimalNx x);

_FloatN sqrtfN(_FloatN x);
_FloatNx sqrtfNx(_FloatNx x);
_DecimalN sqrtdN(_DecimalN x);
_DecimalNx sqrtdNx(_DecimalNx x);

7.12.9 Error and gamma functions

_FloatN erffN(_FloatN x);
_FloatNx erffNx(_FloatNx x);
_DecimalN erfdN(_DecimalN x);
_DecimalNx erfdNx(_DecimalNx x);

_FloatN erfcfN(_FloatN x);
_FloatNx erfcfNx(_FloatNx x);
_DecimalN erfcdN(_DecimalN x);
_DecimalNx erfcdNx(_DecimalNx x);

_FloatN lgammafN(_FloatN x);
_FloatNx lgammafNx(_FloatNx x);
_DecimalN lgammadN(_DecimalN x);
_DecimalNx lgammadNx(_DecimalNx x);

_FloatN tgammafN(_FloatN x);
_FloatNx tgammafNx(_FloatNx x);
_DecimalN tgammadN(_DecimalN x);
_DecimalNx tgammadNx(_DecimalNx x);

7.12.10 Nearest integer functions

_FloatN ceilfN(_FloatN x);
_FloatNx ceilfNx(_FloatNx x);
_DecimalN ceildN(_DecimalN x);
_DecimalNx ceildNx(_DecimalNx x);

_FloatN floorfN(_FloatN x);
_FloatNx floorfNx(_FloatNx x);
_DecimalN floordN(_DecimalN x);
_DecimalNx floordNx(_DecimalNx x);

_FloatN nearbyintfN(_FloatN x);
_FloatNx nearbyintfNx(_FloatNx x);
_DecimalN nearbyintdN(_DecimalN x);
_DecimalNx nearbyintdNx(_DecimalNx x);

_FloatN rintfN(_FloatN x);
_FloatNx rintfNx(_FloatNx x);
_DecimalN rintdN(_DecimalN x);
_DecimalNx rintdNx(_DecimalNx x);

long int lrintfN(_FloatN x);
long int lrintfNx(_FloatNx x);
long int lrintdN(_DecimalN x);
long int lrintdNx(_DecimalNx x);

long long int llrintfN(_FloatN x);
long long int llrintfNx(_FloatNx x);
long long int llrintdN(_DecimalN x);
long long int llrintdNx(_DecimalNx x);

§ H.11.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 587

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatN roundfN(_FloatN x);
_FloatNx roundfNx(_FloatNx x);
_DecimalN rounddN(_DecimalN x);
_DecimalNx rounddNx(_DecimalNx x);

long int lroundfN(_FloatN x);
long int lroundfNx(_FloatNx x);
long int lrounddN(_DecimalN x);
long int lrounddNx(_DecimalNx x);

long long int llroundfN(_FloatN x);
long long int llroundfNx(_FloatNx x);
long long int llrounddN(_DecimalN x);
long long int llrounddNx(_DecimalNx x);

_FloatN roundevenfN(_FloatN x);
_FloatNx roundevenfNx(_FloatNx x);
_DecimalN roundevendN(_DecimalN x);
_DecimalNx roundevendNx(_DecimalNx x);

_FloatN truncfN(_FloatN x);
_FloatNx truncfNx(_FloatNx x);
_DecimalN truncdN(_DecimalN x);
_DecimalNx truncdNx(_DecimalNx x);

_FloatN fromfpfN(_FloatN x, int rnd, unsigned int width);
_FloatNx fromfpfNx(_FloatNx x, int rnd, unsigned int width);
_DecimalN fromfpdN(_DecimalN x, int rnd, unsigned int width);
_DecimalNx fromfpdNx(_DecimalNx x, int rnd, unsigned int width);
_FloatN ufromfpfN(_FloatN x, int rnd, unsigned int width);
_FloatNx ufromfpfNx(_FloatNx x, int rnd, unsigned int width);
_DecimalN ufromfpdN(_DecimalN x, int rnd, unsigned int width);
_DecimalNx ufromfpdNx(_DecimalNx x, int rnd, unsigned int width);

_FloatN fromfpxfN(_FloatN x, int rnd, unsigned int width);
_FloatNx fromfpxfNx(_FloatNx x, int rnd, unsigned int width);
_DecimalN fromfpxdN(_DecimalN x, int rnd, unsigned int width);
_DecimalNx fromfpxdNx(_DecimalNx x, int rnd, unsigned int width);
_FloatN ufromfpxfN(_FloatN x, int rnd, unsigned int width);
_FloatNx ufromfpxfNx(_FloatNx x, int rnd, unsigned int width);
_DecimalN ufromfpxdN(_DecimalN x, int rnd, unsigned int width);
_DecimalNx ufromfpxdNx(_DecimalNx x, int rnd, unsigned int width);

7.12.11.2 Remainder functions

_FloatN fmodfN(_FloatN x, _FloatN y);
_FloatNx fmodfNx(_FloatNx x, _FloatNx y);
_DecimalN fmoddN(_DecimalN x, _DecimalN y);
_DecimalNx fmoddNx(_DecimalNx x, _DecimalNx y);

_FloatN remainderfN(_FloatN x, _FloatN y);
_FloatNx remainderfNx(_FloatNx x, _FloatNx y);
_DecimalN remainderdN(_DecimalN x, _DecimalN y);
_DecimalNx remainderdNx(_DecimalNx x, _DecimalNx y);

_FloatN remquofN(_FloatN x, _FloatN y, int *quo);
_FloatNx remquofNx(_FloatNx x, _FloatNx y, int *quo);

7.12.12 Manipulation functions

_FloatN copysignfN(_FloatN x, _FloatN y);

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 588

§ H.11.3

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatNx copysignfNx(_FloatNx x, _FloatNx y);
_DecimalN copysigndN(_DecimalN x, _DecimalN y);
_DecimalNx copysigndNx(_DecimalNx x, _DecimalNx y);

_FloatN nanfN(const char *tagp);
_FloatNx nanfNx(const char *tagp);
_DecimalN nandN(const char *tagp);
_DecimalNx nandNx(const char *tagp);

_FloatN nextafterfN(_FloatN x, _FloatN y);
_FloatNx nextafterfNx(_FloatNx x, _FloatNx y);
_DecimalN nextafterdN(_DecimalN x, _DecimalN y);
_DecimalNx nextafterdNx(_DecimalNx x, _DecimalNx y);

_FloatN nextupfN(_FloatN x);
_FloatNx nextupfNx(_FloatNx x);
_DecimalN nextupdN(_DecimalN x);
_DecimalNx nextupdNx(_DecimalNx x);

_FloatN nextdownfN(_FloatN x);
_FloatNx nextdownfNx(_FloatNx x);
_DecimalN nextdowndN(_DecimalN x);
_DecimalNx nextdowndNx(_DecimalNx x);

int canonicalizefN(_FloatN *cx, const _FloatN *x);
int canonicalizefNx(_FloatNx *cx, const _FloatNx *x);
int canonicalizedN(_DecimalN *cx, const _DecimalN *x);
int canonicalizedNx(_DecimalNx *cx, const _DecimalNx *x);

7.12.13 Maximum, minimum, and positive difference functions

_FloatN fdimfN(_FloatN x, _FloatN y);
_FloatNx fdimfNx(_FloatNx x, _FloatNx y);
_DecimalN fdimdN(_DecimalN x, _DecimalN y);
_DecimalNx fdimdNx(_DecimalNx x, _DecimalNx y);

_FloatN fmaximumfN(_FloatN x, _FloatN y);
_FloatNx fmaximumfNx(_FloatNx x, _FloatNx y);
_DecimalN fmaximumdN(_DecimalN x, _DecimalN y);
_DecimalNx fmaximumdNx(_DecimalNx x, _DecimalNx y);

_FloatN fminimumfN(_FloatN x, _FloatN y);
_FloatNx fminimumfNx(_FloatNx x, _FloatNx y);
_DecimalN fminimumdN(_DecimalN x, _DecimalN y);
_DecimalNx fminimumdNx(_DecimalNx x, _DecimalNx y);

_FloatN fmaximum_magfN(_FloatN x, _FloatN y);
_FloatNx fmaximum_magfNx(_FloatNx x, _FloatNx y);
_DecimalN fmaximum_magdN(_DecimalN x, _DecimalN y);
_DecimalNx fmaximum_magdNx(_DecimalNx x, _DecimalNx y);

_FloatN fminimum_magfN(_FloatN x, _FloatN y);
_FloatNx fminimum_magfNx(_FloatNx x, _FloatNx y);
_DecimalN fminimum_magdN(_DecimalN x, _DecimalN y);
_DecimalNx fminimum_magdNx(_DecimalNx x, _DecimalNx y);

_FloatN fmaximum_numfN(_FloatN x, _FloatN y);
_FloatNx fmaximum_numfNx(_FloatNx x, _FloatNx y);
_DecimalN fmaximum_numdN(_DecimalN x, _DecimalN y);
_DecimalNx fmaximum_numdNx(_DecimalNx x, _DecimalNx y);

§ H.11.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 589

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatN fminimum_numfN(_FloatN x, _FloatN y);
_FloatNx fminimum_numfNx(_FloatNx x, _FloatNx y);
_DecimalN fminimum_numdN(_DecimalN x, _DecimalN y);
_DecimalNx fminimum_numdNx(_DecimalNx x, _DecimalNx y);

_FloatN fmaximum_mag_numfN(_FloatN x, _FloatN y);
_FloatNx fmaximum_mag_numfNx(_FloatNx x, _FloatNx y);
_DecimalN fmaximum_mag_numdN(_DecimalN x, _DecimalN y);
_DecimalNx fmaximum_mag_numdNx(_DecimalNx x, _DecimalNx y);

_FloatN fminimum_mag_numfN(_FloatN x, _FloatN y);
_FloatNx fminimum_mag_numfNx(_FloatNx x, _FloatNx y);
_DecimalN fminimum_mag_numdN(_DecimalN x, _DecimalN y);
_DecimalNx fminimum_mag_numdNx(_DecimalNx x, _DecimalNx y);

7.12.14.1 Fused multiply-add

_FloatN fmafN(_FloatN x, _FloatN y, _FloatN z);
_FloatNx fmafNx(_FloatNx x, _FloatNx y, _FloatNx z);
_DecimalN fmadN(_DecimalN x, _DecimalN y, _DecimalN z);
_DecimalNx fmadNx(_DecimalNx x, _DecimalNx y, _DecimalNx z);

7.12.15 Functions that round result to narrower type

_FloatM fMaddfN(_FloatN x, _FloatN y); // M < N
_FloatM fMaddfNx(_FloatNx x, _FloatNx y); // M ≤ N
_FloatMx fMxaddfN(_FloatN x, _FloatN y); // M < N
_FloatMx fMxaddfNx(_FloatNx x, _FloatNx y); // M < N
_DecimalM dMadddN(_DecimalN x, _DecimalN y); // M < N
_DecimalM dMadddNx(_DecimalNx x, _DecimalNx y); // M ≤ N
_DecimalMx dMxadddN(_DecimalN x, _DecimalN y); // M < N
_DecimalMx dMxadddNx(_DecimalNx x, _DecimalNx y); // M < N

_FloatM fMsubfN(_FloatN x, _FloatN y); // M < N
_FloatM fMsubfNx(_FloatNx x, _FloatNx y); // M ≤ N
_FloatMx fMxsubfN(_FloatN x, _FloatN y); // M < N
_FloatMx fMxsubfNx(_FloatNx x, _FloatNx y); // M < N
_DecimalM dMsubdN(_DecimalN x, _DecimalN y); // M < N
_DecimalM dMsubdNx(_DecimalNx x, _DecimalNx y); // M ≤ N
_DecimalMx dMxsubdN(_DecimalN x, _DecimalN y); // M < N
_DecimalMx dMxsubdNx(_DecimalNx x, _DecimalNx y); // M < N

_FloatM fMmulfN(_FloatN x, _FloatN y); // M < N
_FloatM fMmulfNx(_FloatNx x, _FloatNx y); // M ≤ N
_FloatMx fMxmulfN(_FloatN x, _FloatN y); // M < N
_FloatMx fMxmulfNx(_FloatNx x, _FloatNx y); // M < N
_DecimalM dMmuldN(_DecimalN x, _DecimalN y); // M < N
_DecimalM dMmuldNx(_DecimalNx x, _DecimalNx y); // M ≤ N
_DecimalMx dMxmuldN(_DecimalN x, _DecimalN y); // M < N
_DecimalMx dMxmuldNx(_DecimalNx x, _DecimalNx y); // M < N

_FloatM fMdivfN(_FloatN x, _FloatN y); // M < N
_FloatM fMdivfNx(_FloatNx x, _FloatNx y); // M ≤ N
_FloatMx fMxdivfN(_FloatN x, _FloatN y); // M < N
_FloatMx fMxdivfNx(_FloatNx x, _FloatNx y); // M < N
_DecimalM dMdivdN(_DecimalN x, _DecimalN y); // M < N
_DecimalM dMdivdNx(_DecimalNx x, _DecimalNx y); // M ≤ N
_DecimalMx dMxdivdN(_DecimalN x, _DecimalN y); // M < N
_DecimalMx dMxdivdNx(_DecimalNx x, _DecimalNx y); // M < N

_FloatM fMfmafN(_FloatN x, _FloatN y, _FloatN z); // M < N

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 590

§ H.11.3

ISO/IEC 9899:202y (en) — n3299 working draft

_FloatM fMfmafNx(_FloatNx x, _FloatNx y, _FloatNx z); // M ≤ N
_FloatMx fMxfmafN(_FloatN x, _FloatN y, _FloatN z); // M < N
_FloatMx fMxfmafNx(_FloatNx x, _FloatNx y, _FloatNx z); // M < N
_DecimalM dMfmadN(_DecimalN x, _DecimalN y, _DecimalN z); // M < N
_DecimalM dMfmadNx(_DecimalNx x, _DecimalNx y, _DecimalNx z); // M ≤ N
_DecimalMx dMxfmadN(_DecimalN x, _DecimalN y, _DecimalN z); // M < N
_DecimalMx dMxfmadNx(_DecimalNx x, _DecimalNx y, _DecimalNx z); // M < N

_FloatM fMsqrtfN(_FloatN x); // M < N
_FloatM fMsqrtfNx(_FloatNx x); // M ≤ N
_FloatMx fMxsqrtfN(_FloatN x); // M < N
_FloatMx fMxsqrtfNx(_FloatNx x); // M < N
_DecimalM dMsqrtdN(_DecimalN x); // M < N
_DecimalM dMsqrtdNx(_DecimalNx x); // M ≤ N
_DecimalMx dMxsqrtdN(_DecimalN x); // M < N
_DecimalMx dMxsqrtdNx(_DecimalNx x); // M < N

7.12.16 Quantum and quantum exponent functions

_DecimalN quantizedN(_DecimalN x, _DecimalN y);
_DecimalNx quantizedNx(_DecimalNx x, _DecimalNx y);

bool samequantumdN(_DecimalN x, _DecimalN y);
bool samequantumdNx(_DecimalNx x, _DecimalNx y);

_DecimalN quantumdN(_DecimalN x);
_DecimalNx quantumdNx(_DecimalNx x);

long long int llquantexpdN(_DecimalN x);
long long int llquantexpdNx(_DecimalNx x);

7.12.17 Decimal re-encoding functions

void encodedecdN(unsigned char * restrict encptr,
const _DecimalN * restrict xptr);

void decodedecdN(_DecimalN * restrict xptr,
const unsigned char * restrict encptr);

void encodebindN(unsigned char * restrict encptr,
const _DecimalN * restrict xptr);

void decodebindN(_DecimalN * restrict xptr,
const unsigned char * restrict encptr);

F.10.13 Total order functions

int totalorderfN(const _FloatN *x, const _FloatN *y);
int totalorderfNx(const _FloatNx *x, const _FloatNx *y);
int totalorderdN(const _DecimalN *x, const _DecimalN *y);
int totalorderdNx(const _DecimalNx *x, const _DecimalNx *y);

int totalordermagfN(const _FloatN *x, const _FloatN *y);
int totalordermagfNx(const _FloatNx *x, const _FloatNx *y);
int totalordermagdN(const _DecimalN *x, const _DecimalN *y);
int totalordermagdNx(const _DecimalNx *x, const _DecimalNx *y);

F.10.14 Payload functions

_FloatN getpayloadfN(const _FloatN *x);
_FloatNx getpayloadfNx(const _FloatNx *x);
_DecimalN getpayloaddN(const _DecimalN *x);
_DecimalNx getpayloaddNx(const _DecimalNx *x);

§ H.11.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 591

ISO/IEC 9899:202y (en) — n3299 working draft

int setpayloadfN(_FloatN *res, _FloatN pl);
int setpayloadfNx(_FloatNx *res, _FloatNx pl);
int setpayloaddN(_DecimalN *res, _DecimalN pl);
int setpayloaddNx(_DecimalNx *res, _DecimalNx pl);

int setpayloadsigfN(_FloatN *res, _FloatN pl);
int setpayloadsigfNx(_FloatNx *res, _FloatNx pl);
int setpayloadsigdN(_DecimalN *res, _DecimalN pl);
int setpayloadsigdNx(_DecimalNx *res, _DecimalNx pl);

2 The specification of the frexp functions (7.12.7.7) applies to the functions for binary floating types
like those for standard floating types: the exponent is an integral power of 2 and, when applicable,
value equals x× 2*exp .

3 The specification of the ldexp functions (7.12.7.9) applies to the functions for binary floating types
like those for standard floating types: they return x2exp.

4 The specification of the logb functions (7.12.7.17) applies to binary floating types, with b = 2.

5 The specification of the scalbn and scalbln functions (7.12.7.19) applies to binary floating types,
with b = 2.

H.11.4 Encoding conversion functions
H.11.4.1 General

1 This subclause introduces <math.h> functions that, together with the numerical conversion functions
for encodings in H.12, support the non-arithmetic interchange formats specified by ISO/IEC 60559.
Support for these formats is an optional feature of this annex. Implementations that do not support
non-arithmetic interchange formats are not required to declare the functions in this subclause.

2 Non-arithmetic interchange formats are not associated with floating types. Arrays of element
type unsigned char are used as parameters for conversion functions, to represent encodings in
interchange formats that may be non-arithmetic formats.

H.11.4.2 Encode and decode functions
H.11.4.2.1 General

1 This subclause specifies functions to map representations in binary floating types to and from
encodings in unsigned char arrays.

H.11.4.2.2 The encodefN functions
Synopsis

1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <math.h>

void encodefN(unsigned char encptr[restrict static N/8],
const _FloatN * restrict xptr);

Description
2 The encodefN functions convert *xptr into an ISO/IEC 60559 binaryN encoding and store

the resulting encoding as an N/8 element array, with 8 bits per array element, in the object
pointed to by encptr. The order of bytes in the array follows the endianness specified with
__STDC_ENDIAN_NATIVE__ (7.18.2). These functions preserve the value of *xptr and raise no
floating-point exceptions. If *xptr is non-canonical, these functions can produce a canonical
encoding.

Returns
3 The encodefN functions return no value.

H.11.4.2.3 The decodefN functions

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 592

§ H.11.4.2.3

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <math.h>

void decodefN(_FloatN * restrict xptr,
const unsigned char encptr[restrict static N/8]);

Description
2 The decodefN functions interpret the N/8 element array pointed to by encptr as an ISO/IEC 60559

binaryN encoding, with 8 bits per array element. The order of bytes in the array follows the
endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2). These functions convert the given
encoding into a representation in the type _FloatN, and store the result in the object pointed to
by xptr. These functions preserve the encoded value and raise no floating-point exceptions. If the
encoding is non-canonical, these functions can produce a canonical representation.

Returns
3 The decodefN functions return no value.

4 See Example in H.11.4.3.2.

H.11.4.3 Encoding-to-encoding conversion functions
H.11.4.3.1 General

1 An implementation shall declare an fMencfN function for each M and N equal to the width of
a supported ISO/IEC 60559 arithmetic or non-arithmetic binary interchange format, M ̸= N . An
implementation shall provide both dMencdecdN and dMencbindNfunctions for each M and N
equal to the width of a supported ISO/IEC 60559 arithmetic or non-arithmetic decimal interchange
format, M ̸= N .

H.11.4.3.2 The fMencfN functions
Synopsis

1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <math.h>

void fMencfN(unsigned char encMptr[restrict static M/8],
const unsigned char encNptr[restrict static N/8]);

Description
2 The fMencfN functions convert between ISO/IEC 60559 binary interchange formats. These func-

tions interpret the N/8 element array pointed to by encNptr as an encoding of width N bits. They
convert the encoding to an encoding of width M bits and store the resulting encoding as an M/8
element array in the object pointed to by encMptr. The conversion rounds and raises floating-point
exceptions as specified in ISO/IEC 60559. The order of bytes in the arrays follows the endianness
specified with __STDC_ENDIAN_NATIVE__ (7.18.2).

Returns
3 These functions return no value.

4 EXAMPLE If the ISO/IEC 60559 binary16 format is supported as a non-arithmetic format, data in binary16
format can be converted to type float as follows:

#define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <math.h>
unsigned char b16[2]; // for input binary16 datum
float f; // for result
unsigned char b32[4];
_Float32 f32;

§ H.11.4.3.2 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 593

ISO/IEC 9899:202y (en) — n3299 working draft

// store input binary16 datum in array b16
...
f32encf16(b32, b16);
decodef32(&f32, b32);
f = f32;
...

H.11.4.3.3 The dMencdecdN and dMencbindN functions
Synopsis

1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <math.h>

void dMencdecdN(unsigned char encMptr[restrict static M/8],
const unsigned char encNptr[restrict static N/8]);

void dMencbindN(unsigned char encMptr[restrict static M/8],
const unsigned char encNptr[restrict static N/8]);

Description
2 The dMencdecdN and dMencbindN functions convert between ISO/IEC 60559 decimal interchange

formats that use the same encoding scheme. The dMencdecdN functions convert between formats
using the encoding scheme based on decimal encoding of the significand. The dMencbindN
functions convert between formats using the encoding scheme based on binary encoding of the
significand. These functions interpret the N/8 element array pointed to by encNptr as an encoding
of width N bits. They convert the encoding to an encoding of width M bits and store the resulting
encoding as an M/8 element array in the object pointed to by encMptr. The conversion rounds
and raises floating-point exceptions as specified in ISO/IEC 60559. The order of bytes in the arrays
follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).

Returns
3 These functions return no value.

H.12 Numeric conversion functions <stdlib.h>
H.12.1 General

1 This clause expands the specification of numeric conversion functions in <stdlib.h> (7.24.2) to also
include conversions of strings from and to interchange and extended floating types. The conversions
from floating are provided by functions analogous to the strfromd function. The conversions to
floating are provided by functions analogous to the strtod function.

2 This clause also specifies functions to convert strings from and to ISO/IEC 60559 interchange format
encodings.

3 For each interchange or extended floating type that the implementation provides, <stdlib.h> shall
declare the associated functions specified in the following subclauses in H.12.2 and H.12.3 (see H.8).
Conversely, for each such type that the implementation does not provide, <stdlib.h> shall not
declare the associated functions.

4 For each ISO/IEC 60559 arithmetic or non-arithmetic format that the implementation supports,
<stdlib.h> shall declare the associated functions specified the following subclauses in H.12.4 and
H.12.5 (see H.8). Conversely, for each such format that the implementation does not provide,
<stdlib.h> shall not declare the associated functions.

H.12.2 String from floating
1 This subclause expands 7.24.2.4 and 7.24.2.5 to also include functions for the interchange and

extended floating types. It adds to the synopsis in 7.24.2.4 the prototypes

int strfromfN(char * restrict s, size_t n,
const char * restrict format, _FloatN fp);

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 594

§ H.12.2

ISO/IEC 9899:202y (en) — n3299 working draft

int strfromfNx(char * restrict s, size_t n,
const char * restrict format, _FloatNx fp);

It encompasses the prototypes in 7.24.2.5 by replacing them with

int strfromdN(char * restrict s, size_t n,
const char * restrict format, _DecimalN fp);

int strfromdNx(char * restrict s, size_t n,
const char * restrict format, _DecimalNx fp);

2 The descriptions and returns for the added functions are analogous to the ones in 7.24.2.4 and
7.24.2.5.

H.12.3 String to floating
1 This subclause expands 7.24.2.6, 7.31.4.2.2, 7.24.2.7, and 7.31.4.2.3 to also include functions for the

interchange and extended floating types.

2 It adds to the synopsis in 7.24.2.6 the prototypes

_FloatN strtofN(const char * restrict nptr,
char ** restrict endptr);

_FloatNx strtofNx(const char * restrict nptr,
char ** restrict endptr);

It adds to the synopsis in 7.31.4.2.2 the prototypes

_FloatN wcstofN(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

_FloatNx wcstofNx(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

It encompasses the prototypes in 7.24.2.7 by replacing them with

_DecimalN strtodN(const char * restrict nptr,
char ** restrict endptr);

_DecimalNx strtodNx(const char * restrict nptr,
char ** restrict endptr);

It encompasses the prototypes in 7.31.4.2.3 by replacing them with

_DecimalN wcstodN(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

_DecimalNx wcstodNx(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

3 The descriptions and returns for the added functions are analogous to the ones in 7.24.2.6, 7.31.4.2.2,
7.24.2.7, and 7.31.4.2.3.

4 EXAMPLE If the ISO/IEC 60559 binary128 format is supported as a non-arithmetic format, data in binary128
format can be converted to type _Decimal128 as follows:

#define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <stdlib.h>
#define MAXSIZE 41 // > intermediate hex string length

// for the "C" locale
unsigned char b128[16]; // for input binary128 datum
_Decimal128 d128; // for result
char s[MAXSIZE];
// store input binary128 datum in array b128
...

§ H.12.3 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 595

ISO/IEC 9899:202y (en) — n3299 working draft

strfromencf128(s, MAXSIZE, "%a", b128);
d128 = strtod128(s, nullptr);
...

Use of "%a" for formatting assures an exact conversion of the value in binary format to character sequence.
The value of that character sequence will be correctly rounded to _Decimal128, as specified previously in this
subclause. Assuming a single-byte decimal-point character as in the "C" locale, the array s for the output of
strfromencf128 need have no greater size than 41, which is the maximum length of strings of the form

[−]0xh.h . . . hp± d

where there are up to 29 hexadecimal digits h and d has 5 digits plus 1 for the null character.

H.12.4 String from encoding
H.12.4.1 General

1 An implementation shall declare the strfromencfN function for each N equal to the width of a sup-
ported ISO/IEC 60559 arithmetic or non-arithmetic binary interchange format. An implementation
shall declare both the strfromencdecdN and strfromencbindN functions for each N equal to the
width of a supported ISO/IEC 60559 arithmetic or non-arithmetic decimal interchange format.

H.12.4.2 The strfromencfN functions
Synopsis

1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <stdlib.h>

int strfromencfN(char * restrict s, size_t n, const char * restrict format,
const unsigned char encptr[restrict static N/8]);

Description
2 The strfromencfN functions are similar to the strfromfN functions, except the input is the value

of the N/8 element array pointed to by encptr, interpreted as an ISO/IEC 60559 binaryN encoding.
The order of bytes in the array follows the endianness specified with __STDC_ENDIAN_NATIVE__

(7.18.2).

Returns
3 The strfromencfN functions return the same values as corresponding strfromfN functions.

H.12.4.3 The strfromencdecdN and strfromencbindN functions
Synopsis

1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <stdlib.h>

int strfromencdecdN(char * restrict s, size_t n, const char * restrict format,
const unsigned char encptr[restrict static N/8]);

int strfromencbindN(char * restrict s, size_t n, const char * restrict format,
const unsigned char encptr[restrict static N/8]);

Description
2 The strfromencdecdN functions are similar to the strfromdN functions except the input is the

value of the N/8 element array pointed to by encptr, interpreted as an ISO/IEC 60559 decimalN
encoding in the coding scheme based on decimal encoding of the significand. The strfromencbindN
functions are similar to the strfromdN functions except the input is the value of the N/8 element
array pointed to by encptr, interpreted as an ISO/IEC 60559 decimalN encoding in the coding
scheme based on binary encoding of the significand. The order of bytes in the array follows the
endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 596

§ H.12.4.3

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
3 The strfromencdecdN and strfromencbindN functions return the same values as corresponding

strfromdN functions.

H.12.5 String to encoding
H.12.5.1 General

1 An implementation shall declare the strtoencfN and wcstoencfN functions for each N equal
to the width of a supported ISO/IEC 60559 arithmetic or non-arithmetic binary interchange for-
mat. An implementation shall declare the strtoencdecdN, strtoencbindN, wcstoencdecdN, and
wcstoencbindN functions for each N equal to the width of a supported ISO/IEC 60559 arithmetic
or non-arithmetic decimal interchange format.

H.12.5.2 The strtoencfN functions
Synopsis

1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <stdlib.h>

void strtoencfN(unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

Description
2 The strtoencfN functions are similar to the strtofN functions, except they store an ISO/IEC 60559

encoding of the result as an N/8 element array in the object pointed to by encptr. The order of
bytes in the array follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).

Returns
3 These functions return no value.

H.12.5.3 The wcstoencfN functions
Synopsis

1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <wchar.h>

void wcstoencfN(unsigned char encptr[restrict static N/8],
const wchar_t * restrict nptr, wchar_t ** restrict endptr);

Description
2 The wcstoencfN functions are similar to the wcstofN functions, except they store an ISO/IEC 60559

encoding of the result as an N/8 element array in the object pointed to by encptr. The order of
bytes in the array follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).

Returns
3 These functions return no value.

H.12.5.4 The strtoencdecdN and strtoencbindN functions
Synopsis

1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <stdlib.h>

void strtoencdecdN(unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

void strtoencbindN(unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

§ H.12.5.4 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 597

ISO/IEC 9899:202y (en) — n3299 working draft

Description
2 The strtoencdecdN and strtoencbindN functions are similar to the strtodN functions, except

they store an ISO/IEC 60559 encoding of the result as an N/8 element array in the object pointed
to by encptr. The strtoencdecdN functions produce an encoding in the encoding scheme based
on decimal encoding of the significand. The strtoencbindN functions produce an encoding in
the encoding scheme based on binary encoding of the significand. The order of bytes in the array
follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).

Returns
3 These functions return no value.

H.12.5.5 The wcstoencdecdN and wcstoencbindN functions
Synopsis

1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <wchar.h>

void wcstoencdecdN(unsigned char encptr[restrict static N/8],
const wchar_t * restrict nptr, wchar_t ** restrict endptr);

void wcstoencbindN(unsigned char encptr[restrict static N/8],
const wchar_t * restrict nptr, wchar_t ** restrict endptr);

Description
2 The wcstoencdecdN and wcstoencbindN functions are similar to the wcstodN functions, except

they store an ISO/IEC 60559 encoding of the result as an N/8 element array in the object pointed
to by encptr. The wcstoencdecdN functions produce an encoding in the encoding scheme based
on decimal encoding of the significand. The wcstoencbindN functions produce an encoding in
the encoding scheme based on binary encoding of the significand. The order of bytes in the array
follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).

Returns
3 These functions return no value.

H.13 Type-generic macros <tgmath.h>
1 This clause enhances the specification of type-generic macros in <tgmath.h> (7.27) to apply to

interchange and extended floating types, as well as standard floating types.

2 If arguments for generic parameters of a type-generic macro are such that some argument has
a corresponding real type that is a standard floating type or a binary floating type and another
argument is of decimal floating type, the behavior is undefined.

3 The treatment of arguments of integer type in 7.27 is expanded to cases where another argument
has extended type. Arguments of integer type are regarded as having type:

— _Decimal64x, if any argument has a decimal extended type; otherwise

— _Float32x, if any argument has a binary extended type; otherwise

— _Decimal64, if any argument has decimal type; otherwise

— double

4 Use of the macros carg, cimag, conj, cproj, or creal with any argument of standard floating type,
binary floating type, complex type, or imaginary type invokes a complex function. Use of the macro
with an argument of a decimal floating type results in undefined behavior.

5 The functions that round results to a narrower type have type-generic macros whose names are
obtained by omitting any suffix from the function names. Thus, the macros with f or d prefix are (as
in 7.27):

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 598

§ H.13

ISO/IEC 9899:202y (en) — n3299 working draft

fadd fmul ffma
dadd dmul dfma
fsub fdiv fsqrt
dsub ddiv dsqrt

and the macros with fM, fMx, dM, or dMx prefix are:

fMadd fMxmul dMfma
fMsub fMxdiv dMsqrt
fMmul fMxfma dMxadd
fMdiv fMxsqrt dMxsub
fMfma dMadd dMxmul
fMsqrt dMsub dMxdiv
fMxadd dMmul dMxfma
fMxsub dMdiv dMxsqrt

All arguments are generic. If any argument is not real, use of the macro results in undefined behavior.
The following specification uses the notation type1 ⊆ type2 to mean the values of type1 are a subset
of (or the same as) the values of type2. The generic parameter type T for the function invoked by the
macro is determined as follows:

— First, obtain a preliminary type P for the generic parameters: if all arguments are of integer
type, then P is double if the macro prefix is f, d, fN, or fNx and P is _Decimal64 if the macro
prefix is dN or dNx; otherwise (if some argument is not of integer type), apply the rules (for
determining the corresponding real type of the generic parameters) in 7.27 for macros that
do not round result to narrower type, using the usual arithmetic conversion rules in H.4.3, to
obtain P .

— If there exists a corresponding function whose generic parameters have type P , then T is P .

— Otherwise, T is determined from P and the macro prefix as follows:

• For prefix f: if P is a standard or binary floating type, then T is the first standard floating
type of either double or long double, such that P ⊆ T , if such a type T exists. Otherwise
(if no such type T exists or P is a decimal floating type), the behavior is undefined.

• For prefix d: if P is a standard or binary floating type, then T is long double if P ⊆
long double. Otherwise (if P ⊆ long double is false or P is a decimal floating type),
the behavior is undefined.

• For prefix fM: if P is a standard or binary floating type, then T is _FloatN for minimum
N > M such that P ⊆ T , if such a type T is supported; otherwise T is _FloatNx for
minimum N ≥ M such that P ⊆ T , if such a type T is supported. Otherwise (if no
such _FloatN or _FloatNx is supported or P is a decimal floating type), the behavior is
undefined.

• For prefix fMx: if P is a standard or binary floating type, then T is _FloatNx for
minimum N > M such that P ⊆ T , if such a type T is supported; otherwise T is _Float
N for minimum N > M such that P ⊆ T , if such a type T is supported. Otherwise (if no
such _FloatNx or _FloatN is supported or P is a decimal floating type), the behavior is
undefined.

• For prefix dM: if P is a decimal floating type, then T is _DecimalN for minimum N > M
such that P ⊆ T , if such a type T is supported; otherwise T is _DecimalNx for minimum
N ≥ M such that P ⊆ T . Otherwise (P is a standard or binary floating type), the behavior
is undefined.

• For prefix dMx: if P is a decimal floating type, then T is _DecimalNx for minimum
N > M such that P ⊆ T , if such a type T is supported; otherwise T is _DecimalN for
minimum N > M such that P ⊆ T , if such a type T is supported. Otherwise (P is a
standard or binary floating type), the behavior is undefined.

§ H.13 © ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 599

ISO/IEC 9899:202y (en) — n3299 working draft

6 EXAMPLE With the declarations

#define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <tgmath.h>

int n;
double d;
long double ld;
double complex dc;
_Float32x f32x;
_Float64 f64;
_Float64x f64x;
_Float128 f128;
_Float64x complex f64xc;

functions invoked by use of type-generic macros are shown in the following Table H.8 and Table H.9. type1 ⊆
type2 means the values of type1 are a subset of (or the same as) the values of type2, and type1 ⊂ type2 means
the values of type1 are a strict subset of the values of type2:

Table H.8 — Type-generic macro resolution

macro use invokes
cos(f64xc) ccosf64x

pow(dc, f128) cpowf128

pow(f64, d) powf64

pow(d, f32x)
pow, the function, if _Float32x ⊆ double, else powf32x if
double ⊂ _Float32x , else undefined

pow(f32, n) pow, the function
pow(f32x, n) powf32x

Some type-generic macros that round the result to a narrower type function behave as shown in Table H.9.

Table H.9 — Type-generic narrow rounding examples

macro use invokes
fsub(d, ld) fsubl

dsub(d, f32) dsubl

fmul(dc, d) undefined
ddiv(ld, f128) ddivl if _Float128 ⊆ long double, else undefined
f32add(f64x, f64) f32addf64x

f32xsqrt(n) f32xsqrtf64x

f32mul(f128, f32x)
f32mulf128 if _Float32x ⊆ _Float128, else f32mulf32x if
_Float128 ⊂ _Float32x, else undefined

f32fma(f32x, n, f32x) f32fmaf32x

f32add(f32, f32) f32addf64

f32xsqrt(f32)
f32xsqrtf64x, as prior declarations show _Float64x is sup-
ported

f64div(f32x, f32x) f64divf128 if _Float32x ⊆ _Float128, else f64divf64x

© ISO/IEC 202y — All rights reserved

ISO/IEC 60559 interchange and extended types — 600

§ H.13

ISO/IEC 9899:202y (en) — n3299 working draft

Annex I
(informative)

Common warnings

I.1 Introduction
1 An implementation may generate warnings in many situations to help find a source of unintended

behavior during the translation or execution of a program. Many such situations are not specified as
part of this document.

I.2 Common situations
1 The following are a few of the common situations where an implementation may generate a warning:

— A new struct or union type appears in a function prototype (6.2.1, 6.7.3.4).

— A block with initialization of an object that has automatic storage duration is jumped into
(6.2.4).

— An implicit narrowing conversion is encountered, such as the assignment of a long int or
a double to an int, or a pointer to void to a pointer to any type other than a character type
(6.3.1).

— A hexadecimal floating constant cannot be represented exactly in its evaluation format (6.4.5.3).

— An integer character constant includes more than one character or a wide character constant
includes more than one multibyte character (6.4.5.5).

— The characters /* are found in a comment (6.4.8).

— An "unordered" binary operator (not comma, &&, or ||) contains a side effect to an lvalue in
one operand, and a side effect to, or an access to the value of, the identical lvalue in the other
operand (6.5.1).

— An object is defined but not used (6.7).

— A value is given to an object of an enumerated type other than by assignment of an enumeration
constant that is a member of that type, or an enumeration object that has the same type, or the
value of a function that returns the same enumerated type (6.7.3.3).

— An aggregate has a partly bracketed initialization (6.7.9).

— A statement cannot be reached (6.8).

— A statement with no apparent effect is encountered (6.8).

— A constant expression is used as the controlling expression of a selection statement (6.8.5).

— An incorrectly formed preprocessing group is encountered while skipping a preprocessing
group (6.10.2).

— An unrecognized #pragma directive is encountered (6.10.8).

§ I.2 © ISO/IEC 202y — All rights reserved

Common warnings — 601

ISO/IEC 9899:202y (en) — n3299 working draft

Annex J
(informative)

Portability issues

J.1 Unspecified behavior
1 The following are unspecified:

(1) The manner and timing of static initialization (5.2.2).

(2) The termination status returned to the hosted environment if the return type of main is not
compatible with int (5.2.2.3.4).

(3) The values of objects that are neither lock-free atomic objects nor of type volatile
sig_atomic_t and the state of the floating-point environment, when the processing of the
abstract machine is interrupted by receipt of a signal (5.2.2.4).

(4) The behavior of the display device if a printing character is written when the active position is
at the final position of a line (5.3.3).

(5) The behavior of the display device if a backspace character is written when the active position
is at the initial position of a line (5.3.3).

(6) The behavior of the display device if a horizontal tab character is written when the active
position is at or past the last defined horizontal tabulation position (5.3.3).

(7) The behavior of the display device if a vertical tab character is written when the active position
is at or past the last defined vertical tabulation position (5.3.3).

(8) How an extended source character that does not correspond to a universal character name
counts toward the significant initial characters in an external identifier (5.3.5.2).

(9) Many aspects of the representations of types (6.2.6).

(10) The value of padding bytes when storing values in structures or unions (6.2.6.1).

(11) The values of bytes that correspond to union members other than the one last stored into
(6.2.6.1).

(12) The representation used when storing a value in an object that has more than one object
representation for that value (6.2.6.1).

(13) The values of any padding bits in integer representations (6.2.6.2).

(14) Whether two string literals result in distinct arrays (6.4.6).

(15) The order in which subexpressions are evaluated and the order in which side effects take place,
except as specified for the function-call (), &&, ||, ?:, and comma operators (6.5.1).

(16) The order in which the function designator, arguments, and subexpressions within the argu-
ments are evaluated in a function call (6.5.3.3).

(17) The order of side effects among compound literal initialization list expressions (6.5.3.6).

(18) The order in which the operands of an assignment operator are evaluated (6.5.17).

(19) The alignment of the addressable storage unit allocated to hold a bit-field (6.7.3.2).

(20) Whether a call to an inline function uses the inline definition or the external definition of the
function (6.7.5).

(21) Whether a size expression is evaluated when it is part of the operand of a sizeof operator and
changing the value of the size expression would not affect the result of the operator (6.7.7.3).

© ISO/IEC 202y — All rights reserved

Portability issues — 602

§ J.1

ISO/IEC 9899:202y (en) — n3299 working draft

(22) The order in which any side effects occur among the initialization list expressions in an
initializer (6.7.11).

(23) The layout of storage for function parameters (6.9.2).

(24) When a fully expanded macro replacement list contains a function-like macro name as its
last preprocessing token and the next preprocessing token from the source file is a (, and
the fully expanded replacement of that macro ends with the name of the first macro and the
next preprocessing token from the source file is again a (, whether that is considered a nested
replacement (6.10.5).

(25) The order in which # and ## operations are evaluated during macro substitution (6.10.5.3,
6.10.5.4).

(26) The line number of a preprocessing token, in particular __LINE__, that spans multiple physical
lines (6.10.6).

(27) The line number of a preprocessing directive that spans multiple physical lines (6.10.6).

(28) The line number of a macro invocation that spans multiple physical or logical lines (6.10.6).

(29) The line number following a directive of the form #line __LINE__ new-line (6.10.6).

(30) The state of the floating-point status flags when execution passes from a part of the program
translated with FENV_ACCESS "off" to a part translated with FENV_ACCESS "on" (7.6.2).

(31) The order in which feraiseexcept raises floating-point exceptions, except as stated in F.8.7
(7.6.5.4).

(32) Whether math_errhandling is a macro or an identifier with external linkage (7.12).

(33) The results of the frexp functions when the specified value is not a floating-point number
(7.12.7.7).

(34) The numeric result of the ilogb functions when the correct value is outside the range of the
return type (7.12.7.8, F.10.4.8).

(35) The result of rounding when the value is out of range (7.12.10.5, 7.12.10.7, F.10.7.5).

(36) The value stored by the remquo functions in the object pointed to by quo when y is zero
(7.12.11.3).

(37) Whether a comparison macro argument that is represented in a format wider than its semantic
type is converted to the semantic type (7.12.18).

(38) Whether setjmp is a macro or an identifier with external linkage (7.13).

(39) Whether va_copy and va_end are macros or identifiers with external linkage (7.16.2).

(40) The hexadecimal digit before the decimal point when a non-normalized floating-point number
is printed with an a or A conversion specifier (7.23.6.2, 7.31.2.2).

(41) The value of the file position indicator after a successful call to the ungetc function for a text
stream, or the ungetwc function for any stream, until all pushed-back characters are read or
discarded (7.23.7.10, 7.31.3.10).

(42) The details of the value stored by the fgetpos function (7.23.9.1).

(43) The details of the value returned by the ftell function for a text stream (7.23.9.4).

(44) Whether the strtod, strtof, strtold, wcstod, wcstof, and wcstold functions convert a
minus-signed sequence to a negative number directly or by arithmetically negating the value
resulting from converting the corresponding unsigned sequence (7.24.2.6, 7.31.4.2.2).

§ J.1 © ISO/IEC 202y — All rights reserved

Portability issues — 603

ISO/IEC 9899:202y (en) — n3299 working draft

(45) The order and contiguity of storage allocated by successive calls to the calloc, malloc,
realloc, and aligned_alloc functions (7.24.4).

(46) The amount of storage allocated by a successful call to the calloc, malloc, realloc, or
aligned_alloc function when 0 bytes was requested (7.24.4).

(47) Whether a call to the atexit function that does not happen before the exit function is called
will succeed (7.24.5.2).

(48) Whether a call to the at_quick_exit function that does not happen before the quick_exit
function is called will succeed (7.24.5.3).

(49) Which of two elements that compare as equal is matched by the bsearch function (7.24.6.2).

(50) The order of two elements that compare as equal in an array sorted by the qsort function
(7.24.6.3).

(51) The order in which destructors are invoked by thrd_exit (7.28.5.5).

(52) Whether calling tss_delete on a key while another thread is executing destructors affects the
number of invocations of the destructors associated with the key on that thread (7.28.6.2).

(53) The encoding of the calendar time returned by the time function (7.29.2.5).

(54) The characters stored by the strftime or wcsftime function if any of the time values being
converted is outside the normal range (7.29.3.6, 7.31.5.1).

(55) Whether an encoding error occurs if a wchar_t value that does not correspond to a member of
the extended character set appears in the format string for a function in 7.31.2 or 7.31.5 and the
specified semantics do not require that value to be processed by wcrtomb (7.31.1).

(56) The conversion state after an encoding error occurs (7.31.6.4.3, 7.31.6.4.4, 7.31.6.5.2, 7.31.6.5.3,
7.30.2.2, 7.30.2.3, 7.30.2.4, 7.30.2.5, 7.30.2.6, 7.30.2.7).

(57) The resulting value when the "invalid" floating-point exception is raised during ISO/IEC 60559
floating to integer conversion (F.4).

(58) Whether conversion of non-integer ISO/IEC 60559 floating values to integer raises the "inexact"
floating-point exception (F.4).

(59) Whether or when library functions in <math.h> raise the "inexact" floating-point exception in
an ISO/IEC 60559 conformant implementation (F.10).

(60) Whether or when library functions in <math.h> raise an undeserved "underflow" floating-
point exception in an ISO/IEC 60559 conformant implementation (F.10).

(61) The exponent value stored by frexp for a NaN or infinity (F.10.4.7).

(62) The numeric result returned by the lrint, llrint, lround, and llround functions if the
rounded value is outside the range of the return type (F.10.7.5, F.10.7.7).

(63) The sign of one part of the complex result of several math functions for certain special cases in
ISO/IEC 60559 compatible implementations (G.6.2.1, G.6.3.2, G.6.3.3, G.6.3.4, G.6.3.5, G.6.3.6,
G.6.4.1, G.6.5.2).

J.2 Undefined behavior
1 The behavior is undefined in the following circumstances:

(1) A "shall" or "shall not" requirement that appears outside of a constraint is violated (Clause 4).

(2) A nonempty source file does not end in a new-line character which is not immediately preceded
by a backslash character or ends in a partial preprocessing token or comment (5.2.1.2).

© ISO/IEC 202y — All rights reserved

Portability issues — 604

§ J.2

ISO/IEC 9899:202y (en) — n3299 working draft

(3) Token concatenation produces a character sequence matching the syntax of a universal charac-
ter name (5.2.1.2).

(4) A program in a hosted environment does not define a function named main using one of the
specified forms (5.2.2.3.2).

(5) The execution of a program contains a data race (5.2.2.5).

(6) A character not in the basic source character set is encountered in a source file, except in an
identifier, a character constant, a string literal, a header name, a comment, or a preprocessing
token that is never converted to a token (5.3.1).

(7) An identifier, comment, string literal, character constant, or header name contains an invalid
multibyte character or does not begin and end in the initial shift state (5.3.2).

(8) The same identifier has both internal and external linkage in the same translation unit (6.2.2).

(9) An object is referred to outside of its lifetime (6.2.4).

(10) The value of a pointer to an object whose lifetime has ended is used (6.2.4).

(11) The value of an object with automatic storage duration is used while the object has an indeter-
minate representation (6.2.4, 6.7.11, 6.8).

(12) A non-value representation is read by an lvalue expression that does not have character type
(6.2.6.1).

(13) A non-value representation is produced by a side effect that modifies any part of the object
using an lvalue expression that does not have character type (6.2.6.1).

(14) Two declarations of the same object or function specify types that are not compatible (6.2.7).

(15) A program requires the formation of a composite type from a variable length array type whose
size is specified by an expression that is not evaluated (6.2.7).

(16) Conversion to or from an integer type produces a value outside the range that can be repre-
sented (6.3.2.4).

(17) Demotion of one real floating type to another produces a value outside the range that can be
represented (6.3.2.5).

(18) An lvalue does not designate an object when evaluated (6.3.3.1).

(19) A non-array lvalue with an incomplete type is used in a context that requires the value of the
designated object (6.3.3.1).

(20) An lvalue designating an object of automatic storage duration that could have been declared
with the register storage class is used in a context that requires the value of the designated
object, but the object is uninitialized. (6.3.3.1).

(21) An lvalue having array type is converted to a pointer to the initial element of the array, and
the array object has register storage class (6.3.3.1).

(22) An attempt is made to use the value of a void expression, or an implicit or explicit conversion
(except to void) is applied to a void expression (6.3.3.2).

(23) Conversion of a pointer to an integer type produces a value outside the range that can be
represented (6.3.3.3).

(24) Conversion between two pointer types produces a result that is incorrectly aligned (6.3.3.3).

(25) A pointer is used to call a function whose type is not compatible with the referenced type
(6.3.3.3).

§ J.2 © ISO/IEC 202y — All rights reserved

Portability issues — 605

ISO/IEC 9899:202y (en) — n3299 working draft

(26) An unmatched ’ or " character is encountered on a logical source line during tokenization
(6.4).

(27) A reserved keyword token is used in translation phase 7 or 8 (5.2.1.2) for some purpose other
than as a keyword (6.4.2).

(28) A universal character name in an identifier does not designate a character whose encoding
falls into one of the specified ranges (6.4.3.1).

(29) The initial character of an identifier is a universal character name designating a digit (6.4.3.1).

(30) Two identifiers differ only in nonsignificant characters (6.4.3.1).

(31) The identifier __func__ is explicitly declared (6.4.3.2).

(32) The program attempts to modify a string literal (6.4.6).

(33) The characters ’, \, ", //, or /* occur in the sequence between the < and > delimiters, or the
characters ’, \, //, or /* occur in the sequence between the " delimiters, in a header name
preprocessing token (6.4.8).

(34) A side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object (6.5.1).

(35) An exceptional condition occurs during the evaluation of an expression (6.5.1).

(36) An object has its stored value accessed other than by an lvalue of an allowable type (6.5.1).

(37) A function is defined with a type that is not compatible with the type (of the expression)
pointed to by the expression that denotes the called function (6.5.3.3).

(38) A member of an atomic structure or union is accessed (6.5.3.4).

(39) The operand of the unary * operator has an invalid value (6.5.4.3).

(40) A pointer is converted to other than an integer or pointer type (6.5.5).

(41) The value of the second operand of the / or % operator is zero (6.5.6).

(42) If the quotient a/b is not representable, the behavior of both a/b and a%b (6.5.6).

(43) Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that does not point into, or just beyond, the same array object (6.5.7).

(44) Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that points just beyond the array object and is used as the operand of a unary
* operator that is evaluated (6.5.7).

(45) Pointers that do not point into, or just beyond, the same array object are subtracted (6.5.7).

(46) An array subscript is out of range, even if an object is apparently accessible with the given
subscript (as in the lvalue expression a[1][7] given the declaration int a[4][5]) (6.5.7).

(47) The result of subtracting two pointers is not representable in an object of type ptrdiff_t
(6.5.7).

(48) An expression is shifted by a negative number or by an amount greater than or equal to the
width of the promoted expression (6.5.8).

(49) An expression having signed promoted type is left-shifted and either the value of the expres-
sion is negative or the result of shifting would not be representable in the promoted type
(6.5.8).

(50) Pointers that do not point to the same aggregate or union (nor just beyond the same array
object) are compared using relational operators (6.5.9).

© ISO/IEC 202y — All rights reserved

Portability issues — 606

§ J.2

ISO/IEC 9899:202y (en) — n3299 working draft

(51) An object is assigned to an inexactly overlapping object or to an exactly overlapping object
with incompatible type (6.5.17.2).

(52) An expression that is required to be an integer constant expression does not have an integer
type; has operands that are not integer constants, named constants, compound literal constants,
enumeration constants, character constants, predefined constants, sizeof expressions whose
results are integer constants, alignof expressions, or immediately-cast floating constants; or
contains casts (outside operands to sizeof and alignof operators) other than conversions of
arithmetic types to integer types (6.6).

(53) A constant expression in an initializer is not, or does not evaluate to, one of the following: a
named constant, a compound literal constant, an arithmetic constant expression, a null pointer
constant, an address constant, or an address constant for a complete object type plus or minus
an integer constant expression (6.6).

(54) An arithmetic constant expression does not have arithmetic type; has operands that are not
integer constants, floating constants, named and compound literal constants of arithmetic
type, character constants, predefined constants, sizeof expressions whose results are integer
constants, or alignof expressions; or contains casts (outside operands to sizeof or alignof
operators) other than conversions of arithmetic types to arithmetic types (6.6).

(55) The value of an object is accessed by an array-subscript [], member-access . or ->, address &,
or indirection * operator or a pointer cast in creating an address constant (6.6).

(56) An identifier for an object is declared with no linkage and the type of the object is incomplete
after its declarator, or after its init-declarator if it has an initializer (6.7).

(57) A function is declared at block scope with an explicit storage-class specifier other than extern
(6.7.2).

(58) A structure or union is defined without any named members (including those specified
indirectly via anonymous structures and unions) (6.7.3.2).

(59) An attempt is made to access, or generate a pointer to just past, a flexible array member of a
structure when the referenced object provides no elements for that array (6.7.3.2).

(60) When the complete type is needed, an incomplete structure or union type is not completed in
the same scope by another declaration of the tag that defines the content (6.7.3.4).

(61) An attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type (6.7.4).

(62) An attempt is made to refer to an object defined with a volatile-qualified type through use of
an lvalue with non-volatile-qualified type (6.7.4).

(63) The specification of a function type includes any type qualifiers (6.7.4).

(64) Two qualified types that are required to be compatible do not have the identically qualified
version of a compatible type (6.7.4).

(65) An object which has been modified is accessed through a restrict-qualified pointer to a const-
qualified type, or through a restrict-qualified pointer and another pointer that are not both
based on the same object (6.7.4.2).

(66) A restrict-qualified pointer is assigned a value based on another restricted pointer whose
associated block neither began execution before the block associated with this pointer, nor
ended before the assignment (6.7.4.2).

(67) A function with external linkage is declared with an inline function specifier, but is not also
defined in the same translation unit (6.7.5).

(68) A function declared with a _Noreturn function specifier returns to its caller (6.7.5).

§ J.2 © ISO/IEC 202y — All rights reserved

Portability issues — 607

ISO/IEC 9899:202y (en) — n3299 working draft

(69) The definition of an object has an alignment specifier and another declaration of that object
has a different alignment specifier (6.7.6).

(70) Declarations of an object in different translation units have different alignment specifiers
(6.7.6).

(71) Two pointer types that are required to be compatible are not identically qualified, or are not
pointers to compatible types (6.7.7.2).

(72) The size expression in an array declaration is not a constant expression and evaluates at
program execution time to a nonpositive value (6.7.7.3).

(73) In a context requiring two array types to be compatible, they do not have compatible element
types, or their size specifiers evaluate to unequal values (6.7.7.3).

(74) A declaration of an array parameter includes the keyword static within the [and] and the
corresponding argument does not provide access to the first element of an array with at least
the specified number of elements (6.7.7.4).

(75) A storage-class specifier or type qualifier modifies the keyword void as a function parameter
type list (6.7.7.4).

(76) In a context requiring two function types to be compatible, they do not have compatible return
types, or their parameters disagree in use of the ellipsis terminator or the number and type of
parameters (after default argument promotion, when there is no parameter type list) (6.7.7.4).

(77) The value of an unnamed member of a structure or union is used (6.7.11).

(78) The initializer for a scalar is neither a single expression, nor an empty initializer, nor a single
expression enclosed in braces (6.7.11).

(79) The initializer for a structure or union object is neither an initializer list nor a single expression
that has compatible structure or union type (6.7.11).

(80) The initializer for an aggregate or union, other than an array initialized by a string literal, is
not a brace-enclosed list of initializers for its elements or members (6.7.11).

(81) A function definition that does not have the asserted property is called by a function decla-
ration or a function pointer with a type that has the unsequenced or reproducible attribute
(6.7.13.8).

(82) An identifier with external linkage is used, but in the program there does not exist exactly
one external definition for the identifier, or the identifier is not used and there exist multiple
external definitions for the identifier (6.9).

(83) A function that accepts a variable number of arguments is defined without a parameter type
list that ends with the ellipsis notation (6.9.2).

(84) The } that terminates a function is reached, and the value of the function call is used by the
caller (6.9.2).

(85) An identifier for an object with internal linkage and an incomplete type is declared with a
tentative definition (6.9.3).

(86) A non-directive preprocessing directive is executed (6.10).

(87) The token defined is generated during the expansion of a #if or #elif preprocessing direc-
tive, or the use of the defined unary operator does not match one of the two specified forms
prior to macro replacement (6.10.2).

(88) The #include preprocessing directive that results after expansion does not match one of the
two header name forms (6.10.3).

© ISO/IEC 202y — All rights reserved

Portability issues — 608

§ J.2

ISO/IEC 9899:202y (en) — n3299 working draft

(89) The #embed preprocessing directive that results after expansion does not match any of the
name forms (6.10.4).

(90) The character sequence in an #include preprocessing directive does not start with a letter
(6.10.3).

(91) The character sequence in an #embed preprocessing directive does not start with a letter (6.10.4).

(92) There are sequences of preprocessing tokens within the list of macro arguments that would
otherwise act as preprocessing directives (6.10.5).

(93) The result of the preprocessing operator # is not a valid character string literal (6.10.5.3).

(94) The result of the preprocessing operator ## is not a valid preprocessing token (6.10.5.4).

(95) The #line preprocessing directive that results after expansion does not match one of the two
well-defined forms, or its digit sequence specifies zero or a number greater than 2147483647
(6.10.6).

(96) A non-STDC #pragma preprocessing directive that is documented as causing translation failure
or some other form of undefined behavior is encountered (6.10.8).

(97) A #pragma STDC preprocessing directive does not match one of the well-defined forms (6.10.8).

(98) The name of a predefined macro, or the identifier defined, is the subject of a #define or
#undef preprocessing directive (6.10.10).

(99) An attempt is made to copy an object to an overlapping object by use of a library function,
other than as explicitly allowed (e.g. memmove) (Clause 7).

(100) A file with the same name as one of the standard headers, not provided as part of the implemen-
tation, is placed in any of the standard places that are searched for included source files (7.1.2).

(101) A header is included within an external declaration or definition (7.1.2).

(102) A function, object, type, or macro that is specified as being declared or defined by some
standard header is used before any header that declares or defines it is included (7.1.2).

(103) A standard header is included while a macro is defined with the same name as a keyword
(7.1.2).

(104) The program attempts to declare a library function itself, rather than via a standard header,
but the declaration does not have external linkage (7.1.2).

(105) The program declares or defines a reserved identifier, other than as allowed by 7.1.4 (7.1.3).

(106) The program removes the definition of a macro whose name begins with an underscore and
either an uppercase letter or another underscore (7.1.3).

(107) An argument to a library function has an invalid value or a type not expected by a function
with a variable number of arguments (7.1.4).

(108) The pointer passed to a library function array parameter does not have a value such that all
address computations and object accesses are valid (7.1.4).

(109) The macro definition of assert is suppressed to access an actual function (7.2).

(110) The argument to the assert macro does not have a scalar type (7.2).

(111) The CX_LIMITED_RANGE, FENV_ACCESS, or FP_CONTRACT pragma is used in any context other
than outside all external declarations or preceding all explicit declarations and statements
inside a compound statement (7.3.4, 7.6.2, 7.12.3).

(112) The value of an argument to a character handling function is neither equal to the value of EOF
nor representable as an unsigned char (7.4).

§ J.2 © ISO/IEC 202y — All rights reserved

Portability issues — 609

ISO/IEC 9899:202y (en) — n3299 working draft

(113) A macro definition of errno is suppressed to access an actual object, or the program defines
an identifier with the name errno (7.5).

(114) Part of the program tests floating-point status flags, sets floating-point control modes, or
runs under non-default mode settings, but was translated with the state for the FENV_ACCESS
pragma "off" (7.6.2).

(115) The exception-mask argument for one of the functions that provide access to the floating-point
status flags has a nonzero value not obtained by bitwise OR of the floating-point exception
macros (7.6.5).

(116) The fesetexceptflag function is used to set floating-point status flags that were not specified
in the call to the fegetexceptflag function that provided the value of the corresponding
fexcept_t object (7.6.5.6).

(117) The argument to fesetenv or feupdateenv is neither an object set by a call to fegetenv or
feholdexcept, nor is it an environment macro (7.6.7.4, 7.6.7.5).

(118) The value of the result of an integer arithmetic or conversion function cannot be represented
(7.8.3.1, 7.8.3.2, 7.8.3.3, 7.8.3.4, 7.24.7.1, 7.24.7.2, 7.24.2).

(119) The program modifies the string pointed to by the value returned by the setlocale function
(7.11.2).

(120) A pointer returned by the setlocale function is used after a subsequent call to the function,
or after the calling thread has exited (7.11.2).

(121) The program modifies the structure pointed to by the value returned by the localeconv
function (7.11.3.1).

(122) A macro definition of math_errhandling is suppressed or the program defines an identifier
with the name math_errhandling (7.12).

(123) An argument to a floating-point classification or comparison macro is not of real floating type
(7.12.4, 7.12.18).

(124) A macro definition of setjmp is suppressed to access an actual function, or the program defines
an external identifier with the name setjmp (7.13).

(125) An invocation of the setjmp macro occurs other than in an allowed context (7.13.3.1).

(126) The longjmp function is invoked to restore a nonexistent environment (7.13.3.1).

(127) After a longjmp, there is an attempt to access the value of an object of automatic storage dura-
tion that does not have volatile-qualified type, local to the function containing the invocation
of the corresponding setjmp macro, that was changed between the setjmp invocation and
longjmp call (7.13.3.1).

(128) The program specifies an invalid pointer to a signal handler function (7.14.2.1).

(129) A signal handler returns when the signal corresponded to a computational exception (7.14.2.1).

(130) A signal handler called in response to SIGFPE, SIGILL, SIGSEGV, or any other implementation-
defined value corresponding to a computational exception returns (7.14.2.1).

(131) A signal occurs as the result of calling the abort or raise function, and the signal handler
calls the raise function (7.14.2.1).

(132) A signal occurs other than as the result of calling the abort or raise function, and the signal
handler refers to an object with static or thread storage duration that is not a lock-free atomic
object other than by assigning a value to an object declared as volatile sig_atomic_t, or
calls any function in the standard library other than the abort function, the _Exit function,
the quick_exit function, the functions in <stdatomic.h> (except where explicitly stated
otherwise) when the atomic arguments are lock-free, the atomic_is_lock_free function with
any atomic argument, or the signal function (for the same signal number) (7.14.2.1).

© ISO/IEC 202y — All rights reserved

Portability issues — 610

§ J.2

ISO/IEC 9899:202y (en) — n3299 working draft

(133) The value of errno is referred to after a signal occurred other than as the result of calling the
abort or raise function and the corresponding signal handler obtained a SIG_ERR return
from a call to the signal function (7.14.2.1).

(134) A signal is generated by an asynchronous signal handler (7.14.2.1).

(135) The signal function is used in a multi-threaded program (7.14.2.1).

(136) A function with a variable number of arguments attempts to access its varying arguments
other than through a properly declared and initialized va_list object, or before the va_start
macro is invoked (7.16, 7.16.2.2, 7.16.2.5).

(137) The macro va_arg is invoked using the parameter ap that was passed to a function that
invoked the macro va_arg with the same parameter (7.16).

(138) A macro definition of va_start, va_arg, va_copy, or va_end is suppressed to access an actual
function, or the program defines an external identifier with the name va_copy or va_end
(7.16.2).

(139) The va_start or va_copy macro is invoked without a corresponding invocation of the va_end
macro in the same function, or vice versa (7.16.2, 7.16.2.3, 7.16.2.4, 7.16.2.5).

(140) The va_arg macro is invoked when there is no actual next argument, or with a specified
type that is not compatible with the promoted type of the actual next argument, with certain
exceptions (7.16.2.2).

(141) The type parameter to the va_arg macro does not name an object type (7.16.2.2).

(142) Using a null pointer constant in form of an integer expression as an argument to a ... function
and then interpreting it as a void* or char* (7.16.2.2).

(143) The va_copy or va_start macro is invoked to initialize a va_list that was previously ini-
tialized by either macro without an intervening invocation of the va_end macro for the same
va_list (7.16.2.3, 7.16.2.5).

(144) The va_start macro is invoked with additional arguments that include unbalanced parenthe-
ses, or unrecognized preprocessing tokens (7.16.2.5).

(145) The macro definition of a generic function is suppressed to access an actual function (7.17.1,
7.18).

(146) The type parameter of an offsetof macro defines a new type (7.21).

(147) When program execution reaches an unreachable() macro invocation (7.21.2).

(148) Arbitrarily copying or changing the bytes of or copying from a non-null pointer into a
nullptr_t object and then reading that object (7.21.3).

(149) The member-designator parameter of an offsetof macro is an invalid right operand of the .
operator for the type parameter, or designates a bit-field (7.21).

(150) The argument in an instance of one of the integer-constant macros is not a decimal, octal, or
hexadecimal constant, or it has a value that exceeds the limits for the corresponding type
(7.22.5).

(151) A byte input/output function is applied to a wide-oriented stream, or a wide character
input/output function is applied to a byte-oriented stream (7.23.2).

(152) Use is made of any portion of a file beyond the most recent wide character written to a
wide-oriented stream (7.23.2).

(153) The value of a pointer to a FILE object is used after the associated file is closed (7.23.3).

§ J.2 © ISO/IEC 202y — All rights reserved

Portability issues — 611

ISO/IEC 9899:202y (en) — n3299 working draft

(154) The stream for the fflush function points to an input stream or to an update stream in which
the most recent operation was input (7.23.5.2).

(155) The string pointed to by the mode argument in a call to the fopen function does not exactly
match one of the specified character sequences (7.23.5.3).

(156) An output operation on an update stream is followed by an input operation without an
intervening call to the fflush function or a file positioning function, or an input operation
on an update stream is followed by an output operation with an intervening call to a file
positioning function (7.23.5.3).

(157) An attempt is made to use the contents of the array that was supplied in a call to the setvbuf
function (7.23.5.6).

(158) There are insufficient arguments for the format in a call to one of the formatted input/output
functions, or an argument does not have an appropriate type (7.23.6.2, 7.23.6.3, 7.31.2.2,
7.31.2.3).

(159) The format in a call to one of the formatted input/output functions or to the strftime or
wcsftime function is not a valid multibyte character sequence that begins and ends in its
initial shift state (7.23.6.2, 7.23.6.3, 7.29.3.6, 7.31.2.2, 7.31.2.3, 7.31.5.1).

(160) In a call to one of the formatted output functions, a precision appears with a conversion
specifier other than those described (7.23.6.2, 7.31.2.2).

(161) A conversion specification for a formatted output function uses an asterisk to denote an
argument-supplied field width or precision, but the corresponding argument is not provided
(7.23.6.2, 7.31.2.2).

(162) A conversion specification for a formatted output function uses a # or 0 flag with a conversion
specifier other than those described (7.23.6.2, 7.31.2.2).

(163) A conversion specification for one of the formatted input/output functions uses a length
modifier with a conversion specifier other than those described (7.23.6.2, 7.23.6.3, 7.31.2.2,
7.31.2.3).

(164) An s conversion specifier is encountered by one of the formatted output functions, and the
argument is missing the null terminator (unless a precision is specified that does not require
null termination) (7.23.6.2, 7.31.2.2).

(165) An n conversion specification for one of the formatted input/output functions includes any
flags, an assignment-suppressing character, a field width, or a precision (7.23.6.2, 7.23.6.3,
7.31.2.2, 7.31.2.3).

(166) A % conversion specifier is encountered by one of the formatted input/output functions, but
the complete conversion specification is not exactly %% (7.23.6.2, 7.23.6.3, 7.31.2.2, 7.31.2.3).

(167) An invalid conversion specification is found in the format for one of the formatted input/out-
put functions, or the strftime or wcsftime function (7.23.6.2, 7.23.6.3, 7.29.3.6, 7.31.2.2,
7.31.2.3, 7.31.5.1).

(168) The number of characters or wide characters transmitted by a formatted output function (or
written to an array, or that would have been written to an array) is greater than INT_MAX
(7.23.6.2, 7.31.2.2).

(169) The number of input items assigned by a formatted input function is greater than INT_MAX
(7.23.6.3, 7.31.2.3).

(170) The result of a conversion by one of the formatted input functions cannot be represented in
the corresponding object, or the receiving object does not have an appropriate type (7.23.6.3,
7.31.2.3).

© ISO/IEC 202y — All rights reserved

Portability issues — 612

§ J.2

ISO/IEC 9899:202y (en) — n3299 working draft

(171) A c, s, or [conversion specifier is encountered by one of the formatted input functions, and
the array pointed to by the corresponding argument is not large enough to accept the input
sequence (and a null terminator if the conversion specifier is s or [) (7.23.6.3, 7.31.2.3).

(172) A c, s, or [conversion specifier with an l qualifier is encountered by one of the formatted
input functions, but the input is not a valid multibyte character sequence that begins in the
initial shift state (7.23.6.3, 7.31.2.3).

(173) The input item for a %p conversion by one of the formatted input functions is not a value
converted earlier during the same program execution (7.23.6.3, 7.31.2.3).

(174) The vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, vsscanf, vfwprintf,
vfwscanf, vswprintf, vswscanf, vwprintf, or vwscanf function is called with an improperly
initialized va_list argument, or the argument is used (other than in an invocation of va_end)
after the function returns (7.23.6.9, 7.23.6.10, 7.23.6.11, 7.23.6.12, 7.23.6.13, 7.23.6.14, 7.23.6.15,
7.31.2.6, 7.31.2.7, 7.31.2.8, 7.31.2.9, 7.31.2.10, 7.31.2.11).

(175) The contents of the array supplied in a call to the fgets or fgetws function are used after a
read error occurred (7.23.7.2, 7.31.3.2).

(176) The n parameter is negative or zero for a call to fgets or fgetws. (7.23.7.2, 7.31.3.2).

(177) The file position indicator for a binary stream is used after a call to the ungetc function where
its value was zero before the call (7.23.7.10).

(178) The file position indicator for a stream is used after an error occurred during a call to the
fread or fwrite function (7.23.8.1, 7.23.8.2).

(179) A partial element read by a call to the fread function is used (7.23.8.1).

(180) The fseek function is called for a text stream with a nonzero offset and either the offset was
not returned by a previous successful call to the ftell function on a stream associated with
the same file or whence is not SEEK_SET (7.23.9.2).

(181) The fsetpos function is called to set a position that was not returned by a previous successful
call to the fgetpos function on a stream associated with the same file (7.23.9.3).

(182) A non-null pointer returned by a call to the calloc, malloc, realloc, or aligned_alloc
function with a zero requested size is used to access an object (7.24.4).

(183) The value of a pointer that refers to space deallocated by a call to the free or realloc function
is used (7.24.4).

(184) The pointer argument to the free or realloc function is unequal to a null pointer and does
not match a pointer earlier returned by a memory management function, or the space has been
deallocated by a call to free or realloc (7.24.4.4, 7.24.4.8).

(185) The value of the object allocated by the malloc function is used (7.24.4.7).

(186) The values of any bytes in a new object allocated by the realloc function beyond the size of
the old object are used (7.24.4.8).

(187) The program calls the exit or quick_exit function more than once, or calls both functions
(7.24.5.4, 7.24.5.7).

(188) During the call to a function registered with the atexit or at_quick_exit function, a call is
made to the longjmp function that would terminate the call to the registered function (7.24.5.4,
7.24.5.7).

(189) The string set up by the getenv or strerror function is modified by the program (7.24.5.6,
7.26.6.3).

(190) A signal is raised while the quick_exit function is executing (7.24.5.7).

§ J.2 © ISO/IEC 202y — All rights reserved

Portability issues — 613

ISO/IEC 9899:202y (en) — n3299 working draft

(191) A command is executed through the system function in a way that is documented as causing
termination or some other form of undefined behavior (7.24.5.8).

(192) A searching or sorting utility function is called with an invalid pointer argument, even if the
number of elements is zero (7.24.6).

(193) The comparison function called by a searching or sorting utility function alters the contents of
the array being searched or sorted, or returns ordering values inconsistently (7.24.6).

(194) The array being searched by the bsearch function does not have its elements in proper order
(7.24.6.2).

(195) The current conversion state is used by a multibyte/wide character conversion function after
changing the LC_CTYPE category (7.24.8).

(196) A string or wide string utility function is instructed to access an array beyond the end of an
object (7.26.1, 7.31.4).

(197) A string or wide string utility function is called with an invalid pointer argument, even if the
length is zero (7.26.1, 7.31.4).

(198) The contents of the destination array are used after a call to the strxfrm, strftime, wcsxfrm,
or wcsftime function in which the specified length was too small to hold the entire null-
terminated result (7.26.4.6, 7.29.3.6, 7.31.4.5.5, 7.31.5.1).

(199) A sequence of calls of the strtok function is made from different threads (7.26.5.9).

(200) The first argument in the very first call to the strtok or wcstok is a null pointer (7.26.5.9,
7.31.4.6.8).

(201) A pointer returned by the strerror function is used after a subsequent call to the function, or
after the calling thread has exited (7.26.6.3).

(202) The type of an argument to a type-generic macro is not compatible with the type of the
corresponding parameter of the selected function (7.27).

(203) Arguments for generic parameters of a type-generic macro are such that some argument has a
corresponding real type that is of standard floating type and another argument is of decimal
floating type (7.27).

(204) Arguments for generic parameters of a type-generic macro are such that neither <math.h> and
<complex.h> define a function whose generic parameters have the determined corresponding
real type (7.27).

(205) A complex argument is supplied for a generic parameter of a type-generic macro that has no
corresponding complex function (7.27).

(206) A decimal floating argument is supplied for a generic parameter of a type-generic macro that
expects a complex argument (7.27).

(207) A standard floating or complex argument is supplied for a generic parameter of a type-generic
macro that expects a decimal floating type argument (7.27).

(208) A non-recursive mutex passed to mtx_lock is locked by the calling thread (7.28.4.4).

(209) The mutex passed to mtx_timedlock does not support timeout (7.28.4.5).

(210) The mutex passed to mtx_unlock is not locked by the calling thread (7.28.4.7).

(211) The thread passed to thrd_detach or thrd_join was previously detached or joined with
another thread (7.28.5.3, 7.28.5.6).

(212) The tss_create function is called from within a destructor (7.28.6.1).

© ISO/IEC 202y — All rights reserved

Portability issues — 614

§ J.2

ISO/IEC 9899:202y (en) — n3299 working draft

(213) The key passed to tss_delete, tss_get, or tss_set was not returned by a call to tss_create
before the thread commenced executing destructors (7.28.6.2, 7.28.6.3, 7.28.6.4).

(214) An attempt is made to access the pointer returned by the time conversion functions after the
thread that originally called the function to obtain it has exited (7.29.3).

(215) At least one member of the broken-down time passed to asctime contains a value outside its
normal range, or the calculated year exceeds four digits or is less than the year 1000 (7.29.3.2).

(216) The argument corresponding to an s specifier without an l qualifier in a call to the fwprintf
function does not point to a valid multibyte character sequence that begins in the initial shift
state (7.31.2.12).

(217) In a call to the wcstok function, the object pointed to by ptr does not have the value stored by
the previous call for the same wide string (7.31.4.6.8).

(218) An mbstate_t object is used inappropriately (7.31.6).

(219) The value of an argument of type wint_t to a wide character classification or case mapping
function is neither equal to the value of WEOF nor representable as a wchar_t (7.32.1).

(220) The iswctype function is called using a different LC_CTYPE category from the one in effect for
the call to the wctype function that returned the description (7.32.2.3.2).

(221) The towctrans function is called using a different LC_CTYPE category from the one in effect
for the call to the wctrans function that returned the description (7.32.3.2.2).

J.3 Implementation-defined behavior
J.3.1 General

1 A conforming implementation is required to document its choice of behavior in each of the areas
listed in this subclause. The following are implementation-defined:

J.3.2 Translation
1 (1) How a diagnostic is identified (3.13, 5.2.1.3).

(2) Whether each nonempty sequence of white-space characters other than new-line is retained or
replaced by one space character in translation phase 3 (5.2.1.2).

J.3.3 Environment
1 (1) The mapping between physical source file multibyte characters and the source character set in

translation phase 1 (5.2.1.2).

(2) The name and type of the function called at program startup in a freestanding environment
(5.2.2.2).

(3) The effect of program termination in a freestanding environment (5.2.2.2).

(4) An alternative manner in which the main function may be defined (5.2.2.3.2).

(5) The values given to the strings pointed to by the argv argument to main (5.2.2.3.2).

(6) What constitutes an interactive device (5.2.2.4).

(7) Whether a program can have more than one thread of execution in a freestanding environment
(5.2.2.5).

(8) The set of signals, their semantics, and their default handling (7.14).

(9) Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational
exception (7.14.2.1).

§ J.3.3 © ISO/IEC 202y — All rights reserved

Portability issues — 615

ISO/IEC 9899:202y (en) — n3299 working draft

(10) Signals for which the equivalent of signal(sig, SIG_IGN); is executed at program startup
(7.14.2.1).

(11) The set of environment names and the method for altering the environment list used by the
getenv function (7.24.5.6).

(12) The manner of execution of the string by the system function (7.24.5.8).

J.3.4 Identifiers
1 (1) Which additional multibyte characters may appear in identifiers and their correspondence to

universal character names (6.4.3).

(2) The number of significant initial characters in an identifier (5.3.5.2, 6.4.3).

J.3.5 Characters
1 (1) The number of bits in a byte (3.7).

(2) The values of the members of the execution character set (5.3.1).

(3) The unique value of the member of the execution character set produced for each of the
standard alphabetic escape sequences (5.3.3).

(4) The value of a char object into which has been stored any character other than a member of
the basic execution character set (6.2.5).

(5) Which of signed char or unsigned char has the same range, representation, and behavior
as "plain" char (6.2.5, 6.3.2.1).

(6) The literal encoding, which maps of the characters of the execution character set to the values
in a character constant or string literal (6.2.9, 6.4.5.5).

(7) The wide literal encoding, of the characters of the execution character set to the values in a
wchar_t character constant or wchar_t string literal (6.2.9, 6.4.5.5).

(8) The mapping of members of the source character set (in character constants and string literals)
to members of the execution character set (6.4.5.5, 5.2.1.2).

(9) The value of an integer character constant containing more than one character or containing a
character or escape sequence that does not map to a single-byte execution character (6.4.5.5).

(10) The value of a wide character constant containing more than one multibyte character or a
single multibyte character that maps to multiple members of the extended execution character
set, or containing a multibyte character or escape sequence not represented in the extended
execution character set (6.4.5.5).

(11) The current locale used to convert a wide character constant consisting of a single multibyte
character that maps to a member of the extended execution character set into a corresponding
wide character code (6.4.5.5).

(12) The current locale used to convert a wide string literal into corresponding wide character
codes (6.4.6).

(13) The value of a string literal containing a multibyte character or escape sequence not represented
in the execution character set (6.4.6).

(14) The encoding of wchar_t where the macro __STDC_ISO_10646__ is not defined (6.10.10.3).

© ISO/IEC 202y — All rights reserved

Portability issues — 616

§ J.3.5

ISO/IEC 9899:202y (en) — n3299 working draft

J.3.6 Integers
1 (1) Any extended integer types that exist in the implementation (6.2.5).

(2) The rank of any extended integer type relative to another extended integer type with the same
precision (6.3.2.1).

(3) The result of, or the signal raised by, converting an integer to a signed integer type when the
value cannot be represented in an object of that type (6.3.2.3).

(4) The results of some bitwise operations on signed integers (6.5.1).

J.3.7 Floating-point
1 (1) The accuracy of the floating-point operations and of the library functions in <math.h> and

<complex.h> that return floating-point results (5.3.5.3.3).

(2) The accuracy of the conversions between floating-point internal representations and string
representations performed by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>
(5.3.5.3.3).

(3) The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.3.5.3.3).

(4) The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD
(5.3.5.3.3).

(5) The evaluation methods characterized by non-standard negative values of DEC_EVAL_METHOD
(5.3.5.3.4).

(6) If decimal floating types are supported (6.2.5).

(7) The direction of rounding when an integer is converted to a floating-point number that cannot
exactly represent the original value (6.3.2.4).

(8) The direction of rounding when a floating-point number is converted to a narrower floating-
point number (6.3.2.5).

(9) How the nearest representable value or the larger or smaller representable value immediately
adjacent to the nearest representable value is chosen for certain floating constants (6.4.5.3).

(10) Whether and how floating expressions are contracted when not disallowed by the
FP_CONTRACT pragma (6.5.1).

(11) The default state for the FENV_ACCESS pragma (7.6.2).

(12) Additional floating-point exceptions, rounding modes, environments, and classifications, and
their macro names (7.6, 7.12).

(13) The default state for the FP_CONTRACT pragma (7.12.3).

J.3.8 Constant expressions
1 (1) Whether or not an expression not explicitly sanctioned by this document is an extended

constant expression, whether or not such extended constant expressions can be used in the
same contexts as this document, and whether or not such extended constant expressions can
affect potentially detectable semantic changes in the program (??).

J.3.9 Arrays and pointers
1 (1) The result of converting a pointer to an integer or vice versa (6.3.3.3).

(2) The size of the result of subtracting two pointers to elements of the same array (6.5.7).

§ J.3.9 © ISO/IEC 202y — All rights reserved

Portability issues — 617

ISO/IEC 9899:202y (en) — n3299 working draft

J.3.10 Hints
1 (1) The extent to which suggestions made by using the register storage-class specifier are

effective (6.7.2).

(2) The extent to which suggestions made by using the inline function specifier are effective
(6.7.5).

J.3.11 Structures, unions, enumerations, and bit-fields
1 (1) Whether a "plain" int bit-field is treated as a signed int bit-field or as an unsigned int

bit-field (6.7.3, 6.7.3.2).

(2) Allowable bit-field types other than bool, signed int, unsigned int, and bit-precise integer
types (6.7.3.2).

(3) Whether atomic types are permitted for bit-fields (6.7.3.2).

(4) Whether a bit-field can straddle a storage-unit boundary (6.7.3.2).

(5) The order of allocation of bit-fields within a unit (6.7.3.2).

(6) The alignment of non-bit-field members of structures (6.7.3.2). This should present no problem
unless binary data written by one implementation is read by another.

(7) The integer type compatible with each enumerated type without fixed underlying type (6.7.3.3).

J.3.12 Qualifiers
1 (1) What constitutes an access to an object that has volatile-qualified type (6.7.4).

J.3.13 Types
1 (1) A program forms the composite type of an enumerated type and a non-enumeration integer

type (6.2.7).

(2) Whether or not it is supported for a declaration for which a type is inferred to contain a pointer,
array, or function declarator (6.7.10).

(3) Whether or not it is supported for a declaration for which a type is inferred to contain no or
more than one declarators (6.7.10).

J.3.14 Preprocessing directives
1 (1) The locations within #pragma directives where header name preprocessing tokens are recog-

nized (6.4, 6.4.8).

(2) How sequences in both forms of header names are mapped to headers or external source file
names (6.4.8).

(3) Whether the value of a character constant in a constant expression that controls conditional
inclusion matches the value of the same character constant in the execution character set
(6.10.2).

(4) Whether the value of a single-character character constant in a constant expression that controls
conditional inclusion may have a negative value (6.10.2).

(5) The places that are searched for an included < > delimited header, and how the places are
specified or the header is identified (6.10.3).

(6) How the named source file is searched for in an included " " delimited header name (6.10.3).

(7) How the named resource file is searched for in an embedded " " delimited resource name
(6.10.4).

© ISO/IEC 202y — All rights reserved

Portability issues — 618

§ J.3.14

ISO/IEC 9899:202y (en) — n3299 working draft

(8) The method by which preprocessing tokens (possibly resulting from macro expansion) in a
#include directive are combined into a header name (6.10.3).

(9) The nesting limit for #include processing (6.10.3).

(10) The method by which preprocessing tokens (possibly resulting from macro expansion) in a
#embed directive are combined into a resource name (6.10.4).

(11) The mapping between a resource’s data and the values of the integer constant expressions, if
any, in the replacement of a #embed directive (6.10.4).

(12) The width of a resource located by the #embed directive (6.10.4).

(13) Whether the # operator inserts a \ character before the \ character that begins a universal
character name in a character constant or string literal (6.10.5.3).

(14) The behavior on each recognized non-STDC #pragma directive (6.10.8).

(15) The definitions for __DATE__ and __TIME__ when respectively, the date and time of translation
are not available (6.10.10.2).

J.3.15 Library functions
1 (1) Any library facilities available to a freestanding program, other than the minimal set required

by Clause 4 (5.2.2.2).

(2) The format of the diagnostic printed by the assert macro (7.2.2.1).

(3) The representation of the floating-point status flags stored by the fegetexceptflag function
(7.6.5.3).

(4) Whether the feraiseexcept function raises the "inexact" floating-point exception in addition
to the "overflow" or "underflow" floating-point exception (7.6.5.4).

(5) Strings other than "C" and "" that may be passed as the second argument to the setlocale
function (7.11.2).

(6) The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD macro
is less than 0 (7.12).

(7) The types defined for _Decimal32_t and _Decimal64_t when the value of the
DEC_EVAL_METHOD macro is less than 0 (7.12).

(8) Domain errors for the mathematics functions, other than those required by this document
(7.12.2).

(9) The values returned by the mathematics functions on domain errors or pole errors (7.12.2).

(10) The values returned by the mathematics functions on underflow range errors, whether errno
is set to the value of the macro ERANGE when the integer expression math_errhandling &
MATH_ERRNO is nonzero, and whether the "underflow" floating-point exception is raised when
the integer expression math_errhandling & MATH_ERREXCEPT is nonzero. (7.12.2).

(11) Whether a domain error occurs or zero is returned when an fmod function has a second
argument of zero (7.12.11.1).

(12) Whether a domain error occurs or zero is returned when a remainder function has a second
argument of zero (7.12.11.2).

(13) The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient
(7.12.11.3).

(14) Whether a domain error occurs or zero is returned when a remquo function has a second
argument of zero (7.12.11.3).

§ J.3.15 © ISO/IEC 202y — All rights reserved

Portability issues — 619

ISO/IEC 9899:202y (en) — n3299 working draft

(15) Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal
handler, and, if not, the blocking of signals that is performed (7.14.2.1).

(16) The value of __STDC_ENDIAN_NATIVE__ if the execution environment is not big-endian or
little-endian (7.18.2)

(17) The null pointer constant to which the macro NULL expands (7.21).

(18) Whether the last line of a text stream requires a terminating new-line character (7.23.2).

(19) Whether space characters that are written out to a text stream immediately before a new-line
character appear when read in (7.23.2).

(20) The number of null characters that may be appended to data written to a binary stream (7.23.2).

(21) Whether the file position indicator of an append-mode stream is initially positioned at the
beginning or end of the file (7.23.3).

(22) Whether a write on a text stream causes the associated file to be truncated beyond that point
(7.23.3).

(23) The characteristics of file buffering (7.23.3).

(24) Whether a zero-length file actually exists (7.23.3).

(25) The rules for composing valid file names (7.23.3).

(26) Whether the same file can be simultaneously open multiple times (7.23.3).

(27) The nature and choice of encodings used for multibyte characters in files (7.23.3).

(28) The effect of the remove function on an open file (7.23.4.1).

(29) The effect if a file with the new name exists prior to a call to the rename function (7.23.4.2).

(30) Whether an open temporary file is removed upon abnormal program termination (7.23.4.3).

(31) Which changes of mode are permitted (if any), and under what circumstances (7.23.5.4).

(32) The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence
printed for a NaN (7.23.6.2, 7.31.2.2).

(33) The output for %p conversion in the fprintf or fwprintf function (7.23.6.2, 7.31.2.2).

(34) The interpretation of a - character that is neither the first nor the last character, nor the second
where a ^ character is the first, in the scanlist for %[conversion in the fscanf or fwscanf
function (7.23.6.3, 7.31.2.2).

(35) The set of sequences matched by a %p conversion and the interpretation of the corresponding
input item in the fscanf or fwscanf function (7.23.6.3, 7.31.2.3).

(36) The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on
failure (7.23.9.1, 7.23.9.3, 7.23.9.4).

(37) The meaning of any n-char or n-wchar sequence in a string representing a NaN that is
converted by the strtod, strtof, strtold, wcstod, wcstof, or wcstold function (7.24.2.6,
7.31.4.2.2).

(38) Whether the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets errno to
ERANGE when underflow occurs (7.24.2.6, 7.31.4.2.2).

(39) The meaning of any d-char or d-wchar sequence in a string representing a NaN that is con-
verted by the strtod32, strtod64, strtod128, wcstod32, wcstod64, or wcstod128 function
(7.24.2.7, 7.31.4.2.3).

© ISO/IEC 202y — All rights reserved

Portability issues — 620

§ J.3.15

ISO/IEC 9899:202y (en) — n3299 working draft

(40) Whether the strtod32, strtod64, strtod128, wcstod32, wcstod64, or wcstod128 function
sets errno to ERANGE when underflow occurs (7.24.2.7, 7.31.4.2.3).

(41) Whether the calloc, malloc, realloc, and aligned_alloc functions return a null pointer or
a pointer to an allocated object when the size requested is zero (7.24.4).

(42) Whether open streams with unwritten buffered data are flushed, open streams are closed, or
temporary files are removed when the abort or _Exit function is called (7.24.5.1, 7.24.5.5).

(43) The termination status returned to the host environment by the abort, exit, _Exit, or
quick_exit function (7.24.5.1, 7.24.5.4, 7.24.5.5, 7.24.5.7).

(44) The value returned by the system function when its argument is not a null pointer (7.24.5.8).

(45) Whether the internal state of multibyte/wide character conversion functions has thread-storage
duration, and its initial value in newly created threads (7.24.8).

(46) Whether the multibyte/wide character conversion functions avoid data races with other calls
to the same function (7.24.8).

(47) The range and precision of times representable in clock_t and time_t (7.29).

(48) The local time zone and Daylight Saving Time (7.29.1).

(49) Whether TIME_MONOTONIC or TIME_ACTIVE are supported time bases (7.29.1).

(50) Whether TIME_THREAD_ACTIVE is a supported time bases (7.29.1, 7.28.1).

(51) The era for the clock function (7.29.2.1).

(52) The TIME_UTC epoch (7.29.2.6).

(53) The replacement string for the %Z specifier to the strftime, and wcsftime functions in the
"C" locale (7.29.3.6, 7.31.5.1).

(54) Whether internal mbstate_t objects have thread storage duration (7.30.2, 7.31.6.4, 7.31.6.5).

(55) Whether the functions in <math.h> honor the rounding direction mode in an ISO/IEC 60559
conformant implementation, unless explicitly specified otherwise (F.10).

J.3.16 Architecture
1 (1) The values or expressions assigned to the macros specified in the headers <float.h>,

<limits.h>, and <stdint.h> (5.3.5.3, 7.22).

(2) The result of attempting to indirectly access an object with automatic or thread storage duration
from a thread other than the one with which it is associated (6.2.4).

(3) The number, order, and encoding of bytes in any object (when not explicitly specified in this
document) (6.2.6.1).

(4) Whether any extended alignments are supported and the contexts in which they are supported
(6.2.8).

(5) Valid alignment values other than those returned by an alignof expression for fundamental
types, if any (6.2.8).

(6) The value of the result of the sizeof and alignof operators (6.5.4.5).

§ J.3.16 © ISO/IEC 202y — All rights reserved

Portability issues — 621

ISO/IEC 9899:202y (en) — n3299 working draft

J.4 Locale-specific behavior
1 The following characteristics of a hosted environment are locale-specific and are required to be

documented by the implementation:

(1) Additional members of the source and execution character sets beyond the basic character set
(5.3.1).

(2) The presence, meaning, and representation of additional multibyte characters in the execution
character set beyond the basic character set (5.3.2).

(3) The shift states used for the encoding of multibyte characters (5.3.2).

(4) The direction of writing of successive printing characters (5.3.3).

(5) The decimal-point character (7.1.1).

(6) The set of printing characters (7.4, 7.32.2).

(7) The set of control characters (7.4, 7.32.2).

(8) The sets of characters tested for by the isalpha, isblank, islower, ispunct, isspace,
isupper, iswalpha, iswblank, iswlower, iswpunct, iswspace, or iswupper functions
(7.4.2.3, 7.4.2.4, 7.4.2.8, 7.4.2.10, 7.4.2.11, 7.4.2.12, 7.32.2.2.3, 7.32.2.2.4, 7.32.2.2.8, 7.32.2.2.10,
7.32.2.2.11, 7.32.2.2.12).

(9) The native environment (7.11.2).

(10) Additional subject sequences accepted by the numeric conversion functions (7.24.2, 7.31.4.2).

(11) The collation sequence of the execution character set (7.26.4.4, 7.31.4.5.3).

(12) The contents of the error message strings set up by the strerror function (7.26.6.3).

(13) The formats for time and date (7.29.3.6, 7.31.5.1).

(14) Character mappings that are supported by the towctrans function (7.32.1).

(15) Character classifications that are supported by the iswctype function (7.32.1).

J.5 Common extensions
J.5.1 General

1 The following extensions are widely used in many systems, but are not portable to all implemen-
tations. The inclusion of any extension that may cause a strictly conforming program to become
invalid renders an implementation nonconforming. Examples of such extensions are new keywords,
extra library functions declared in standard headers, or predefined macros with names that do not
begin with an underscore.

J.5.2 Environment arguments
1 In a hosted environment, the main function receives a third argument, char *envp[], that points to

a null-terminated array of pointers to char, each of which points to a string that provides information
about the environment for this execution of the program (5.2.2.3.2).

J.5.3 Specialized identifiers
1 Characters other than the underscore _, letters, and digits, that are not part of the basic source

character set (such as the dollar sign $, or characters in national character sets) may appear in an
identifier (6.4.3).

J.5.4 Lengths and cases of identifiers
1 All characters in identifiers (with or without external linkage) are significant (6.4.3).

© ISO/IEC 202y — All rights reserved

Portability issues — 622

§ J.5.4

ISO/IEC 9899:202y (en) — n3299 working draft

J.5.5 Scopes of identifiers
1 A function identifier, or the identifier of an object the declaration of which contains the keyword

extern, has file scope (6.2.1).

J.5.6 Writable string literals
1 String literals are modifiable (in which case, identical string literals should denote distinct objects)

(6.4.6).

J.5.7 Other arithmetic types
1 Additional arithmetic types, such as __int128 or double double, and their appropriate conversions

are defined (6.2.5, 6.3.2). Additional floating types may have more range or precision than long
double, may be used for evaluating expressions of other floating types, and may be used to define
float_t or double_t. Additional floating types may also have less range or precision than float.

J.5.8 Function pointer casts
1 A pointer to an object or to void may be cast to a pointer to a function, allowing data to be invoked

as a function (6.5.5).

2 A pointer to a function may be cast to a pointer to an object or to void, allowing a function to be
inspected or modified (for example, by a debugger) (6.5.5).

J.5.9 Extended bit-field types
1 A bit-field may be declared with a type other than bool, unsigned int, signed int, or a bit-precise

integer type, with an appropriate maximum width (6.7.3.2).

J.5.10 The fortran keyword
1 The fortran function specifier may be used in a function declaration to indicate that calls suitable

for FORTRAN should be generated, or that a different representation for the external name is to be
generated (6.7.5).

J.5.11 The asm keyword
1 The asm keyword may be used to insert assembly language directly into the translator output (6.8).

The most common implementation is via a statement of the form:

asm (character-string-literal);

J.5.12 Type inference
1 A declaration for which a type is inferred (6.7.10) may additionally accept pointer declarators,

function declarators, and may have more than one declarator.

J.5.13 Multiple external definitions
1 There may be more than one external definition for the identifier of an object, with or without the

explicit use of the keyword extern; if the definitions disagree, or more than one is initialized, the
behavior is undefined (6.9.3).

J.5.14 Predefined macro names
1 Macro names that do not begin with an underscore, describing the translation and execution

environments, are defined by the implementation before translation begins (6.10.10).

J.5.15 Floating-point status flags
1 If any floating-point status flags are set on normal termination after all calls to functions registered

by the atexit function have been made (see 7.24.5.4), the implementation writes some diagnostics
indicating the fact to the stderr stream, if it is still open,

§ J.5.15 © ISO/IEC 202y — All rights reserved

Portability issues — 623

ISO/IEC 9899:202y (en) — n3299 working draft

J.5.16 Extra arguments for signal handlers
1 Handlers for specific signals are called with extra arguments in addition to the signal number

(7.14.2.1).

J.5.17 Additional stream types and file-opening modes
1 Additional mappings from files to streams are supported (7.23.2).

2 Additional file-opening modes may be specified by characters appended to the mode argument of
the fopen function (7.23.5.3).

J.5.18 Defined file position indicator
1 The file position indicator is decremented by each successful call to the ungetc or ungetwc function

for a text stream, except if its value was zero before a call (7.23.7.10, 7.31.3.10).

J.5.19 Math error reporting
1 Functions declared in <complex.h> and <math.h> raise SIGFPE to report errors instead of, or in

addition to, setting errno or raising floating-point exceptions (7.3, 7.12).

J.6 Reserved identifiers and keywords
J.6.1 General

1 A lot of identifier preprocessing tokens are used for specific purposes in regular clauses or appendices
from translation phase 3 (5.2.1.2) onwards. Using any of these for a purpose different from their
description in this document, even if the use is in a context where they are normatively permitted,
may have an impact on the portability of code and should thus be avoided.

J.6.2 Rule based identifiers
1 The following 53 regular expressions characterize identifiers that are systematically reserved by

some clause in this document.

atomic_[a-z][a-zA-Z0-9_]*
ATOMIC_[A-Z][a-zA-Z0-9_]*
[a-zA-Z0-9_]*_DECIMAL_DIG
[a-zA-Z0-9_]*_DIG
[a-zA-Z0-9_]*_EPSILON
[a-zA-Z0-9_]*_MANT_DIG
[a-zA-Z0-9_]*_MAX
[a-zA-Z0-9_]*_MAX_10_EXP
[a-zA-Z0-9_]*_MAX_EXP
[a-zA-Z0-9_]*_MIN
[a-zA-Z0-9_]*_MIN_10_EXP
[a-zA-Z0-9_]*_MIN_EXP
[a-zA-Z0-9_]*_SNAN
[a-zA-Z0-9_]*_TRUE_MIN
[a-zA-Z][a-zA-Z0-9_]*
ckd_[a-z][a-zA-Z0-9_]*
cnd_[a-z][a-zA-Z0-9_]*
cr_[a-z][a-zA-Z0-9_]*
DBL_[A-Z][a-zA-Z0-9_]*
DEC128_[A-Z][a-zA-Z0-9_]*
DEC32_[A-Z][a-zA-Z0-9_]*
DEC64_[A-Z][a-zA-Z0-9_]*
DEC_[A-Z][a-zA-Z0-9_]*
E[0-9A-Z][a-zA-Z0-9_]*
FE_[A-Z][a-zA-Z0-9_]*
FLT_[A-Z][a-zA-Z0-9_]*
FP_[A-Z][a-zA-Z0-9_]*

INT[a-zA-Z0-9_]*_C
INT[a-zA-Z0-9_]*_MAX
INT[a-zA-Z0-9_]*_MIN
int[a-zA-Z0-9_]*_t
INT[a-zA-Z0-9_]*_WIDTH
is[a-z][a-zA-Z0-9_]*
LC_[A-Z][a-zA-Z0-9_]*
LDBL_[A-Z][a-zA-Z0-9_]*
MATH_[A-Z][a-zA-Z0-9_]*
mem[a-z][a-zA-Z0-9_]*
mtx_[a-z][a-zA-Z0-9_]*
PRI[a-zBX][a-zA-Z0-9_]*
SCN[a-zBX][a-zA-Z0-9_]*
SIG[A-Z][a-zA-Z0-9_]*
SIG_[A-Z][a-zA-Z0-9_]*
stdc_[a-z][a-zA-Z0-9_]*
str[a-z][a-zA-Z0-9_]*
thrd_[a-z][a-zA-Z0-9_]*
TIME_[A-Z][a-zA-Z0-9_]*
to[a-z][a-zA-Z0-9_]*
tss_[a-z][a-zA-Z0-9_]*
UINT[a-zA-Z0-9_]*_C
UINT[a-zA-Z0-9_]*_MAX
uint[a-zA-Z0-9_]*_t
UINT[a-zA-Z0-9_]*_WIDTH
wcs[a-z][a-zA-Z0-9_]*

© ISO/IEC 202y — All rights reserved

Portability issues — 624

§ J.6.2

ISO/IEC 9899:202y (en) — n3299 working draft

2 The following 824 identifiers or keywords match these patterns and have particular semantics
provided by this document.

_Alignas
_Alignof
_Atomic
atomic_bool
ATOMIC_BOOL_LOCK_FREE
atomic_char
atomic_char16_t
ATOMIC_CHAR16_T_LOCK_FREE
atomic_char32_t
ATOMIC_CHAR32_T_LOCK_FREE
atomic_char8_t
ATOMIC_CHAR8_T_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
atomic_compare_exchange_strong
atomic_compare_exchange_strong_explicit
atomic_compare_exchange_weak
atomic_compare_exchange_weak_explicit
atomic_exchange
atomic_exchange_explicit
atomic_fetch_

atomic_fetch_add
atomic_fetch_add_explicit
atomic_fetch_and
atomic_fetch_and_explicit
atomic_fetch_or
atomic_fetch_or_explicit
atomic_fetch_sub
atomic_fetch_sub_explicit
atomic_fetch_xor
atomic_fetch_xor_explicit
atomic_flag
atomic_flag_clear
atomic_flag_clear_explicit
ATOMIC_FLAG_INIT
atomic_flag_test_and_set
atomic_flag_test_and_set_explicit
atomic_init
atomic_int
atomic_int_fast16_t
atomic_int_fast32_t
atomic_int_fast64_t
atomic_int_fast8_t
atomic_int_least16_t
atomic_int_least32_t
atomic_int_least64_t
atomic_int_least8_t
ATOMIC_INT_LOCK_FREE
atomic_intmax_t
atomic_intptr_t
atomic_is_lock_free
atomic_llong
ATOMIC_LLONG_LOCK_FREE
atomic_load

atomic_load_explicit
atomic_long
ATOMIC_LONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE
atomic_ptrdiff_t
atomic_schar
atomic_short
ATOMIC_SHORT_LOCK_FREE
atomic_signal_fence
atomic_size_t
atomic_store
atomic_store_explicit
atomic_thread_fence
atomic_uchar
atomic_uint
atomic_uint_fast16_t
atomic_uint_fast32_t
atomic_uint_fast64_t
atomic_uint_fast8_t
atomic_uint_least16_t
atomic_uint_least32_t
atomic_uint_least64_t
atomic_uint_least8_t
atomic_uintmax_t
atomic_uintptr_t
atomic_ullong
atomic_ulong
atomic_ushort
atomic_wchar_t
ATOMIC_WCHAR_T_LOCK_FREE
_BitInt
_Bool
BOOL_MAX
__bool_true_false_are_defined
CHAR_MAX
CHAR_MIN
ckd_add
ckd_div
ckd_mul
ckd_sub
cnd_broadcast
cnd_destroy
cnd_init
cnd_signal
cnd_t
cnd_timedwait
cnd_wait
_Complex
_Complex_I
__cplusplus
CR_DECIMAL_DIG
__DATE__

DBL_DECIMAL_DIG

§ J.6.2 © ISO/IEC 202y — All rights reserved

Portability issues — 625

ISO/IEC 9899:202y (en) — n3299 working draft

DBL_DIG
DBL_EPSILON
DBL_HAS_SUBNORM
DBL_IS_IEC_60559
DBL_MANT_DIG
DBL_MAX
DBL_MAX_10_EXP
DBL_MAX_EXP
DBL_MIN
DBL_MIN_10_EXP
DBL_MIN_EXP
DBL_NORM_MAX
DBL_SNAN
DBL_TRUE_MIN
DEC128_EPSILON
DEC128_MANT_DIG
DEC128_MAX
DEC128_MAX_EXP
DEC128_MIN
DEC128_MIN_EXP
DEC128_SNAN
DEC128_TRUE_MIN
DEC32_EPSILON
DEC32_MANT_DIG
DEC32_MAX
DEC32_MAX_EXP
DEC32_MIN
DEC32_MIN_EXP
DEC32_SNAN
DEC32_TRUE_MIN
DEC64_EPSILON
DEC64_MANT_DIG
DEC64_MAX
DEC64_MAX_EXP
DEC64_MIN
DEC64_MIN_EXP
DEC64_SNAN
DEC64_TRUE_MIN
DEC_EVAL_METHOD
_Decimal128
_Decimal128x
_Decimal32
_Decimal32_t
_Decimal64
_Decimal64_t
_Decimal64x
DECIMAL_DIG
DEC_INFINITY
DEC_NAN
__deprecated__

EDOM
EILSEQ
EOF
EOL
ERANGE
_Exit

EXIT_FAILURE
EXIT_SUCCESS
__fallthrough__

FE_ALL_EXCEPT
FE_DEC_DOWNWARD
FE_DEC_DYNAMIC
FE_DEC_TONEAREST
FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO
FE_DEC_UPWARD
FE_DFL_ENV
FE_DFL_MODE
FE_DIVBYZERO
FE_DOWNWARD
FE_DYNAMIC
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_SNANS_ALWAYS_SIGNAL
FE_TONEAREST
FE_TONEARESTFROMZERO
FE_TOWARDZERO
FE_UNDERFLOW
FE_UPWARD
__FILE__

FILENAME_MAX
_Float128
_Float128_t
_Float128x
_Float16
_Float16_t
_Float32
_Float32_t
_Float32x
_Float64
_Float64_t
_Float64x
FLT_DECIMAL_DIG
FLT_DIG
FLT_EPSILON
FLT_EVAL_METHOD
FLT_HAS_SUBNORM
FLT_IS_IEC_60559
FLT_MANT_DIG
FLT_MAX
FLT_MAX_10_EXP
FLT_MAX_EXP
FLT_MIN
FLT_MIN_10_EXP
FLT_MIN_EXP
FLT_NORM_MAX
FLT_RADIX
FLT_ROUNDS
FLT_SNAN
FLT_TRUE_MIN
FOPEN_MAX

© ISO/IEC 202y — All rights reserved

Portability issues — 626

§ J.6.2

ISO/IEC 9899:202y (en) — n3299 working draft

FP_CONTRACT
FP_FAST_D32ADDD128
FP_FAST_D32ADDD64
FP_FAST_D32DIVD128
FP_FAST_D32DIVD64
FP_FAST_D32FMAD128
FP_FAST_D32FMAD64
FP_FAST_D32MULD128
FP_FAST_D32MULD64
FP_FAST_D32SQRTD128
FP_FAST_D32SQRTD64
FP_FAST_D32SUBD128
FP_FAST_D32SUBD64
FP_FAST_D64ADDD128
FP_FAST_D64DIVD128
FP_FAST_D64FMAD128
FP_FAST_D64MULD128
FP_FAST_D64SQRTD128
FP_FAST_D64SUBD128
FP_FAST_DADDL
FP_FAST_DDIVL
FP_FAST_DFMAL
FP_FAST_DMULL
FP_FAST_DSQRTL
FP_FAST_DSUBL
FP_FAST_FADD
FP_FAST_FADDL
FP_FAST_FDIV
FP_FAST_FDIVL
FP_FAST_FFMA
FP_FAST_FFMAL
FP_FAST_FMA
FP_FAST_FMAD128
FP_FAST_FMAD32
FP_FAST_FMAD64
FP_FAST_FMAF
FP_FAST_FMAL
FP_FAST_FMUL
FP_FAST_FMULL
FP_FAST_FSQRT
FP_FAST_FSQRTL
FP_FAST_FSUB
FP_FAST_FSUBL
FP_ILOGB0
FP_ILOGBNAN
FP_INFINITE
FP_INT_DOWNWARD
FP_INT_TONEAREST
FP_INT_TONEARESTFROMZERO
FP_INT_TOWARDZERO
FP_INT_UPWARD
FP_LLOGB0
FP_LLOGBNAN
FP_NAN
FP_NORMAL
FP_SUBNORMAL

FP_ZERO
__func__
_Generic
__has_c_attribute
__has_embed
__has_include
__if_empty__
_Imaginary
_Imaginary_I
INT16_C
INT16_MAX
INT16_MIN
int16_t
INT16_WIDTH
INT32_C
INT32_MAX
INT32_MIN
int32_t
INT32_WIDTH
INT64_C
INT64_MAX
INT64_MIN
int64_t
INT64_WIDTH
INT8_C
INT8_MAX
INT8_MIN
int8_t
INT8_WIDTH
int_fast16_t
int_fast32_t
int_fast64_t
int_fast8_t
int_least16_t
int_least32_t
int_least64_t
int_least8_t
INT_MAX
INTMAX_C
INTMAX_MAX
INTMAX_MIN
intmax_t
INTMAX_WIDTH
INT_MIN
INTPTR_MAX
INTPTR_MIN
intptr_t
INTPTR_WIDTH
INT_WIDTH
_IOFBF
_IOLBF
_IONBF
isalnum
isalpha
isblank
iscanonical

§ J.6.2 © ISO/IEC 202y — All rights reserved

Portability issues — 627

ISO/IEC 9899:202y (en) — n3299 working draft

iscntrl
isdigit
iseqsig
isfinite
isgraph
isgreater
isgreaterequal
isinf
isless
islessequal
islessgreater
islower
isnan
isnormal
isprint
ispunct
issignaling
isspace
issubnormal
isunordered
isupper
iswalnum
iswalpha
iswblank
iswcntrl
iswctype
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit
isxdigit
iszero
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME
LDBL_DECIMAL_DIG
LDBL_DIG
LDBL_EPSILON
LDBL_HAS_SUBNORM
LDBL_IS_IEC_60559
LDBL_MANT_DIG
LDBL_MAX
LDBL_MAX_10_EXP
LDBL_MAX_EXP
LDBL_MIN
LDBL_MIN_10_EXP
LDBL_MIN_EXP
LDBL_NORM_MAX
LDBL_SNAN

LDBL_TRUE_MIN
__limit__
__LINE__

LLONG_MAX
LLONG_MIN
LONG_MAX
LONG_MIN
MATH_ERREXCEPT
MATH_ERRNO
__maybe_unused__

MB_CUR_MAX
MB_LEN_MAX
memalignment
memccpy
memchr
memcmp
memcpy
memcpy_s
memmove
memmove_s
memory_order
memory_order_acq_rel
memory_order_acquire
memory_order_consume
memory_order_relaxed
memory_order_release
memory_order_seq_cst
memset
memset_explicit
memset_s
mtx_destroy
mtx_init
mtx_lock
mtx_plain
mtx_recursive
mtx_t
mtx_timed
mtx_timedlock
mtx_trylock
mtx_unlock
__nodiscard__
___Noreturn__
__noreturn__
_Noreturn
_Pragma
PRIb32
PRIb64
PRIbFAST32
PRIbFAST64
PRIbLEAST32
PRIbLEAST64
PRIbMAX
PRIbPTR
PRId32
PRId64
PRIdFAST32

© ISO/IEC 202y — All rights reserved

Portability issues — 628

§ J.6.2

ISO/IEC 9899:202y (en) — n3299 working draft

PRIdFAST64
PRIdLEAST32
PRIdLEAST64
PRIdMAX
PRIdPTR
PRIi32
PRIi64
PRIiFAST32
PRIiFAST64
PRIiLEAST32
PRIiLEAST64
PRIiMAX
PRIiPTR
_PRINTF_NAN_LEN_MAX
PRIo32
PRIo64
PRIoFAST32
PRIoFAST64
PRIoLEAST32
PRIoLEAST64
PRIoMAX
PRIoPTR
PRIu32
PRIu64
PRIuFAST32
PRIuFAST64
PRIuLEAST32
PRIuLEAST64
PRIuMAX
PRIuPTR
PRIX32
PRIX64
PRIXFAST32
PRIXFAST64
PRIXLEAST32
PRIXLEAST64
PRIXMAX
PRIXPTR
PTRDIFF_MAX
PTRDIFF_MIN
RAND_MAX
__reproducible__

RSIZE_MAX
SCHAR_MAX
SCHAR_MIN
SCNbMAX
SCNbPTR
SCNdMAX
SCNdPTR
SCNiMAX
SCNiPTR
SCNoMAX
SCNoPTR
SCNuMAX
SCNuPTR
SCNxMAX

SCNxPTR
SHRT_MAX
SHRT_MIN
SIGABRT
SIG_ATOMIC_MAX
SIG_ATOMIC_MIN
SIG_ATOMIC_WIDTH
SIG_DFL
SIG_ERR
SIGFPE
SIG_IGN
SIGILL
SIGINT
SIGSEGV
SIGTERM
SIZE_MAX
_Static_assert
__STDC__
__STDC_ANALYZABLE__

stdc_bit_ceil
stdc_bit_ceil_uc
stdc_bit_ceil_ui
stdc_bit_ceil_ul
stdc_bit_ceil_ull
stdc_bit_ceil_us
stdc_bit_floor
stdc_bit_floor_uc
stdc_bit_floor_ui
stdc_bit_floor_ul
stdc_bit_floor_ull
stdc_bit_floor_us
stdc_bit_width
stdc_bit_width_uc
stdc_bit_width_ui
stdc_bit_width_ul
stdc_bit_width_ull
stdc_bit_width_us
stdc_count_ones
stdc_count_ones_uc
stdc_count_ones_ui
stdc_count_ones_ul
stdc_count_ones_ull
stdc_count_ones_us
stdc_count_zeros
stdc_count_zeros_uc
stdc_count_zeros_ui
stdc_count_zeros_ul
stdc_count_zeros_ull
stdc_count_zeros_us
__STDC_EMBED_EMPTY__
__STDC_EMBED_FOUND__
__STDC_EMBED_NOT_FOUND__
__STDC_ENDIAN_BIG__
__STDC_ENDIAN_LITTLE__
__STDC_ENDIAN_NATIVE__

stdc_first_leading_one

§ J.6.2 © ISO/IEC 202y — All rights reserved

Portability issues — 629

ISO/IEC 9899:202y (en) — n3299 working draft

stdc_first_leading_one_uc
stdc_first_leading_one_ui
stdc_first_leading_one_ul
stdc_first_leading_one_ull
stdc_first_leading_one_us
stdc_first_leading_zero
stdc_first_leading_zero_uc
stdc_first_leading_zero_ui
stdc_first_leading_zero_ul
stdc_first_leading_zero_ull
stdc_first_leading_zero_us
stdc_first_trailing_one
stdc_first_trailing_one_uc
stdc_first_trailing_one_ui
stdc_first_trailing_one_ul
stdc_first_trailing_one_ull
stdc_first_trailing_one_us
stdc_first_trailing_zero
stdc_first_trailing_zero_uc
stdc_first_trailing_zero_ui
stdc_first_trailing_zero_ul
stdc_first_trailing_zero_ull
stdc_first_trailing_zero_us
stdc_has_single_bit
stdc_has_single_bit_uc
stdc_has_single_bit_ui
stdc_has_single_bit_ul
stdc_has_single_bit_ull
stdc_has_single_bit_us
__STDC_HOSTED__
__STDC_IEC_559__
__STDC_IEC_559_COMPLEX__
__STDC_IEC_60559_BFP__
__STDC_IEC_60559_COMPLEX__
__STDC_IEC_60559_DFP__
__STDC_IEC_60559_TYPES__
__STDC_ISO_10646__

stdc_leading_ones
stdc_leading_ones_uc
stdc_leading_ones_ui
stdc_leading_ones_ul
stdc_leading_ones_ull
stdc_leading_ones_us
stdc_leading_zeros
stdc_leading_zeros_uc
stdc_leading_zeros_ui
stdc_leading_zeros_ul
stdc_leading_zeros_ull
stdc_leading_zeros_us
__STDC_LIB_EXT1__
__STDC_MB_MIGHT_NEQ_WC__
__STDC_NO_ATOMICS__
__STDC_NO_COMPLEX__
__STDC_NO_THREADS__
__STDC_NO_VLA__

stdc_trailing_ones

stdc_trailing_ones_uc
stdc_trailing_ones_ui
stdc_trailing_ones_ul
stdc_trailing_ones_ull
stdc_trailing_ones_us
stdc_trailing_zeros
stdc_trailing_zeros_uc
stdc_trailing_zeros_ui
stdc_trailing_zeros_ul
stdc_trailing_zeros_ull
stdc_trailing_zeros_us
__STDC_UTF_16__
__STDC_UTF_32__
__STDC_VERSION__
__STDC_VERSION_ASSERT_H__
__STDC_VERSION_COMPLEX_H__
__STDC_VERSION_FENV_H__
__STDC_VERSION_FLOAT_H__
__STDC_VERSION_INTTYPES_H__
__STDC_VERSION_LIMITS_H__
__STDC_VERSION_MATH_H__
__STDC_VERSION_SETJMP_H__
__STDC_VERSION_STDARG_H__
__STDC_VERSION_STDATOMIC_H__
__STDC_VERSION_STDBIT_H__
__STDC_VERSION_STDCKDINT_H__
__STDC_VERSION_STDDEF_H__
__STDC_VERSION_STDINT_H__
__STDC_VERSION_STDIO_H__
__STDC_VERSION_STDLIB_H__
__STDC_VERSION_STRING_H__
__STDC_VERSION_TGMATH_H__
__STDC_VERSION_TIME_H__
__STDC_VERSION_UCHAR_H__
__STDC_VERSION_WCHAR_H__
__STDC_WANT_IEC_60559_EXT__
__STDC_WANT_IEC_60559_TYPES_EXT__
__STDC_WANT_LIB_EXT1__

strcat
strcat_s
strchr
strcmp
strcoll
strcpy
strcpy_s
strcspn
strdup
strerror
strerrorlen_s
strerror_s
strfromd
strfromd128
strfromd32
strfromd64
strfromencf128
strfromf

© ISO/IEC 202y — All rights reserved

Portability issues — 630

§ J.6.2

ISO/IEC 9899:202y (en) — n3299 working draft

strfroml
strftime
strlen
strncat
strncat_s
strncmp
strncpy
strncpy_s
strndup
strnlen_s
strpbrk
strrchr
strspn
strstr
strtod
strtod128
strtod32
strtod64
strtof
strtoimax
strtok
strtok_s
strtol
strtold
strtoll
strtoul
strtoull
strtoumax
struct
strxfrm
thrd_busy
thrd_create
thrd_current
thrd_detach
thrd_equal
thrd_error
thrd_exit
thrd_join
thrd_nomem
thrd_sleep
thrd_start_t
thrd_success
thrd_t
thrd_timedout
thrd_yield
_Thread_local
__TIME__

TIME_ACTIVE
TIME_MONOTONIC
TIME_THREAD_ACTIVE
TIME_UTC
TMP_MAX
tolower
totalorder
totalorderd128
totalorderd32

totalorderd64
totalorderf
totalorderl
totalordermag
totalordermagd128
totalordermagd32
totalordermagd64
totalordermagf
totalordermagl
toupper
towctrans
towlower
towupper
tss_create
tss_delete
tss_dtor_t
tss_get
tss_set
tss_t
UCHAR_MAX
UINT16_C
UINT16_MAX
uint16_t
UINT16_WIDTH
UINT32_C
UINT32_MAX
uint32_t
UINT32_WIDTH
UINT64_C
UINT64_MAX
uint64_t
UINT64_WIDTH
UINT8_C
UINT8_MAX
uint8_t
UINT8_WIDTH
uint_fast16_t
uint_fast32_t
uint_fast64_t
uint_fast8_t
uint_least16_t
uint_least32_t
uint_least64_t
uint_least8_t
UINT_MAX
UINTMAX_C
UINTMAX_MAX
uintmax_t
UINTMAX_WIDTH
UINTPTR_MAX
uintptr_t
UINTPTR_WIDTH
UINT_WIDTH
ULLONG_MAX
ULONG_MAX
__unsequenced__

§ J.6.2 © ISO/IEC 202y — All rights reserved

Portability issues — 631

ISO/IEC 9899:202y (en) — n3299 working draft

USHRT_MAX
__VA_ARGS__
__VA_OPT__

WCHAR_MAX
WCHAR_MIN
wcscat
wcscat_s
wcschr
wcscmp
wcscoll
wcscpy
wcscpy_s
wcscspn
wcsftime
wcslen
wcsncat
wcsncat_s
wcsncmp
wcsncpy
wcsncpy_s
wcsnlen_s
wcspbrk
wcsrchr

wcsrtombs
wcsrtombs_s
wcsspn
wcsstr
wcstod
wcstod128
wcstod32
wcstod64
wcstof
wcstoimax
wcstok
wcstok_s
wcstol
wcstold
wcstoll
wcstombs
wcstombs_s
wcstoul
wcstoull
wcstoumax
wcsxfrm
WINT_MAX
WINT_MIN

J.6.3 Particular identifiers or keywords
1 The following 1236 identifiers or keywords are not covered by the previously listed matching

patterns and have particular semantics provided by this document.

abort
abort_handler_s
abs
acos
acosd128
acosd32
acosd64
acosf
acosh
acoshd128
acoshd32
acoshd64
acoshf
acoshl
acosl
acospi
acospid128
acospid32
acospid64
acospif
acospil
alignas
aligned_alloc
alignof
and
and_eq
asctime
asctime_s

asin
asind128
asind32
asind64
asinf
asinh
asinhd128
asinhd32
asinhd64
asinhf
asinhl
asinl
asinpi
asinpid128
asinpid32
asinpid64
asinpif
asinpil
assert
atan
atan2
atan2d128
atan2d32
atan2d64
atan2f
atan2l
atan2pi
atan2pid128

atan2pid32
atan2pid64
atan2pif
atan2pil
atand128
atand32
atand64
atanf
atanh
atanhd128
atanhd32
atanhd64
atanhf
atanhl
atanl
atanpi
atanpid128
atanpid32
atanpid64
atanpif
atanpil
atexit
atof
atoi
atol
atoll
at_quick_exit
auto

© ISO/IEC 202y — All rights reserved

Portability issues — 632

§ J.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

bitand
BITINT_MAXWIDTH
bitor
bool
BOOL_WIDTH
break
bsearch
bsearch_s
btowc
BUFSIZ
c16rtomb
c32rtomb
c8rtomb
cabs
cabsf
cabsl
cacos
cacosf
cacosh
cacoshf
cacoshl
cacosl
cacospi
cacospif
cacospil
calloc
call_once
canonicalize
canonicalized128
canonicalized32
canonicalized64
canonicalizef
canonicalizel
carg
cargf
cargl
case
casin
casinf
casinh
casinhf
casinhl
casinl
casinpi
casinpif
casinpil
catan
catanf
catanh
catanhf
catanhl
catanl
catanpi
catanpif
catanpil
cbrt

cbrtd128
cbrtd32
cbrtd64
cbrtf
cbrtl
ccompoundn
ccompoundnf
ccompoundnl
ccos
ccosf
ccosf64x
ccosh
ccoshf
ccoshl
ccosl
ccospi
ccospif
ccospil
ceil
ceild128
ceild32
ceild64
ceilf
ceill
cerf
cerfc
cerfcf
cerfcl
cerff
cerfl
cexp
cexp10
cexp10f
cexp10l
cexp10m1
cexp10m1f
cexp10m1l
cexp2
cexp2f
cexp2l
cexp2m1
cexp2m1f
cexp2m1l
cexpf
cexpl
cexpm1
cexpm1f
cexpm1l
char
char16_t
char32_t
char8_t
CHAR_BIT
CHAR_WIDTH
cimag
cimagf

cimagl
clearerr
clgamma
clgammaf
clgammal
clock
CLOCKS_PER_SEC
clock_t
clog
clog10
clog10f
clog10l
clog10p1
clog10p1f
clog10p1l
clog1p
clog1pf
clog1pl
clog2
clog2f
clog2l
clog2p1
clog2p1f
clog2p1l
clogf
clogl
clogp1
clogp1f
clogp1l
CMPLX
CMPLXF
CMPLXL
compl
complex
compoundn
compoundnd128
compoundnd32
compoundnd64
compoundnf
compoundnl
conj
conjf
conjl
const
constexpr
constraint_handler_t
continue
copysign
copysignd128
copysignd32
copysignd64
copysignf
copysignl
cos
cosd128
cosd32

§ J.6.3 © ISO/IEC 202y — All rights reserved

Portability issues — 633

ISO/IEC 9899:202y (en) — n3299 working draft

cosd64
cosf
cosh
coshd128
coshd32
coshd64
coshf
coshl
cosl
cospi
cospid128
cospid32
cospid64
cospif
cospil
cpow
cpowf
cpowf128
cpowl
cpown
cpownf
cpownl
cpowr
cpowrf
cpowrl
cproj
cprojf
cprojl
creal
crealf
creall
crootn
crootnf
crootnl
crsqrt
crsqrtf
crsqrtl
csin
csinf
csinh
csinhf
csinhl
csinl
csinpi
csinpif
csinpil
csqrt
csqrtf
csqrtl
ctan
ctanf
ctanh
ctanhf
ctanhl
ctanl
ctanpi

ctanpif
ctanpil
ctgamma
ctgammaf
ctgammal
ctime
ctime_s
currency_symbol
CX_LIMITED_RANGE
d32add
d32addd128
d32addd64
d32div
d32divd128
d32divd64
d32fma
d32fmad128
d32fmad64
d32mul
d32muld128
d32muld64
d32sqrt
d32sqrtd128
d32sqrtd64
d32sub
d32subd128
d32subd64
d64add
d64addd128
d64div
d64divd128
d64fma
d64fmad128
d64mul
d64muld128
d64sqrt
d64sqrtd128
d64sub
d64subd128
dadd
daddl
ddiv
ddivl
decimal_point
decodebind128
decodebind32
decodebind64
decodedecd128
decodedecd32
decodedecd64
DEFAULT
define
defined
deprecated
dfma
dfmal

difftime
div
div_t
dmul
dmull
do
double
double_t
dsqrt
dsqrtl
dsub
dsubl
elif
elifdef
elifndef
else
embed
encodebind128
encodebind32
encodebind64
encodedecd128
encodedecd32
encodedecd64
endif
enum
erf
erfc
erfcd128
erfcd32
erfcd64
erfcf
erfcl
erfd128
erfd32
erfd64
erff
erfl
errno
errno_t
error
exit
exp
exp10
exp10d128
exp10d32
exp10d64
exp10f
exp10l
exp10m1
exp10m1d128
exp10m1d32
exp10m1d64
exp10m1f
exp10m1l
exp2
exp2d128

© ISO/IEC 202y — All rights reserved

Portability issues — 634

§ J.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

exp2d32
exp2d64
exp2f
exp2l
exp2m1
exp2m1d128
exp2m1d32
exp2m1d64
exp2m1f
exp2m1l
expd128
expd32
expd64
expf
expl
expm1
expm1d128
expm1d32
expm1d64
expm1f
expm1l
extern
f32add
f32addf64
f32addf64x
f32fma
f32fmaf32x
f32mul
f32mulf128
f32mulf32x
f32xsqrt
f32xsqrtf54x
f32xsqrtf64x
f64div
f64divf128
f64divf64x
fabs
fabsd128
fabsd32
fabsd64
fabsf
fabsl
fadd
faddl
fallthrough
false
fclose
fdim
fdimd128
fdimd32
fdimd64
fdimf
fdiml
fdiv
fdivl
feclearexcept

fe_dec_getround
fe_dec_setround
fegetenv
fegetexceptflag
fegetmode
fegetround
feholdexcept
femode_t
FENV_ACCESS
FENV_DEC_ROUND
FENV_ROUND
fenv_t
feof
feraiseexcept
ferror
fesetenv
fesetexcept
fesetexceptflag
fesetmode
fesetround
fetestexcept
fetestexceptflag
feupdateenv
fexcept_t
fflush
ffma
ffmal
fgetc
fgetpos
fgets
fgetwc
fgetws
FILE
float
float_t
floor
floord128
floord32
floord64
floorf
floorl
fma
fmad128
fmad32
fmad64
fmaf
fmal
fmax
fmaxd128
fmaxd32
fmaxd64
fmaxf
fmaximum
fmaximumd128
fmaximumd32
fmaximumd64

fmaximumf
fmaximuml
fmaximum_mag
fmaximum_magd128
fmaximum_magd32
fmaximum_magd64
fmaximum_magf
fmaximum_magl
fmaximum_mag_num
fmaximum_mag_numd128
fmaximum_mag_numd32
fmaximum_mag_numd64
fmaximum_mag_numf
fmaximum_mag_numl
fmaximum_num
fmaximum_numd128
fmaximum_numd32
fmaximum_numd64
fmaximum_numf
fmaximum_numl
fmaxl
fmin
fmind128
fmind32
fmind64
fminf
fminimum
fminimumd128
fminimumd32
fminimumd64
fminimumf
fminimuml
fminimum_mag
fminimum_magd128
fminimum_magd32
fminimum_magd64
fminimum_magf
fminimum_magl
fminimum_mag_num
fminimum_mag_numd128
fminimum_mag_numd32
fminimum_mag_numd64
fminimum_mag_numf
fminimum_mag_numl
fminimum_num
fminimum_numd128
fminimum_numd32
fminimum_numd64
fminimum_numf
fminimum_numl
fminl
fmod
fmodd128
fmodd32
fmodd64
fmodf

§ J.6.3 © ISO/IEC 202y — All rights reserved

Portability issues — 635

ISO/IEC 9899:202y (en) — n3299 working draft

fmodl
fmul
fmull
fopen
fopen_s
for
fpclassify
fpos_t
fprintf
fprintf_s
fputc
fputs
fputwc
fputws
frac_digits
fread
free
free_aligned_sized
free_sized
freopen
freopen_s
frexp
frexpd128
frexpd32
frexpd64
frexpf
frexpl
fromfp
fromfpd128
fromfpd32
fromfpd64
fromfpf
fromfpl
fromfpx
fromfpxd128
fromfpxd32
fromfpxd64
fromfpxf
fromfpxl
fscanf
fscanf_s
fseek
fsetpos
fsqrt
fsqrtl
fsub
fsubl
ftell
fwide
fwprintf
fwprintf_s
fwrite
fwscanf
fwscanf_s
getc
getchar

getenv
getenv_s
getpayload
getpayloadd128
getpayloadd32
getpayloadd64
getpayloadf
getpayloadl
gets
gets_s
getwc
getwchar
gmtime
gmtime_r
gmtime_s
goto
grouping
HUGE_VAL
HUGE_VAL_D128
HUGE_VAL_D32
HUGE_VAL_D64
HUGE_VALF
HUGE_VALL
hypot
hypotd128
hypotd32
hypotd64
hypotf
hypotl
I
if
ifdef
if_empty
ifndef
ignore_handler_s
ilogb
ilogbd128
ilogbd32
ilogbd64
ilogbf
ilogbl
imaginary
imaxabs
imaxdiv
imaxdiv_t
include
INFINITY
inline
int_curr_symbol
int_frac_digits
int_n_cs_precedes
int_n_sep_by_space
int_n_sign_posn
int_p_cs_precedes
int_p_sep_by_space
int_p_sign_posn

jmp_buf
kill_dependency
labs
lconv
ldexp
ldexpd128
ldexpd32
ldexpd64
ldexpf
ldexpl
ldiv
ldiv_t
lgamma
lgammad128
lgammad32
lgammad64
lgammaf
lgammal
limit
line
llabs
lldiv
lldiv_t
llogb
llogbd128
llogbd32
llogbd64
llogbf
llogbl
LLONG_WIDTH
llquantexp
llquantexpd128
llquantexpd32
llquantexpd64
llrint
llrintd128
llrintd32
llrintd64
llrintf
llrintl
llround
llroundd128
llroundd32
llroundd64
llroundf
llroundl
localeconv
localtime
localtime_r
localtime_s
log
log10
log10d128
log10d32
log10d64
log10f

© ISO/IEC 202y — All rights reserved

Portability issues — 636

§ J.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

log10l
log10p1
log10p1d128
log10p1d32
log10p1d64
log10p1f
log10p1l
log1p
log1pd128
log1pd32
log1pd64
log1pf
log1pl
log2
log2d128
log2d32
log2d64
log2f
log2l
log2p1
log2p1d128
log2p1d32
log2p1d64
log2p1f
log2p1l
logb
logbd128
logbd32
logbd64
logbf
logbl
logd128
logd32
logd64
logf
logl
logp1
logp1d128
logp1d32
logp1d64
logp1f
logp1l
long
long_double_t
longjmp
LONG_WIDTH
lrint
lrintd128
lrintd32
lrintd64
lrintf
lrintl
lround
lroundd128
lroundd32
lroundd64

lroundf
lroundl
L_tmpnam
L_tmpnam_s
main
malloc
math_errhandling
max_align_t
maybe_unused
mblen
mbrlen
mbrtoc16
mbrtoc32
mbrtoc8
mbrtowc
mbsinit
mbsrtowcs
mbsrtowcs_s
mbstate_t
mbstowcs
mbstowcs_s
mbtowc
mktime
modf
modfd128
modfd32
modfd64
modff
modfl
mon_decimal_point
mon_grouping
mon_thousands_sep
nan
nand128
nand32
nand64
nanf
nanl
n_cs_precedes
NDEBUG
nearbyint
nearbyintd128
nearbyintd32
nearbyintd64
nearbyintf
nearbyintl
negative_sign
nextafter
nextafterd128
nextafterd32
nextafterd64
nextafterf
nextafterl
nextdown
nextdownd128
nextdownd32

nextdownd64
nextdownf
nextdownl
nexttoward
nexttowardd128
nexttowardd32
nexttowardd64
nexttowardf
nexttowardl
nextup
nextupd128
nextupd32
nextupd64
nextupf
nextupl
nodiscard
noreturn
not
not_eq
n_sep_by_space
n_sign_posn
NULL
nullptr
nullptr_t
OFF
offsetof
ON
once_flag
ONCE_FLAG_INIT
or
or_eq
p_cs_precedes
perror
positive_sign
pow
powd128
powd32
powd64
powf
powf32
powf32x
powf64
powl
pown
pownd128
pownd32
pownd64
pownf
pownl
powr
powrd128
powrd32
powrd64
powrf
powrl
pragma

§ J.6.3 © ISO/IEC 202y — All rights reserved

Portability issues — 637

ISO/IEC 9899:202y (en) — n3299 working draft

prefix
printf
printf_s
p_sep_by_space
p_sign_posn
ptrdiff_t
PTRDIFF_WIDTH
putc
putchar
puts
putwc
putwchar
qsort
qsort_s
quantize
quantized128
quantized32
quantized64
quantum
quantumd128
quantumd32
quantumd64
quick_exit
raise
rand
realloc
register
remainder
remainderd128
remainderd32
remainderd64
remainderf
remainderl
remove
remquo
remquof
remquol
rename
reproducible
restrict
return
rewind
rint
rintd128
rintd32
rintd64
rintf
rintl
rootn
rootnd128
rootnd32
rootnd64
rootnf
rootnl
round
roundd128

roundd32
roundd64
roundeven
roundevend128
roundevend32
roundevend64
roundevenf
roundevenl
roundf
roundl
rsize_t
rsqrt
rsqrtd128
rsqrtd32
rsqrtd64
rsqrtf
rsqrtl
samequantum
samequantumd128
samequantumd32
samequantumd64
scalbln
scalblnd128
scalblnd32
scalblnd64
scalblnf
scalblnl
scalbn
scalbnd128
scalbnd32
scalbnd64
scalbnf
scalbnl
scanf
scanf_s
SCHAR_WIDTH
SEEK_CUR
SEEK_END
SEEK_SET
setbuf
set_constraint_handler_s
setjmp
setlocale
setpayload
setpayloadd128
setpayloadd32
setpayloadd64
setpayloadf
setpayloadl
setpayloadsig
setpayloadsigd128
setpayloadsigd32
setpayloadsigd64
setpayloadsigf
setpayloadsigl
setvbuf

short
SHRT_WIDTH
sig_atomic_t
signal
signbit
signed
sin
sind128
sind32
sind64
sinf
sinh
sinhd128
sinhd32
sinhd64
sinhf
sinhl
sinl
sinpi
sinpid128
sinpid32
sinpid64
sinpif
sinpil
sizeof
size_t
SIZE_WIDTH
snprintf
snprintf_s
snwprintf_s
sprintf
sprintf_s
sqrt
sqrtd128
sqrtd32
sqrtd64
sqrtf
sqrtl
srand
sscanf
sscanf_s
static
static_assert
STDC
stderr
stdin
stdout
suffix
switch
swprintf
swprintf_s
swscanf
swscanf_s
system
tan
tand128

© ISO/IEC 202y — All rights reserved

Portability issues — 638

§ J.6.3

ISO/IEC 9899:202y (en) — n3299 working draft

tand32
tand64
tanf
tanh
tanhd128
tanhd32
tanhd64
tanhf
tanhl
tanl
tanpi
tanpid128
tanpid32
tanpid64
tanpif
tanpil
tgamma
tgammad128
tgammad32
tgammad64
tgammaf
tgammal
thousands_sep
thread_local
time
timegm
timespec
timespec_get
timespec_getres
time_t
tm
tm_hour
tm_isdst
tm_mday
tm_min
tm_mon
tmpfile
tmpfile_s
TMP_MAX_S
tmpnam
tmpnam_s
tm_sec
tm_wday
tm_yday
tm_year
true
trunc
truncd128

truncd32
truncd64
truncf
truncl
TSS_DTOR_ITERATIONS
tv_nsec
tv_sec
typedef
typeof
typeof_unqual
UCHAR_WIDTH
ufromfp
ufromfpd128
ufromfpd32
ufromfpd64
ufromfpf
ufromfpl
ufromfpx
ufromfpxd128
ufromfpxd32
ufromfpxd64
ufromfpxf
ufromfpxl
ULLONG_WIDTH
ULONG_WIDTH
undef
ungetc
ungetwc
union
unreachable
unsequenced
unsigned
USHRT_WIDTH
va_arg
va_copy
va_end
va_list
va_start
vfprintf
vfprintf_s
vfscanf
vfscanf_s
vfwprintf
vfwprintf_s
vfwscanf
vfwscanf_s
void
volatile

vprintf
vprintf_s
vscanf
vscanf_s
vsnprintf
vsnprintf_s
vsnwprintf_s
vsprintf
vsprintf_s
vsscanf
vsscanf_s
vswprintf
vswprintf_s
vswscanf
vswscanf_s
vwprintf
vwprintf_s
vwscanf
vwscanf_s
warning
wchar_t
WCHAR_WIDTH
wcrtomb
wcrtomb_s
wctob
wctomb
wctomb_s
wctrans
wctrans_t
wctype
wctype_t
WEOF
while
wint_t
WINT_WIDTH
wmemchr
wmemcmp
wmemcpy
wmemcpy_s
wmemmove
wmemmove_s
wmemset
wprintf
wprintf_s
wscanf
wscanf_s
xor
xor_eq

§ J.6.3 © ISO/IEC 202y — All rights reserved

Portability issues — 639

ISO/IEC 9899:202y (en) — n3299 working draft

Annex K
(normative)

Bounds-checking interfaces

K.1 Background
1 Traditionally, the C Library has contained many functions that trust the programmer to provide

output character arrays big enough to hold the result being produced. Not only do these functions
not check that the arrays are big enough, they frequently lack the information needed to perform
such checks. While it is possible to write safe, robust, and error-free code using the existing library,
the library tends to promote programming styles that lead to mysterious failures if a result is too big
for the provided array.

2 A common programming style is to declare character arrays large enough to handle most practical
cases. However, if these arrays are not large enough to handle the resulting strings, data can be
written past the end of the array overwriting other data and program structures. The program never
gets any indication that a problem exists, and so never has a chance to recover or to fail gracefully.

3 Worse, this style of programming has compromised the security of computers and networks. Buffer
overflows can often be exploited to run arbitrary code with the permissions of the vulnerable
(defective) program.

4 If the programmer writes runtime checks to verify lengths before calling library functions, then
those runtime checks frequently duplicate work done inside the library functions, which discover
string lengths as a side effect of doing their job.

5 This annex provides alternative library functions that promote safer, more secure programming. The
alternative functions verify that output buffers are large enough for the intended result and return a
failure indicator if they are not. Data is never written past the end of an array. All string results are
null terminated.

6 This annex also addresses another problem that complicates writing robust code: functions that are
not reentrant because they return pointers to static objects owned by the function. Such functions
can be troublesome since a previously returned result can change if the function is called again,
perhaps by another thread.

K.2 Scope
1 This annex specifies a series of optional extensions that can be useful in the mitigation of security

vulnerabilities in programs, and comprise new functions, macros, and types declared or defined in
existing standard headers.

2 An implementation that defines __STDC_LIB_EXT1__ shall conform to the specifications in this
annex.452)

3 This annex should be read as if it were merged into the parallel structure of named subclauses of
Clause 7.

K.3 Library
K.3.1 Introduction
K.3.1.1 Standard headers

1 The functions, macros, and types declared or defined in this annex and its subclauses are not
declared or defined by their respective headers if __STDC_WANT_LIB_EXT1__ is defined as a macro
which expands to the integer constant 0 at the point in the source file where the appropriate header
is first included.

2 The functions, macros, and types declared or defined in this annex and its subclauses are declared
and defined by their respective headers if __STDC_WANT_LIB_EXT1__ is defined as a macro which
expands to the integer constant 1 at the point in the source file where the appropriate header is first

452)Implementations that do not define __STDC_LIB_EXT1__ are not required to conform to these specifications.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 640

§ K.3.1.1

ISO/IEC 9899:202y (en) — n3299 working draft

included.453)

3 It is implementation-defined whether the functions, macros, and types declared or defined
in this annex and its subclauses are declared or defined by their respective headers if
__STDC_WANT_LIB_EXT1__ is not defined as a macro at the point in the source file where the
appropriate header is first included.454)

4 Within a preprocessing translation unit, __STDC_WANT_LIB_EXT1__ shall be defined identically for
all inclusions of any headers from this annex. If __STDC_WANT_LIB_EXT1__ is defined differently for
any such inclusion, the implementation shall issue a diagnostic as if a preprocessor error directive
were used.

K.3.1.2 Reserved identifiers
1 Each macro name in any of the following subclauses is reserved for use as specified if it is defined

by any of its associated headers when included; unless explicitly stated otherwise (see 7.1.4).

2 All identifiers with external linkage in any of the following subclauses are reserved for use as
identifiers with external linkage if any of them are used by the program. None of them are reserved
if none of them are used.

3 Each identifier with file scope listed in any of the following subclauses is reserved for use as a
macro name and as an identifier with file scope in the same name space if it is defined by any of its
associated headers when included.

K.3.1.3 Use of errno
1 An implementation can set errno for the functions defined in this annex, but is not required to.

K.3.1.4 Runtime-constraint violations
1 Most functions in this annex include as part of their specification a list of runtime-constraints. These

runtime-constraints are requirements on the program using the library.455)

2 Implementations shall verify that the runtime-constraints for a function are not violated by the
program. If a runtime-constraint is violated, the implementation shall call the currently registered
runtime-constraint handler (see set_constraint_handler_s in <stdlib.h>). Multiple runtime-
constraint violations in the same call to a library function result in only one call to the runtime-
constraint handler. It is unspecified which one of the multiple runtime-constraint violations cause
the handler to be called.

3 If the runtime-constraints section for a function states an action to be performed when a runtime-
constraint violation occurs, the function shall perform the action before calling the runtime-constraint
handler. If the runtime-constraints section lists actions that are prohibited when a runtime-constraint
violation occurs, then such actions are prohibited to the function both before calling the handler and
after the handler returns.

4 The runtime-constraint handler is permitted not to return. If the handler does return, the library
function whose runtime-constraint was violated shall return some indication of failure as given by
the returns section in the function’s specification.

K.3.2 Errors <errno.h>
1 The header <errno.h> defines a type.

2 The type is

errno_t

453)Future revisions of this document can define meanings for other values of __STDC_WANT_LIB_EXT1__.
454)7.1.3 reserves certain names and patterns of names that an implementation can use in headers. All other names are

not reserved, and a conforming implementation is not permitted to use them. While some of the names defined in this
annex and its subclauses are (potentially) reserved, others are not. If an unreserved name is defined in a header when
__STDC_WANT_LIB_EXT1__ is defined as 0, the implementation is not conforming.

455)Although runtime-constraints replace many cases of undefined behavior, undefined behavior still exists in this annex.
Implementations are free to detect any case of undefined behavior and treat it as a runtime-constraint violation by calling the
runtime-constraint handler. This license comes directly from the definition of undefined behavior.

§ K.3.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 641

ISO/IEC 9899:202y (en) — n3299 working draft

which is type int.456)

K.3.3 Common definitions <stddef.h>
1 The header <stddef.h> defines a type.

2 The type is

rsize_t

which is the type size_t.457)

K.3.4 Integer types <stdint.h>
1 The header <stdint.h> defines a macro.

2 The macro is

RSIZE_MAX

which expands to a value of type size_t. It can be an expression that is not constant. Functions that
have parameters of type rsize_t consider it a runtime-constraint violation if the values of those
parameters are greater than RSIZE_MAX.

Recommended practice
3 Extremely large object sizes are frequently a sign that an object’s size was calculated incorrectly. For

example, negative numbers appear as very large positive numbers when converted to an unsigned
type like size_t. Also, some implementations do not support objects as large as the maximum
value that can be represented by type size_t.

4 For those reasons, it is sometimes beneficial to restrict the range of object sizes to detect programming
errors. For implementations targeting machines with large address spaces, it is recommended that
RSIZE_MAX be defined as the smaller of the size of the largest object supported or (SIZE_MAX >> 1),
even if this limit is smaller than the size of some legitimate, but very large, objects. Implementations
targeting machines with small address spaces may wish to define RSIZE_MAX as SIZE_MAX, which
means that there is no object size that is considered a runtime-constraint violation.

K.3.5 Input/output <stdio.h>
K.3.5.1 General

1 The header <stdio.h> defines several macros and two types.

2 The macros are

L_tmpnam_s

which expands to an integer constant expression that is the size needed for an array of char large
enough to hold a temporary file name string generated by the tmpnam_s function;

TMP_MAX_S

which expands to an integer constant expression that is the maximum number of unique file names
that can be generated by the tmpnam_s function.

3 The types are

errno_t

which is type int; and
456)As a matter of programming style, errno_t can be used as the type of something that deals only with the values that

can be found in errno. For example, a function which returns the value of errno can be declared as having the return type
errno_t.
457)See the description of the RSIZE_MAX macro in <stdint.h>.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 642

§ K.3.5.1

ISO/IEC 9899:202y (en) — n3299 working draft

rsize_t

which is the type size_t.

K.3.5.2 Operations on files
K.3.5.2.1 The tmpfile_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
errno_t tmpfile_s(FILE * restrict * restrict streamptr);

Runtime-constraints
2 streamptr shall not be a null pointer.

3 If there is a runtime-constraint violation, tmpfile_s does not attempt to create a file.

Description
4 The tmpfile_s function creates a temporary binary file that is different from any other existing file

and that will automatically be removed when it is closed or at program termination. If the program
terminates abnormally, whether an open temporary file is removed is implementation-defined. The
file is opened for update with "wb+" mode with the meaning that mode has in the fopen_s function
(including the mode’s effect on exclusive access and file permissions).

5 If the file was created successfully, then the pointer to FILE pointed to by streamptr will be set to
the pointer to the object controlling the opened file. Otherwise, the pointer to FILE pointed to by
streamptr will be set to a null pointer.

Recommended practice
It should be possible to open at least TMP_MAX_S temporary files during the lifetime of the program
(this limit can be shared with tmpnam_s) and there should be no limit on the number simultaneously
open other than this limit and any limit on the number of open files (FOPEN_MAX).

Returns
6 The tmpfile_s function returns zero if it created the file. If it did not create the file or there was a

runtime-constraint violation, tmpfile_s returns a nonzero value.

K.3.5.2.2 The tmpnam_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
errno_t tmpnam_s(char *s, rsize_t maxsize);

Runtime-constraints
2 s shall not be a null pointer. maxsize shall be less than or equal to RSIZE_MAX. maxsize shall be

greater than the length of the generated file name string.

Description
3 The tmpnam_s function generates a string that is a valid file name and that is not the same as the

name of an existing file.458) The function is potentially capable of generating TMP_MAX_S different
strings, but any or all of them can already be in use by existing files and thus not be suitable return
values. The lengths of these strings shall be less than the value of the L_tmpnam_s macro.

4 The tmpnam_s function generates a different string each time it is called.

458)Files created using strings generated by the tmpnam_s function are temporary only in the sense that their names are not
expected to collide with those generated by conventional naming rules for the implementation. It is still necessary to use the
remove function to remove such files when their use is ended, and before program termination.

§ K.3.5.2.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 643

ISO/IEC 9899:202y (en) — n3299 working draft

5 It is assumed that s points to an array of at least maxsize characters. This array will be set to the
generated string, as specified in the rest of this subclause.

6 The implementation shall behave as if no library function except tmpnam calls the tmpnam_s func-
tion.459)

Recommended practice
7 After a program obtains a file name using the tmpnam_s function and before the program creates a

file with that name, the possibility exists that someone else can create a file with that same name.
To avoid this race condition, the tmpfile_s function should be used instead of tmpnam_s when
possible. One situation that requires the use of the tmpnam_s function is when the program needs to
create a temporary directory rather than a temporary file.

8 Implementations should take care in choosing the patterns used for names returned by tmpnam_s.
For example, making a thread ID part of the names avoids the race condition and possible conflict
when multiple programs run simultaneously by the same user generate the same temporary file
names.

Returns
9 If no suitable string can be generated, or if there is a runtime-constraint violation, the tmpnam_s

function:

— if s is not null and maxsize is both greater than zero and not greater than RSIZE_MAX, writes a
null character to s[0]

— returns a nonzero value.

10 Otherwise, the tmpnam_s function writes the string in the array pointed to by s and returns zero.

Environmental limits
11 The value of the macro TMP_MAX_S shall be at least 25.

K.3.5.3 File access functions
K.3.5.3.1 The fopen_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
errno_t fopen_s(FILE * restrict * restrict streamptr,

const char * restrict filename, const char * restrict mode);

Runtime-constraints
2 None of streamptr, filename, or mode shall be a null pointer.

3 If there is a runtime-constraint violation, fopen_s does not attempt to open a file. Furthermore, if
streamptr is not a null pointer, fopen_s sets *streamptr to the null pointer.

Description
4 The fopen_s function opens the file whose name is the string pointed to by filename, and associates

a stream with it.

5 The mode string shall be as described for fopen, with the addition that modes starting with the
character ’w’ or ’a’ can be preceded by the character’u’ , see the following:

uw truncate to zero length or create text file for writing, default permissions

uwx create text file for writing, default permissions

ua append; open or create text file for writing at end-of-file, default permissions

459)An implementation can have tmpnam call tmpnam_s (perhaps so there is only one naming convention for temporary files),
but this is not required.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 644

§ K.3.5.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

uwb truncate to zero length or create binary file for writing, default permissions

uwbx create binary file for writing, default permissions

uab append; open or create binary file for writing at end-of-file, default permissions

uw+ truncate to zero length or create text file for update, default permissions

uw+x create text file for update, default permissions

ua+ append; open or create text file for update, writing at end-of-file, default permis-
sions

uw+b or uwb+ truncate to zero length or create binary file for update, default permissions

uw+bx or uwb+x create binary file for update, default permissions

ua+b or uab+ append; open or create binary file for update, writing at end-of-file, default permis-
sions

6 Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created.

7 If the file was opened successfully, then the pointer to FILE pointed to by streamptr will be set to
the pointer to the object controlling the opened file. Otherwise, the pointer to FILE pointed to by
streamptr will be set to a null pointer.

Returns
8 The fopen_s function returns zero if it opened the file. If it did not open the file or if there was a

runtime-constraint violation, fopen_s returns a nonzero value.

K.3.5.3.2 The freopen_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
errno_t freopen_s(FILE * restrict * restrict newstreamptr,

const char * restrict filename, const char * restrict mode,
FILE * restrict stream);

Runtime-constraints
2 None of newstreamptr, mode, and stream shall be a null pointer.

3 If there is a runtime-constraint violation, freopen_s neither attempts to close any file associated with
stream nor attempts to open a file. Furthermore, if newstreamptr is not a null pointer, fopen_s
sets *newstreamptr to the null pointer.

Description
4 The freopen_s function opens the file whose name is the string pointed to by filename and

associates the stream pointed to by stream with it. The mode argument has the same meaning as in
the fopen_s function (including the mode’s effect on exclusive access and file permissions).

5 If filename is a null pointer, the freopen_s function attempts to change the mode of the stream
to that specified by mode, as if the name of the file currently associated with the stream had been
used. It is implementation-defined which changes of mode are permitted (if any), and under what
circumstances.

6 The freopen_s function first attempts to close any file that is associated with stream. Failure to
close the file is ignored. The error and end-of-file indicators for the stream are cleared.

7 If the file was opened successfully, then the pointer to FILE pointed to by newstreamptr will be set
to the value of stream. Otherwise, the pointer to FILE pointed to by newstreamptr will be set to a
null pointer.

§ K.3.5.3.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 645

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
8 The freopen_s function returns zero if it opened the file. If it did not open the file or there was a

runtime-constraint violation, freopen_s returns a nonzero value.

K.3.5.4 Formatted input/output functions
K.3.5.4.1 General

1 Unless explicitly stated otherwise, if the execution of a function described in this subclause causes
copying to take place between objects that overlap, the objects take on unspecified values.

K.3.5.4.2 The fprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int fprintf_s(FILE * restrict stream, const char * restrict format, ...);

Runtime-constraints

2 Neither stream nor format shall be a null pointer. The %n specifier460) (modified or not by flags,
field width, or precision) shall not appear in the string pointed to by format. Any argument to
fprintf_s corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the461) fprintf_s function does not attempt to produce
further output, and it is unspecified to what extent fprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The fprintf_s function is equivalent to the fprintf function except for the previously listed

explicit runtime-constraints.

Returns
5 The fprintf_s function returns the number of characters transmitted, or a negative value if an

output error, encoding error, or runtime-constraint violation occurred.

K.3.5.4.3 The fscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int fscanf_s(FILE * restrict stream, const char * restrict format, ...);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though to store

converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the462) fscanf_s function does not attempt to perform
further input, and it is unspecified to what extent fscanf_s performed input before discovering the
runtime-constraint violation.

Description
4 The fscanf_s function is equivalent to fscanf except that the c, s, and [conversion specifiers

apply to a pair of arguments (unless assignment suppression is indicated by a*). The first of these
arguments is the same as for fscanf. That argument is immediately followed in the argument list
by the second argument, which has type rsize_t and gives the number of elements in the array

460)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

461)Because an implementation can treat any undefined behavior as a runtime-constraint violation, an implementation can
treat any unsupported specifiers in the string pointed to by format as a runtime-constraint violation.
462)Because an implementation can treat any undefined behavior as a runtime-constraint violation, an implementation can

treat any unsupported specifiers in the string pointed to by format as a runtime-constraint violation.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 646

§ K.3.5.4.3

ISO/IEC 9899:202y (en) — n3299 working draft

pointed to by the first argument of the pair. If the first argument points to a scalar object, it is
considered to be an array of one element.463)

5 A matching failure occurs if the number of elements in a receiving object is insufficient to hold the
converted input (including any trailing null character).

Returns
6 The fscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the fscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

7 EXAMPLE 1 The call:

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
/* ... */
int n, i; float x; char name[50];
n = fscanf_s(stdin, "%d%f%s", &i, &x, name, (rsize_t) 50);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence thompson\0.

8 EXAMPLE 2 The call:

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
/* ... */
int n; char s[5];
n = fscanf_s(stdin, "%s", s, sizeof s);

with the input line:

hello

will assign to n the value 0 since a matching failure occurred because the sequence hello\0 requires an array
of six characters to store it.

K.3.5.4.4 The printf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int printf_s(const char * restrict format, ...);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier464) (modified or not by flags, field width,
or precision) shall not appear in the string pointed to by format. Any argument to printf_s
corresponding to a %s specifier shall not be a null pointer.
463)If the format is known at translation time, an implementation can issue a diagnostic for any argument used to store

the result from a c, s, or [conversion specifier if that argument is not followed by an argument of a type compatible with
rsize_t. A limited amount of checking can be done if even if the format is not known at translation time. For example, an
implementation can issue a diagnostic for each argument after format that has of type pointer to one of char, signed char,
unsigned char, or void that is not followed by an argument of a type compatible with rsize_t. The diagnostic can warn
that unless the pointer is being used with a conversion specifier using the hh length modifier, a length argument is expected
to follow the pointer argument. Another useful diagnostic can flag any non-pointer argument following format that did not
have a type compatible with rsize_t.
464)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format

when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

§ K.3.5.4.4 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 647

ISO/IEC 9899:202y (en) — n3299 working draft

3 If there is a runtime-constraint violation, the printf_s function does not attempt to produce further
output, and it is unspecified to what extent printf_s produced output before discovering the
runtime-constraint violation.

Description
4 The printf_s function is equivalent to the printf function except for the previously listed explicit

runtime-constraints.

Returns
5 The printf_s function returns the number of characters transmitted, or a negative value if an

output error, encoding error, or runtime-constraint violation occurred.

K.3.5.4.5 The scanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int scanf_s(const char * restrict format, ...);

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though to store converted input shall

not be a null pointer.

3 If there is a runtime-constraint violation, the scanf_s function does not attempt to perform further
input, and it is unspecified to what extent scanf_s performed input before discovering the runtime-
constraint violation.

Description
4 The scanf_s function is equivalent to fscanf_s with the argument stdin interposed before the

arguments to scanf_s.

Returns
5 The scanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the scanf_s function returns the
number of input items assigned, which can be fewer than provided for, or even zero, in the event of
an early matching failure.

K.3.5.4.6 The snprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int snprintf_s(char * restrict s, rsize_t n, const char * restrict format, ...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX.

The %n specifier465) (modified or not by flags, field width, or precision) shall not appear in the string
pointed to by format. Any argument to snprintf_s corresponding to a %s specifier shall not be a
null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX, then the snprintf_s function sets s[0] to the null character.

Description
4 The snprintf_s function is equivalent to the snprintf function except for the previously listed

explicit runtime-constraints.

465)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 648

§ K.3.5.4.6

ISO/IEC 9899:202y (en) — n3299 working draft

5 The snprintf_s function, unlike sprintf_s, will truncate the result to fit within the array pointed
to by s.

Returns
6 The snprintf_s function returns the number of characters that would have been written had n

been sufficiently large, not counting the terminating null character, or a negative value if a runtime-
constraint violation occurred. Thus, the null-terminated output has been completely written if and
only if the returned value is both nonnegative and less than n.

K.3.5.4.7 The sprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int sprintf_s(char * restrict s, rsize_t n, const char * restrict format, ...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX.

The number of characters (including the trailing null) required for the result to be written to the
array pointed to by s shall not be greater than n. The %n specifier466) (modified or not by flags,
field width, or precision) shall not appear in the string pointed to by format. Any argument to
sprintf_s corresponding to a %s specifier shall not be a null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX, then the sprintf_s function sets s[0] to the null character.

Description
4 The sprintf_s function is equivalent to the sprintf function except for the parameter n and the

previously listed explicit runtime-constraints.

5 The sprintf_s function, unlike snprintf_s, treats a result too big for the array pointed to by s as
a runtime-constraint violation.

Returns
6 If no runtime-constraint violation occurred, the sprintf_s function returns the number of characters

written in the array, not counting the terminating null character. If an encoding error occurred,
sprintf_s returns a negative value. If any other runtime-constraint violation occurred, sprintf_s
returns zero.

466)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

§ K.3.5.4.7 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 649

ISO/IEC 9899:202y (en) — n3299 working draft

K.3.5.4.8 The sscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int sscanf_s(const char * restrict s, const char * restrict format, ...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. Any argument indirected though to store converted

input shall not be a null pointer.

3 If there is a runtime-constraint violation, the sscanf_s function does not attempt to perform further
input, and it is unspecified to what extent sscanf_s performed input before discovering the runtime-
constraint violation.

Description
4 The sscanf_s function is equivalent to fscanf_s, except that input is obtained from a string

(specified by the argument s) rather than from a stream. Reaching the end of the string is equivalent
to encountering end-of-file for the fscanf_s function. If copying takes place between objects that
overlap, the objects take on unspecified values.

Returns
5 The sscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the sscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.4.9 The vfprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vfprintf_s(FILE * restrict stream, const char * restrict format, va_list arg)

;

Runtime-constraints

2 Neither stream nor format shall be a null pointer. The %n specifier467) (modified or not by flags,
field width, or precision) shall not appear in the string pointed to by format. Any argument to
vfprintf_s corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vfprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The vfprintf_s function is equivalent to the vfprintf function except for the previously listed

explicit runtime-constraints.

Returns
5 The vfprintf_s function returns the number of characters transmitted, or a negative value if an

output error, encoding error, or runtime-constraint violation occurred.

467)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 650

§ K.3.5.4.9

ISO/IEC 9899:202y (en) — n3299 working draft

K.3.5.4.10 The vfscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vfscanf_s(FILE * restrict stream, const char * restrict format, va_list arg);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though to store

converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vfscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vfscanf_s function is equivalent to fscanf_s, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
invocations). The vfscanf_s function does not invoke the va_end macro.468)

Returns
5 The vfscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vfscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.4.11 The vprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vprintf_s(const char * restrict format, va_list arg);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier469) (modified or not by flags, field width,
or precision) shall not appear in the string pointed to by format. Any argument to vprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The vprintf_s function is equivalent to the vprintf function except for the previously listed

explicit runtime-constraints.

Returns
5 The vprintf_s function returns the number of characters transmitted, or a negative value if an

output error, encoding error, or runtime-constraint violation occurred.

K.3.5.4.12 The vscanf_s function

468)As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke
the va_arg macro, the representation of arg after the return is indeterminate.
469)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format

when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

§ K.3.5.4.12 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 651

ISO/IEC 9899:202y (en) — n3299 working draft

Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vscanf_s(const char * restrict format, va_list arg);

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though to store converted input shall

not be a null pointer.

3 If there is a runtime-constraint violation, the vscanf_s function does not attempt to perform further
input, and it is unspecified to what extent vscanf_s performed input before discovering the runtime-
constraint violation.

Description
4 The vscanf_s function is equivalent to scanf_s, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
invocations). The vscanf_s function does not invoke the va_end macro.470)

Returns
5 The vscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.4.13 The vsnprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vsnprintf_s(char * restrict s, rsize_t n, const char * restrict format,

va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX.

The %n specifier471) (modified or not by flags, field width, or precision) shall not appear in the string
pointed to by format. Any argument to vsnprintf_s corresponding to a %s specifier shall not be a
null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX, then the vsnprintf_s function sets s[0] to the null character.

Description
4 The vsnprintf_s function is equivalent to the vsnprintf function except for the previously listed

explicit runtime-constraints.

5 The vsnprintf_s function, unlike vsprintf_s, will truncate the result to fit within the array pointed
to by s.

Returns
6 The vsnprintf_s function returns the number of characters that would have been written had n

been sufficiently large, not counting the terminating null character, or a negative value if a runtime-
constraint violation occurred. Thus, the null-terminated output has been completely written if and

470)As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke
the va_arg macro, the representation of arg after the return is indeterminate.
471)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format

when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 652

§ K.3.5.4.13

ISO/IEC 9899:202y (en) — n3299 working draft

only if the returned value is both nonnegative and less than n.

K.3.5.4.14 The vsprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vsprintf_s(char * restrict s, rsize_t n, const char * restrict format,

va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX.

The number of characters (including the trailing null) required for the result to be written to the array
pointed to by s shall not be greater than n. The %n specifier472) (modified or not by flags, field width,
or precision) shall not appear in the string pointed to by format. Any argument to vsprintf_s
corresponding to a %s specifier shall not be a null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX, then the vsprintf_s function sets s[0] to the null character.

Description
4 The vsprintf_s function is equivalent to the vsprintf function except for the parameter n and the

previously listed explicit runtime-constraints.

5 The vsprintf_s function, unlike vsnprintf_s, treats a result too big for the array pointed to by s
as a runtime-constraint violation.

Returns
6 If no runtime-constraint violation occurred, the vsprintf_s function returns the number of char-

acters written in the array, not counting the terminating null character. If an encoding error oc-
curred, vsprintf_s returns a negative value. If any other runtime-constraint violation occurred,
vsprintf_s returns zero.

K.3.5.4.15 The vsscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vsscanf_s(const char * restrict s, const char * restrict format, va_list arg)

;

Runtime-constraints
2 Neither s nor format shall be a null pointer. Any argument indirected though to store converted

input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vsscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vsscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vsscanf_s function is equivalent to sscanf_s, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsscanf_s function does not invoke the va_end macro.473)

472)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

473)As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke
the va_arg macro, the value of arg after the return is indeterminate.

§ K.3.5.4.15 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 653

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
5 The vsscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.5 Character input/output functions
K.3.5.5.1 The gets_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
char *gets_s(char *s, rsize_t n);

Runtime-constraints
2 s shall not be a null pointer. n shall neither be equal to zero nor be greater than RSIZE_MAX. A new-

line character, end-of-file, or read error shall occur within reading n-1 characters from stdin.474)

3 If there is a runtime-constraint violation, characters are read and discarded from stdin until a
new-line character is read, or end-of-file or a read error occurs, and if s is not a null pointer, s[0] is
set to the null character.

Description
4 The gets_s function reads at most one less than the number of characters specified by n from the

stream pointed to by stdin, into the array pointed to by s. No additional characters are read after a
new-line character (which is discarded) or after end-of-file. The discarded new-line character does
not count towards number of characters read. A null character is written immediately after the last
character read into the array.

5 If end-of-file is encountered and no characters have been read into the array, or if a read error
occurs during the operation, then s[0] is set to the null character, and the other elements of s take
unspecified values.

Recommended practice
6 The fgets function allows properly-written programs to safely process input lines too long to store

in the result array. In general this requires that callers of fgets pay attention to the presence or
absence of a new-line character in the result array. It is recommended to use fgets (along with any
needed processing based on new-line characters) instead of gets_s.

Returns
7 The gets_s function returns s if successful. If there was a runtime-constraint violation, or if end-of-

file is encountered and no characters have been read into the array, or if a read error occurs during
the operation, then a null pointer is returned.

474)The gets_s function, unlike the historical gets function, makes it a runtime-constraint violation for a line of input to
overflow the buffer to store it. Unlike the fgets function, gets_s maintains a one-to-one relationship between input lines
and successful calls to gets_s. Programs that use gets expect such a relationship.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 654

§ K.3.5.5.1

ISO/IEC 9899:202y (en) — n3299 working draft

K.3.6 General utilities <stdlib.h>
K.3.6.1 General

1 The header <stdlib.h> defines three types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t; and

constraint_handler_t

which has the following definition

typedef void (*constraint_handler_t)(
const char * restrict msg,
void * restrict ptr,
errno_t error);

K.3.6.2 Runtime-constraint handling
K.3.6.2.1 The set_constraint_handler_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
constraint_handler_t set_constraint_handler_s(constraint_handler_t handler);

Description
2 The set_constraint_handler_s function sets the runtime-constraint handler to be handler. The

runtime-constraint handler is the function to be called when a library function detects a runtime-
constraint violation. Only the most recent handler registered with set_constraint_handler_s is
called when a runtime-constraint violation occurs.

3 When the handler is called, it is passed the following arguments in the following order:

1. A pointer to a character string describing the runtime-constraint violation.

2. A null pointer or a pointer to an implementation-defined object.

3. If the function calling the handler has a return type declared as errno_t, the return value of
the function is passed. Otherwise, a positive value of type errno_t is passed.

4 The implementation has a default constraint handler that is used if no calls to the
set_constraint_handler_s function have been made. The behavior of the default handler is
implementation-defined, and it can cause the program to exit or abort.

5 If the handler argument to set_constraint_handler_s is a null pointer, the implementation
default handler becomes the current constraint handler.

Returns

6 The set_constraint_handler_s function returns a pointer to the previously registered handler.475)

475)If the previous handler was registered by calling set_constraint_handler_s with a null pointer argument, a pointer to
the implementation default handler is returned (not null).

§ K.3.6.2.1 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 655

ISO/IEC 9899:202y (en) — n3299 working draft

K.3.6.2.2 The abort_handler_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
void abort_handler_s(const char * restrict msg, void * restrict ptr,

errno_t error);

Description
2 A pointer to the abort_handler_s function shall be a suitable argument to the

set_constraint_handler_s function.

3 The abort_handler_s function writes a message on the standard error stream in an implementation-
defined format. The message shall include the string pointed to by msg. The abort_handler_s
function then calls the abort function.476)

Returns
4 The abort_handler_s function does not return to its caller.

K.3.6.2.3 The ignore_handler_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
void ignore_handler_s(const char * restrict msg, void * restrict ptr,

errno_t error);

Description
2 A pointer to the ignore_handler_s function shall be a suitable argument to the

set_constraint_handler_s function.

3 The ignore_handler_s function simply returns to its caller.477)

Returns
4 The ignore_handler_s function returns no value.

K.3.6.3 Communication with the environment
K.3.6.3.1 The getenv_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
errno_t getenv_s(size_t * restrict len, char * restrict value, rsize_t maxsize,

const char * restrict name);

Runtime-constraints
2 name shall not be a null pointer. maxsize shall not be greater than RSIZE_MAX. If maxsize is not

equal to zero, then value shall not be a null pointer.

476)Many implementations invoke a debugger when the abort function is called.
477)If the runtime-constraint handler is set to the ignore_handler_s function, any library function in which a runtime-

constraint violation occurs will return to its caller. The caller can determine whether a runtime-constraint violation occurred
based on the library function’s specification (usually, the library function returns a nonzero errno_t).

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 656

§ K.3.6.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

3 If there is a runtime-constraint violation, the integer pointed to by len is set to 0 (if len is not null),
and the environment list is not searched.

Description
4 The getenv_s function searches an environment list, provided by the host environment, for a string

that matches the string pointed to by name.

5 If that name is found then getenv_s performs the following actions. If len is not a null pointer, the
length of the string associated with the matched list member is stored in the integer pointed to by
len. If the length of the associated string is less than maxsize, then the associated string is copied to
the array pointed to by value.

6 If that name is not found then getenv_s performs the following actions. If len is not a null pointer,
zero is stored in the integer pointed to by len. If maxsize is greater than zero, then value[0] is set
to the null character.

7 The set of environment names and the method for altering the environment list are implementation-
defined. The getenv_s function is not required to avoid data races with other threads of execution
that modify the environment list.478)

Returns
8 The getenv_s function returns zero if the specified name is found and the associated string was

successfully stored in value. Otherwise, a nonzero value is returned.

K.3.6.4 Searching and sorting utilities
K.3.6.4.1 General

1 These utilities make use of a comparison function to search or sort arrays of unspecified type. Where
an argument declared as size_t nmemb specifies the length of the array for a function, if nmemb has
the value zero on a call to that function, then the comparison function is not called, a search finds no
matching element, sorting performs no rearrangement, and the pointer to the array can be null.

2 The implementation shall ensure that the second argument of the comparison function (when called
from bsearch_s), or both arguments (when called from qsort_s), are pointers to elements of the
array.479) The first argument when called from bsearch_s shall equal key.

3 The comparison function shall not alter the contents of either the array or search key. The implemen-
tation may reorder elements of the array between calls to the comparison function, but shall not
otherwise alter the contents of any individual element.

4 When the same objects (consisting of size bytes, irrespective of their current positions in the array)
are passed more than once to the comparison function, the results shall be consistent with one
another. That is, for qsort_s they shall define a total ordering on the array, and for bsearch_s the
same object shall always compare the same way with the key.

5 A sequence point occurs immediately before and immediately after each call to the comparison
function, and also between any call to the comparison function and any movement of the objects
passed as arguments to that call.

K.3.6.4.2 The bsearch_s generic function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
QVoid *bsearch_s(const void *key, QVoid *base, rsize_t nmemb, rsize_t size,

int (*compar)(const void *k, const void *y, void *context),

478)Many implementations provide non-standard functions that modify the environment list.
479)That is, if the value passed is p, then the following expressions are always valid and nonzero:

((char *)p - (char *)base) % size == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nmemb * size

§ K.3.6.4.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 657

ISO/IEC 9899:202y (en) — n3299 working draft

void *context);

Runtime-constraints
2 Neither nmemb nor size shall be greater than RSIZE_MAX. If nmemb is not equal to zero, then none of

key, base, or compar shall be a null pointer.

3 If there is a runtime-constraint violation, the bsearch_s generic function does not search the array.

Description
4 The bsearch_s generic function searches an array of nmemb objects, the initial element of which

is pointed to by base, for an element that matches the object pointed to by key. The size of each
element of the array is specified by size.

5 The comparison function pointed to by compar is called with three arguments. The first two point
to the key object and to an array element, in that order. The function shall return an integer less
than, equal to, or greater than zero if the key object is considered, respectively, to be less than,
to match, or to be greater than the array element. The array shall consist of: all the elements
that compare less than, all the elements that compare equal to, and all the elements that compare
greater than the key object, in that order.480) The third argument to the comparison function is the
context argument passed to bsearch_s. The sole use of context by bsearch_s is to pass it to the
comparison function.481)

Returns
6 The bsearch_s generic function returns a pointer to a matching element of the array, or a null

pointer if no match is found or there is a runtime-constraint violation. If two elements compare as
equal, which element is matched is unspecified.

7 The bsearch_s generic function is generic in the qualification of the type pointed to by the argument
base. If this argument is a pointer to a const-qualified object type, the returned pointer will be a
pointer to const-qualified void. Otherwise, the argument shall be a pointer to an unqualified object
type or a null pointer constant,482) and the returned pointer will be a pointer to unqualified void

8 The external declaration of bsearch_s has the concrete type:

void * (const void *, const void *, rsize_t, rsize_t,
int (*) (const void *, const void *), void *)

which supports all correct uses. If a macro definition of the generic function is suppressed to access
an actual function, the external declaration with this concrete type is visible.483)

K.3.6.4.3 The qsort_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
errno_t qsort_s(void *base, rsize_t nmemb, rsize_t size,

int (*compar)(const void *x, const void *y, void *context),
void *context);

Runtime-constraints
2 Neither nmemb nor size shall be greater than RSIZE_MAX. If nmemb is not equal to zero, then neither

base nor compar shall be a null pointer.

3 If there is a runtime-constraint violation, the qsort_s function does not sort the array.

480)In practice, this means that the entire array has been sorted according to the comparison function.
481)The context argument is for the use of the comparison function in performing its duties. For example, it can specify a

collating sequence used by the comparison function.
482)If the argument is a null pointer and the call is executed, the behavior is undefined.
483)This is an obsolescent feature.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 658

§ K.3.6.4.3

ISO/IEC 9899:202y (en) — n3299 working draft

Description
4 The qsort_s function sorts an array of nmemb objects, the initial element of which is pointed to by

base. The size of each object is specified by size.

5 The contents of the array are sorted into ascending order according to a comparison function pointed
to by compar, which is called with three arguments. The first two point to the objects being compared.
The function shall return an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second. The third argument to
the comparison function is the context argument passed to qsort_s. The sole use of context by
qsort_s is to pass it to the comparison function.484)

6 If two elements compare as equal, their relative order in the resulting sorted array is unspecified.

Returns
7 The qsort_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.6.5 Multibyte/wide character conversion functions
K.3.6.5.1 General

1 The behavior of the multibyte character functions is affected by the LC_CTYPE category of the current
locale. For a state-dependent encoding, each function is placed into its initial conversion state by a
call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as other
than a null pointer cause the internal conversion state of the function to be altered as necessary.
A call with s as a null pointer causes these functions to set the int pointed to by their status
argument to a nonzero value if encodings have state dependency, and zero otherwise.485)

Changing the LC_CTYPE category causes the internal object describing the conversion state of these
functions to have an indeterminate representation.

K.3.6.5.2 The wctomb_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
errno_t wctomb_s(int * restrict status, char * restrict s, rsize_t smax,

wchar_t wc);

Runtime-constraints
2 Let n denote the number of bytes needed to represent the multibyte character corresponding to the

wide character given by wc (including any shift sequences).

3 If s is not a null pointer, then smax shall not be less than n, and smax shall not be greater than
RSIZE_MAX. If s is a null pointer, then smax shall equal zero.

4 If there is a runtime-constraint violation, wctomb_s does not modify the int pointed to by status,
and if s is not a null pointer, no more than smax elements in the array pointed to by s will be
accessed.

Description
5 The wctomb_s function determines n and stores the multibyte character representation of wc in the

array whose first element is pointed to by s (if s is not a null pointer). The number of characters
stored never exceeds MB_CUR_MAX or smax. If wc is a null wide character, a null byte is stored,
preceded by any shift sequence needed to restore the initial shift state, and the function is left in the
initial conversion state.

6 The implementation shall behave as if no library function calls the wctomb_s function.

484)The context argument is for the use of the comparison function in performing its duties. For example, it can specify a
collating sequence used by the comparison function.
485)If the locale employs special bytes to change the shift state, these bytes do not produce separate wide character codes, but

are grouped with an adjacent multibyte character.

§ K.3.6.5.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 659

ISO/IEC 9899:202y (en) — n3299 working draft

7 If s is a null pointer, the wctomb_s function stores into the int pointed to by status a nonzero
or zero value, if multibyte character encodings, respectively, do or do not have state-dependent
encodings.

8 If s is not a null pointer, the wctomb_s function stores into the int pointed to by status either n or
−1 if wc, respectively, does or does not correspond to a valid multibyte character.

9 In no case will the int pointed to by status be set to a value greater than the MB_CUR_MAX macro.

Returns
10 The wctomb_s function returns zero if successful, and a nonzero value if there was a runtime-

constraint violation or wc did not correspond to a valid multibyte character.

K.3.6.6 Multibyte/wide string conversion functions
K.3.6.6.1 General

1 The behavior of the multibyte string functions is affected by the LC_CTYPE category of the current
locale.

K.3.6.6.2 The mbstowcs_s function
Synopsis

1 #include <stdlib.h>
errno_t mbstowcs_s(size_t * restrict retval, wchar_t * restrict dst,

rsize_t dstmax, const char * restrict src, rsize_t len);

Runtime-constraints
2 Neither retval nor src shall be a null pointer. If dst is not a null pointer, then neither len nor

dstmax shall be greater than
RSIZE_MAX/sizeof(wchar_t). If dst is a null pointer, then dstmax shall equal zero. If dst is not a
null pointer, then dstmax shall not equal zero. If dst is not a null pointer and len is not less than
dstmax, then a null character shall occur within the first dstmax multibyte characters of the array
pointed to by src.

3 If there is a runtime-constraint violation, then mbstowcs_s does the following. If retval is not
a null pointer, then mbstowcs_s sets *retval to (size_t)(-1). If dst is not a null pointer and
dstmax is greater than zero and not greater than RSIZE_MAX/sizeof(wchar_t), then mbstowcs_s
sets dst[0] to the null wide character.

Description
4 The mbstowcs_s function converts a sequence of multibyte characters that begins in the initial shift

state from the array pointed to by src into a sequence of corresponding wide characters. If dst is
not a null pointer, the converted characters are stored into the array pointed to by dst. Conversion
continues up to and including a terminating null character, which is also stored. Conversion stops
earlier in two cases: when a sequence of bytes is encountered that does not form a valid multibyte
character, or (if dst is not a null pointer) when len wide characters have been stored into the array
pointed to by dst.486) If dst is not a null pointer and no null wide character was stored into the
array pointed to by dst, then dst[len] is set to the null wide character. Each conversion takes place
as if by a call to the mbrtowc function.

5 Regardless of whether dst is or is not a null pointer, if the input conversion encounters a sequence of
bytes that do not form a valid multibyte character, an encoding error occurs: the mbstowcs_s func-
tion stores the value (size_t)(-1) into *retval. Otherwise, the mbstowcs_s function stores into
*retval the number of multibyte characters successfully converted, not including the terminating
null character (if any).

6 All elements following the terminating null wide character (if any) written by mbstowcs_s in the
array of dstmax wide characters pointed to by dst take unspecified values when mbstowcs_s

486)Thus, the value of len is ignored if dst is a null pointer.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 660

§ K.3.6.6.2

ISO/IEC 9899:202y (en) — n3299 working draft

returns.487)

7 If copying takes place between objects that overlap, the objects take on unspecified values.

Returns
8 The mbstowcs_s function returns zero if no runtime-constraint violation and no encoding error

occurred. Otherwise, a nonzero value is returned.

K.3.6.6.3 The wcstombs_s function
Synopsis

1 #include <stdlib.h>
errno_t wcstombs_s(size_t * restrict retval, char * restrict dst, rsize_t dstmax,

const wchar_t * restrict src, rsize_t len);

Runtime-constraints
2 Neither retval nor src shall be a null pointer. If dst is not a null pointer, then len shall not

be greater than RSIZE_MAX/sizeof(wchar_t) and dstmax shall be nonzero and not greater than
RSIZE_MAX. If dst is a null pointer, then dstmax shall equal zero. If dst is not a null pointer and
len is not less than dstmax, then the conversion shall have been stopped (see the following) because
a terminating null wide character was reached or because an encoding error occurred.

3 If there is a runtime-constraint violation, then wcstombs_s does the following. If retval is not
a null pointer, then wcstombs_s sets *retval to (size_t)(-1). If dst is not a null pointer and
dstmax is greater than zero and not greater than RSIZE_MAX, then wcstombs_s sets dst[0] to the
null character.

Description
4 The wcstombs_s function converts a sequence of wide characters from the array pointed to by

src into a sequence of corresponding multibyte characters that begins in the initial shift state. If
dst is not a null pointer, the converted characters are then stored into the array pointed to by dst.
Conversion continues up to and including a terminating null wide character, which is also stored.
Conversion stops earlier in two cases:

— when a wide character is reached that does not correspond to a valid multibyte character;

— (if dst is not a null pointer) when the next multibyte character would exceed the limit of n
total bytes to be stored into the array pointed to by dst. If the wide character being converted
is the null wide character, then n is the lesser of len or dstmax. Otherwise, n is the lesser of
len or dstmax-1.

If the conversion stops without converting a null wide character and dst is not a null pointer, then
a null character is stored into the array pointed to by dst immediately following any multibyte
characters already stored. Each conversion takes place as if by a call to the wcrtomb function.488)

5 Regardless of whether dst is or is not a null pointer, if the input conversion encounters a wide
character that does not correspond to a valid multibyte character, an encoding error occurs: the
wcstombs_s function stores the value (size_t)(-1) into *retval. Otherwise, the wcstombs_s
function stores into *retval the number of bytes in the resulting multibyte character sequence, not
including the terminating null character (if any).

6 All elements following the terminating null character (if any) written by wcstombs_s in the array of
dstmax elements pointed to by dst take unspecified values when wcstombs_s returns.489)

7 If copying takes place between objects that overlap, the objects take on unspecified values.

487)This allows an implementation to attempt converting the multibyte string before discovering a terminating null character
did not occur where required.
488)If conversion stops because a terminating null wide character has been reached, the bytes stored include those necessary

to reach the initial shift state immediately before the null byte. However, if the conversion stops before a terminating null
wide character has been reached, the result will be null terminated, but potentially not end in the initial shift state.

489)When len is not less than dstmax, the implementation can fill the array before discovering a runtime-constraint violation.

§ K.3.6.6.3 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 661

ISO/IEC 9899:202y (en) — n3299 working draft

Returns
8 The wcstombs_s function returns zero if no runtime-constraint violation and no encoding error

occurred. Otherwise, a nonzero value is returned.

K.3.7 String handling <string.h>

K.3.7.1 General
1 The header <string.h> defines two types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

K.3.7.2 Copying functions
K.3.7.2.1 The memcpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t memcpy_s(void * restrict s1, rsize_t s1max, const void * restrict s2,

rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX. n

shall not be greater than s1max. Copying shall not take place between objects that overlap.

3 If there is a runtime-constraint violation, the memcpy_s function stores zeros in the first s1max
characters of the object pointed to by s1 if s1 is not a null pointer and s1max is not greater than
RSIZE_MAX.

Description
4 The memcpy_s function copies n characters from the object pointed to by s2 into the object pointed

to by s1.

Returns
5 The memcpy_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.7.2.2 The memmove_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t memmove_s(void *s1, rsize_t s1max, const void *s2, rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX. n

shall not be greater than s1max.

3 If there is a runtime-constraint violation, the memmove_s function stores zeros in the first s1max
characters of the object pointed to by s1 if s1 is not a null pointer and s1max is not greater than
RSIZE_MAX.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 662

§ K.3.7.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

Description
4 The memmove_s function copies n characters from the object pointed to by s2 into the object pointed

to by s1. This copying takes place as if the n characters from the object pointed to by s2 are first
copied into a temporary array of n characters that does not overlap the objects pointed to by s1 or
s2, and then the n characters from the temporary array are copied into the object pointed to by s1.

Returns
5 The memmove_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.7.2.3 The strcpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t strcpy_s(char * restrict s1, rsize_t s1max, const char * restrict s2);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than RSIZE_MAX. s1max shall

not equal zero. s1max shall be greater than strnlen_s(s2, s1max). Copying shall not take place
between objects that overlap.

3 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX, then strcpy_s sets s1[0] to the null character.

Description
4 The strcpy_s function copies the string pointed to by s2 (including the terminating null character)

into the array pointed to by s1.

5 All elements following the terminating null character (if any) written by strcpy_s in the array of
s1max characters pointed to by s1 take unspecified values when strcpy_s returns.490)

Returns
6 The strcpy_s function returns zero491) if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.7.2.4 The strncpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t strncpy_s(char * restrict s1, rsize_t s1max, const char * restrict s2,

rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX.

s1max shall not equal zero. If n is not less than s1max, then s1max shall be greater than strnlen_s(
s2, s1max). Copying shall not take place between objects that overlap.

3 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX, then strncpy_s sets s1[0] to the null character.

490)This allows an implementation to copy characters from s2 to s1 while simultaneously checking if any of those characters
are null. Such an approach can write a character to every element of s1 before discovering that the first element was set to the
null character.
491)A zero return value implies that all the requested characters from the string pointed to by s2 fit within the array pointed

to by s1 and that the result in s1 is null terminated.

§ K.3.7.2.4 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 663

ISO/IEC 9899:202y (en) — n3299 working draft

Description
4 The strncpy_s function copies not more than n successive characters (characters that follow a null

character are not copied) from the array pointed to by s2 to the array pointed to by s1. If no null
character was copied from s2, then s1[n] is set to a null character.

5 All elements following the terminating null character (if any) written by strncpy_s in the array
of s1max characters pointed to by s1 take unspecified values when strncpy_s returns a nonzero
value.492)

Returns

6 The strncpy_s function returns zero493) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

7 EXAMPLE The strncpy_s function can be used to copy a string without the danger that the result will not be
null terminated or that characters will be written past the end of the destination array.

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
/* ... */
char src1[100] = "hello";
char src2[7] = {’g’, ’o’, ’o’, ’d’, ’b’, ’y’, ’e’};
char dst1[6], dst2[5], dst3[5];
int r1, r2, r3;
r1 = strncpy_s(dst1, 6, src1, 100);
r2 = strncpy_s(dst2, 5, src2, 7);
r3 = strncpy_s(dst3, 5, src2, 4);

The first call will assign to r1 the value zero and to dst1 the sequence hello\0.

The second call will assign to r2 a nonzero value and to dst2 the sequence \0.

The third call will assign to r3 the value zero and to dst3 the sequence good\0.

K.3.7.3 Concatenation functions
K.3.7.3.1 The strcat_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t strcat_s(char * restrict s1, rsize_t s1max, const char * restrict s2);

Runtime-constraints
2 Let m denote the value s1max - strnlen_s(s1, s1max) upon entry to strcat_s.

3 Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than RSIZE_MAX. s1max shall
not equal zero. m shall not equal zero.494) m shall be greater than strnlen_s(s2,m). Copying shall
not take place between objects that overlap.

4 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX, then strcat_s sets s1[0] to the null character.

Description
5 The strcat_s function appends a copy of the string pointed to by s2 (including the terminating

null character) to the end of the string pointed to by s1. The initial character from s2 overwrites the
null character at the end of s1.

492)This allows an implementation to copy characters from s2 to s1 while simultaneously checking if any of those characters
are null. Such an approach can write a character to every element of s1 before discovering that the first element was set to the
null character.
493)A zero return value implies that all of he requested characters from the string pointed to by s2 fit within the array pointed

to by s1 and that the result in s1 is null terminated.
494)Zero means that s1 was not null terminated upon entry to strcat_s.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 664

§ K.3.7.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

6 All elements following the terminating null character (if any) written by strcat_s in the array of
s1max characters pointed to by s1 take unspecified values when strcat_s returns.495)

Returns

7 The strcat_s function returns zero496) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

K.3.7.3.2 The strncat_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t strncat_s(char * restrict s1, rsize_t s1max, const char * restrict s2,

rsize_t n);

Runtime-constraints
2 Let m denote the value s1max - strnlen_s(s1, s1max) upon entry to strncat_s.

3 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX.
s1max shall not equal zero. m shall not equal zero.497) If n is not less than m, then m shall be greater
than strnlen_s(s2,m). Copying shall not take place between objects that overlap.

4 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX, then strncat_s sets s1[0] to the null character.

Description
5 The strncat_s function appends not more than n successive characters (characters that follow a

null character are not copied) from the array pointed to by s2 to the end of the string pointed to by
s1. The initial character from s2 overwrites the null character at the end of s1. If no null character
was copied from s2, then s1[s1max-m +n] is set to a null character.

6 All elements following the terminating null character (if any) written by strncat_s in the array of
s1max characters pointed to by s1 take unspecified values when strncat_s returns.498)

Returns

7 The strncat_s function returns zero499) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

8 EXAMPLE The strncat_s function can be used to copy a string without the danger that the result will not be
null terminated or that characters will be written past the end of the destination array.

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
/* ... */
char s1[100] = "good";
char s2[6] = "hello";
char s3[6] = "hello";
char s4[7] = "abc";
char s5[1000] = "bye";
int r1, r2, r3, r4;
r1 = strncat_s(s1, 100, s5, 1000);

495)This allows an implementation to append characters from s2 to s1 while simultaneously checking if any of those
characters are null. Such an approach can write a character to every element of s1 before discovering that the first element
was set to the null character.

496)A zero return value implies that all the requested characters from the string pointed to by s2 were appended to the string
pointed to by s1 and that the result in s1 is null terminated.

497)Zero means that s1 was not null terminated upon entry to strncat_s.
498)This allows an implementation to append characters from s2 to s1 while simultaneously checking if any of those

characters are null. Such an approach can write a character to every element of s1 before discovering that the first element
was set to the null character.

499)A zero return value implies that all the requested characters from the string pointed to by s2 were appended to the string
pointed to by s1 and that the result in s1 is null terminated.

§ K.3.7.3.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 665

ISO/IEC 9899:202y (en) — n3299 working draft

r2 = strncat_s(s2, 6, "", 1);
r3 = strncat_s(s3, 6, "X", 2);
r4 = strncat_s(s4, 7, "defghijklmn", 3);

After the first call r1 will have the value zero and s1 will contain the sequence goodbye\0.

After the second call r2 will have the value zero and s2 will contain the sequence hello\0.

After the third call r3 will have a nonzero value and s3 will contain the sequence \0.

After the fourth call r4 will have the value zero and s4 will contain the sequence abcdef\0.

K.3.7.4 Search functions
K.3.7.4.1 The strtok_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
char *strtok_s(char * restrict s1, rsize_t * restrict s1max,

const char * restrict s2, char ** restrict ptr);

Runtime-constraints
2 None of s1max, s2, or ptr shall be a null pointer. If s1 is a null pointer, then *ptr shall not be a

null pointer. The value of *s1max shall not be greater than RSIZE_MAX. The end of the token found
shall occur within the first *s1max characters of s1 for the first call, and shall occur within the first
*s1max characters of where searching resumes on subsequent calls.

3 If there is a runtime-constraint violation, the strtok_s function does not indirect through the s1 or
s2 pointers, and does not store a value in the object pointed to by ptr.

Description
4 A sequence of calls to the strtok_s function breaks the string pointed to by s1 into a sequence of

tokens, each of which is delimited by a character from the string pointed to by s2. The fourth argu-
ment points to a caller-provided char pointer into which the strtok_s function stores information
necessary for it to continue scanning the same string.

5 The first call in a sequence has a non-null first argument and s1max points to an object whose value
is the number of elements in the character array pointed to by the first argument. The first call stores
an initial value in the object pointed to by ptr and updates the value pointed to by s1max to reflect
the number of elements that remain in relation to ptr. Subsequent calls in the sequence have a null
first argument and the objects pointed to by s1max and ptr are required to have the values stored
by the previous call in the sequence, which are then updated. The separator string pointed to by s2
can be different from call to call.

6 The first call in the sequence searches the string pointed to by s1 for the first character that is not
contained in the current separator string pointed to by s2. If no such character is found, then there
are no tokens in the string pointed to by s1 and the strtok_s function returns a null pointer. If such
a character is found, it is the start of the first token.

7 The strtok_s function then searches from there for the first character in s1 that is contained in the
current separator string. If no such character is found, the current token extends to the end of the
string pointed to by s1, and subsequent searches in the same string for a token return a null pointer.
If such a character is found, it is overwritten by a null character, which terminates the current token.

8 In all cases, the strtok_s function stores sufficient information in the pointer pointed to by ptr so
that subsequent calls, with a null pointer for s1 and the unmodified pointer value for ptr, shall start
searching just past the element overwritten by a null character (if any).

Returns
9 The strtok_s function returns a pointer to the first character of a token, or a null pointer if there is

no token or there is a runtime-constraint violation.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 666

§ K.3.7.4.1

ISO/IEC 9899:202y (en) — n3299 working draft

10 EXAMPLE

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
static char str1[] = "?a???b,,,#c";
static char str2[] = "\t \t";
char *t, *ptr1, *ptr2;
rsize_t max1 = sizeof(str1);
rsize_t max2 = sizeof(str2);

t = strtok_s(str1, &max1, "?", &ptr1); // t points to the token "a"
t = strtok_s(nullptr, &max1, ",", &ptr1); // t points to the token "??b"
t = strtok_s(str2, &max2, " \t", &ptr2); // t is a null pointer
t = strtok_s(nullptr, &max1, "#,", &ptr1); // t points to the token "c"
t = strtok_s(nullptr, &max1, "?", &ptr1); // t is a null pointer

K.3.7.5 Miscellaneous functions
K.3.7.5.1 The memset_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t memset_s(void *s, rsize_t smax, int c, rsize_t n)

Runtime-constraints
2 s shall not be a null pointer. Neither smax nor n shall be greater than RSIZE_MAX. n shall not be

greater than smax.

3 If there is a runtime-constraint violation, then if s is not a null pointer and smax is not greater than
RSIZE_MAX, the memset_s function stores the value of c (converted to an unsigned char) into each
of the first smax characters of the object pointed to by s.

Description
4 The memset_s function copies the value of c (converted to an unsigned char) into each of the first

n characters of the object pointed to by s. Unlike memset, any call to the memset_s function shall be
evaluated strictly according to the rules of the abstract machine as described in 5.2.2.4. That is, any
call to the memset_s function shall assume that the memory indicated by s and n may be accessible
in the future and thus contains the values indicated by c.

Returns
5 The memset_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.7.5.2 The strerror_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t strerror_s(char *s, rsize_t maxsize, errno_t errnum);

Runtime-constraints
2 s shall not be a null pointer. maxsize shall not be greater than RSIZE_MAX. maxsize shall not equal

zero.

3 If there is a runtime-constraint violation, then the array (if any) pointed to by s is not modified.

Description
4 The strerror_s function maps the number in errnum to a locale-specific message string. Typically,

the values for errnum come from errno, but strerror_s shall map any value of type int to a

§ K.3.7.5.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 667

ISO/IEC 9899:202y (en) — n3299 working draft

message.

5 If the length of the desired string is less than maxsize, then the string is copied to the array pointed
to by s.

6 Otherwise, if maxsize is greater than zero, then maxsize-1 characters are copied from the string
to the array pointed to by s and then s[maxsize-1] is set to the null character. Then, if maxsize
is greater than 3, then s[maxsize-2], s[maxsize-3], and s[maxsize-4] are set to the character
period (.).

Returns
7 The strerror_s function returns zero if the length of the desired string was less than maxsize and

there was no runtime-constraint violation. Otherwise, the strerror_s function returns a nonzero
value.

K.3.7.5.3 The strerrorlen_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
size_t strerrorlen_s(errno_t errnum);

Description
2 The strerrorlen_s function calculates the length of the (untruncated) locale-specific message

string that the strerror_s function maps to errnum.

Returns
3 The strerrorlen_s function returns the number of characters (not including the null character) in

the full message string.

K.3.7.5.4 The strnlen_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
size_t strnlen_s(const char *s, size_t maxsize);

Description
2 The strnlen_s function computes the length of the string pointed to by s.

Returns

3 If s is a null pointer,500) then the strnlen_s function returns zero.

4 Otherwise, the strnlen_s function returns the number of characters that precede the terminating
null character. If there is no null character in the first maxsize characters of s then strnlen_s
returns maxsize. At most the first maxsize characters of s shall be accessed by strnlen_s.

K.3.8 Date and time <time.h>

K.3.8.1 General
1 The header <time.h> defines two types.

2 The types are

errno_t

which is type int; and

500)The strnlen_s function has no runtime-constraints. This lack of runtime-constraints along with the values returned
for a null pointer or an unterminated string argument make strnlen_s useful in algorithms that gracefully handle such
exceptional data.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 668

§ K.3.8.1

ISO/IEC 9899:202y (en) — n3299 working draft

rsize_t

which is the type size_t.

K.3.8.2 Components of time
1 A broken-down time is normalized if the values of the members of the tm structure are in their normal

ranges.501)

K.3.8.3 Time conversion functions
K.3.8.3.1 General

1 Like the strftime function, the asctime_s and ctime_s functions do not return a pointer to a static
object, and other library functions are permitted to call them.

K.3.8.3.2 The asctime_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
errno_t asctime_s(char *s, rsize_t maxsize, const struct tm *timeptr);

Runtime-constraints
2 Neither s nor timeptr shall be a null pointer. maxsize shall not be less than 26 and shall not be

greater than RSIZE_MAX. The broken-down time pointed to by timeptr shall be normalized. The
calendar year represented by the broken-down time pointed to by timeptr shall not be less than
calendar year 0 and shall not be greater than calendar year 9999.

3 If there is a runtime-constraint violation, there is no attempt to convert the time, and s[0] is set to a
null character if s is not a null pointer and maxsize is not zero and is not greater than RSIZE_MAX.

Description
4 The asctime_s function converts the normalized broken-down time in the structure pointed to by

timeptr into a 26 character (including the null character) string in the form

Sun Sep 16 01:03:52 1973\n\0

The fields making up this string are (in order):

1. The name of the day of the week represented by timeptr->tm_wday using the following three
character weekday names: Sun, Mon, Tue, Wed, Thu, Fri, and Sat.

2. The character space.

3. The name of the month represented by timeptr->tm_mon using the following three character
month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec.

4. The character space.

5. The value of timeptr->tm_mday as if printed using the fprintf format "%2d".

6. The character space.

7. The value of timeptr->tm_hour as if printed using the fprintf format "%.2d".

8. The character colon.

9. The value of timeptr->tm_min as if printed using the fprintf format "%.2d".

10. The character colon.
501)The normal ranges are defined in 7.29.1.

§ K.3.8.3.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 669

ISO/IEC 9899:202y (en) — n3299 working draft

11. The value of timeptr->tm_sec as if printed using the fprintf format "%.2d".

12. The character space.

13. The value of timeptr->tm_year + 1900 as if printed using the fprintf format "%4d".

14. The character new line.

15. The null character.

Recommended practice
The strftime function allows more flexible formatting and supports locale-specific behavior. If you
do not require the exact form of the result string produced by the asctime_s function, consider
using the strftime function instead.

Returns
5 The asctime_s function returns zero if the time was successfully converted and stored into the

array pointed to by s. Otherwise, it returns a nonzero value.

K.3.8.3.3 The ctime_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
errno_t ctime_s(char *s, rsize_t maxsize, const time_t *timer);

Runtime-constraints
2 Neither s nor timer shall be a null pointer. maxsize shall not be less than 26 and shall not be greater

than RSIZE_MAX.

3 If there is a runtime-constraint violation, s[0] is set to a null character if s is not a null pointer and
maxsize is not equal zero and is not greater than RSIZE_MAX.

Description
4 The ctime_s function converts the calendar time pointed to by timer to local time in the form of a

string. It is equivalent to

asctime_s(s, maxsize, localtime_s(timer, &(struct tm){ 0 }))

Recommended practice
The strftime function allows more flexible formatting and supports locale-specific behavior. If you
do not require the exact form of the result string produced by the ctime_s function, consider using
the strftime function instead.

Returns
5 The ctime_s function returns zero if the time was successfully converted and stored into the array

pointed to by s. Otherwise, it returns a nonzero value.

K.3.8.3.4 The gmtime_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
struct tm *gmtime_s(const time_t * restrict timer, struct tm * restrict result);

Runtime-constraints
2 Neither timer nor result shall be a null pointer.

3 If there is a runtime-constraint violation, there is no attempt to convert the time.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 670

§ K.3.8.3.4

ISO/IEC 9899:202y (en) — n3299 working draft

Description
4 The gmtime_s function converts the calendar time pointed to by timer into a broken-down time,

expressed as UTC. The broken-down time is stored in the structure pointed to by result.

Returns
5 The gmtime_s function returns result, or a null pointer if the specified time cannot be converted to

UTC or there is a runtime-constraint violation.

K.3.8.3.5 The localtime_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
struct tm *localtime_s(const time_t * restrict timer, struct tm * restrict result

);

Runtime-constraints
2 Neither timer nor result shall be a null pointer.

3 If there is a runtime-constraint violation, there is no attempt to convert the time.

Description
4 The localtime_s function converts the calendar time pointed to by timer into a broken-down time,

expressed as local time. The broken-down time is stored in the structure pointed to by result.

Returns
5 The localtime_s function returns result, or a null pointer if the specified time cannot be converted

to local time or there is a runtime-constraint violation.

K.3.9 Extended multibyte and wide character utilities <wchar.h>
K.3.9.1 General

1 The header <wchar.h> defines two types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

3 Unless explicitly stated otherwise, if the execution of a function described in this subclause causes
copying to take place between objects that overlap, the objects take on unspecified values.

K.3.9.2 Formatted wide character input/output functions
K.3.9.2.1 The fwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int fwprintf_s(FILE * restrict stream, const wchar_t * restrict format, ...);

§ K.3.9.2.1 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 671

ISO/IEC 9899:202y (en) — n3299 working draft

Runtime-constraints

2 Neither stream nor format shall be a null pointer. The %n specifier502) (modified or not by flags,
field width, or precision) shall not appear in the wide string pointed to by format. Any argument to
fwprintf_s corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the fwprintf_s function does not attempt to produce
further output, and it is unspecified to what extent fwprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The fwprintf_s function is equivalent to the fwprintf function except for the previously listed

explicit runtime-constraints.

Returns
5 The fwprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.

K.3.9.2.2 The fwscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <wchar.h>
int fwscanf_s(FILE * restrict stream, const wchar_t * restrict format, ...);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though to store

converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the fwscanf_s function does not attempt to perform
further input, and it is unspecified to what extent fwscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The fwscanf_s function is equivalent to fwscanf except that the c, s, and [conversion specifiers

apply to a pair of arguments (unless assignment suppression is indicated by a*). The first of these
arguments is the same as for fwscanf. That argument is immediately followed in the argument list
by the second argument, which has type size_t and gives the number of elements in the array
pointed to by the first argument of the pair. If the first argument points to a scalar object, it is
considered to be an array of one element.503)

5 A matching failure occurs if the number of elements in a receiving object is insufficient to hold the
converted input (including any trailing null character).

Returns
6 The fwscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the fwscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

502)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".
503)If the format is known at translation time, an implementation can issue a diagnostic for any argument used to store

the result from a c, s, or [conversion specifier if that argument is not followed by an argument of a type compatible with
rsize_t. A limited amount of checking can be done if even if the format is not known at translation time. For example, an
implementation can issue a diagnostic for each argument after format that has of type pointer to one of char, signed char,
unsigned char, or void that is not followed by an argument of a type compatible with rsize_t. The diagnostic can warn
that unless the pointer is being used with a conversion specifier using the hh length modifier, a length argument is expected
to follow the pointer argument. Another useful diagnostic can flag any non-pointer argument following format that did not
have a type compatible with rsize_t.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 672

§ K.3.9.2.2

ISO/IEC 9899:202y (en) — n3299 working draft

K.3.9.2.3 The snwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int snwprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX

/sizeof(wchar_t). The %n specifier504) (modified or not by flags, field width, or precision) shall
not appear in the wide string pointed to by format. Any argument to snwprintf_s corresponding
to a %s specifier shall not be a null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero
and not greater than RSIZE_MAX/sizeof(wchar_t), then the snwprintf_s function sets s[0] to
the null wide character.

Description
4 The snwprintf_s function is equivalent to the swprintf function except for the previously listed

explicit runtime-constraints.

5 The snwprintf_s function, unlike swprintf_s, will truncate the result to fit within the array pointed
to by s.

Returns
6 The snwprintf_s function returns the number of wide characters that would have been written

had n been sufficiently large, not counting the terminating wide null character, or a negative value
if a runtime-constraint violation occurred. Thus, the null-terminated output has been completely
written if and only if the returned value is both nonnegative and less than n.

K.3.9.2.4 The swprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int swprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX

/sizeof(wchar_t). The number of wide characters (including the trailing null) required for the
result to be written to the array pointed to by s shall not be greater than n. The %n specifier505)

(modified or not by flags, field width, or precision) shall not appear in the wide string pointed to by
format. Any argument to swprintf_s corresponding to a %s specifier shall not be a null pointer.
No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX/sizeof(wchar_t), then the swprintf_s function sets s[0] to the null
wide character.

504)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".
505)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

§ K.3.9.2.4 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 673

ISO/IEC 9899:202y (en) — n3299 working draft

Description
4 The swprintf_s function is equivalent to the swprintf function except for the previously listed

explicit runtime-constraints.

5 The swprintf_s function, unlike snwprintf_s, treats a result too big for the array pointed to by s
as a runtime-constraint violation.

Returns
6 If no runtime-constraint violation occurred, the swprintf_s function returns the number of wide

characters written in the array, not counting the terminating null wide character. If an encoding
error occurred or if n or more wide characters are requested to be written, swprintf_s returns a
negative value. If any other runtime-constraint violation occurred, swprintf_s returns zero.

K.3.9.2.5 The swscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int swscanf_s(const wchar_t * restrict s, const wchar_t * restrict format, ...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. Any argument indirected though to store converted

input shall not be a null pointer.

3 If there is a runtime-constraint violation, the swscanf_s function does not attempt to perform
further input, and it is unspecified to what extent swscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The swscanf_s function is equivalent to fwscanf_s, except that the argument s specifies a wide

string from which the input is to be obtained, rather than from a stream. Reaching the end of the
wide string is equivalent to encountering end-of-file for the fwscanf_s function.

Returns
5 The swscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the swscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.2.6 The vfwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwprintf_s(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);

Runtime-constraints

2 Neither stream nor format shall be a null pointer. The %n specifier506) (modified or not by flags,
field width, or precision) shall not appear in the wide string pointed to by format. Any argument to
vfwprintf_s corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfwprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vfwprintf_s produced output before discovering

506)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 674

§ K.3.9.2.6

ISO/IEC 9899:202y (en) — n3299 working draft

the runtime-constraint violation.

Description
4 The vfwprintf_s function is equivalent to the vfwprintf function except for the previously listed

explicit runtime-constraints.

Returns
5 The vfwprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.

K.3.9.2.7 The vfwscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf_s(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though to store

converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfwscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vfwscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vfwscanf_s function is equivalent to fwscanf_s, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
invocations). The vfwscanf_s function does not invoke the va_end macro.507)

Returns
5 The vfwscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vfwscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.2.8 The vsnwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vsnwprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format

,
va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX

/sizeof(wchar_t). The %n specifier508) (modified or not by flags, field width, or precision) shall
not appear in the wide string pointed to by format. Any argument to vsnwprintf_s corresponding
to a %s specifier shall not be a null pointer. No encoding error shall occur.
507)As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the representation of arg after the

return is indeterminate.
508)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

§ K.3.9.2.8 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 675

ISO/IEC 9899:202y (en) — n3299 working draft

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX/sizeof(wchar_t), then the vsnwprintf_s function sets s[0] to the
null wide character.

Description
4 The vsnwprintf_s function is equivalent to the vswprintf function except for the previously listed

explicit runtime-constraints.

5 The vsnwprintf_s function, unlike vswprintf_s, will truncate the result to fit within the array
pointed to by s.

Returns
6 The vsnwprintf_s function returns the number of wide characters that would have been written

had n been sufficiently large, not counting the terminating null character, or a negative value if
a runtime-constraint violation occurred. Thus, the null-terminated output has been completely
written if and only if the returned value is both nonnegative and less than n.

K.3.9.2.9 The vswprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vswprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX

/sizeof(wchar_t). The number of wide characters (including the trailing null) required for the
result to be written to the array pointed to by s shall not be greater than n. The %n specifier509)

(modified or not by flags, field width, or precision) shall not appear in the wide string pointed to by
format. Any argument to vswprintf_s corresponding to a %s specifier shall not be a null pointer.
No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero
and not greater than RSIZE_MAX/sizeof(wchar_t), then the vswprintf_s function sets s[0] to
the null wide character.

Description
4 The vswprintf_s function is equivalent to the vswprintf function except for the previously listed

explicit runtime-constraints.

5 The vswprintf_s function, unlike vsnwprintf_s, treats a result too big for the array pointed to by
s as a runtime-constraint violation.

Returns
6 If no runtime-constraint violation occurred, the vswprintf_s function returns the number of wide

characters written in the array, not counting the terminating null wide character. If an encoding
error occurred or if n or more wide characters are requested to be written, vswprintf_s returns a
negative value. If any other runtime-constraint violation occurred, vswprintf_s returns zero.

K.3.9.2.10 The vswscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>

509)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 676

§ K.3.9.2.10

ISO/IEC 9899:202y (en) — n3299 working draft

#include <wchar.h>
int vswscanf_s(const wchar_t * restrict s, const wchar_t * restrict format,

va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. Any argument indirected though to store converted

input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vswscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vswscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vswscanf_s function is equivalent to swscanf_s, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
invocations). The vswscanf_s function does not invoke the va_end macro.510)

Returns
5 The vswscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vswscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.2.11 The vwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vwprintf_s(const wchar_t * restrict format, va_list arg);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier511) (modified or not by flags, field width, or
precision) shall not appear in the wide string pointed to by format. Any argument to vwprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vwprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vwprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The vwprintf_s function is equivalent to the vwprintf function except for the previously listed

explicit runtime-constraints.

Returns
5 The vwprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.

K.3.9.2.12 The vwscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>

510)As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the representation of arg after the
return is indeterminate.
511)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

§ K.3.9.2.12 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 677

ISO/IEC 9899:202y (en) — n3299 working draft

int vwscanf_s(const wchar_t * restrict format, va_list arg);

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though to store converted input shall

not be a null pointer.

3 If there is a runtime-constraint violation, the vwscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vwscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vwscanf_s function is equivalent to wscanf_s, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
invocations). The vwscanf_s function does not invoke the va_end macro.512)

Returns
5 The vwscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vwscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.2.13 The wprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int wprintf_s(const wchar_t * restrict format, ...);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier513) (modified or not by flags, field width, or
precision) shall not appear in the wide string pointed to by format. Any argument to wprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the wprintf_s function does not attempt to produce
further output, and it is unspecified to what extent wprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The wprintf_s function is equivalent to the wprintf function except for the previously listed

explicit runtime-constraints.

Returns
5 The wprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.

K.3.9.2.14 The wscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int wscanf_s(const wchar_t * restrict format, ...);

512)As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the representation of arg after the
return is indeterminate.
513)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 678

§ K.3.9.2.14

ISO/IEC 9899:202y (en) — n3299 working draft

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though to store converted input shall

not be a null pointer.

3 If there is a runtime-constraint violation, the wscanf_s function does not attempt to perform further
input, and it is unspecified to what extent wscanf_s performed input before discovering the runtime-
constraint violation.

Description
4 The wscanf_s function is equivalent to fwscanf_s with the argument stdin interposed before the

arguments to wscanf_s.

Returns
5 The wscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the wscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.3 General wide string utilities
K.3.9.3.1 Wide string copying functions
K.3.9.3.1.1 The wcscpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wcscpy_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than RSIZE_MAX/sizeof(

wchar_t). s1max shall not equal zero. s1max shall be greater than wcsnlen_s(s2, s1max). Copy-
ing shall not take place between objects that overlap.

3 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX/sizeof(wchar_t), then wcscpy_s sets s1[0] to the null wide
character.

Description
4 The wcscpy_s function copies the wide string pointed to by s2 (including the terminating null wide

character) into the array pointed to by s1.

5 All elements following the terminating null wide character (if any) written by wcscpy_s in the array
of s1max wide characters pointed to by s1 take unspecified values when wcscpy_s returns.514)

Returns

6 The wcscpy_s function returns zero515) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

K.3.9.3.1.2 The wcsncpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wcsncpy_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2, rsize_t n);

514)This allows an implementation to copy wide characters from s2 to s1 while simultaneously checking if any of those wide
characters are null. Such an approach can write a wide character to every element of s1 before discovering that the first
element was set to the null wide character.
515)A zero return value implies that all the requested wide characters from the string pointed to by s2 fit within the array

pointed to by s1 and that the result in s1 is null terminated.

§ K.3.9.3.1 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 679

ISO/IEC 9899:202y (en) — n3299 working draft

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX

/sizeof(wchar_t). s1max shall not equal zero. If n is not less than s1max, then s1max shall be
greater than wcsnlen_s(s2, s1max). Copying shall not take place between objects that overlap.

3 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX/sizeof(wchar_t), then wcsncpy_s sets s1[0] to the null
wide character.

Description
4 The wcsncpy_s function copies not more than n successive wide characters (wide characters that

follow a null wide character are not copied) from the array pointed to by s2 to the array pointed to
by s1. If no null wide character was copied from s2, then s1[n] is set to a null wide character.

5 All elements following the terminating null wide character (if any) written by wcsncpy_s in the array
of s1max wide characters pointed to by s1 take unspecified values when wcsncpy_s returns.516)

Returns

6 The wcsncpy_s function returns zero517) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

7 EXAMPLE The wcsncpy_s function can be used to copy a wide string without the danger that the result will
not be null terminated or that wide characters will be written past the end of the destination array.

#define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
/* ... */
wchar_t src1[100] = L"hello";
wchar_t src2[7] = {L’g’, L’o’, L’o’, L’d’, L’b’, L’y’, L’e’};
wchar_t dst1[6], dst2[5], dst3[5];
int r1, r2, r3;
r1 = wcsncpy_s(dst1, 6, src1, 100);
r2 = wcsncpy_s(dst2, 5, src2, 7);
r3 = wcsncpy_s(dst3, 5, src2, 4);

The first call will assign to r1 the value zero and to dst1 the sequence of wide characters hello\0.

The second call will assign to r2 a nonzero value and to dst2 the sequence of wide characters \0.

The third call will assign to r3 the value zero and to dst3 the sequence of wide characters good\0.

K.3.9.3.1.3 The wmemcpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wmemcpy_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2, rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX/

sizeof(wchar_t). n shall not be greater than s1max. Copying shall not take place between objects
that overlap.

3 If there is a runtime-constraint violation, the wmemcpy_s function stores zeros in the first s1max wide
characters of the object pointed to by s1 if s1 is not a null pointer and s1max is not greater than
RSIZE_MAX/sizeof(wchar_t).
516)This allows an implementation to copy wide characters from s2 to s1 while simultaneously checking if any of those wide

characters are null. Such an approach can write a wide character to every element of s1 before discovering that the first
element was set to the null wide character.
517)A zero return value implies that all the requested wide characters from the string pointed to by s2 fit within the array

pointed to by s1 and that the result in s1 is null terminated.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 680

§ K.3.9.3.1

ISO/IEC 9899:202y (en) — n3299 working draft

Description
4 The wmemcpy_s function copies n successive wide characters from the object pointed to by s2 into

the object pointed to by s1.

Returns
5 The wmemcpy_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.9.3.1.4 The wmemmove_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wmemmove_s(wchar_t *s1, rsize_t s1max, const wchar_t *s2, rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX/

sizeof(wchar_t). n shall not be greater than s1max.

3 If there is a runtime-constraint violation, the wmemmove_s function stores zeros in the first s1max
wide characters of the object pointed to by s1 if s1 is not a null pointer and s1max is not greater than
RSIZE_MAX/sizeof(wchar_t).

Description
4 The wmemmove_s function copies n successive wide characters from the object pointed to by s2 into

the object pointed to by s1. This copying takes place as if the n wide characters from the object
pointed to by s2 are first copied into a temporary array of n wide characters that does not overlap
the objects pointed to by s1 or s2, and then the n wide characters from the temporary array are
copied into the object pointed to by s1.

Returns
5 The wmemmove_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.9.3.2 Wide string concatenation functions
K.3.9.3.2.1 The wcscat_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wcscat_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2);

Runtime-constraints
2 Let m denote the value s1max - wcsnlen_s(s1, s1max) upon entry to wcscat_s.

3 Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than
RSIZE_MAX/sizeof(wchar_t). s1max shall not equal zero. m shall not equal zero.518) m shall be
greater than wcsnlen_s(s2,m). Copying shall not take place between objects that overlap.

4 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX/sizeof(wchar_t), then wcscat_s sets s1[0] to the null wide
character.

Description
5 The wcscat_s function appends a copy of the wide string pointed to by s2 (including the terminating

null wide character) to the end of the wide string pointed to by s1. The initial wide character from

518)Zero means that s1 was not null terminated upon entry to wcscat_s.

§ K.3.9.3.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 681

ISO/IEC 9899:202y (en) — n3299 working draft

s2 overwrites the null wide character at the end of s1.

6 All elements following the terminating null wide character (if any) written by wcscat_s in the array
of s1max wide characters pointed to by s1 take unspecified values when wcscat_s returns.519)

Returns

7 The wcscat_s function returns zero520) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

K.3.9.3.2.2 The wcsncat_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wcsncat_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2, rsize_t n);

Runtime-constraints
2 Let m denote the value s1max - wcsnlen_s(s1, s1max) upon entry to wcsncat_s.

3 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX/
sizeof(wchar_t). s1max shall not equal zero. m shall not equal zero.521) If n is not less than m,
then m shall be greater than wcsnlen_s(s2,m). Copying shall not take place between objects that
overlap.

4 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX/sizeof(wchar_t), then wcsncat_s sets s1[0] to the null
wide character.

Description
5 The wcsncat_s function appends not more than n successive wide characters (wide characters that

follow a null wide character are not copied) from the array pointed to by s2 to the end of the wide
string pointed to by s1. The initial wide character from s2 overwrites the null wide character at the
end of s1. If no null wide character was copied from s2, then s1[s1max-m +n] is set to a null wide
character.

6 All elements following the terminating null wide character (if any) written by wcsncat_s in the array
of s1max wide characters pointed to by s1 take unspecified values when wcsncat_s returns.522)

Returns

7 The wcsncat_s function returns zero523) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

8 EXAMPLE The wcsncat_s function can be used to copy a wide string without the danger that the result will
not be null terminated or that wide characters will be written past the end of the destination array.

#define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
/* ... */
wchar_t s1[100] = L"good";
wchar_t s2[6] = L"hello";

519)This allows an implementation to append wide characters from s2 to s1 while simultaneously checking if any of those
wide characters are null. Such an approach can write a wide character to every element of s1 before discovering that the first
element was set to the null wide character.
520)A zero return value implies that all the requested wide characters from the wide string pointed to by s2 were appended

to the wide string pointed to by s1 and that the result in s1 is null terminated.
521)Zero means that s1 was not null terminated upon entry to wcsncat_s.
522)This allows an implementation to append wide characters from s2 to s1 while simultaneously checking if any of those

wide characters are null. Such an approach can write a wide character to every element of s1 before discovering that the first
element was set to the null wide character.
523)A zero return value implies that all the requested wide characters from the wide string pointed to by s2 were appended

to the wide string pointed to by s1 and that the result in s1 is null terminated.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 682

§ K.3.9.3.2

ISO/IEC 9899:202y (en) — n3299 working draft

wchar_t s3[6] = L"hello";
wchar_t s4[7] = L"abc";
wchar_t s5[1000] = L"bye";
int r1, r2, r3, r4;
r1 = wcsncat_s(s1, 100, s5, 1000);
r2 = wcsncat_s(s2, 6, L"", 1);
r3 = wcsncat_s(s3, 6, L"X", 2);
r4 = wcsncat_s(s4, 7, L"defghijklmn", 3);

After the first call r1 will have the value zero and s1 will be the wide character sequence goodbye\0.

After the second call r2 will have the value zero and s2 will be the wide character sequence hello\0.

After the third call r3 will have a nonzero value and s3 will be the wide character sequence \0.

After the fourth call r4 will have the value zero and s4 will be the wide character sequence abcdef\0.

K.3.9.3.3 Wide string search functions
K.3.9.3.3.1 The wcstok_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
wchar_t *wcstok_s(wchar_t * restrict s1, rsize_t * restrict s1max,

const wchar_t * restrict s2, wchar_t ** restrict ptr);

Runtime-constraints
2 None of s1max, s2, or ptr shall be a null pointer. If s1 is a null pointer, then *ptr shall not be a null

pointer. The value of *s1max shall not be greater than RSIZE_MAX/sizeof(wchar_t). The end of
the token found shall occur within the first *s1max wide characters of s1 for the first call, and shall
occur within the first *s1max wide characters of where searching resumes on subsequent calls.

3 If there is a runtime-constraint violation, the wcstok_s function does not indirect through the s1 or
s2 pointers, and does not store a value in the object pointed to by ptr.

Description
4 A sequence of calls to the wcstok_s function breaks the wide string pointed to by s1 into a sequence

of tokens, each of which is delimited by a wide character from the wide string pointed to by s2.
The fourth argument points to a caller-provided wchar_t pointer into which the wcstok_s function
stores information necessary for it to continue scanning the same wide string.

5 The first call in a sequence has a non-null first argument and s1max points to an object whose value
is the number of elements in the wide character array pointed to by the first argument. The first call
stores an initial value in the object pointed to by ptr and updates the value pointed to by s1max
to reflect the number of elements that remain in relation to ptr. Subsequent calls in the sequence
have a null first argument and the objects pointed to by s1max and ptr are required to have the
values stored by the previous call in the sequence, which are then updated. The separator wide
string pointed to by s2 can be different from call to call.

6 The first call in the sequence searches the wide string pointed to by s1 for the first wide character
that is not contained in the current separator wide string pointed to by s2. If no such wide character
is found, then there are no tokens in the wide string pointed to by s1 and the wcstok_s function
returns a null pointer. If such a wide character is found, it is the start of the first token.

7 The wcstok_s function then searches from there for the first wide character in s1 that is contained
in the current separator wide string. If no such wide character is found, the current token extends
to the end of the wide string pointed to by s1, and subsequent searches in the same wide string
for a token return a null pointer. If such a wide character is found, it is overwritten by a null wide
character, which terminates the current token.

8 In all cases, the wcstok_s function stores sufficient information in the pointer pointed to by ptr so
that subsequent calls, with a null pointer for s1 and the unmodified pointer value for ptr, shall start

§ K.3.9.3.3 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 683

ISO/IEC 9899:202y (en) — n3299 working draft

searching just past the element overwritten by a null wide character (if any).

Returns
9 The wcstok_s function returns a pointer to the first wide character of a token, or a null pointer if

there is no token or there is a runtime-constraint violation.

10 EXAMPLE

#define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
static wchar_t str1[] = L"?a???b,,,#c";
static wchar_t str2[] = L"\t \t";
wchar_t *t, *ptr1, *ptr2;
rsize_t max1 = wcslen(str1)+1;
rsize_t max2 = wcslen(str2)+1;

t = wcstok_s(str1, &max1, "?", &ptr1); // t points to the token "a"
t = wcstok_s(nullptr, &max1, ",", &ptr1); // t points to the token "??b"
t = wcstok_s(str2, &max2, " \t", &ptr2); // t is a null pointer
t = wcstok_s(nullptr, &max1, "#,", &ptr1); // t points to the token "c"
t = wcstok_s(nullptr, &max1, "?", &ptr1); // t is a null pointer

K.3.9.3.4 Miscellaneous functions
K.3.9.3.4.1 The wcsnlen_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
size_t wcsnlen_s(const wchar_t *s, size_t maxsize);

Description
2 The wcsnlen_s function computes the length of the wide string pointed to by s.

Returns

3 If s is a null pointer,524) then the wcsnlen_s function returns zero.

4 Otherwise, the wcsnlen_s function returns the number of wide characters that precede the termi-
nating null wide character. If there is no null wide character in the first maxsize wide characters of
s then wcsnlen_s returns maxsize. At most the first maxsize wide characters of s shall be accessed
by wcsnlen_s.

K.3.9.4 Extended multibyte/wide character conversion utilities
K.3.9.4.1 Restartable multibyte/wide character conversion functions
K.3.9.4.1.1 General

1 Unlike wcrtomb, wcrtomb_s does not permit the ps parameter (the pointer to the conversion state)
to be a null pointer.

K.3.9.4.1.2 The wcrtomb_s function
Synopsis

1 #include <wchar.h>
errno_t wcrtomb_s(size_t * restrict retval, char * restrict s, rsize_t smax,

wchar_t wc, mbstate_t * restrict ps);

524)The wcsnlen_s function has no runtime-constraints. This lack of runtime-constraints along with the values returned for
a null pointer or an unterminated wide string argument make wcsnlen_s useful in algorithms that gracefully handle such
exceptional data.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 684

§ K.3.9.4.1

ISO/IEC 9899:202y (en) — n3299 working draft

Runtime-constraints
2 Neither retval nor ps shall be a null pointer. If s is not a null pointer, then smax shall not equal

zero and shall not be greater than RSIZE_MAX. If s is not a null pointer, then smax shall not be less
than the number of bytes to be stored in the array pointed to by s. If s is a null pointer, then smax
shall equal zero.

3 If there is a runtime-constraint violation, then wcrtomb_s does the following. If s is not a null pointer
and smax is greater than zero and not greater than RSIZE_MAX, then wcrtomb_s sets s[0] to the null
character. If retval is not a null pointer, then wcrtomb_s sets *retval to (size_t)(-1).

Description
4 If s is a null pointer, the wcrtomb_s function is equivalent to the call

wcrtomb_s(&retval, buf, sizeof buf, L’\0’, ps)

where retval and buf are internal objects of the appropriate types, and the size of buf is greater
than MB_CUR_MAX.

5 If s is not a null pointer, the wcrtomb_s function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given by wc (including any shift
sequences), and stores the multibyte character representation in the array whose first element is
pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide character, a null byte is
stored, preceded by any shift sequence needed to restore the initial shift state; the resulting state
described is the initial conversion state.

6 If wc does not correspond to a valid multibyte character, an encoding error occurs: the wcrtomb_s
function stores the value (size_t)(-1) into *retval and the conversion state is unspecified.

Otherwise, the wcrtomb_s function stores into *retval the number of bytes (including any shift
sequences) stored in the array pointed to by s.

Returns
7 The wcrtomb_s function returns zero if no runtime-constraint violation and no encoding error

occurred. Otherwise, a nonzero value is returned.

K.3.9.4.2 Restartable multibyte/wide string conversion functions
K.3.9.4.2.1 General

1 Unlike mbsrtowcs and wcsrtombs, mbsrtowcs_s and wcsrtombs_s do not permit the ps parameter
(the pointer to the conversion state) to be a null pointer.

K.3.9.4.2.2 The mbsrtowcs_s function
Synopsis

1 #include <wchar.h>
errno_t mbsrtowcs_s(size_t * restrict retval, wchar_t * restrict dst,

rsize_t dstmax, const char ** restrict src, rsize_t len,
mbstate_t * restrict ps);

Runtime-constraints
2 None of retval, src, *src , or ps shall be null pointers. If dst is not a null pointer, then neither

len nor dstmax shall be greater than RSIZE_MAX/sizeof(wchar_t). If dst is a null pointer, then
dstmax shall equal zero. If dst is not a null pointer, then dstmax shall not equal zero. If dst is not a
null pointer and len is not less than dstmax, then a null character shall occur within the first dstmax
multibyte characters of the array pointed to by *src.

3 If there is a runtime-constraint violation, then mbsrtowcs_s does the following. If retval is not
a null pointer, then mbsrtowcs_s sets *retval to (size_t)(-1). If dst is not a null pointer and
dstmax is greater than zero and not greater than RSIZE_MAX/sizeof(wchar_t), then mbsrtowcs_s
sets dst[0] to the null wide character.

§ K.3.9.4.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 685

ISO/IEC 9899:202y (en) — n3299 working draft

Description
4 The mbsrtowcs_s function converts a sequence of multibyte characters that begins in the conversion

state described by the object pointed to by ps, from the array indirectly pointed to by src into a
sequence of corresponding wide characters. If dst is not a null pointer, the converted characters are
stored into the array pointed to by dst. Conversion continues up to and including a terminating null
character, which is also stored. Conversion stops earlier in two cases: when a sequence of bytes is
encountered that does not form a valid multibyte character, or (if dst is not a null pointer) when len
wide characters have been stored into the array pointed to by dst.525) If dst is not a null pointer
and no null wide character was stored into the array pointed to by dst, then dst[len] is set to the
null wide character. Each conversion takes place as if by a call to the mbrtowc function.

5 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null character) or the address just past the last
multibyte character converted (if any). If conversion stopped due to reaching a terminating null
character and if dst is not a null pointer, the resulting state described is the initial conversion state.

6 Regardless of whether dst is or is not a null pointer, if the input conversion encounters a sequence
of bytes that do not form a valid multibyte character, an encoding error occurs: the mbsrtowcs_s
function stores the value (size_t)(-1) into *retval and the conversion state is unspecified.

Otherwise, the mbsrtowcs_s function stores into *retval the number of multibyte characters
successfully converted, not including the terminating null character (if any).

7 All elements following the terminating null wide character (if any) written by mbsrtowcs_s in the
array of dstmax wide characters pointed to by dst take unspecified values when mbsrtowcs_s
returns.526)

8 If copying takes place between objects that overlap, the objects take on unspecified values.

Returns
9 The mbsrtowcs_s function returns zero if no runtime-constraint violation and no encoding error

occurred. Otherwise, a nonzero value is returned.

K.3.9.4.2.3 The wcsrtombs_s function
Synopsis

1 #include <wchar.h>
errno_t wcsrtombs_s(size_t * restrict retval, char * restrict dst,

rsize_t dstmax, const wchar_t ** restrict src, rsize_t len,
mbstate_t * restrict ps);

Runtime-constraints
2 None of retval, src,*src , or ps shall be null pointers. If dst is not a null pointer, then neither len

shall be greater than RSIZE_MAX/sizeof(wchar_t) nor dstmax shall be greater than RSIZE_MAX. If
dst is a null pointer, then dstmax shall equal zero. If dst is not a null pointer, then dstmax shall not
equal zero. If dst is not a null pointer and len is not less than dstmax, then the conversion shall
have been stopped (see the following) because a terminating null wide character was reached or
because an encoding error occurred.

3 If there is a runtime-constraint violation, then wcsrtombs_s does the following. If retval is not
a null pointer, then wcsrtombs_s sets *retval to (size_t)(-1). If dst is not a null pointer and
dstmax is greater than zero and not greater than RSIZE_MAX, then wcsrtombs_s sets dst[0] to the
null character.

Description
4 The wcsrtombs_s function converts a sequence of wide characters from the array indirectly pointed

to by src into a sequence of corresponding multibyte characters that begins in the conversion state

525)Thus, the value of len is ignored if dst is a null pointer.
526)This allows an implementation to attempt converting the multibyte string before discovering a terminating null character

did not occur where required.

© ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 686

§ K.3.9.4.2

ISO/IEC 9899:202y (en) — n3299 working draft

described by the object pointed to by ps. If dst is not a null pointer, the converted characters are then
stored into the array pointed to by dst. Conversion continues up to and including a terminating
null wide character, which is also stored. Conversion stops earlier in two cases:

— when a wide character is reached that does not correspond to a valid multibyte character;

— (if dst is not a null pointer) when the next multibyte character would exceed the limit of n
total bytes to be stored into the array pointed to by dst. If the wide character being converted
is the null wide character, then n is the lesser of len or dstmax. Otherwise, n is the lesser of
len or dstmax-1.

If the conversion stops without converting a null wide character and dst is not a null pointer, then
a null character is stored into the array pointed to by dst immediately following any multibyte
characters already stored. Each conversion takes place as if by a call to the wcrtomb function.527)

5 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null wide character) or the address just past the
last wide character converted (if any). If conversion stopped due to reaching a terminating null wide
character, the resulting state described is the initial conversion state.

6 Regardless of whether dst is or is not a null pointer, if the input conversion encounters a wide
character that does not correspond to a valid multibyte character, an encoding error occurs: the
wcsrtombs_s function stores the value (size_t)(-1) into *retval and the conversion state is
unspecified. Otherwise, the wcsrtombs_s function stores into *retval the number of bytes in the
resulting multibyte character sequence, not including the terminating null character (if any).

7 All elements following the terminating null character (if any) written by wcsrtombs_s in the array
of dstmax elements pointed to by dst take unspecified values when wcsrtombs_s returns.528)

8 If copying takes place between objects that overlap, the objects take on unspecified values.

Returns
9 The wcsrtombs_s function returns zero if no runtime-constraint violation and no encoding error

occurred. Otherwise, a nonzero value is returned.

527)If conversion stops because a terminating null wide character has been reached, the bytes stored include those necessary
to reach the initial shift state immediately before the null byte. However, if the conversion stops before a terminating null
wide character has been reached, the result will be null terminated, but does not necessarily end in the initial shift state.

528)When len is not less than dstmax, the implementation can fill the array before discovering a runtime-constraint violation.

§ K.3.9.4.2 © ISO/IEC 202y — All rights reserved

Bounds-checking interfaces — 687

ISO/IEC 9899:202y (en) — n3299 working draft

Annex L
(normative)

Analyzability

L.1 Scope
1 This Annex specifies optional behavior that can aid in the analyzability of C programs.

2 An implementation that defines __STDC_ANALYZABLE__ shall conform to the specifications in this
annex (see also 6.10.10.4).529)

L.2 Definitions
L.2.1

1 out-of-bounds store

an (attempted) access (3.1) that, at run time, for a given computational state, would modify (or, for
an object declared volatile, fetch) one or more bytes that lie outside the bounds permitted by this
document.

L.2.2
1 bounded undefined behavior

undefined behavior (3.5.3) that does not perform an out-of-bounds store.

2 Note 1 to entry: The behavior can perform a trap.

3 Note 2 to entry: Any values produced can be unspecified values, and the representation of objects that are
written to can become indeterminate.

L.2.3
1 critical undefined behavior

undefined behavior that is not bounded undefined behavior.

2 Note 1 to entry: The behavior can perform an out-of-bounds store or perform a trap.

L.3 Requirements
1 If the program performs a trap (3.25), the implementation is permitted to invoke a runtime-constraint

handler. Any such semantics are implementation-defined.

2 All undefined behavior shall be limited to bounded undefined behavior, except for the following
which are permitted to result in critical undefined behavior:

— An object is referred to outside of its lifetime (6.2.4).

— A store is performed to an object that has two incompatible declarations (6.2.7),

— A pointer is used to call a function whose type is not compatible with the referenced type
(6.2.7, 6.3.3.3, 6.5.3.3).

— An lvalue does not designate an object when evaluated (6.3.3.1).

— The program attempts to modify a string literal (6.4.6).

— The operand of the unary * operator has an invalid value (6.5.4.3).

— Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that points just beyond the array object and is used as the operand of a unary
* operator that is evaluated (6.5.7).

— An attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type (6.7.4).

529)Implementations that do not define __STDC_ANALYZABLE__ are not required to conform to these specifications.

© ISO/IEC 202y — All rights reserved

Analyzability — 688

§ L.3

ISO/IEC 9899:202y (en) — n3299 working draft

— An argument to a function or macro defined in the standard library has an invalid value or a
type not expected by a function with variable number of arguments (7.1.4).

— The longjmp function is called with a jmp_buf argument where the most recent invocation
of the setjmp macro in the same invocation of the program with the corresponding jmp_buf
argument is nonexistent, or the invocation was from another thread of execution, or the
function containing the invocation has terminated execution in the interim, or the invocation
was within the scope of an identifier with variably modified type and execution has left that
scope in the interim (7.13.3.1).

— The value of a pointer that refers to space deallocated by a call to the free or realloc function
is used (7.24.4).

— A string or wide string utility function accesses an array beyond the end of an object (7.26.1,
7.31.4).

§ L.3 © ISO/IEC 202y — All rights reserved

Analyzability — 689

ISO/IEC 9899:202y (en) — n3299 working draft

Annex M
(informative)

Change History

M.1 Attribute Changes
1 The attribute feature was introduced in the fifth edition of this document, as detailed in the change

list in M.3. Table M.1 illustrates what usage of the __has_c_attribute preprocessor conditional
expression should return in the latest edition, previous values, and the change associated with that
value.

2 Programs and implementations can use Table M.1 to know what values were being used at any
specific point in time, leading up to the publication of this document. The value at the bottom of
a particular row in Table M.1 is the latest value and corresponds with the behavior for the given
attribute described in this document.

Table M.1: __has_c_attribute values and associated changes

attribute tokens value semantic and/or syntactic changes
deprecated 201904L Initial introduction.

202311L Harmonized for fifth edition.
fallthrough 201904L Initial introduction.

201910L
Expanded locations where fallthrough provides diag-
nostics due to improvements in specification of blocks.

202311L Harmonized for fifth edition.
maybe_unused 201904L Initial introduction.

202106L maybe_unused may appertain to labels.
202311L Harmonized for fifth edition.

nodiscard 201904L Initial introduction.

202003L
Added a form which accepts a string literal for diag-
nostic purposes, e.g. nodiscard("should have a
reason").

202311L Harmonized for fifth edition.
noreturn 202202L Initial introduction.

202311L Harmonized for fifth edition.
reproducible 202207L Initial introduction.

202311L Harmonized for fifth edition.
unsequenced 202207L Initial introduction.

202311L Harmonized for fifth edition.

M.2 Sixth Edition
1 Major changes in this sixth edition (__STDC_VERSION__ 202ymmL) include:

— Uppercase characters "A" through "F" (’A’ through ’F’) and lowercase characters "a" through
"f" (’a’ through ’f’), colloquially known as the "hexidecimal digits", are now guaranteed to
be sequential.

M.3 Fifth Edition
1 Major changes in this fifth edition (__STDC_VERSION__ 202311L) include:

— add new keywords such as bool, static_assert, true, false, thread_local and others,
and allowed implementations to provide macros for the older spelling with a leading under-
score followed by a capital letter as well as defining old and new keywords as macros to enable
transition of programs easily;

— removed integer width constraints and obsolete sign representations (so-called "1’s comple-
ment" and "sign-magnitude");

© ISO/IEC 202y — All rights reserved

Change History — 690

§ M.3

ISO/IEC 9899:202y (en) — n3299 working draft

— added a one-argument version of static_assert;

— removed support for function definitions with identifier lists;

— mandated function declarations whose parameter list is empty be treated the same as a
parameter list which only contain a single void;

— harmonization with ISO/IEC 9945 (POSIX):

• extended month name formats for strftime

• integration of functions: gmtime_r, localtime_r, memccpy, strdup, strndup

— harmonization with floating-point standard ISO/IEC 60559:

• integration of binary floating-point technical specification ISO/IEC TS 18661-1:2014

• integration of decimal floating-point technical specification ISO/IEC TS 18661-2:2015

• integration of floating-point types technical specification ISO/IEC TS 18661-3:2015

• integration of mathematical functions technical specification ISO/IEC TS 18661-4:2015

• new maximum and minimum functions for operations recommended in
ISO/IEC 60559:2020

— made the DECIMAL_DIG macro obsolescent;

— added version test macros to library headers that contained changes to aid in upgrading and
portability to be used alongside the __STDC_VERSION__ macro;

— allowed placement of labels in front of declarations and at the end of compound statement;

— added the attributes feature, which includes the attributes:

• deprecated, for marking entities as discouraged for future use;

• fallthrough, for explicitly marking cases where falling through in switches or labels is
intended rather than accidental;

• maybe_unused, for marking entities which can end up not being used;

• nodiscard, for marking entities which, when used, should have their value handled in
some way by a program;

• noreturn, for indicating a function shall never return;

• reproducible, for marking function types for which inputs always produce predictable
output if given the same input (e.g. cached data) but for which the order of such calls still
matter; and,

• unsequenced, for marking function types which always produce predictable output and
have no dependencies upon other data (and other relevant caveats);

— added the u8 character prefix to match the u8 string prefix;

— mandated all u8, u, and U strings be UTF-8, UTF-16, and UTF-32, respectively, as defined by
ISO/IEC 10646;

— separated the literal, wide literal, and UTF-8 literal, UTF-16 literal, and UTF-32 literal encodings
for strings and characters and now have a solely execution-based version of these, particularly
execution and wide execution encodings;

— added mbrtoc8 and c8rtomb functions missing from <uchar.h>;

— compound literals may also include storage-class specifiers as part of the type to change the
lifetime of the compound literal (and possibly turn it into a constant expression);

— added the constexpr specifier for object definitions and improved what is recognized as a
constant expression in conjunction with the constexpr storage-class specifier;

§ M.3 © ISO/IEC 202y — All rights reserved

Change History — 691

ISO/IEC 9899:202y (en) — n3299 working draft

— added support for initialization of objects with empty braces;

— added the typeof and typeof_unqual operations for deducing the type of an expression;

— improved tag compatibility rules, enabling more types to be compatible with other types;

— added bit-precise integer types _BitInt(N) and unsigned _BitInt(N), where N can be an
integer constant expression whose value is from one to BITINT_MAXWIDTH, inclusive.

— improved rules for handling enumerations without underlying types, in particular allowing
for enumerations without fixed underlying type to have value representations that have a
greater range than int;

— added a new colon-delimited type specifier for enumerations to specify a fixed underlying
type (and which, subject to an implementation’s definitions governing such constructs, adopt
the fixed underlying type’s rules for padding, alignment, and sizing within structures and
unions as well as with bit-fields);

— added a new header <stdbit.h> and a suite of bit and byte-handling utilities for portable
access to many implementations’ most efficient functionality;

— modified existing functions to preserve the const-ness of the type placed into the function;

— added a feature to embed binary data as faithfully as possible with a new preprocessor directive
#embed;

— added a nullptr constant and a nullptr_t type with a well-defined underlying representa-
tion identical to a pointer to void;

— added the __VA_OPT__ specifier and clarified language in the handling of macro invocation
and arguments;

— mandated support for variably modified types (but not variable length arrays themselves);

— parameter names may be omitted in function definitions;

— ellipses on functions may appear without a preceding parameter in the parameter list of
functions and va_start no longer requires such an argument to be passed to it;

— Unicode identifiers allowed in syntax following Unicode Standard Annex, UAX #31;

— added the memset_explicit function for making sensitive information inaccessible;

— added memalignment function to query the alignment of a pointer;

— certain type definitions (i.e. exact-width integer types such as int128_t), bit-precise integer
types, and extended integer types may exceed the normal boundaries of intmax_t and
uintmax_t for signed and unsigned integer types, respectively;

— names of functions, macros, and variables in this document, where clarified, are potentially
reserved rather than reserved to avoid undefined behavior for a large class of identifiers used
by programs existing and to be created;

— mandated support for call_once;

— allowed ptrdiff_t to be an integer type with a width of at least 16, rather than requiring an
integer type with a width of at least 17;

— added the __has_include feature for conditional inclusion expression preprocessor directives
to check if a header is available for inclusion;

— changed the type qualifiers of the _Imaginary_I and _Complex_I macros;

— added qualifier preserving macros for bsearch, memchr, strchr, strpbrk, strrchr, strstr,
wcschr, wcspbrk, wcsrchr, wmemchr, and wcsstr;

© ISO/IEC 202y — All rights reserved

Change History — 692

§ M.3

ISO/IEC 9899:202y (en) — n3299 working draft

— added (U+0040, COMMERCIAL AT), $ (U+0024, DOLLAR SIGN), and ` (U+0060, GRAVE
ACCENT, "Backtick") into the source and execution character set;

— enhanced the auto type specifier for single object definitions using type inference;

— added the #elifdef and #elifndef conditional inclusion preprocessor directives;

— added the #warning preprocessing directive;

— binary integer literals and appropriate formatting for input/output of binary integer numbers;

— digit separators with ’ (single quotation mark);

— removed conditional support for mixed wide and narrow string literal concatenation;

— added support for additional time bases, as well as timespec_getres, in <time.h>;

— added support for new interface timegm to retrieve the broken-down time, in <time.h>;

— zero-sized reallocations with realloc are undefined behavior;

— added free_sized and free_aligned_sized functions;

— added an unreachable feature which has undefined behavior if reached during program
execution;

— added printf and scanf length modifiers for intN_t, int_fastN_t, uintN_t, and
uint_fastN_t.

M.4 Fourth Edition
1 There were no major changes in the fourth edition (__STDC_VERSION__ 201710L), only technical

corrections and clarifications.

M.5 Third Edition
1 Major changes in the third edition (__STDC_VERSION__ 201112L) included:

— conditional (optional) features (including some that were previously mandatory)

— support for multiple threads of execution including an improved memory sequencing model,
atomic objects, and thread storage (<stdatomic.h> and <threads.h>)

— additional floating-point characteristic macros (<float.h>)

— querying and specifying alignment of objects (<stdalign.h>, <stdlib.h>)

— Unicode characters and strings (<uchar.h>) (originally specified in ISO/IEC TR 19769:2004)

— type-generic expressions

— static assertions

— anonymous structures and unions

— no-return functions

— macros to create complex numbers (<complex.h>)

— support for opening files for exclusive access

— removed the gets function (<stdio.h>)

— added the aligned_alloc, at_quick_exit, and quick_exit functions (<stdlib.h>)

— (conditional) support for bounds-checking interfaces (originally specified in ISO/IEC TR 24731–
1:2007)

— (conditional) support for analyzability

§ M.5 © ISO/IEC 202y — All rights reserved

Change History — 693

ISO/IEC 9899:202y (en) — n3299 working draft

M.6 Second Edition
1 Major changes in the second edition (__STDC_VERSION__ 199901L) included:

— restricted character set support via digraphs and <iso646.h> (originally specified in
ISO/IEC 9899:1990/Amd 1:1995)

— wide character library support in <wchar.h> and <wctype.h> (originally specified in
ISO/IEC 9899:1990/Amd 1:1995)

— more precise aliasing rules via effective type

— restricted pointers

— variable length arrays

— flexible array members

— static and type qualifiers in parameter array declarators

— complex (and imaginary) support in <complex.h>

— type-generic math macros in <tgmath.h>

— the long long int type and library functions

— extended integer types

— increased minimum translation limits

— additional floating-point characteristics in <float.h>

— remove implicit int

— reliable integer division

— universal character names (\u and \U)

— extended identifiers

— hexadecimal floating constants and %a and %A printf/scanf conversion specifiers

— compound literals

— designated initializers

— // comments

— specified width integer types and corresponding library functions in <inttypes.h> and
<stdint.h>

— remove implicit function declaration

— preprocessor arithmetic done in intmax_t/uintmax_t

— mixed declarations and statements

— new block scopes for selection and iteration statements

— integer constant type rules

— integer promotion rules

— macros with a variable number of arguments (__VA_ARGS__)

— the vscanf family of functions in <stdio.h> and <wchar.h>

— additional math library functions in <math.h>

© ISO/IEC 202y — All rights reserved

Change History — 694

§ M.6

ISO/IEC 9899:202y (en) — n3299 working draft

— treatment of error conditions by math library functions (math_errhandling)

— floating-point environment access in <fenv.h>

— ISO/IEC 60559 (also known as IEC 559 or IEEE 754 arithmetic) support

— trailing comma allowed in enum declaration

— %lf conversion specifier allowed in printf

— inline functions

— the snprintf family of functions in <stdio.h>

— boolean type in <stdbool.h>

— idempotent type qualifiers

— empty macro arguments

— new structure type compatibility rules (tag compatibility)

— additional predefined macro names

— _Pragma preprocessing operator

— standard pragmas

— __func__ predefined identifier

— va_copy macro

— additional strftime conversion specifiers

— LIA compatibility annex

— deprecate ungetc at the beginning of a binary file

— remove deprecation of aliased array parameters

— conversion of array to pointer not limited to lvalues

— relaxed constraints on aggregate and union initialization

— relaxed restrictions on portable header names

— return without expression not permitted in function that returns a value (and vice versa)

M.7 First Edition, Amendment 1
1 Major changes in the amendment to the first edition (__STDC_VERSION__ 199409L) included:

— addition of the predefined __STDC_VERSION__ macro

— restricted character set support via digraphs and <iso646.h>

— wide character library support in <wchar.h> and <wctype.h>

§ M.7 © ISO/IEC 202y — All rights reserved

Change History — 695

ISO/IEC 9899:202y (en) — n3299 working draft

Bibliography

[1] ISO/IEC 14882 Programming languages — C++.

[2] ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information inter-
change.

[3] ISO/IEC 9945–2:1993, Information technology — Portable Operating System Interface (POSIX) —
Part 2: Shell and Utilities.

[4] ISO/IEC TR 10176:2003, Information technology — Guidelines for the preparation of programming
language standards.

[5] ISO/IEC 10967–1:2012, Information technology — Language independent arithmetic — Part 1:
Integer and floating point arithmetic.

[6] ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and
system software interfaces — Extensions for the programming language C to support new character
data types.

[7] ISO/IEC TR 24731–1:2007, Information technology — Programming languages, their environments
and system software interfaces — Extensions to the C library — Part 1: Bounds-checking interfaces.

[8] ISO 80000–3, Quantities and units — Part 3: Space and time.

[9] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.

[10] ISO/IEC/IEEE 60559:2011, Floating-point arithmetic.

[11] IEEE 754–1985 IEEE Standard for Binary Floating-Point Arithmetic.

[12] IEEE 754–2019 IEEE Standard for Floating-Point Arithmetic.

[13] ANSI/IEEE 854–1987, American National Standard for Radix-Independent Floating-Point Arithmetic.

[14] ANSI X3/TR–1–82 (1982), American National Dictionary for Information Processing Systems,
Information Processing Systems Technical Report.

[15] "The C Reference Manual" by Dennis M. Ritchie, a version of which was published in The
C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall, Inc.,
(1978). Copyright owned by AT&T.

[16] 1984 /usr/group Standard by the /usr/group Standards Committee, Santa Clara, California,
USA, November 1984.

[17] The Unicode Consortium. Unicode Standard Annex, UAX #31, Unicode Identifier and Pattern
Syntax [online]. Edited by Mark Davis and Robin Leroy. Available at https://www.unicode.
org/reports/tr31.

© ISO/IEC 202y — All rights reserved

Bibliography — 696

https://www.unicode.org/reports/tr31
https://www.unicode.org/reports/tr31

ISO/IEC 9899:202y (en) — n3299 working draft

Index
! (exclamation-mark punctuator), 69
! (logical negation operator), 83
!= (inequality operator), 89
!= (not-equal punctuator), 69
(hash punctuator), 69
preprocessing directive, 188
punctuator, 164
(hash-hash punctuator), 69
#define preprocessing directive, 180
#elif preprocessing directive, 168
#elifdef preprocessing directive, 169
#elifndef preprocessing directive, 169
#else preprocessing directive, 169
#embed preprocessing directive, 172
#endif preprocessing directive, 169
#error preprocessing directive, 9, 187
#if preprocessing directive, 168
#ifdef preprocessing directive, 169
#ifndef preprocessing directive, 169
#include preprocessing directive, 11, 171
#line preprocessing directive, 186
#pragma preprocessing directive, 187
#undef preprocessing directive, 184, 194
⌈x⌉, 7
⌊x⌋, 7
& (bitwise AND operator), 89
&& (logical AND operator), 17, 90
&= (bitwise AND assignment operator), 94
’ ’ (space character), 11, 20, 53, 207, 208, 457
((opening parenthesis punctuator), 69
() (cast operator), 85
() (function-call operator), 76
() (parentheses punctuator), 131, 155, 156
(){} (compound-literal operator), 80
) (closing parenthesis punctuator), 69
* (asterisk punctuator), 69, 128, 129
* (indirection operator), 76, 83
* (multiplication operator), 85, 558
*= (asterisk-equal punctuator), 69
*= (multiplication assignment operator), 94
+ (addition operator), 76, 83, 86, 560
+ (plus punctuator), 69
+ (unary plus operator), 83
+ format flag, 335, 422
++ (plus-plus punctuator), 69
++ (postfix increment operator), 51, 79
++ (prefix increment operator), 51, 82
+= (addition assignment operator), 94
+= (plus-equal punctuator), 69
, (comma operator), 17, 95
, (comma punctuator), 69, 76, 98, 106, 110, 117,

137

- (minus punctuator), 69
- (subtraction operator), 86, 560
- (unary minus operator), 83, 531
- format flag, 335, 421
-- (minus-minus punctuator), 69
-- (postfix decrement operator), 51, 79
-- (prefix decrement operator), 51, 82
-= (minus-equal punctuator), 69
-= (subtraction assignment operator), 94
-> (minus-greater punctuator), 69
-> (structure/union pointer operator), 77
. (dot punctuator), 69, 138
. (structure/union member operator), 51, 77
... (ellipsis punctuator), 69, 131, 180
/ (division operator), 85, 558
/ (slash punctuator), 69
/* */ (comment delimiters), 71
// (comment delimiter), 71
/= (division assignment operator), 94
/= (slash-equal punctuator), 69
: (colon punctuator), 69, 106
:> (alternative spelling of]), 70
:> (colon greater punctuator), 69
; (semicolon punctuator), 69, 98, 106, 154, 156,

157
< (less punctuator), 69
< (less-than operator), 88
<: (alternative spelling of [), 70
<: (less-colon punctuator), 69
<< (left-shift operator), 87
<< (less-less punctuator), 69
<<= (left-shift assignment operator), 94
<<= (less-less equal punctuator), 69
<= (less-equal punctuator), 69
<= (less-than-or-equal-to operator), 88
<% (alternative spelling of {), 70
<% (less-percent punctuator), 69
<assert.h> header, 175–177, 193, 196, 222,

480
<complex.h> header, 25, 30, 102, 140, 190, 192,

193, 197–205, 390, 391, 462, 480, 481,
559, 561, 577, 579, 614, 617, 624, 693,
694

<ctype.h> header, 193, 206, 207–209, 462, 482
<errno.h> header, 151, 193, 210, 462, 482, 641
<fenv.h> header, 9, 14, 16, 25, 30, 35, 94, 151,

193, 211, 213, 214, 217–224, 241, 462,
482, 527, 531, 534–537, 545, 549, 551,
695

<float.h> header, 9, 10, 22, 24, 25, 29, 30, 102,
193, 225, 239, 339, 363, 426, 440, 462,
463, 483, 484, 523, 527, 533, 571, 572,

© ISO/IEC 202y — All rights reserved

Index — 697

ISO/IEC 9899:202y (en) — n3299 working draft

621, 693, 694
<inttypes.h> header, 193, 226, 227, 228, 337,

423, 462, 484, 694
<iso646.h> header, 9, 10, 193, 229, 484, 694,

695
<limits.h> header, 9, 10, 22, 23, 24, 40, 41,

193, 230, 485, 523, 621
<locale.h> header, 151, 193, 231, 232, 462, 485
<math.h> header, 9, 25, 30, 35, 74, 150, 151,

193, 215, 217, 238, 239, 241–244, 245–
272, 273, 274–278, 279, 280–285, 286,
340, 390–392, 426, 462, 463, 485, 496,
497, 526, 527, 533, 539, 540, 545, 549,
551–555, 559, 569, 579, 592–594, 604,
614, 617, 621, 624, 694

<setjmp.h> header, 193, 287, 288, 505
<signal.h> header, 193, 289, 291, 463, 505
<stdalign.h> header, 9, 10, 193, 292, 505, 693
<stdarg.h> header, 9, 10, 131, 193, 293, 294–

296, 350–352, 432–434, 505, 650–653,
674–677

<stdatomic.h> header, 190, 192, 193, 290, 297,
298, 301, 302, 304, 306, 307, 463, 505,
610, 693

<stdbit.h> header, 9, 193, 308, 309–315, 463,
506, 692

<stdbool.h> header, 9, 10, 193, 316, 463, 508,
695

<stdckdint.h> header, 193, 317, 463, 508
<stddef.h> header, 9, 10, 51, 67, 69, 84, 86, 87,

142, 174, 175, 193, 228, 318, 319, 320,
348, 508, 642

<stdint.h> header, 9, 10, 22, 24, 168, 193, 226,
227, 321, 323, 324, 336, 343, 344, 423,
428, 463, 508, 509, 621, 642, 694

<stdio.h> header, 16, 25, 30, 35, 57, 151, 171,
175, 193, 215, 217, 325, 329–331, 333,
334, 340, 342, 346–359, 407, 421, 426,
427, 430–432, 434–437, 463, 509, 510,
617, 642, 643–654, 672, 674, 675, 693–
695

<stdlib.h> header, 9, 25, 30, 35, 193, 195, 215,
217, 360, 361, 362, 364, 366–378, 463,
510, 512, 569, 594, 595, 596, 597, 617,
641, 655, 656–661, 693

<stdnoreturn.h> header, 9, 10, 148, 193, 380,
513

<string.h> header, 9, 174, 177, 178, 193, 381,
382–389, 464, 513, 662, 663–668

<tgmath.h> header, 35, 193, 390, 393, 514, 526,
539, 567, 598, 600, 694

<threads.h> header, 150, 151, 190, 192, 193,
395, 396–403, 464, 515, 693

<time.h> header, 193, 395, 405, 406–411, 450,
464, 515, 516, 668, 669–671, 693

<uchar.h> header, 67, 69, 193, 415, 416–419,

516, 691, 693
<wchar.h> header, 25, 30, 35, 151, 193, 215,

217, 227, 326, 420, 421, 426, 427, 431–
438, 440, 442–447, 449–454, 464, 516,
518, 597, 598, 617, 671, 672–686, 694,
695

<wctype.h> header, 193, 456, 457–461, 464,
519, 694, 695

= (equal-sign punctuator), 69, 98, 110, 138
= (simple assignment operator), 93
== (equal-equal punctuator), 69
== (equality operator), 89
> (greater punctuator), 69
> (greater-than operator), 88
>= (greater-equal punctuator), 69
>= (greater-than-or-equal-to operator), 88
>> (greater greater punctuator), 69
>> (right-shift operator), 87
>>= (greater-greater-equal punctuator), 69
>>= (right-shift assignment operator), 94
? (question-mark punctuator), 69
?: (conditional operator), 17, 91
[(opening bracket punctuator), 69
[] (array subscript operator), 76, 83
[] (brackets punctuator), 129, 138
format flag, 335, 422
% (percent punctuator), 69
% (remainder operator), 85
%: (alternative spelling of #), 70
%: (percent-colon punctuator), 69
%:%: (alternative spelling of ##), 70
%:%: (percent-percent punctuator), 69
%= (percent-equal punctuator), 69
%= (remainder assignment operator), 94
%> (alternative spelling of }), 70
%> (percent-greater punctuator), 69
%A conversion specifier, 337, 411, 424
%B conversion specifier, 336, 411, 423
%C conversion specifier, 411
%D conversion specifier, 412
%E conversion specifier, 337, 424
%F conversion specifier, 337, 412, 423
%G conversion specifier, 337, 412, 424
%H conversion specifier, 412
%I conversion specifier, 412
%M conversion specifier, 412
%R conversion specifier, 412
%S conversion specifier, 412
%T conversion specifier, 412
%U conversion specifier, 412
%V conversion specifier, 412
%W conversion specifier, 412
%X conversion specifier, 336, 412, 423
%Y conversion specifier, 412
%Z conversion specifier, 412
%[conversion specifier, 345, 429

© ISO/IEC 202y — All rights reserved

Index — 698

ISO/IEC 9899:202y (en) — n3299 working draft

%% conversion specifier, 339, 346, 426, 430
%a conversion specifier, 337, 344, 411, 424, 429
%b conversion specifier, 336, 411, 423
%c conversion specifier, 338, 344, 411, 425, 429
%d conversion specifier, 336, 344, 412, 423, 429
%e conversion specifier, 337, 344, 412, 424, 429
%f conversion specifier, 337, 344, 423, 429
%g conversion specifier, 337, 344, 412, 424, 429
%h conversion specifier, 412
%i conversion specifier, 336, 423
%j conversion specifier, 412
%m conversion specifier, 412
%n conversion specifier, 339, 346, 412, 425, 430
%o conversion specifier, 336, 344, 423, 429
%p conversion specifier, 339, 345, 412, 425, 430
%r conversion specifier, 412
%s conversion specifier, 338, 345, 425, 429
%t conversion specifier, 412
%u conversion specifier, 336, 344, 412, 423, 429
%w conversion specifier, 412
%x conversion specifier, 336, 344, 412, 423, 429
%y conversion specifier, 412
%z conversion specifier, 412
& (address operator), 51, 83
& (ampersand punctuator), 69
&= (ampersand-equal punctuator), 69
&& (ampersand-ampersand punctuator), 69
\ (backslash character), 11, 19, 65
\ (backslash escape sequence), 66, 190
\" (double-quote escape sequence), 66, 68, 190
\’ (single-quote escape sequence), 66, 68
\0 (null character), 19, 67, 68

padding of binary stream, 327
\? (question-mark escape sequence), 66
\U (universal character names), 57
\a (alert escape sequence), 21, 66
\b (backspace escape sequence), 21, 66
\ (escape character), 65
\f (form-feed escape sequence), 21, 66, 208
\n (new-line escape sequence), 21, 66, 208
\octal digit (octal-character escape sequence),

66
\r (carriage-return escape sequence), 21, 66,

208
\t (horizontal-tab escape sequence), 21, 66,

207, 208, 457
\u (universal character names), 57
\v (vertical-tab escape sequence), 21, 66, 208
_Alignas, 54
_Alignof, 54
_Atomic, 42
_Atomic keyword, 54
_Atomic type qualifier, 121
_Atomic type specifier, 118
_BitInt, 23, 40, 48, 50, 54, 60, 61, 104, 105, 692
_BitInt keyword, 54

_BitInt type, 104
_Bool, 54
_C identifier suffix, 324, 463, 509
_Complex, 26, 41, 50, 54, 102–105, 197, 557, 559,

571, 577
_Complex keyword, 54
_Complex type, 41, 104, 197, 557
_Complex_I macro, 197, 480, 561, 692
_DECIMAL_DIG identifier suffix, 29, 339, 363,

426, 440, 533, 534
_Decimal128, 40
_Decimal128 keyword, 54
_Decimal128 type, 104
_Decimal128x type, 570
_Decimal32, 40
_Decimal32 keyword, 54
_Decimal32 type, 104
_Decimal32_t type, 238, 496, 619
_Decimal64, 40
_Decimal64 keyword, 54
_Decimal64 type, 104
_Decimal64_t type, 238, 496, 619
_Decimal64x type, 570
_DecimalN type, 569
_DecimalN_t type, 580
_DecimalNx type, 571
_Exit function, 290, 372, 373, 511, 610, 621
_Float128_t type, 580, 581
_Float128x type, 570
_Float16_t type, 580, 581
_Float32_t type, 580, 581
_Float32x type, 570
_Float64_t type, 580, 581
_Float64x type, 570
_FloatN type, 569
_FloatN_t type, 580
_FloatNx type, 571
_Generic, 54, 75, 114, 122, 137, 320, 392
_Generic keyword, 54
_H__ identifier suffix, 193
_IOFBF macro, 325, 333, 334, 509
_IOLBF macro, 325, 334, 509
_IONBF macro, 325, 333, 334, 509
_Imaginary keyword, 54
_Imaginary type, 197, 557
_Imaginary_I macro, 197, 204, 480, 561, 692
_MAX identifier suffix, 24, 48, 323, 324, 463, 484,

509, 573
_MIN identifier suffix, 24, 323, 324, 463, 484,

509, 574
_Noreturn, 125
_Noreturn attribute, 144, 148
_Noreturn keyword, 54
_PRINTF_NAN_LEN_MAX macro, 326, 509
_Pragma operator, 190
_Static_assert, 54

© ISO/IEC 202y — All rights reserved

Index — 699

ISO/IEC 9899:202y (en) — n3299 working draft

_Thread_local, 54
_WIDTH identifier suffix, 24, 323, 324, 463, 509
__STDC_ identifier prefix, 191
__STDC_VERSION_ identifier prefix, 193
__DATE__ macro, 188, 619
__FILE__ macro, 170, 188, 196
__LINE__ macro, 186, 187, 188, 196, 603
__STDC_ANALYZABLE__ macro, 189, 688
__STDC_EMBED_EMPTY__ macro, 168, 188
__STDC_EMBED_FOUND__ macro, 168, 188
__STDC_EMBED_NOT_FOUND__ macro, 167, 188
__STDC_ENDIAN_BIG__ macro, 308, 309, 506
__STDC_ENDIAN_LITTLE__ macro, 308, 309,

506
__STDC_ENDIAN_NATIVE__ macro, 282–284,

308, 506, 592–594, 596–598, 620
__STDC_HOSTED__ macro, 188
__STDC_IEC_559_COMPLEX__ (obsolete), 24,

189, 190–192, 557
__STDC_IEC_559_COMPLEX__ macro, 557
__STDC_IEC_559__ (obsolete), 24, 189, 191,

192, 496, 526
__STDC_IEC_60559_BFP__ macro, 9, 24, 189,

190, 192, 496, 526, 553–555, 568–570
__STDC_IEC_60559_COMPLEX__ macro, 24,

103, 189, 190, 192, 557
__STDC_IEC_60559_DFP__ macro, 9, 30, 189,

190, 192, 217, 221, 222, 238, 245–268,
269, 270–272, 273, 274–278, 279, 280–
283, 362, 364, 393, 440, 483, 484, 490,
496, 512, 518, 524–526, 553–555, 568–
570

__STDC_IEC_60559_TYPES__ macro, 189, 190,
192, 481, 484, 497, 512, 518, 568–570

__STDC_ISO_10646__ macro, 189, 616
__STDC_LIB_EXT1__ macro, 190, 192, 482,

508–510, 512, 513, 516, 518, 640
__STDC_MB_MIGHT_NEQ_WC__ macro, 46, 189,

318
__STDC_NO_ATOMICS__ macro, 190, 297, 505
__STDC_NO_COMPLEX__ macro, 190, 197, 480
__STDC_NO_THREADS__ macro, 16, 190, 395,

515
__STDC_NO_VLA__ macro, 190
__STDC_UTF_16__ macro, 189
__STDC_UTF_32__ macro, 189
__STDC_VERSION_ASSERT_H__ macro, 196,

480
__STDC_VERSION_COMPLEX_H__ macro, 197,

480
__STDC_VERSION_FENV_H__ macro, 211, 482
__STDC_VERSION_FLOAT_H__ macro, 225, 483
__STDC_VERSION_INTTYPES_H__ macro, 226,

484
__STDC_VERSION_LIMITS_H__ macro, 230,

485

__STDC_VERSION_MATH_H__ macro, 238, 485
__STDC_VERSION_SETJMP_H__ macro, 287,

505
__STDC_VERSION_STDARG_H__ macro, 293,

505
__STDC_VERSION_STDATOMIC_H__ macro,

297, 505
__STDC_VERSION_STDBIT_H__ macro, 308,

506
__STDC_VERSION_STDCKDINT_H__ macro,

317, 508
__STDC_VERSION_STDDEF_H__ macro, 318,

508
__STDC_VERSION_STDINT_H__ macro, 321,

509
__STDC_VERSION_STDIO_H__ macro, 325, 509
__STDC_VERSION_STDLIB_H__ macro, 360,

511
__STDC_VERSION_STRING_H__ macro, 381,

513
__STDC_VERSION_TGMATH_H__ macro, 390
__STDC_VERSION_TIME_H__ macro, 405, 515
__STDC_VERSION_UCHAR_H__ macro, 415, 516
__STDC_VERSION_WCHAR_H__ macro, 420, 516
__STDC_VERSION__ macro, 189, 690, 691, 693–

695
__STDC_WANT_IEC_60559_EXT__ macro, 238,

483, 496, 533, 553–555
__STDC_WANT_IEC_60559_TYPES_EXT__

macro, 481, 484, 497, 512, 518, 572,
577, 592–594, 595, 596–598, 600

__STDC_WANT_LIB_EXT1__ macro, 482, 508–
510, 512, 513, 516, 518, 640, 641, 643–
659, 662–684

__STDC__ macro, 169, 188
__TIME__ macro, 189, 619
__VA_ARGS__ identifier, 179, 180, 181, 186, 694
__VA_OPT__ identifier, 179, 180–182, 692
__bool_true_false_are_defined (obso-

lete), 316, 463, 508
__cplusplus macro, 169, 188
__deprecated__ attribute, 144
__func__ identifier, 56, 57, 196, 606, 695
__has_c_attribute, 143, 145–148, 151, 168,

169, 188, 690
__has_c_attribute operator, 188
__has_embed, 53, 70, 168, 170, 188
__has_embed operator, 188
__has_include, 53, 70, 168, 169, 188, 692
__has_include operator, 188
__limit__ embed parameter, 166
__nodiscard__ attribute, 143
_explicit identifier suffix, 297, 306, 506
_r identifier suffix, 409
_t identifier suffix, 321, 322, 324, 463, 497, 509,

580, 581, 693

© ISO/IEC 202y — All rights reserved

Index — 700

ISO/IEC 9899:202y (en) — n3299 working draft

wchar_t character constant, 65
wchar_t string literal, 68
{} (braces punctuator), 110, 117, 137, 154
{} (compound-literal operator), 80
{ (opening brace punctuator), 69
} (closing brace punctuator), 69
] (closing bracket punctuator), 69
^ (bitwise exclusive OR operator), 90
^ (caret punctuator), 69
^= (bitwise exclusive OR assignment opera-

tor), 94
^= (caret-equal punctuator), 69
| (bitwise inclusive OR operator), 90
| (vertical-line punctuator), 69
|= (bitwise inclusive OR assignment operator),

94
|= (vertical-line-equal punctuator), 69
|| (logical OR operator), 17, 91
|| (vertical-vertical punctuator), 69
~ (bitwise complement operator), 83
~ (tilde punctuator), 69
0 format flag, 335, 422

abort function, 149, 196, 289, 290, 298, 328,
371, 511, 610, 611, 621, 656

abort_handler_s function, 512, 656
abs function, 194, 375, 511
abs macro, 194
absolute-value function

complex, 202, 566
integer, 227, 375
real, 260, 545

abstract declarator, 133
abstract machine, 14
access, 122, 688
access (verb), 3
acos function, 215, 245, 246, 391, 486, 533, 540,

579
acos type-generic macro, 391
acosd128 function, 218, 246, 491
acosd32 function, 218, 245, 491
acosd64 function, 218, 246, 491
acosdN function, 583
acosdNx function, 583
acosf function, 215, 245, 486
acosfN function, 583
acosfNx function, 583
acosh function, 250, 251, 391, 486, 533, 542
acosh type-generic macro, 391
acoshd128 function, 250, 491
acoshd32 function, 250, 491
acoshd64 function, 250, 491
acoshdN function, 584
acoshdNx function, 584
acoshf function, 250, 393, 486
acoshfN function, 584
acoshfNx function, 584

acoshl function, 250, 486
acosl function, 215, 245, 486, 579
acospi function, 248, 486, 533, 541
acospi type-generic macro, 391
acospid128 function, 248, 491
acospid32 function, 248, 491
acospid64 function, 248, 491
acospidN function, 583
acospidNx function, 583
acospif function, 248, 486
acospifN function, 583
acospifNx function, 583
acospil function, 248, 486
acquire fence, 301
acquire operation, 17
active position, 21
add and round to narrower type, 278
addition assignment operator (+=), 94
addition operator (+), 76, 83, 86, 560
additive expression, 86, 560
address constant, 97
address operator (&), 51, 83
address-free, 302
aggregate initialization, 139
aggregate type, 42
alert, 21
alert escape sequence (\a), 21, 66
aliasing, 73
alignas, 126
alignas keyword, 54
aligned_alloc function, 368, 369, 370, 511,

604, 613, 621, 693
alignment, 3, 46, 369

pointer, 42, 52
structure/union member, 107

alignment header, 292
alignment of memory, 378
alignment specifier, 126
alignof keyword, 54
alignof operator, 82, 83
allocated storage

order and contiguity, 368
alternative spellings header, 229
and macro, 229, 485
AND operator

bitwise (&), 89
bitwise assignment (&=), 94
logical (&&), 90

AND operator
logical (&&), 17

and_eq macro, 229, 485
anonymous structure, 107
anonymous union, 107
argc (main function parameter), 13
argument, 3

array, 161

© ISO/IEC 202y — All rights reserved

Index — 701

ISO/IEC 9899:202y (en) — n3299 working draft

complex, 203
default promotion, 77
function, 76, 161
macro, substitution, 180
variable, 180

argv (main function parameter), 13
arithmetic

pointer, 86
arithmetic constant expression, 97
arithmetic conversions

usual, see usual arithmetic conversion
arithmetic operator

additive, 86, 560
bitwise, 83, 89, 90
increment and decrement, 79, 82
multiplicative, 85, 558
shift, 87
unary, 83

arithmetic type, 41
arithmetically negate, 3
array

argument, 161
declarator, 129
initialization, 139
multidimensional, 76
parameter, 161
storage order, 76
subscript operator ([]), 76, 83
subscripting, 76
type, 41
type conversion, 51
variable length, 128, 129, 190

arrow operator (->), 77
as–if rule, 14
asctime function, 188, 189, 409, 410, 515, 615
asctime_s function, 516, 669, 670
asin function, 246, 391, 486, 533, 540, 567
asin type-generic macro, 391, 567
asind128 function, 246, 491
asind32 function, 246, 491
asind64 function, 246, 491
asindN function, 583
asindNx function, 583
asinf function, 246, 486
asinfN function, 583
asinfNx function, 583
asinh function, 251, 391, 486, 533, 542, 567
asinh type-generic macro, 391, 567
asinhd128 function, 251, 491
asinhd32 function, 251, 491
asinhd64 function, 251, 491
asinhdN function, 584
asinhdNx function, 584
asinhf function, 251, 486
asinhfN function, 584
asinhfNx function, 584

asinhl function, 251, 486
asinl function, 246, 486
asinpi function, 248, 486, 533, 541
asinpi type-generic macro, 391
asinpid128 function, 248, 491
asinpid32 function, 248, 491
asinpid64 function, 248, 491
asinpidN function, 583
asinpidNx function, 583
asinpif function, 248, 486
asinpifN function, 583
asinpifNx function, 583
asinpil function, 248, 486
assert macro, 146, 176, 178, 196, 222, 480, 609,

619
assignment

compound, 94
conversion, 93
expression, 92
operator, 51, 92
simple, 93

associativity of operator, 73
asterisk punctuator (*), 128, 129
at_quick_exit function, 371, 372, 373, 511,

604, 613, 693
atan function, 246, 340, 391, 426, 486, 533, 540,

567
atan type-generic macro, 391, 567
atan2 function, 246, 247, 486, 533, 539, 540,

541, 561
atan2 type-generic macro, 391
atan2d128 function, 247, 491
atan2d32 function, 247, 491
atan2d64 function, 247, 491
atan2dN function, 583
atan2dNx function, 583
atan2f function, 246, 486
atan2fN function, 583
atan2fNx function, 583
atan2l function, 246, 486
atan2pi function, 249, 486, 533, 539, 541
atan2pi type-generic macro, 391
atan2pid128 function, 249, 491
atan2pid32 function, 249, 491
atan2pid64 function, 249, 491
atan2pidN function, 583
atan2pidNx function, 583
atan2pif function, 249, 486
atan2pifN function, 583
atan2pifNx function, 583
atan2pil function, 249, 486
atand128 function, 246, 491
atand32 function, 246, 491
atand64 function, 246, 491
atandN function, 583
atandNx function, 583

© ISO/IEC 202y — All rights reserved

Index — 702

ISO/IEC 9899:202y (en) — n3299 working draft

atanf function, 246, 486
atanfN function, 583
atanfNx function, 583
atanh function, 251, 391, 486, 533, 542, 567
atanh type-generic macro, 391, 567
atanhd128 function, 251, 491
atanhd32 function, 251, 491
atanhd64 function, 251, 491
atanhdN function, 584
atanhdNx function, 584
atanhf function, 251, 486
atanhfN function, 584
atanhfNx function, 584
atanhl function, 251, 486
atanl function, 246, 393, 486
atanpi function, 248, 249, 486, 533, 541
atanpi type-generic macro, 391
atanpid128 function, 249, 491
atanpid32 function, 249, 491
atanpid64 function, 249, 491
atanpidN function, 583
atanpidNx function, 583
atanpif function, 249, 486
atanpifN function, 583
atanpifNx function, 583
atanpil function, 249, 486
atexit function, 371, 372, 373, 511, 604, 613,

623
atof function, 215, 360, 361, 511
atoi function, 195, 360, 361, 511
atol function, 360, 361, 511
atoll function, 360, 361, 511
atomic lock-free macro, 297, 302
atomic operation, 17
atomic type, 14, 42, 43, 51, 77, 79, 94, 118, 190,

303
ATOMIC_ identifier prefix, 463
atomic_ identifier prefix, 463
atomic_bool type, 303, 306, 505
ATOMIC_BOOL_LOCK_FREE macro, 297, 505
atomic_char type, 303, 505
atomic_char16_t type, 303, 505
ATOMIC_CHAR16_T_LOCK_FREE macro, 297,

505
atomic_char32_t type, 303, 505
ATOMIC_CHAR32_T_LOCK_FREE macro, 297,

505
atomic_char8_t type, 303, 505
ATOMIC_CHAR8_T_LOCK_FREE macro, 297, 505
ATOMIC_CHAR_LOCK_FREE macro, 297, 505
atomic_compare_exchange_strong func-

tion, 79, 94, 95, 304, 305, 506
atomic_compare_exchange_strong_explicit

function, 304, 506
atomic_compare_exchange_weak function,

304, 306, 506
atomic_compare_exchange_weak_explicit

function, 304, 506
atomic_exchange function, 304, 506
atomic_exchange_explicit function, 304,

506
atomic_fetch_ function, 306, 506
atomic_flag type, 297, 298, 306, 307, 505, 506
atomic_flag_clear function, 307, 506
atomic_flag_clear_explicit function,

307, 506
ATOMIC_FLAG_INIT macro, 297, 306, 307, 505
atomic_flag_test_and_set function, 307,

506
atomic_flag_test_and_set_explicit

function, 307, 506
atomic_init function, 298, 506
atomic_int type, 298, 303, 505
atomic_int_fast16_t type, 303, 506
atomic_int_fast32_t type, 303, 506
atomic_int_fast64_t type, 303, 506
atomic_int_fast8_t type, 303, 506
atomic_int_least16_t type, 303, 505
atomic_int_least32_t type, 303, 505
atomic_int_least64_t type, 303, 505
atomic_int_least8_t type, 303, 505
ATOMIC_INT_LOCK_FREE macro, 297, 505
atomic_intmax_t type, 303, 506
atomic_intptr_t type, 303, 506
atomic_is_lock_free function, 290, 302,

506, 610
atomic_llong type, 303, 505
ATOMIC_LLONG_LOCK_FREE macro, 297, 505
atomic_load function, 304, 306, 506
atomic_load_explicit function, 300, 301,

304, 506
atomic_long type, 303, 505
ATOMIC_LONG_LOCK_FREE macro, 297, 505
ATOMIC_POINTER_LOCK_FREE macro, 297, 505
atomic_ptrdiff_t type, 303, 506
atomic_schar type, 303, 505
atomic_short type, 303, 505
ATOMIC_SHORT_LOCK_FREE macro, 297, 505
atomic_signal_fence function, 302, 506
atomic_size_t type, 303, 506
atomic_store function, 304, 506
atomic_store_explicit function, 300, 301,

304, 506
atomic_thread_fence function, 150, 301,

302, 506
atomic_uchar type, 303, 505
atomic_uint type, 303, 505
atomic_uint_fast16_t type, 303, 506
atomic_uint_fast32_t type, 303, 506
atomic_uint_fast64_t type, 303, 506

© ISO/IEC 202y — All rights reserved

Index — 703

ISO/IEC 9899:202y (en) — n3299 working draft

atomic_uint_fast8_t type, 303, 506
atomic_uint_least16_t type, 303, 505
atomic_uint_least32_t type, 303, 505
atomic_uint_least64_t type, 303, 505
atomic_uint_least8_t type, 303, 505
atomic_uintmax_t type, 303, 506
atomic_uintptr_t type, 303, 506
atomic_ullong type, 303, 505
atomic_ulong type, 303, 505
atomic_ushort type, 303, 505
atomic_wchar_t type, 303, 505
ATOMIC_WCHAR_T_LOCK_FREE macro, 297, 505
atomics header, 297, 463
attribute, 143

_Noreturn, 144, 148
__deprecated__, 144
__nodiscard__, 143
deprecated, 99, 108, 144, 146, 147, 409,

410, 515, 690, 691
fallthrough, 144, 147, 148, 169, 690, 691
for function type, 149
maybe_unused, 144, 146, 690, 691
nodiscard, 143, 144, 145, 146, 690, 691
noreturn, 126, 144, 148, 149, 288, 371–373,

401, 505, 511, 513, 515, 690, 691
reproducible, 144, 149, 151, 152, 608,

690, 691
unsequenced, 144, 149, 151, 152, 309–315,

506–508, 608, 690, 691
attribute declaration, 98
attribute prefixed token, 143
attribute token, 143
auto, 54, 99, 100, 101, 130, 135, 136, 137, 160,

191, 693
auto storage-class specifier, 54, 191
auto type specifier, 191
automatic storage duration, 21, 39

backslash character (\), 11, 19, 65
backslash escape sequence (\), 66, 190
backspace, 21
backspace escape sequence (\b), 21, 66
basic character set, 4, 5, 19
basic type, 41
behavior, 3
big-endian, 308
binary constant, 58
binary digit, 59
binary floating type, 570
binary prefix, 59
binary resource inclusion, 172
binary stream, 327, 355–357
bit, 4

high-order, 4, 5
low-order, 4

bit and byte utilities header, 463
bit and byte utility, 308

bit-field, 107
bit-precise integer suffix, wb or WB, 60
bit-precise integer type, 40
bit-precise signed integer type, 40
bit-precise unsigned integer type, 40
bitand macro, 229, 485
BITINT_MAXWIDTH macro, 23, 105, 485, 523,

692
bitor macro, 229, 485
bitwise operator, 73

AND, 89
AND assignment (&=), 94
complement (~), 83
exclusive OR, 90
exclusive OR assignment (^=), 94
inclusive OR, 90
inclusive OR assignment (|=), 94
shift, 87

blank character, 207
block, 153, 154

primary, 153
secondary, 153

block scope, 36
block structure, 36
bold type convention, 36
bool keyword, 54
bool type, 48, 104
bool type conversion, 48
BOOL_MAX macro, 485, 523
BOOL_WIDTH macro, 23, 485, 523
boolean type, 48
boolean type and values header, 316, 463
boolean type conversion, 47, 48
bounded undefined behavior, 688
braces punctuator ({}), 110, 117, 137, 154
brackets operator ([]), 76, 83
brackets punctuator ([]), 129, 138
branch cut, 198
break keyword, 54
break statement, 159
broken-down time, 406, 407–411, 669, 671
bsearch macro, 374, 375, 463, 511, 604, 614,

692
bsearch_s macro, 512, 657, 658
btowc function, 425, 426, 451, 517
BUFSIZ macro, 325, 328, 333, 509
byte, 4, 84
byte input/output function, 326
byte-oriented stream, 327

c identifier prefix, 390, 391
C program, 11
c16rtomb function, 417, 418, 516
c32rtomb function, 419, 516
c8rtomb function, 416, 516, 691
cabs function, 202, 390, 391, 481, 561
cabs function

© ISO/IEC 202y — All rights reserved

Index — 704

ISO/IEC 9899:202y (en) — n3299 working draft

type-generic macro for, 391
cabsf function, 202, 393, 481
cabsfN function, 578
cabsfNx function, 578
cabsl function, 202, 481
cacos function, 198, 199, 391, 480, 562
cacos function

type-generic macro for, 391
cacosf function, 198, 480
cacosfN function, 578
cacosfNx function, 578
cacosh function, 200, 391, 480, 562, 563
cacosh function

type-generic macro for, 391
cacoshf function, 200, 480
cacoshfN function, 578
cacoshfNx function, 578
cacoshl function, 200, 480
cacosl function, 198, 480
cacospi function, 462
calendar time, 405, 406–408, 410, 411, 670, 671
call by value, 76
call_once function, 360, 395, 396, 511, 515,

692
calloc function, 368, 369, 370, 511, 604, 613,

621
canonical representation, 25
canonicalize family, 34, 273
canonicalize function, 25, 273, 391, 489, 529,

552
canonicalized128 function, 273, 495
canonicalized32 function, 273, 495
canonicalized64 function, 273, 495
canonicalizedN function, 589
canonicalizedNx function, 589
canonicalizef function, 273, 489
canonicalizefN function, 589
canonicalizefNx function, 589
canonicalizel function, 273, 489
carg function, 203, 393, 481, 561, 567, 598
carg type-generic macro, 391, 567
cargf function, 203, 481
cargfN function, 578
cargfNx function, 578
cargl function, 203, 481
carriage return, 21
carriage-return escape sequence (\r), 21, 66,

208
carries a dependency, 17
case keyword, 54
case label, 154, 156
case mapping function

character, 208
extensible wide character, 460
wide character, 460

casin function, 199, 391, 480, 561

casin function
type-generic macro for, 391

casinf function, 199, 480
casinfN function, 578
casinfNx function, 578
casinh function, 200, 391, 480, 561, 563
casinh function

type-generic macro for, 391
casinhf function, 200, 480
casinhfN function, 578
casinhfNx function, 578
casinhl function, 200, 480
casinl function, 199, 480
casinpi function, 462
cast, 85
cast expression, 84
cast operator (()), 85
catan function, 199, 391, 480, 561
catan function

type-generic macro for, 391
catanf function, 199, 480
catanfN function, 578
catanfNx function, 578
catanh function, 200, 201, 391, 480, 561, 563
catanh function

type-generic macro for, 391
catanhf function, 201, 480
catanhfN function, 578
catanhfNx function, 578
catanhl function, 201, 480
catanl function, 199, 480
catanpi function, 462
cbrt function, 75, 260, 392, 488, 545
cbrt type-generic macro, 391
cbrtd128 function, 260, 493
cbrtd32 function, 260, 493
cbrtd64 function, 260, 493
cbrtdN function, 587
cbrtdNx function, 587
cbrtf function, 75, 260, 392, 488
cbrtfN function, 587
cbrtfNx function, 587
cbrtl function, 75, 260, 392, 488
ccompoundn function, 462
ccos function, 199, 391, 480, 561
ccos function

type-generic macro for, 391
ccosf function, 199, 480
ccosf64x function, 600
ccosfN function, 578
ccosfNx function, 578
ccosh function, 201, 391, 480, 561, 564
ccosh function

type-generic macro for, 391
ccoshf function, 201, 480
ccoshfN function, 578

© ISO/IEC 202y — All rights reserved

Index — 705

ISO/IEC 9899:202y (en) — n3299 working draft

ccoshfNx function, 578
ccoshl function, 201, 480
ccosl function, 199, 480
ccospi function, 462
ceil function, 239, 265, 488, 527, 548, 549, 550
ceil type-generic macro, 391
ceild128 function, 35, 265, 493
ceild32 function, 35, 265, 493
ceild64 function, 35, 265, 493
ceildN function, 588
ceildNx function, 588
ceilf function, 265, 488
ceilfN function, 588
ceilfNx function, 588
ceiling, 7
ceill function, 265, 269, 488
cerf function, 462
cerfc function, 462
cexp function, 201, 202, 391, 480, 565, 566
cexp function

type-generic macro for, 391
cexp10 function, 462
cexp10m1 function, 462
cexp2 function, 462
cexp2m1 function, 462
cexpf function, 202, 480
cexpfN function, 578
cexpfNx function, 578
cexpl function, 202, 480
cexpm1 function, 462
change history, 690
char keyword, 54
char type, 104
char type conversion, 47–49
char16_t type, 66–69, 139, 189, 303, 415, 417,

516
char32_t type, 66–69, 139, 189, 303, 415, 418,

419, 516
char8_t type, 66–69, 102, 303, 415, 416, 516
CHAR_BIT macro, 23, 43, 106, 172–174, 176, 485,

523
CHAR_MAX macro, 24, 233, 234, 485, 523
CHAR_MIN macro, 24, 41, 485, 523
CHAR_WIDTH macro, 23, 485, 523
character, 5

extended, 19
graphic, 20

character array initialization, 139
character case mapping function, 208

extensible wide character, 460
wide character, 460

character classification function, 206
extensible wide character, 459
wide character, 456

character constant, 12, 19, 65
character display semantics, 21

character handling header, 206, 232, 462
character input/output function, 352, 654

wide character, 434
character set, 19
character string literal, see string literal
character type, 41, 139
character type conversion, 47
characteristics of floating types header, 225,

462
characteristics of integer types header, 230
checked arithmetic function, 463
checked integer arithmetic header, 317
cimag function, 203, 204, 205, 481, 559, 560,

561, 567, 598
cimag type-generic macro, 391, 567
cimagf function, 203, 481
cimagfN function, 578
cimagfNx function, 578
cimagl function, 203, 393, 481
cis function, 562
ckd_ identifier prefix, 463
ckd_add macro, 317, 508
ckd_mul macro, 317, 508
ckd_sub macro, 317, 508
classification function

character, 206
extensible wide character, 459
floating-point, 242
wide character, 456

clearerr function, 358, 510
clgamma function, 462
clock function, 405, 406, 409, 515, 621
clock_t type, 405, 406, 515, 621
CLOCKS_PER_SEC macro, 405, 406, 409, 515
clog function, 202, 391, 481, 566
clog function

type-generic macro for, 391
clog10 function, 462
clog10p1 function, 462
clog1p function, 462
clog2 function, 462
clog2p1 function, 462
clogf function, 202, 393, 481
clogfN function, 578
clogfNx function, 578
clogl function, 202, 481
clogp1 function, 462
closing, 328
CMPLX macro, 103, 197, 203, 204, 205, 481
CMPLXF macro, 203, 204, 481, 482, 578
CMPLXFN macro, 578
CMPLXFNX macro, 578
CMPLXL macro, 204, 481
cnd_ identifier prefix, 464
cnd_broadcast function, 396, 397, 398, 515
cnd_destroy function, 397, 515

© ISO/IEC 202y — All rights reserved

Index — 706

ISO/IEC 9899:202y (en) — n3299 working draft

cnd_init function, 397, 515
cnd_signal function, 397, 398, 515
cnd_t type, 395, 396–398, 515
cnd_timedwait function, 397, 398, 515
cnd_wait function, 397, 398, 515
code point, 521
coefficient, 32
collating sequence, 19
colon punctuator (:), 106
comma operator (,), 17, 95
comma punctuator (,), 76, 98, 106, 110, 117,

137
command processor, 373
comment, 11, 53, 71
comment delimiters (/* */ and //), 71
common definitions header, 318
common extension, 622
common initial sequence, 78
common real type, 49
common warning, 12, 601
comparison

pointer, 88
comparison function, 374, 375, 657, 658, 659

string, 384
wide string, 444

comparison macro, 284
compatible type, 44, 105, 122, 128
compl macro, 229, 485
complement operator (~), 83
complete, 39
complete type, 39
complex arithmetic header, 197, 462
complex macro, 140, 197–205, 393, 480–482,

559, 577, 578, 600, 604
complex number, 41, 557
complex type, 41, 104, 190, 557
complex type conversion, 49
complex type domain, 41
components of time, 405, 669
composite type, 45
compound assignment, 94
compound literal, 79, 80
compound literal constant, 96
compound statement, 154
compound-literal operator ((){}), 80
compoundn function, 260, 488, 532, 546
compoundn type-generic macro, 391
compoundnd128 function, 260, 493
compoundnd32 function, 260, 493
compoundnd64 function, 260, 493
compoundndN function, 587
compoundndNx function, 587
compoundnf function, 260, 488
compoundnfN function, 587
compoundnfNx function, 587
compoundnl function, 260, 488

concatenation function
string, 383, 664
wide string, 444, 681

conceptual model, 11
conditional expression inclusion preprocess-

ing directive, 23, 25, 167, 194
conditional feature, 9, 40, 41, 42, 129, 189, 192,

526, 557, 640, 688
conditional inclusion, 167
conditional inclusion preprocessing directive,

167
conditional operator (?:), 17, 91
conflict, 16
conformance, 9
conforming freestanding implementation, 9
conforming hosted implementation, 9
conforming implementation, 9
conforming program, 9
conj function, 204, 481, 561, 562–566, 598
conj type-generic macro, 391
conjf function, 204, 481
conjfN function, 578
conjfNx function, 578
conjl function, 204, 481
const, 42
const keyword, 54
const type qualifier, 121
const-qualified type, 42, 51, 122
constant, 58

binary, 58
character, 65
enumeration, 36, 64
floating, 60
hexadecimal, 58
integer, 58
octal, 58

constant expression, 96, 535
constants

as primary expression, 74
constexpr, 37–39, 54, 80, 96, 97, 99–104, 138,

191, 290, 535, 536, 691
constexpr storage-class specifier, 54
constraint, 5, 9
constraint_handler_t type, 512, 655
consume operation, 17
content of structure/union/enumeration, 117
contiguity of allocated storage, 368
continue, 54, 157, 158, 159
continue keyword, 54
continue statement, 158
contracted, 74
contracted expression, 74, 242, 534
control character, 20, 206
control wide character, 456
conversion, 47

arithmetic operand, 47

© ISO/IEC 202y — All rights reserved

Index — 707

ISO/IEC 9899:202y (en) — n3299 working draft

array, 50, 51
array argument, 161
array parameter, 161
boolean, 48
boolean, characters, and integer, 47
by assignment, 93
by return statement, 159
complex type, 49
explicit, 47
function, 51
function argument, 77, 161
function designator, 50
function parameter, 161
imaginary, 557
imaginary and complex, 557
implicit, 47
lvalue, 50
nullptr_t, 52
pointer, 51
real and complex, 49
real and imaginary, 557
real floating and integer, 48, 533
real floating type, 49
signed and unsigned integer, 48
usual arithmetic, see usual arithmetic con-

version
void type, 51

conversion function
multibyte/wide character, 376, 659

extended, 451, 684
restartable, 415, 452, 684

multibyte/wide string, 377, 660
restartable, 454, 685

numeric, 227, 360
wide string, 228, 438

single byte/wide character, 451
time, 409

wide character, 450
conversion functions

time, 669
conversion specifier, 335, 342, 421, 427

%A, 337, 411, 424
%B, 336, 411, 423
%C, 411
%D, 412
%E, 337, 424
%F, 337, 412, 423
%G, 337, 412, 424
%H, 412
%I, 412
%M, 412
%R, 412
%S, 412
%T, 412
%U, 412
%V, 412

%W, 412
%X, 336, 412, 423
%Y, 412
%Z, 412
%[, 345, 429
%%, 339, 346, 426, 430
%a, 337, 344, 411, 424, 429
%b, 336, 411, 423
%c, 338, 344, 411, 425, 429
%d, 336, 344, 412, 423, 429
%e, 337, 344, 412, 424, 429
%f, 337, 344, 423, 429
%g, 337, 344, 412, 424, 429
%h, 412
%i, 336, 423
%j, 412
%m, 412
%n, 339, 346, 412, 425, 430
%o, 336, 344, 423, 429
%p, 339, 345, 412, 425, 430
%r, 412
%s, 338, 345, 425, 429
%t, 412
%u, 336, 344, 412, 423, 429
%w, 412
%x, 336, 344, 412, 423, 429
%y, 412
%z, 412

conversion state, 376, 415–419, 451, 452–455,
659, 684–687

conversion state function, 451
copying function

string, 381, 662
wide string, 443

copying functions
wide string, 679

copysign function, 204, 271, 489, 529, 545, 550,
551, 559, 560

copysign type-generic macro, 391
copysignd128 function, 271, 494
copysignd32 function, 271, 494
copysignd64 function, 271, 494
copysigndN function, 589
copysigndNx function, 589
copysignf function, 271, 489
copysignfN function, 589
copysignfNx function, 589
copysignl function, 271, 393, 489
correctly rounded result, 5
corresponding real type, 41
corresponding unsigned integer type, 40
cos function, 137, 247, 391, 486, 533, 541, 567
cos type-generic macro, 391, 567
cosd128 function, 247, 491
cosd32 function, 247, 491
cosd64 function, 247, 491

© ISO/IEC 202y — All rights reserved

Index — 708

ISO/IEC 9899:202y (en) — n3299 working draft

cosdN function, 583
cosdNx function, 583
cosf function, 247, 486
cosfN function, 583
cosfNx function, 583
cosh function, 251, 252, 391, 486, 533, 542, 567
cosh type-generic macro, 391, 567
coshd128 function, 251, 492
coshd32 function, 251, 492
coshd64 function, 251, 492
coshdN function, 584
coshdNx function, 584
coshf function, 251, 486
coshfN function, 584
coshfNx function, 584
coshl function, 251, 486
cosl function, 247, 486
cospi function, 249, 486, 533, 542
cospi type-generic macro, 391
cospid128 function, 249, 491
cospid32 function, 249, 491
cospid64 function, 249, 491
cospidN function, 583
cospidNx function, 583
cospif function, 249, 486
cospifN function, 583
cospifNx function, 583
cospil function, 249, 486
cpow function, 202, 203, 391, 481, 566
cpow function

type-generic macro for, 391
cpowf function, 202, 481
cpowf128 function, 600
cpowfN function, 578
cpowfNx function, 578
cpowl function, 202, 393, 481
cpown function, 462
cpowr function, 462
cproj function, 204, 481, 561, 598
cproj type-generic macro, 391
cprojf function, 204, 393, 481
cprojfN function, 578
cprojfNx function, 578
cprojl function, 204, 393, 481
cr_ identifier prefix, 463, 532, 540
CR_DECIMAL_DIG macro, 25, 484, 533, 534
creal function, 203, 204, 205, 393, 481, 559,

560, 561, 567, 598
creal type-generic macro, 391, 567
crealf function, 205, 481
crealfN function, 578
crealfNx function, 578
creall function, 205, 481
creating, 328
critical undefined behavior, 688
crootn function, 462

crsqrt function, 462
csin function, 199, 200, 391, 480, 561
csin function

type-generic macro for, 391
csinf function, 199, 480
csinfN function, 578
csinfNx function, 578
csinh function, 201, 391, 480, 561, 564
csinh function

type-generic macro for, 391
csinhf function, 201, 480
csinhfN function, 578
csinhfNx function, 578
csinhl function, 201, 480
csinl function, 199, 480
csinpi function, 462
csqrt function, 203, 391, 393, 481, 561, 566
csqrt function

type-generic macro for, 391
csqrtf function, 203, 481
csqrtfN function, 578
csqrtfNx function, 578
csqrtl function, 203, 481
ctan function, 200, 391, 480, 561
ctan function

type-generic macro for, 391
ctanf function, 200, 480
ctanfN function, 578
ctanfNx function, 578
ctanh function, 201, 391, 480, 561, 565
ctanh function

type-generic macro for, 391
ctanhf function, 201, 480
ctanhfN function, 578
ctanhfNx function, 578
ctanhl function, 201, 480
ctanl function, 200, 480
ctanpi function, 462
ctgamma function, 462
ctime function, 409, 410, 515
ctime_s function, 516, 669, 670
currency_symbol structure member, 231, 233,

235
current object, 139
CX_LIMITED_RANGE pragma, vi, 187, 188, 198,

480, 558, 609

D format modifier, 336, 344, 423, 428
d identifier prefix, 392
d-wchar sequence, 364, 441
d128 identifier prefix, 392
d32 identifier prefix, 392
d32add macro, 33, 217, 392
d32add type-generic macro, 392
d32addd128 function, 278, 495
d32addd64 function, 278, 495
d32div macro, 33, 217, 392

© ISO/IEC 202y — All rights reserved

Index — 709

ISO/IEC 9899:202y (en) — n3299 working draft

d32div type-generic macro, 392
d32divd128 function, 279, 495
d32divd64 function, 279, 393, 495
d32fma macro, 34, 217, 392
d32fma type-generic macro, 392
d32fmad128 function, 280, 495
d32fmad64 function, 280, 495
d32mul macro, 33, 217, 392
d32mul type-generic macro, 392
d32muld128 function, 279, 495
d32muld64 function, 279, 495
d32sqrt macro, 33, 217, 392
d32sqrt type-generic macro, 392
d32sqrtd128 function, 280, 495
d32sqrtd64 function, 280, 495
d32sub macro, 33, 217, 392
d32sub type-generic macro, 392
d32subd128 function, 279, 393, 495
d32subd64 function, 279, 495
d64 identifier prefix, 390, 392
d64add macro, 33, 217, 392
d64add type-generic macro, 392
d64addd128 function, 278, 393, 495
d64div macro, 33, 217, 392
d64div type-generic macro, 392
d64divd128 function, 279, 495
d64fma macro, 34, 217, 392
d64fma type-generic macro, 392
d64fmad128 function, 280, 393, 495
d64mul macro, 33, 217, 392
d64mul type-generic macro, 392
d64muld128 function, 279, 495
d64sqrt macro, 33, 217, 392
d64sqrt type-generic macro, 392
d64sqrtd128 function, 280, 495
d64sub macro, 33, 217, 392
d64sub type-generic macro, 392
d64subd128 function, 279, 495
dadd macro, 392, 599
dadd type-generic macro, 392
daddl function, 278, 393, 490, 528
data race, 19, 195, 367, 368, 373, 388, 389, 409,

415, 452, 454, 657
date and time header, 395, 405, 464, 668
Daylight Saving Time, 405
DBL_ identifier prefix, 462
DBL_DECIMAL_DIG macro, 27, 30, 483, 524
DBL_DIG macro, 28, 30, 483, 524
DBL_EPSILON macro, 29, 30, 483, 524
DBL_HAS_SUBNORM macro, 26, 30, 462, 483
DBL_IS_IEC_60559 macro, 26, 30, 483
DBL_MANT_DIG macro, 27, 30, 103, 483, 524
DBL_MAX macro, 28, 30, 483, 524
DBL_MAX_10_EXP macro, 28, 30, 483, 524
DBL_MAX_EXP macro, 28, 30, 483, 524
DBL_MIN macro, 29, 30, 483, 524

DBL_MIN_10_EXP macro, 28, 30, 483, 524
DBL_MIN_EXP macro, 28, 30, 483, 524
DBL_NORM_MAX macro, 29, 483, 524
DBL_SNAN macro, 27, 102, 103, 483, 527
DBL_TRUE_MIN macro, 29, 30, 483
DD format modifier, 336, 344, 423, 428
ddiv macro, 392, 599, 600
ddiv type-generic macro, 392
ddivl function, 279, 490, 528, 532, 600
DEC identifier prefix, 484
DEC128_ identifier prefix, 30, 462
DEC128_EPSILON macro, 32, 525
DEC128_MANT_DIG macro, 31, 525
DEC128_MAX macro, 32, 525
DEC128_MAX_EXP macro, 32, 525
DEC128_MIN macro, 32, 525
DEC128_MIN_EXP macro, 31, 525
DEC128_SNAN macro, 31
DEC128_TRUE_MIN macro, 32, 525
DEC32_ identifier prefix, 30, 462
DEC32_EPSILON macro, 32, 525
DEC32_MANT_DIG macro, 31, 525
DEC32_MAX macro, 32, 525
DEC32_MAX_EXP macro, 32, 525
DEC32_MIN macro, 32, 525
DEC32_MIN_EXP macro, 31, 525
DEC32_SNAN macro, 31, 103
DEC32_TRUE_MIN macro, 32, 525
DEC64_ identifier prefix, 30, 462
DEC64_EPSILON macro, 32, 525
DEC64_MANT_DIG macro, 31, 525
DEC64_MAX macro, 32, 525
DEC64_MAX_EXP macro, 32, 525
DEC64_MIN macro, 32, 525
DEC64_MIN_EXP macro, 31, 525
DEC64_SNAN macro, 31, 103
DEC64_TRUE_MIN macro, 32, 101, 103, 525
DEC_ identifier prefix, 462
DEC_EVAL_METHOD macro, 25, 30, 63, 96, 238,

484, 524, 556, 571, 580, 617, 619
DEC_INFINITY macro, 31, 103, 239, 281, 463,

484, 491
DEC_NAN macro, 31, 103, 239, 463, 484, 491
decimal constant, 58
decimal digit, 20
decimal floating type, 40, 570
decimal re-encoding function, 282
decimal rounding control pragma, 217
decimal-point character, 192, 233
decimal128 suffix, dl or DL, 63
decimal32 suffix, df or DF, 63
decimal64 suffix, dd or DD, 63
DECIMAL_DIG macro, 25, 28, 462, 483, 524, 691
decimal_point structure member, 231, 233
declaration, 98

_Static_assert, 54

© ISO/IEC 202y — All rights reserved

Index — 710

ISO/IEC 9899:202y (en) — n3299 working draft

function, 131
pointer, 128
static_assert, 54, 143
structure/union, 105
typedef, 134

declaration specifier, 98
declarator, 127

abstract, 133
declarator type derivation, 42, 128
DECN_EPSILON macro, 574
DECN_MANT_DIG macro, 573
DECN_MAX macro, 574
DECN_MAX_EXP macro, 573
DECN_MIN macro, 574
DECN_MIN_EXP macro, 573
DECN_SNAN macro, 572
DECN_TRUE_MIN macro, 574
DECNX_EPSILON macro, 574
DECNX_MANT_DIG macro, 573
DECNX_MAX macro, 574
DECNX_MAX_EXP macro, 573
DECNX_MIN macro, 574
DECNX_MIN_EXP macro, 573
DECNX_SNAN macro, 572
DECNX_TRUE_MIN macro, 574
decodebin family, 34, 283
decodebind family, 283, 284
decodebind128 function, 283, 496
decodebind32 function, 283, 496
decodebind64 function, 283, 390, 392, 496
decodebindN function, 591
decodedec family, 34, 283
decodedecd family, 282, 283
decodedecd128 function, 283, 496
decodedecd32 function, 282, 496
decodedecd64 function, 283, 390, 392, 496
decodedecdN function, 591
decodefN function, 593
default argument promotion, 77
default initialization, 138
default keyword, 54
default label, 154, 156
define preprocessing directive, 180
defined, 168, 169, 175, 188, 608, 609
defined operator, 188
definition, 99

escaping, 150
function, 160

dependency-ordered before, 17
deprecated attribute, 99, 108, 144, 146, 147,

409, 410, 515, 690, 691
derived declarator type, 42
derived type, 41
designated initializer, 139
destringizing, 190
device input/output, 14

dfma macro, 392, 599
dfma type-generic macro, 392
dfmal function, 280, 393, 490, 528
diagnostic, 12
diagnostic message, 5, 12
diagnostics header, 196
difftime function, 406, 407, 515
digit, 20, 206
digraph, 70
direct input/output function, 355
display device, 21
div function, 137, 360, 375, 376, 511
div_t type, 142, 360, 375, 376, 511
divide and round to narrower type, 279
division assignment operator (/=), 94
division operator (/), 85, 558
dMadddN function, 591
dMadddNx function, 591
dMdivdN function, 591
dMdivdNx function, 591
dMencbindN function, 594
dMencdecdN function, 594
dMfmadN function, 591
dMfmadNx function, 591
dMmuldN function, 591
dMmuldNx function, 591
dMsqrtdN function, 591
dMsqrtdNx function, 591
dMsubdN function, 591
dMsubdNx function, 591
dmul macro, 392, 599
dmul type-generic macro, 392
dmull function, 279, 490, 528
dMxadddN function, 591
dMxadddNx function, 591
dMxdivdN function, 591
dMxdivdNx function, 591
dMxfmadN function, 591
dMxfmadNx function, 591
dMxmuldN function, 591
dMxmuldNx function, 591
dMxsqrtdN function, 591
dMxsqrtdNx function, 591
dMxsubdN function, 591
dMxsubdNx function, 591
do keyword, 54
do statement, 157
documentation of implementation, 10
domain error, 241, 246–251, 255–263, 265–267,

270
dot operator (.), 77
double _Complex type, 41
double _Complex type conversion, 49
double _Imaginary type, 557
double arithmetic, 15
double keyword, 54

© ISO/IEC 202y — All rights reserved

Index — 711

ISO/IEC 9899:202y (en) — n3299 working draft

double type, 40, 104
double type conversion, 48, 49
double-quote escape sequence (\"), 66, 68, 190
double_t type, 238, 485, 536, 579, 580, 581,

619, 623
dsqrt macro, 392, 599
dsqrt type-generic macro, 392
dsqrtl function, 280, 490, 528
dsub macro, 392, 599, 600
dsub type-generic macro, 392
dsubl function, 279, 490, 528, 600
dynamic floating-point environment, 211

E format modifier, 412
E identifier prefix, 210, 462
EDOM macro, 210, 241, 482
effective type, 73
effectless function call, 150
EILSEQ macro, 210, 329, 416–419, 435, 453–455,

482
element type, 41
elif preprocessing directive, 168
elifdef preprocessing directive, 169
elifndef preprocessing directive, 169
ellipsis punctuator (...), 131, 180
else keyword, 54
else preprocessing directive, 169
else statement, 155
embed element width, 172
embed parameter, 172

__limit__, 166
if_empty, 173, 178, 179
limit, 166, 170, 172, 173, 175, 176–179
prefix, 173, 177, 178
suffix, 173, 177, 178, 179

embed parameter sequence, 172
empty initialization, 138
empty initializer, 138
empty resource, 172
empty statement, 154
encodebin family, 34, 283
encodebind family, 283
encodebind128 function, 283, 496
encodebind32 function, 283, 496
encodebind64 function, 283, 390, 392, 496
encodebindN function, 591
encodedec family, 34, 282
encodedecd family, 282
encodedecd128 function, 282, 496
encodedecd32 function, 282, 496
encodedecd64 function, 282, 390, 392, 496
encodedecdN function, 591
encodefN function, 592
encoding, 46
encoding error, 329, 339, 342, 343, 348–352,

416–420, 426, 427, 431–436, 453–455,
660, 661, 685–687

end-of-file, 420
end-of-file indicator, 325, 332, 352–355, 357,

358, 435, 437
end-of-line indicator, 20
endif preprocessing directive, 169
enum keyword, 54
enum type, 41, 104, 110
enumerated type, 41
enumeration, 41, 110
enumeration constant, 36, 64
enumeration content, 117
enumeration member, 110
enumeration member type, 111
enumeration specifier, 110
enumeration tag, 38, 117
enumerator, 110
environment, 11
environment function, 371, 656
environment list, 373, 657
environmental consideration, 19
environmental limit, 21, 287, 328, 329, 331, 340,

367, 371, 372, 426, 644
EOF macro, 206, 325, 331, 346, 347, 349–355,

420, 430, 432–434, 436, 451, 509, 609,
647, 648, 650–652, 654, 672, 674, 675,
677–679

epoch, 408
equal-sign punctuator (=), 98, 110, 138
equality expression, 88
equality operator (==), 89
ERANGE macro, 210, 228, 241, 242, 364, 365, 367,

440–443, 482, 619–621
erf function, 263, 264, 488, 548
erf type-generic macro, 391
erfc function, 264, 488, 548
erfc type-generic macro, 391
erfcd128 function, 264, 493
erfcd32 function, 264, 493
erfcd64 function, 264, 493
erfcdN function, 587
erfcdNx function, 587
erfcf function, 264, 488
erfcfN function, 587
erfcfNx function, 587
erfcl function, 264, 488
erfd128 function, 263, 493
erfd32 function, 263, 493
erfd64 function, 263, 493
erfdN function, 587
erfdNx function, 587
erff function, 263, 488
erffN function, 587
erffNx function, 587
erfl function, 263, 488
errno identifier, 150, 194, 197, 210, 228, 241,

242, 290, 329, 356, 357, 359, 360, 364,

© ISO/IEC 202y — All rights reserved

Index — 712

ISO/IEC 9899:202y (en) — n3299 working draft

365, 367, 389, 416–419, 435, 440–443,
453–455, 482, 610, 611, 619–621, 624,
641, 642, 667

errno_t type, 482, 510, 512–514, 516, 518, 519,
641, 642, 643–645, 655, 656, 658–661,
662, 663–665, 667, 668, 669, 670, 671,
679–682, 684–686

error condition, 241
error function, 263, 548
error indicator, 325, 332, 352–354, 356, 358, 359,

435
error preprocessing directive, 9, 187
error-handling function, 358, 388, 667, 668
errors header, 210, 462
escape character (\), 65
escape sequence, 19, 21, 65, 191
escaping definition, 150
evaluation format, 26, 64, 238
evaluation method, 26, 74, 536
evaluation of expression, 14
exceptional condition, 73
excess precision, 26, 50, 159
excess range, 26, 50, 159
exclusive OR operator

bitwise (^), 90
bitwise assignment (^=), 94

executable program, 11
execution character set, 19
execution environment, 11, 12
execution sequence, 14, 153
EXIT_FAILURE macro, 360, 372, 511
EXIT_SUCCESS macro, 360, 372, 401, 511
exp function, 252, 253, 254, 306, 391, 393, 487,

532, 543
exp type-generic macro, 391
exp10 function, 253, 487, 532, 543
exp10 type-generic macro, 391
exp10d128 function, 253, 492
exp10d32 function, 253, 492
exp10d64 function, 253, 492
exp10dN function, 586
exp10dNx function, 586
exp10f function, 253, 487
exp10fN function, 586
exp10fNx function, 586
exp10l function, 253, 487
exp10m1 function, 253, 487, 532, 543
exp10m1 type-generic macro, 391
exp10m1d128 function, 253, 492
exp10m1d32 function, 253, 492
exp10m1d64 function, 253, 492
exp10m1dN function, 586
exp10m1dNx function, 586
exp10m1f function, 253, 487
exp10m1fN function, 586
exp10m1fNx function, 586

exp10m1l function, 253, 487
exp2 function, 253, 254, 487, 532, 543
exp2 type-generic macro, 391
exp2d128 function, 254, 492
exp2d32 function, 253, 492
exp2d64 function, 253, 492
exp2dN function, 586
exp2dNx function, 586
exp2f function, 253, 487
exp2fN function, 586
exp2fNx function, 586
exp2l function, 253, 487
exp2m1 function, 254, 487, 532, 543
exp2m1 type-generic macro, 391
exp2m1d128 function, 254, 492
exp2m1d32 function, 254, 492
exp2m1d64 function, 254, 492
exp2m1dN function, 586
exp2m1dNx function, 586
exp2m1f function, 254, 487
exp2m1fN function, 586
exp2m1fNx function, 586
exp2m1l function, 254, 487
expd128 function, 252, 492
expd32 function, 252, 492
expd64 function, 252, 393, 492
expdN function, 586
expdNx function, 586
expf function, 252, 487
expfN function, 586
expfNx function, 586
expl function, 252, 487
explicit conversion, 47
expm1 function, 254, 487, 532, 543
expm1 type-generic macro, 391
expm1d128 function, 254, 492
expm1d32 function, 254, 492
expm1d64 function, 254, 492
expm1dN function, 586
expm1dNx function, 586
expm1f function, 254, 487
expm1fN function, 586
expm1fNx function, 586
expm1l function, 254, 487
exponent part, 62
exponential function

complex, 201, 565
real, 252, 543

expression, 73, 119
assignment, 92
cast, 84
constant, 96
evaluation, 14
full, 153
parenthesized, 74
primary, 74

© ISO/IEC 202y — All rights reserved

Index — 713

ISO/IEC 9899:202y (en) — n3299 working draft

unary, 82
void, 51

expression statement, 154
extended alignment, 46
extended character, 19
extended character set, 5, 19, 20
extended constant expressions, 97
extended floating type, 570
extended integer type, 40, 47, 60, 321
extended multibyte and wide character utili-

ties header, 420, 464
extended multibyte/wide character conver-

sion utility, 451, 684
extended signed integer types, 40
extended unsigned integer type, 40
extensible wide character case mapping func-

tion, 460
extensible wide character classification func-

tion, 459
extern, 37, 38, 54, 84, 99, 100, 101, 115, 121–

123, 125, 126, 130, 134, 152, 161–163,
177, 178, 195, 607, 623

extern storage-class specifier, 37, 54
external definition, 160
external identifiers

underscore, 193
external linkage, 37
external name, 56
external object definition, 162

f identifier suffix, 197, 238, 390, 392, 462
f32add macro, 600
f32addf64 function, 600
f32addf64x function, 600
f32fma macro, 600
f32fmaf32x function, 600
f32mul macro, 600
f32mulf128 function, 600
f32mulf32x function, 600
f32xsqrt macro, 600
f32xsqrtf64x function, 600
f64div macro, 600
f64divf128 function, 600
f64divf64x function, 600
fabs function, 260, 261, 390, 391, 488, 529, 546,

550, 551, 560, 567
fabs type-generic macro, 391, 567
fabsd128 function, 261, 493
fabsd32 function, 260, 493
fabsd64 function, 261, 493
fabsdN function, 587
fabsdNx function, 587
fabsf function, 260, 488
fabsfN function, 587
fabsfNx function, 587
fabsl function, 260, 488
fadd function, 278, 490, 528, 599

fadd type-generic macro, 392
faddl function, 278, 490, 528
fallthrough attribute, 144, 147, 148, 169, 690,

691
fallthrough declaration, 147
false keyword, 54
false predefined constant, 67
family

canonicalize, 34, 273
decodebin, 34, 283
decodedec, 34, 283
encodebin, 34, 283
encodedec, 34, 282
modf, 34, 259, 390
strto, 34, 364
wcsto, 34, 440

fclose function, 175, 331, 509
fdim function, 273, 274, 489, 552
fdim type-generic macro, 391
fdimd128 function, 274, 495
fdimd32 function, 274, 495
fdimd64 function, 274, 495
fdimdN function, 590
fdimdNx function, 590
fdimf function, 274, 489
fdimfN function, 590
fdimfNx function, 590
fdiml function, 274, 490
fdiv function, 279, 393, 490, 528, 599
fdiv type-generic macro, 392
fdivl function, 279, 490, 528
FE_ identifier prefix, 212, 213, 462
FE_ALL_EXCEPT macro, 95, 212, 482
FE_DEC_DOWNWARD macro, 212, 217, 483, 532
FE_DEC_DOWNWARD pragma, 188
FE_DEC_DYNAMIC pragma, 188, 217
fe_dec_getround function, 213, 221, 483, 532,

579
fe_dec_setround function, 213, 217, 222, 483,

532, 579
FE_DEC_TONEAREST macro, 212, 213, 217, 483,

532
FE_DEC_TONEAREST pragma, 188
FE_DEC_TONEARESTFROMZERO macro, 212, 217,

483, 532
FE_DEC_TONEARESTFROMZERO pragma, 188
FE_DEC_TOWARDZERO macro, 212, 217, 483, 532
FE_DEC_TOWARDZERO pragma, 188
FE_DEC_UPWARD macro, 212, 217, 483, 532
FE_DEC_UPWARD pragma, 188
FE_DFL_ENV macro, 213, 482
FE_DFL_MODE macro, 212, 221, 482, 531
FE_DIVBYZERO macro, 212, 241, 482
FE_DOWNWARD macro, 212, 482, 531
FE_DOWNWARD pragma, 188
FE_DYNAMIC pragma, 188, 214, 483

© ISO/IEC 202y — All rights reserved

Index — 714

ISO/IEC 9899:202y (en) — n3299 working draft

FE_INEXACT macro, 212, 218, 482, 550
FE_INVALID macro, 212, 220, 241, 482
FE_OVERFLOW macro, 212, 218, 220, 241, 482
FE_SNANS_ALWAYS_SIGNAL macro, 483, 527,

531, 549, 552
FE_TONEAREST macro, 152, 212, 482, 531
FE_TONEAREST pragma, 188
FE_TONEARESTFROMZERO macro, 212, 482, 531
FE_TONEARESTFROMZERO pragma, 188
FE_TOWARDZERO macro, 212, 482, 531, 545, 550
FE_TOWARDZERO pragma, 188
FE_UNDERFLOW macro, 212, 224, 482
FE_UPWARD macro, 9, 212, 482, 531, 549
FE_UPWARD pragma, 188
feature test macro, 193, 211, 238, 321, 360, 390,

405
feclearexcept function, 95, 218, 220, 224,

483, 530, 550
fegetenv function, 222, 223, 483, 531, 610
fegetexceptflag function, 218, 219, 483, 530,

610, 619
fegetmode function, 220, 221, 483, 530
fegetround function, 212, 216, 220, 221, 222,

483, 530, 531, 545, 549, 579
feholdexcept function, 94, 223, 224, 483, 531,

550, 610
femode_t type, 211, 212, 220, 221, 482, 483
fence, 17, 301

acquire, 301
release, 301

FENV_ACCESS pragma, vi, 9, 94, 187, 188, 213,
214, 220, 222, 224, 482, 534–539, 545,
549, 551, 603, 609, 610, 617

FENV_DEC_ROUND pragma, vi, 63, 187, 188, 217,
483, 532, 579

FENV_ROUND pragma, vi, 30, 63, 152, 187, 188,
213, 214, 215, 217, 482, 483, 531, 579

fenv_t type, 94, 211, 213, 222–224, 482, 483,
549

feof function, 347, 352, 358, 435, 510
feraiseexcept function, 218, 219, 483, 536,

603, 619
ferror function, 347, 352, 359, 435, 510
fesetenv function, 214, 223, 483, 531, 610
fesetexcept function, 219, 483, 530
fesetexceptflag function, 218, 219, 483, 530,

610
fesetmode function, 214, 220, 221, 483, 531
fesetround function, 9, 25, 101, 212, 214, 216,

220, 221, 222, 483, 530, 531, 545, 549,
550, 579

fetestexcept function, 218, 220, 483, 530, 550
fetestexceptflag function, 219, 220, 483,

530
feupdateenv function, 95, 214, 223, 224, 483,

531, 550, 610

fexcept_t type, 211, 218, 219, 482, 483, 610
fflush function, 331, 332, 509, 612
ffma function, 280, 490, 528, 599
ffma type-generic macro, 392
ffmal function, 280, 490, 528
fgetc function, 326, 329, 352, 353, 355, 509
fgetpos function, 327, 328, 356, 357, 510, 603,

613, 620
fgets function, 326, 352, 353, 510, 613, 654
fgetwc function, 326, 329, 434, 435, 436, 517
fgetws function, 326, 435, 517, 613
field width, 334, 421
file, 328

access function, 331, 644
name, 328
operation, 329, 643
position indicator, 325, 327, 328, 332, 352,

353, 355–357, 435, 437
positioning function, 356

file name, 328
file position indicator, 328
file scope, 36, 160
FILE type, 175, 325, 326, 328, 330, 331, 333, 334,

342, 350, 352–359, 421, 427, 432, 435–
437, 509, 510, 516–518, 611, 643–646,
650, 651, 671, 672, 674, 675

FILENAME_MAX macro, 325, 509
finite number, 557
fixed underlying type, 110
flag, 334, 421
flexible array member, 108
float _Complex type, 41
float _Complex type conversion, 49
float _Imaginary type, 557
float arithmetic, 15
float keyword, 54
float type, 40, 104
float type conversion, 48, 49
float_t type, 238, 485, 536, 579, 580, 581, 619,

623
floating constant, 60
floating suffix, f or F, 63
floating type, 41, 191
floating type conversion, 48, 49, 533
floating-point accuracy, 25, 64, 74, 363, 533
floating-point arithmetic function, 238, 539
floating-point classification function, 242
floating-point control mode, 211, 536
floating-point environment, 211, 534, 536

dynamic, 211
floating-point environment header, 211, 462
floating-point exception, 211, 218, 539
floating-point number, 24, 40
floating-point rounding mode, 25
floating-point status flag, 211, 536
floor, 7

© ISO/IEC 202y — All rights reserved

Index — 715

ISO/IEC 9899:202y (en) — n3299 working draft

floor function, 239, 265, 488, 527, 549
floor type-generic macro, 391
floord128 function, 265, 493
floord32 function, 265, 493
floord64 function, 265, 493
floordN function, 588
floordNx function, 588
floorf function, 265, 488
floorfN function, 588
floorfNx function, 588
floorl function, 265, 488
FLT identifier prefix, 484
FLT_ identifier prefix, 462
FLT_DECIMAL_DIG macro, 27, 29, 30, 483, 524
FLT_DIG macro, 28, 29, 30, 483, 524
FLT_EPSILON macro, 29, 30, 483, 524
FLT_EVAL_METHOD macro, 25, 26, 29, 30, 94–96,

103, 238, 483, 524, 556, 571, 580, 617,
619

FLT_HAS_SUBNORM macro, 26, 30, 462, 483
FLT_IS_IEC_60559 macro, 26, 30, 483
FLT_MANT_DIG macro, 27, 29, 30, 103, 483, 524
FLT_MAX macro, 28, 29, 30, 483, 524
FLT_MAX_10_EXP macro, 28, 29, 30, 483, 524
FLT_MAX_EXP macro, 28, 29, 30, 483, 524
FLT_MIN macro, 29, 30, 483, 524
FLT_MIN_10_EXP macro, 28, 29, 30, 483, 524
FLT_MIN_EXP macro, 28, 29, 30, 483, 524
FLT_NORM_MAX macro, 29, 483, 524
FLT_RADIX macro, 25, 27, 28–31, 62, 217, 222,

259, 260, 338, 339, 363, 424, 426, 439,
483, 524, 530, 571, 572, 580

FLT_ROUNDS macro, 25, 26, 212, 483, 523, 524,
527, 617

FLT_SNAN macro, 27, 102, 483, 527
FLT_TRUE_MIN macro, 29, 30, 483
FLTN_DECIMAL_DIG macro, 573
FLTN_DIG macro, 573
FLTN_EPSILON macro, 574
FLTN_MANT_DIG macro, 573
FLTN_MAX macro, 574
FLTN_MAX_10_EXP macro, 573
FLTN_MAX_EXP macro, 573
FLTN_MIN macro, 574
FLTN_MIN_10_EXP macro, 573
FLTN_MIN_EXP macro, 573
FLTN_SNAN macro, 572
FLTN_TRUE_MIN macro, 574
FLTNX_DECIMAL_DIG macro, 573
FLTNX_DIG macro, 573
FLTNX_EPSILON macro, 574
FLTNX_MANT_DIG macro, 573
FLTNX_MAX macro, 574
FLTNX_MAX_10_EXP macro, 573
FLTNX_MAX_EXP macro, 573
FLTNX_MIN macro, 574

FLTNX_MIN_10_EXP macro, 573
FLTNX_MIN_EXP macro, 573
FLTNX_SNAN macro, 572
FLTNX_TRUE_MIN macro, 574
fma function, 240, 278, 490, 528, 553
fma type-generic macro, 391
fmad128 function, 278, 495
fmad32 function, 278, 495
fmad64 function, 278, 495
fMaddfN function, 591
fMaddfNx function, 591
fmadN function, 590
fmadNx function, 590
fmaf function, 278, 490
fmafN function, 590
fmafNx function, 590
fmal function, 240, 278, 490
fmax function, 274, 275, 490, 531, 552
fmax type-generic macro, 391
fmaxd128 function, 274, 495
fmaxd32 function, 274, 495
fmaxd64 function, 274, 495
fmaxf function, 274, 490
fmaximum function, 275, 276, 490, 528, 552
fmaximum type-generic macro, 391
fmaximum_mag type-generic macro, 391
fmaximum_mag_num type-generic macro, 391
fmaximum_num type-generic macro, 391
fmaximum_mag function, 275, 276, 277, 490,

528, 552
fmaximum_mag_num function, 276, 277, 490,

528, 552, 553
fmaximum_mag_numd128 function, 277, 495
fmaximum_mag_numd32 function, 277, 495
fmaximum_mag_numd64 function, 277, 495
fmaximum_mag_numdN function, 590
fmaximum_mag_numdNx function, 590
fmaximum_mag_numf function, 277, 490
fmaximum_mag_numfN function, 590
fmaximum_mag_numfNx function, 590
fmaximum_mag_numl function, 277, 490
fmaximum_magd128 function, 276, 495
fmaximum_magd32 function, 276, 495
fmaximum_magd64 function, 276, 495
fmaximum_magdN function, 590
fmaximum_magdNx function, 590
fmaximum_magf function, 275, 490
fmaximum_magfN function, 590
fmaximum_magfNx function, 590
fmaximum_magl function, 276, 490
fmaximum_num function, 275, 276, 490, 528,

531, 552, 553, 560
fmaximum_numd128 function, 276, 495
fmaximum_numd32 function, 276, 495
fmaximum_numd64 function, 276, 495
fmaximum_numdN function, 590

© ISO/IEC 202y — All rights reserved

Index — 716

ISO/IEC 9899:202y (en) — n3299 working draft

fmaximum_numdNx function, 590
fmaximum_numf function, 276, 490
fmaximum_numfN function, 590
fmaximum_numfNx function, 590
fmaximum_numl function, 276, 490
fmaximumd128 function, 275, 393, 495
fmaximumd32 function, 275, 495
fmaximumd64 function, 275, 495
fmaximumdN function, 590
fmaximumdNx function, 590
fmaximumf function, 275, 490
fmaximumfN function, 590
fmaximumfNx function, 590
fmaximuml function, 275, 490
fmaxl function, 274, 490
fMdivfN function, 591
fMdivfNx function, 591
fMencfN function, 593
fMfmafN function, 591
fMfmafNx function, 591
fmin function, 274, 275, 490, 531, 552
fmin type-generic macro, 391
fmind128 function, 274, 495
fmind32 function, 274, 495
fmind64 function, 274, 495
fminf function, 274, 490
fminimum function, 275, 276, 277, 490, 528, 552
fminimum type-generic macro, 391
fminimum_mag type-generic macro, 391
fminimum_mag_num type-generic macro, 391
fminimum_num type-generic macro, 391
fminimum_mag function, 276, 278, 490, 528, 552
fminimum_mag_num function, 276, 277, 278,

490, 528, 552, 553
fminimum_mag_numd128 function, 277, 495
fminimum_mag_numd32 function, 277, 495
fminimum_mag_numd64 function, 277, 495
fminimum_mag_numdN function, 590
fminimum_mag_numdNx function, 590
fminimum_mag_numf function, 277, 490
fminimum_mag_numfN function, 590
fminimum_mag_numfNx function, 590
fminimum_mag_numl function, 277, 490
fminimum_magd128 function, 276, 495
fminimum_magd32 function, 276, 495
fminimum_magd64 function, 276, 495
fminimum_magdN function, 590
fminimum_magdNx function, 590
fminimum_magf function, 276, 490
fminimum_magfN function, 590
fminimum_magfNx function, 590
fminimum_magl function, 276, 490
fminimum_num function, 275, 276, 277, 490,

528, 531, 552, 553
fminimum_numd128 function, 277, 495
fminimum_numd32 function, 277, 495

fminimum_numd64 function, 277, 495
fminimum_numdN function, 590
fminimum_numdNx function, 590
fminimum_numf function, 277, 490
fminimum_numfN function, 590
fminimum_numfNx function, 590
fminimum_numl function, 277, 490
fminimumd128 function, 275, 495
fminimumd32 function, 275, 495
fminimumd64 function, 275, 495
fminimumdN function, 590
fminimumdNx function, 590
fminimumf function, 275, 490
fminimumfN function, 590
fminimumfNx function, 590
fminimuml function, 275, 490
fminl function, 274, 490
fMmulfN function, 591
fMmulfNx function, 591
fmod function, 269, 270, 489, 550, 551, 619
fmod type-generic macro, 391
fmodd128 function, 270, 494
fmodd32 function, 270, 494
fmodd64 function, 270, 494
fmoddN function, 588
fmoddNx function, 588
fmodf function, 269, 489
fmodfN function, 588
fmodfNx function, 588
fmodl function, 270, 489
fMsqrtfN function, 591
fMsqrtfNx function, 591
fMsubfN function, 591
fMsubfNx function, 591
fmul function, 279, 490, 528, 599
fmul type-generic macro, 392
fmull function, 279, 490, 528
fMxaddfN function, 591
fMxaddfNx function, 591
fMxdivfN function, 591
fMxdivfNx function, 591
fMxfmafN function, 591
fMxfmafNx function, 591
fMxmulfN function, 591
fMxmulfNx function, 591
fMxsqrtfN function, 591
fMxsqrtfNx function, 591
fMxsubfN function, 591
fMxsubfNx function, 591
fopen function, 175, 329, 330, 331, 332, 333,

509, 612, 624, 644
FOPEN_MAX macro, 325, 329, 330, 509, 643
fopen_s function, 510, 643, 644, 645
for keyword, 54
for, 157
form feed, 21

© ISO/IEC 202y — All rights reserved

Index — 717

ISO/IEC 9899:202y (en) — n3299 working draft

form-feed character, 20, 53
form-feed escape sequence (\f), 21, 66, 208
format conversion of integer types header, 462
format flag

+, 335, 422
-, 335, 421
#, 335, 422
0, 335, 422
space, 335, 422

format modifier
D, 336, 344, 423, 428
DD, 336, 344, 423, 428
E, 412
H, 336, 344, 423, 428
h, 335, 343, 422, 428
hh, 335, 343, 422, 428
j, 336, 343, 422, 428
L, 336, 344, 423, 428
l, 335, 343, 422, 428
ll, 336, 343, 422, 428
O, 412
t, 336, 343, 423, 428
wfN, 336, 344, 423, 428
wN, 336, 343, 423, 428
z, 336, 343, 422, 428

formatted input/output function, 232, 334,
646

wide character, 421, 671
forward reference, 5
FP_ identifier prefix, 239, 462
FP_CONTRACT pragma, vii, 74, 152, 187, 188,

242, 485, 559, 560, 609, 617
FP_FAST_D32ADDD128 macro, 240, 491
FP_FAST_D32ADDD64 macro, 240, 491
FP_FAST_D32DIVD128 macro, 240, 491
FP_FAST_D32DIVD64 macro, 240, 491
FP_FAST_D32FMAD128 macro, 240, 491
FP_FAST_D32FMAD64 macro, 240, 491
FP_FAST_D32MULD128 macro, 240, 491
FP_FAST_D32MULD64 macro, 240, 491
FP_FAST_D32SQRTD128 macro, 240, 491
FP_FAST_D32SQRTD64 macro, 240, 491
FP_FAST_D32SUBD128 macro, 240, 491
FP_FAST_D32SUBD64 macro, 240, 491
FP_FAST_D64ADDD128 macro, 240, 491
FP_FAST_D64DIVD128 macro, 240, 491
FP_FAST_D64FMAD128 macro, 240, 491
FP_FAST_D64MULD128 macro, 240, 491
FP_FAST_D64SQRTD128 macro, 240, 491
FP_FAST_D64SUBD128 macro, 240, 491
FP_FAST_DADDL macro, 240, 485, 581
FP_FAST_DDIVL macro, 240, 485
FP_FAST_DFMAL macro, 240, 485
FP_FAST_DMADDDN macro, 581
FP_FAST_FMADDDNX macro, 582
FP_FAST_DMDIVDN macro, 581

FP_FAST_FMDIVDNX macro, 582
FP_FAST_DMFMADN macro, 581
FP_FAST_FMFMADNX macro, 582
FP_FAST_DMMULDN macro, 581
FP_FAST_FMMULDNX macro, 582
FP_FAST_DMSQRTDN macro, 581
FP_FAST_FMSQRTDNX macro, 582
FP_FAST_DMSUBDN macro, 581
FP_FAST_FMSUBDNX macro, 582
FP_FAST_DMULL macro, 240, 485
FP_FAST_DMXADDDN macro, 582
FP_FAST_FMXADDDNX macro, 582
FP_FAST_DMXDIVDN macro, 582
FP_FAST_FMXDIVDNX macro, 582
FP_FAST_DMXFMADN macro, 582
FP_FAST_FMXFMADNX macro, 582
FP_FAST_DMXMULDN macro, 582
FP_FAST_FMXMULDNX macro, 582
FP_FAST_DMXSQRTDN macro, 582
FP_FAST_FMXSQRTDNX macro, 582
FP_FAST_DMXSUBDN macro, 582
FP_FAST_FMXSUBDNX macro, 582
FP_FAST_DSQRTL macro, 240, 485
FP_FAST_DSUBL macro, 240, 485
FP_FAST_FADD macro, 240, 485, 581
FP_FAST_FADDL macro, 240, 485, 581
FP_FAST_FDIV macro, 240, 485
FP_FAST_FDIVL macro, 240, 485
FP_FAST_FFMA macro, 240, 485
FP_FAST_FFMAL macro, 240, 485
FP_FAST_FMA macro, 240, 485, 581
FP_FAST_FMAD128 macro, 240, 491
FP_FAST_FMAD32 macro, 240, 491
FP_FAST_FMAD64 macro, 240, 491
FP_FAST_FMADDFN macro, 581
FP_FAST_FMADDFNX macro, 582
FP_FAST_FMADN macro, 581
FP_FAST_FMAFNX macro, 581
FP_FAST_FMAF macro, 240, 485, 497, 581
FP_FAST_FMAFN macro, 581
FP_FAST_FMAFNX macro, 581
FP_FAST_FMAL macro, 240, 485
FP_FAST_FMDIVFN macro, 581
FP_FAST_FMDIVFNX macro, 582
FP_FAST_FMFMAFN macro, 581
FP_FAST_FMFMAFNX macro, 582
FP_FAST_FMMULFN macro, 581
FP_FAST_FMMULFNX macro, 582
FP_FAST_FMSQRTFN macro, 581
FP_FAST_FMSQRTFNX macro, 582
FP_FAST_FMSUBFN macro, 581
FP_FAST_FMSUBFNX macro, 582
FP_FAST_FMUL macro, 240, 485
FP_FAST_FMULL macro, 240, 485
FP_FAST_FMXADDFN macro, 582
FP_FAST_FMXADDFNX macro, 582

© ISO/IEC 202y — All rights reserved

Index — 718

ISO/IEC 9899:202y (en) — n3299 working draft

FP_FAST_FMXDIVFN macro, 582
FP_FAST_FMXDIVFNX macro, 582
FP_FAST_FMXFMAFN macro, 582
FP_FAST_FMXFMAFNX macro, 582
FP_FAST_FMXMULFN macro, 582
FP_FAST_FMXMULFNX macro, 582
FP_FAST_FMXSQRTFN macro, 582
FP_FAST_FMXSQRTFNX macro, 582
FP_FAST_FMXSUBFN macro, 582
FP_FAST_FMXSUBFNX macro, 582
FP_FAST_FSQRT macro, 240, 485
FP_FAST_FSQRTL macro, 240, 485
FP_FAST_FSUB macro, 240, 485
FP_FAST_FSUBL macro, 240, 485
FP_ILOGB0 macro, 240, 241, 255, 485
FP_ILOGBNAN macro, 240, 241, 255, 485
FP_INFINITE macro, 239, 485
FP_INT_DOWNWARD macro, 239, 485
FP_INT_TONEAREST macro, 239, 485
FP_INT_TONEARESTFROMZERO macro, 239, 485
FP_INT_TOWARDZERO macro, 239, 485
FP_INT_UPWARD macro, 239, 269, 485
FP_LLOGB0 macro, 241, 256, 485
FP_LLOGBNAN macro, 241, 256, 485
FP_NAN macro, 239, 485
FP_NORMAL macro, 239, 485
FP_SUBNORMAL macro, 239, 485
FP_ZERO macro, 239, 485
fpclassify macro, 243, 485, 530, 531
fpos_t type, 325, 327, 356, 357, 509, 510
fprintf_s function, 510, 646
fputc function, 21, 326, 329, 353, 354, 356, 510
fputs function, 185, 326, 353, 510
fputwc function, 326, 329, 435, 437, 517
fputws function, 326, 435, 436, 517
frac_digits structure member, 231, 233, 235
fread function, 173, 175, 326, 355, 510, 613
free function, 369, 370, 371, 383, 511, 613, 689
free_aligned_sized function, 370, 511, 693
free_sized function, 369, 370, 511, 693
freestanding execution environment, 9, 12
freopen function, 327, 328, 333, 509
freopen_s function, 510, 645, 646
frexp function, 254, 255, 487, 543, 592, 603,

604
frexp type-generic macro, 391
frexpd128 function, 255, 492
frexpd32 function, 255, 492
frexpd64 function, 255, 492
frexpdN function, 586
frexpdNx function, 586
frexpf function, 254, 487
frexpfN function, 586
frexpfNx function, 586
frexpl function, 254, 487

fromfp function, 240, 268, 269, 489, 529, 533,
550

fromfp function, 268
fromfp type-generic macro, 391
fromfpd128 function, 268, 494
fromfpd32 function, 268, 494
fromfpd64 function, 268, 494
fromfpdN function, 588
fromfpdNx function, 588
fromfpf function, 268, 489
fromfpfN function, 588
fromfpfNx function, 588
fromfpl function, 268, 489
fromfpx function, 240, 269, 489, 529, 533, 550
fromfpx function, 269
fromfpx type-generic macro, 391
fromfpxd128 function, 269, 494
fromfpxd32 function, 269, 494
fromfpxd64 function, 269, 494
fromfpxdN function, 588
fromfpxdNx function, 588
fromfpxf function, 269, 489
fromfpxfN function, 588
fromfpxfNx function, 588
fromfpxl function, 269, 489
fscanf function, 226, 227, 326, 342, 346–350,

463, 510, 620, 646
fscanf_s function, 510, 646, 647, 648, 650, 651
fseek function, 326, 329, 332, 355, 356, 357,

358, 437, 510, 613
fsetpos function, 327, 328, 332, 355, 356, 357,

437, 510, 613, 620
fsqrt function, 280, 490, 528, 599
fsqrt type-generic macro, 392
fsqrtl function, 280, 490, 528
fsub function, 279, 490, 528, 599
fsub type-generic macro, 392
fsubl function, 279, 393, 490, 528, 600
ftell function, 356, 357, 510, 603, 613, 620
full declarator, 128
full expression, 153
fully buffered, 328
fully buffered stream, 328
function

argument, 76, 161
body, 160
byte input/output, 326
call, 76

library, 194
declarator, 131
definition, 131, 160
designator, 51
image, 21
inline, 125
library, 11, 194
name length, 22, 56, 191

© ISO/IEC 202y — All rights reserved

Index — 719

ISO/IEC 9899:202y (en) — n3299 working draft

no-return, 126
parameter, 13, 76, 99, 161
prototype, 13, 36, 131, 161, 238
prototype scope, 37, 129, 130
recursive call, 77
return, 159, 534
scope, 36
stateless, 150
type, 41
type conversion, 51

function call
effectless, 150

function prototype, 36
function prototype scope, 37
function scope, 36
function specifier, 125

_Noreturn, 54
inline, 54

function type, 39
function type attribute, 149
function-call operator (()), 76
function-like macro, 180
fundamental alignment, 46
Fused multiply-add and round to narrower

type, 280
future direction

language, 191
library, 462

fwide function, 327, 328, 436, 517
fwprintf function, 226, 326, 421, 426, 430–432,

434, 464, 516, 615, 620, 672
fwprintf_s function, 518, 671, 672
fwrite function, 326, 355, 356, 510, 613
fwscanf function, 226, 326, 427, 430–432, 434,

437, 464, 516, 620, 672
fwscanf_s function, 518, 672, 674, 675, 679

gamma function, 263, 548
general utilities header, 360, 463
general utility, 655

wide string, 438, 679
general wide string utility, 438, 679
generic association, 75
generic parameter, 390
generic selection, 74, 75
getc function, 326, 353, 354, 510
getchar function, 16, 326, 354, 510
getenv function, 372, 373, 511, 613, 616
getenv_s function, 512, 656, 657
getpayload function, 496, 528, 554, 555
getpayloadd128 function, 497, 554
getpayloadd32 function, 497, 554
getpayloadd64 function, 497, 554
getpayloaddN function, 592
getpayloaddNx function, 592
getpayloadf function, 496, 554
getpayloadfN function, 592

getpayloadfNx function, 592
getpayloadl function, 496, 554
gets (obsolete), 654, 693
gets_s function, 510, 654
getwc function, 326, 436, 517
getwchar function, 326, 436, 437, 517
gmtime function, 409, 410, 411, 515
gmtime_r function, 411, 516, 691
gmtime_s function, 516, 670, 671
goto keyword, 54
goto statement, 36, 154, 157
graphic character, 20
greater-than operator (>), 88
greater-than-or-equal-to operator (>=), 88
grouping structure member, 231, 233, 234

H format modifier, 336, 344, 423, 428
h format modifier, 335, 343, 422, 428
happens before, 18
header, 11, 192
header name, 53, 70, 171
hexadecimal constant, 58
hexadecimal digit, 59, 62, 66
\xhexadecimal digit (hexadecimal-character es-

cape sequence), 66
hexadecimal digit sequence, 59
hexadecimal prefix, 58
hexadecimal-character escape sequence (\x

hexadecimal digit), 66
hh format modifier, 335, 343, 422, 428
hidden, 37
high-order bit, 4, 5
horizontal tab, 21
horizontal-tab character, 20, 53
horizontal-tab escape sequence (\t), 21, 66,

207, 208, 457
hosted execution environment, 9, 12, 13
HUGE_VAL macro, 238, 242, 364, 440, 485, 539
HUGE_VAL_D128 macro, 239, 496
HUGE_VAL_D32 macro, 239, 496
HUGE_VAL_D64 macro, 239, 496
HUGE_VAL_DN macro, 581
HUGE_VAL_DNX macro, 581
HUGE_VAL_FN macro, 581
HUGE_VAL_FNX macro, 581
HUGE_VALF macro, 238, 242, 364, 440, 485, 539
HUGE_VALL macro, 238, 242, 364, 440, 485, 539
hyperbolic function

complex, 200, 562
real, 250, 542

hypot function, 261, 488, 527, 532, 546, 561
hypot type-generic macro, 391
hypotd128 function, 261, 493
hypotd32 function, 261, 493
hypotd64 function, 261, 493
hypotdN function, 587
hypotdNx function, 587

© ISO/IEC 202y — All rights reserved

Index — 720

ISO/IEC 9899:202y (en) — n3299 working draft

hypotf function, 261, 488
hypotfN function, 587
hypotfNx function, 587
hypotl function, 261, 488

I macro, 204, 561
idempotent, 150
identifier, 55, 74

continue, 55, 521
maximum length, 55
name space, 38
reserved, 54, 193, 624, 632, 641
rule, 624
scope, 36
start, 55, 521
type, 39

identifier continue, 55, 521
identifier list, 165
identifier start, 55, 521
if keyword, 54
if preprocessing directive, 168
if statement, 155
if_empty embed parameter, 173, 178, 179
ifdef, 9, 103, 164, 167, 168, 169, 217, 221, 222,

245–268, 269, 270–272, 273, 274–278,
279, 280–283, 362, 364, 393, 440, 524,
525, 553–555

ifdef preprocessing directive, 169
ifndef preprocessing directive, 169
ignore_handler_s function, 512, 656
ilogb function, 240, 255, 487, 528, 544, 603
ilogb type-generic macro, 391
ilogbd128 function, 255, 492
ilogbd32 function, 255, 492
ilogbd64 function, 255, 492
ilogbdN function, 586
ilogbdNx function, 586
ilogbf function, 255, 487
ilogbfN function, 586
ilogbfNx function, 586
ilogbl function, 255, 487
imaginary macro, 197, 480, 561
imaginary number, 557
imaginary type, 557
imaginary type domain, 557
imaxabs function, 227, 484
imaxdiv function, 226, 227, 484
imaxdiv_t type, 226, 227, 484
implementation, 5
implementation limit, 6, 9, 22, 56, 128, 156, 523
implementation resource width, 172
implementation-defined behavior, 3, 9, 615
implementation-defined value, 7
implicit conversion, 47
implicit initialization, 138
include preprocessing directive, 11, 171
inclusive OR operator

bitwise (|), 90
bitwise assignment (|=), 94

incomplete, 39
incomplete type, 39
independent, 150
indeterminate representation, 7
indeterminately sequenced, 14, 77, 79, 94
indirection operator (*), 76, 83
inequality operator (!=), 89
infinitary, 241
infinity, 557
INFINITY macro, 27, 102, 103, 204, 239, 337,

362–365, 424, 439–441, 463, 483, 485,
527, 559, 560

initial position, 21
initial shift state, 20
initialization, 12, 38, 51, 80, 137, 536

in block, 153
initialized, 12
initializer, 137

permitted form, 96
string literal, 51

inline, 125
inline definition, 125
inline function, 125
inline keyword, 54
inner scope, 37
input failure, 433, 434, 647, 648, 650–652, 654,

672, 674, 675, 677–679
input/output

device, 14
input/output function

character, 352, 654
direct, 355
formatted, 334, 646

wide character, 421, 671
wide character, 434

formatted, 421, 671
input/output header, 325, 463, 642
INT identifier prefix, 323, 324, 463, 509
int identifier prefix, 321, 322, 463, 509, 693
int keyword, 54
int type, 40, 48, 60, 104
int type conversion, 47–49
intN_t type, 321
INTN_C macro, 324
INTN_MAX macro, 323
INTN_MIN macro, 323, 324
INTN_WIDTH macro, 323
int8_t type, 321
INT_FAST identifier prefix, 323, 509
int_fast identifier prefix, 322, 509, 693
INT_LEAST identifier prefix, 323, 509
int_least identifier prefix, 321, 322, 324, 509
int_curr_symbol structure member, 231, 234,

235

© ISO/IEC 202y — All rights reserved

Index — 721

ISO/IEC 9899:202y (en) — n3299 working draft

INT_FASTN_MAX macro, 323
INT_FASTN_MIN macro, 323, 324
INT_FASTN_WIDTH macro, 323
int_fast16_t type, 303, 322
int_fast32_t type, 226, 303, 322
int_fast64_t type, 303, 322
int_fast8_t type, 303, 322
int_fastN_t type, 322
int_frac_digits structure member, 231, 234,

235
INT_LEASTN_MAX macro, 323
INT_LEASTN_MIN macro, 323, 324
int_leastN_t type, 321
INT_LEASTN_WIDTH macro, 323
int_least16_t type, 303, 322
int_least32_t type, 303, 321, 322
int_least64_t type, 303, 322
int_least8_t type, 303, 322
INT_MAX macro, 24, 40, 104, 168, 240, 241, 255,

485, 523, 612
INT_MIN macro, 24, 40, 240, 241, 485, 523
int_n_cs_precedes structure member, 231,

234, 235
int_n_sep_by_space structure member, 231,

234, 235
int_n_sign_posn structure member, 231,

234–236
int_p_cs_precedes structure member, 231,

234, 235
int_p_sep_by_space structure member, 231,

234, 235
int_p_sign_posn structure member, 231,

234–236
INT_WIDTH macro, 23, 269, 485, 523
integer arithmetic function, 227, 375
integer character constant, 65
integer constant, 58
integer constant expression, 51, 96, 106, 110,

129, 138, 143, 155, 167, 194
integer conversion rank, 47
integer promotion, 15, 48, 83, 87, 156, 335, 422
integer suffix, 60
integer type, 41, 321

extended, 40, 47, 60, 321
integer type conversion, 47, 48, 533
integer types header, 321, 463
inter-thread happens before, 18
interactive device, 14, 328, 332
interchange floating type, 569
internal linkage, 37
internal name, 56
interrupt, 21
INTMAX_C macro, 324, 509
INTMAX_MAX macro, 228, 323, 509
INTMAX_MIN macro, 228, 323, 324, 509
intmax_t type, 24, 168, 227, 228, 303, 322, 324,

336, 343, 422, 428, 484, 509, 692, 694
INTMAX_WIDTH macro, 323, 509
INTPTR_MAX macro, 323, 509
INTPTR_MIN macro, 323, 324, 509
intptr_t type, 303, 322, 509
INTPTR_WIDTH macro, 323, 509
is identifier prefix, 462–464
isalnum function, 206, 208, 482
isalpha function, 206, 456, 482, 622
isblank function, 206, 207, 482, 622
iscanonical macro, 25, 243, 485, 530, 531
iscntrl function, 206, 207, 208, 482
isdigit function, 206, 207, 208, 232, 482
iseqsig macro, 286, 490, 529, 556
isfinite macro, 243, 485, 530, 531, 543, 560
isgraph function, 207, 456, 482
isgreater macro, 284, 490, 529, 530
isgreaterequal macro, 284, 285, 490, 530,

538, 552
isinf macro, 243, 244, 485, 530, 531, 545, 559,

560
isless macro, 285, 490, 530, 538, 539
islessequal macro, 285, 490, 530
islessgreater macro, 285, 490
islower function, 4, 206, 207, 208, 209, 482,

622
isnan macro, 244, 485, 530, 531, 552, 559, 560
isnormal macro, 244, 485, 530, 531
ISO/IEC 10646, 2, 189
ISO/IEC 2382, 2, 3
ISO/IEC 60559, 2, 189, 198, 211, 223, 242, 270,

284, 526, 557, 568
ISO/IEC 9945–2, 231
ISO 4217, 2, 234
ISO 80000–2, 2, 3
ISO 80000–3, 696
ISO 8601 series, 2, 412
isprint function, 21, 207, 482
ispunct function, 206, 207, 208, 482, 622
issignaling macro, 245, 485, 530, 531
isspace function, 192, 206, 207, 208, 482, 622
issubnormal macro, 245, 486, 530, 531
isunordered macro, 285, 286, 490, 530
isupper function, 206, 208, 209, 482, 622
iswalnum function, 457, 458, 459, 519
iswalpha function, 456, 457, 459, 519, 622
iswblank function, 457, 459, 519, 622
iswcntrl function, 457, 458, 459, 519
iswctype function, 459, 460, 519, 615, 622
iswdigit function, 457, 458, 459, 519
iswgraph function, 456, 458, 459, 519
iswlower function, 457, 458, 459, 460, 519, 622
iswprint function, 456, 458, 459, 519
iswpunct function, 456, 457, 458, 459, 519, 622
iswspace function, 192, 456, 457, 458, 459, 519,

622

© ISO/IEC 202y — All rights reserved

Index — 722

ISO/IEC 9899:202y (en) — n3299 working draft

iswupper function, 457, 458, 459, 460, 519, 622
iswxdigit function, 459, 519
isxdigit function, 208, 232, 482
iszero macro, 245, 486, 530, 531
italic type convention, 3, 36
iteration statement, 156

j format modifier, 336, 343, 422, 428
jmp_buf type, 287, 288, 505, 689
jump statement, 157

keyword, 54, 557, 623
kill_dependency macro, 17, 301, 506
known constant size, 42

L encoding prefix, 65, 66, 68, 139
L format modifier, 336, 344, 423, 428
l format modifier, 335, 343, 422, 428
l identifier suffix, 197, 238, 390, 392, 462
L_tmpnam macro, 326, 331, 509
L_tmpnam_s macro, 510, 642, 643
label

case, 54
default, 54

label name, 36, 38
labeled statement, 154
labs function, 375, 511
language, 36

encoding prefix
L, 65, 66, 68, 139
U, 65, 66, 68, 69, 139
u, 65, 66, 68, 69, 139
u8, 65, 66, 68, 69

future direction, 191
syntax summary, 465

Latin alphabet, 19
LC_ identifier prefix, 231, 462
LC_ALL macro, 231, 232, 235, 485
LC_COLLATE macro, 231, 232, 384, 445, 485
LC_CTYPE macro, 231, 232, 360, 376, 377, 451,

456, 459–461, 485, 614, 615, 659, 660
LC_MONETARY macro, 231, 232, 235, 485
LC_NUMERIC macro, 231, 232, 235, 485
LC_TIME macro, 231, 232, 409, 411, 485
lconv structure type, 231, 232, 485
LDBL_ identifier prefix, 462
LDBL_DECIMAL_DIG macro, 27, 462, 483, 524
LDBL_DIG macro, 28, 483, 524
LDBL_EPSILON macro, 29, 483, 524
LDBL_HAS_SUBNORM macro, 26, 462, 483
LDBL_IS_IEC_60559 macro, 26, 483
LDBL_MANT_DIG macro, 27, 483, 524
LDBL_MAX macro, 28, 483, 524
LDBL_MAX_10_EXP macro, 28, 483, 524
LDBL_MAX_EXP macro, 28, 483, 524
LDBL_MIN macro, 29, 483, 524
LDBL_MIN_10_EXP macro, 28, 483, 524

LDBL_MIN_EXP macro, 28, 483, 524
LDBL_NORM_MAX macro, 29, 483, 524
LDBL_SNAN macro, 27, 483, 527
LDBL_TRUE_MIN macro, 29, 483
ldexp function, 255, 256, 487, 544, 592
ldexp type-generic macro, 391
ldexpd128 function, 255, 492
ldexpd32 function, 255, 492
ldexpd64 function, 255, 492
ldexpdN function, 586
ldexpdNx function, 586
ldexpf function, 255, 487
ldexpfN function, 586
ldexpfNx function, 586
ldexpl function, 255, 487
ldiv function, 137, 360, 375, 376, 511
ldiv_t type, 360, 375, 376, 511
leading underscore in identifier, 193
least significant index, 308
left-shift assignment operator (<<=), 94
left-shift operator (<<), 87
length

external name, 22, 56, 191
function name, 22, 56, 191
identifier, 55
internal name, 22, 56

length function, 376, 389, 450, 452, 668, 684
length modifier, 335, 342, 421, 427
length of a string, 192
length of a wide string, 192
less-than operator (<), 88
less-than-or-equal-to operator (<=), 88
letter, 20, 206

lowercase, 20
lexical element, 11, 53
lgamma function, 264, 488, 548
lgamma type-generic macro, 391
lgammad128 function, 264, 493
lgammad32 function, 264, 493
lgammad64 function, 264, 493
lgammadN function, 587
lgammadNx function, 587
lgammaf function, 264, 488
lgammafN function, 587
lgammafNx function, 587
lgammal function, 264, 488
library, 11, 192, 640

constant
memory_order_acq_rel, 299, 300, 301,

304, 305, 307, 505
memory_order_acquire, 299, 301, 304,

307, 505
memory_order_consume, 299, 301, 304,

505
memory_order_relaxed, 150, 299, 300,

301, 505

© ISO/IEC 202y — All rights reserved

Index — 723

ISO/IEC 9899:202y (en) — n3299 working draft

memory_order_release, 299, 301, 304,
305, 505

memory_order_seq_cst, 19, 43, 79, 93,
94, 297, 299, 300, 302, 505

mtx_plain, 395, 399, 515
mtx_recursive, 395, 399, 515
mtx_timed, 396, 399, 515
thrd_busy, 396, 400, 515
thrd_error, 396, 397–404, 515
thrd_nomem, 396, 397, 400, 515
thrd_success, 396, 397–404, 515
thrd_timedout, 396, 398, 399, 515

family
canonicalize, 34
decodebin, 34
decodebind, 283, 284
decodedec, 34
decodedecd, 282, 283
encodebin, 34
encodebind, 283
encodedec, 34
encodedecd, 282
modf, 34
strfrom, 215, 217
strfromd, 362
strto, 34, 215, 217
strtod, 364, 365
wcsto, 34, 215, 217
wcstod, 440, 441

function
_Exit, 290, 372, 373, 511, 610, 621
abort, 149, 196, 289, 290, 298, 328, 371,

511, 610, 611, 621, 656
abort_handler_s, 512, 656
abs, 194, 375, 511
acos, 215, 245, 246, 391, 486, 533, 540,

579
acosd128, 218, 246, 491
acosd32, 218, 245, 491
acosd64, 218, 246, 491
acosf, 215, 245, 486
acosh, 250, 251, 391, 486, 533, 542
acoshd128, 250, 491
acoshd32, 250, 491
acoshd64, 250, 491
acoshf, 250, 393, 486
acoshl, 250, 486
acosl, 215, 245, 486, 579
acospi, 248, 486, 533, 541
acospid128, 248, 491
acospid32, 248, 491
acospid64, 248, 491
acospif, 248, 486
acospil, 248, 486
aligned_alloc, 368, 369, 370, 511, 604,

613, 621, 693

asctime, 188, 189, 409, 410, 515, 615
asctime_s, 516, 669, 670
asin, 246, 391, 486, 533, 540, 567
asind128, 246, 491
asind32, 246, 491
asind64, 246, 491
asinf, 246, 486
asinh, 251, 391, 486, 533, 542, 567
asinhd128, 251, 491
asinhd32, 251, 491
asinhd64, 251, 491
asinhf, 251, 486
asinhl, 251, 486
asinl, 246, 486
asinpi, 248, 486, 533, 541
asinpid128, 248, 491
asinpid32, 248, 491
asinpid64, 248, 491
asinpif, 248, 486
asinpil, 248, 486
at_quick_exit, 371, 372, 373, 511, 604,

613, 693
atan, 246, 340, 391, 426, 486, 533, 540,

567
atan2, 246, 247, 486, 533, 539, 540, 541,

561
atan2d128, 247, 491
atan2d32, 247, 491
atan2d64, 247, 491
atan2f, 246, 486
atan2l, 246, 486
atan2pi, 249, 486, 533, 539, 541
atan2pid128, 249, 491
atan2pid32, 249, 491
atan2pid64, 249, 491
atan2pif, 249, 486
atan2pil, 249, 486
atand128, 246, 491
atand32, 246, 491
atand64, 246, 491
atanf, 246, 486
atanh, 251, 391, 486, 533, 542, 567
atanhd128, 251, 491
atanhd32, 251, 491
atanhd64, 251, 491
atanhf, 251, 486
atanhl, 251, 486
atanl, 246, 393, 486
atanpi, 248, 249, 486, 533, 541
atanpid128, 249, 491
atanpid32, 249, 491
atanpid64, 249, 491
atanpif, 249, 486
atanpil, 249, 486
atexit, 371, 372, 373, 511, 604, 613, 623
atof, 215, 360, 361, 511

© ISO/IEC 202y — All rights reserved

Index — 724

ISO/IEC 9899:202y (en) — n3299 working draft

atoi, 195, 360, 361, 511
atol, 360, 361, 511
atoll, 360, 361, 511
atomic_compare_exchange_strong,

79, 94, 95, 304, 305, 506
atomic_compare_exchange_strong_explicit

,
304, 506

atomic_compare_exchange_weak,
304, 306, 506

atomic_compare_exchange_weak_explicit
,

304, 506
atomic_exchange, 304, 506
atomic_exchange_explicit, 304, 506
atomic_fetch_, 306, 506
atomic_flag_clear, 307, 506
atomic_flag_clear_explicit, 307,

506
atomic_flag_test_and_set, 307, 506
atomic_flag_test_and_set_explicit,

307, 506
atomic_init, 298, 506
atomic_is_lock_free, 290, 302, 506,

610
atomic_load, 304, 306, 506
atomic_load_explicit, 300, 301, 304,

506
atomic_signal_fence, 302, 506
atomic_store, 304, 506
atomic_store_explicit, 300, 301,

304, 506
atomic_thread_fence, 150, 301, 302,

506
btowc, 425, 426, 451, 517
c16rtomb, 417, 418, 516
c32rtomb, 419, 516
c8rtomb, 416, 516, 691
cabs, 202, 390, 391, 481, 561
cabsf, 202, 393, 481
cabsl, 202, 481
cacos, 198, 199, 391, 480, 562
cacosf, 198, 480
cacosh, 200, 391, 480, 562, 563
cacoshf, 200, 480
cacoshl, 200, 480
cacosl, 198, 480
cacospi, 462
call_once, 360, 395, 396, 511, 515, 692
calloc, 368, 369, 370, 511, 604, 613, 621
canonicalize, 25, 273, 391, 489, 529,

552
canonicalized128, 273, 495
canonicalized32, 273, 495
canonicalized64, 273, 495
canonicalizef, 273, 489
canonicalizel, 273, 489

carg, 203, 393, 481, 561, 567, 598
cargf, 203, 481
cargl, 203, 481
casin, 199, 391, 480, 561
casinf, 199, 480
casinh, 200, 391, 480, 561, 563
casinhf, 200, 480
casinhl, 200, 480
casinl, 199, 480
casinpi, 462
catan, 199, 391, 480, 561
catanf, 199, 480
catanh, 200, 201, 391, 480, 561, 563
catanhf, 201, 480
catanhl, 201, 480
catanl, 199, 480
catanpi, 462
cbrt, 75, 260, 392, 488, 545
cbrtd128, 260, 493
cbrtd32, 260, 493
cbrtd64, 260, 493
cbrtf, 75, 260, 392, 488
cbrtl, 75, 260, 392, 488
ccompoundn, 462
ccos, 199, 391, 480, 561
ccosf, 199, 480
ccosf64x, 600
ccosh, 201, 391, 480, 561, 564
ccoshf, 201, 480
ccoshl, 201, 480
ccosl, 199, 480
ccospi, 462
ceil, 239, 265, 488, 527, 548, 549, 550
ceild128, 35, 265, 493
ceild32, 35, 265, 493
ceild64, 35, 265, 493
ceilf, 265, 488
ceill, 265, 269, 488
cerf, 462
cerfc, 462
cexp, 201, 202, 391, 480, 565, 566
cexp10, 462
cexp10m1, 462
cexp2, 462
cexp2m1, 462
cexpf, 202, 480
cexpl, 202, 480
cexpm1, 462
cimag, 203, 204, 205, 481, 559–561, 567,

598
cimagf, 203, 481
cimagl, 203, 393, 481
clearerr, 358, 510
clgamma, 462
clock, 405, 406, 409, 515, 621
clog, 202, 391, 481, 566

© ISO/IEC 202y — All rights reserved

Index — 725

ISO/IEC 9899:202y (en) — n3299 working draft

clog10, 462
clog10p1, 462
clog1p, 462
clog2, 462
clog2p1, 462
clogf, 202, 393, 481
clogl, 202, 481
clogp1, 462
cnd_broadcast, 396, 397, 398, 515
cnd_destroy, 397, 515
cnd_init, 397, 515
cnd_signal, 397, 398, 515
cnd_timedwait, 397, 398, 515
cnd_wait, 397, 398, 515
compoundn, 260, 488, 532, 546
compoundnd128, 260, 493
compoundnd32, 260, 493
compoundnd64, 260, 493
compoundnf, 260, 488
compoundnl, 260, 488
conj, 204, 481, 561–566, 598
conjf, 204, 481
conjl, 204, 481
copysign, 204, 271, 489, 529, 545, 550,

551, 559, 560
copysignd128, 271, 494
copysignd32, 271, 494
copysignd64, 271, 494
copysignf, 271, 489
copysignl, 271, 393, 489
cos, 137, 247, 391, 486, 533, 541, 567
cosd128, 247, 491
cosd32, 247, 491
cosd64, 247, 491
cosf, 247, 486
cosh, 251, 252, 391, 486, 533, 542, 567
coshd128, 251, 492
coshd32, 251, 492
coshd64, 251, 492
coshf, 251, 486
coshl, 251, 486
cosl, 247, 486
cospi, 249, 486, 533, 542
cospid128, 249, 491
cospid32, 249, 491
cospid64, 249, 491
cospif, 249, 486
cospil, 249, 486
cpow, 202, 203, 391, 481, 566
cpowf, 202, 481
cpowf128, 600
cpowl, 202, 393, 481
cpown, 462
cpowr, 462
cproj, 204, 481, 561, 598
cprojf, 204, 393, 481

cprojl, 204, 393, 481
creal, 203, 204, 205, 393, 481, 559–561,

567, 598
crealf, 205, 481
creall, 205, 481
crootn, 462
crsqrt, 462
csin, 199, 200, 391, 480, 561
csinf, 199, 480
csinh, 201, 391, 480, 561, 564
csinhf, 201, 480
csinhl, 201, 480
csinl, 199, 480
csinpi, 462
csqrt, 203, 391, 393, 481, 561, 566
csqrtf, 203, 481
csqrtl, 203, 481
ctan, 200, 391, 480, 561
ctanf, 200, 480
ctanh, 201, 391, 480, 561, 565
ctanhf, 201, 480
ctanhl, 201, 480
ctanl, 200, 480
ctanpi, 462
ctgamma, 462
ctime, 409, 410, 515
ctime_s, 516, 669, 670
d32addd128, 278, 495
d32addd64, 278, 495
d32divd128, 279, 495
d32divd64, 279, 393, 495
d32fmad128, 280, 495
d32fmad64, 280, 495
d32muld128, 279, 495
d32muld64, 279, 495
d32sqrtd128, 280, 495
d32sqrtd64, 280, 495
d32subd128, 279, 393, 495
d32subd64, 279, 495
d64addd128, 278, 393, 495
d64divd128, 279, 495
d64fmad128, 280, 393, 495
d64muld128, 279, 495
d64sqrtd128, 280, 495
d64subd128, 279, 495
daddl, 278, 393, 490, 528
ddivl, 279, 490, 528, 532, 600
decodebind128, 283, 496
decodebind32, 283, 496
decodebind64, 283, 390, 392, 496
decodedecd128, 283, 496
decodedecd32, 282, 496
decodedecd64, 283, 390, 392, 496
dfmal, 280, 393, 490, 528
difftime, 406, 407, 515
div, 137, 360, 375, 376, 511

© ISO/IEC 202y — All rights reserved

Index — 726

ISO/IEC 9899:202y (en) — n3299 working draft

dmull, 279, 490, 528
dsqrtl, 280, 490, 528
dsubl, 279, 490, 528, 600
encodebind128, 283, 496
encodebind32, 283, 496
encodebind64, 283, 390, 392, 496
encodedecd128, 282, 496
encodedecd32, 282, 496
encodedecd64, 282, 390, 392, 496
erf, 263, 264, 488, 548
erfc, 264, 488, 548
erfcd128, 264, 493
erfcd32, 264, 493
erfcd64, 264, 493
erfcf, 264, 488
erfcl, 264, 488
erfd128, 263, 493
erfd32, 263, 493
erfd64, 263, 493
erff, 263, 488
erfl, 263, 488
exp, 252, 253, 254, 306, 391, 393, 487,

532, 543
exp10, 253, 487, 532, 543
exp10d128, 253, 492
exp10d32, 253, 492
exp10d64, 253, 492
exp10f, 253, 487
exp10l, 253, 487
exp10m1, 253, 487, 532, 543
exp10m1d128, 253, 492
exp10m1d32, 253, 492
exp10m1d64, 253, 492
exp10m1f, 253, 487
exp10m1l, 253, 487
exp2, 253, 254, 487, 532, 543
exp2d128, 254, 492
exp2d32, 253, 492
exp2d64, 253, 492
exp2f, 253, 487
exp2l, 253, 487
exp2m1, 254, 487, 532, 543
exp2m1d128, 254, 492
exp2m1d32, 254, 492
exp2m1d64, 254, 492
exp2m1f, 254, 487
exp2m1l, 254, 487
expd128, 252, 492
expd32, 252, 492
expd64, 252, 393, 492
expf, 252, 487
expl, 252, 487
expm1, 254, 487, 532, 543
expm1d128, 254, 492
expm1d32, 254, 492
expm1d64, 254, 492

expm1f, 254, 487
expm1l, 254, 487
f32addf64, 600
f32addf64x, 600
f32fmaf32x, 600
f32mulf128, 600
f32mulf32x, 600
f32xsqrtf64x, 600
f64divf128, 600
f64divf64x, 600
fabs, 260, 261, 390, 391, 488, 529, 546,

550, 551, 560, 567
fabsd128, 261, 493
fabsd32, 260, 493
fabsd64, 261, 493
fabsf, 260, 488
fabsl, 260, 488
fadd, 278, 490, 528, 599
faddl, 278, 490, 528
fclose, 175, 331, 509
fdim, 273, 274, 489, 552
fdimd128, 274, 495
fdimd32, 274, 495
fdimd64, 274, 495
fdimf, 274, 489
fdiml, 274, 490
fdiv, 279, 393, 490, 528, 599
fdivl, 279, 490, 528
fe_dec_getround, 213, 221, 483, 532,

579
fe_dec_setround, 213, 217, 222, 483,

532, 579
feclearexcept, 95, 218, 220, 224, 483,

530, 550
fegetenv, 222, 223, 483, 531, 610
fegetexceptflag, 218, 219, 483, 530,

610, 619
fegetmode, 220, 221, 483, 530
fegetround, 212, 216, 220, 221, 222,

483, 530, 531, 545, 549, 579
feholdexcept, 94, 223, 224, 483, 531,

550, 610
feof, 347, 352, 358, 435, 510
feraiseexcept, 218, 219, 483, 536, 603,

619
ferror, 347, 352, 359, 435, 510
fesetenv, 214, 223, 483, 531, 610
fesetexcept, 219, 483, 530
fesetexceptflag, 218, 219, 483, 530,

610
fesetmode, 214, 220, 221, 483, 531
fesetround, 9, 25, 101, 212, 214, 216,

220, 221, 222, 483, 530, 531, 545, 549,
550, 579

fetestexcept, 218, 220, 483, 530, 550
fetestexceptflag, 219, 220, 483, 530

© ISO/IEC 202y — All rights reserved

Index — 727

ISO/IEC 9899:202y (en) — n3299 working draft

feupdateenv, 95, 214, 223, 224, 483,
531, 550, 610

fflush, 331, 332, 509, 612
ffma, 280, 490, 528, 599
ffmal, 280, 490, 528
fgetc, 326, 329, 352, 353, 355, 509
fgetpos, 327, 328, 356, 357, 510, 603,

613, 620
fgets, 326, 352, 353, 510, 613, 654
fgetwc, 326, 329, 434, 435, 436, 517
fgetws, 326, 435, 517, 613
floor, 239, 265, 488, 527, 549
floord128, 265, 493
floord32, 265, 493
floord64, 265, 493
floorf, 265, 488
floorl, 265, 488
fma, 240, 278, 490, 528, 553
fmad128, 278, 495
fmad32, 278, 495
fmad64, 278, 495
fmaf, 278, 490
fmal, 240, 278, 490
fmax, 274, 275, 490, 531, 552
fmaxd128, 274, 495
fmaxd32, 274, 495
fmaxd64, 274, 495
fmaxf, 274, 490
fmaximum, 275, 276, 490, 528, 552
fmaximum_mag, 275, 276, 277, 490, 528,

552
fmaximum_mag_num, 276, 277, 490, 528,

552, 553
fmaximum_mag_numd128, 277, 495
fmaximum_mag_numd32, 277, 495
fmaximum_mag_numd64, 277, 495
fmaximum_mag_numf, 277, 490
fmaximum_mag_numl, 277, 490
fmaximum_magd128, 276, 495
fmaximum_magd32, 276, 495
fmaximum_magd64, 276, 495
fmaximum_magf, 275, 490
fmaximum_magl, 276, 490
fmaximum_num, 275, 276, 490, 528, 531,

552, 553, 560
fmaximum_numd128, 276, 495
fmaximum_numd32, 276, 495
fmaximum_numd64, 276, 495
fmaximum_numf, 276, 490
fmaximum_numl, 276, 490
fmaximumd128, 275, 393, 495
fmaximumd32, 275, 495
fmaximumd64, 275, 495
fmaximumf, 275, 490
fmaximuml, 275, 490
fmaxl, 274, 490

fmin, 274, 275, 490, 531, 552
fmind128, 274, 495
fmind32, 274, 495
fmind64, 274, 495
fminf, 274, 490
fminimum, 275, 276, 277, 490, 528, 552
fminimum_mag, 276, 278, 490, 528, 552
fminimum_mag_num, 276, 277, 278, 490,

528, 552, 553
fminimum_mag_numd128, 277, 495
fminimum_mag_numd32, 277, 495
fminimum_mag_numd64, 277, 495
fminimum_mag_numf, 277, 490
fminimum_mag_numl, 277, 490
fminimum_magd128, 276, 495
fminimum_magd32, 276, 495
fminimum_magd64, 276, 495
fminimum_magf, 276, 490
fminimum_magl, 276, 490
fminimum_num, 275, 276, 277, 490, 528,

531, 552, 553
fminimum_numd128, 277, 495
fminimum_numd32, 277, 495
fminimum_numd64, 277, 495
fminimum_numf, 277, 490
fminimum_numl, 277, 490
fminimumd128, 275, 495
fminimumd32, 275, 495
fminimumd64, 275, 495
fminimumf, 275, 490
fminimuml, 275, 490
fminl, 274, 490
fmod, 269, 270, 489, 550, 551, 619
fmodd128, 270, 494
fmodd32, 270, 494
fmodd64, 270, 494
fmodf, 269, 489
fmodl, 270, 489
fmul, 279, 490, 528, 599
fmull, 279, 490, 528
fopen, 175, 329, 330, 331, 332, 333, 509,

612, 624, 644
fopen_s, 510, 643, 644, 645
fprintf_s, 510, 646
fputc, 21, 326, 329, 353, 354, 356, 510
fputs, 185, 326, 353, 510
fputwc, 326, 329, 435, 437, 517
fputws, 326, 435, 436, 517
fread, 173, 175, 326, 355, 510, 613
free, 369, 370, 371, 383, 511, 613, 689
free_aligned_sized, 370, 511, 693
free_sized, 369, 370, 511, 693
freopen, 327, 328, 333, 509
freopen_s, 510, 645, 646
frexp, 254, 255, 487, 543, 592, 603, 604
frexpd128, 255, 492

© ISO/IEC 202y — All rights reserved

Index — 728

ISO/IEC 9899:202y (en) — n3299 working draft

frexpd32, 255, 492
frexpd64, 255, 492
frexpf, 254, 487
frexpl, 254, 487
fromfp, 240, 268, 269, 489, 529, 533, 550
fromfpd128, 268, 494
fromfpd32, 268, 494
fromfpd64, 268, 494
fromfpf, 268, 489
fromfpl, 268, 489
fromfpx, 240, 269, 489, 529, 533, 550
fromfpxd128, 269, 494
fromfpxd32, 269, 494
fromfpxd64, 269, 494
fromfpxf, 269, 489
fromfpxl, 269, 489
fscanf, 226, 227, 326, 342, 346–350, 463,

510, 620, 646
fscanf_s, 510, 646, 647, 648, 650, 651
fseek, 326, 329, 332, 355, 356, 357, 358,

437, 510, 613
fsetpos, 327, 328, 332, 355, 356, 357,

437, 510, 613, 620
fsqrt, 280, 490, 528, 599
fsqrtl, 280, 490, 528
fsub, 279, 490, 528, 599
fsubl, 279, 393, 490, 528, 600
ftell, 356, 357, 510, 603, 613, 620
fwide, 327, 328, 436, 517
fwprintf, 226, 326, 421, 426, 430–432,

434, 464, 516, 615, 620, 672
fwprintf_s, 518, 671, 672
fwrite, 326, 355, 356, 510, 613
fwscanf, 226, 326, 427, 430–432, 434,

437, 464, 516, 620, 672
fwscanf_s, 518, 672, 674, 675, 679
getc, 326, 353, 354, 510
getchar, 16, 326, 354, 510
getenv, 372, 373, 511, 613, 616
getenv_s, 512, 656, 657
getpayload, 496, 528, 554, 555
getpayloadd128, 497, 554
getpayloadd32, 497, 554
getpayloadd64, 497, 554
getpayloadf, 496, 554
getpayloadl, 496, 554
gets_s, 510, 654
getwc, 326, 436, 517
getwchar, 326, 436, 437, 517
gmtime, 409, 410, 411, 515
gmtime_r, 411, 516, 691
gmtime_s, 516, 670, 671
hypot, 261, 488, 527, 532, 546, 561
hypotd128, 261, 493
hypotd32, 261, 493
hypotd64, 261, 493

hypotf, 261, 488
hypotl, 261, 488
ignore_handler_s, 512, 656
ilogb, 240, 255, 487, 528, 544, 603
ilogbd128, 255, 492
ilogbd32, 255, 492
ilogbd64, 255, 492
ilogbf, 255, 487
ilogbl, 255, 487
imaxabs, 227, 484
imaxdiv, 226, 227, 484
isalnum, 206, 208, 482
isalpha, 206, 456, 482, 622
isblank, 206, 207, 482, 622
iscntrl, 206, 207, 208, 482
isdigit, 206, 207, 208, 232, 482
isgraph, 207, 456, 482
islower, 4, 206, 207, 208, 209, 482, 622
isprint, 21, 207, 482
ispunct, 206, 207, 208, 482, 622
isspace, 192, 206, 207, 208, 482, 622
isupper, 206, 208, 209, 482, 622
iswalnum, 457, 458, 459, 519
iswalpha, 456, 457, 459, 519, 622
iswblank, 457, 459, 519, 622
iswcntrl, 457, 458, 459, 519
iswctype, 459, 460, 519, 615, 622
iswdigit, 457, 458, 459, 519
iswgraph, 456, 458, 459, 519
iswlower, 457, 458, 459, 460, 519, 622
iswprint, 456, 458, 459, 519
iswpunct, 456, 457, 458, 459, 519, 622
iswspace, 192, 456, 457, 458, 459, 519,

622
iswupper, 457, 458, 459, 460, 519, 622
iswxdigit, 459, 519
isxdigit, 208, 232, 482
labs, 375, 511
ldexp, 255, 256, 487, 544, 592
ldexpd128, 255, 492
ldexpd32, 255, 492
ldexpd64, 255, 492
ldexpf, 255, 487
ldexpl, 255, 487
ldiv, 137, 360, 375, 376, 511
lgamma, 264, 488, 548
lgammad128, 264, 493
lgammad32, 264, 493
lgammad64, 264, 493
lgammaf, 264, 488
lgammal, 264, 488
llabs, 375, 511
lldiv, 137, 360, 375, 376, 511
llogb, 241, 256, 487, 528, 544
llogbd128, 256, 492
llogbd32, 256, 492

© ISO/IEC 202y — All rights reserved

Index — 729

ISO/IEC 9899:202y (en) — n3299 working draft

llogbd64, 256, 492
llogbf, 256, 487
llogbl, 256, 487
llquantexpd128, 282, 496
llquantexpd32, 282, 496
llquantexpd64, 282, 496
llrint, 266, 488, 533, 549, 550, 604
llrintd128, 266, 494
llrintd32, 266, 494
llrintd64, 266, 494
llrintf, 266, 489
llrintl, 266, 489
llround, 267, 489, 529, 550, 604
llroundd128, 267, 494
llroundd32, 267, 494
llroundd64, 267, 494
llroundf, 267, 489
llroundl, 267, 489
localeconv, 232, 235, 485, 610
localtime, 407, 409, 410, 411, 516
localtime_r, 411, 516, 691
localtime_s, 516, 670, 671
log, 241, 256, 258, 391, 487, 532, 544
log10, 256, 257, 487, 532, 544
log10d128, 257, 492
log10d32, 257, 492
log10d64, 257, 492
log10f, 257, 487
log10l, 257, 487
log10p1, 257, 258, 487, 532, 544
log10p1d128, 257, 492
log10p1d32, 257, 492
log10p1d64, 257, 492
log10p1f, 257, 487
log10p1l, 257, 487
log1p, 257, 258, 487, 532, 544
log1pd128, 257, 492
log1pd32, 257, 492
log1pd64, 257, 492
log1pf, 257, 487
log1pl, 257, 487
log2, 258, 487, 532, 544
log2d128, 258, 492
log2d32, 258, 492
log2d64, 258, 492
log2f, 258, 487
log2l, 258, 487
log2p1, 258, 487, 532, 545
log2p1d128, 258, 492
log2p1d32, 258, 492
log2p1d64, 258, 492
log2p1f, 258, 487
log2p1l, 258, 487
logb, 255, 256, 258, 259, 487, 528, 543,

545, 560, 592
logbd128, 259, 493

logbd32, 259, 492
logbd64, 259, 493
logbf, 258, 487
logbl, 259, 487
logd128, 256, 492
logd32, 256, 492
logd64, 256, 492
logf, 256, 487
logl, 256, 487
logp1, 257, 258, 487, 532, 544
logp1d128, 257, 492
logp1d32, 257, 492
logp1d64, 257, 492
logp1f, 257, 487
logp1l, 257, 487
longjmp, 287, 288, 372, 373, 505, 610,

613, 689
lrint, 266, 488, 533, 549, 550, 604
lrintd128, 266, 494
lrintd32, 266, 494
lrintd64, 266, 494
lrintf, 266, 488
lrintl, 266, 488
lround, 267, 489, 529, 550, 604
lroundd128, 267, 494
lroundd32, 267, 494
lroundd64, 267, 494
lroundf, 267, 489
lroundl, 267, 489
mblen, 376, 452, 511
mbrlen, 452, 517
mbrtoc16, 416, 417, 516
mbrtoc32, 418, 516
mbrtoc8, 415, 416, 516, 691
mbrtowc, 329, 345, 425, 426, 451, 452,

453, 454, 517, 660, 686
mbsinit, 451, 452, 517
mbsrtowcs, 451, 454, 518, 685
mbsrtowcs_s, 519, 685, 686
mbstowcs, 69, 377, 378, 438, 454, 511
mbstowcs_s, 513, 660, 661
mbtowc, 67, 376, 377, 378, 452, 511
memalignment, 9, 378, 511, 692
memccpy, 381, 513, 691
memcmp, 43, 175, 305, 384, 513
memcpy, 43, 73, 172, 195, 298, 305, 381,

513, 529
memcpy_s, 513, 662
memmove, 73, 381, 382, 513, 529, 609
memmove_s, 513, 662, 663
memset, 298, 388, 513, 667
memset_explicit, 388, 513, 692
memset_s, 514, 667
mktime, 407, 515
modf, 259, 390, 391, 487, 545
modfd128, 259, 493

© ISO/IEC 202y — All rights reserved

Index — 730

ISO/IEC 9899:202y (en) — n3299 working draft

modfd32, 259, 493
modfd64, 259, 493
modff, 259, 487
modfl, 259, 487
mtx_destroy, 398, 515
mtx_init, 395, 396, 398, 399, 515
mtx_lock, 399, 515, 614
mtx_timedlock, 399, 515, 614
mtx_trylock, 399, 400, 515
mtx_unlock, 399, 400, 515, 614
nan, 271, 337, 424, 489, 527, 551
nand128, 271, 494
nand32, 271, 494
nand64, 271, 494
nanf, 271, 489
nanl, 271, 489
nearbyint, 265, 266, 488, 531, 533, 545,

549
nearbyintd128, 266, 494
nearbyintd32, 266, 493
nearbyintd64, 266, 493
nearbyintf, 265, 488
nearbyintl, 265, 488
nextafter, 271, 272, 393, 489, 531, 551
nextafterd128, 272, 494
nextafterd32, 271, 494
nextafterd64, 271, 494
nextafterf, 271, 489
nextafterl, 271, 489
nextdown, 273, 489, 528, 552
nextdownd128, 273, 494
nextdownd32, 273, 494
nextdownd64, 273, 494
nextdownf, 273, 489
nextdownl, 273, 489
nexttoward, 272, 489, 531, 551
nexttowardd128, 272, 494
nexttowardd32, 272, 494
nexttowardd64, 272, 494
nexttowardf, 272, 393, 489
nexttowardl, 272, 489
nextup, 272, 273, 489, 528, 552
nextupd128, 272, 494
nextupd32, 272, 494
nextupd64, 272, 494
nextupf, 272, 489
nextupl, 272, 489
perror, 359, 510
pow, 261, 391, 488, 533, 546, 600
powd128, 261, 493
powd32, 261, 493
powd64, 261, 393, 493
powf, 261, 488
powf32x, 600
powf64, 600
powl, 261, 488, 531

pown, 261, 262, 488, 532, 547
pownd128, 262, 493
pownd32, 262, 493
pownd64, 262, 493
pownf, 261, 488
pownl, 262, 488
powr, 262, 488, 533, 547
powrd128, 262, 493
powrd32, 262, 493
powrd64, 262, 493
powrf, 262, 488
powrl, 262, 488
printf_s, 510, 647, 648
puts, 186, 319, 326, 354, 510
putwc, 326, 437, 517
putwchar, 326, 437, 517
qsort, 374, 375, 511, 604
qsort_s, 512, 657, 658, 659
quantized128, 281, 495
quantized32, 281, 495
quantized64, 281, 495
quantumd128, 281, 496
quantumd32, 281, 496
quantumd64, 281, 496
quick_exit, 290, 371, 372, 373, 511,

604, 610, 613, 621, 693
raise, 289, 290, 291, 298, 371, 505, 610,

611
rand, 360, 367, 368, 511
realloc, 368, 369, 370, 371, 511, 604,

613, 621, 689, 693
remainder, 270, 393, 489, 528, 532, 551,

619
remainderd128, 270, 494
remainderd32, 270, 494
remainderd64, 270, 494
remainderf, 270, 489
remainderl, 270, 489
remove, 329, 330, 509, 620, 643
remquo, 270, 489, 528, 532, 551, 603, 619
remquof, 270, 489
remquol, 270, 489
rename, 330, 509, 620
rewind, 332, 355, 357, 358, 437, 510
rint, 266, 488, 528, 533, 549, 550
rintd128, 266, 494
rintd32, 266, 494
rintd64, 266, 494
rintf, 266, 488
rintl, 266, 488
rootn, 262, 263, 488, 532, 547
rootnd128, 262, 493
rootnd32, 262, 493
rootnd64, 262, 493
rootnf, 262, 488
rootnl, 262, 488

© ISO/IEC 202y — All rights reserved

Index — 731

ISO/IEC 9899:202y (en) — n3299 working draft

round, 239, 267, 489, 527, 549
roundd128, 267, 494
roundd32, 267, 494
roundd64, 267, 494
roundeven, 239, 267, 268, 489, 527, 550
roundevend128, 267, 494
roundevend32, 267, 494
roundevend64, 267, 494
roundevenf, 267, 489
roundevenl, 267, 489
roundf, 267, 489
roundl, 267, 489
rsqrt, 263, 488, 532, 548
rsqrtd128, 263, 493
rsqrtd32, 263, 493
rsqrtd64, 263, 493
rsqrtf, 263, 488
rsqrtl, 263, 488
samequantumd128, 281, 496
samequantumd32, 281, 495
samequantumd64, 281, 496
scalbln, 259, 260, 488, 528, 545, 592
scalblnd128, 259, 493
scalblnd32, 259, 493
scalblnd64, 259, 493
scalblnf, 259, 488
scalblnl, 259, 488
scalbn, 259, 260, 487, 528, 543, 544, 545,

560, 592
scalbnd128, 259, 493
scalbnd32, 259, 493
scalbnd64, 259, 493
scalbnf, 259, 487
scalbnl, 259, 487
scanf, 34, 215, 217, 326, 348, 349, 351,

509, 529, 693, 694
scanf_s, 510, 648, 652
set_constraint_handler_s, 512,

641, 655, 656
setbuf, 325, 328, 329, 331, 333, 509
setjmp, 194, 287, 288, 505, 603, 610, 689
setlocale, vii, 192, 231, 232, 235, 409,

485, 610, 619
setpayload, 496, 528, 555
setpayloadd128, 497, 555
setpayloadd32, 497, 555
setpayloadd64, 497, 555
setpayloadf, 496, 555
setpayloadl, 496, 555
setpayloadsig, 496, 528, 555
setpayloadsigd128, 497, 555
setpayloadsigd32, 497, 555
setpayloadsigd64, 497, 555
setpayloadsigf, 496, 555
setpayloadsigl, 496, 555

setvbuf, 325, 328, 329, 331, 333, 334,
509, 612

signal, 15, 16, 135, 289, 290, 372, 373,
505, 610, 611, 616, 620

sin, 78, 247, 391, 393, 486, 533, 541, 567
sind128, 247, 491
sind32, 247, 491
sind64, 247, 491
sinf, 247, 486
sinh, 252, 391, 486, 533, 542, 567
sinhd128, 252, 492
sinhd32, 252, 492
sinhd64, 252, 492
sinhf, 252, 486
sinhl, 252, 486
sinl, 247, 486
sinpi, 250, 486, 533, 542
sinpid128, 250, 491
sinpid32, 250, 491
sinpid64, 250, 491
sinpif, 250, 486
sinpil, 250, 486
snprintf, 349, 351, 361, 362, 410, 509,

648, 695
snprintf_s, 510, 648, 649
snwprintf_s, 518, 673, 674
sprintf, 349, 352, 509, 649
sprintf_s, 510, 649
sqrt, 152, 263, 391, 488, 528, 548, 553
sqrtd128, 263, 493
sqrtd32, 263, 393, 493
sqrtd64, 263, 493
sqrtf, 263, 488
sqrtl, 263, 488
srand, 367, 368, 511
sscanf, 347, 349, 352, 509
sscanf_s, 510, 650, 653
stdc_bit_ceil_uc, 315, 508
stdc_bit_ceil_ui, 315, 508
stdc_bit_ceil_ul, 315, 508
stdc_bit_ceil_us, 315, 508
stdc_bit_floor_uc, 315, 508
stdc_bit_floor_ui, 315, 508
stdc_bit_floor_ul, 315, 508
stdc_bit_floor_ull, 315, 508
stdc_bit_floor_us, 315, 508
stdc_bit_width_uc, 314, 508
stdc_bit_width_ui, 314, 508
stdc_bit_width_ul, 314, 508
stdc_bit_width_ull, 314, 508
stdc_bit_width_us, 314, 508
stdc_count_ones_uc, 313, 507
stdc_count_ones_ui, 313, 507
stdc_count_ones_ul, 313, 507
stdc_count_ones_ull, 313, 507
stdc_count_ones_us, 313, 507

© ISO/IEC 202y — All rights reserved

Index — 732

ISO/IEC 9899:202y (en) — n3299 working draft

stdc_count_zeros_uc, 313, 507
stdc_count_zeros_ui, 313, 507
stdc_count_zeros_ul, 313, 507
stdc_count_zeros_ull, 313, 507
stdc_count_zeros_us, 313, 507
stdc_first_leading_one_uc, 311,

507
stdc_first_leading_one_ui, 311,

507
stdc_first_leading_one_ul, 311,

507
stdc_first_leading_one_ull, 311,

507
stdc_first_leading_one_us, 311,

507
stdc_first_leading_zero_uc, 311,

507
stdc_first_leading_zero_ui, 311,

507
stdc_first_leading_zero_ul, 311,

507
stdc_first_leading_zero_ull, 311,

507
stdc_first_leading_zero_us, 311,

507
stdc_first_trailing_one_uc, 312,

507
stdc_first_trailing_one_ui, 312,

507
stdc_first_trailing_one_ul, 312,

507
stdc_first_trailing_one_ull, 312,

507
stdc_first_trailing_one_us, 312,

507
stdc_first_trailing_zero_uc, 312,

507
stdc_first_trailing_zero_ui, 312,

507
stdc_first_trailing_zero_ul, 312,

507
stdc_first_trailing_zero_ull,

312, 507
stdc_first_trailing_zero_us, 312,

507
stdc_has_single_bit_uc, 314, 507
stdc_has_single_bit_ui, 314, 507
stdc_has_single_bit_ul, 314, 507
stdc_has_single_bit_ull, 314, 508
stdc_has_single_bit_us, 314, 507
stdc_leading_ones_uc, 309, 506
stdc_leading_ones_ui, 309, 506
stdc_leading_ones_ul, 309, 506
stdc_leading_ones_ull, 309, 506
stdc_leading_ones_us, 309, 506
stdc_leading_zeros_uc, 309, 506

stdc_leading_zeros_ui, 309, 506
stdc_leading_zeros_ul, 309, 506
stdc_leading_zeros_ull, 309, 506
stdc_leading_zeros_us, 309, 506
stdc_trailing_ones_uc, 310, 507
stdc_trailing_ones_ui, 310, 507
stdc_trailing_ones_ul, 310, 507
stdc_trailing_ones_ull, 310, 507
stdc_trailing_ones_us, 310, 507
stdc_trailing_zeros_uc, 310, 506
stdc_trailing_zeros_ui, 310, 506
stdc_trailing_zeros_ul, 310, 506
stdc_trailing_zeros_ull, 310, 506
stdc_trailing_zeros_us, 310, 506
strcat, 383, 513
strcat_s, 513, 664, 665
strcmp, 384, 385, 513
strcoll, 9, 232, 384, 385, 513
strcpy, 177–179, 347, 382, 513
strcpy_s, 513, 663
strcspn, 386, 513
strdup, 9, 382, 383, 513, 691
strerror, 9, 359, 388, 389, 513, 613, 614,

622
strerror_s, 389, 514, 667, 668
strerrorlen_s, 514, 668
strfromd, 361, 362, 438, 511, 529
strfromd128, 362, 512
strfromd32, 362, 512
strfromd64, 362, 512
strfromencf128, 595, 596
strfromf, 361, 362, 438, 511
strfroml, 361, 362, 511
strftime, 232, 409, 411, 414, 450, 516,

604, 612, 614, 621, 669, 670, 691, 695
strlen, 383, 389, 513
strncat, 383, 513
strncat_s, 513, 665, 666
strncmp, 185, 384, 385, 513
strncpy, 382, 513
strncpy_s, 513, 663, 664
strndup, 9, 383, 513, 691
strnlen_s, 514, 663–665, 668
strspn, 387, 513
strtod, 64, 271, 343, 344, 348, 361, 362,

438, 511, 529, 534, 535, 603, 620
strtod128, 364, 512, 596, 620, 621
strtod32, 364, 512, 620, 621
strtod64, 364, 365, 512, 620, 621
strtof, 271, 348, 361, 362, 511, 603, 620
strtoimax, 227, 228, 484
strtok, 9, 387, 388, 513, 614
strtok_s, 388, 514, 666, 667
strtol, 228, 343, 344, 348, 361, 366, 367,

511

© ISO/IEC 202y — All rights reserved

Index — 733

ISO/IEC 9899:202y (en) — n3299 working draft

strtold, 271, 348, 361, 362, 511, 603,
620

strtoll, 228, 348, 361, 366, 367, 511
strtoul, 228, 344, 348, 361, 366, 367,

511
strtoull, 228, 348, 361, 366, 367, 511
strtoumax, 227, 228, 484
strxfrm, 9, 232, 385, 513, 614
swprintf, 431, 433, 516, 673, 674
swprintf_s, 518, 673, 674
swscanf, 431, 432, 433, 516
swscanf_s, 518, 674, 677
system, 373, 374, 511, 614, 616, 621
tan, 247, 248, 391, 486, 533, 541, 567
tand128, 248, 491
tand32, 248, 491
tand64, 248, 491
tanf, 247, 486
tanh, 252, 391, 486, 533, 543, 567
tanhd128, 252, 492
tanhd32, 252, 492
tanhd64, 252, 492
tanhf, 252, 486
tanhl, 252, 487
tanl, 247, 486
tanpi, 250, 486, 533, 542
tanpid128, 250, 491
tanpid32, 250, 491
tanpid64, 250, 491
tanpif, 250, 486
tanpil, 250, 486
tgamma, 264, 265, 488, 548
tgammad128, 265, 493
tgammad32, 264, 493
tgammad64, 264, 493
tgammaf, 264, 488
tgammal, 264, 488
thrd_create, 395, 400, 515
thrd_current, 400, 515
thrd_detach, 401, 515, 614
thrd_equal, 401, 515
thrd_exit, 400, 401, 515, 604
thrd_join, 401, 402, 515, 614
thrd_sleep, 402, 515
thrd_yield, 402, 515
time, 407, 408, 515, 604
timegm, 407, 408, 515, 693
timespec_get, 405, 408, 409, 515
timespec_getres, 405, 409, 515, 693
tmpfile, 330, 372, 509
tmpfile_s, 510, 643, 644
tmpnam, 326, 330, 331, 509, 644
tmpnam_s, 510, 642, 643, 644
tolower, 208, 482
totalorder, 496, 530, 553, 554
totalorderd128, 496, 553

totalorderd32, 496, 553
totalorderd64, 496, 553
totalorderf, 496, 553
totalorderl, 496, 553
totalordermag, 496, 530, 554
totalordermagd128, 497, 554
totalordermagd32, 497, 554
totalordermagd64, 497, 554
totalordermagf, 496, 554
totalordermagl, 496, 554
toupper, 208, 209, 482
towctrans, 460, 461, 519, 615, 622
towlower, 460, 461, 519
towupper, 460, 461, 519
trunc, 239, 268, 489, 527, 550
truncd128, 268, 494
truncd32, 268, 494
truncd64, 268, 494
truncf, 268, 489
truncl, 268, 489
tss_create, 402, 403, 515, 614, 615
tss_delete, 403, 515, 604, 615
tss_get, 403, 515, 615
tss_set, 403, 404, 515, 615
ufromfp, 240, 268, 269, 489, 529, 533,

550
ufromfpd128, 268, 494
ufromfpd32, 268, 494
ufromfpd64, 268, 494
ufromfpf, 268, 489
ufromfpl, 268, 489
ufromfpx, 240, 269, 489, 529, 533, 550
ufromfpxd128, 269, 494
ufromfpxd32, 269, 494
ufromfpxd64, 269, 494
ufromfpxf, 269, 489
ufromfpxl, 269, 489
ungetc, 326, 354, 355, 357, 463, 510, 603,

613, 624, 695
ungetwc, 326, 437, 438, 517, 603, 624
va_arg, 226, 293, 294–296, 339, 350–352,

426, 432–434, 505, 611, 651–653, 675,
677, 678

va_copy, 194, 293, 294, 296, 505, 603,
611, 695

va_end, 194, 293, 294, 295, 296, 350–352,
432–434, 505, 603, 611, 613, 651–653,
675, 677, 678

va_start, 293, 294, 295, 296, 350–352,
432–434, 505, 611, 651–653, 675, 677,
678, 692

vfprintf, 326, 350, 509, 613, 650
vfprintf_s, 510, 650, 651–653
vfscanf, 326, 350, 509, 613
vfscanf_s, 510, 651, 652, 653
vfwprintf, 326, 432, 516, 613, 675

© ISO/IEC 202y — All rights reserved

Index — 734

ISO/IEC 9899:202y (en) — n3299 working draft

vfwprintf_s, 518, 674, 675
vfwscanf, 326, 432, 433, 437, 516, 613
vfwscanf_s, 518, 675, 677, 678
vprintf, 326, 350, 351, 509, 613, 651
vprintf_s, 510, 651, 652, 653
vscanf, 326, 350, 351, 509, 613, 694
vscanf_s, 510, 651, 652–654
vsnprintf, 350, 351, 509, 613, 652
vsnprintf_s, 510, 651, 652, 653
vsnwprintf_s, 518, 675, 676
vsprintf, 350, 351, 352, 509, 613, 653
vsprintf_s, 510, 651, 652, 653
vsscanf, 350, 352, 509, 613
vsscanf_s, 510, 651, 652, 653, 654
vswprintf, 432, 433, 517, 613, 676
vswprintf_s, 518, 676
vswscanf, 432, 433, 517, 613
vswscanf_s, 518, 675, 676, 677, 678
vwprintf, 326, 432, 433, 434, 517, 613,

677
vwprintf_s, 518, 677
vwscanf, 326, 432, 434, 437, 517, 613
vwscanf_s, 518, 675, 677, 678
wcrtomb, 329, 338, 342, 348, 420, 429–

431, 453, 455, 517, 604, 661, 684, 687
wcrtomb_s, 519, 684, 685
wcscat, 444, 517
wcscat_s, 519, 681, 682
wcscmp, 444, 445, 517
wcscoll, 445, 517
wcscpy, 443, 517
wcscpy_s, 518, 679
wcscspn, 446, 447, 517
wcsftime, 232, 450, 517, 604, 612, 614,

621
wcslen, 444, 450, 517, 684
wcsncat, 444, 517
wcsncat_s, 519, 682, 683
wcsncmp, 445, 517
wcsncpy, 443, 517
wcsncpy_s, 518, 679, 680
wcsnlen_s, 519, 679–682, 684
wcsrtombs, 454, 455, 518, 685
wcsrtombs_s, 519, 685, 686, 687
wcsspn, 447, 517
wcstod, 427, 429, 431, 438, 517, 529, 603,

620
wcstod128, 438, 440, 518, 620, 621
wcstod32, 438, 440, 518, 620, 621
wcstod64, 438, 440, 518, 620, 621
wcstof, 431, 438, 517, 603, 620
wcstoimax, 228, 484
wcstok, 449, 517, 614, 615
wcstok_s, 519, 683, 684
wcstol, 228, 427, 429, 431, 442, 443, 517
wcstold, 431, 438, 517, 603, 620

wcstoll, 228, 431, 442, 443, 517
wcstombs, 378, 454, 511
wcstombs_s, 513, 661, 662
wcstoul, 228, 429, 431, 442, 443, 517
wcstoull, 228, 431, 442, 443, 517
wcstoumax, 228, 484
wcsxfrm, 445, 446, 517, 614
wctob, 451, 456, 517
wctomb, 376, 377, 378, 452, 511
wctomb_s, 513, 659, 660
wctrans, 460, 461, 519, 615
wctype, 459, 460, 519, 615
wmemcmp, 446, 517
wmemcpy, 443, 517
wmemcpy_s, 519, 680, 681
wmemmove, 443, 444, 517
wmemmove_s, 519, 681
wmemset, 450, 517
wprintf, 215, 217, 227, 326, 433, 434,

517, 529, 678
wprintf_s, 518, 678
wscanf, 215, 217, 326, 434, 437, 517, 529
wscanf_s, 518, 678, 679

future direction, 462
identifier
__VA_ARGS__, 179, 180, 181, 186, 694
__VA_OPT__, 179, 180–182, 692
__func__, 56, 57, 196, 606, 695
errno, 150, 194, 197, 210, 228, 241, 242,

290, 329, 356, 357, 359, 360, 364, 365,
367, 389, 416–419, 435, 440–443, 453–
455, 482, 610, 611, 619–621, 624, 641,
642, 667

identifier prefix
__STDC_, 191
__STDC_VERSION_, 193
ATOMIC_, 463
atomic_, 463
c, 390, 391
ckd_, 463
cnd_, 464
cr_, 463, 532, 540
d, 392
d128, 392
d32, 392
d64, 390, 392
DBL_, 462
DEC, 484
DEC128_, 30, 462
DEC32_, 30, 462
DEC64_, 30, 462
DEC_, 462
E, 210, 462
FE_, 212, 213, 462
FLT, 484
FLT_, 462

© ISO/IEC 202y — All rights reserved

Index — 735

ISO/IEC 9899:202y (en) — n3299 working draft

FP_, 239, 462
INT, 323, 324, 463, 509
int, 321, 322, 463, 509, 693
INT_FAST, 323, 509
int_fast, 322, 509, 693
INT_LEAST, 323, 509
int_least, 321, 322, 324, 509
is, 462–464
LC_, 231, 462
LDBL_, 462
llquantexpd, 282, 392
MATH_, 463
mem, 464
memory_, 463
memory_order_, 463
mtx_, 464
PRI, 226, 462
quantized, 280, 281, 392
quantumd, 281, 392
samequantumd, 281, 392
SCN, 226, 462
SIG, 289, 463
SIG_, 289, 463
stdc_, 463
str, 462–464
thrd_, 464
TIME_, 405, 464
to, 462, 464
tss_, 464
UINT, 323, 324, 463, 509
uint, 321, 322, 463, 509, 693
UINT_FAST, 323, 509
uint_fast, 322, 509, 693
UINT_LEAST, 323, 509
uint_least, 321, 322, 324, 509
wcs, 462–464

identifier suffix
_DECIMAL_DIG, 29, 339, 363, 426, 440,

533, 534
_r, 409
_C, 324, 463, 509
_H__, 193
_MAX, 24, 48, 323, 324, 463, 484, 509, 573
_MIN, 24, 323, 324, 463, 484, 509, 574
_WIDTH, 24, 323, 324, 463, 509
_explicit, 297, 306, 506
_t, 321, 322, 324, 463, 497, 509, 580, 581,

693
f, 197, 238, 390, 392, 462
l, 197, 238, 390, 392, 462

macro
_Complex_I, 197, 480, 561, 692
_IOFBF, 325, 333, 334, 509
_IOLBF, 325, 334, 509
_IONBF, 325, 333, 334, 509
_Imaginary_I, 197, 204, 480, 561, 692

_PRINTF_NAN_LEN_MAX, 326, 509
__DATE__, 188, 619
__FILE__, 170, 188, 196
__LINE__, 186, 187, 188, 196, 603
__STDC_ANALYZABLE__, 189, 688
__STDC_EMBED_EMPTY__, 168, 188
__STDC_EMBED_FOUND__, 168, 188
__STDC_EMBED_NOT_FOUND__, 167, 188
__STDC_ENDIAN_BIG__, 308, 309, 506
__STDC_ENDIAN_LITTLE__, 308, 309,

506
__STDC_ENDIAN_NATIVE__, 282–284,

308, 506, 592–594, 596–598, 620
__STDC_HOSTED__, 188
__STDC_IEC_60559_BFP__, 9, 24, 189,

190, 192, 496, 526, 553–555, 568–570
__STDC_IEC_60559_COMPLEX__, 24,

103, 189, 190, 192, 557
__STDC_IEC_60559_DFP__, 9, 30, 189,

190, 192, 217, 221, 222, 238, 245–268,
269, 270–272, 273, 274–278, 279, 280–
283, 362, 364, 393, 440, 483, 484, 490,
496, 512, 518, 524–526, 553–555, 568–
570

__STDC_IEC_60559_TYPES__, 189,
190, 192, 481, 484, 497, 512, 518, 568–
570

__STDC_ISO_10646__, 189, 616
__STDC_LIB_EXT1__, 190, 192, 482,

508–510, 512, 513, 516, 518, 640
__STDC_MB_MIGHT_NEQ_WC__, 46, 189,

318
__STDC_NO_ATOMICS__, 190, 297, 505
__STDC_NO_COMPLEX__, 190, 197, 480
__STDC_NO_THREADS__, 16, 190, 395,

515
__STDC_NO_VLA__, 190
__STDC_UTF_16__, 189
__STDC_UTF_32__, 189
__STDC_VERSION_ASSERT_H__, 196,

480
__STDC_VERSION_COMPLEX_H__, 197,

480
__STDC_VERSION_FENV_H__, 211, 482
__STDC_VERSION_FLOAT_H__, 225, 483
__STDC_VERSION_INTTYPES_H__, 226,

484
__STDC_VERSION_LIMITS_H__, 230,

485
__STDC_VERSION_MATH_H__, 238, 485
__STDC_VERSION_SETJMP_H__, 287,

505
__STDC_VERSION_STDARG_H__, 293,

505
__STDC_VERSION_STDATOMIC_H__,

297, 505

© ISO/IEC 202y — All rights reserved

Index — 736

ISO/IEC 9899:202y (en) — n3299 working draft

__STDC_VERSION_STDBIT_H__, 308,
506

__STDC_VERSION_STDCKDINT_H__,
317, 508

__STDC_VERSION_STDDEF_H__, 318,
508

__STDC_VERSION_STDINT_H__, 321,
509

__STDC_VERSION_STDIO_H__, 325, 509
__STDC_VERSION_STDLIB_H__, 360,

511
__STDC_VERSION_STRING_H__, 381,

513
__STDC_VERSION_TGMATH_H__, 390
__STDC_VERSION_TIME_H__, 405, 515
__STDC_VERSION_UCHAR_H__, 415, 516
__STDC_VERSION_WCHAR_H__, 420, 516
__STDC_VERSION__, 189, 690, 691, 693–

695
__STDC_WANT_IEC_60559_EXT__, 238,

483, 496, 533, 553–555
__STDC_WANT_IEC_60559_TYPES_EXT__,

481, 484, 497, 512, 518, 572, 577, 592–
594, 595, 596–598, 600

__STDC_WANT_LIB_EXT1__, 482, 508–
510, 512, 513, 516, 518, 640, 641, 643–
659, 662–684

__STDC__, 169, 188
__TIME__, 189, 619
__cplusplus, 169, 188
and, 229, 485
and_eq, 229, 485
assert, 146, 176, 178, 196, 222, 480, 609,

619
ATOMIC_BOOL_LOCK_FREE, 297, 505
ATOMIC_CHAR16_T_LOCK_FREE, 297,

505
ATOMIC_CHAR32_T_LOCK_FREE, 297,

505
ATOMIC_CHAR8_T_LOCK_FREE, 297, 505
ATOMIC_CHAR_LOCK_FREE, 297, 505
ATOMIC_FLAG_INIT, 297, 306, 307, 505
ATOMIC_INT_LOCK_FREE, 297, 505
ATOMIC_LLONG_LOCK_FREE, 297, 505
ATOMIC_LONG_LOCK_FREE, 297, 505
ATOMIC_POINTER_LOCK_FREE, 297, 505
ATOMIC_SHORT_LOCK_FREE, 297, 505
ATOMIC_WCHAR_T_LOCK_FREE, 297, 505
bitand, 229, 485
BITINT_MAXWIDTH, 23, 105, 485, 523,

692
bitor, 229, 485
BOOL_MAX, 485, 523
BOOL_WIDTH, 23, 485, 523
bsearch, 374, 375, 463, 511, 604, 614,

692

bsearch_s, 512, 657, 658
BUFSIZ, 325, 328, 333, 509
CHAR_BIT, 23, 43, 106, 172–174, 176,

485, 523
CHAR_MAX, 24, 233, 234, 485, 523
CHAR_MIN, 24, 41, 485, 523
CHAR_WIDTH, 23, 485, 523
ckd_add, 317, 508
ckd_mul, 317, 508
ckd_sub, 317, 508
CLOCKS_PER_SEC, 405, 406, 409, 515
CMPLX, 103, 197, 203, 204, 205, 481
CMPLXF, 203, 204, 481, 482, 578
CMPLXL, 204, 481
compl, 229, 485
complex, 140, 197–205, 393, 480–482,

559, 577, 578, 600, 604
CR_DECIMAL_DIG, 25, 484, 533, 534
d32add, 33, 217, 392
d32div, 33, 217, 392
d32fma, 34, 217, 392
d32mul, 33, 217, 392
d32sqrt, 33, 217, 392
d32sub, 33, 217, 392
d64add, 33, 217, 392
d64div, 33, 217, 392
d64fma, 34, 217, 392
d64mul, 33, 217, 392
d64sqrt, 33, 217, 392
d64sub, 33, 217, 392
dadd, 392, 599
DBL_DECIMAL_DIG, 27, 30, 483, 524
DBL_DIG, 28, 30, 483, 524
DBL_EPSILON, 29, 30, 483, 524
DBL_HAS_SUBNORM, 26, 30, 462, 483
DBL_IS_IEC_60559, 26, 30, 483
DBL_MANT_DIG, 27, 30, 103, 483, 524
DBL_MAX, 28, 30, 483, 524
DBL_MAX_10_EXP, 28, 30, 483, 524
DBL_MAX_EXP, 28, 30, 483, 524
DBL_MIN, 29, 30, 483, 524
DBL_MIN_10_EXP, 28, 30, 483, 524
DBL_MIN_EXP, 28, 30, 483, 524
DBL_NORM_MAX, 29, 483, 524
DBL_SNAN, 27, 102, 103, 483, 527
DBL_TRUE_MIN, 29, 30, 483
ddiv, 392, 599, 600
DEC128_EPSILON, 32, 525
DEC128_MANT_DIG, 31, 525
DEC128_MAX, 32, 525
DEC128_MAX_EXP, 32, 525
DEC128_MIN, 32, 525
DEC128_MIN_EXP, 31, 525
DEC128_SNAN, 31
DEC128_TRUE_MIN, 32, 525
DEC32_EPSILON, 32, 525

© ISO/IEC 202y — All rights reserved

Index — 737

ISO/IEC 9899:202y (en) — n3299 working draft

DEC32_MANT_DIG, 31, 525
DEC32_MAX, 32, 525
DEC32_MAX_EXP, 32, 525
DEC32_MIN, 32, 525
DEC32_MIN_EXP, 31, 525
DEC32_SNAN, 31, 103
DEC32_TRUE_MIN, 32, 525
DEC64_EPSILON, 32, 525
DEC64_MANT_DIG, 31, 525
DEC64_MAX, 32, 525
DEC64_MAX_EXP, 32, 525
DEC64_MIN, 32, 525
DEC64_MIN_EXP, 31, 525
DEC64_SNAN, 31, 103
DEC64_TRUE_MIN, 32, 101, 103, 525
DEC_EVAL_METHOD, 25, 30, 63, 96, 238,

484, 524, 556, 571, 580, 617, 619
DEC_INFINITY, 31, 103, 239, 281, 463,

484, 491
DEC_NAN, 31, 103, 239, 463, 484, 491
DECIMAL_DIG, 25, 28, 462, 483, 524, 691
dfma, 392, 599
dmul, 392, 599
dsqrt, 392, 599
dsub, 392, 599, 600
EDOM, 210, 241, 482
EILSEQ, 210, 329, 416–419, 435, 453–455,

482
EOF, 206, 325, 331, 346, 347, 349–355,

420, 430, 432–434, 436, 451, 509, 609,
647, 648, 650–652, 654, 672, 674, 675,
677–679

ERANGE, 210, 228, 241, 242, 364, 365, 367,
440–443, 482, 619–621

EXIT_FAILURE, 360, 372, 511
EXIT_SUCCESS, 360, 372, 401, 511
f32add, 600
f32fma, 600
f32mul, 600
f32xsqrt, 600
f64div, 600
FE_ALL_EXCEPT, 95, 212, 482
FE_DEC_DOWNWARD, 212, 217, 483, 532
FE_DEC_TONEAREST, 212, 213, 217, 483,

532
FE_DEC_TONEARESTFROMZERO, 212,

217, 483, 532
FE_DEC_TOWARDZERO, 212, 217, 483, 532
FE_DEC_UPWARD, 212, 217, 483, 532
FE_DFL_ENV, 213, 482
FE_DFL_MODE, 212, 221, 482, 531
FE_DIVBYZERO, 212, 241, 482
FE_DOWNWARD, 212, 482, 531
FE_INEXACT, 212, 218, 482, 550
FE_INVALID, 212, 220, 241, 482
FE_OVERFLOW, 212, 218, 220, 241, 482

FE_SNANS_ALWAYS_SIGNAL, 483, 527,
531, 549, 552

FE_TONEAREST, 152, 212, 482, 531
FE_TONEARESTFROMZERO, 212, 482, 531
FE_TOWARDZERO, 212, 482, 531, 545, 550
FE_UNDERFLOW, 212, 224, 482
FE_UPWARD, 9, 212, 482, 531, 549
FILENAME_MAX, 325, 509
FLT_DECIMAL_DIG, 27, 29, 30, 483, 524
FLT_DIG, 28, 29, 30, 483, 524
FLT_EPSILON, 29, 30, 483, 524
FLT_EVAL_METHOD, 25, 26, 29, 30, 94–96,

103, 238, 483, 524, 556, 571, 580, 617,
619

FLT_HAS_SUBNORM, 26, 30, 462, 483
FLT_IS_IEC_60559, 26, 30, 483
FLT_MANT_DIG, 27, 29, 30, 103, 483, 524
FLT_MAX, 28, 29, 30, 483, 524
FLT_MAX_10_EXP, 28, 29, 30, 483, 524
FLT_MAX_EXP, 28, 29, 30, 483, 524
FLT_MIN, 29, 30, 483, 524
FLT_MIN_10_EXP, 28, 29, 30, 483, 524
FLT_MIN_EXP, 28, 29, 30, 483, 524
FLT_NORM_MAX, 29, 483, 524
FLT_RADIX, 25, 27, 28–31, 62, 217, 222,

259, 260, 338, 339, 363, 424, 426, 439,
483, 524, 530, 571, 572, 580

FLT_ROUNDS, 25, 26, 212, 483, 523, 524,
527, 617

FLT_SNAN, 27, 102, 483, 527
FLT_TRUE_MIN, 29, 30, 483
FOPEN_MAX, 325, 329, 330, 509, 643
FP_FAST_D32ADDD128, 240, 491
FP_FAST_D32ADDD64, 240, 491
FP_FAST_D32DIVD128, 240, 491
FP_FAST_D32DIVD64, 240, 491
FP_FAST_D32FMAD128, 240, 491
FP_FAST_D32FMAD64, 240, 491
FP_FAST_D32MULD128, 240, 491
FP_FAST_D32MULD64, 240, 491
FP_FAST_D32SQRTD128, 240, 491
FP_FAST_D32SQRTD64, 240, 491
FP_FAST_D32SUBD128, 240, 491
FP_FAST_D32SUBD64, 240, 491
FP_FAST_D64ADDD128, 240, 491
FP_FAST_D64DIVD128, 240, 491
FP_FAST_D64FMAD128, 240, 491
FP_FAST_D64MULD128, 240, 491
FP_FAST_D64SQRTD128, 240, 491
FP_FAST_D64SUBD128, 240, 491
FP_FAST_DADDL, 240, 485, 581
FP_FAST_DDIVL, 240, 485
FP_FAST_DFMAL, 240, 485
FP_FAST_DMULL, 240, 485
FP_FAST_DSQRTL, 240, 485
FP_FAST_DSUBL, 240, 485

© ISO/IEC 202y — All rights reserved

Index — 738

ISO/IEC 9899:202y (en) — n3299 working draft

FP_FAST_FADD, 240, 485, 581
FP_FAST_FADDL, 240, 485, 581
FP_FAST_FDIV, 240, 485
FP_FAST_FDIVL, 240, 485
FP_FAST_FFMA, 240, 485
FP_FAST_FFMAL, 240, 485
FP_FAST_FMA, 240, 485, 581
FP_FAST_FMAD128, 240, 491
FP_FAST_FMAD32, 240, 491
FP_FAST_FMAD64, 240, 491
FP_FAST_FMAF, 240, 485, 497, 581
FP_FAST_FMAL, 240, 485
FP_FAST_FMUL, 240, 485
FP_FAST_FMULL, 240, 485
FP_FAST_FSQRT, 240, 485
FP_FAST_FSQRTL, 240, 485
FP_FAST_FSUB, 240, 485
FP_FAST_FSUBL, 240, 485
FP_ILOGB0, 240, 241, 255, 485
FP_ILOGBNAN, 240, 241, 255, 485
FP_INFINITE, 239, 485
FP_INT_DOWNWARD, 239, 485
FP_INT_TONEAREST, 239, 485
FP_INT_TONEARESTFROMZERO, 239, 485
FP_INT_TOWARDZERO, 239, 485
FP_INT_UPWARD, 239, 269, 485
FP_LLOGB0, 241, 256, 485
FP_LLOGBNAN, 241, 256, 485
FP_NAN, 239, 485
FP_NORMAL, 239, 485
FP_SUBNORMAL, 239, 485
FP_ZERO, 239, 485
fpclassify, 243, 485, 530, 531
HUGE_VAL, 238, 242, 364, 440, 485, 539
HUGE_VAL_D128, 239, 496
HUGE_VAL_D32, 239, 496
HUGE_VAL_D64, 239, 496
HUGE_VALF, 238, 242, 364, 440, 485, 539
HUGE_VALL, 238, 242, 364, 440, 485, 539
imaginary, 197, 480, 561
INFINITY, 27, 102, 103, 204, 239, 337,

362–365, 424, 439–441, 463, 483, 485,
527, 559, 560

INT_MAX, 24, 40, 104, 168, 240, 241, 255,
485, 523, 612

INT_MIN, 24, 40, 240, 241, 485, 523
INT_WIDTH, 23, 269, 485, 523
INTMAX_C, 324, 509
INTMAX_MAX, 228, 323, 509
INTMAX_MIN, 228, 323, 509
INTMAX_WIDTH, 323, 509
INTPTR_MAX, 323, 509
INTPTR_MIN, 323, 509
INTPTR_WIDTH, 323, 509
iscanonical, 25, 243, 485, 530, 531
iseqsig, 286, 490, 529, 556

isfinite, 243, 485, 530, 531, 543, 560
isgreater, 284, 490, 529, 530
isgreaterequal, 284, 285, 490, 530,

538, 552
isinf, 243, 244, 485, 530, 531, 545, 559,

560
isless, 285, 490, 530, 538, 539
islessequal, 285, 490, 530
islessgreater, 285, 490
isnan, 244, 485, 530, 531, 552, 559, 560
isnormal, 244, 485, 530, 531
issignaling, 245, 485, 530, 531
issubnormal, 245, 486, 530, 531
isunordered, 285, 286, 490, 530
iszero, 245, 486, 530, 531
kill_dependency, 17, 301, 506
L_tmpnam, 326, 331, 509
L_tmpnam_s, 510, 642, 643
LC_ALL, 231, 232, 235, 485
LC_COLLATE, 231, 232, 384, 445, 485
LC_CTYPE, 231, 232, 360, 376, 377, 451,

456, 459–461, 485, 614, 615, 659, 660
LC_MONETARY, 231, 232, 235, 485
LC_NUMERIC, 231, 232, 235, 485
LC_TIME, 231, 232, 409, 411, 485
LDBL_DECIMAL_DIG, 27, 462, 483, 524
LDBL_DIG, 28, 483, 524
LDBL_EPSILON, 29, 483, 524
LDBL_HAS_SUBNORM, 26, 462, 483
LDBL_IS_IEC_60559, 26, 483
LDBL_MANT_DIG, 27, 483, 524
LDBL_MAX, 28, 483, 524
LDBL_MAX_10_EXP, 28, 483, 524
LDBL_MAX_EXP, 28, 483, 524
LDBL_MIN, 29, 483, 524
LDBL_MIN_10_EXP, 28, 483, 524
LDBL_MIN_EXP, 28, 483, 524
LDBL_NORM_MAX, 29, 483, 524
LDBL_SNAN, 27, 483, 527
LDBL_TRUE_MIN, 29, 483
LLONG_MAX, 24, 367, 443, 485, 523
LLONG_MIN, 24, 282, 367, 443, 485, 523
LLONG_WIDTH, 23, 485, 523
LONG_MAX, 24, 241, 256, 367, 443, 485,

523
LONG_MIN, 24, 241, 367, 443, 485, 523
LONG_WIDTH, 23, 485, 523
MATH_ERREXCEPT, 241, 242, 364, 365,

440, 442, 485, 539, 540, 619
math_errhandling, 194, 241, 242, 364,

365, 440–442, 485, 539, 540, 603, 610,
619, 695

MATH_ERRNO, 241, 242, 364, 365, 440–
442, 485, 619

MB_CUR_MAX, 192, 338, 360, 377, 416–
419, 453, 511, 659, 660, 685

© ISO/IEC 202y — All rights reserved

Index — 739

ISO/IEC 9899:202y (en) — n3299 working draft

MB_LEN_MAX, 23, 192, 360, 485, 523
memchr, 385, 386, 464, 513, 692
NAN, 27, 102, 103, 239, 326, 337, 363–365,

424, 439–441, 463, 483, 485, 527
NDEBUG, 146, 193, 196, 480
noreturn, 380
not, 229, 485
not_eq, 229, 485
NULL, 51, 231, 318, 325, 360, 381, 405,

420, 485, 508, 509, 511, 513, 515, 516,
620

offsetof, 109, 318, 508, 611
ONCE_FLAG_INIT, 360, 395, 511, 515
or, 229, 485
or_eq, 229, 485
PRIBMAX, 226, 484
PRIbMAX, 226, 484
PRIBPTR, 226, 484
PRIbPTR, 226, 484
PRIdFAST32, 226
PRIdMAX, 226, 484
PRIdPTR, 226, 484
PRIiMAX, 226, 484
PRIiPTR, 226, 484
PRIoMAX, 226, 484
PRIoPTR, 226, 484
PRIuMAX, 226, 484
PRIuPTR, 226, 484
PRIXMAX, 226, 484
PRIxMAX, 226, 227, 484
PRIXPTR, 226, 484
PRIxPTR, 226, 484
PTRDIFF_MAX, 509
PTRDIFF_MIN, 509
PTRDIFF_WIDTH, 323
putc, 326, 354, 510
putchar, 326, 354, 510
quantize, 34, 217, 528
quantum, 34, 528
RAND_MAX, 360, 367, 368, 511
RSIZE_MAX, 509, 642, 643, 644, 648, 649,

652–654, 656, 658–667, 669, 670, 673,
675, 676, 679–683, 685, 686

samequantum, 528
SCHAR_MAX, 24, 485, 523
SCHAR_MIN, 24, 41, 485, 523
SCHAR_WIDTH, 23, 485, 523
SCNbMAX, 227, 484
SCNbPTR, 227, 484
SCNdMAX, 226, 484
SCNdPTR, 226, 484
SCNiMAX, 226, 484
SCNiPTR, 226, 484
SCNoMAX, 227, 484
SCNoPTR, 227, 484
SCNuMAX, 227, 484

SCNuPTR, 227, 484
SCNxMAX, 227, 484
SCNxPTR, 227, 484
SEEK_CUR, 326, 356, 509
SEEK_END, 326, 329, 356, 509
SEEK_SET, 326, 356, 358, 509, 613
SHRT_MAX, 24, 485, 523
SHRT_MIN, 24, 485, 523
SHRT_WIDTH, 23, 485, 523
SIG_ATOMIC_MAX, 509
SIG_ATOMIC_MIN, 509
SIG_ATOMIC_WIDTH, 324, 509
SIG_DFL, 289, 290, 505, 620
SIG_ERR, 289, 290, 505, 611
SIG_IGN, 289, 290, 505, 616
SIGABRT, 289, 290, 371, 505
SIGFPE, 241, 289, 290, 505, 610, 615, 624
SIGILL, 289, 290, 505, 610, 615
SIGINT, 289, 505
signbit, 244, 245, 485, 530, 531, 551
SIGSEGV, 289, 290, 505, 610, 615
SIGTERM, 289, 505
SIZE_MAX, 42, 509, 642
SIZE_WIDTH, 324, 509
stdc_bit_ceil, 315, 508
stdc_bit_floor, 315, 508
stdc_bit_width, 314, 508
stdc_count_ones, 313, 507
stdc_count_zeros, 313, 507
stdc_first_leading_one, 311, 507
stdc_first_leading_zero, 311, 507
stdc_first_trailing_one, 312, 507
stdc_first_trailing_zero, 312, 507
stdc_has_single_bit, 314, 508
stdc_leading_ones, 309, 506
stdc_leading_zeros, 309, 506
stdc_trailing_ones, 310, 507
stdc_trailing_zeros, 310, 507
strchr, 385, 386, 464, 513, 692
strpbrk, 385, 386, 464, 513, 692
strrchr, 385, 386, 387, 464, 513, 692
strstr, 385, 387, 464, 513, 692
TIME_ACTIVE, 405, 409, 464, 516, 621
TIME_MONOTONIC, 405, 408, 464, 516,

621
TIME_THREAD_ACTIVE, 405, 409, 464,

516, 621
TIME_UTC, 398, 399, 402, 405, 408, 515,

621
TMP_MAX, 326, 330, 331, 509
TMP_MAX_S, 510, 642, 643, 644
TSS_DTOR_ITERATIONS, 395, 401, 515
UCHAR_MAX, 24, 485, 523
UCHAR_WIDTH, 23, 485, 523
UINT64_C, 324
UINT_MAX, 24, 104, 113, 168, 485, 523

© ISO/IEC 202y — All rights reserved

Index — 740

ISO/IEC 9899:202y (en) — n3299 working draft

UINT_WIDTH, 23, 269, 485, 523
UINTMAX_C, 324, 509
UINTMAX_MAX, 227, 228, 323, 509, 533
UINTMAX_WIDTH, 323, 509
UINTPTR_MAX, 323, 509
UINTPTR_WIDTH, 323, 509
ULLONG_MAX, 24, 103, 113, 367, 443, 485,

523
ULLONG_WIDTH, 23, 485, 523
ULONG_MAX, 24, 367, 443, 485, 523
ULONG_WIDTH, 23, 485, 523
unreachable, viii, 318, 319, 508, 611,

693
USHRT_MAX, 24, 112, 485, 523
USHRT_WIDTH, 23, 485, 523
WCHAR_MAX, 420, 509, 516
WCHAR_MIN, 420, 509, 516
WCHAR_WIDTH, 324, 420, 509
wcschr, 446, 464, 517, 692
wcspbrk, 446, 447, 464, 517, 692
wcsrchr, 446, 447, 464, 517, 692
wcsstr, 446, 447, 448, 464, 517, 692
WEOF, 420, 435–438, 451, 456, 516, 519,

615
WINT_MAX, 509
WINT_MIN, 509
WINT_WIDTH, 324, 509
wmemchr, 446, 449, 450, 464, 517, 692
xor, 229, 485
xor_eq, 229, 485

obsolete
__STDC_IEC_559_COMPLEX__, 24, 189,

190–192, 557
__STDC_IEC_559__, 24, 189, 191, 192,

496, 526
__bool_true_false_are_defined,

316, 463, 508
gets, 654, 693

stream
stderr, 186, 326, 327, 328, 333, 350, 432,

509, 623
stdin, 326, 327, 328, 333, 346–348, 354,

431, 434, 436, 437, 509, 647, 648, 654,
679

stdout, 326, 327, 328, 333, 340–342, 348,
354, 426, 434, 437, 509

structure member
currency_symbol, 231, 233, 235
decimal_point, 231, 233
frac_digits, 231, 233, 235
grouping, 231, 233, 234
int_curr_symbol, 231, 234, 235
int_frac_digits, 231, 234, 235
int_n_cs_precedes, 231, 234, 235
int_n_sep_by_space, 231, 234, 235
int_n_sign_posn, 231, 234–236

int_p_cs_precedes, 231, 234, 235
int_p_sep_by_space, 231, 234, 235
int_p_sign_posn, 231, 234–236
mon_decimal_point, 231, 233, 235
mon_grouping, 231, 233–235
mon_thousands_sep, 231, 233, 235
n_cs_precedes, 231, 233, 235
n_sep_by_space, 231, 233–235
n_sign_posn, 231, 234, 235
negative_sign, 231, 233–235
p_cs_precedes, 231, 233, 235, 237
p_sep_by_space, 231, 233–235, 237
p_sign_posn, 231, 233, 235, 237
positive_sign, 231, 233–235
thousands_sep, 231, 233
tm_hour, 406, 407, 410, 412, 669
tm_isdst, 406, 407, 412
tm_mday, 406, 407, 408, 410, 412, 669
tm_min, 406, 407, 410, 412, 669
tm_mon, 406, 407, 408, 410–412, 669
tm_sec, 406, 407, 410, 412, 670
tm_wday, 406, 407, 408, 410–412, 669
tm_yday, 406, 407, 408, 412
tm_year, 406, 407, 408, 410–412, 670
tv_nsec, 406, 408
tv_sec, 406, 408

structure type
lconv, 231, 232, 485
timespec, 397, 399, 402, 405, 406, 408,

409, 515
tm, 405, 406, 407–411, 420, 450, 515–517,

669, 670, 671
summary, 480
term, 192
type
_BitInt, 104
_Complex, 104, 197
_Decimal128, 104
_Decimal128x, 570
_Decimal32, 104
_Decimal32_t, 238, 496, 619
_Decimal64, 104
_Decimal64_t, 238, 496, 619
_Decimal64x, 570
_Float128_t, 580, 581
_Float128x, 570
_Float16_t, 580, 581
_Float32_t, 580, 581
_Float32x, 570
_Float64_t, 580, 581
_Float64x, 570
_Imaginary, 197
atomic_bool, 303, 306, 505
atomic_char, 303, 505
atomic_char16_t, 303, 505
atomic_char32_t, 303, 505

© ISO/IEC 202y — All rights reserved

Index — 741

ISO/IEC 9899:202y (en) — n3299 working draft

atomic_char8_t, 303, 505
atomic_flag, 297, 298, 306, 307, 505,

506
atomic_int, 298, 303, 505
atomic_int_fast16_t, 303, 506
atomic_int_fast32_t, 303, 506
atomic_int_fast64_t, 303, 506
atomic_int_fast8_t, 303, 506
atomic_int_least16_t, 303, 505
atomic_int_least32_t, 303, 505
atomic_int_least64_t, 303, 505
atomic_int_least8_t, 303, 505
atomic_intmax_t, 303, 506
atomic_intptr_t, 303, 506
atomic_llong, 303, 505
atomic_long, 303, 505
atomic_ptrdiff_t, 303, 506
atomic_schar, 303, 505
atomic_short, 303, 505
atomic_size_t, 303, 506
atomic_uchar, 303, 505
atomic_uint, 303, 505
atomic_uint_fast16_t, 303, 506
atomic_uint_fast32_t, 303, 506
atomic_uint_fast64_t, 303, 506
atomic_uint_fast8_t, 303, 506
atomic_uint_least16_t, 303, 505
atomic_uint_least32_t, 303, 505
atomic_uint_least64_t, 303, 505
atomic_uint_least8_t, 303, 505
atomic_uintmax_t, 303, 506
atomic_uintptr_t, 303, 506
atomic_ullong, 303, 505
atomic_ulong, 303, 505
atomic_ushort, 303, 505
atomic_wchar_t, 303, 505
bool, 48, 104
char, 104
char16_t, 66–69, 139, 189, 303, 415,

417, 516
char32_t, 66–69, 139, 189, 303, 415,

418, 419, 516
char8_t, 66–69, 102, 303, 415, 416, 516
clock_t, 405, 406, 515, 621
cnd_t, 395, 396–398, 515
constraint_handler_t, 512, 655
div_t, 142, 360, 375, 376, 511
double, 104
double_t, 238, 485, 536, 579, 580, 581,

619, 623
enum, 104
errno_t, 482, 510, 512–514, 516, 518,

519, 641, 642, 643–645, 655, 656, 658–
661, 662, 663–665, 667, 668, 669, 670,
671, 679–682, 684–686

femode_t, 211, 212, 220, 221, 482, 483

fenv_t, 94, 211, 213, 222–224, 482, 483,
549

fexcept_t, 211, 218, 219, 482, 483, 610
FILE, 175, 325, 326, 328, 330, 331, 333,

334, 342, 350, 352–359, 421, 427, 432,
435–437, 509, 510, 516–518, 611, 643–
646, 650, 651, 671, 672, 674, 675

float, 104
float_t, 238, 485, 536, 579, 580, 581,

619, 623
fpos_t, 325, 327, 356, 357, 509, 510
imaxdiv_t, 226, 227, 484
int, 48, 60, 104
int8_t, 321
int_fast16_t, 303, 322
int_fast32_t, 226, 303, 322
int_fast64_t, 303, 322
int_fast8_t, 303, 322
int_least16_t, 303, 322
int_least32_t, 303, 321, 322
int_least64_t, 303, 322
int_least8_t, 303, 322
intmax_t, 24, 168, 227, 228, 303, 322,

324, 336, 343, 422, 428, 484, 509, 692,
694

intptr_t, 303, 322, 509
jmp_buf, 287, 288, 505, 689
ldiv_t, 360, 375, 376, 511
lldiv_t, 360, 375, 376, 511
long_double_t, 497, 579, 580, 581
max_align_t, 46, 318, 508
mbstate_t, 327–329, 338, 345, 357, 415,

416–419, 420, 425, 429, 430, 451–454,
516–519, 615, 621, 684–686

memory_order, 297, 299, 301, 302, 304,
306, 307, 463, 505, 506

mtx_t, 395, 397–400, 515
nullptr_t, viii, 42, 48, 51, 52, 85, 88,

89, 91–93, 294, 318, 320, 508, 611, 692
once_flag, 360, 395, 396, 511, 515
ptrdiff_t, 86, 297, 303, 318, 319, 323,

336, 343, 423, 428, 508, 606, 692
rsize_t, 508, 510, 512–514, 516, 518,

519, 642, 643, 646–649, 652–654, 655,
656–661, 662, 663–667, 669, 670, 671,
672, 673, 675, 676, 679–686

sig_atomic_t, 14, 289, 290, 324, 505,
602, 610

signed, 104
thrd_start_t, 395, 400, 515
thrd_t, 395, 400, 401, 515
time_t, 405, 406, 407, 408, 410, 411, 515,

516, 621, 670, 671
tss_dtor_t, 395, 402, 515
tss_t, 395, 402, 403, 515
uint64_t, 269

© ISO/IEC 202y — All rights reserved

Index — 742

ISO/IEC 9899:202y (en) — n3299 working draft

uint_fast16_t, 303, 322
uint_fast32_t, 303, 322
uint_fast64_t, 303, 322
uint_fast8_t, 303, 322
uint_least16_t, 303, 321, 322, 415
uint_least32_t, 303, 322, 415
uint_least64_t, 303, 322, 324
uint_least8_t, 303, 322
uintmax_t, 24, 168, 227, 228, 303, 323,

324, 336, 343, 422, 428, 484, 509, 692,
694

uintptr_t, 303, 322, 509
unsigned, 104, 335, 343, 422, 428
va_list, 293, 294–296, 350–352, 432–

434, 505, 509, 510, 516–518, 611, 613,
650–653, 674–678

void, 51, 104
wchar_t, 5, 46, 65–68, 139, 189, 228, 303,

318, 324, 335, 338, 340, 343, 345, 348,
360, 376–378, 415, 420, 421, 422, 425–
438, 440, 442–447, 449, 450, 452–454,
456, 484, 508, 511, 513, 516–519, 595,
597, 598, 604, 615, 616, 659–661, 671–
686

wctrans_t, 456, 460, 461, 519
wctype_t, 456, 459, 460, 519
wint_t, 324, 335, 338, 340, 420, 422, 425,

435–437, 451, 456, 457–460, 516, 517,
519, 615

use of function, 194
lifetime, 38
limit embed parameter, 166, 170, 172, 173,

175, 176–179
line, 11

preprocessing directive, 165
line buffered, 328
line buffered stream, 328
line number, 186, 188
line preprocessing directive, 186
lines, 327
linkage, 37, 98, 125, 129, 160, 162, 191
literal encoding, 46
little-endian, 308
ll format modifier, 336, 343, 422, 428
llabs function, 375, 511
lldiv function, 137, 360, 375, 376, 511
lldiv_t type, 360, 375, 376, 511
llogb function, 241, 256, 487, 528, 544
llogb type-generic macro, 391
llogbd128 function, 256, 492
llogbd32 function, 256, 492
llogbd64 function, 256, 492
llogbdN function, 586
llogbdNx function, 586
llogbf function, 256, 487
llogbfN function, 586

llogbfNx function, 586
llogbl function, 256, 487
LLONG_MAX macro, 24, 367, 443, 485, 523
LLONG_MIN macro, 24, 282, 367, 443, 485, 523
LLONG_WIDTH macro, 23, 485, 523
llquantexpd identifier prefix, 282, 392
llquantexpd128 function, 282, 496
llquantexpd32 function, 282, 496
llquantexpd64 function, 282, 496
llquantexpdN function, 591
llquantexpdNx function, 591
llrint function, 266, 488, 533, 549, 550, 604
llrint type-generic macro, 391
llrintd128 function, 266, 494
llrintd32 function, 266, 494
llrintd64 function, 266, 494
llrintdN function, 588
llrintdNx function, 588
llrintf function, 266, 489
llrintfN function, 588
llrintfNx function, 588
llrintl function, 266, 489
llround function, 267, 489, 529, 550, 604
llround function, 267
llround type-generic macro, 391
llroundd128 function, 267, 494
llroundd32 function, 267, 494
llroundd64 function, 267, 494
llrounddN function, 588
llrounddNx function, 588
llroundf function, 267, 489
llroundfN function, 588
llroundfNx function, 588
llroundl function, 267, 489
local, 149
local time, 405
locale, 4
locale-specific behavior, 4, 622
localeconv function, 232, 235, 485, 610
localization header, 231, 462
localtime function, 407, 409, 410, 411, 516
localtime_r function, 411, 516, 691
localtime_s function, 516, 670, 671
log function, 241, 256, 258, 391, 487, 532, 544
log type-generic macro, 391
log10 function, 256, 257, 487, 532, 544
log10 type-generic macro, 391
log10d128 function, 257, 492
log10d32 function, 257, 492
log10d64 function, 257, 492
log10dN function, 586
log10dNx function, 586
log10f function, 257, 487
log10fN function, 586
log10fNx function, 586
log10l function, 257, 487

© ISO/IEC 202y — All rights reserved

Index — 743

ISO/IEC 9899:202y (en) — n3299 working draft

log10p1 function, 257, 258, 487, 532, 544
log10p1 type-generic macro, 391
log10p1d128 function, 257, 492
log10p1d32 function, 257, 492
log10p1d64 function, 257, 492
log10p1dN function, 586
log10p1dNx function, 586
log10p1f function, 257, 487
log10p1fN function, 586
log10p1fNx function, 586
log10p1l function, 257, 487
log1p function, 257, 258, 487, 532, 544
log1p type-generic macro, 391
log1pd128 function, 257, 492
log1pd32 function, 257, 492
log1pd64 function, 257, 492
log1pdN function, 586
log1pdNx function, 586
log1pf function, 257, 487
log1pfN function, 586
log1pfNx function, 586
log1pl function, 257, 487
log2 function, 258, 487, 532, 544
log2 type-generic macro, 391
log2d128 function, 258, 492
log2d32 function, 258, 492
log2d64 function, 258, 492
log2dN function, 586
log2dNx function, 586
log2f function, 258, 487
log2fN function, 586
log2fNx function, 586
log2l function, 258, 487
log2p1 function, 258, 487, 532, 545
log2p1 type-generic macro, 391
log2p1d128 function, 258, 492
log2p1d32 function, 258, 492
log2p1d64 function, 258, 492
log2p1dN function, 586
log2p1dNx function, 586
log2p1f function, 258, 487
log2p1fN function, 586
log2p1fNx function, 586
log2p1l function, 258, 487
logarithmic function

complex, 201, 565
real, 252, 543

logb function, 255, 256, 258, 259, 487, 528, 543,
545, 560, 592

logb type-generic macro, 391
logbd128 function, 259, 493
logbd32 function, 259, 492
logbd64 function, 259, 493
logbdN function, 586
logbdNx function, 586
logbf function, 258, 487

logbfN function, 586
logbfNx function, 586
logbl function, 259, 487
logd128 function, 256, 492
logd32 function, 256, 492
logd64 function, 256, 492
logdN function, 586
logdNx function, 586
logf function, 256, 487
logfN function, 586
logfNx function, 586
logical operator

AND (&&), 17, 90
negation (!), 83
OR (||), 91
OR (||), 17

logical source line, 11
logl function, 256, 487
logp1 function, 257, 258, 487, 532, 544
logp1 type-generic macro, 391
logp1d128 function, 257, 492
logp1d32 function, 257, 492
logp1d64 function, 257, 492
logp1dN function, 586
logp1dNx function, 586
logp1f function, 257, 487
logp1fN function, 586
logp1fNx function, 586
logp1l function, 257, 487
long double _Complex type, 41
long double _Complex type conversion, 49
long double _Imaginary type, 557
long double suffix, l or L, 63
long double type, 40, 104
long double type conversion, 48, 49
long int type, 40, 104
long int type conversion, 47–49
long integer suffix, l or L, 60
long keyword, 54
long long int type, 40, 104
long long int type conversion, 47–49
long long integer suffix, ll or LL, 60
long_double_t type, 497, 579, 580, 581
LONG_MAX macro, 24, 241, 256, 367, 443, 485,

523
LONG_MIN macro, 24, 241, 367, 443, 485, 523
LONG_WIDTH macro, 23, 485, 523
longjmp function, 287, 288, 372, 373, 505, 610,

613, 689
loop body, 156
low-order bit, 4
lowercase letter, 20
lrint function, 266, 488, 533, 549, 550, 604
lrint type-generic macro, 391
lrintd128 function, 266, 494
lrintd32 function, 266, 494

© ISO/IEC 202y — All rights reserved

Index — 744

ISO/IEC 9899:202y (en) — n3299 working draft

lrintd64 function, 266, 494
lrintdN function, 588
lrintdNx function, 588
lrintf function, 266, 488
lrintfN function, 588
lrintfNx function, 588
lrintl function, 266, 488
lround function, 267, 489, 529, 550, 604
lround function, 267
lround type-generic macro, 391
lroundd128 function, 267, 494
lroundd32 function, 267, 494
lroundd64 function, 267, 494
lrounddN function, 588
lrounddNx function, 588
lroundf function, 267, 489
lroundfN function, 588
lroundfNx function, 588
lroundl function, 267, 489
lvalue, 50, 79, 82, 92, 118
lvalue conversion, 51, 92–94

macro
atomic lock-free, 297
math rounding direction, 239
number classification, 239
type-generic, 390

macro argument substitution, 180
macro definition

library function, 194
macro invocation, 180
macro name, 179

length, 22
predefined, 188, 191
redefinition, 179
scope, 184

macro parameter, 180
macro preprocessor, 164
macro replacement, 179
magnitude

complex, 202
manipulation function

complex, 203
real, 271, 551

matching failure, 433, 434, 675, 677, 678
math rounding direction macro, 239
MATH_ identifier prefix, 463
MATH_ERREXCEPT macro, 241, 242, 364, 365,

440, 442, 485, 539, 540, 619
math_errhandling macro, 194, 241, 242, 364,

365, 440–442, 485, 539, 540, 603, 610,
619, 695

MATH_ERRNO macro, 241, 242, 364, 365, 440–
442, 485, 619

mathematics header, 238, 462
max_align_t type, 46, 318, 508
maximal munch, 53

maximum function, 273, 552
maybe_unused attribute, 144, 146, 690, 691
MB_CUR_MAX macro, 192, 338, 360, 377, 416–

419, 453, 511, 659, 660, 685
MB_LEN_MAX macro, 23, 192, 360, 485, 523
mblen function, 376, 452, 511
mbrlen function, 452, 517
mbrtoc16 function, 416, 417, 516
mbrtoc32 function, 418, 516
mbrtoc8 function, 415, 416, 516, 691
mbrtowc function, 329, 345, 425, 426, 451, 452,

453, 454, 517, 660, 686
mbsinit function, 451, 452, 517
mbsrtowcs function, 451, 454, 518, 685
mbsrtowcs_s function, 519, 685, 686
mbstate_t type, 327–329, 338, 345, 357, 415,

416–419, 420, 425, 429, 430, 451–454,
516–519, 615, 621, 684–686

mbstowcs function, 69, 377, 378, 438, 454, 511
mbstowcs_s function, 513, 660, 661
mbtowc function, 67, 376, 377, 378, 452, 511
mem identifier prefix, 464
memalignment function, 9, 378, 511, 692
member access operators (. and->), 77
member alignment, 107
members, 38
memccpy function, 381, 513, 691
memchr macro, 385, 386, 464, 513, 692
memcmp function, 43, 175, 305, 384, 513
memcpy function, 43, 73, 172, 195, 298, 305, 381,

513, 529
memcpy_s function, 513, 662
memmove function, 73, 381, 382, 513, 529, 609
memmove_s function, 513, 662, 663
memory location, 6
memory management function, 368
memory_ identifier prefix, 463
memory_order_ identifier prefix, 463
memory_order type, 297, 299, 301, 302, 304,

306, 307, 463, 505, 506
memory_order_acq_rel constant, 299, 300,

301, 304, 305, 307, 505
memory_order_acquire constant, 299, 301,

304, 307, 505
memory_order_consume constant, 299, 301,

304, 505
memory_order_relaxed constant, 150, 299,

300, 301, 505
memory_order_release constant, 299, 301,

304, 305, 505
memory_order_seq_cst constant, 19, 43, 79,

93, 94, 297, 299, 300, 302, 505
memset

explicit, 388
memset function, 298, 388, 513, 667
memset_explicit function, 388, 513, 692

© ISO/IEC 202y — All rights reserved

Index — 745

ISO/IEC 9899:202y (en) — n3299 working draft

memset_s function, 514, 667
minimum function, 273, 552
minus operator

unary, 531
minus operator, unary, 83
miscellaneous function

string, 388
wide string, 450

miscellaneous functions
string, 667
wide string, 684

mktime function, 407, 515
modf family, 34, 259, 390
modf function, 259, 390, 391, 487, 545
modfd128 function, 259, 493
modfd32 function, 259, 493
modfd64 function, 259, 493
modfdN function, 586
modfdNx function, 586
modff function, 259, 487
modffN function, 586
modffNx function, 586
modfl function, 259, 487
modifiable lvalue, 51
modification order, 17
modulus

complex, 202
modulus function, 259
mon_decimal_point structure member, 231,

233, 235
mon_grouping structure member, 231, 233–

235
mon_thousands_sep structure member, 231,

233, 235
most significant index, 308
mtx_ identifier prefix, 464
mtx_destroy function, 398, 515
mtx_init function, 395, 396, 398, 399, 515
mtx_lock function, 399, 515, 614
mtx_plain constant, 395, 399, 515
mtx_recursive constant, 395, 399, 515
mtx_t type, 395, 397–400, 515
mtx_timed constant, 396, 399, 515
mtx_timedlock function, 399, 515, 614
mtx_trylock function, 399, 400, 515
mtx_unlock function, 399, 400, 515, 614
multibyte character, 5, 20, 65
multibyte conversion function

wide character, 376, 659
extended, 451, 684
restartable, 415, 452, 684

wide string, 377, 660
restartable, 454, 685

multibyte string, 192
multibyte/wide character conversion func-

tion, 376, 659

extended, 451, 684
restartable, 415, 452, 684

multibyte/wide string conversion function,
377, 660

restartable, 454, 685
multidimensional array, 76
multiplication assignment operator (*=), 94
multiplication operator (*), 85, 558
multiplicative expression, 85, 558
multiply and round to narrower type, 279

n-char sequence, 363
n-wchar sequence, 439
n_cs_precedes structure member, 231, 233,

235
n_sep_by_space structure member, 231, 233–

235
n_sign_posn structure member, 231, 234, 235
name

external, 22, 56, 191
file, 328
internal, 22, 56
label, 38
structure/union member, 38

name space, 38
named constant, 96
named label, 154
NaN, 25
nan function, 271, 337, 424, 489, 527, 551
NAN macro, 27, 102, 103, 239, 326, 337, 363–365,

424, 439–441, 463, 483, 485, 527
nand128 function, 271, 494
nand32 function, 271, 494
nand64 function, 271, 494
nandN function, 589
nandNx function, 589
nanf function, 271, 489
nanfN function, 589
nanfNx function, 589
nanl function, 271, 489
NDEBUG macro, 146, 193, 196, 480
nearbyint function, 265, 266, 488, 531, 533,

545, 549
nearbyint type-generic macro, 391
nearbyintd128 function, 266, 494
nearbyintd32 function, 266, 493
nearbyintd64 function, 266, 493
nearbyintdN function, 588
nearbyintdNx function, 588
nearbyintf function, 265, 488
nearbyintfN function, 588
nearbyintfNx function, 588
nearbyintl function, 265, 488
nearest integer function, 265, 548
negation operator (!), 83
negative zero, 271

© ISO/IEC 202y — All rights reserved

Index — 746

ISO/IEC 9899:202y (en) — n3299 working draft

negative_sign structure member, 231, 233–
235

new line, 21
new-line character, 11, 20, 53, 166, 186
new-line escape sequence (\n), 21, 66, 208
nextafter function, 271, 272, 393, 489, 531,

551
nextafter type-generic macro, 391
nextafterd128 function, 272, 494
nextafterd32 function, 271, 494
nextafterd64 function, 271, 494
nextafterdN function, 589
nextafterdNx function, 589
nextafterf function, 271, 489
nextafterfN function, 589
nextafterfNx function, 589
nextafterl function, 271, 489
nextdown function, 273, 489, 528, 552
nextdown type-generic macro, 391
nextdownd128 function, 273, 494
nextdownd32 function, 273, 494
nextdownd64 function, 273, 494
nextdowndN function, 589
nextdowndNx function, 589
nextdownf function, 273, 489
nextdownfN function, 589
nextdownfNx function, 589
nextdownl function, 273, 489
nexttoward function, 272, 489, 531, 551
nexttoward type-generic macro, 391
nexttowardd128 function, 272, 494
nexttowardd32 function, 272, 494
nexttowardd64 function, 272, 494
nexttowardf function, 272, 393, 489
nexttowardl function, 272, 489
nextup function, 272, 273, 489, 528, 552
nextup type-generic macro, 391
nextupd128 function, 272, 494
nextupd32 function, 272, 494
nextupd64 function, 272, 494
nextupdN function, 589
nextupdNx function, 589
nextupf function, 272, 489
nextupfN function, 589
nextupfNx function, 589
nextupl function, 272, 489
no linkage, 37
no-return function, 126
nodiscard attribute, 143, 144, 145, 146, 690,

691
non-canonical, 25
non-canonical representation, 25
non-graphic character, 21, 66
non-local jumps header, 287
non-stop floating-point control mode, 223
non-value representation, 7, 43, 52, 77

noreturn attribute, 126, 144, 148, 149, 288,
371–373, 401, 505, 511, 513, 515, 690,
691

noreturn macro, 380
norm

complex, 202
normalized, 669
normalized broken-down time, 669
normalized floating-point number, 24
not macro, 229, 485
not_eq macro, 229, 485
null character (\0), 19, 67, 68

padding of binary stream, 327
NULL macro, 51, 231, 318, 325, 360, 381, 405,

420, 485, 508, 509, 511, 513, 515, 516,
620

null pointer, 51
null pointer constant, 51
null preprocessing directive, 188
null statement, 154
null wide character, 192
nullptr keyword, 54
nullptr predefined constant, 67
nullptr_t type, viii, 42, 48, 51, 52, 85, 88, 89,

91–93, 294, 318, 320, 508, 611, 692
nullptr_t type conversion, 52
number classification macro, 239, 243
numeric conversion function, 227, 360

wide string, 228, 438
numerical limit, 22

O format modifier, 412
object, 6
object representation, 43
object type, 39
object types, 39
object-like macro, 180
observable, 150
observable behavior, 14
observed, 150
obsolescence, xiii, 191, 462
octal constant, 58
octal digit, 59, 66
octal-character escape sequence (\octal digit),

66
OFF pragma, 152, 559, 560
offsetof macro, 109, 318, 508, 611
ON pragma, 94, 214, 220, 222, 224, 535–537, 545,

549, 551
on-off switch, 187
once_flag type, 360, 395, 396, 511, 515
ONCE_FLAG_INIT macro, 360, 395, 511, 515
opening, 328
operand, 69, 73
operating system, 12, 373
operations on file, 329
operations on files, 643

© ISO/IEC 202y — All rights reserved

Index — 747

ISO/IEC 9899:202y (en) — n3299 working draft

operator, 69, 73
_Alignas, 54
_Alignof, 54
__has_c_attribute, 143, 145–148, 151,

168, 169, 188, 690
__has_embed, 53, 70, 168, 170, 188
__has_include, 53, 70, 168, 169, 188, 692
additive, 86
alignas, 54
alignof, 54, 83
assignment, 92
associativity, 73
defined, 168, 169, 175, 188, 608, 609
equality, 88
multiplicative, 85, 558
postfix, 75
precedence, 73
preprocessing, 182, 190
relational, 87
shift, 87
sizeof, 54, 83
typeof, 118
typeof, 54
typeof_unqual, 54
unary, 82
unary arithmetic, 83

or macro, 229, 485
OR operator

bitwise exclusive (^), 90
bitwise exclusive assignment (^=), 94
bitwise inclusive (|), 90
bitwise inclusive assignment (|=), 94
logical (||), 91
logical (||), 17

or_eq macro, 229, 485
order of allocated storage, 368
order of evaluation, 73, 92, 182, 183
ordinary identifier name space, 38
orientation, 327
orientation of stream, 327, 436
out-of-bounds store, 688
outer scope, 37
over-aligned, 46

p_cs_precedes structure member, 231, 233,
235, 237

p_sep_by_space structure member, 231, 233–
235, 237

p_sign_posn structure member, 231, 233, 235,
237

padding
binary stream, 327
bit, 43, 321
structure/union, 43, 108

parameter, 6
array, 161
ellipsis, 131, 180

embed, 172
function, 76, 99, 161
generic, 390
macro, 180
main function, 13
program, 13

parameter type list, 131
parentheses punctuator (()), 131, 155, 156
parenthesized expression, 74
parse state, 327
perform a trap, 7
permitted form of initializer, 96
perror function, 359, 510
phase angle

complex, 203
physical source line, 11
placemarker, 182
plus operator

unary, 83
pointer

null, 51
pointer arithmetic, 86
pointer comparison, 88
pointer declarator, 128
pointer operator (->), 77
pointer to a string, 192
pointer to a wide string, 192
pointer to function, 76
pointer type, 42
pointer type conversion, 51
pole error, 241, 250, 251, 256–265
portability, 9
positive difference, 274
positive difference function, 273, 552
positive_sign structure member, 231, 233–

235
postfix decrement operator (--), 51, 79
postfix expression, 75
postfix increment operator (++), 51, 79
pow function, 261, 391, 488, 533, 546, 600
pow type-generic macro, 391
powd128 function, 261, 493
powd32 function, 261, 493
powd64 function, 261, 393, 493
powdN function, 587
powdNx function, 587
power function

complex, 202, 566
real, 260, 545

powf function, 261, 488
powf32x function, 600
powf64 function, 600
powfN function, 587
powfNx function, 587
powl function, 261, 488, 531
pown function, 261, 262, 488, 532, 547

© ISO/IEC 202y — All rights reserved

Index — 748

ISO/IEC 9899:202y (en) — n3299 working draft

pown type-generic macro, 391
pownd128 function, 262, 493
pownd32 function, 262, 493
pownd64 function, 262, 493
powndN function, 587
powndNx function, 587
pownf function, 261, 488
pownfN function, 587
pownfNx function, 587
pownl function, 262, 488
powr function, 262, 488, 533, 547
powr type-generic macro, 391
powrd128 function, 262, 493
powrd32 function, 262, 493
powrd64 function, 262, 493
powrdN function, 587
powrdNx function, 587
powrf function, 262, 488
powrfN function, 587
powrfNx function, 587
powrl function, 262, 488
pp-number, 71
pragma

CX_LIMITED_RANGE, vi, 187, 188, 198, 480,
558, 609

FE_DEC_DOWNWARD, 188
FE_DEC_DYNAMIC, 188, 217
FE_DEC_TONEAREST, 188
FE_DEC_TONEARESTFROMZERO, 188
FE_DEC_TOWARDZERO, 188
FE_DEC_UPWARD, 188
FE_DOWNWARD, 188
FE_DYNAMIC, 188, 214, 483
FE_TONEAREST, 188
FE_TONEARESTFROMZERO, 188
FE_TOWARDZERO, 188
FE_UPWARD, 188
FENV_ACCESS, vi, 9, 94, 187, 188, 213, 214,

220, 222, 224, 482, 534–539, 545, 549,
551, 603, 609, 610, 617

FENV_DEC_ROUND, vi, 63, 187, 188, 217,
483, 532, 579

FENV_ROUND, vi, 30, 63, 152, 187, 188, 213,
214, 215, 217, 482, 483, 531, 579

FP_CONTRACT, vii, 74, 152, 187, 188, 242,
485, 559, 560, 609, 617

OFF, 152, 559, 560
ON, 94, 214, 220, 222, 224, 535–537, 545,

549, 551
STDC, 94, 152, 187, 191, 198, 213–215, 217,

220, 222, 224, 242, 480, 482, 483, 485,
535–537, 545, 549, 551, 559, 560, 609,
619

pragma, 53, 70, 94, 152, 164, 187, 190, 198, 213–
215, 217, 220, 222, 224, 242, 480, 482,
483, 485, 535–537, 545, 549, 551, 559,

560, 601, 609, 618, 619
pragma operator, 190
pragma preprocessing directive, 187, 191
precedence of operator, 73
precedence of syntax rule, 11
precision, 44, 47, 334, 421

excess, 26, 50, 159
predefined constant

false, 54, 67
nullptr, 54, 67
true, 54, 67

predefined macro name, 188, 191
preferred quantum exponent, 33
prefix decrement operator (--), 51, 82
prefix embed parameter, 173, 177, 178
prefix increment operator (++), 51, 82
preprocessing, 166
preprocessing concatenation, 182
preprocessing directive, 11, 164, 165

ifdef, 9, 103, 164, 167, 168, 169, 217, 221,
222, 245–268, 269, 270–272, 273, 274–
278, 279, 280–283, 362, 364, 393, 440,
524, 525, 553–555

pragma, 53, 70, 94, 152, 164, 187, 190, 198,
213–215, 217, 220, 222, 224, 242, 480,
482, 483, 485, 535–537, 545, 549, 551,
559, 560, 601, 609, 618, 619

undef, 56, 164, 167, 184, 188, 194, 195, 609
preprocessing file, 11, 164
preprocessing number, 53, 71
preprocessing operator

#, 182
##, 182
_Pragma, 190

preprocessing parameter, 166
preprocessing token, 11, 53, 165
preprocessing translation unit, 11
preprocessor, 164
preprocessor parameter, 166

prefixed, 166
standard, 166

preprocessor prefixed parameter, 166
preprocessor standard parameter, 166
PRI identifier prefix, 226, 462
PRIBMAX macro, 226, 484
PRIbMAX macro, 226, 484
PRIBPTR macro, 226, 484
PRIbPTR macro, 226, 484
PRIcFASTN macro, 226
PRIcLEASTN macro, 226
PRIcN macro, 226
PRIdFAST32 macro, 226
PRIdMAX macro, 226, 484
PRIdPTR macro, 226, 484
PRIiMAX macro, 226, 484
PRIiPTR macro, 226, 484

© ISO/IEC 202y — All rights reserved

Index — 749

ISO/IEC 9899:202y (en) — n3299 working draft

primary block, 153
primary expression, 74
printf_s function, 510, 647, 648
printing character, 21, 206, 207
printing wide character, 456
PRIoMAX macro, 226, 484
PRIoPTR macro, 226, 484
PRIuMAX macro, 226, 484
PRIuPTR macro, 226, 484
PRIXMAX macro, 226, 484
PRIxMAX macro, 226, 227, 484
PRIXPTR macro, 226, 484
PRIxPTR macro, 226, 484
program

conforming, 9
strictly conforming, 9

program diagnostic, 196
program execution, 13
program file, 11
program image, 12
program name, 13
program name (argv[0]), 13
program parameter, 13
program parameters, 13
Program semantics, 14
program startup, 12, 13
program structure, 11
program termination, 12, 13, 14
promotion

integer, 15, 48
promotions

default argument, 77
pseudo-random sequence function, 367
PTRDIFF_MAX macro, 323, 509
PTRDIFF_MIN macro, 323, 324, 509
ptrdiff_t type, 86, 297, 303, 318, 319, 323,

336, 343, 423, 428, 508, 606, 692
PTRDIFF_WIDTH macro, 323
punctuator, 69
putc macro, 326, 354, 510
putchar macro, 326, 354, 510
puts function, 186, 319, 326, 354, 510
putwc function, 326, 437, 517
putwchar function, 326, 437, 517

qsort function, 374, 375, 511, 604
qsort_s function, 512, 657, 658, 659
qualified type, 42
qualified version of type, 42
qualifier

_Atomic, 42, 54
const, 42, 54
restrict, 42, 54
volatile, 42, 54

quantize macro, 34, 217, 528
quantized identifier prefix, 280, 281, 392
quantized128 function, 281, 495

quantized32 function, 281, 495
quantized64 function, 281, 495
quantizedN function, 591
quantizedNx function, 591
quantum, 32
quantum exponent, 32
quantum exponent function, 280
quantum function, 280
quantum macro, 34, 528
quantumd identifier prefix, 281, 392
quantumd128 function, 281, 496
quantumd32 function, 281, 496
quantumd64 function, 281, 496
quantumdN function, 591
quantumdNx function, 591
question-mark escape sequence (\?), 66
quick_exit function, 290, 371, 372, 373, 511,

604, 610, 613, 621, 693
quiet NaN, 25

raise function, 289, 290, 291, 298, 371, 505,
610, 611

rand function, 360, 367, 368, 511
RAND_MAX macro, 360, 367, 368, 511
range

excess, 26, 50, 159
range error, 241, 246–258, 260–262, 264–267,

272, 274, 278
read-modify-write operation, 17
read-read coherence, 19
read-write coherence, 19
real floating type, 41
real floating type conversion, 48, 49, 533
real floating types, 570
real type, 41
real type domain, 41
real-floating, 243
realloc function, 368, 369, 370, 371, 511, 604,

613, 621, 689, 693
recommended practice, 6
recursion, 77
recursive function call, 77
redefinition of macro, 179
reentrancy, 14, 21

library function, 195
referenced type, 42
register, 100
register storage-class specifier, 54, 160
relational expression, 87
relaxed atomic operation, 17
release fence, 301
release operation, 17
release sequence, 17
reliability of data

interrupted, 14
remainder assignment operator (%=), 94
remainder function, 269, 550

© ISO/IEC 202y — All rights reserved

Index — 750

ISO/IEC 9899:202y (en) — n3299 working draft

remainder function, 270, 393, 489, 528, 532,
551, 619

remainder operator (%), 85
remainder type-generic macro, 391
remainderd128 function, 270, 494
remainderd32 function, 270, 494
remainderd64 function, 270, 494
remainderdN function, 588
remainderdNx function, 588
remainderf function, 270, 489
remainderfN function, 588
remainderfNx function, 588
remainderl function, 270, 489
remove function, 329, 330, 509, 620, 643
remquo function, 270, 489, 528, 532, 551, 603,

619
remquo type-generic macro, 391
remquof function, 270, 489
remquofN function, 588
remquofNx function, 588
remquol function, 270, 489
rename function, 330, 509, 620
representation

canonical, 25
non-canonical, 25

representations of type, 43
pointer, 42

reproducible, 150
reproducible attribute, 144, 149, 151, 152,

608, 690, 691
rescanning and replacement, 183
reserved identifier, 54, 193, 624, 632, 641
resource, 167, 172

#embed preprocessing directive, 172
empty, 172

resource width, 172
restartable multibyte/wide character conver-

sion function, 415, 452, 684
restartable multibyte/wide string conversion

function, 454, 685
restore calling environment function, 287
restrict, 42
restrict keyword, 54
restrict type qualifier, 121, 123
restrict-qualified type, 42, 122
return keyword, 54
return statement, 159
rewind function, 332, 355, 357, 358, 437, 510
right-shift assignment operator (>>=), 94
right-shift operator (>>), 87
rint function, 266, 488, 528, 533, 549, 550
rint type-generic macro, 391
rintd128 function, 266, 494
rintd32 function, 266, 494
rintd64 function, 266, 494
rintdN function, 588

rintdNx function, 588
rintf function, 266, 488
rintfN function, 588
rintfNx function, 588
rintl function, 266, 488
rootn function, 262, 263, 488, 532, 547
rootn type-generic macro, 391
rootnd128 function, 262, 493
rootnd32 function, 262, 493
rootnd64 function, 262, 493
rootndN function, 587
rootndNx function, 587
rootnf function, 262, 488
rootnfN function, 587
rootnfNx function, 587
rootnl function, 262, 488
round function, 239, 267, 489, 527, 549
round to narrower type, 278
round type-generic macro, 391
roundd128 function, 267, 494
roundd32 function, 267, 494
roundd64 function, 267, 494
rounddN function, 588
rounddNx function, 588
roundeven function, 239, 267, 268, 489, 527,

550
roundeven type-generic macro, 391
roundevend128 function, 267, 494
roundevend32 function, 267, 494
roundevend64 function, 267, 494
roundevendN function, 588
roundevendNx function, 588
roundevenf function, 267, 489
roundevenfN function, 588
roundevenfNx function, 588
roundevenl function, 267, 489
roundf function, 267, 489
roundfN function, 588
roundfNx function, 588
rounding, 267
rounding control pragma, 214
rounding direction, 239
rounding mode

floating-point, 25
roundl function, 267, 489
RSIZE_MAX macro, 509, 642, 643, 644, 648, 649,

652–654, 656, 658–667, 669, 670, 673,
675, 676, 679–683, 685, 686

rsize_t type, 508, 510, 512–514, 516, 518, 519,
642, 643, 646–649, 652–654, 655, 656–
661, 662, 663–667, 669, 670, 671, 672,
673, 675, 676, 679–686

rsqrt function, 263, 488, 532, 548
rsqrt type-generic macro, 391
rsqrtd128 function, 263, 493
rsqrtd32 function, 263, 493

© ISO/IEC 202y — All rights reserved

Index — 751

ISO/IEC 9899:202y (en) — n3299 working draft

rsqrtd64 function, 263, 493
rsqrtdN function, 587
rsqrtdNx function, 587
rsqrtf function, 263, 488
rsqrtfN function, 587
rsqrtfNx function, 587
rsqrtl function, 263, 488
runtime-constraint, 6
Runtime-constraint handling function, 655
rvalue, 50

same scope, 37
samequantum macro, 528
samequantumd identifier prefix, 281, 392
samequantumd128 function, 281, 496
samequantumd32 function, 281, 495
samequantumd64 function, 281, 496
samequantumdN function, 591
samequantumdNx function, 591
save calling environment function, 287
scalar type, 42
scalbln function, 259, 260, 488, 528, 545, 592
scalbln type-generic macro, 391
scalblnd128 function, 259, 493
scalblnd32 function, 259, 493
scalblnd64 function, 259, 493
scalblndN function, 586
scalblndNx function, 586
scalblnf function, 259, 488
scalblnfN function, 586
scalblnfNx function, 586
scalblnl function, 259, 488
scalbn function, 259, 260, 487, 528, 543, 544,

545, 560, 592
scalbn type-generic macro, 391
scalbnd128 function, 259, 493
scalbnd32 function, 259, 493
scalbnd64 function, 259, 493
scalbndN function, 586
scalbndNx function, 586
scalbnf function, 259, 487
scalbnfN function, 586
scalbnfNx function, 586
scalbnl function, 259, 487
scanf function, 34, 215, 217, 326, 348, 349, 351,

509, 529, 693, 694
scanf_s function, 510, 648, 652
scanlist, 345, 430
scanset, 345, 429
SCHAR_MAX macro, 24, 485, 523
SCHAR_MIN macro, 24, 41, 485, 523
SCHAR_WIDTH macro, 23, 485, 523
SCN identifier prefix, 226, 462
SCNbMAX macro, 227, 484
SCNbPTR macro, 227, 484
SCNcFASTN macro, 226
SCNcLEASTN macro, 226

SCNcN macro, 226
SCNdMAX macro, 226, 484
SCNdPTR macro, 226, 484
SCNiMAX macro, 226, 484
SCNiPTR macro, 226, 484
SCNoMAX macro, 227, 484
SCNoPTR macro, 227, 484
SCNuMAX macro, 227, 484
SCNuPTR macro, 227, 484
SCNxMAX macro, 227, 484
SCNxPTR macro, 227, 484
scope, 36
scope of identifier, 36, 162
search function

string, 385
utility, 374, 657
wide string, 446

search functions
string, 666
wide string, 683

secondary block, 153
SEEK_CUR macro, 326, 356, 509
SEEK_END macro, 326, 329, 356, 509
SEEK_SET macro, 326, 356, 358, 509, 613
selection

_Generic, 54, 75, 114, 122, 137, 320, 392
selection statement, 155
self-referential structure, 117
semicolon punctuator (;), 98, 106, 154, 156,

157
separate compilation, 11
separate translation, 11
sequence point, 14, 77, 90, 91, 95, 122, 123, 153,

194, 195, 334, 374, 421, 520, 657
sequenced before, 14, 73, 77, 79, 92
sequenced during a function call, 150
sequencing of statement, 153
sequential consistency, 19
set_constraint_handler_s function, 512,

641, 655, 656
setbuf function, 325, 328, 329, 331, 333, 509
setjmp function, 194, 287, 288, 505, 603, 610,

689
setlocale function, vii, 192, 231, 232, 235,

409, 485, 610, 619
setpayload function, 496, 528, 555
setpayloadd128 function, 497, 555
setpayloadd32 function, 497, 555
setpayloadd64 function, 497, 555
setpayloaddN function, 592
setpayloaddNx function, 592
setpayloadf function, 496, 555
setpayloadfN function, 592
setpayloadfNx function, 592
setpayloadl function, 496, 555
setpayloadsig function, 496, 528, 555

© ISO/IEC 202y — All rights reserved

Index — 752

ISO/IEC 9899:202y (en) — n3299 working draft

setpayloadsigd128 function, 497, 555
setpayloadsigd32 function, 497, 555
setpayloadsigd64 function, 497, 555
setpayloadsigdN function, 592
setpayloadsigdNx function, 592
setpayloadsigf function, 496, 555
setpayloadsigfN function, 592
setpayloadsigfNx function, 592
setpayloadsigl function, 496, 555
setvbuf function, 325, 328, 329, 331, 333, 334,

509, 612
shall, 9
shift expression, 87
shift sequence, 192
shift state, 20

initial, 20
short identifier

character, 22
short int type, 40, 104
short int type conversion, 47–49
short keyword, 54
SHRT_MAX macro, 24, 485, 523
SHRT_MIN macro, 24, 485, 523
SHRT_WIDTH macro, 23, 485, 523
side effect, 14, 43, 51, 73, 79, 92, 140, 154, 211,

214, 353, 354, 436, 437, 534, 536, 538
SIG identifier prefix, 289, 463
SIG_ identifier prefix, 289, 463
SIG_ATOMIC_MAX macro, 324, 509
SIG_ATOMIC_MIN macro, 324, 509
sig_atomic_t type, 14, 289, 290, 324, 505, 602,

610
SIG_ATOMIC_WIDTH macro, 324, 509
SIG_DFL macro, 289, 290, 505, 620
SIG_ERR macro, 289, 290, 505, 611
SIG_IGN macro, 289, 290, 505, 616
SIGABRT macro, 289, 290, 371, 505
SIGFPE macro, 241, 289, 290, 505, 610, 615, 624
SIGILL macro, 289, 290, 505, 610, 615
SIGINT macro, 289, 505
sign bit, 44
signal, 14, 21, 289
signal function, 15, 16, 135, 289, 290, 372, 373,

505, 610, 611, 616, 620
signal handler, 14, 21, 290, 291
signal handling function, 289
signal handling header, 289, 463
signaling NaN, 25, 527
signals, 289
signbit macro, 244, 245, 485, 530, 531, 551
signed char type, 40
signed character, 48
signed integer type, 40, 48, 60
signed integer types, 40
signed keyword, 54
signed type, 40, 104

signed type conversion, 47–49
significand part, 62
SIGSEGV macro, 289, 290, 505, 610, 615
SIGTERM macro, 289, 505
simple assignment, 93
simple assignment operator (=), 93
sin function, 78, 247, 391, 393, 486, 533, 541,

567
sin type-generic macro, 391, 567
sind128 function, 247, 491
sind32 function, 247, 491
sind64 function, 247, 491
sindN function, 583
sindNx function, 583
sinf function, 247, 486
sinfN function, 583
sinfNx function, 583
single-byte character, 20
single-byte/wide character conversion func-

tion, 451
single-quote escape sequence (\’), 66, 68
singularity, 241
sinh function, 252, 391, 486, 533, 542, 567
sinh type-generic macro, 391, 567
sinhd128 function, 252, 492
sinhd32 function, 252, 492
sinhd64 function, 252, 492
sinhdN function, 584
sinhdNx function, 584
sinhf function, 252, 486
sinhfN function, 584
sinhfNx function, 584
sinhl function, 252, 486
sinl function, 247, 486
sinpi function, 250, 486, 533, 542
sinpi type-generic macro, 391
sinpid128 function, 250, 491
sinpid32 function, 250, 491
sinpid64 function, 250, 491
sinpidN function, 583
sinpidNx function, 583
sinpif function, 250, 486
sinpifN function, 583
sinpifNx function, 583
sinpil function, 250, 486
SIZE_MAX macro, 42, 509, 642
SIZE_WIDTH macro, 324, 509
sizeof keyword, 54
sizeof operator, 51, 82, 83
snprintf function, 349, 351, 361, 362, 410, 509,

648, 695
snprintf_s function, 510, 648, 649
snwprintf_s function, 518, 673, 674
sorting utility function, 374, 657
source character set, 11, 19
source file, 11

© ISO/IEC 202y — All rights reserved

Index — 753

ISO/IEC 9899:202y (en) — n3299 working draft

name, 186, 188
source file inclusion, 171
source line, 11
source text, 11
space character (’ ’), 11, 20, 53, 207, 208, 457
space format flag, 335, 422
spilling, 15
sprintf function, 349, 352, 509, 649
sprintf_s function, 510, 649
sqrt function, 152, 263, 391, 488, 528, 548, 553
sqrt type-generic macro, 391
sqrtd128 function, 263, 493
sqrtd32 function, 263, 393, 493
sqrtd64 function, 263, 493
sqrtdN function, 587
sqrtdNx function, 587
sqrtf function, 263, 488
sqrtfN function, 587
sqrtfNx function, 587
sqrtl function, 263, 488
square root rounded to narrower type, 280
srand function, 367, 368, 511
sscanf function, 347, 349, 352, 509
sscanf_s function, 510, 650, 653
standard attribute, 143
standard embed parameter, 173
standard error stream, 326, 328, 359
standard floating type, 40
standard header, 9, 192
standard headers

<assert.h>, 175–177, 193, 196, 222, 480
<complex.h>, 25, 30, 102, 140, 190, 192,

193, 197–205, 390, 391, 462, 480, 481,
559, 561, 577, 579, 614, 617, 624, 693,
694

<ctype.h>, 193, 206, 207–209, 462, 482
<errno.h>, 151, 193, 210, 462, 482, 641
<fenv.h>, 9, 14, 16, 25, 30, 35, 94, 151, 193,

211, 213, 214, 217–224, 241, 462, 482,
527, 531, 534–537, 545, 549, 551, 695

<float.h>, 9, 10, 22, 24, 25, 29, 30, 102,
193, 225, 239, 339, 363, 426, 440, 462,
463, 483, 484, 523, 527, 533, 571, 572,
621, 693, 694

<inttypes.h>, 193, 226, 227, 228, 337,
423, 462, 484, 694

<iso646.h>, 9, 10, 193, 229, 484, 694, 695
<limits.h>, 9, 10, 22, 23, 24, 40, 41, 193,

230, 485, 523, 621
<locale.h>, 151, 193, 231, 232, 462, 485
<math.h>, 9, 25, 30, 35, 74, 150, 151, 193,

215, 217, 238, 239, 241–244, 245–272,
273, 274–278, 279, 280–285, 286, 340,
390–392, 426, 462, 463, 485, 496, 497,
526, 527, 533, 539, 540, 545, 549, 551–
555, 559, 569, 579, 592–594, 604, 614,

617, 621, 624, 694
<setjmp.h>, 193, 287, 288, 505
<signal.h>, 193, 289, 291, 463, 505
<stdalign.h>, 9, 10, 193, 292, 505, 693
<stdarg.h>, 9, 10, 131, 193, 293, 294–296,

350–352, 432–434, 505, 650–653, 674–
677

<stdatomic.h>, 190, 192, 193, 290, 297,
298, 301, 302, 304, 306, 307, 463, 505,
610, 693

<stdbit.h>, 9, 193, 308, 309–315, 463,
506, 692

<stdbool.h>, 9, 10, 193, 316, 463, 508, 695
<stdckdint.h>, 193, 317, 463, 508
<stddef.h>, 9, 10, 51, 67, 69, 84, 86, 87,

142, 174, 175, 193, 228, 318, 319, 320,
348, 508, 642

<stdint.h>, 9, 10, 22, 24, 168, 193, 226,
227, 321, 323, 324, 336, 343, 344, 423,
428, 463, 508, 509, 621, 642, 694

<stdio.h>, 16, 25, 30, 35, 57, 151, 171, 175,
193, 215, 217, 325, 329–331, 333, 334,
340, 342, 346–359, 407, 421, 426, 427,
430–432, 434–437, 463, 509, 510, 617,
642, 643–654, 672, 674, 675, 693–695

<stdlib.h>, 9, 25, 30, 35, 193, 195, 215,
217, 360, 361, 362, 364, 366–378, 463,
510, 512, 569, 594, 595, 596, 597, 617,
641, 655, 656–661, 693

<stdnoreturn.h>, 9, 10, 148, 193, 380,
513

<string.h>, 9, 174, 177, 178, 193, 381,
382–389, 464, 513, 662, 663–668

<tgmath.h>, 35, 193, 390, 393, 514, 526,
539, 567, 598, 600, 694

<threads.h>, 150, 151, 190, 192, 193, 395,
396–403, 464, 515, 693

<time.h>, 193, 395, 405, 406–411, 450, 464,
515, 516, 668, 669–671, 693

<uchar.h>, 67, 69, 193, 415, 416–419, 516,
691, 693

<wchar.h>, 25, 30, 35, 151, 193, 215, 217,
227, 326, 420, 421, 426, 427, 431–438,
440, 442–447, 449–454, 464, 516, 518,
597, 598, 617, 671, 672–686, 694, 695

<wctype.h>, 193, 456, 457–461, 464, 519,
694, 695

standard input stream, 326, 328
standard integer type, 40
standard output stream, 326, 328
standard signed integer type, 40
standard unsigned integer type, 40
state-dependent encoding, 20, 376, 659
stateless function, 150
statement, 153

break, 54, 159

© ISO/IEC 202y — All rights reserved

Index — 754

ISO/IEC 9899:202y (en) — n3299 working draft

compound, 154
continue, 54, 157, 158, 159
do, 54, 157
else, 54, 155
expression, 154
for, 54, 157
goto, 54, 157
if, 54, 155
iteration, 156
jump, 157
labeled, 154
null, 154
return, 54, 159, 534
selection, 155
sequencing, 153
switch, 54, 155
while, 54, 157

static, 100
static assertion, 143
static storage duration, 38
static storage-class specifier, 37, 38, 54
static, in array declarator, 129, 131
static_assert, 143
static_assert storage-class specifier, 54
STDC pragma, 94, 152, 187, 191, 198, 213–215,

217, 220, 222, 224, 242, 480, 482, 483,
485, 535–537, 545, 549, 551, 559, 560,
609, 619

stdc_ identifier prefix, 463
stdc_bit_ceil macro, 315, 508
stdc_bit_ceil_uc function, 315, 508
stdc_bit_ceil_ui function, 315, 508
stdc_bit_ceil_ul function, 315, 508
stdc_bit_ceil_us function, 315, 508
stdc_bit_floor macro, 315, 508
stdc_bit_floor_uc function, 315, 508
stdc_bit_floor_ui function, 315, 508
stdc_bit_floor_ul function, 315, 508
stdc_bit_floor_ull function, 315, 508
stdc_bit_floor_us function, 315, 508
stdc_bit_width macro, 314, 508
stdc_bit_width_uc function, 314, 508
stdc_bit_width_ui function, 314, 508
stdc_bit_width_ul function, 314, 508
stdc_bit_width_ull function, 314, 508
stdc_bit_width_us function, 314, 508
stdc_count_ones macro, 313, 507
stdc_count_ones_uc function, 313, 507
stdc_count_ones_ui function, 313, 507
stdc_count_ones_ul function, 313, 507
stdc_count_ones_ull function, 313, 507
stdc_count_ones_us function, 313, 507
stdc_count_zeros macro, 313, 507
stdc_count_zeros_uc function, 313, 507
stdc_count_zeros_ui function, 313, 507
stdc_count_zeros_ul function, 313, 507

stdc_count_zeros_ull function, 313, 507
stdc_count_zeros_us function, 313, 507
stdc_first_leading_one macro, 311, 507
stdc_first_leading_one_uc function, 311,

507
stdc_first_leading_one_ui function, 311,

507
stdc_first_leading_one_ul function, 311,

507
stdc_first_leading_one_ull function,

311, 507
stdc_first_leading_one_us function, 311,

507
stdc_first_leading_zero macro, 311, 507
stdc_first_leading_zero_uc function,

311, 507
stdc_first_leading_zero_ui function,

311, 507
stdc_first_leading_zero_ul function,

311, 507
stdc_first_leading_zero_ull function,

311, 507
stdc_first_leading_zero_us function,

311, 507
stdc_first_trailing_one macro, 312, 507
stdc_first_trailing_one_uc function,

312, 507
stdc_first_trailing_one_ui function,

312, 507
stdc_first_trailing_one_ul function,

312, 507
stdc_first_trailing_one_ull function,

312, 507
stdc_first_trailing_one_us function,

312, 507
stdc_first_trailing_zero macro, 312, 507
stdc_first_trailing_zero_uc function,

312, 507
stdc_first_trailing_zero_ui function,

312, 507
stdc_first_trailing_zero_ul function,

312, 507
stdc_first_trailing_zero_ull function,

312, 507
stdc_first_trailing_zero_us function,

312, 507
stdc_has_single_bit macro, 314, 508
stdc_has_single_bit_uc function, 314, 507
stdc_has_single_bit_ui function, 314, 507
stdc_has_single_bit_ul function, 314, 507
stdc_has_single_bit_ull function, 314,

508
stdc_has_single_bit_us function, 314, 507
stdc_leading_ones macro, 309, 506
stdc_leading_ones_uc function, 309, 506
stdc_leading_ones_ui function, 309, 506

© ISO/IEC 202y — All rights reserved

Index — 755

ISO/IEC 9899:202y (en) — n3299 working draft

stdc_leading_ones_ul function, 309, 506
stdc_leading_ones_ull function, 309, 506
stdc_leading_ones_us function, 309, 506
stdc_leading_zeros macro, 309, 506
stdc_leading_zeros_uc function, 309, 506
stdc_leading_zeros_ui function, 309, 506
stdc_leading_zeros_ul function, 309, 506
stdc_leading_zeros_ull function, 309, 506
stdc_leading_zeros_us function, 309, 506
stdc_trailing_ones macro, 310, 507
stdc_trailing_ones_uc function, 310, 507
stdc_trailing_ones_ui function, 310, 507
stdc_trailing_ones_ul function, 310, 507
stdc_trailing_ones_ull function, 310, 507
stdc_trailing_ones_us function, 310, 507
stdc_trailing_zeros macro, 310, 507
stdc_trailing_zeros_uc function, 310, 506
stdc_trailing_zeros_ui function, 310, 506
stdc_trailing_zeros_ul function, 310, 506
stdc_trailing_zeros_ull function, 310,

506
stdc_trailing_zeros_us function, 310, 506
stderr stream, 186, 326, 327, 328, 333, 350,

432, 509, 623
stdin stream, 326, 327, 328, 333, 346–348, 354,

431, 434, 436, 437, 509, 647, 648, 654,
679

stdout stream, 326, 327, 328, 333, 340–342,
348, 354, 426, 434, 437, 509

storage duration, 38
storage order of array, 76
storage unit (bit-field), 43, 107
storage-class specifier, 99, 191

_Thread_local, 54
auto, 54, 99, 100, 101, 130, 135, 136, 137,

160, 191, 693
constexpr, 37–39, 54, 80, 96, 97, 99–104,

138, 191, 290, 535, 536, 691
extern, 37, 38, 54, 84, 99, 100, 101, 115,

121–123, 125, 126, 130, 134, 152, 161–
163, 177, 178, 195, 607, 623

register, 54, 100
static, 54, 100
thread_local, 38, 54, 100
typedef, 54, 100, 134

store and load, 15
str identifier prefix, 462–464
strcat function, 383, 513
strcat_s function, 513, 664, 665
strchr macro, 385, 386, 464, 513, 692
strcmp function, 384, 385, 513
strcoll function, 9, 232, 384, 385, 513
strcpy function, 177–179, 347, 382, 513
strcpy_s function, 513, 663
strcspn function, 386, 513
strdup function, 9, 382, 383, 513, 691

stream, 327, 372
binary, 327
fully buffered, 328
line buffered, 328
orientation, 327
standard error, 326, 328
standard input, 326, 328
standard output, 326, 328
text, 327
unbuffered, 328

strerror function, 9, 359, 388, 389, 513, 613,
614, 622

strerror_s function, 389, 514, 667, 668
strerrorlen_s function, 514, 668
strfrom family, 215, 217
strfromd family, 362
strfromd function, 361, 362, 438, 511, 529
strfromd128 function, 362, 512
strfromd32 function, 362, 512
strfromd64 function, 362, 512
strfromdN function, 595
strfromdNx function, 595
strfromencbindN function, 596
strfromencdecdN function, 596
strfromencf128 function, 595, 596
strfromencfN function, 596
strfromf function, 361, 362, 438, 511
strfromfN function, 595
strfromfNx function, 595
strfroml function, 361, 362, 511
strftime function, 232, 409, 411, 414, 450, 516,

604, 612, 614, 621, 669, 670, 691, 695
stricter, 46
strictly conforming program, 9
string, 192

comparison function, 384
concatenation function, 383, 664
conversion function, 232
copying function, 381, 662
library function convention, 381
literal, 12, 19, 51, 68, 74, 139
miscellaneous function, 388, 667
numeric conversion function, 227, 360
search function, 385, 666

string duplicate function, 382, 383
string handling header, 381, 464, 662
string literal

wide, 68
stringizing, 182, 190
stringizing argument, 182
strlen function, 383, 389, 513
strncat function, 383, 513
strncat_s function, 513, 665, 666
strncmp function, 185, 384, 385, 513
strncpy function, 382, 513
strncpy_s function, 513, 663, 664

© ISO/IEC 202y — All rights reserved

Index — 756

ISO/IEC 9899:202y (en) — n3299 working draft

strndup function, 9, 383, 513, 691
strnlen_s function, 514, 663–665, 668
stronger, 46
strpbrk macro, 385, 386, 464, 513, 692
strrchr macro, 385, 386, 387, 464, 513, 692
strspn function, 387, 513
strstr macro, 385, 387, 464, 513, 692
strto family, 34, 215, 217, 364
strtod family, 364, 365
strtod function, 64, 271, 343, 344, 348, 361,

362, 438, 511, 529, 534, 535, 603, 620
strtod128 function, 364, 512, 596, 620, 621
strtod32 function, 364, 512, 620, 621
strtod64 function, 364, 365, 512, 620, 621
strtodN function, 595
strtodNx function, 595
strtoencbindN function, 597
strtoencdecdN function, 597
strtoencfN function, 597
strtof function, 271, 348, 361, 362, 511, 603,

620
strtofN function, 595
strtofNx function, 595
strtoimax function, 227, 228, 484
strtok function, 9, 387, 388, 513, 614
strtok_s function, 388, 514, 666, 667
strtol function, 228, 343, 344, 348, 361, 366,

367, 511
strtold function, 271, 348, 361, 362, 511, 603,

620
strtoll function, 228, 348, 361, 366, 367, 511
strtoul function, 228, 344, 348, 361, 366, 367,

511
strtoull function, 228, 348, 361, 366, 367, 511
strtoumax function, 227, 228, 484
struct keyword, 54
structure

arrow operator (->), 77
content, 117
dot operator (.), 77
initialization, 139
member alignment, 107
member name space, 38
member operator (.), 51, 77
pointer operator (->), 77
specifier, 105
tag, 38, 117
type, 41, 105

structure content, 117
structure or union constant, 97
strxfrm function, 9, 232, 385, 513, 614
subnormal floating-point number, 24
subscripting, 76
subtract and round to narrower type, 279
subtraction assignment operator (-=), 94
subtraction operator (-), 86, 560

successful termination, 372
suffix

floating constant, 63
integer constant, 60

suffix embed parameter, 173, 177, 178, 179
switch body, 156
switch case label, 154, 156
switch default label, 154, 156
switch keyword, 54
switch statement, 154, 155
swprintf function, 431, 433, 516, 673, 674
swprintf_s function, 518, 673, 674
swscanf function, 431, 432, 433, 516
swscanf_s function, 518, 674, 677
symbol, 3
synchronization operation, 17
synchronize, 150
synchronize with, 17
syntactic category, 36
syntax notation, 36
syntax rule precedence, 11
syntax summary

language, 465
system function, 373, 374, 511, 614, 616, 621

t format modifier, 336, 343, 423, 428
tab character, 20, 53
tag, 115
tag compatibility, 44
tag name space, 38
tags, 38
tan function, 247, 248, 391, 486, 533, 541, 567
tan type-generic macro, 391, 567
tand128 function, 248, 491
tand32 function, 248, 491
tand64 function, 248, 491
tandN function, 583
tandNx function, 583
tanf function, 247, 486
tanfN function, 583
tanfNx function, 583
tanh function, 252, 391, 486, 533, 543, 567
tanh type-generic macro, 391, 567
tanhd128 function, 252, 492
tanhd32 function, 252, 492
tanhd64 function, 252, 492
tanhdN function, 584
tanhdNx function, 584
tanhf function, 252, 486
tanhfN function, 584
tanhfNx function, 584
tanhl function, 252, 487
tanl function, 247, 486
tanpi function, 250, 486, 533, 542
tanpi type-generic macro, 391
tanpid128 function, 250, 491
tanpid32 function, 250, 491

© ISO/IEC 202y — All rights reserved

Index — 757

ISO/IEC 9899:202y (en) — n3299 working draft

tanpid64 function, 250, 491
tanpidN function, 583
tanpidNx function, 583
tanpif function, 250, 486
tanpifN function, 583
tanpifNx function, 583
tanpil function, 250, 486
temporary lifetime, 39
tentative definition, 162
term, 3
text stream, 327, 355–357
tgamma function, 264, 265, 488, 548
tgamma type-generic macro, 391
tgammad128 function, 265, 493
tgammad32 function, 264, 493
tgammad64 function, 264, 493
tgammadN function, 587
tgammadNx function, 587
tgammaf function, 264, 488
tgammafN function, 587
tgammafNx function, 587
tgammal function, 264, 488
thousands_sep structure member, 231, 233
thrd_ identifier prefix, 464
thrd_busy constant, 396, 400, 515
thrd_create function, 395, 400, 515
thrd_current function, 400, 515
thrd_detach function, 401, 515, 614
thrd_equal function, 401, 515
thrd_error constant, 396, 397–404, 515
thrd_exit function, 400, 401, 515, 604
thrd_join function, 401, 402, 515, 614
thrd_nomem constant, 396, 397, 400, 515
thrd_sleep function, 402, 515
thrd_start_t type, 395, 400, 515
thrd_success constant, 396, 397–404, 515
thrd_t type, 395, 400, 401, 515
thrd_timedout constant, 396, 398, 399, 515
thrd_yield function, 402, 515
thread, 16
thread of execution, 16, 195, 211, 373, 657
thread storage duration, 38, 211
thread_local, 38, 100
thread_local storage-class specifier, 38, 54
threads header, 395, 464
time

broken down, 406, 407–411, 669, 671
calendar, 405, 406–408, 410, 411, 670, 671
component, 405, 669
conversion function, 409, 669

wide character, 450
local, 405
manipulation function, 406
normalized broken down, 669

time base, 405, 408
time function, 407, 408, 515, 604

TIME_ identifier prefix, 405, 464
TIME_ACTIVE macro, 405, 409, 464, 516, 621
TIME_MONOTONIC macro, 405, 408, 464, 516,

621
time_t type, 405, 406, 407, 408, 410, 411, 515,

516, 621, 670, 671
TIME_THREAD_ACTIVE macro, 405, 409, 464,

516, 621
TIME_UTC macro, 398, 399, 402, 405, 408, 515,

621
timegm function, 407, 408, 515, 693
timespec structure type, 397, 399, 402, 405,

406, 408, 409, 515
timespec_get function, 405, 408, 409, 515
timespec_getres function, 405, 409, 515, 693
tm structure type, 405, 406, 407–411, 420, 450,

515–517, 669, 670, 671
tm_hour structure member, 406, 407, 410, 412,

669
tm_isdst structure member, 406, 407, 412
tm_mday structure member, 406, 407, 408, 410,

412, 669
tm_min structure member, 406, 407, 410, 412,

669
tm_mon structure member, 406, 407, 408, 410–

412, 669
tm_sec structure member, 406, 407, 410, 412,

670
tm_wday structure member, 406, 407, 408, 410–

412, 669
tm_yday structure member, 406, 407, 408, 412
tm_year structure member, 406, 407, 408, 410–

412, 670
TMP_MAX macro, 326, 330, 331, 509
TMP_MAX_S macro, 510, 642, 643, 644
tmpfile function, 330, 372, 509
tmpfile_s function, 510, 643, 644
tmpnam function, 326, 330, 331, 509, 644
tmpnam_s function, 510, 642, 643, 644
to identifier prefix, 462, 464
token, 12, 53
token concatenation, 182
token pasting, 182
tolower function, 208, 482
totalorder function, 496, 530, 553, 554
totalorderd128 function, 496, 553
totalorderd32 function, 496, 553
totalorderd64 function, 496, 553
totalorderdN function, 591
totalorderdNx function, 591
totalorderf function, 496, 553
totalorderfN function, 591
totalorderfNx function, 591
totalorderl function, 496, 553
totalordermag function, 496, 530, 554
totalordermagd128 function, 497, 554

© ISO/IEC 202y — All rights reserved

Index — 758

ISO/IEC 9899:202y (en) — n3299 working draft

totalordermagd32 function, 497, 554
totalordermagd64 function, 497, 554
totalordermagdN function, 591
totalordermagdNx function, 591
totalordermagf function, 496, 554
totalordermagfN function, 591
totalordermagfNx function, 591
totalordermagl function, 496, 554
toupper function, 208, 209, 482
towctrans function, 460, 461, 519, 615, 622
towlower function, 460, 461, 519
towupper function, 460, 461, 519
translation environment, 11
translation limit, 22
translation phase, 11
translation unit, 11, 160
trigonometric function

complex, 198, 562
real, 245, 540

true keyword, 54
true predefined constant, 67
trunc function, 239, 268, 489, 527, 550
trunc type-generic macro, 391
truncation, 48, 268, 328, 332
truncation toward zero, 85
truncd128 function, 268, 494
truncd32 function, 268, 494
truncd64 function, 268, 494
truncdN function, 588
truncdNx function, 588
truncf function, 268, 489
truncfN function, 588
truncfNx function, 588
truncl function, 268, 489
tss_ identifier prefix, 464
tss_create function, 402, 403, 515, 614, 615
tss_delete function, 403, 515, 604, 615
TSS_DTOR_ITERATIONS macro, 395, 401, 515
tss_dtor_t type, 395, 402, 515
tss_get function, 403, 515, 615
tss_set function, 403, 404, 515, 615
tss_t type, 395, 402, 403, 515
tv_nsec structure member, 406, 408
tv_sec structure member, 406, 408
two’s complement, 44
type, 39

aggregate, 42
arithmetic, 41
atomic, 14, 42, 43, 51, 94, 118, 190, 303
basic, 41
compatible, 44, 105, 122, 128
complex, 41
composite, 45
const qualified, 122
conversion, 47
derived, 41

derived declarator, 42
extended floating, 570
integer, 41
real, 41
restrict qualified, 122
scalar, 42
typeof, 118
volatile qualified, 122

type category, 42
type conversion, 47
type definition, 134
type domain, 41, 557
type inference, 135, 623
type name, 133
type punning, 77
type qualifier, 121
type specifier, 104

_BitInt, 23, 40, 48, 50, 54, 60, 61, 104, 105,
692

_Bool, 54
_Complex, 26, 41, 50, 54, 102–105, 197, 557,

559, 571, 577
_Decimal128, 54
_Decimal32, 54
_Decimal64, 54
_Imaginary, 54
bool, 54
char, 54
double, 54
enum, 54
float, 54
int, 54
long, 54
short, 54
signed, 54
struct, 54
union, 54
unsigned, 54
void, 54

type-generic macro, 390, 567
type-generic math header, 390
typedef, 100, 134
typedef declaration, 134
typedef storage-class specifier, 54, 134
typeof keyword, 54
typeof operator, 51, 118
typeof specifier, 118
typeof_unqual keyword, 54
types

atomic, 77, 79
character, 139
complex, 557
imaginary, 557

U encoding prefix, 65, 66, 68, 69, 139
u encoding prefix, 65, 66, 68, 69, 139
u8 encoding prefix, 65, 66, 68, 69

© ISO/IEC 202y — All rights reserved

Index — 759

ISO/IEC 9899:202y (en) — n3299 working draft

UCHAR_MAX macro, 24, 485, 523
UCHAR_WIDTH macro, 23, 485, 523
ufromfp function, 240, 268, 269, 489, 529, 533,

550
ufromfp function, 268
ufromfp type-generic macro, 391
ufromfpd128 function, 268, 494
ufromfpd32 function, 268, 494
ufromfpd64 function, 268, 494
ufromfpdN function, 588
ufromfpdNx function, 588
ufromfpf function, 268, 489
ufromfpfN function, 588
ufromfpfNx function, 588
ufromfpl function, 268, 489
ufromfpx function, 240, 269, 489, 529, 533, 550
ufromfpx function, 269
ufromfpx type-generic macro, 391
ufromfpxd128 function, 269, 494
ufromfpxd32 function, 269, 494
ufromfpxd64 function, 269, 494
ufromfpxdN function, 588
ufromfpxdNx function, 588
ufromfpxf function, 269, 489
ufromfpxfN function, 588
ufromfpxfNx function, 588
ufromfpxl function, 269, 489
UINT identifier prefix, 323, 324, 463, 509
uint identifier prefix, 321, 322, 463, 509, 693
UINTN_C macro, 324
UINTN_MAX macro, 323
uintN_t type, 321
UINTN_WIDTH macro, 323
UINT64_C macro, 324
uint64_t type, 269
UINT_FAST identifier prefix, 323, 509
uint_fast identifier prefix, 322, 509, 693
UINT_LEAST identifier prefix, 323, 509
uint_least identifier prefix, 321, 322, 324,

509
UINT_FASTN_MAX macro, 323
UINT_FASTN_WIDTH macro, 323
uint_fast16_t type, 303, 322
uint_fast32_t type, 303, 322
uint_fast64_t type, 303, 322
uint_fast8_t type, 303, 322
uint_fastN_t type, 322
UINT_LEASTN_MAX macro, 323
uint_leastN_t type, 321
UINT_LEASTN_WIDTH macro, 323
uint_least16_t type, 303, 321, 322, 415
uint_least32_t type, 303, 322, 415
uint_least64_t type, 303, 322, 324
uint_least8_t type, 303, 322
UINT_MAX macro, 24, 104, 113, 168, 485, 523
UINT_WIDTH macro, 23, 269, 485, 523

UINTMAX_C macro, 324, 509
UINTMAX_MAX macro, 227, 228, 323, 509, 533
uintmax_t type, 24, 168, 227, 228, 303, 323,

324, 336, 343, 422, 428, 484, 509, 692,
694

UINTMAX_WIDTH macro, 323, 509
UINTPTR_MAX macro, 323, 509
uintptr_t type, 303, 322, 509
UINTPTR_WIDTH macro, 323, 509
ULLONG_MAX macro, 24, 103, 113, 367, 443, 485,

523
ULLONG_WIDTH macro, 23, 485, 523
ULONG_MAX macro, 24, 367, 443, 485, 523
ULONG_WIDTH macro, 23, 485, 523
unary arithmetic operator, 83
unary expression, 82
unary minus operator (-), 83, 531
unary operator, 82
unary plus operator (+), 83
unbuffered, 328
unbuffered stream, 328
undef, 56, 164, 167, 184, 188, 194, 195, 609
undef preprocessing directive, 184, 194
undefined behavior, 4, 9, 604
underlying type, 110
underscore

leading
in identifier, 193

underspecified, 99
ungetc function, 326, 354, 355, 357, 463, 510,

603, 613, 624, 695
ungetwc function, 326, 437, 438, 517, 603, 624
Unicode, 415
Unicode required set, 189
Unicode Standard

Annex, UAX #31, 696
Annex, UAX #44, 2
Derived Core Properties, 2

Unicode utilities header, 415
union

arrow operator (->), 77
content, 117
dot operator (.), 77
initialization, 139
member alignment, 107
member name space, 38
member operator (.), 51, 77
pointer operator (->), 77
specifier, 105
tag, 38, 117
type, 41, 105

union content, 117
union keyword, 54
universal character name, 57, 521
unnormalized floating-point number, 24
unqualified type, 42

© ISO/IEC 202y — All rights reserved

Index — 760

ISO/IEC 9899:202y (en) — n3299 working draft

unqualified version of type, 42
unreachable, 319
unreachable macro, viii, 318, 319, 508, 611,

693
unsequenced, 14, 73, 92, 150
unsequenced attribute, 144, 149, 151, 152, 309–

315, 506–508, 608, 690, 691
unsigned bit-precise integer suffix, uwb or UWB,

60
unsigned integer suffix, u or U, 60
unsigned integer type, 40, 48, 60
unsigned keyword, 54
unsigned type, 40, 104, 335, 343, 422, 428
unsigned type conversion, 47–49
unspecified behavior, 4, 9, 602
unspecified value, 7
unsuccessful termination, 371, 372
uppercase letter, 19
use of library function, 194
USHRT_MAX macro, 24, 112, 485, 523
USHRT_WIDTH macro, 23, 485, 523
usual arithmetic conversion, 49, 85, 86, 88–91
UTF–8 string literal, see string literal
UTF-16 character constant, 65
UTF-16 string literal, 68
UTF-32 character constant, 65
UTF-32 string literal, 68
UTF-8 character constant, 65
UTF-8 string literal, 68
utility

bit and byte, 308
general, 360, 463, 655

wide string, 438, 679
Unicode, 415

va_arg function, 226, 293, 294–296, 339, 350–
352, 426, 432–434, 505, 611, 651–653,
675, 677, 678

va_copy function, 194, 293, 294, 296, 505, 603,
611, 695

va_end function, 194, 293, 294, 295, 296, 350–
352, 432–434, 505, 603, 611, 613, 651–
653, 675, 677, 678

va_list type, 293, 294–296, 350–352, 432–434,
505, 509, 510, 516–518, 611, 613, 650–
653, 674–678

va_start function, 293, 294, 295, 296, 350–352,
432–434, 505, 611, 651–653, 675, 677,
678, 692

value, 7
value bit, 43
value of a string, 192
value of a wide string, 192
variable argument, 180
variable arguments header, 293
variable length array, 128, 129, 190
variably modified, 128

variably modified type, 128, 129, 190
vertical tab, 21
vertical-tab character, 20, 53
vertical-tab escape sequence (\v), 21, 66, 208
vfprintf function, 326, 350, 509, 613, 650
vfprintf_s function, 510, 650, 651–653
vfscanf function, 326, 350, 509, 613
vfscanf_s function, 510, 651, 652, 653
vfwprintf function, 326, 432, 516, 613, 675
vfwprintf_s function, 518, 674, 675
vfwscanf function, 326, 432, 433, 437, 516, 613
vfwscanf_s function, 518, 675, 677, 678
visibility of identifier, 36
visible, 36
visible side effect, 18
void expression, 51
void function parameter, 131
void keyword, 54
void type, 51, 104
void type conversion, 51
volatile, 42
volatile access, 14
volatile keyword, 54
volatile type qualifier, 121
volatile-qualified type, 42, 122
vprintf function, 326, 350, 351, 509, 613, 651
vprintf_s function, 510, 651, 652, 653
vscanf function, 326, 350, 351, 509, 613, 694
vscanf_s function, 510, 651, 652–654
vsnprintf function, 350, 351, 509, 613, 652
vsnprintf_s function, 510, 651, 652, 653
vsnwprintf_s function, 518, 675, 676
vsprintf function, 350, 351, 352, 509, 613, 653
vsprintf_s function, 510, 651, 652, 653
vsscanf function, 350, 352, 509, 613
vsscanf_s function, 510, 651, 652, 653, 654
vswprintf function, 432, 433, 517, 613, 676
vswprintf_s function, 518, 676
vswscanf function, 432, 433, 517, 613
vswscanf_s function, 518, 675, 676, 677, 678
vwprintf function, 326, 432, 433, 434, 517, 613,

677
vwprintf_s function, 518, 677
vwscanf function, 326, 432, 434, 437, 517, 613
vwscanf_s function, 518, 675, 677, 678

warning, 12, 601
WCHAR_MAX macro, 420, 509, 516
WCHAR_MIN macro, 324, 420, 509, 516
wchar_t type, 5, 46, 65–68, 139, 189, 228, 303,

318, 324, 335, 338, 340, 343, 345, 348,
360, 376–378, 415, 420, 421, 422, 425–
438, 440, 442–447, 449, 450, 452–454,
456, 484, 508, 511, 513, 516–519, 595,
597, 598, 604, 615, 616, 659–661, 671–
686

WCHAR_WIDTH macro, 324, 420, 509

© ISO/IEC 202y — All rights reserved

Index — 761

ISO/IEC 9899:202y (en) — n3299 working draft

wcrtomb function, 329, 338, 342, 348, 420, 429–
431, 453, 455, 517, 604, 661, 684, 687

wcrtomb_s function, 519, 684, 685
wcs identifier prefix, 462–464
wcscat function, 444, 517
wcscat_s function, 519, 681, 682
wcschr macro, 446, 464, 517, 692
wcscmp function, 444, 445, 517
wcscoll function, 445, 517
wcscpy function, 443, 517
wcscpy_s function, 518, 679
wcscspn function, 446, 447, 517
wcsftime function, 232, 450, 517, 604, 612, 614,

621
wcslen function, 444, 450, 517, 684
wcsncat function, 444, 517
wcsncat_s function, 519, 682, 683
wcsncmp function, 445, 517
wcsncpy function, 443, 517
wcsncpy_s function, 518, 679, 680
wcsnlen_s function, 519, 679–682, 684
wcspbrk macro, 446, 447, 464, 517, 692
wcsrchr macro, 446, 447, 464, 517, 692
wcsrtombs function, 454, 455, 518, 685
wcsrtombs_s function, 519, 685, 686, 687
wcsspn function, 447, 517
wcsstr macro, 446, 447, 448, 464, 517, 692
wcsto family, 34, 215, 217, 440
wcstod family, 440, 441
wcstod function, 427, 429, 431, 438, 517, 529,

603, 620
wcstod128 function, 438, 440, 518, 620, 621
wcstod32 function, 438, 440, 518, 620, 621
wcstod64 function, 438, 440, 518, 620, 621
wcstodN function, 595
wcstodNx function, 595
wcstoencbindN function, 598
wcstoencdecdN function, 598
wcstoencfN function, 597
wcstof function, 431, 438, 517, 603, 620
wcstofN function, 595
wcstofNx function, 595
wcstoimax function, 228, 484
wcstok function, 449, 517, 614, 615
wcstok_s function, 519, 683, 684
wcstol function, 228, 427, 429, 431, 442, 443,

517
wcstold function, 431, 438, 517, 603, 620
wcstoll function, 228, 431, 442, 443, 517
wcstombs function, 378, 454, 511
wcstombs_s function, 513, 661, 662
wcstoul function, 228, 429, 431, 442, 443, 517
wcstoull function, 228, 431, 442, 443, 517
wcstoumax function, 228, 484
wcsxfrm function, 445, 446, 517, 614
wctob function, 451, 456, 517

wctomb function, 376, 377, 378, 452, 511
wctomb_s function, 513, 659, 660
wctrans function, 460, 461, 519, 615
wctrans_t type, 456, 460, 461, 519
wctype function, 459, 460, 519, 615
wctype_t type, 456, 459, 460, 519
weaker, 46
WEOF macro, 420, 435–438, 451, 456, 516, 519,

615
wfN format modifier, 336, 344, 423, 428
while keyword, 54
while statement, 157
white space, 11, 53, 165, 166, 208, 458
white-space character, 53, 192
White-space wide character, 192
wide character, 5

case mapping function, 460
extensible, 460

classification function, 456
constant, 65
extensible classification function, 459
formatted input/output function, 421,

671
input function, 326
input/output function, 326, 434
output function, 326
single-byte conversion function, 451

wide character classification and mapping util-
ities header, 456, 464

wide character constant, 65
wide character input functions, 326
wide character input/output function, 326
wide character output function, 326
wide literal encoding, 46
wide string, 192
wide string comparison function, 444
wide string concatenation function, 444, 681
wide string copying function, 443, 679
wide string literal, see string literal, 68
wide string miscellaneous function, 450, 684
wide string numeric conversion function, 228,

438
wide string search function, 446, 683
wide-oriented stream, 327
width, 43, 44
WINT_MAX macro, 509
WINT_MIN macro, 324, 509
wint_t type, 324, 335, 338, 340, 420, 422, 425,

435–437, 451, 456, 457–460, 516, 517,
519, 615

WINT_WIDTH macro, 324, 509
wmemchr macro, 446, 449, 450, 464, 517, 692
wmemcmp function, 446, 517
wmemcpy function, 443, 517
wmemcpy_s function, 519, 680, 681
wmemmove function, 443, 444, 517

© ISO/IEC 202y — All rights reserved

Index — 762

ISO/IEC 9899:202y (en) — n3299 working draft

wmemmove_s function, 519, 681
wmemset function, 450, 517
wN format modifier, 336, 343, 423, 428
wprintf function, 215, 217, 227, 326, 433, 434,

517, 529, 678
wprintf_s function, 518, 678
wraparound, 7
write-read coherence, 19
write-write coherence, 18
wscanf function, 215, 217, 326, 434, 437, 517,

529
wscanf_s function, 518, 678, 679

XID_Continue, 55
XID_Start, 55
xor macro, 229, 485
xor_eq macro, 229, 485

z format modifier, 336, 343, 422, 428
zero, 557

© ISO/IEC 202y — All rights reserved

Index — 763

	Front matter
	Contents
	Foreword
	Introduction

	1 Scope
	2 Normative references
	3 Terms, definitions, and symbols
	3.1 access (verb)
	3.2 alignment
	3.3 argument
	3.4 arithmetically negate
	3.5 behavior
	3.5.1 implementation-defined behavior
	3.5.2 locale-specific behavior
	3.5.3 undefined behavior
	3.5.4 unspecified behavior

	3.6 bit
	3.7 byte
	3.8 low-order bit
	3.9 high-order bit
	3.10 character
	3.10.1 character
	3.10.2 multibyte character
	3.10.3 wide character

	3.11 constraint
	3.12 correctly rounded result
	3.13 diagnostic message
	3.14 forward reference
	3.15 implementation
	3.16 implementation limit
	3.17 memory location
	3.18 object
	3.19 parameter
	3.20 recommended practice
	3.21 runtime-constraint
	3.22 value
	3.22.1 implementation-defined value
	3.22.2 unspecified value

	3.23 indeterminate representation
	3.24 non-value representation
	3.25 perform a trap
	3.26 ceiling
	3.27 floor
	3.28 wraparound

	4 Conformance
	5 Environment
	5.1 Introduction
	5.2 Conceptual models
	5.2.1 Translation environment
	5.2.1.1 Program structure
	5.2.1.2 Translation phases
	5.2.1.3 Diagnostics

	5.2.2 Execution environments
	5.2.2.1 General
	5.2.2.2 Freestanding environment
	5.2.2.3 Hosted environment
	5.2.2.3.1 General
	5.2.2.3.2 Program startup
	5.2.2.3.3 Program execution
	5.2.2.3.4 Program termination

	5.2.2.4 Program semantics
	5.2.2.5 Multi-threaded executions and data races

	5.3 Environmental considerations
	5.3.1 Character sets
	5.3.2 Multibyte characters
	5.3.3 Character display semantics
	5.3.4 Signals and interrupts
	5.3.5 Environmental limits
	5.3.5.1 General
	5.3.5.2 Translation limits
	5.3.5.3 Numerical limits
	5.3.5.3.1 General
	5.3.5.3.2 Characteristics of integer types <limits.h>
	5.3.5.3.3 Characteristics of floating types <float.h>
	5.3.5.3.4 Characteristics of decimal floating types in <float.h>

	6 Language
	6.1 Notation
	6.2 Concepts
	6.2.1 Scopes of identifiers, type names, and compound literals
	6.2.2 Linkages of identifiers
	6.2.3 Name spaces of identifiers
	6.2.4 Storage durations of objects
	6.2.5 Types
	6.2.6 Representations of types
	6.2.6.1 General
	6.2.6.2 Integer types

	6.2.7 Compatible type and composite type
	6.2.8 Alignment of objects
	6.2.9 Encodings

	6.3 Conversions
	6.3.1 Introduction
	6.3.2 Arithmetic operands
	6.3.2.1 Boolean, characters, and integers
	6.3.2.2 Boolean type
	6.3.2.3 Signed and unsigned integers
	6.3.2.4 Real floating and integer
	6.3.2.5 Real floating types
	6.3.2.6 Complex types
	6.3.2.7 Real and complex
	6.3.2.8 Usual arithmetic conversions

	6.3.3 Other operands
	6.3.3.1 Lvalues, arrays, and function designators
	6.3.3.2 void
	6.3.3.3 Pointers
	6.3.3.4 nullptr_t

	6.4 Lexical elements
	6.4.1 General
	6.4.2 Keywords
	6.4.3 Identifiers
	6.4.3.1 General
	6.4.3.2 Predefined identifiers

	6.4.4 Universal character names
	6.4.5 Constants
	6.4.5.1 General
	6.4.5.2 Integer constants
	6.4.5.3 Floating constants
	6.4.5.4 Enumeration constants
	6.4.5.5 Character constants
	6.4.5.6 Predefined constants

	6.4.6 String literals
	6.4.7 Punctuators
	6.4.8 Header names
	6.4.9 Preprocessing numbers
	6.4.10 Comments

	6.5 Expressions
	6.5.1 General
	6.5.2 Primary expressions
	6.5.2.1 Generic selection

	6.5.3 Postfix operators
	6.5.3.1 General
	6.5.3.2 Array subscripting
	6.5.3.3 Function calls
	6.5.3.4 Structure and union members
	6.5.3.5 Postfix increment and decrement operators
	6.5.3.6 Compound literals

	6.5.4 Unary operators
	6.5.4.1 General
	6.5.4.2 Prefix increment and decrement operators
	6.5.4.3 Address and indirection operators
	6.5.4.4 Unary arithmetic operators
	6.5.4.5 The sizeof and alignof operators

	6.5.5 Cast operators
	6.5.6 Multiplicative operators
	6.5.7 Additive operators
	6.5.8 Bitwise shift operators
	6.5.9 Relational operators
	6.5.10 Equality operators
	6.5.11 Bitwise AND operator
	6.5.12 Bitwise exclusive OR operator
	6.5.13 Bitwise inclusive OR operator
	6.5.14 Logical AND operator
	6.5.15 Logical OR operator
	6.5.16 Conditional operator
	6.5.17 Assignment operators
	6.5.17.1 General
	6.5.17.2 Simple assignment
	6.5.17.3 Compound assignment

	6.5.18 Comma operator

	6.6 Constant expressions
	6.7 Declarations
	6.7.1 General
	6.7.2 Storage-class specifiers
	6.7.3 Type specifiers
	6.7.3.1 General
	6.7.3.2 Structure and union specifiers
	6.7.3.3 Enumeration specifiers
	6.7.3.4 Tags
	6.7.3.5 Atomic type specifiers
	6.7.3.6 Typeof specifiers

	6.7.4 Type qualifiers
	6.7.4.1 General
	6.7.4.2 Formal definition of restrict

	6.7.5 Function specifiers
	6.7.6 Alignment specifier
	6.7.7 Declarators
	6.7.7.1 General
	6.7.7.2 Pointer declarators
	6.7.7.3 Array declarators
	6.7.7.4 Function declarators

	6.7.8 Type names
	6.7.9 Type definitions
	6.7.10 Type inference
	6.7.11 Initialization
	6.7.12 Static assertions
	6.7.13 Attributes
	6.7.13.1 Introduction
	6.7.13.2 General
	6.7.13.3 The nodiscard attribute
	6.7.13.4 The maybe_unused attribute
	6.7.13.5 The deprecated attribute
	6.7.13.6 The fallthrough attribute
	6.7.13.7 The noreturn and _Noreturn attributes
	6.7.13.8 Standard attributes for function types
	6.7.13.8.1 General
	6.7.13.8.2 The reproducible type attribute
	6.7.13.8.3 The unsequenced type attribute

	6.8 Statements and blocks
	6.8.1 General
	6.8.2 Labeled statements
	6.8.3 Compound statement
	6.8.4 Expression and null statements
	6.8.5 Selection statements
	6.8.5.1 General
	6.8.5.2 The if statement
	6.8.5.3 The switch statement

	6.8.6 Iteration statements
	6.8.6.1 General
	6.8.6.2 The while statement
	6.8.6.3 The do statement
	6.8.6.4 The for statement

	6.8.7 Jump statements
	6.8.7.1 General
	6.8.7.2 The goto statement
	6.8.7.3 The continue statement
	6.8.7.4 The break statement
	6.8.7.5 The return statement

	6.9 External definitions
	6.9.1 General
	6.9.2 Function definitions
	6.9.3 External object definitions

	6.10 Preprocessing directives
	6.10.1 General
	6.10.2 Conditional inclusion
	6.10.3 Source file inclusion
	6.10.4 Binary resource inclusion
	6.10.4.1 #embed preprocessing directive
	6.10.4.2 limit parameter
	6.10.4.3 suffix parameter
	6.10.4.4 prefix parameter
	6.10.4.5 if_empty parameter

	6.10.5 Macro replacement
	6.10.5.1 General
	6.10.5.2 Argument substitution
	6.10.5.3 The # operator
	6.10.5.4 The ## operator
	6.10.5.5 Rescanning and further replacement
	6.10.5.6 Scope of macro definitions

	6.10.6 Line control
	6.10.7 Diagnostic directives
	6.10.8 Pragma directive
	6.10.9 Null directive
	6.10.10 Predefined macro names
	6.10.10.1 General
	6.10.10.2 Mandatory macros
	6.10.10.3 Environment macros
	6.10.10.4 Conditional feature macros

	6.10.11 Pragma operator

	6.11 Future language directions
	6.11.1 Floating types
	6.11.2 Linkages of identifiers
	6.11.3 External names
	6.11.4 Character escape sequences
	6.11.5 Storage-class specifiers
	6.11.6 Pragma directives
	6.11.7 Predefined macro names

	7 Library
	7.1 Introduction
	7.1.1 Definitions of terms
	7.1.2 Standard headers
	7.1.3 Reserved identifiers
	7.1.4 Use of library functions

	7.2 Diagnostics <assert.h>
	7.2.1 General
	7.2.2 Program diagnostics
	7.2.2.1 The assert macro

	7.3 Complex arithmetic <complex.h>
	7.3.1 Introduction
	7.3.2 Conventions
	7.3.3 Branch cuts
	7.3.4 The CX_LIMITED_RANGE pragma
	7.3.5 Trigonometric functions
	7.3.5.1 The cacos functions
	7.3.5.2 The casin functions
	7.3.5.3 The catan functions
	7.3.5.4 The ccos functions
	7.3.5.5 The csin functions
	7.3.5.6 The ctan functions

	7.3.6 Hyperbolic functions
	7.3.6.1 The cacosh functions
	7.3.6.2 The casinh functions
	7.3.6.3 The catanh functions
	7.3.6.4 The ccosh functions
	7.3.6.5 The csinh functions
	7.3.6.6 The ctanh functions

	7.3.7 Exponential and logarithmic functions
	7.3.7.1 The cexp functions
	7.3.7.2 The clog functions

	7.3.8 Power and absolute-value functions
	7.3.8.1 The cabs functions
	7.3.8.2 The cpow functions
	7.3.8.3 The csqrt functions

	7.3.9 Manipulation functions
	7.3.9.1 The carg functions
	7.3.9.2 The cimag functions
	7.3.9.3 The CMPLX macros
	7.3.9.4 The conj functions
	7.3.9.5 The cproj functions
	7.3.9.6 The creal functions

	7.4 Character handling <ctype.h>
	7.4.1 General
	7.4.2 Character classification functions
	7.4.2.1 General
	7.4.2.2 The isalnum function
	7.4.2.3 The isalpha function
	7.4.2.4 The isblank function
	7.4.2.5 The iscntrl function
	7.4.2.6 The isdigit function
	7.4.2.7 The isgraph function
	7.4.2.8 The islower function
	7.4.2.9 The isprint function
	7.4.2.10 The ispunct function
	7.4.2.11 The isspace function
	7.4.2.12 The isupper function
	7.4.2.13 The isxdigit function

	7.4.3 Character case mapping functions
	7.4.3.1 The tolower function
	7.4.3.2 The toupper function

	7.5 Errors <errno.h>
	7.6 Floating-point environment <fenv.h>
	7.6.1 General
	7.6.2 The FENV_ACCESS pragma
	7.6.3 The FENV_ROUND pragma
	7.6.4 The FENV_DEC_ROUND pragma
	7.6.5 Floating-point exceptions
	7.6.5.1 General
	7.6.5.2 The feclearexcept function
	7.6.5.3 The fegetexceptflag function
	7.6.5.4 The feraiseexcept function
	7.6.5.5 The fesetexcept function
	7.6.5.6 The fesetexceptflag function
	7.6.5.7 The fetestexceptflag function
	7.6.5.8 The fetestexcept function

	7.6.6 Rounding and other control modes
	7.6.6.1 General
	7.6.6.2 The fegetmode function
	7.6.6.3 The fegetround function
	7.6.6.4 The fe_dec_getround function
	7.6.6.5 The fesetmode function
	7.6.6.6 The fesetround function
	7.6.6.7 The fe_dec_setround function

	7.6.7 Environment
	7.6.7.1 General
	7.6.7.2 The fegetenv function
	7.6.7.3 The feholdexcept function
	7.6.7.4 The fesetenv function
	7.6.7.5 The feupdateenv function

	7.7 Characteristics of floating types <float.h>
	7.8 Format conversion of integer types <inttypes.h>
	7.8.1 General
	7.8.2 Macros for format specifiers
	7.8.3 Functions for greatest-width integer types
	7.8.3.1 The imaxabs function
	7.8.3.2 The imaxdiv function
	7.8.3.3 The strtoimax and strtoumax functions
	7.8.3.4 The wcstoimax and wcstoumax functions

	7.9 Alternative spellings <iso646.h>
	7.10 Characteristics of integer types <limits.h>
	7.11 Localization <locale.h>
	7.11.1 General
	7.11.2 The setlocale function
	7.11.3 Numeric formatting convention inquiry
	7.11.3.1 The localeconv function

	7.12 Mathematics <math.h>
	7.12.1 General
	7.12.2 Treatment of error conditions
	7.12.3 The FP_CONTRACT pragma
	7.12.4 Classification macros
	7.12.4.1 General
	7.12.4.2 The fpclassify macro
	7.12.4.3 The iscanonical macro
	7.12.4.4 The isfinite macro
	7.12.4.5 The isinf macro
	7.12.4.6 The isnan macro
	7.12.4.7 The isnormal macro
	7.12.4.8 The signbit macro
	7.12.4.9 The issignaling macro
	7.12.4.10 The issubnormal macro
	7.12.4.11 The iszero macro

	7.12.5 Trigonometric functions
	7.12.5.1 The acos functions
	7.12.5.2 The asin functions
	7.12.5.3 The atan functions
	7.12.5.4 The atan2 functions
	7.12.5.5 The cos functions
	7.12.5.6 The sin functions
	7.12.5.7 The tan functions
	7.12.5.8 The acospi functions
	7.12.5.9 The asinpi functions
	7.12.5.10 The atanpi functions
	7.12.5.11 The atan2pi functions
	7.12.5.12 The cospi functions
	7.12.5.13 The sinpi functions
	7.12.5.14 The tanpi functions

	7.12.6 Hyperbolic functions
	7.12.6.1 The acosh functions
	7.12.6.2 The asinh functions
	7.12.6.3 The atanh functions
	7.12.6.4 The cosh functions
	7.12.6.5 The sinh functions
	7.12.6.6 The tanh functions

	7.12.7 Exponential and logarithmic functions
	7.12.7.1 The exp functions
	7.12.7.2 The exp10 functions
	7.12.7.3 The exp10m1 functions
	7.12.7.4 The exp2 functions
	7.12.7.5 The exp2m1 functions
	7.12.7.6 The expm1 functions
	7.12.7.7 The frexp functions
	7.12.7.8 The ilogb functions
	7.12.7.9 The ldexp functions
	7.12.7.10 The llogb functions
	7.12.7.11 The log functions
	7.12.7.12 The log10 functions
	7.12.7.13 The log10p1 functions
	7.12.7.14 The log1p and logp1 functions
	7.12.7.15 The log2 functions
	7.12.7.16 The log2p1 functions
	7.12.7.17 The logb functions
	7.12.7.18 The modf functions
	7.12.7.19 The scalbn and scalbln functions

	7.12.8 Power and absolute-value functions
	7.12.8.1 The cbrt functions
	7.12.8.2 The compoundn functions
	7.12.8.3 The fabs functions
	7.12.8.4 The hypot functions
	7.12.8.5 The pow functions
	7.12.8.6 The pown functions
	7.12.8.7 The powr functions
	7.12.8.8 The rootn functions
	7.12.8.9 The rsqrt functions
	7.12.8.10 The sqrt functions

	7.12.9 Error and gamma functions
	7.12.9.1 The erf functions
	7.12.9.2 The erfc functions
	7.12.9.3 The lgamma functions
	7.12.9.4 The tgamma functions

	7.12.10 Nearest integer functions
	7.12.10.1 The ceil functions
	7.12.10.2 The floor functions
	7.12.10.3 The nearbyint functions
	7.12.10.4 The rint functions
	7.12.10.5 The lrint and llrint functions
	7.12.10.6 The round functions
	7.12.10.7 The lround and llround functions
	7.12.10.8 The roundeven functions
	7.12.10.9 The trunc functions
	7.12.10.10 The fromfp and ufromfp functions
	7.12.10.11 The fromfpx and ufromfpx functions

	7.12.11 Remainder functions
	7.12.11.1 The fmod functions
	7.12.11.2 The remainder functions
	7.12.11.3 The remquo functions

	7.12.12 Manipulation functions
	7.12.12.1 The copysign functions
	7.12.12.2 The nan functions
	7.12.12.3 The nextafter functions
	7.12.12.4 The nexttoward functions
	7.12.12.5 The nextup functions
	7.12.12.6 The nextdown functions
	7.12.12.7 The canonicalize functions

	7.12.13 Maximum, minimum, and positive difference functions
	7.12.13.1 The fdim functions
	7.12.13.2 The fmax functions
	7.12.13.3 The fmin functions
	7.12.13.4 The fmaximum functions
	7.12.13.5 The fminimum functions
	7.12.13.6 The fmaximum_mag functions
	7.12.13.7 The fminimum_mag functions
	7.12.13.8 The fmaximum_num functions
	7.12.13.9 The fminimum_num functions
	7.12.13.10 The fmaximum_mag_num functions
	7.12.13.11 The fminimum_mag_num functions

	7.12.14 Fused multiply-add
	7.12.14.1 The fma functions

	7.12.15 Functions that round result to narrower type
	7.12.15.1 General
	7.12.15.2 Add and round to narrower type
	7.12.15.3 Subtract and round to narrower type
	7.12.15.4 Multiply and round to narrower type
	7.12.15.5 Divide and round to narrower type
	7.12.15.6 Fused multiply-add and round to narrower type
	7.12.15.7 Square root rounded to narrower type

	7.12.16 Quantum and quantum exponent functions
	7.12.16.1 The quantizedN functions
	7.12.16.2 The samequantumdN functions
	7.12.16.3 The quantumdN functions
	7.12.16.4 The llquantexpdN functions

	7.12.17 Decimal re-encoding functions
	7.12.17.1 General
	7.12.17.2 The encodedecdN functions
	7.12.17.3 The decodedecdN functions
	7.12.17.4 The encodebindN functions
	7.12.17.5 The decodebindN functions

	7.12.18 Comparison macros
	7.12.18.1 General
	7.12.18.2 The isgreater macro
	7.12.18.3 The isgreaterequal macro
	7.12.18.4 The isless macro
	7.12.18.5 The islessequal macro
	7.12.18.6 The islessgreater macro
	7.12.18.7 The isunordered macro
	7.12.18.8 The iseqsig macro

	7.13 Non-local jumps <setjmp.h>
	7.13.1 General
	7.13.2 Save calling environment
	7.13.2.1 The setjmp macro

	7.13.3 Restore calling environment
	7.13.3.1 The longjmp function

	7.14 Signal handling <signal.h>
	7.14.1 General
	7.14.2 Specify signal handling
	7.14.2.1 The signal function

	7.14.3 Send signal
	7.14.3.1 The raise function

	7.15 Alignment <stdalign.h>
	7.16 Variable arguments <stdarg.h>
	7.16.1 General
	7.16.2 Variable argument list access macros
	7.16.2.1 General
	7.16.2.2 The va_arg macro
	7.16.2.3 The va_copy macro
	7.16.2.4 The va_end macro
	7.16.2.5 The va_start macro

	7.17 Atomics <stdatomic.h>
	7.17.1 Introduction
	7.17.2 Initialization
	7.17.2.1 General
	7.17.2.2 The atomic_init generic function

	7.17.3 Order and consistency
	7.17.3.1 General
	7.17.3.2 The kill_dependency macro

	7.17.4 Fences
	7.17.4.1 General
	7.17.4.2 The atomic_thread_fence function
	7.17.4.3 The atomic_signal_fence function

	7.17.5 Lock-free property
	7.17.5.1 General
	7.17.5.2 The atomic_is_lock_free generic function

	7.17.6 Atomic integer types
	7.17.7 Operations on atomic types
	7.17.7.1 General
	7.17.7.2 The atomic_store generic functions
	7.17.7.3 The atomic_load generic functions
	7.17.7.4 The atomic_exchange generic functions
	7.17.7.5 The atomic_compare_exchange generic functions
	7.17.7.6 The atomic_fetch and modify generic functions

	7.17.8 Atomic flag type and operations
	7.17.8.1 General
	7.17.8.2 The atomic_flag_test_and_set functions
	7.17.8.3 The atomic_flag_clear functions

	7.18 Bit and byte utilities <stdbit.h>
	7.18.1 General
	7.18.2 Endian
	7.18.3 Count Leading Zeros
	7.18.4 Count Leading Ones
	7.18.5 Count Trailing Zeros
	7.18.6 Count Trailing Ones
	7.18.7 First Leading Zero
	7.18.8 First Leading One
	7.18.9 First Trailing Zero
	7.18.10 First Trailing One
	7.18.11 Count Zeros
	7.18.12 Count Ones
	7.18.13 Single-bit Check
	7.18.14 Bit Width
	7.18.15 Bit Floor
	7.18.16 Bit Ceiling

	7.19 Boolean type and values <stdbool.h>
	7.20 Checked Integer Arithmetic <stdckdint.h>
	7.20.1 General
	7.20.2 Checked Integer Operation Type-generic Macros

	7.21 Common definitions <stddef.h>
	7.21.1 General
	7.21.2 The unreachable macro
	7.21.3 The nullptr_t type

	7.22 Integer types <stdint.h>
	7.22.1 General
	7.22.2 Integer types
	7.22.2.1 General
	7.22.2.2 Exact-width integer types
	7.22.2.3 Minimum-width integer types
	7.22.2.4 Fastest minimum-width integer types
	7.22.2.5 Integer types capable of holding object pointers
	7.22.2.6 Greatest-width integer types

	7.22.3 Widths of specified-width integer types
	7.22.3.1 General
	7.22.3.2 Width of exact-width integer types
	7.22.3.3 Width of minimum-width integer types
	7.22.3.4 Width of fastest minimum-width integer types
	7.22.3.5 Width of integer types capable of holding object pointers
	7.22.3.6 Width of greatest-width integer types

	7.22.4 Width of other integer types
	7.22.4.1 General
	7.22.4.2 Width of ptrdiff_t
	7.22.4.3 Width of sig_atomic_t
	7.22.4.4 Width of size_t
	7.22.4.5 Width of wchar_t
	7.22.4.6 Width of wint_t

	7.22.5 Macros for integer constants
	7.22.5.1 General
	7.22.5.2 Macros for minimum-width integer constants
	7.22.5.3 Macros for greatest-width integer constants

	7.22.6 Maximal and minimal values of integer types

	7.23 Input/output <stdio.h>
	7.23.1 Introduction
	7.23.2 Streams
	7.23.3 Files
	7.23.4 Operations on files
	7.23.4.1 The remove function
	7.23.4.2 The rename function
	7.23.4.3 The tmpfile function
	7.23.4.4 The tmpnam function

	7.23.5 File access functions
	7.23.5.1 The fclose function
	7.23.5.2 The fflush function
	7.23.5.3 The fopen function
	7.23.5.4 The freopen function
	7.23.5.5 The setbuf function
	7.23.5.6 The setvbuf function

	7.23.6 Formatted input/output functions
	7.23.6.1 General
	7.23.6.2 The fprintf function
	7.23.6.3 The fscanf function
	7.23.6.4 The printf function
	7.23.6.5 The scanf function
	7.23.6.6 The snprintf function
	7.23.6.7 The sprintf function
	7.23.6.8 The sscanf function
	7.23.6.9 The vfprintf function
	7.23.6.10 The vfscanf function
	7.23.6.11 The vprintf function
	7.23.6.12 The vscanf function
	7.23.6.13 The vsnprintf function
	7.23.6.14 The vsprintf function
	7.23.6.15 The vsscanf function

	7.23.7 Character input/output functions
	7.23.7.1 The fgetc function
	7.23.7.2 The fgets function
	7.23.7.3 The fputc function
	7.23.7.4 The fputs function
	7.23.7.5 The getc function
	7.23.7.6 The getchar function
	7.23.7.7 The putc function
	7.23.7.8 The putchar function
	7.23.7.9 The puts function
	7.23.7.10 The ungetc function

	7.23.8 Direct input/output functions
	7.23.8.1 The fread function
	7.23.8.2 The fwrite function

	7.23.9 File positioning functions
	7.23.9.1 The fgetpos function
	7.23.9.2 The fseek function
	7.23.9.3 The fsetpos function
	7.23.9.4 The ftell function
	7.23.9.5 The rewind function

	7.23.10 Error-handling functions
	7.23.10.1 The clearerr function
	7.23.10.2 The feof function
	7.23.10.3 The ferror function
	7.23.10.4 The perror function

	7.24 General utilities <stdlib.h>
	7.24.1 General
	7.24.2 Numeric conversion functions
	7.24.2.1 General
	7.24.2.2 The atof function
	7.24.2.3 The atoi, atol, and atoll functions
	7.24.2.4 The strfromd, strfromf, and strfroml functions
	7.24.2.5 The strfromdN functions
	7.24.2.6 The strtod, strtof, and strtold functions
	7.24.2.7 The strtodN functions
	7.24.2.8 The strtol, strtoll, strtoul, and strtoull functions

	7.24.3 Pseudo-random sequence generation functions
	7.24.3.1 The rand function
	7.24.3.2 The srand function

	7.24.4 Memory management functions
	7.24.4.1 General
	7.24.4.2 The aligned_alloc function
	7.24.4.3 The calloc function
	7.24.4.4 The free function
	7.24.4.5 The free_sized function
	7.24.4.6 The free_aligned_sized function
	7.24.4.7 The malloc function
	7.24.4.8 The realloc function

	7.24.5 Communication with the environment
	7.24.5.1 The abort function
	7.24.5.2 The atexit function
	7.24.5.3 The at_quick_exit function
	7.24.5.4 The exit function
	7.24.5.5 The _Exit function
	7.24.5.6 The getenv function
	7.24.5.7 The quick_exit function
	7.24.5.8 The system function

	7.24.6 Searching and sorting utilities
	7.24.6.1 General
	7.24.6.2 The bsearch generic function
	7.24.6.3 The qsort function

	7.24.7 Integer arithmetic functions
	7.24.7.1 The abs, labs, and llabs functions
	7.24.7.2 The div, ldiv, and lldiv functions

	7.24.8 Multibyte/wide character conversion functions
	7.24.8.1 General
	7.24.8.2 The mblen function
	7.24.8.3 The mbtowc function
	7.24.8.4 The wctomb function

	7.24.9 Multibyte/wide string conversion functions
	7.24.9.1 General
	7.24.9.2 The mbstowcs function
	7.24.9.3 The wcstombs function

	7.24.10 Alignment of memory
	7.24.10.1 The memalignment function

	7.25 _Noreturn <stdnoreturn.h>
	7.26 String handling <string.h>
	7.26.1 String function conventions
	7.26.2 Copying functions
	7.26.2.1 The memcpy function
	7.26.2.2 The memccpy function
	7.26.2.3 The memmove function
	7.26.2.4 The strcpy function
	7.26.2.5 The strncpy function
	7.26.2.6 The strdup function
	7.26.2.7 The strndup function

	7.26.3 Concatenation functions
	7.26.3.1 The strcat function
	7.26.3.2 The strncat function

	7.26.4 Comparison functions
	7.26.4.1 General
	7.26.4.2 The memcmp function
	7.26.4.3 The strcmp function
	7.26.4.4 The strcoll function
	7.26.4.5 The strncmp function
	7.26.4.6 The strxfrm function

	7.26.5 Search functions
	7.26.5.1 Introduction
	7.26.5.2 The memchr generic function
	7.26.5.3 The strchr generic function
	7.26.5.4 The strcspn function
	7.26.5.5 The strpbrk generic function
	7.26.5.6 The strrchr generic function
	7.26.5.7 The strspn function
	7.26.5.8 The strstr generic function
	7.26.5.9 The strtok function

	7.26.6 Miscellaneous functions
	7.26.6.1 The memset function
	7.26.6.2 The memset_explicit function
	7.26.6.3 The strerror function
	7.26.6.4 The strlen function

	7.27 Type-generic math <tgmath.h>
	7.28 Threads <threads.h>
	7.28.1 Introduction
	7.28.2 Initialization functions
	7.28.2.1 The call_once function

	7.28.3 Condition variable functions
	7.28.3.1 The cnd_broadcast function
	7.28.3.2 The cnd_destroy function
	7.28.3.3 The cnd_init function
	7.28.3.4 The cnd_signal function
	7.28.3.5 The cnd_timedwait function
	7.28.3.6 The cnd_wait function

	7.28.4 Mutex functions
	7.28.4.1 General
	7.28.4.2 The mtx_destroy function
	7.28.4.3 The mtx_init function
	7.28.4.4 The mtx_lock function
	7.28.4.5 The mtx_timedlock function
	7.28.4.6 The mtx_trylock function
	7.28.4.7 The mtx_unlock function

	7.28.5 Thread functions
	7.28.5.1 The thrd_create function
	7.28.5.2 The thrd_current function
	7.28.5.3 The thrd_detach function
	7.28.5.4 The thrd_equal function
	7.28.5.5 The thrd_exit function
	7.28.5.6 The thrd_join function
	7.28.5.7 The thrd_sleep function
	7.28.5.8 The thrd_yield function

	7.28.6 Thread-specific storage functions
	7.28.6.1 The tss_create function
	7.28.6.2 The tss_delete function
	7.28.6.3 The tss_get function
	7.28.6.4 The tss_set function

	7.29 Date and time <time.h>
	7.29.1 Components of time
	7.29.2 Time manipulation functions
	7.29.2.1 The clock function
	7.29.2.2 The difftime function
	7.29.2.3 The mktime function
	7.29.2.4 The timegm function
	7.29.2.5 The time function
	7.29.2.6 The timespec_get function
	7.29.2.7 The timespec_getres function

	7.29.3 Time conversion functions
	7.29.3.1 General
	7.29.3.2 The asctime function
	7.29.3.3 The ctime function
	7.29.3.4 The gmtime functions
	7.29.3.5 The localtime functions
	7.29.3.6 The strftime function

	7.30 Unicode utilities <uchar.h>
	7.30.1 General
	7.30.2 Restartable multibyte/wide character conversion functions
	7.30.2.1 General
	7.30.2.2 The mbrtoc8 function
	7.30.2.3 The c8rtomb function
	7.30.2.4 The mbrtoc16 function
	7.30.2.5 The c16rtomb function
	7.30.2.6 The mbrtoc32 function
	7.30.2.7 The c32rtomb function

	7.31 Extended multibyte and wide character utilities <wchar.h>
	7.31.1 Introduction
	7.31.2 Formatted wide character input/output functions
	7.31.2.1 General
	7.31.2.2 The fwprintf function
	7.31.2.3 The fwscanf function
	7.31.2.4 The swprintf function
	7.31.2.5 The swscanf function
	7.31.2.6 The vfwprintf function
	7.31.2.7 The vfwscanf function
	7.31.2.8 The vswprintf function
	7.31.2.9 The vswscanf function
	7.31.2.10 The vwprintf function
	7.31.2.11 The vwscanf function
	7.31.2.12 The wprintf function
	7.31.2.13 The wscanf function

	7.31.3 Wide character input/output functions
	7.31.3.1 The fgetwc function
	7.31.3.2 The fgetws function
	7.31.3.3 The fputwc function
	7.31.3.4 The fputws function
	7.31.3.5 The fwide function
	7.31.3.6 The getwc function
	7.31.3.7 The getwchar function
	7.31.3.8 The putwc function
	7.31.3.9 The putwchar function
	7.31.3.10 The ungetwc function

	7.31.4 General wide string utilities
	7.31.4.1 General
	7.31.4.2 Wide string numeric conversion functions
	7.31.4.2.1 General
	7.31.4.2.2 The wcstod, wcstof, and wcstold functions
	7.31.4.2.3 The wcstodN functions
	7.31.4.2.4 The wcstol, wcstoll, wcstoul, and wcstoull functions

	7.31.4.3 Wide string copying functions
	7.31.4.3.1 The wcscpy function
	7.31.4.3.2 The wcsncpy function
	7.31.4.3.3 The wmemcpy function
	7.31.4.3.4 The wmemmove function

	7.31.4.4 Wide string concatenation functions
	7.31.4.4.1 The wcscat function
	7.31.4.4.2 The wcsncat function

	7.31.4.5 Wide string comparison functions
	7.31.4.5.1 General
	7.31.4.5.2 The wcscmp function
	7.31.4.5.3 The wcscoll function
	7.31.4.5.4 The wcsncmp function
	7.31.4.5.5 The wcsxfrm function
	7.31.4.5.6 The wmemcmp function

	7.31.4.6 Wide string search functions
	7.31.4.6.1 Introduction
	7.31.4.6.2 The wcschr generic function
	7.31.4.6.3 The wcscspn function
	7.31.4.6.4 The wcspbrk generic function
	7.31.4.6.5 The wcsrchr generic function
	7.31.4.6.6 The wcsspn function
	7.31.4.6.7 The wcsstr generic function
	7.31.4.6.8 The wcstok function
	7.31.4.6.9 The wmemchr generic function

	7.31.4.7 Miscellaneous functions
	7.31.4.7.1 The wcslen function
	7.31.4.7.2 The wmemset function

	7.31.5 Wide character time conversion functions
	7.31.5.1 The wcsftime function

	7.31.6 Extended multibyte/wide character conversion utilities
	7.31.6.1 General
	7.31.6.2 Single-byte/wide character conversion functions
	7.31.6.2.1 The btowc function
	7.31.6.2.2 The wctob function

	7.31.6.3 Conversion state functions
	7.31.6.3.1 The mbsinit function

	7.31.6.4 Restartable multibyte/wide character conversion functions
	7.31.6.4.1 General
	7.31.6.4.2 The mbrlen function
	7.31.6.4.3 The mbrtowc function
	7.31.6.4.4 The wcrtomb function

	7.31.6.5 Restartable multibyte/wide string conversion functions
	7.31.6.5.1 General
	7.31.6.5.2 The mbsrtowcs function
	7.31.6.5.3 The wcsrtombs function

	7.32 Wide character classification and mapping utilities <wctype.h>
	7.32.1 Introduction
	7.32.2 Wide character classification utilities
	7.32.2.1 General
	7.32.2.2 Wide character classification functions
	7.32.2.2.1 General
	7.32.2.2.2 The iswalnum function
	7.32.2.2.3 The iswalpha function
	7.32.2.2.4 The iswblank function
	7.32.2.2.5 The iswcntrl function
	7.32.2.2.6 The iswdigit function
	7.32.2.2.7 The iswgraph function
	7.32.2.2.8 The iswlower function
	7.32.2.2.9 The iswprint function
	7.32.2.2.10 The iswpunct function
	7.32.2.2.11 The iswspace function
	7.32.2.2.12 The iswupper function
	7.32.2.2.13 The iswxdigit function

	7.32.2.3 Extensible wide character classification functions
	7.32.2.3.1 General
	7.32.2.3.2 The iswctype function
	7.32.2.3.3 The wctype function

	7.32.3 Wide character case mapping utilities
	7.32.3.1 Wide character case mapping functions
	7.32.3.1.1 The towlower function
	7.32.3.1.2 The towupper function

	7.32.3.2 Extensible wide character case mapping functions
	7.32.3.2.1 General
	7.32.3.2.2 The towctrans function
	7.32.3.2.3 The wctrans function

	7.33 Future library directions
	7.33.1 General
	7.33.2 Complex arithmetic <complex.h>
	7.33.3 Character handling <ctype.h>
	7.33.4 Errors <errno.h>
	7.33.5 Floating-point environment <fenv.h>
	7.33.6 Characteristics of floating types <float.h>
	7.33.7 Format conversion of integer types <inttypes.h>
	7.33.8 Localization <locale.h>
	7.33.9 Mathematics <math.h>
	7.33.10 Signal handling <signal.h>
	7.33.11 Atomics <stdatomic.h>
	7.33.12 Boolean type and values <stdbool.h>
	7.33.13 Bit and byte utilities <stdbit.h>
	7.33.14 Checked Arithmetic Functions <stdckdint.h>
	7.33.15 Integer types <stdint.h>
	7.33.16 Input/output <stdio.h>
	7.33.17 General utilities <stdlib.h>
	7.33.18 String handling <string.h>
	7.33.19 Date and time <time.h>
	7.33.20 Threads <threads.h>
	7.33.21 Extended multibyte and wide character utilities <wchar.h>
	7.33.22 Wide character classification and mapping utilities <wctype.h>

	Annex A (informative) Language syntax summary
	A.1 Notation
	A.2 Lexical grammar
	A.2.1 Lexical elements
	A.2.2 Keywords
	A.2.3 Identifiers
	A.2.4 Universal character names
	A.2.5 Constants
	A.2.6 String literals
	A.2.7 Punctuators
	A.2.8 Header names
	A.2.9 Preprocessing numbers

	A.3 Phrase structure grammar
	A.3.1 Expressions
	A.3.2 Declarations
	A.3.3 Statements
	A.3.4 External definitions

	A.4 Preprocessing directives
	A.5 Floating-point subject sequence
	A.5.1 NaN char sequence
	A.5.2 NaN wchar_t sequence

	A.6 Decimal floating-point subject sequence
	A.6.1 NaN decimal char sequence
	A.6.2 NaN decimal wchar_t sequence

	Annex B (informative) Library summary
	B.1 Diagnostics <assert.h>
	B.2 Complex <complex.h>
	B.3 Character handling <ctype.h>
	B.4 Errors <errno.h>
	B.5 Floating-point environment <fenv.h>
	B.6 Characteristics of floating types <float.h>
	B.6.1 Macros
	B.6.2 Characteristics of decimal floating types
	B.6.3 Characteristics of ISO/IEC 60559 interchange and extended types

	B.7 Format conversion of integer types <inttypes.h>
	B.8 Alternative spellings <iso646.h>
	B.9 Sizes of integer types <limits.h>
	B.10 Localization <locale.h>
	B.11 Mathematics <math.h>
	B.12 Non-local jumps <setjmp.h>
	B.13 Signal handling <signal.h>
	B.14 Alignment <stdalign.h>
	B.15 Variable arguments <stdarg.h>
	B.16 Atomics <stdatomic.h>
	B.17 Bit and byte utilities <stdbit.h>
	B.18 Boolean type and values <stdbool.h>
	B.19 Checked Integer Operations <stdckdint.h>
	B.20 Common definitions <stddef.h>
	B.21 Integer types <stdint.h>
	B.22 Input/output <stdio.h>
	B.23 General utilities <stdlib.h>
	B.24 _Noreturn <stdnoreturn.h>
	B.25 String handling <string.h>
	B.26 Type-generic math <tgmath.h>
	B.27 Threads <threads.h>
	B.28 Date and time <time.h>
	B.29 Unicode utilities <uchar.h>
	B.30 Extended multibyte/wide character utilities <wchar.h>
	B.31 Wide character classification and mapping utilities <wctype.h>

	Annex C (informative) Sequence points
	C.1 Known Sequence Points

	Annex D (informative) Universal character names for identifiers
	D.1 Introduction
	D.2 Default Identifiers
	D.2.1 General
	D.2.2 Restricted Format Characters
	D.2.3 Stable Identifiers

	D.3 Immutable Identifiers
	D.4 Pattern_White_Space and Pattern_Syntax Characters
	D.5 Equivalent Normalized Identifiers
	D.6 Equivalent Case-Insensitive Identifiers
	D.7 Filtered Normalized Identifiers
	D.8 Filtered Case-Insensitive Identifiers
	D.9 Hashtag Identifiers

	Annex E (informative) Implementation limits
	E.1 Introduction
	E.2 Minimum values

	Annex F (normative) ISO/IEC 60559 floating-point arithmetic
	F.1 Introduction
	F.2 Types
	F.2.1 General
	F.2.2 Infinities and NaNs

	F.3 Operations
	F.4 Floating to integer conversion
	F.5 Conversions between binary floating types and decimal character sequences
	F.6 The return statement
	F.7 Contracted expressions
	F.8 Floating-point environment
	F.8.1 General
	F.8.2 Environment management
	F.8.3 Translation
	F.8.4 Execution
	F.8.5 Constant expressions
	F.8.6 Initialization
	F.8.7 Changing the environment

	F.9 Optimization
	F.9.1 General
	F.9.2 Global transformations
	F.9.3 Expression transformations
	F.9.4 Relational operators
	F.9.5 Constant arithmetic

	F.10 Mathematics <math.h> and <tgmath.h>
	F.10.1 General
	F.10.2 Trigonometric functions
	F.10.2.1 The acos functions
	F.10.2.2 The asin functions
	F.10.2.3 The atan functions
	F.10.2.4 The atan2 functions
	F.10.2.5 The cos functions
	F.10.2.6 The sin functions
	F.10.2.7 The tan functions
	F.10.2.8 The acospi functions
	F.10.2.9 The asinpi functions
	F.10.2.10 The atanpi functions
	F.10.2.11 The atan2pi functions
	F.10.2.12 The cospi functions
	F.10.2.13 The sinpi functions
	F.10.2.14 The tanpi functions

	F.10.3 Hyperbolic functions
	F.10.3.1 The acosh functions
	F.10.3.2 The asinh functions
	F.10.3.3 The atanh functions
	F.10.3.4 The cosh functions
	F.10.3.5 The sinh functions
	F.10.3.6 The tanh functions

	F.10.4 Exponential and logarithmic functions
	F.10.4.1 The exp functions
	F.10.4.2 The exp10 functions
	F.10.4.3 The exp10m1 functions
	F.10.4.4 The exp2 functions
	F.10.4.5 The exp2m1 functions
	F.10.4.6 The expm1 functions
	F.10.4.7 The frexp functions
	F.10.4.8 The ilogb functions
	F.10.4.9 The ldexp functions
	F.10.4.10 The llogb functions
	F.10.4.11 The log functions
	F.10.4.12 The log10 functions
	F.10.4.13 The log10p1 functions
	F.10.4.14 The log1p and logp1 functions
	F.10.4.15 The log2 functions
	F.10.4.16 The log2p1 functions
	F.10.4.17 The logb functions
	F.10.4.18 The modf functions
	F.10.4.19 The scalbn and scalbln functions

	F.10.5 Power and absolute value functions
	F.10.5.1 The cbrt functions
	F.10.5.2 The compoundn functions
	F.10.5.3 The fabs functions
	F.10.5.4 The hypot functions
	F.10.5.5 The pow functions
	F.10.5.6 The pown functions
	F.10.5.7 The powr functions
	F.10.5.8 The rootn functions
	F.10.5.9 The rsqrt functions
	F.10.5.10 The sqrt functions

	F.10.6 Error and gamma functions
	F.10.6.1 The erf functions
	F.10.6.2 The erfc functions
	F.10.6.3 The lgamma functions
	F.10.6.4 The tgamma functions

	F.10.7 Nearest integer functions
	F.10.7.1 The ceil functions
	F.10.7.2 The floor functions
	F.10.7.3 The nearbyint functions
	F.10.7.4 The rint functions
	F.10.7.5 The lrint and llrint functions
	F.10.7.6 The round functions
	F.10.7.7 The lround and llround functions
	F.10.7.8 The roundeven functions
	F.10.7.9 The trunc functions
	F.10.7.10 The fromfp and ufromfp functions
	F.10.7.11 The fromfpx and ufromfpx functions

	F.10.8 Remainder functions
	F.10.8.1 The fmod functions
	F.10.8.2 The remainder functions
	F.10.8.3 The remquo functions

	F.10.9 Manipulation functions
	F.10.9.1 The copysign functions
	F.10.9.2 The nan functions
	F.10.9.3 The nextafter functions
	F.10.9.4 The nexttoward functions
	F.10.9.5 The nextup functions
	F.10.9.6 The nextdown functions
	F.10.9.7 The canonicalize functions

	F.10.10 Maximum, minimum, and positive difference functions
	F.10.10.1 The fdim functions
	F.10.10.2 The fmax functions
	F.10.10.3 The fmin functions
	F.10.10.4 The fmaximum, fminimum, fmaximum_mag, and fminimum_mag functions
	F.10.10.5 The fmaximum_num, fminimum_num, fmaximum_mag_num, and fminimum_mag_num functions

	F.10.11 Fused multiply-add
	F.10.11.1 The fma functions

	F.10.12 Functions that round result to narrower type
	F.10.13 Total order functions
	F.10.13.1 General
	F.10.13.2 The totalorder functions
	F.10.13.3 The totalordermag functions

	F.10.14 Payload functions
	F.10.14.1 General
	F.10.14.2 The getpayload functions
	F.10.14.3 The setpayload functions
	F.10.14.4 The setpayloadsig functions

	F.10.15 Comparison macros
	F.10.15.1 General
	F.10.15.2 The iseqsig macro

	Annex G (normative) ISO/IEC 60559-compatible complex arithmetic
	G.1 Introduction
	G.2 Types
	G.3 Conventions
	G.4 Conversions
	G.4.1 Imaginary types
	G.4.2 Real and imaginary
	G.4.3 Imaginary and complex

	G.5 Binary operators
	G.5.1 General
	G.5.2 Multiplicative operators
	G.5.3 Additive operators

	G.6 Complex arithmetic <complex.h>
	G.6.1 General
	G.6.2 Trigonometric functions
	G.6.2.1 The cacos functions

	G.6.3 Hyperbolic functions
	G.6.3.1 The cacosh functions
	G.6.3.2 The casinh functions
	G.6.3.3 The catanh functions
	G.6.3.4 The ccosh functions
	G.6.3.5 The csinh functions
	G.6.3.6 The ctanh functions

	G.6.4 Exponential and logarithmic functions
	G.6.4.1 The cexp functions
	G.6.4.2 The clog functions

	G.6.5 Power and absolute-value functions
	G.6.5.1 The cpow functions
	G.6.5.2 The csqrt functions

	G.7 Type-generic math <tgmath.h>

	Annex H (normative) ISO/IEC 60559 interchange and extended types
	H.1 Introduction
	H.2 Types
	H.2.1 General
	H.2.2 Interchange floating types
	H.2.3 Non-arithmetic interchange formats
	H.2.4 Extended floating types
	H.2.5 Classification of real floating types
	H.2.6 Complex types
	H.2.7 Imaginary types

	H.3 Characteristics in <float.h>
	H.4 Conversions
	H.4.1 General
	H.4.2 Real floating and integer
	H.4.3 Usual arithmetic conversions
	H.4.4 Arithmetic and non-arithmetic formats

	H.5 Lexical Elements
	H.5.1 Keywords
	H.5.2 Constants

	H.6 Expressions
	H.7 Declarations
	H.8 Identifiers in standard headers
	H.9 Complex arithmetic <complex.h>
	H.10 Floating-point environment
	H.11 Mathematics <math.h>
	H.11.1 General
	H.11.2 Macros
	H.11.3 Functions
	H.11.4 Encoding conversion functions
	H.11.4.1 General
	H.11.4.2 Encode and decode functions
	General
	The encodefN functions
	The decodefN functions

	H.11.4.3 Encoding-to-encoding conversion functions
	General
	The fMencfN functions
	The dMencdecdN and dMencbindN functions

	H.12 Numeric conversion functions <stdlib.h>
	H.12.1 General
	H.12.2 String from floating
	H.12.3 String to floating
	H.12.4 String from encoding
	H.12.4.1 General
	H.12.4.2 The strfromencfN functions
	H.12.4.3 The strfromencdecdN and strfromencbindN functions

	H.12.5 String to encoding
	H.12.5.1 General
	H.12.5.2 The strtoencfN functions
	H.12.5.3 The wcstoencfN functions
	H.12.5.4 The strtoencdecdN and strtoencbindN functions
	H.12.5.5 The wcstoencdecdN and wcstoencbindN functions

	H.13 Type-generic macros <tgmath.h>

	Annex I (informative) Common warnings
	I.1 Introduction
	I.2 Common situations

	Annex J (informative) Portability issues
	J.1 Unspecified behavior
	J.2 Undefined behavior
	J.3 Implementation-defined behavior
	J.3.1 General
	J.3.2 Translation
	J.3.3 Environment
	J.3.4 Identifiers
	J.3.5 Characters
	J.3.6 Integers
	J.3.7 Floating-point
	J.3.8 Constant expressions
	J.3.9 Arrays and pointers
	J.3.10 Hints
	J.3.11 Structures, unions, enumerations, and bit-fields
	J.3.12 Qualifiers
	J.3.13 Types
	J.3.14 Preprocessing directives
	J.3.15 Library functions
	J.3.16 Architecture

	J.4 Locale-specific behavior
	J.5 Common extensions
	J.5.1 General
	J.5.2 Environment arguments
	J.5.3 Specialized identifiers
	J.5.4 Lengths and cases of identifiers
	J.5.5 Scopes of identifiers
	J.5.6 Writable string literals
	J.5.7 Other arithmetic types
	J.5.8 Function pointer casts
	J.5.9 Extended bit-field types
	J.5.10 The fortran keyword
	J.5.11 The asm keyword
	J.5.12 Type inference
	J.5.13 Multiple external definitions
	J.5.14 Predefined macro names
	J.5.15 Floating-point status flags
	J.5.16 Extra arguments for signal handlers
	J.5.17 Additional stream types and file-opening modes
	J.5.18 Defined file position indicator
	J.5.19 Math error reporting

	J.6 Reserved identifiers and keywords
	J.6.1 General
	J.6.2 Rule based identifiers
	J.6.3 Particular identifiers or keywords

	Annex K (normative) Bounds-checking interfaces
	K.1 Background
	K.2 Scope
	K.3 Library
	K.3.1 Introduction
	K.3.1.1 Standard headers
	K.3.1.2 Reserved identifiers
	K.3.1.3 Use of errno
	K.3.1.4 Runtime-constraint violations

	K.3.2 Errors <errno.h>
	K.3.3 Common definitions <stddef.h>
	K.3.4 Integer types <stdint.h>
	K.3.5 Input/output <stdio.h>
	K.3.5.1 General
	K.3.5.2 Operations on files
	The tmpfile_s function
	The tmpnam_s function

	K.3.5.3 File access functions
	The fopen_s function
	The freopen_s function

	K.3.5.4 Formatted input/output functions
	General
	The fprintf_s function
	The fscanf_s function
	The printf_s function
	The scanf_s function
	The snprintf_s function
	The sprintf_s function
	The sscanf_s function
	The vfprintf_s function
	The vfscanf_s function
	The vprintf_s function
	The vscanf_s function
	The vsnprintf_s function
	The vsprintf_s function
	The vsscanf_s function

	K.3.5.5 Character input/output functions
	The gets_s function

	K.3.6 General utilities <stdlib.h>
	K.3.6.1 General
	K.3.6.2 Runtime-constraint handling
	The set_constraint_handler_s function
	The abort_handler_s function
	The ignore_handler_s function

	K.3.6.3 Communication with the environment
	The getenv_s function

	K.3.6.4 Searching and sorting utilities
	General
	The bsearch_s generic function
	The qsort_s function

	K.3.6.5 Multibyte/wide character conversion functions
	General
	The wctomb_s function

	K.3.6.6 Multibyte/wide string conversion functions
	General
	The mbstowcs_s function
	The wcstombs_s function

	K.3.7 String handling <string.h>
	K.3.7.1 General
	K.3.7.2 Copying functions
	The memcpy_s function
	The memmove_s function
	The strcpy_s function
	The strncpy_s function

	K.3.7.3 Concatenation functions
	The strcat_s function
	The strncat_s function

	K.3.7.4 Search functions
	The strtok_s function

	K.3.7.5 Miscellaneous functions
	The memset_s function
	The strerror_s function
	The strerrorlen_s function
	The strnlen_s function

	K.3.8 Date and time <time.h>
	K.3.8.1 General
	K.3.8.2 Components of time
	K.3.8.3 Time conversion functions
	General
	The asctime_s function
	The ctime_s function
	The gmtime_s function
	The localtime_s function

	K.3.9 Extended multibyte and wide character utilities <wchar.h>
	K.3.9.1 General
	K.3.9.2 Formatted wide character input/output functions
	The fwprintf_s function
	The fwscanf_s function
	The snwprintf_s function
	The swprintf_s function
	The swscanf_s function
	The vfwprintf_s function
	The vfwscanf_s function
	The vsnwprintf_s function
	The vswprintf_s function
	The vswscanf_s function
	The vwprintf_s function
	The vwscanf_s function
	The wprintf_s function
	The wscanf_s function

	K.3.9.3 General wide string utilities
	Wide string copying functions
	The wcscpy_s function
	The wcsncpy_s function
	The wmemcpy_s function
	The wmemmove_s function

	Wide string concatenation functions
	The wcscat_s function
	The wcsncat_s function

	Wide string search functions
	The wcstok_s function

	Miscellaneous functions
	The wcsnlen_s function

	K.3.9.4 Extended multibyte/wide character conversion utilities
	Restartable multibyte/wide character conversion functions
	General
	The wcrtomb_s function

	Restartable multibyte/wide string conversion functions
	General
	The mbsrtowcs_s function
	The wcsrtombs_s function

	Annex L (normative) Analyzability
	L.1 Scope
	L.2 Definitions
	L.2.1 out-of-bounds store
	L.2.2 bounded undefined behavior
	L.2.3 critical undefined behavior

	L.3 Requirements

	Annex M (informative) Change History
	M.1 Attribute Changes
	M.2 Sixth Edition
	M.3 Fifth Edition
	M.4 Fourth Edition
	M.5 Third Edition
	M.6 Second Edition
	M.7 First Edition, Amendment 1

	Bibliography
	Index

