
Document Number: P3470R0
Date: 2024-10-15
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15, EWG

Interface-Unit-Only Module Library
Support

Abstract
This paper discusses the limitations of the language and ecosystem on the support for
distributing module libraries as “Interface-Unit-Only” (i.e.: the equivalent of “header-only”). It also
proposes a mechanism that we could use to get us in that direction by using a new syntax,
which may either be an attribute or another use of the inline keyword.

1. Motivation
In the C++ ecosystem, we have a long history of libraries being distributed as “header-only”,
meaning that they don’t need to be distributed in an architecture-specific form, and they don’t
need to be included in the link line for the final application. With the introduction of modules, we
are seeing a significant push from the community to support the equivalent form of distribution
with modules. We call that “Interface-Unit-Only”.

With the current implementation of modules, however, there is a consensus, reaffirmed in the
2024 Tokyo meeting, that for every C++ named module importable unit there will be exactly one
object that is produced for that module for a single program. This is important because it allows
significant optimizations in the code generation for the code that imports a module.

This is a problem for users that want to continue providing only an architecture independent
distribution of their libraries, without the expected objects for the named modules. The way that
the problem manifests is that it is not clear who is responsible for producing those objects, and
there doesn’t seem to be a correct answer to that question.

To illustrate the case, let’s imagine the situation where you have a set of interdependent
libraries, some of which may not even be C++, that need to be linked together into a final
program or dynamically loadable library.

1



In that scenario, who would be responsible for generating the objects required for the modules
in the interface-unit-only library B?

We can defer this to the final executable to include the object on its link line. However, in that
case, how do we communicate to the build of executable F that this is needed? That build of
that executable may not even be aware that library B exists.

Furthermore, this would require the build of Dynamic Libraries C and E to leave those symbols
undefined. Authors of those libraries frequently will avoid leaving symbols undefined, because
that can easily hide mistakes in either the code or the build system.

We could say that the direct user of that library should include that object in its own library.
However, in that case those symbols will be present both in Dynamic Library C and the Static
Library D, which could result in linker errors. Particularly in architectures where symbol
resolution in dynamic loading is done globally, such as Linux.

In the 2024 St Louis meeting, we reached consensus that we should not expect build systems
to produce objects for external libraries, because of that issue.

Therefore, the status quo is that Interface-Unit-Only libraries are not supported by the current
language specification and tooling ecosystem.

2. Modules ABI
To understand what exactly is happening that precludes the support for Interface-Unit-Only
libraries, it’s important to understand that modules imply a specific ABI. One example of how
that manifests is on the call to the static initializers in a module purview.

2



It is important to note that, in the Itanium ABI, even if the module doesn’t currently have
anything that needs static initialization, the translation unit importing that module will still
generate the code to call the initializer, because we don’t want the addition of a static initializer
to a shared object to result in an ABI break.

At the same time inline functions and debug types can be omitted in the translation unit
importing a module, because those are guaranteed to be provided by the object produced for
that module interface unit.

Additionally, because we can count on having exactly one object for each module in the final
program, we have additional room for future optimization where the compiler may omit the code
generation for any template instantiation that is already going to be present in the module’s
object.

Those are important optimizations, both in terms of the size of the intermediate objects, and in
the compile time for those objects.

The desire for maintaining this optimization space has been reaffirmed in the 2024 Tokyo
meeting, where we reached consensus on this principle.

3. Interface-Unit-Only Modules as an alternative, but
compatible, ABI
If we can’t rely on the build system, and we want the Modules ABI to preserve the room for
optimization that it currently has, we need to look at an alternative mechanism for solving that
problem.

The alternative proposed here is to introduce an alternative, but compatible, ABI for modules
that are going to be distributed as an Interface-Unit-Only library.

The difference is that in that alternative ABI any symbol that would have been left as undefined
in the object importing a module would instead be generated as a weak symbol in every use.

This is compatible because this is the same technique that we already use for headers, and it’s
essentially a mechanism to disable the optimization that we want to preserve in modules that
are distributed in pre-built libraries.

4. Selecting the alternative ABI
Since this actually requires different behavior from the compiler importing that module, it’s
important that we’re able to clearly communicate which modules being imported by a given
translation unit need to use that ABI.

3



It would definitely be undesirable to disable that optimization for every module being imported
by the translation unit. Therefore we need to be able to specify that individually for a given
module.

It would be possible to consider that as an argument to the compiler, however, there’s currently
no mechanism that we could use to propagate that information, and it would also generate
significant complexity for the build and packaging ecosystem.

At the same time, the module being imported already has to be processed by the compiler,
which already provides a mechanism for that information to be conveyed.

This paper proposes that the best place to document the choice for this alternative ABI is in the
source code for the importable unit itself.

This has the lowest cost of integration, since we don’t need to introduce new compiler flags just
for this purpose and communicate the use of those flags across the ecosystem.

It also is the most explicit and portable mechanism we have available to document that choice,
as it would be entirely unambiguous what the intention of the author was.

It also has the benefit of allowing the compiler to validate, at compile time, that all declarations
have an inline definition in the module as well as any local linkage entities, preventing the user
from creating code that would not be able to work at all.

4.1. Syntax
There are two mechanisms that we could use in syntax to communicate that information to the
compiler, using the inline keyword, or using an attribute.

4.1.1. Attribute interface-unit-only
This would be the most lightweight change to the language, as it would be simply a standard
attribute attached to the “export module” declaration, instructing the compiler to use that
alternative ABI when importing that module.

It doesn’t change any of the behavior of the language itself, the only impact it has is instructing
the compiler to use that alternative ABI.

It’s also possible that this attribute can be used to restrict the usage of the language in a way
that prevents declarations in that module’s purview without an inline definition in that same
translation unit.

4.1.2. inline module
Since the change in ABI is similar to the behavior of inline definitions in the language overall,
another option would be to introduce a new syntax by allowing the inline keyword between the
export and the module keywords.

4



This would have the same effect as the attribute. It is a heavier-weight change to the language.

5. Additional issues with Interface-Unit-Only Module
Libraries
It is important to note that solving this problem is necessary but not sufficient for the ecosystem
to be able to properly support this form of distribution for module code.

Unlike with headers, modules require additional metadata to be distributed with that library. As
things stand right now, this form of distribution will require build-system-specific integrations that
would allow the identification of what modules are available in that library.

Additional work in the package management space will be required in order to create an
interoperable mechanism to distribute libraries in this form.

6. Next steps
At this point, the goal is to build consensus on:

● Do we want to pursue support for libraries distributed as “Interface-Unit-Only”?
● Do we want to pursue implementing that support in syntax?
● Which flavor of that syntax do we prefer?

5


