
1

P3460 C++ Contracts
Implementers Report

Summary

TL;DR: C++ Contracts were implemented in GCC and Clang according to P2900, and

usage experience was gathered across large code bases.

P2900’s specification was clear and implementable. At the time of writing this paper, the

most recent version of P2900 is P2900R8.

Deployment experience was collected from deploying contracts in

● LLVM and dependencies by replacing <cassert>

● The C++ standard library by replacing Libc++’s existing hardening, validation, and

debugging macros.

● The BDE codebase

Constification discovered much const-incorrect code. Most were fixed once it was

discovered by contracts.

Contracts in the C++ Standard Library improved the QoI for hardening and security

conscious users.

Constificati
on

Result
Names

Lambda
Capture
Rules

Contract
Violation
On
Exception

Virtual
Functions
(P3097)

Coroutines
(P2957)

Clang ✅ ✅ ✅ ✅ ➖ ✅

GCC ✅ ✅ ➖ ➖ ✅ ✅

✅ Complete➖ Unimplemented

Preview implementations / Learning Context

Reading Rainbow Tip: Your early feedback helps! Try Contracts on Godbolt today with Clang &

libc++ integration or GCC

1

https://godbolt.org/z/qEo1vGhqM
https://godbolt.org/z/qEo1vGhqM
https://godbolt.org/z/7rPxa7TP6


2

Authors

● Eric Fiselier <eric@efcs.ca>

● <dinka.ranns@googlemail.com>Nina Dinka Ranns

● Iain Sandoe <iain@sandoe.co.uk>

Contents

Implementation in Clang 3

Result Name Introducer 3

Late Parsed or Dependent? 3

Are Postconditions chained? 3

Constification 3

Coroutines 3

Deployment Experience 3

The Standard Library 3

<assert.h> 4

Implementation in GCC 5

P2900 5

Virtual Function Support (P3097) 5

Some Mitigation of the effects of UB in Contract Checks 6

Coroutine Support (P2957, P3387) 6

Deployment experience 7

Links 8

References 8

2

mailto:dinka.ranns@googlemail.com
mailto:eric@efcs.ca
mailto:dinka.ranns@googlemail.com
mailto:iain@sandoe.co.uk


3

Implementation in Clang

Result Name Introducer

By far the most novel and difficult part of the

proposal to implement in Clang. Here are

some minutiae deserving the attention of

CWG.

Late Parsed or Dependent?

struct A {

template <class U> bool f() const;

};

auto h() // Is '.template' required?

post(v : v.template f<int>())

{ return A(); }

Clarification Needed: Deduced return types

are not yet known when parsing the result

name. The standard should clarify if they are

late-parsed or treated as dependent.

We believe they should be late parsed.

Are Postconditions chained?

Clarification Needed:Without an RVO slot,

it’s unclear if the same materialized

temporary must be used in each post

condition.

Constification

Constification was trivial and unsurprising to

implement in both GCC and Clang.

Work is ongoing in Clang to improve the

diagnostics emitted as a result of implicitly

added const.

The deployment of const-ified contracts in

LLVM and the C++ standard library are

discussed in the section below

Coroutines

In Clang, P2957 was implemented on

accident as a consequence of function level

contracts. Additional work was needed to

reject coroutine contracts as required by

P2900.

Deployment Experience

Clang’s contract implementations were

deployed and tested in two ways.

The Standard Library

contract_assert was used to implement

libc++’s internal _LIBCPP_ASSERT macro .1

P2900 contracts provided a rich enough

feature set to provide the same functionality,

1 https://libcxx.llvm.org/Hardening.html

3

int f()

post(r : ++const_cast<int&>(r) == 1)

post(r : ++const_cast<int&>(r) == 2)

// OK?

{ return 0; }



4

but with a standardized interface which is

easier to communicate to users. The quick

enforce semantic was particularly useful.

The deployment found one

const-correctness bug in libc++’s internals,

otherwise all other assertions compiled

without change.

The libc++ maintainers support P2900 in

C++26.

The experience from this deployment is

limited to contract_assert, as no new

pre and post conditions were added.

<assert.h>

Note: The above code is an example, not a

proposal.

To test the effects of const-ification in

existing codebases, #define assert was

modified to use contract_assert . The2

change was tested by compiling LLVM with

assertions enabled.

Constification caused compilation errors in

many existing assertions. A day of effort was

needed to clean up or address the

breakages. Of the compilation errors, the

breakdown in order of frequency was

2 GNU statement-expressions were used to
allow statements like: return
assert(true), 42;

● missing const on actually const

member function.

● Missing const on a parameter.

● Non-const modification of debug

specific data structures.

● operator overload resolution failure;

with user-defined iterator types

being the most common cause.

Adding const was the most frequent
solution to compilation failures.

4

#define assert(...) \

({ contract_assert(__VA_ARGS__); \

((void)0); \

})



5

Implementation in GCC

P2900

The GCC implementation of P2900 was
done on top of an already existing
implementation of the (proposed, but
removed) C++20 attribute-based contracts.
This brought the additional challenge of
maintaining the existing C++20 version in
parallel with the implementation of P2900.
Thankfully it did not create any significant
challenges. At some point, a redesign may
be done to have P2900 contracts
implementation move away from fitting into
the attribute mechanism it inherited from
C++20. We do not expect this to be a
significant challenge either.

For details about C++20 contracts
implementation experience, please see
P1680. GCC implementation of P2900 was
used to gain usage experience in BDE. For
deployment experience in BDE, please see
P3336. Implementation is deployed to
Compiler explorer under `contracts natural
syntax`. The code has not been merged into
any official branch, but
https://github.com/villevoutilainen/gcc/tree/c
ontracts-nonattr currently maintains a stable
version of P2900 implementation.

To enable contracts all together, `-fcontracts`
is needed.

To get P2900 specific behaviour,
`-fcontracts-nonattr` is needed.

There is currently no way to specifically
configure P2900 specified contract violation
semantics. However, the default semantic

maps onto the `enforce` semantic, and
providing the
`-fcontract-continuation-mode=on` will give
`observe` semantic.

By default, the compiler will constify
expressions appearing in contract
assertions. Currently, constification is
implemented as per P2900R7. It is possible
to disable constification using the
`-fcontracts-nonattr-noconst`.

The version available on Compiler Explorer
currently supports `contract_violation` object
as specified in N4820. The user can replace
the default contract violation handler by
providing a function with the signature

`void handle_contract_violation(const
std::experimental::contract_violation
&violation)`

We expect to have the P2900R8 version of
the `contract_violation` published to the
stable version branch and available on
Compiler Explorer by the Wroclaw meeting.

Virtual Function Support (P3097)

GCC’s stable branch of the P2900

implementation supports contracts on virtual

functions as described in P3097. Virtual

function call expressions are replaced with a

new one that invokes a compiler generated

TU-local “wrapper” function of unspecified

(but implementation-private) name. The

wrapper performs the contract checks of the

static type’s function and invokes the original

call expression. The callee side checks are

performed as part of the dynamic function

invocation. Implementation did not present a

significant challenge.

5

https://github.com/villevoutilainen/gcc/tree/contracts-nonattr
https://github.com/villevoutilainen/gcc/tree/contracts-nonattr


6

Some Mitigation of the effects of

UB in Contract Checks

Since contract checks are regular C++, and

they are usually compiled with the

optimisation set for the entire TU, the

compiler is free to apply optimisations based

on the premise that code cannot be reached

if to do so would invoke UB. An example of

this is shown in P3285 where the compiler

can choose to elide a contract check

completely on the basis that it cannot be

reached without integer overflow.

How to handle this generally is a matter of

on-going design deliberations, and what is

described here is only one potential facet of

those (providing a mechanism to disable

UB-based optimisations in contract checks).

We have made an implementation in which

the contract checks are performed as

outlined functions. In order to provide some

mitigation against such checks being elided

we are able to compile the outlined check

functions with different optimisation to the

main function body. Trivially, one could

compile them “-O0” preventing inlining and

other analysis/optimisation that would result

in the checks being seen as removable.

One could, of course, be more sophisticated

(in the particular example given, it would be

sufficient to allow integer wrap-around). In

some future implementation this could also

form the basis of segregating the

compilation of contract checks, if the

eventual design requires it.

Coroutine Support (P2957, P3387)

Since support for contracts on coroutines is

considered very important (even for the

MVP), we have implemented a proposed

design described in P2957 (with more

detailed design deliberations spelled out in

P3387). The implementation is available on

both mainline GCC and the “contracts

natural syntax” branch. The design follows

the intent that coroutine-ness is an

implementation detail, and therefore from

the caller’s perspective it should adopt the

same rules as any regular function (including

those pertinent to contracts).

Note that many (probably most) real-life

coroutines return some object to the caller

that allows management of the coroutine

(let’s call this the ‘management object’ for

now); identifying this is relevant to contracts

in that it represents the returned object for

the called function that can be inspected in a

post condition (even tho the user never

authors a return statement for it).

From the implementer’s perspective it can

be helpful to think about a coroutine

definition as separated into two layers:

● A top layer responsible for setting up

the coroutine, returning any

management object to the caller and

handling exceptions that occur

during the setup (we call this the

‘ramp’).

● A lower layer consisting of the

re-written body of the coroutine

(which is the user’s authored function

6



7

body, wrapped in some

housekeeping functionality

mandated by the standard).

The ramp layer has ownership of the original

function parameters, and any management

object. The re-written body has ownership

of parameter copies, and any local state

associated with the user’s code. The lifetime

ends of the two sets of data are

unsequenced; a consequence of the fact

that the re-written body of the function is

(most often) going to execute after the ramp

layer has completed and returned the

management object to its caller.

For callee-side contract checks:

● Require precondition checks as the

first action of the ramp function (that

means we may access the original

function params) - exactly as per a

‘regular’ function.

● Identify that contract_assert
behaves ‘as normal’ in the function

body (i.e. there are no special

requirements).

● Post conditions are required to be

evaluated on every non-exceptional

edge out of the ramp (i.e. the `ramp`

behaves exactly as a regular

function, returning the management

object to the caller). The

management object is the one

referred to in post conditions (exactly

as for a ‘regular’ function - since it’s

the returned value).

In GCC these requirements were met with

existing functionality; the pre-conditions are

simply inserted at the ramp start, and the

post conditions are applied in a try-finally

wrapper around the ramp. As noted above,

no changes are required to the existing

contracts implementation to cater for

contract_assert.

For caller-side contracts (currently only

implemented in GCC for virtual functions)

coroutines behave exactly the same way as

any ‘regular’ function, as per the intent that

coroutine-ness is an implementation detail.

There is currently a missing diagnostic for

post conditions (which are not permitted to

access non-reference params) but that is not

expected to present any difficulty.

Deployment experience

The GCC implementation of P2900 was
used to gain usage experience in BDE, this
is described in P3336.

7



8

Links

● GCC Godbolt: https://godbolt.org/z/7rPxa7TP6

● Clang Godbolt: https://godbolt.org/z/qEo1vGhqM

● GCC experimental branch source code:

https://github.com/villevoutilainen/gcc/tree/contracts-nonattr

References

● P2900R9 -Berne, J., Doumler, T., Krzemieński, A., Gašper Ažman, Louis Dionne, Tom
Honermann, John Lakos, Lisa Lippincott, Jens Maurer, Ryan McDougall, Jason Merrill,
& Ville Voutilainen. (2024). Contracts for C++.

● P3336R0 Berne, J. (2024). Usage Experience for Contracts with BDE.
● P3097R0 Doumler, T., Berne, J., & Ažman, G. (2024). Contracts for C++: Support for

Virtual Functions.
● P1680R0 Sutton, A., & Chapman, J. (2019). Implementing Contracts in GCC.
● N4820 Smith, R. (2019) Working Draft, Standard for Programming Language C++.
● P2957R2 Krzemieński, A., Sandoe, I., Berne, J. & Doumler, T. (2024). Contracts and

coroutines.
● P3387R0 Doumler, T., Berne, J., Sandoe, I., & Bindels, P. (2024). Contract assertions on

coroutines

8

https://godbolt.org/z/7rPxa7TP6
https://godbolt.org/z/qEo1vGhqM
https://github.com/villevoutilainen/gcc/tree/contracts-nonattr
https://wg21.link/P2900R9
https://wg21.link/P3336R0
https://wg21.link/P3097R0
https://wg21.link/P1680R0
https://wg21.link/N4820
https://wg21.link/P2957R2
https://wg21.link/P3387R0

