
Revising Atomic Max/Min Operations

Revising Atomic Max/Min Operations by
Extending compare_exchange with
Custom Comparisons & alternative
solutions
Document number: P3454R0

Date: 2024-10-15

Project: WG21, SG1

Authors: Michael Wong, Gonzalo Brito, Fedor Pikus, Maged Michael

Reply to: Michael Wong <fraggamuffin@gmail.com>

Abstract

This paper proposes extending the compare_exchange functions in the C++ Standard Library
to accept a custom comparison object, allowing for more flexible atomic operations. It supports
a wide range of use cases, including conditional max/min operations, and offers a general
solution to optimize atomic operations without introducing multiple new specialized atomic
functions. Additionally, we present an alternative approach with conditional writes for
fetch_max and fetch_min, comparing the benefits and trade-offs.

Revision History
R0 (2024/10/15: Wroclaw 2024 pre-mailing): Initial proposal

Introduction

Current atomic operations in C++ provide fixed operations (e.g., fetch_add, fetch_or) and
the flexible but sometimes cumbersome compare_exchange. This proposal extends the
flexibility of compare_exchange by allowing custom comparisons, which enables conditional

atomic operations without the need to introduce multiple new specific atomic functions like
fetch_min or fetch_max.

P0493R5 proposes adding atomic max and min operations to the C++ standard library. While
this addition is valuable, we believe the current design can be improved to better serve
performance-critical concurrent code. This paper suggests modifications to the semantics and
interface of these operations.

The paper's justifications for the current design, while valid, might not outweigh the potential
advantages of our proposed change. Implementation flexibility, could be enhanced by allowing
implementations to omit the store. The consistency argument, while understandable, could be
addressed by considering alternative naming conventions that better reflect the operation's
semantics.

Regarding portability, our observation about the potential for performance disparities across
different architectures and Acknowledging these differences and allowing for optimized
implementations could lead to more efficient and portable code in the long run.

The proposal's emphasis on performance considerations aligns with our perspective. Atomic
operations are often used in performance-critical scenarios, and any unnecessary overhead can
be detrimental. Let me summarize our arguments:

● Key Arguments:
○ Unnecessary writes (Gratuitous Store) are performance bottlenecks
○ Existing synchronization patterns cover edge cases
○ Implementation flexibility favors conditional writes
○ Consistency with other fetch operations may be misleading

● Proposed Semantics:
○ Allow Conditional write: allow only updating the memory location if the

comparison condition is met (e.g. new value is larger for max)
○ OR Extend compare_exchange_strong and compare_exchange_weak with

a new overload accepting a Comparison object
○ Dual memory ordering: Separate for success and failure paths

● Implementation Flexibility:
○ Allowing Conditional writes enablesfor more efficient implementations
○ Hardware-specific optimizations become possible

● Synchronization Considerations:
○ Release semantics still maintained when necessary
○ Consistent with typical producer-consumer patterns

● Naming Considerations:
● "fetch_max" may not accurately reflect conditional nature
● Alternative: “conditional_max” "compare_select_max" or similar
● Extend compare_exchange_strong and compare_exchange_weak with a

new overload accepting a Comparison object
● Proposed new fetch_max semantics

Motivation and Scope

The primary motivations for these changes are:

1. Performance optimization by avoiding unnecessary writes
2. Increased implementation flexibility across different architectures
3. Better alignment with real-world usage patterns of atomic operations
4. More precise control over memory ordering for advanced users

Unnecessary Write (Gratuitous Store) Issue:

● The argument we present is that the unconditional store in fetch_max, even when no
update is necessary, is artificial and introduces unnecessary costs. The conditional
nature of fetch_max should allow for cases where no store occurs if the current
maximum is already greater or equal to the new value.

● From a program correctness standpoint, you explain that the program’s memory
consistency model (i.e., the use of release barriers on prior stores) guarantees that the
data is already in a valid state, so there is no need for an additional write if the maximum
hasn't changed.

Alignment with Existing Producer-Consumer Patterns:

● In producer-consumer models, the releasing of data (such as setting a max value) is
already done by other operations like fetch_add or fetch_max. Once the maximum
value is set by a previous operation, an additional release when no value has changed is

redundant, and the previous operation has already ensured the data’s visibility to
consumers.

Implementation Flexibility:

● Our suggestion allows implementations to either perform a conditional store or not,
depending on the hardware. For architectures where a conditional store could yield
better performance, like ARM, this flexibility would allow for optimizations.

● By contrast, the current proposal forces implementations into an unconditional write
path, limiting the flexibility to optimize for different architectures.

Naming Semantics:

● We argue that part of the issue stems from the naming. The name fetch_max implies
certain expectations, but the behavior might be better served by an alternative name that
reflects its actual conditional nature, such as conditional_max or
compare_select_max. This would better match what the operation does: selecting the
maximum, updating it conditionally, and returning the maximum, regardless of whether
the value changed or not.

● The name choice seems to be a trade-off between consistency with other fetch_XXX
operations and more precise behavior.

● Extend compare_exchange_strong and compare_exchange_weak with a new
overload accepting a Comparison object

Portability vs. Performance:

● On ARM, where atomic max/min instructions are available, this proposal gives
developers direct access to that functionality. But on x86, where a release-read barrier is
more expensive, developers who prioritize performance would likely avoid using the
standard fetch_max in favor of writing a custom implementation that performs better.

● The intent behind making fetch_max consistent across architectures may actually hurt
its portability, as developers on x86 may avoid it due to performance reasons.

Performance-Centric Design:

● We argue that the primary reason for using atomics is performance, and if an operation
like fetch_max sacrifices performance for consistency or simplicity, it defeats the
purpose of using it in the first place. Atomics are, by nature, complex and non-intuitive,
and their usage is already difficult, so performance should take precedence over
consistency or naming concerns.

● For example, in concurrent algorithms for shared data structures or lock-free queues,
where values are frequently compared but less frequently updated, forcing unnecessary
writes introduces overhead that harms scalability.

Motivation and Scope
The primary motivations for this change are:

1. Enable more flexible atomic operations without proliferating specific atomic functions
2. Support conditional update patterns (like max/min) efficiently
3. Improve forward progress in concurrent algorithms by reducing the need for

compare_exchange loops
4. Provide a general mechanism that can adapt to various use cases

Proposed Changes

1. Extend compare_exchange_strong and compare_exchange_weak with a new
overload accepting a Comparison object:

template<class T, class Comparison>

bool compare_exchange_strong(Comparison&& cmp, T& expected, T desired,

memory_order success, memory_order failure) noexcept;

2. Modify the specification of compare_exchange to use the provided comparison: It then
atomically evaluates cmp(*ptr, expected), and if true, [...]

3. Specify the behavior for existing overloads: For the overloads without cmp, the
comparison returns true if the value representation of its arguments is the same and
false otherwise.

4. This change avoids redundancy by providing a generalized mechanism for
comparison-based atomic updates, which can be adapted to various use cases such as
max/min comparisons, complex comparison-based operations, and custom
synchronization logic.

Examples

std::atomic<int> atom{5};

int expected = 3;

int desired = 10;

// If atom is strictly less than expected, update to desired

atom.compare_exchange_strong(std::less{}, expected, desired,

std::memory_order_acq_rel,

std::memory_order_acquire);

// Implementing fetch_max

auto fetch_max = [&atom](int val) {

int expected = atom.load();

while (!atom.compare_exchange_weak(std::less{}, expected, val)) {}

return expected;

};

Design Considerations

Comparison Object Requirements

The Comparison object should be a callable object accepting two arguments of type T const&
and returning a bool. It must not modify its arguments or have side effects (stateless). This
design keeps the atomic library simple, extensible, and in line with existing functional paradigms
in C++

Performance

This approach avoids the need for compare_exchange loops in many scenarios, potentially
improving forward progress in concurrent algorithms. Hardware-specific optimizations can still
be applied for common comparison operations.

Backward Compatibility

Existing compare_exchange overloads remain unchanged, ensuring full backward compatibility.

Alternative Solution: Conditional fetch_max and
fetch_min
An alternative approach to solving the original problem of efficient atomic max/min operations
was also considered. This section outlines this alternative and compares it with the main
proposal.

This alternative solution could coexist with the custom comparison approach for scenarios
where direct hardware-supported atomic operations (e.g., atomic max/min) are essential, while
the custom comparison approach addresses broader, more complex atomic patterns.

Alternative Proposed Changes

1. Modify fetch_max and fetch_min to perform conditional writes:
○ Only update the atomic variable if the new value would change the result

2. Introduce dual memory ordering parameters:

○ Similar to compare_exchange, add separate memory orders for success and
failure cases

3. Consider renaming the operations to better reflect their semantics:
○ Potential names: compare_select_max, conditional_max

Example of Alternative Approach

T conditional_max(T value,

memory_order success = memory_order_seq_cst,

memory_order failure = memory_order_seq_cst) volatile noexcept;

Comparison of Approaches

Aspect Custom Comparison Approach
compare_exchange

Conditional fetch_max/min
Approach

Generality/Flexibilit
y

Highly general, supports various
comparison operations

Supports a wide range of custom
comparisons beyond min/max (e.g.,
greater_than, less_than,
complex logic)

Specific to max/min operations

Complexity Introduces new concept
(Comparison object)

Relatively simple extension of
existing operations

Performance Potential for optimization, but may
vary.

The custom comparison solution
provides better scalability in more
complex multi-threaded scenarios
or in environments where more
flexibility is needed

Avoids unnecessary writes,
reducing contention and improving
performance

Direct mapping to hardware
instructions on some platforms.

The conditional
fetch_max/fetch_min
approach could have the
advantage in environments
where hardware support for
atomic max/min is readily
available (e.g., ARM)

Also avoids unnecessary writes
but is more focused on min/max
comparisons

Consistency/API
Simplicity

Consistent with existing
compare_exchange semantics

Reuses existing
compare_exchange API with an
additional Comparison parameter

Introduces new semantics for
specific operations

Requires changes to the
fetch_max/fetch_min API,
but avoids adding new functions

Extensibility Easily extensible to new operations.

Supports a wide range of use cases
beyond atomic min/max

Limited to max/min, may require
future proposals for other
operations

Specifically designed for
min/max operations

Implementation May require more complex
implementation

Potentially simpler
implementation, especially on
supporting hardware

Usability Requires understanding of
Comparison objects

Requires developers to understand
and use custom comparison
objects, potentially increasing
complexity

Straightforward for users familiar
with existing fetch operations

More intuitive for those familiar
with fetch_max/fetch_min,
especially with potential
renaming

Memory Ordering Supports dual memory ordering
(success/failure) through
compare_exchange

Adds dual memory ordering to
fetch_max and fetch_min

Backward
Compatibility

Fully backward compatible with
existing compare_exchange
behavior

Minor API changes but backward
compatibility is maintained

Naming and
Semantics

No renaming necessary, but
requires understanding of custom
comparisons

Renaming
(compare_select_max,
conditional_max) can make
the purpose clearer

Advantages of Custom Comparison Approach

1. Provides a general solution that can handle a wide range of atomic update patterns
beyond just max/min.

2. Maintains consistency with existing compare_exchange semantics.

3. Avoids proliferation of specific atomic functions in the standard library.
4. Allows for user-defined comparison operations, increasing flexibility.

Advantages of Conditional fetch_max/min Approach

1. Directly addresses the specific use case of atomic max/min operations.
2. Potentially more efficient on hardware with native atomic max/min instructions.
3. Simpler to use for the specific case of max/min operations.
4. Clearer semantics for the specific operations it covers.

Disadvantages of Custom Comparison Approach

1. Introduces a new concept (Comparison object) that users need to understand.
2. May be more complex to implement efficiently across all platforms.
3. Potential for misuse with incorrect comparison implementations.

Disadvantages of Conditional fetch_max/min Approach

1. Limited to max/min operations, doesn't solve the general problem of conditional atomic
updates.

2. Introduces new semantics specific to these operations, potentially complicating the
overall atomic API.

3. May lead to requests for similar conditional versions of other atomic operations in the
future.

Conclusion

While both approaches have merit, this proposal recommends the Custom Comparison
approach due to its greater generality and consistency with existing C++ atomic operation
design. However, we acknowledge that the Conditional fetch_max/min approach may have
advantages in specific use cases and on certain hardware platforms.

Both approaches could coexist in the standard, offering developers the choice between
hardware-optimized conditional writes for common cases like max/min and the more general,
flexible solution of custom comparison-based atomic operations.

We invite feedback from the committee on both approaches to guide further refinement of this
proposal.

References
● - P0493R5: Atomic minimum/maximum

Acknowledgements
Thanks to Fedor Pikus for the initial idea. Also thanks to Gonzalo Brito and Maged Michael’s
analysis that led to this proposal.

