
Stroustrup D3447R0 Profiles syntax

1

Doc. No. D3447R0
Date: 2024-10-14

Audience: SG23
Reply to: Bjarne Stroustrup (bjarne@stroustrup.com)

Profiles syntax

Abstract
This note defines the syntax for Profiles and names a few profiles that should become
standard. It also summarizes a few rationales for using that syntax .

This note outlines a design that still needs to be implemented and tested. This is a note for
comments.

1. Introduction
Profiles is a system for explicitly requiring certain guarantees (such as type safety, resource
safety, and arithmetic safety). Such guarantees are provided by a combination of
restrictions (eliminating “unsafe code”) and run-time checks (enforcing proper usage).

The aims of profiles are:

• To offer a small set of coherent guarantees, rather than a large “random” set of tests
and modifiers.

• To localize requests for guarantees in a few well-specified places, rather than
spread throughout the code.

• To ensure that the resulting program is ISO standard C++, rather than having the
meaning of constructs incompatibly changed by annotations.

The last aim ensures that the meaning of a program is exactly the same as if the profile
hadn’t been specified with the caveat that unspecified behavior might be handled
differently (e.g., range-checking might have been applied as required by a profile). This
again implies that validated code can be combined with unvalidated code, as is necessary
for experimentation, gradual introduction, partial application, and validating on one system
and re-compiling on another.

It is impossible to offer meaningful guarantees without restrictions. This approach ensures
that most contemporary C++ facilities are usable with most profiles. Most restrictions fall

mailto:bjarne@stroustrup.com

Stroustrup D3447R0 Profiles syntax

2

on antiquated programming styles for which there are already better alternatives in ISO
Standard C++.

2. Previous work
This paper is based on previous work:

• H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde, M. Wong: DG opinion on safety for
ISO C++. P2759R1. 2023-01-23.

• B. Stroustrup and G. Dos Reis: Design Alternatives for Type-and-Resource Safe C++.
P2687R0. 2022-01-15.

• B. Stroustrup, G. Dos Reis: Safety Profiles: Type-and-resource Safe programming in
ISO Standard C++. P2816R0. 2023-02-16.

• B. Stroustrup: Concrete suggestions for initial Profiles. P3038R0. 2023-12-16.
• B. Stroustrup: A framework for Profiles development. P3274R0. 2024-5-5.

Further references can be found in those papers. Naturally, those papers reflect progress of
the ideas over time.

3. Syntax
Profiles use the attribute syntax. The attribute syntax is defined in §9.12.1 “Attribute syntax
and semantics” [dcl.attr.grammar].

Profiles uses three attribute specifiers, each prefixed by profiles::

• profiles::enable
• profiles::enforce
• profiles::suppress
• profiles::require

These specifiers are followed by an attribute-argument-clause. For example:

[[profiles::enable(ranges)]]

[[profiles::enable(ranges, experimental)]]

The experimental versions are there to ease experimentation, to allow partial
implementation of a profile, and gradual introduction of profiles. An experimental version
should be a subset of the full profile, but its detailed meaning should not be standardized.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2759r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2759r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3274r0.pdf

Stroustrup D3447R0 Profiles syntax

3

An experimental version is not interchangeable with a “final” version. They are considered
as having different names.

Questions:

• Is it best to use the plural profiles? (yes)
• Is it best to capitalize Profile names? (no, to keep in the ISO standard style)
• Is it best to require the prefix profiles:: for profile directives? (yes)
• Is it best to require the prefix profiles:: for profile names? (no)

The general idea is to make Profile directives to be highly visible in code. They will be few
and highly significant.

In principle, a Profile attribute could be applied to any scope (e.g., a function definition) but
because of header files it will probably be best – at least initially – not to allow them in the
global scope.

A profile name is an attribute-token.

3.1. Profiles::enforce
[[profiles::enforce(p)]] must be applied to a module or a scope to ensure that p is
enforced. For example:

• namespace [[profiles::enforce(union)]] N { … }
• export module DataType.Array [[profiles::enforce(memory)]];

The position of the attribute for namespace and import is odd. Am I using it wrong here?

3.2. Profiles::enable
[[profiles::enable(p)]] must be applied to an import directive or a scope and enforces p for
uses of that imported module. For example:

• import M [[profiles::enable(arithmetic)]];
• namespace [[profiles::enable(ranges)]] M { /* … */ }

3.3. Profiles::suppress
[[profiles::suppress(p)]] must be applied to an import directive or a scope for a module or
a scope. For example:

• import M [[profiles::suppress(type)]];
• namespace [[profiles::suppress(type)]] N { /* … */ }

Stroustrup D3447R0 Profiles syntax

4

A typical use would be to use unverified/trusted code to implement abstractions needed to
support a profile.

3.4. Profiles::require
[[profiles::require(p)]] must be applied to an import directive for a module or a scope. For
example:

• import M [[profiles::require(type)]];

The import fails unless the imported module was compiled with that profile.

4. Initial profiles
The initial set of profiles to be standard is:

• algorithms
• arithmetic
• casting
• concurrency
• initialization
• invalidation
• pointers
• ranges
• RAII
• type
• union

Draft specifications and rationales for these profiles can be found in P3274R0.

Many of these profiles are “profile fragments” meant to be used in combinations.

We could add _safety to every profile name because all of the profiles (so far) are
concerned with safety. I thought that redundant and verbose. Also, these profiles can be
seen a more directly concerned with correctness than mere safety. It is of course easy to
be safe according to some criteria yet yielding wrong results.

5. Why the [[…]] syntax
The profiles use the attribute syntax, e.g., [[profiles::enable(ranges)]], rather than a
“proper language syntax using keywords” (possibly context dependent keywords), e.g.,
profiles::enable(ranges); to ease experimentation and gradual introduction. This choice of

Stroustrup D3447R0 Profiles syntax

5

syntax does not imply that enforcement is optional in implementations that support
profiles. However, using the attribute syntax allows us to have a single code base for code
that must be compiled with a variety of compilers, some pre-profiles. In particular, it allows
us to support a likely important use case: First check your program with the best compiler
for Profiles support, then port the code and compile with an older compiler. Without
#ifndef hackery.

This use of the [[…]] syntax was approved by a SG23 vote at the Saint Luis meeting:

POLL: We are in favour of the [[Profiles::enable(...)]] syntax.

SF WF N WA SA

12 6 1 3 0

6. Supporting attributes
To support some profiles some attributes can be necessary or merely helpful. Many avoid
false positives by simplifying analysis.

Such annotations can take the form of attributes (e.g., [[not_invalidating]]) or type aliases
(e.g., owner) and tend to apply to just one profile.

6.1. Profiles: initialized
profiles::initialized requires that objects are initialized, but there are situations where
uninitialized memory is essential. To avoid verbose and relatively frequent use of
suppression an uninitialized attribute is helpful:

• [[uninitialized]]

This can be used can be used to mark define objects that needs to be uninitialized (e.g.,
input buffers). For example:

• int buf[10′000] [[uninitialized]];

6.2. Profiles: invalidate
invalidate prevents invalidating operations in non-const member functions and on non-
const arguments. That can be overly strict. In that case, we can use:

• [[not_invalidating]]

https://wiki.edg.com/bin/view/Wg21stlouis2024/P3274?sortcol=0;table=1;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21stlouis2024/P3274?sortcol=1;table=1;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21stlouis2024/P3274?sortcol=2;table=1;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21stlouis2024/P3274?sortcol=3;table=1;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21stlouis2024/P3274?sortcol=4;table=1;up=0#sorted_table

Stroustrup D3447R0 Profiles syntax

6

[[not_invalidating]] can be statically validated, so it is not a potential source of error.

• owner

Signifies that a pointer must be deleted. Type aliases are semantically equivalent to
attributes when used for Profiles, but less syntactically “noicy.”

• [[not_local]]

Indicates that a pointer returned from a function does not depend on an argument.
[[not_local]] can be statically validated, so it is not a potential source of error.

• [[not_returned]]

Indicates that parts of an object isn’t used in the return value of a function.
[[not_returned]] can be statically validated, so it is not a potential source of error.

• [[invalidating]]

Suppresses invalidation protection for operations of a function argument.

7. Potential restrictions and extensions
What is described above is a minimal scheme. Naturally, extensions must be considered.

7.1. Combination of profiles
Some profiles are combinations of others. For example, type requires initialization,
ranges, invalidation, and more. We could add a directive for that. For example:

• [[profiles::combine(type, initialization, ranges, invalidation)]]

However, we shouldn’t support that idea until we learn whether this really belongs in the
language, rather than in some external system for implementing profiles.

7.2. Control of run-time violation handling
The selection of violation response must be a global property and will have to be known to
the implementors of standard library components, such as vector and span. I suggest we
have the option to set that in code. For example

• [[profiles::enforce(range, runtime-violation-response, throw)]]

The build system must ensure that all requests for such a violation response are identical.

See also : A framework for Profiles development.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3274r0.pdf

Stroustrup D3447R0 Profiles syntax

7

8. Further work
This paper is focused on syntax. Pinning down the semantics of the various constructs and
profiles is more important and interesting, but we need a shared syntax to effectively do
that. I plan to write a note on each of the mentioned profiles with sufficient detail for a good
developer to implement a first version and supply feedback to improve the definition. With
the framework (P3274R0) in place, others have many places to contribute (text or code).

Please help. It would be unfortunate if we had to wait for specification and implementation
until I could draft all these documents.

9. Acknowledgements
Many thanks to Xavier Bonaventura, Ilya Burylov, Christoff Meerwald, Gabriel Dos Reis, Andreas

Weiss, Michael for comments and especially tricky examples.

