
Improve the handling of exceptions
thrown from contract predicates
Gašper Ažman (gasper.azman@gmail.com)

Timur Doumler (papers@timur.audio)

Document #: P3417R0
Date: 2024-10-16
Project: Programming Language C++
Audience: SG21, LEWG

Abstract
This paper proposes an improvement to how exceptions thrown from the evaluation of a
contract predicate are handled. In particular, we propose to handle such an exception
separately from an exception that was being handled when the contract violation occurred;
std::current_exception() should return a pointer only to the latter, never to the former;
the former should only be accessible through the dedicated function proposed in [P3227R0].

1 The problem
The Contracts MVP [P2900R9] specifies that when the evaluation of a contract predicate
exits via an exception, the contact-violation handler is called and acts as an exception
handler for that exception. Therefore, the exception can be retrieved with the following
incantation:

void handle_contract_violation (contract_violation& violation) {

if (violation.detection_mode() == detection_mode::evaluation_exception)

my::handle(std::current_exception());

}

In [P3227R0], we propose to add a member function evaluation_exception() to class
contract_violation, which simplifies the above to the much more user-friendly:

void handle_contract_violation (contract_violation& violation) {

if (auto ex = violation.evaluation_exception())

my::handle(ex);

}

1

https://wg21.link/p3227r0
https://wg21.link/p2900r9


However, the library API additions proposed in [P3227R0] do not alter the [P2900R9]
behaviour of std::current_exception(). The result is that, if the contract check exited via
an exception, std::current_exception() and predicate_ exception() will always both
point to that exception; if it did not, the former may be a null pointer or may point to an
unrelated exception that was being handled when the contract violation occurred, while the
latter will always be a null pointer.

This somewhat surprising behaviour is the consequence of treating the predicate exception
as just another exception on the exception stack. Arguably, this design goes against the
design principle that the evaluation of contract predicates should be "ghost code" that does
not affect the state of the program. It also raises the question of what happens when we
rethrow the current exception from the contract-violation handler:

void handle_contract_violation (contract_violation& violation) {

if (auto ex = std::current_exception())

std::rethrow_exception(ex); // or just `throw;`

// what happens now?

With the current specification in [P2900R9], this may either rethrow the predicate exception
or, if the contract check did not throw an exception but occurred inside a catch clause in
user code, rethrow the entirely unrelated exception that was being handled there. This
behaviour confounds two entirely different use cases for throwing an exception from the
contract-violation handler.

If a contract violation occurs inside a catch clause, we might decide that we cannot continue
executing that catch clause correctly, and instead rethrow the currently handled exception
from the contract-violation handler in order for it to be handled further up in user code. The
context of this exception is unknown to the handler.

If, on the other hand, the contract check itself throws an exception, we might want to rethrow
that exception to be handled in a specific way. The context of this exception is known to the
handler: it is an exception that represents a failure to perform a contract check. These two
types of exceptions are of a different nature and will require a different handling strategy.
Rethrowing each exception should therefore be performed with a different construct.

Rethrowing the current exception from the contract-violation handler should rethrow
whatever exception was being handled when the contract violation occurred, and not the
exception thrown from the evaluation of the predicate. This prevents leaking any information
about the contract check into user code.

On the other hand, rethrowing the predicate exception should be done with an explicit
construct expressing the intent of the developer. Such a construct is being proposed in
[P3227R0]:

std::rethrow_exception(violation.predicate_exception());

2

https://wg21.link/p3227r0
https://wg21.link/p2900r9
https://wg21.link/p2900r9
https://wg21.link/p3227r0


2 The solution
We can specify the desired behaviour as follows. Instead of treating the contract-violation
handler as the handler for an exception thrown during predicate evaluation, we can treat an
exception thrown during predicate evaluation as being handled before the contract violation
handler is called. We can express this as a modification of the pseudocode in [P2900R9],
Section 3.5.11 that illustrates the compiler-generated contract-violation handling process:

P2900R8 This paper

bool violation = false;
try {
violation = !predicate;

}
catch (...) {
// set detection_mode to
// evaluation_exception
handle_contract_violation(...);

}
if (violation) {
// set detection_mode to
// predicate_false
handle_contract_violation(...);

}

bool violation = false;
try {
_violation = !predicate;

}
catch (...) {
// store currently handled exception
// in predicate_exception

}
__handle_contract_violation(...);

Implementations can choose to implement these semantics as above, or alternatively, to
treat an exception thrown during predicate evaluation on an entirely separate exception
stack. Regardless of the implementation strategy, the observable behaviour is the same, and
is consistent with treating predicate exceptions as separate from the remainder of the
program, thus bringing the semantics in line with the design principles of [P2900R9].

This proposal is a change in language semantics. It is being proposed on top of proposal
[P3227R0], which itself only modifies library API and is an improvement over [P2900R9] in
its own right regardless of whether this proposal will be adopted.

3 Proposed wording
We propose the following changes to [P2900R9].

● Change [basic.contract.eval] as follows:

If the contract violation occurred because the evaluation of the predicate exited via
an exception, the contract-violation handler is invoked while that exception is the
currently handled exception ([except.handle]). [Note: This allows the exception to
be inspected within the contract-violation handler ([basic.contract.handler]) using
std::current_exception ([except.special.general]). — end note]that exception is
handled by the implementation before the contract-violation handler is invoked.
[Note: The exception can be inspected within the contract-violation handler
([basic.contract.handler)] using std::contract_violation::predicate_exception
([support.contracts.violation]). — end note]

3

https://wg21.link/p2900r9
https://wg21.link/p2900r9
https://wg21.link/p3227r0
https://wg21.link/p2900r9
https://wg21.link/p2900r9


Acknowledgements
Many thanks to Eric Fiselier for valuable discussions regarding this paper.

References
[P2900R9] Joshua Berne, Timur Doumler, and Andrzej Krzemieński: "Contracts for C++".
2024-10-11

[P3227R0] Gašper Ažman and Timur Doumler: "Fixing the library API for contract violation
handling". 2024-10-16

4

https://wg21.link/p2900r9
https://wg21.link/p3227r0

