
Enrich Creation Functions for the
Pointer-Semantics-Based Polymorphism
Library - Proxy
Document number: P3401R0

Project: ISO/IEC 14882 Programming Languages — C++, ISO/IEC JTC1/SC22/WG21

Authors: Tian Liao, Mingxin Wang

Reply-to: Tian Liao <tilia@microsoft.com>; Mingxin Wang <mingxwa@microsoft.com>

Audience: LEWG

Date: 2024-09-16

Abstract: Proxy is a new library feature that is being proposed to delegate general pointer types with the
type erasure technique to support non-intrusive polymorphism programming in C++. The focus of paper is on
utility functions – make proxy, allocate proxy and make proxy inplace, which were split from previous versions
of the proxy proposal. We believe they are useful tools to help create proxy instances properly.

1 Introduction

Paper P3086 proposed a Pointer-Semantics-Based Polymorphism Library, which is designed to help people
build extendable and efficient polymorphic programs with better abstractions and less intrusive code. This
paper is proposing the utility part that is separated from early versions of paper P3086 and P0957.

More specifically, we are eager to add function templates make proxy, allocate proxy, make proxy inplace,
and concept inplace proxiable target together with the proxy library into the standard as library features.

make proxy ’s syntax is similar to the constuctors of std::any. It is designed to provide simple ways to
construct proxy instances from values. With make proxy, SBO (small buffer optimization) may implicitly apply
to avoid the potential overhead that may come from unnecessary heap allocations.

allocate proxy ’s syntax is similar to std::allocate_shared. It is intended for custom allocators.
inplace proxiable target is a concept that restricts its associated facade type and value type so that calling

its correlated make proxy inplace is well-formed.
make proxy inplace, similar to std::optional, provides an SBO pointer that stores given values within its

storage. More details about make proxy inplace can be found in Technical Specifications.

2 Motivation

Class template proxy is based on pointer semantics, which means it usually involves heap allocations to in-
stantiate a proxy object from value, though sometimes those allocations could be evitable if the value’s type is
trivial enough.

For example, if the maximum pointer size defined by F::constraints.max_size is

2× sizeof(void*).

When a user wants to have a proxy instance for an integer value 2024, the user may do

struct year {

static constexpr proxiable_ptr_constraints constraints{

.max_size = sizeof(void*[2]),

.max_align = alignof(void*[2]),

.copyability = constraint_level::none,

.relocatability = constraint_level::nothrow,

.destructibility = constraint_level::nothrow};

// other members to meet the facade name-requirement.
};

std::proxy<year> CreateYear() {

return std::make_unique<int>(2024); // implicitly converts to std::proxy<year>

}

Apparently, std::make_unique<int>(2024) performs an allocation, which may be considered an expensive
cost in certain scenarios. To improve the construction from integer values in this case, we shall introduce SBO
here. Because the storage size (e.g. 16 bytes on 64-bit machines) of std::proxy<year> is mostly sufficient
to place a value of integer type (e.g. 4 bytes). With the SBO capability provided by make proxy, which
could be an internal implementation of a fancy pointer that guarantees space efficiency, users can choose the
implementation below for the CreateYear() function:

1

https://wg21.link/p3086r1
https://wg21.link/p3086
https://wg21.link/p0957

std::proxy<year> CreateYear() {

return std::make_proxy<year>(2024); // no heap allocation happens
}

In simple words, make proxy shall initially try constructing a proxy object with given values stored inplace,
and then fall back to storing the given values in an arbitrary memory range with heap allocations if the first
trial failed. Both conditions, as well as their resolution, shall happen at compile-time.

3 Considerations

3.1 Construction of proxy

According to P3086, there are three different constructors of proxy that allow users to create a new proxy
instance from an object of type P or decay_t<P>.

template <class P>

proxy(P&& ptr) noexcept(/∗see P3086∗/) requires(/∗see P3086∗/);

template <class P, class... Args>

explicit proxy(in_place_type_t<P>, Args&&... args)

noexcept(/∗see P3086∗/) requires(/∗see P3086∗/);

template <class P, class U, class... Args>

explicit proxy(in_place_type_t<P>, initializer_list<U> il,

Args&&... args)

noexcept(/∗see P3086∗/) requires(/∗see P3086∗/);

The type name P used in template arguments stands for a raw pointer type or a fancy pointer type. These
three constructors meet all the needs of proxy itself, but they are not always convenient to use when the type
P is managing the ownership of the value that it is pointing to. Construction from a value and using a custom
allocator are the very typical use cases related to the problem.

3.2 Construction from a value

Let’s continue on the CreateYear example above. To eliminate unnecessary allocations, user may have to
provide an ad hoc sbo-ptr that wraps a trivial value and pretend to be a pointer type, and then use it to
construct a proxy object. For example:

template <class T>

class sbo_ptr {

public:

template <class... Args>

sbo_ptr(Args&&... args)

noexcept(std::is_nothrow_constructible_v<T, Args...>)

requires(std::is_constructible_v<T, Args...>)

: value_(std::forward<Args>(args)...) {}

sbo_ptr(const inplace_ptr&)

noexcept(std::is_nothrow_copy_constructible_v<T>) = default;

sbo_ptr(inplace_ptr&&)

noexcept(std::is_nothrow_move_constructible_v<T>) = default;

T* operator->() noexcept { return &value_; }

const T* operator->() const noexcept { return &value_; }

T& operator*() & noexcept { return value_; }

const T& operator*() const& noexcept { return value_; }

T&& operator*() && noexcept { return std::forward<T>(value_); }

const T&& operator*() const&& noexcept

{ return std::forward<const T>(value_); }

private:

T value_;

};

auto CreateYear() {

return std::proxy<year>{

sbo_ptr<int>{2024}};

2

https://wg21.link/p3086

}

With make proxy inplace or make proxy, the tools we are proposing in this paper, user can achieve the same
goal with a simple line, like:

auto CreateYear() {

return std::make_proxy<year, int>(2024);

}

Or, in this use case, it is equvialent to:

auto CreateYear() {

return std::make_proxy_inplace<year, int>(2024);

}

3.3 Custom allocator

Similar to std::allocate_shared, allocate proxy accepts a custom allocator and retains a copy of the allocator
for releasing resources in the future. To achieve this goal, user may have to provide an allocated-ptr, which
could be ad hoc again like the sbo-ptr, to allocates storage for its contained object of type T with an allocator
of type Alloc and manages the lifetime of its contained object.

In addition, the implementation of allocated-ptr may vary depending on the definition of its associated
facade type F. Specifically, when F::constraints.max_size and F::constraints.max_align are not large
enough to hold both a pointer to the allocated memory and a copy of the allocator, allocated-ptr shall allocate
additional storage for the allocator.

allocate proxy shall provide a built-in implementation for any facade types. With textitallocate proxy, user
can easily construct a proxy object with a large data and a custom allocator. For example:

auto CreateHugeYear(){

// sizeof(std::array<int, 1000>) is usually greater than the max size defined in facade,
// calling allocate proxy has no limitation to the size and alignment of the target
using HugeYearData = std::array<int, 1000>;

return std::allocate_proxy<year, HugeYearData>(

std::allocator<HugeYearData>{});

}

3.4 Freestanding

As per all proxy features proposed by P3086 are freestanding, the inplace proxiable target concept and the
make proxy inplace function templates shall be freestanding as well. allocate proxy and make proxy are not
freestanding because they involved dynamic allocations.

3.5 Feature test macro

All the features proposed by this paper honors the test macro defined in P3086. That is:

#define __cpp_lib_proxy YYYYMML // also in <memory>

4 Technical specifications

4.1 Additional synopsis for header <memory>

namespace std {

// concept inplace proxiable target
template <class T, class F>

concept inplace_proxiable_target = proxiable</∗ inplace−ptr<T> ∗/, F>;

// the allocate proxy overloads, which are freestanding-deleted
template <facade F, class T, class Alloc, class... Args>

proxy<F> allocate_proxy(const Alloc& alloc, Args&&... args);

template <facade F, class T, class Alloc, class U, class... Args>

proxy<F> allocate_proxy(const Alloc& alloc, std::initializer_list<U> il, Args&&... args);

3

https://wg21.link/p3086
https://wg21.link/p3086

template <facade F, class Alloc, class T>

proxy<F> allocate_proxy(const Alloc& alloc, T&& value);

// the make proxy inplace overloads
template <facade F, inplace_proxiable_target<F> T, class... Args>

proxy<F> make_proxy_inplace(Args&&... args)

noexcept(std::is_nothrow_constructible_v<T, Args...>);

template <facade F, inplace_proxiable_target<F> T, class U, class... Args>

proxy<F> make_proxy_inplace(std::initializer_list<U> il, Args&&... args)

noexcept(std::is_nothrow_constructible_v<

T, std::initializer_list<U>&, Args...>);

template <facade F, class T>

proxy<F> make_proxy_inplace(T&& value)

noexcept(std::is_nothrow_constructible_v<std::decay_t<T>, T>)

requires(inplace_proxiable_target<std::decay_t<T>, F>);

// the make proxy overloads, which are freestanding-deleted
template <facade F, class T, class... Args>

proxy<F> make_proxy(Args&&... args);

template <facade F, class T, class U, class... Args>

proxy<F> make_proxy(std::initializer_list<U> il, Args&&... args);

template <facade F, class T>

proxy<F> make_proxy(T&& value);

}

The above synopsis is assumming the memory header has below synopsis defined in paper 3086:

namespace std {

template <class F>

concept facade = // see p3086r3;
template <class P, class F>

concept proxiable = // see p3086r3;
template <class F>

class proxy; // see p3086r3
}

4.2 Concept std::inplace proxiable target

The concept inplace_proxiable_target<T, F> specifies that a value type T, when wrapped by an implemen-
tation-defined non-allocating pointer type, models a contained value type of proxy<F>. The size and alignment
of this implementation-defined pointer type are guaranteed to be equal to those of type T.

4.3 Function template std::allocate proxy

The definition of allocate proxy makes use of an exposition-only class template allocated-ptr. An object of type
allocated-ptr<T, Alloc> allocates the storage for another object of type T with an allocator of type Alloc and
manages the lifetime of this contained object. Similar to std::optional, allocated-ptr<T, Alloc> provides
operator* for accessing the managed object of type T with the same qualifiers, but does not necessarily support
the state where the contained object is absent.

allocate proxy returns a constructed proxy object. It may throw any exception thrown by allocation or the
constructor of T.

1. template <facade F, class T, class Alloc, class... Args>

proxy<F> allocate_proxy(const Alloc& alloc, Args&&... args);

Effects: Creates a proxy<F> object containing a value p of type allocated-ptr<T, Alloc>, where *p is
direct-non-list-initialized with std::forward<Args>(args)....

2. template <facade F, class T, class Alloc, class U, class... Args>

proxy<F> allocate_proxy(const Alloc& alloc, std::initializer_list<U> il, Args&&... args);

Effects: Creates a proxy<F> object containing a value p of type allocated-ptr<T, Alloc>, where *p is
direct-non-list-initialized with il, std::forward<Args>(args)....

4

https://wg21.link/p3086

3. template <facade F, class Alloc, class T>

proxy<F> allocate_proxy(const Alloc& alloc, T&& value);

Effects: Creates a proxy<F> object containing a value p of type allocated-ptr<std::decay_t<T>, Alloc>,
where *p is direct-non-list-initialized with std::forward<T>(value).

4.4 Function template std::make proxy inplace

The definition of make_proxy_inplace makes use of an exposition-only class template sbo-ptr. Similar to
std::optional, sbo-ptr<T> contains the storage for an object of type T, manages its lifetime, and provides
operator* for access with the same qualifiers. However, it does not necessarily support the state where the
contained object is absent. sbo-ptr<T> has the same size and alignment as T.

1. template <facade F, inplace_proxiable_target<F> T, class... Args>

proxy<F> make_proxy_inplace(Args&&... args)

noexcept(std::is_nothrow_constructible_v<T, Args...>);

Effects: Creates a proxy<F> object containing a value p of type sbo-ptr<T>, where *p is direct-non-list-
initialized with std::forward<Args>(args)....

2. template <facade F, inplace_proxiable_target<F> T, class U, class... Args>

proxy<F> make_proxy_inplace(std::initializer_list<U> il, Args&&... args)

noexcept(std::is_nothrow_constructible_v<

T, std::initializer_list<U>&, Args...>);

Effects: Creates a proxy<F> object containing a value p of type sbo-ptr<T>, where *p is direct-non-list-
initialized with il, std::forward<Args>(args)....

3. template <facade F, class T>

proxy<F> make_proxy_inplace(T&& value)

noexcept(std::is_nothrow_constructible_v<std::decay_t<T>, T>)

requires(inplace_proxiable_target<std::decay_t<T>, F>);

Effects: Creates a proxy<F> object containing a value p of type sbo-ptr<std::decay_t<T>>, where *p is
direct-non-list-initialized with std::forward<T>(value).

4.5 Function template std::make proxy

1. template <facade F, class T, class... Args>

proxy<F> make_proxy(Args&&... args);

Effects: Creates an instance of proxy<F> with an unspecified pointer type of T, where the value of T is
direct-non-list-initialized with the arguments std::forward<Args>(args)... of type.

Remarks: Implementations are not permitted to use additional storage, such as dynamic memory, to allocate
the value of T if the following conditions apply:

– sizeof(T) ≤ F::constraints.max_size, and

– alignof(T) ≤ F::constraints.max_align, and

– T meets the copyiability requirements defined by F::constraints.copyability, and

– T meets the relocatability requirements defined by F::constraints.relocatability, and

– T meets the destructibility requirements defined by F::constraints.destructibility, and

– for any reflection type R defined by F::reflection_types,

R shall be constructible from std::in_place_type_t<sbo-ptr<T>>.

2. template <facade F, class T, class U, class... Args>

proxy<F> make_proxy(std::initializer_list<U> il, Args&&... args);

Effects: Equivalent to

return make_proxy<F, T>(il, std::forward<Args>(args)...);

3. template <facade F, class T>

proxy<F> make_proxy(T&& value);

Effects: Equivalent to

return make_proxy<F, decay_t<T>>(std::forward<T>(value));

5

5 Acknowledgements

Thanks to Mingxin for his advanced work on P0957 and P3086, and for giving me a chance to join him together
to complete the work of proxy.

6 References

References

[1] [P3086] Proxy: A Pointer-Semantics-Based Polymorphism Library

Mingxin Wang

[2] [P0957] Proxy: A Polymorphic Programming Library

Mingxin Wang

[3] Open-source: Microsoft Proxy at GitHub

URL: https://github.com/microsoft/proxy

6

https://wg21.link/p0957
https://wg21.link/p3086

	Introduction
	Motivation
	Considerations
	Construction of proxy
	Construction from a value
	Custom allocator
	Freestanding
	Feature test macro

	Technical specifications
	Additional synopsis for header <memory>
	Concept std::inplace_proxiable_target
	Function template std::allocate_proxy
	Function template std::make_proxy_inplace
	Function template std::make_proxy

	Acknowledgements
	References

