
User specified type decay
Document #: P3398R0
Date: 2024-09-17
Project: Programming Language C++
Audience: EWGI
Reply-to: Bengt Gustafsson

<bengt.gustafsson@beamways.com>

Contents
1 Abstract 2

2 Motivating examples 2
2.1 String interpolation . 2
2.2 Expression templates . 2

3 Proposal 4
3.1 Transitive application . 4
3.2 Forward declarations . 4
3.3 Disabling of decay . 5
3.4 Type traits . 5

4 History 6
4.1 Language development . 6

5 Design decisions 6
5.1 References must decay . 6
5.2 Incomplete types . 7
5.3 Transitive application . 7
5.4 Non-const references . 8
5.5 Syntactical ambiguity . 8
5.6 Decay at return . 9
5.7 Function overload resolution . 9
5.8 Invalid conversions . 9
5.9 decltype . 9
5.10 Arrays, pointers and functions . 9

6 Future design direction 10

7 Implementation experience 10

8 Wording 10

9 Acknowedgements 10

10 References 10

1

mailto:bengt.gustafsson@beamways.com

1 Abstract
This proposal adds a class specifier decays_to(T) which can be placed where final is currently placed. A
type with such a specifier decays to an instance of the target type T whenever a placeholder type or template
parameter is deduced from it. This is useful to prevent dangling references.

The proposal also includes a way to disable the decay which is useful in some scenarios. This proposal uses the
existing keyword explicit to disable decay.

A couple of type-traits to inspect types that may or may not have decays_to specifiers are also included.

2 Motivating examples
2.1 String interpolation
The motivating example for this proposal is the upcoming string interpolation proposal (aka. f-literals) where
a naive specification would require the result of a f-literal to be a call to std::format. This has the same
detrimental performance effect as sending the result of std::format to std::cout. The std::print functions
were created to avoid this performance hit so we don’t want to re-introduce it if string interpolation is standard-
ized. Instead the string interpolation proposal will include a formatted_string type which encapsulates the
format_args and format_string objects needed to call vformat but which can also be accessed individually.
// Type constructed by f-literals.
template<...> struct formatted_string decays_to(std::string) {

...
};

std::string x = "x";
auto s = f"value {x + "y"}"; // s is a std::string containing "xy". No dangling.

// A new std::print overload is introduced
extern void std::print(const formatted_string& s);

std::print(f"value {x + "y"}"); // No performance degradation

Note that without this proposal s would be a formatted_string containing a dangling reference to the inter-
mediate result of x + "y" which is only alive during the initialization of s. And even if the initializer did not
contain temporaries the delayed evaluation would cause unexpected results in cases like this:
std::string x = "x";
auto s = f"value {x}";

x = "y";
std::string s2 = s; // s2 contains "value y" without this proposal.

This does not dangle as x is still in scope, but as the conversion from formatted_string occurs when s2 is
initialized x has already been reassigned at this point.

2.2 Expression templates
When implementing for instance a matrix arithmetics library it has distinct performance advantages to not let
each operator return a matrix but instead an object representing the operator, with data members referring to
its operands.

Users of such libraries may be unaware of this implementation detail and expect a result declared as an auto
variable to be a matrix. While the library can be designed so that the objects representing operators fulfill

2

the concept of the matrix type accessing elements will re-calculate the result each time, with possibly large
performance degradation as result.

Introducing a matrix arithmetic library into the C++ standard is not far fetched after the introduction of mdspan
and mdarray so this proposal is a useful building block for not only user defined libraries but also for future
standardization.

Here is an example using a non-template Matrix type. A similar implementation for mdspan/mdarray would be
too long to show here.
template<typename L, typename R, typename Op>
class Binop<L, R, Op> decays_to(Matrix) {
public:

Binop(explicit const& L lhs, explicit const& R rhs) :
lhs(lhs), rhs(rhs) {

}

operator Matrix() {
Matrix ret;
for (int r = 0; r < lhs.height(); r++)

for (int c = 0; c < lhs.width(); c++)
ret[r, c] = operator[](r, c);

return ret;
}

double operator[](size_t r, size_t c) const { return op(lhs[r, c], rhs[r, c]); }
size_t width() const { return lhs.width(); }
size_t height() const { return lhs.height(); }

private:
L lhs;
R rhs;
OP op;

};

template<typename LHS, typename RHS>
explicit auto operator+(LHS&& lhs, RHS&& rhs)
{

return Binop<LHS, RHS, std::plus<>>(lhs, rhs);
}

Matrix a, b, c;

Matrix d = a + b + c; // Do both additions element by element.

auto e = a + b + c; // e is also a Matrix

explicit auto p = a + b; // Avoid decay

auto f = p + c; // f is also a Matrix with same performance as d and e.

Note that the return type of operator+() is annotated as explicit, otherwise a Matrix object would have been
returned, defeating the purpose of the design.

The variable p is also marked explicit which prevents the decay to Matrix. Decay instead occurs after adding

3

the c matrix to produce f. This idiom can be used to avoid having to write very long expressions just to retain
the performance of the library.

3 Proposal
This proposal consists of a new class specifier using the special identifier decays_to which can be placed after
a class name but before any base classes. Thus it is a new class-virt-specifier. decays_to is followed by a
parenthesis containing a type-id.

decays-to-specifier:
decays_to (type-id)

class-virt-specifier:
final
decays-to-specifier

The type denoted by the type-id of the decays_to specifier is called the target type of the user specified type
decay.

When an expression with a decays_to specifier on its cvref-free type is used to deduce a placeholder type or
template type-parameter the deduction occurs as if the expression had the target type.

A decays_to specifier does not indicate how the decay occurs, a valid conversion sequence from the type with
the decays_to specifier to its target type must exist. Not being able to perform the conversion is ill-formed no
diagnostic required.

When the decay is performed this is considered an explicit constructor call, so explicit constructors and conversion
functions are considered. The motivation of this is that the decays_to specifier is akin to a static_cast which
does consider explicit constructors and conversion functions.

Decay occurs in all contexts where type deduction is performed, including local and global variables, function
parameters, return values, non-type template parameters and structured bindings.

In the case of structured bindings the decay applies to the entire object before destructuring into separately
named elements occurs. Thus the number of elements of the structured binding must match the number of
elements in the target type.

For the placeholder type decltype(auto) the deduced type is exactly the target type. In all other cases the
cvref qualifiers of the placeholder type or template type-parameter are applied to the target type to arrive at
the resulting type just as if the initializer expression had the target type.

3.1 Transitive application
If the cvref-free target type of a decays_to specifier also has a decays_to specifier it is applied in sequence
until a type without decays_to specifier is reached. If the target type of the final decays_to specifier denotes
an array or function type the implicit decay of the type to pointer type is applied. However, only the latter can
actually happen (the case of a function reference converting to a function pointer), as arrays can’t be constructed
from any user defined type and thus are not a valid target type for a decays_to specifier.

Decaying to itself or in a loop is an error and must be detected by the compiler to avoid endless loops during
compilation.

3.2 Forward declarations
When declaring a class with a decays_to specifier in its definition the same specifier must be present. The
type-id of the two decays_to specifiers must refer to the same target type.

4

As enforcing this rule across TUs is not possible it must be ill-formed, no diagnostic required. However, within
the compilation of one TU compilers should issue a diagnostic when mismatched or missing decays_to specifiers
on declarations/definitions of the same class type are found.

The change to allow decays_to specifiers on class declarations is somewhat complicated to do. The change must
be in elaborated-type-specifier but only in the case referred to as class declaration, which is described in clause
2 of its description shown here. One way of describing this grammar change would be to only change clause 2’s
grammar snippet to:

class-key attribute-specifier-seq opt identifier decays-to-specifier opt ;
class-key attribute-specifier-seq opt simple-template-id decays-to-specifier opt ;

This could be considered too obscure as the decays-to-specifier is not mentioned in the grammar production for
elaborated-type-specifier. Then again, neither is the attribute-specifier-seq of the second alternative, which offers
precedent of allowing additional grammar elements if the condition at the top of clause 2 is fulfilled.

An alternative would be to add the decays-to-specifier directly in the grammar and then add a clause to explain
that it is only allowed if the condition of clause 2 is fulfilled.

3.3 Disabling of decay
Decay can be disabled by prefixing the placeholder type or template type-parameter with the existing keyword
explicit. This applies to all contexts where a placeholder type or template type-parameter can be deduced.
This specifier makes type deduction ignore any decays_to specifier of the argument type, but does nothing if
there is no such specifier.

When the explicit keyword is combined with decltype(auto) the cvref qualification of the expression type is
retained just as if none of explicit and decays_to existed.

The grammar addition to allow explicit where appropriate is made in type-specifier. While this makes explicit
grammatically allowed in all declarations it is semantically only allowed when type deduction with decay can
occur, i. e. when other type-specifiers refer to a placeholder type or template type-parameter with optional
cvref-qualification. Note that this excludes deduction of template type-parameters from pointer types, array types
or function pointer types.

type-specifier:
simple-type-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier
explicit

If the explicit specifier is placed on a function parameter from which a template type-parameter can be deduced
but the template type-parameter is explicitly given at the call site the explicit specifier has no effect at that
call site. Example:
template<typename T> void f(explicit const T& x);

f<std::string>(f"Not deduced {"and not decayed"}"; // Call f<std::string>

3.4 Type traits
The existing trait std::decay should return the the cvref-free target type if applied to a type with a decays_to
specifier. A new trait which gives the exact target type as suggested in [N4035] is also proposed. A reasonable
name would be std::decays_to_type and as this should return the incoming type for types without decays_to
specifier. It may be of interest to add a bool predicate std::has_decays_to indicating whether a type has the
specifier. This predicate can be defined as:

5

https://eel.is/c++draft/dcl.type.elab
https://wg21.link/n4035

template<typename T> bool has_decays_to_v = is_same_v<T, decays_to_type<T>>;

As it probably doesn’t have many uses it may be left out of the standard.

4 History
This proposal is an elaboration of the [N4035] proposal Implicit Evaluation of “auto” Variables and Arguments,
dated 2014, with the authors Joël Falcou, Peter Gottschling and Herb Sutter. This proposal suggests user
specified type decay to identify this mechanism instead of implicit evaluation as evaluation is such a broad term.
The expression template example is elaborated from an N4035 example.

4.1 Language development
During the ten years since N4035 several changes to the C++ language that are relevant for this proposal have
occured:

— decltype(auto) of C++14
— CTAD of C++17
— placeholder types for function parameters of C++17
— Structured bindings of C++17
— auto NTTPs of C++17.

Of these changes CTAD has the most profound effect, and makes the straw poll “See a new proposal based
on this one, but with using auto only applying to variable and data member initializers.” (which got a weak
consensus) less feasible. CTAD also makes the idea of only applying the decay for by-value types but not for
references infeasible.

decltype(auto) could possibly be used as a way to disable the decay but this comes with the drawback that
it can’t be combined with cvref qualification to control which may be of interest when disabling decay. This
proposal therefore retains the N4035 syntax of an explicit specifier to disable decay, even though it is something
of a misnomer. An alternative would be to invent a new keyword which has its own challenges. protected could
be an alternative, but it is very vague.

Placeholder types for function parameters, structured bindings and NTTPs do not introduce any new problems
for this proposal, just new contexts in which it is applicable, and thereby where the explicit specifier can be
applied.

5 Design decisions
The introduction of CTAD forces the design to differ from N4035 in some ways. The issue of incomplete classes
was furthermore not covered in N4035. The reasons for not limiting decay to initializers of variables are also
detailed below, as that would also create unreasonable results with CTAD and to some extent in any function
using the decayed placeholder type or template type-parameter.

These design decision discussions provide rationale for the details of the proposal.

5.1 References must decay
Due to CTAD a specification where only values, not references, decay would create unreasonable results. Here
is an example based on the string interpolation use case:
template<typename T> class THolder {

THolder(const T& v) : member(v) {}

T member;
};

6

https://wg21.link/n4035

std::string x;
THolder t(f"value {x + "y"}"); // CTAD!

If references don’t decay T is deduced to formatted_string which means that member is a formatted_string
and t.member will contain a dangling reference. Similar problems can occur with functions for instance if they
declare static variables of type T.

5.2 Incomplete types
If decays_to can only be placed on a class definition deduction outcomes can be different depending on if the
class is complete or not, and it is not possible to detect that this has happened (especially not between TUs).

Here is an example of the confusion that can arise if an incomplete type is used to deduce a function parameter
type.
class formatted_string;

void f(const auto& c)
{
}

extern const formatted_string& get_fs();

f(get_fs()); // Calls f(const formatted_string&)

#include <format> // Defines formatted_string with decays_to(std::string)

f(get_fs()); // Calls f(const std::string&)

It is not entirely clear to the author if this would cause problems in real-life situations as the possibilities of using
an incomplete type are very limited. It is clear that it is possible to detect the difference between the above two
f calls for instance using a static variable in the function and returning its address, but it is harder to come up
with cases where it actually matters.

The syntax using auto = T; of N4035 is not amenable to a class declaration which is one reason to replace it
with a specifier after the class name, which can be allowed when forward-declaring the class as well:
class formatted_string decays_to(std::string);

To play it safe this proposal requires a matching decays_to specifier on all declarations of class types which
have a decays_to specifier in their definitions. Breaking this rule is an ODR violation which must be ill-formed
no diagnostic required to be able to handle separate compilation of TUs where some may never see the class
definition.

It may be possible to annotate the mangled class name to be able to diagnose mismatched decays_to specifiers
between TUs by causing linker errors, but this can typically not catch errors in template classes and may reduce
the possibilities of adding decays_to specifiers on existing classes in some environments where re-compilation is
problematic.

5.3 Transitive application
The noeval idea to use a library feature to prevent decay presented in N4035 relies on using auto = T; decla-
rations to not be transitive, that is, if T itself has a using auto = U; declaration it is not applied transitively.
Or maybe it relies on references not being subject to decay, but then it would not work at all.

In this proposal decay is transitive: If one class decays to another class with a decays_to specifier this decay
is also applied. This is consistent with how operator-> works as well as the implicit conversion functions of

7

[P3298R0?].

5.4 Non-const references
As decay occurs regardless of cvref qualification of the placeholder type it is possible that after decay a non-const
reference tries to bind to a temporary, which will fail as usual. This is logical as types with decays_to specifiers
are designed to decay (except if the decay is disabled). This means that there are usually no variables that a
non-const reference can refer to, these have already decayed when initialized.

Here is an example using formatted_string as before:
void modify_string(auto& v) { v += "z"; }

int x;
auto s = f"{x}";

modify_string(s); // This works, s is a std::string.

modify_string(f"{x}"); // Does not compile, the formatted_string decays to std::string

On the last line it seems very natural that the call fails as there is no lvalue that can be modified.

It is possible to declare that a type decays to a T& for some T and this would compile in the above case.

5.5 Syntactical ambiguity
Just as for final there is a syntactical ambiguity when a class-head-name is followed by a decays_to and the
solution is to disambiguate in favor of the specifier, just like for final. This introduces a small risk of code
breakage, just as introducing final did.

Here is the standard’s example for final:
struct A;
struct A final {}; // OK, definition of struct A,

// not value-initialization of variable final

struct X {
struct C { constexpr operator int() { return 5; } };
struct B final : C{}; // OK, definition of nested class B,

// not declaration of a bit-field member final
};

and this proposal adds a similar example for decays_to albeit somewhat different as there is a mandatory (
after the specifier name.
struct A decays_to(int);
struct A decays_to(int) {}; // OK, definition of struct A,

// not function called decays_to returning an A.

struct X {
struct C { constexpr operator int() { return 5; } };
struct B decays_to(int) {}; // OK, definition of nested struct B,

// not member function called decays_to.
};

Well in contrast with final there is actually only one case, it doesn’t matter if the declared struct is nested or
not. So the standard example probably doesn’t need to show both.

8

5.6 Decay at return
For consistency returning a type with a decays_to specifier from a function declared to return a placeholder
type should decay the returned value. This seems sub-optimal as this prevents disabling the decay at the call
site of the function, but here is an example of why it is necessary:
auto f()
{

std::string x = "x";
return f"value {x}";

}

Not decaying to a std::string would return a formatted_string that contains a dangling reference so by default
decay must happen at return.

There are cases where we may want to disable decay in the return which was shown in the operator+() overload
of the expression template example above. In this case the explicit specifier is placed on the return type of
the function.

5.7 Function overload resolution
This proposal has no impact on function overload resolution, if a function overload which does not imply
deduction of an argument type is selection no decay occurs. If a function overload where an argument type
is deduced is selected the function specialization for the decayed type is called, unless the parameter is marked
explicit to prevent the decay.

5.8 Invalid conversions
This proposal makes placing a decays_to specifier with a target type that can’t be implicitly converted from
the type containing the decays_to specifier ill-formed, no diagnostic required as it may be a bit complicated
for the compiler to determine if conversion to the target type is possible, and once a conversion is attempted an
error will be issued by current mechanisms anyway if no valid conversion sequence is found. This also opens up
for specifying incomplete classes (by reference or pointer) as the target type.

An alternative is not making invalid conversions an error at all, leaving diagnostics to the first time that the
decay is needed. The drawback is that diagnostics may be unnecessarily delayed and multiplied to each usage
site.

5.9 decltype
The decltype of an expression of a type with a decays_to specifier could either be the expression’s type or the
target type. In this proposal decltype is always the undecayed type. A trait is instead provided which gives the
decayed type from an original type. If decltype was defined to give the decayed type there would be no way to
get the undecayed type and no way to make a trait for it as the trait would need the user to use decltype first.

5.10 Arrays, pointers and functions
Decay only applies when a type with a decays_to specifier is by value or by reference with possible cv qual-
ification. Pointers to types with decays_to specifiers, arrays of such types or function pointers to functions
returning such types or taking such types as parameters are not affected. This comes quite natural, as seen from
these examples:
formatted_string f = f"Square root of 2: {std::sqrt(2.0)}";

auto p = &f; // formatted_string*, not std::string*.

template<typename T, size_t N> int back(T (&arr)[N]) { return arr[N - 1]; }

9

formatted_string farr[] = { f"Square root of 2: {std::sqrt(2.0)}" };

back(farr); // Calls with T == formatted_string, not std::string.

extern void std::print(const formatted_string& s);

template<typename R, typename A> void fpf(R(*fp)(A&&));

fpf(std::print); // A is deduced to const formatted_string&, not const std::string&

This behavior is created naturally by the proposal’s specification that the cvref-free type must have the decays_to
specifier, as none of pointer, array or function pointer types can have decays_to specifiers.

6 Future design direction
If this proposal is accepted it is feasible to widen the new meaning of explicit to include array types of fixed
bound (or templated bound), thus allowing by value passing and returning of arrays. For consistency this would
also be a way to initialize an array from another array, but this purpose seems to be better served by just
allowing both initialization and assignment of arrays. To allow initialization but not assignment seems very odd.

7 Implementation experience
None

8 Wording
No

9 Acknowedgements
Thanks to my employer, ContextVision AB for sponsoring my attendance at C++ standardization meetings.

10 References
[N4035] P. Gottschling, J. Falcou, H. Sutter. 2014-05-23. Implicit Evaluation of “auto” Variables and

Arguments.
https://wg21.link/n4035

10

https://wg21.link/n4035

	Abstract
	Motivating examples
	String interpolation
	Expression templates

	Proposal
	Transitive application
	Forward declarations
	Disabling of decay
	Type traits

	History
	Language development

	Design decisions
	References must decay
	Incomplete types
	Transitive application
	Non-const references
	Syntactical ambiguity
	Decay at return
	Function overload resolution
	Invalid conversions
	decltype
	Arrays, pointers and functions

	Future design direction
	Implementation experience
	Wording
	Acknowedgements
	References

