
Do not promise support for function syntax of
operators

Document: P3392R0
Date: 2024-09-07
Main Author: Corentin Jabot (corentin.jabot@gmail.com)
Co-Author: Inbal Levi (sinbal2l@gmail.com)
Audience: Library Evolution Working Group (LEWG)

With a sufficient number of users of an API, it does not matter what you promise in the contract:
all observable behaviors of your system will be depended on by somebody. - Hyrum's Law

This paper is a follow-up to P1732 - initially proposed by CJ Johnson. We appreciate the original
author’s initiative and would like to continue the work as we consider it useful.

Motivation

It was agreed upon in Kona 2019 that the standard Library reserves the right to change the way
operators are implemented (switching between member and nonmember overloading). We would
like to ensure we convey this information to our users to avoid unexpected behavior in code relying
on the current/future behavior that doesn’t match the user’s expectations.

Design

Following LEWG guidance, we made the following tweaks:
- Carve out an exception for operator->. This is because calling -> will call

operator-> recursively on the return value of the called operator, a behavior that can
only be opt-out from by calling operator-> directly

- Carve out exceptions for operator new, operator new[] and operator
delete, operator delete[], as according to [expr.new]/p12 calling them directly
can be used to allocate/deallocate storage.

Wording

mailto:corentin.jabot@gmail.com
mailto:sinbal2l@gmail.co
https://eel.is/c++draft/expr.compound#expr.new-12


Modify SD-8 by adding a new bullet under “Rights the Standard Library Reserves for Itself”:

Primarily, the standard reserves the right to:

[...]

● Assume that all 'operator functions' will not be called with function syntax (`a.operator@(b)`
or `operator@(a, b)`), with the exception of operator->. This includes overloaded
operators and user-defined literal functions. The exceptions are `operator->`, which the
programmer is permitted to invoke via the member syntax a.operator->(), operator
new, operator new[], operator delete and operator delete[].

[...]

Acknowledgment
Thanks to CJ Johnson for the initial paper, and Ben Craig for the Wording suggestion


