
When Do You Know connect Doesn’t
Throw?
Document Number: P3388R0
Date: 2024-09-09
Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: LEWG

Abstract
This paper considers/proposes two tweaks which will enable earlier determination that
connecting a certain sender with a certain receiver will never throw an exception.

Background
In order to be useful, senders must be connected to a receiver (by
std::execution::connect). Only thereafter can the asynchronous operation represented by
that sender be started (by std::execution::start on the operation state resulting from
std::execution::connect). std::execution permits the former to throw exceptions but
does not allow the latter to throw exceptions ([1] at §34.8.1).

Incredibly banal std::execution use can be divided into three phases:

1. Selection of sender and receiver
2. Connecting the chosen sender and receiver
3. Starting the resulting operation state

Both 1 and 2 are able to throw whereas 3 cannot. Therefore a transition from regular,
synchronous code consists of two setup phases which can throw, followed by a transition to
asynchronous code which cannot throw (instead errors must be transmitted via the error
channel of the corresponding receiver).

More interesting uses of std::execution don’t just involve step 1, followed by step 2, followed
by step 3. The steps loop and nest. An asynchronous operation starts, selects senders and
receivers, connects them to form a new operation state, and starts that operation from within its
asynchronous context (for example std::execution::let_value).

All of the above takes place behind the noexcept barrier of std::execution::start.
Therefore an exception resulting from any of the aforementioned steps must be transmitted by
std::execution::set_error.



Regular, synchronous functions may emit exceptions or they may not. They can declare this
property via the noexcept annotation. Examination of noexcept-ness can be used to decide at
compile time whether a function throws depending on the properties of the operations it
composes. Faithfully annotating functions with this information can lead to optimizations (for
example std::move_if_noexcept).

Analogously senders may send exceptions (by sending std::exception_ptr down the error
channel) or they may not. They can declare this property through the presence or absence of
std::set_error_t(std::exception_ptr) in the collection of completion signatures which
may be interrogated via std::execution::completion_signatures_of_t. Senders that
compose other senders can inspect the completion signatures of the senders they compose to
determine whether or not they should include std::set_error_t(std::exception_ptr)

transitively in their list of completion signatures.

Note, however, that std::execution::completion_signatures_of_t only accepts the type
of the:

● Sender, and
● Environment

Which means that when computing the values, errors, et cetera it sends a sender only has
access to the type of the environment ([1] at §34.4), not the type of the receiver to which it will
be connected. This decision/design is neither accidental nor arbitrary but is rather informed by
the fact that attempting to provide both the type of the sender and receiver at this point can lead
to circular type dependencies which will not compile. The indirection of the environment was
introduced intentionally to address this.

Discussion

Salient Properties of a Receiver
In the analogy between synchronous and asynchronous code a receiver fills the niche of the
return channel of a synchronous function [2]. This analogy has predictive power when
considering the get_env member function of receivers (which is called by
std::execution::get_env), which provides the receiver’s “environment:” Synchronous code
runs in the “environment” of the code to which it returns.

Continuing in the above vein synchronous code may have different behaviors in different
environments. This is unsurprising. However it would be quite surprising if synchronous code
had different behaviors depending on the location to which it is returning (one would be
astonished, for example, to find code which inspects the call stack and behaves differently
depending on which function it was called from).



Returning our analysis to the asynchronous domain we can therefore reason that the
environment in which an asynchronous operation runs (i.e. the environment provided by the
receiver) can affect the properties of that operation (verily this is the raison d'être of
environments). This expectation is borne out by the fact that
std::execution::completion_signatures_of_t accepts the environment type as a
template parameter.

On the other hand the exact location to which the asynchronous operation is “returning” (i.e.
particularities of the receiver beyond its environment) should be of no consequence. If some
property of a sender is true (or false) when connected to a receiver of some type with a certain
environment it should also be true (or false) when connected to a receiver of some other type
with that same environment.

We can formalize the above: The only salient property of a receiver vis-à-vis a sender is its
environment.

This formulation raises a problem (see the next section) and a question: What is meant by “its
environment?” Does it refer to the exact type of the environment or some other means of
reckoning same-ness of environments? One could even go so far as to recursively define
salience for environments and say that the salient properties of an environment are:

● The set of queries it supports, and
● The values yielded by those queries

And therefore say that two environments:

● With the same set of queries, and
● Yielding the same values from those queries

Should be indistinguishable.

Throwing Move Constructors

Despite the neatness of the analogy presented above there is at least one important difference
between the point to which a synchronous function returns and the receiver provided when
connecting a sender to form an asynchronous operation: One (the receiver) must be stored. The
point to which a synchronous function returns exists before the function is called, and continues
to exist until the function returns, the function must do nothing to preserve this point. A receiver
on the other hand is a C++ object and must therefore be stored in the operation state of the
asynchronous operation (otherwise the receiver contract ([1] at §5.1) could not be fulfilled).

Since receivers are provided to the sender’s connect member function [3] as fully-materialized
values they must be either copied or moved to propagate their value into the resulting operation
state. This serves as a counterexample to the preceding section: Whether copy and move



operations throw is a property of a particular receiver type, and may not be discriminated based
solely on the environment type associated therewith.

There is a simple solution for copy operations: Simply do not allow them to occur in the context
of connect. There are two common/obvious ways to declare a sender’s connect member
function, either accepting the receiver by:

● Forwarding reference, or
● Value

In the former case copy operations can be pushed into connect (and must therefore be
considered by the noexcept clause thereof). In the latter case the copy operation takes place in
the context of the caller (and therefore need not be considered by the noexcept clause thereof).

In the case of move operations a solution is not so simple. Due to the fact the receiver is a
fully-materialized value when provided to connect it must be either copied or moved therein. If
not copied (see above) it must be moved. And while throwing moves are not necessarily
common, or advisable, they are possible in general and must remain so [4].

Fortunately the strongest arguments in favor of throwing moves are those which deal with
legacy (i.e. pre-C++11 and move semantics) types. As std::execution is being introduced to
the language more than a decade after move semantics the possibility of any receiver type
being “legacy” is effectively zero.

As such the above can be worked around by simply banning throwing move construction as part
of the std::execution::receiver concept. This would restore the property (see previous
section) that the only salient property of a receiver is its environment since the interaction
between a sender and receiver would consist of the sender:

● Persisting the receiver (i.e. moving it, which must be possible ([1] at §34.7.1)),
● Obtaining the environment therefrom, and
● Completing the receiver contract therewith (which is already noexcept (id. at §34.7.2,

§34.7.3, and §34.7.4))

And if:

● The std::execution::receiver concept mandated nothrow movability, and
● Senders’ connect member functions accepted receivers by value (or equivalent)

Persisting the receiver could not throw.

Consistent connect noexcept-ness

The above sections detail that, if std::execution::receiver requires nothrow move
construction, the only salient property of a receiver vis-à-vis a sender is the environment it



provides. The environment is available when determining completion signatures and therefore
this provides a pathway to a solution to the problem laid out at the beginning of this paper.

However convincing ourselves that something is true does not mean, or require, it to be true.
Therefore in order for this to constitute a solution to the problem we must required that when a
sender type’s connect member function is noexcept when instantiated for one type of receiver
it must also be noexcept when instantiated on some other type of receiver which is
“indistinguishable” (see above) therefrom. This would constitute a new semantic requirement on
sender types.

Checking connect noexcept-ness
The problem this paper aims to solve is determining whether
std::execution::set_error_t(std::exception_ptr) is one of the completion signatures
for an operation which connects and starts a suboperation as part of its asynchronous part.
Simply requiring that the noexcept-ness of connecting that suboperation’s sender and receiver
is consistent (see above) is insufficient to address this: It must also be possible to inspect this
noexcept-ness in a context where no receiver, only the environment, is available (i.e. when
computing its completion signatures).

There are two pathways to accomplishing this:

● Provide a new way to query senders to determine whether connect never throws for
receivers with a certain environment, or

● Inspect the noexcept-ness of connect when instantiated on a receiver archetype which
is associated with the environment of interest

The former is arguably simpler for consumers thereof. Additionally it may reduce the number of
template instantiations necessary to form the completion signatures of the sender. However it:

● Pushes additional boilerplate onto sender authors, and
● Introduces a possible anomaly in the interface of senders (i.e. the result of the query

may not actually match the noexcept-ness of connect)

The latter can be addressed by, as a matter of convention, always annotating connect with a
noexcept clause which is in terms of the above-described query. However this constitutes
additional boilerplate.

The latter option requires no new code/boilerplate from sender authors, but may come at the
expense of consumer complexity (which could be mitigated by providing a free function or trait
which cans the computation) and additional template instantiations.



Proposal
Require that receivers be nothrow movable as part of the std::execution::receiver

concept.

Additionally, either:

● Introduce a semantic requirement that: If connecting an instance of a certain sender type
to an instance of a certain receiver type doesn’t throw, that connecting an instance of
that sender type to an instance of any receiver type with the same associated
environment type cannot throw,

● Similar to the above but strengthen the requirements such that a different associated
environment type can be provided assuming that environment type supports exactly the
same set of queries and yields exactly the same types thereto, or

● Introduce a query on senders which allows them to report whether or not they are always
nothrow connectible to receivers with a certain associated environment type

Acknowledgements
The author would like to thank Lewis Baker and Eric Niebler for extensive discussion and
insights regarding this issue.

References
[1] M. Dominiak et al. std::execution P2300R10
[2] R. Leahy. Of Operation States and Their Lifetimes P3373R0
[3] V. Voutilainen. Member customization points for Senders and Receivers P2855R0
[4] V. Voutilainen. We cannot (realistically) get rid of throwing moves P0129R0


