
Contracts: What we are doing here
P3343R0

Joshua Berne - jberne4@bloomberg.net

2024-06-25

1 / 41 1 / 169



1 Definitions

2 Principles

3 Enforcement

4 Design Decisions

2 / 41 2 / 169



What are Contracts?

Agreements between multiple parties
Implementers and Users of a function or library
Programmers and the platform they are working on
Users and the programs they run

Written (or implicit) in plain language
Contracts define what is and is not correct behavior

3 / 41 3 / 169



What are Contracts?

Agreements between multiple parties

Implementers and Users of a function or library
Programmers and the platform they are working on
Users and the programs they run

Written (or implicit) in plain language
Contracts define what is and is not correct behavior

3 / 41 4 / 169



What are Contracts?

Agreements between multiple parties
Implementers and Users of a function or library

Programmers and the platform they are working on
Users and the programs they run

Written (or implicit) in plain language
Contracts define what is and is not correct behavior

3 / 41 5 / 169



What are Contracts?

Agreements between multiple parties
Implementers and Users of a function or library
Programmers and the platform they are working on

Users and the programs they run
Written (or implicit) in plain language
Contracts define what is and is not correct behavior

3 / 41 6 / 169



What are Contracts?

Agreements between multiple parties
Implementers and Users of a function or library
Programmers and the platform they are working on
Users and the programs they run

Written (or implicit) in plain language
Contracts define what is and is not correct behavior

3 / 41 7 / 169



What are Contracts?

Agreements between multiple parties
Implementers and Users of a function or library
Programmers and the platform they are working on
Users and the programs they run

Written (or implicit) in plain language

Contracts define what is and is not correct behavior

3 / 41 8 / 169



What are Contracts?

Agreements between multiple parties
Implementers and Users of a function or library
Programmers and the platform they are working on
Users and the programs they run

Written (or implicit) in plain language
Contracts define what is and is not correct behavior

3 / 41 9 / 169



What is a Correct program?

One which violates no contracts on any input
Has no behavior not defined by the platform on any input
Must be well-formed

4 / 41 10 / 169



What is a Correct program?

One which violates no contracts on any input

Has no behavior not defined by the platform on any input
Must be well-formed

4 / 41 11 / 169



What is a Correct program?

One which violates no contracts on any input
Has no behavior not defined by the platform on any input

Must be well-formed

4 / 41 12 / 169



What is a Correct program?

One which violates no contracts on any input
Has no behavior not defined by the platform on any input
Must be well-formed

4 / 41 13 / 169



What is a Correct program evaluation?

An evaluation of a program (with specific inputs) that violates no contracts
Has no behavior not defined by the platform

5 / 41 14 / 169



What is a Correct program evaluation?

An evaluation of a program (with specific inputs) that violates no contracts

Has no behavior not defined by the platform

5 / 41 15 / 169



What is a Correct program evaluation?

An evaluation of a program (with specific inputs) that violates no contracts
Has no behavior not defined by the platform

5 / 41 16 / 169



What is an Incorrect program?

One which will violate a contract on certain inputs
Still potentially a well-formed program

6 / 41 17 / 169



What is an Incorrect program?

One which will violate a contract on certain inputs

Still potentially a well-formed program

6 / 41 18 / 169



What is an Incorrect program?

One which will violate a contract on certain inputs
Still potentially a well-formed program

6 / 41 19 / 169



What is a Contract Check?

An algorithm to identify when a contract has been violated
x > 0
Call 917-555-5555 to verify you have a license to use this software

A part of the contract

7 / 41 20 / 169



What is a Contract Check?

An algorithm to identify when a contract has been violated

x > 0
Call 917-555-5555 to verify you have a license to use this software

A part of the contract

7 / 41 21 / 169



What is a Contract Check?

An algorithm to identify when a contract has been violated
x > 0

Call 917-555-5555 to verify you have a license to use this software
A part of the contract

7 / 41 22 / 169



What is a Contract Check?

An algorithm to identify when a contract has been violated
x > 0
Call 917-555-5555 to verify you have a license to use this software

A part of the contract

7 / 41 23 / 169



What is a Contract Check?

An algorithm to identify when a contract has been violated
x > 0
Call 917-555-5555 to verify you have a license to use this software

A part of the contract

7 / 41 24 / 169



What is a Contract-Checking Facility?

A tool to describe contract checks
Any functionality that leverages those descriptions to do things

documentation — Informing readers what will and won’t constitute correct behavior
runtime checking — Identifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program
static analysis — Identifying at compile time that a program will be or might be
incorrect
optimization — Optimizing based on the presumption that a program is correct

8 / 41 25 / 169



What is a Contract-Checking Facility?

A tool to describe contract checks

Any functionality that leverages those descriptions to do things
documentation — Informing readers what will and won’t constitute correct behavior
runtime checking — Identifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program
static analysis — Identifying at compile time that a program will be or might be
incorrect
optimization — Optimizing based on the presumption that a program is correct

8 / 41 26 / 169



What is a Contract-Checking Facility?

A tool to describe contract checks
Any functionality that leverages those descriptions to do things

documentation — Informing readers what will and won’t constitute correct behavior
runtime checking — Identifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program
static analysis — Identifying at compile time that a program will be or might be
incorrect
optimization — Optimizing based on the presumption that a program is correct

8 / 41 27 / 169



What is a Contract-Checking Facility?

A tool to describe contract checks
Any functionality that leverages those descriptions to do things

documentation — Informing readers what will and won’t constitute correct behavior

runtime checking — Identifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program
static analysis — Identifying at compile time that a program will be or might be
incorrect
optimization — Optimizing based on the presumption that a program is correct

8 / 41 28 / 169



What is a Contract-Checking Facility?

A tool to describe contract checks
Any functionality that leverages those descriptions to do things

documentation — Informing readers what will and won’t constitute correct behavior
runtime checking — Identifying at runtime when a program evaluation is incorrect

runtime mitigation — Mitigating the downsides of an incorrect program
static analysis — Identifying at compile time that a program will be or might be
incorrect
optimization — Optimizing based on the presumption that a program is correct

8 / 41 29 / 169



What is a Contract-Checking Facility?

A tool to describe contract checks
Any functionality that leverages those descriptions to do things

documentation — Informing readers what will and won’t constitute correct behavior
runtime checking — Identifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program

static analysis — Identifying at compile time that a program will be or might be
incorrect
optimization — Optimizing based on the presumption that a program is correct

8 / 41 30 / 169



What is a Contract-Checking Facility?

A tool to describe contract checks
Any functionality that leverages those descriptions to do things

documentation — Informing readers what will and won’t constitute correct behavior
runtime checking — Identifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program
static analysis — Identifying at compile time that a program will be or might be
incorrect

optimization — Optimizing based on the presumption that a program is correct

8 / 41 31 / 169



What is a Contract-Checking Facility?

A tool to describe contract checks
Any functionality that leverages those descriptions to do things

documentation — Informing readers what will and won’t constitute correct behavior
runtime checking — Identifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program
static analysis — Identifying at compile time that a program will be or might be
incorrect
optimization — Optimizing based on the presumption that a program is correct

8 / 41 32 / 169



What isn’t a Contract-Checking facility?

A tool to add to what a Contract says a program will do
A tool to add to the correct behaviors of a program
A new form of flow control
A tool to do aspect-oriented programming

9 / 41 33 / 169



What isn’t a Contract-Checking facility?

A tool to add to what a Contract says a program will do

A tool to add to the correct behaviors of a program
A new form of flow control
A tool to do aspect-oriented programming

9 / 41 34 / 169



What isn’t a Contract-Checking facility?

A tool to add to what a Contract says a program will do
A tool to add to the correct behaviors of a program

A new form of flow control
A tool to do aspect-oriented programming

9 / 41 35 / 169



What isn’t a Contract-Checking facility?

A tool to add to what a Contract says a program will do
A tool to add to the correct behaviors of a program
A new form of flow control

A tool to do aspect-oriented programming

9 / 41 36 / 169



What isn’t a Contract-Checking facility?

A tool to add to what a Contract says a program will do
A tool to add to the correct behaviors of a program
A new form of flow control
A tool to do aspect-oriented programming

9 / 41 37 / 169



1 Definitions

2 Principles

3 Enforcement

4 Design Decisions

10 / 41 38 / 169



Principles History

Many papers have attempted to identify and motivate the central principles of our
design

P2834R1 - Semantic Stability Across Contract-Checking Build Modes
P2932R3 - A Principled Approach to Open Design Questions for Contracts
P2900R7 - Contracts for C++

11 / 41 39 / 169



Principles History

Many papers have attempted to identify and motivate the central principles of our
design

P2834R1 - Semantic Stability Across Contract-Checking Build Modes
P2932R3 - A Principled Approach to Open Design Questions for Contracts
P2900R7 - Contracts for C++

11 / 41 40 / 169



Principle: Prime Directive

The use of a Contract-Checking facility should not change the correctness of a
program.

If it does, it is now part of the program and not checking the contract
When possible we aim to prevent this at compile time
When possible we aim to make it harder to do this accidentally

12 / 41 41 / 169



Principle: Prime Directive

The use of a Contract-Checking facility should not change the correctness of a
program.

If it does, it is now part of the program and not checking the contract

When possible we aim to prevent this at compile time
When possible we aim to make it harder to do this accidentally

12 / 41 42 / 169



Principle: Prime Directive

The use of a Contract-Checking facility should not change the correctness of a
program.

If it does, it is now part of the program and not checking the contract
When possible we aim to prevent this at compile time

When possible we aim to make it harder to do this accidentally

12 / 41 43 / 169



Principle: Prime Directive

The use of a Contract-Checking facility should not change the correctness of a
program.

If it does, it is now part of the program and not checking the contract
When possible we aim to prevent this at compile time
When possible we aim to make it harder to do this accidentally

12 / 41 44 / 169



Violating the prime directive...

The program with checks evaluated tells you nothing about the program with
checks unevaluated
Heisenbugs — bugs appear and disappear when you try to observe them
Cannot reason (as a reader or a static analyzer) about the program state locally
without considering all previous contract checks — and thus 2n program states

13 / 41 45 / 169



Violating the prime directive...

The program with checks evaluated tells you nothing about the program with
checks unevaluated

Heisenbugs — bugs appear and disappear when you try to observe them
Cannot reason (as a reader or a static analyzer) about the program state locally
without considering all previous contract checks — and thus 2n program states

13 / 41 46 / 169



Violating the prime directive...

The program with checks evaluated tells you nothing about the program with
checks unevaluated
Heisenbugs — bugs appear and disappear when you try to observe them

Cannot reason (as a reader or a static analyzer) about the program state locally
without considering all previous contract checks — and thus 2n program states

13 / 41 47 / 169



Violating the prime directive...

The program with checks evaluated tells you nothing about the program with
checks unevaluated
Heisenbugs — bugs appear and disappear when you try to observe them
Cannot reason (as a reader or a static analyzer) about the program state locally
without considering all previous contract checks — and thus 2n program states

13 / 41 48 / 169



Following the prime directive...

Makes ignoring contract checks useful — don’t pay to check what you are
confident is true, program will remain correct
Allows static analysis of one program state instead of 2N program states
Prevents Heisenbugs
Is essential for assumption

14 / 41 49 / 169



Following the prime directive...

Makes ignoring contract checks useful — don’t pay to check what you are
confident is true, program will remain correct

Allows static analysis of one program state instead of 2N program states
Prevents Heisenbugs
Is essential for assumption

14 / 41 50 / 169



Following the prime directive...

Makes ignoring contract checks useful — don’t pay to check what you are
confident is true, program will remain correct
Allows static analysis of one program state instead of 2N program states

Prevents Heisenbugs
Is essential for assumption

14 / 41 51 / 169



Following the prime directive...

Makes ignoring contract checks useful — don’t pay to check what you are
confident is true, program will remain correct
Allows static analysis of one program state instead of 2N program states
Prevents Heisenbugs

Is essential for assumption

14 / 41 52 / 169



Following the prime directive...

Makes ignoring contract checks useful — don’t pay to check what you are
confident is true, program will remain correct
Allows static analysis of one program state instead of 2N program states
Prevents Heisenbugs
Is essential for assumption

14 / 41 53 / 169



Existing contract-checking facilities

Comments
Documentation of a contract can tell you how it can be checked
No support for any behavior in the standard

no runtime checking, minimal static analysis
No structure
Never violates the prime directive

15 / 41 54 / 169



Existing contract-checking facilities

Comments

Documentation of a contract can tell you how it can be checked
No support for any behavior in the standard

no runtime checking, minimal static analysis
No structure
Never violates the prime directive

15 / 41 55 / 169



Existing contract-checking facilities

Comments
Documentation of a contract can tell you how it can be checked

No support for any behavior in the standard
no runtime checking, minimal static analysis

No structure
Never violates the prime directive

15 / 41 56 / 169



Existing contract-checking facilities

Comments
Documentation of a contract can tell you how it can be checked
No support for any behavior in the standard

no runtime checking, minimal static analysis
No structure
Never violates the prime directive

15 / 41 57 / 169



Existing contract-checking facilities

Comments
Documentation of a contract can tell you how it can be checked
No support for any behavior in the standard

no runtime checking, minimal static analysis

No structure
Never violates the prime directive

15 / 41 58 / 169



Existing contract-checking facilities

Comments
Documentation of a contract can tell you how it can be checked
No support for any behavior in the standard

no runtime checking, minimal static analysis
No structure

Never violates the prime directive

15 / 41 59 / 169



Existing contract-checking facilities

Comments
Documentation of a contract can tell you how it can be checked
No support for any behavior in the standard

no runtime checking, minimal static analysis
No structure
Never violates the prime directive

15 / 41 60 / 169



Existing contract-checking facilities

Comments
Documentation of a contract can tell you how it can be checked
No support for any behavior in the standard

no runtime checking, minimal static analysis
No structure
Never violates the prime directive

15 / 41 61 / 169



Existing contract-checking facilities

<cassert>
Almost complete freedom
No protection from violating the prime directive

16 / 41 62 / 169



Existing contract-checking facilities

<cassert>

Almost complete freedom
No protection from violating the prime directive

16 / 41 63 / 169



Existing contract-checking facilities

<cassert>
Almost complete freedom

No protection from violating the prime directive

16 / 41 64 / 169



Existing contract-checking facilities

<cassert>
Almost complete freedom
No protection from violating the prime directive

16 / 41 65 / 169



SG21 MVP

P2900 introduces contract assertions
Each pre, post, or contract_assert is a contract assertion
Each contract assertion is expected to follow the prime directive

17 / 41 66 / 169



SG21 MVP

P2900 introduces contract assertions

Each pre, post, or contract_assert is a contract assertion
Each contract assertion is expected to follow the prime directive

17 / 41 67 / 169



SG21 MVP

P2900 introduces contract assertions
Each pre, post, or contract_assert is a contract assertion

Each contract assertion is expected to follow the prime directive

17 / 41 68 / 169



SG21 MVP

P2900 introduces contract assertions
Each pre, post, or contract_assert is a contract assertion
Each contract assertion is expected to follow the prime directive

17 / 41 69 / 169



Principle: Prime Directive (Contract Assertions)

Neither the presence of a contract assertion nor the evaluation of a contract
predicate should alter the correctness of a program’s evaluation.

The presences alone violating the prime directive would prevent users from not
violating the prime directive
We cannot prevent all predicates from violating, but we can discourage common
cases where they would

18 / 41 70 / 169



Principle: Prime Directive (Contract Assertions)

Neither the presence of a contract assertion nor the evaluation of a contract
predicate should alter the correctness of a program’s evaluation.

The presences alone violating the prime directive would prevent users from not
violating the prime directive

We cannot prevent all predicates from violating, but we can discourage common
cases where they would

18 / 41 71 / 169



Principle: Prime Directive (Contract Assertions)

Neither the presence of a contract assertion nor the evaluation of a contract
predicate should alter the correctness of a program’s evaluation.

The presences alone violating the prime directive would prevent users from not
violating the prime directive
We cannot prevent all predicates from violating, but we can discourage common
cases where they would

18 / 41 72 / 169



1 Definitions

2 Principles

3 Enforcement

4 Design Decisions

19 / 41 73 / 169



Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

Guides our decisions on a number of design aspects
Compile-time evaluation behavior
Implicit lambda captures
Function contract assertions are not part of the immediate context (no SFINAE)

20 / 41 74 / 169



Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

Guides our decisions on a number of design aspects

Compile-time evaluation behavior
Implicit lambda captures
Function contract assertions are not part of the immediate context (no SFINAE)

20 / 41 75 / 169



Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

Guides our decisions on a number of design aspects
Compile-time evaluation behavior

Implicit lambda captures
Function contract assertions are not part of the immediate context (no SFINAE)

20 / 41 76 / 169



Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

Guides our decisions on a number of design aspects
Compile-time evaluation behavior
Implicit lambda captures

Function contract assertions are not part of the immediate context (no SFINAE)

20 / 41 77 / 169



Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

Guides our decisions on a number of design aspects
Compile-time evaluation behavior
Implicit lambda captures
Function contract assertions are not part of the immediate context (no SFINAE)

20 / 41 78 / 169



Prevent violating the prime directive at runtime

A predicate whose evaluation would change the correctness of a program is a
destructive predicate
We cannot determine systematically if a predicate is destructive

21 / 41 79 / 169



Prevent violating the prime directive at runtime

A predicate whose evaluation would change the correctness of a program is a
destructive predicate

We cannot determine systematically if a predicate is destructive

21 / 41 80 / 169



Prevent violating the prime directive at runtime

A predicate whose evaluation would change the correctness of a program is a
destructive predicate
We cannot determine systematically if a predicate is destructive

21 / 41 81 / 169



Is this destructive i?

void f() pre(true);

It can be:
Contract: This program will not use C++ contract checking
Contract: No identifiers will be used that are macros in C

In most other cases, not destructive
Evaluates entirely at compile time

22 / 41 82 / 169



Is this destructive i?

void f() pre(true);

It can be:

Contract: This program will not use C++ contract checking
Contract: No identifiers will be used that are macros in C

In most other cases, not destructive
Evaluates entirely at compile time

22 / 41 83 / 169



Is this destructive i?

void f() pre(true);

It can be:
Contract: This program will not use C++ contract checking

Contract: No identifiers will be used that are macros in C
In most other cases, not destructive

Evaluates entirely at compile time

22 / 41 84 / 169



Is this destructive i?

void f() pre(true);

It can be:
Contract: This program will not use C++ contract checking
Contract: No identifiers will be used that are macros in C

In most other cases, not destructive
Evaluates entirely at compile time

22 / 41 85 / 169



Is this destructive i?

void f() pre(true);

It can be:
Contract: This program will not use C++ contract checking
Contract: No identifiers will be used that are macros in C

In most other cases, not destructive

Evaluates entirely at compile time

22 / 41 86 / 169



Is this destructive i?

void f() pre(true);

It can be:
Contract: This program will not use C++ contract checking
Contract: No identifiers will be used that are macros in C

In most other cases, not destructive
Evaluates entirely at compile time

22 / 41 87 / 169



Is this destructive ii?

int *binary_search(int* begin, int* end, int v)
pre(std::is_sorted(begin,end));

Yes if evaluated, complexity is no longer logarithmic

23 / 41 88 / 169



Is this destructive ii?

int *binary_search(int* begin, int* end, int v)
pre(std::is_sorted(begin,end));

Yes if evaluated, complexity is no longer logarithmic

23 / 41 89 / 169



Is this destructive iii?

bool test(int x)
{

x = x & 1;
return x > 0;

}
void f(int x)

pre(test(x));

Probably not
Has core-language side effects

Modifies a variable whose lifetime is within the evaluation
Called “Inside the cone of evaluation”

24 / 41 90 / 169



Is this destructive iii?

bool test(int x)
{

x = x & 1;
return x > 0;

}
void f(int x)

pre(test(x));

Probably not

Has core-language side effects
Modifies a variable whose lifetime is within the evaluation
Called “Inside the cone of evaluation”

24 / 41 91 / 169



Is this destructive iii?

bool test(int x)
{

x = x & 1;
return x > 0;

}
void f(int x)

pre(test(x));

Probably not
Has core-language side effects

Modifies a variable whose lifetime is within the evaluation
Called “Inside the cone of evaluation”

24 / 41 92 / 169



Is this destructive iii?

bool test(int x)
{

x = x & 1;
return x > 0;

}
void f(int x)

pre(test(x));

Probably not
Has core-language side effects

Modifies a variable whose lifetime is within the evaluation

Called “Inside the cone of evaluation”

24 / 41 93 / 169



Is this destructive iii?

bool test(int x)
{

x = x & 1;
return x > 0;

}
void f(int x)

pre(test(x));

Probably not
Has core-language side effects

Modifies a variable whose lifetime is within the evaluation
Called “Inside the cone of evaluation”

24 / 41 94 / 169



Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>& m, const U& k)

pre(m.contains(k));

Probably not
Might have side effects outside cone of evaluation

If T is std::string and U is const char*.
State change (allocation and deallocation) is reverted after expression

25 / 41 95 / 169



Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>& m, const U& k)

pre(m.contains(k));

Probably not

Might have side effects outside cone of evaluation
If T is std::string and U is const char*.
State change (allocation and deallocation) is reverted after expression

25 / 41 96 / 169



Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>& m, const U& k)

pre(m.contains(k));

Probably not
Might have side effects outside cone of evaluation

If T is std::string and U is const char*.
State change (allocation and deallocation) is reverted after expression

25 / 41 97 / 169



Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>& m, const U& k)

pre(m.contains(k));

Probably not
Might have side effects outside cone of evaluation

If T is std::string and U is const char*.

State change (allocation and deallocation) is reverted after expression

25 / 41 98 / 169



Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>& m, const U& k)

pre(m.contains(k));

Probably not
Might have side effects outside cone of evaluation

If T is std::string and U is const char*.
State change (allocation and deallocation) is reverted after expression

25 / 41 99 / 169



Is this destructive v?

template<typename T>
void f(std::map<T,int>& m, const T& k)
pre(m[k] == 0);

If k is not definitely in the map this modifies state
If anything depends on the contents of the map, this is destructive

26 / 41 100 / 169



Is this destructive v?

template<typename T>
void f(std::map<T,int>& m, const T& k)
pre(m[k] == 0);

If k is not definitely in the map this modifies state

If anything depends on the contents of the map, this is destructive

26 / 41 101 / 169



Is this destructive v?

template<typename T>
void f(std::map<T,int>& m, const T& k)
pre(m[k] == 0);

If k is not definitely in the map this modifies state
If anything depends on the contents of the map, this is destructive

26 / 41 102 / 169



Is this destructive vi?

bool test() {
printf("Test was called");
return true;

}
void f()

pre(test());

Destructive if output to standard output is guaranteed by contract
Fine if standard output is used for logging and tracing

27 / 41 103 / 169



Is this destructive vi?

bool test() {
printf("Test was called");
return true;

}
void f()

pre(test());

Destructive if output to standard output is guaranteed by contract

Fine if standard output is used for logging and tracing

27 / 41 104 / 169



Is this destructive vi?

bool test() {
printf("Test was called");
return true;

}
void f()

pre(test());

Destructive if output to standard output is guaranteed by contract
Fine if standard output is used for logging and tracing

27 / 41 105 / 169



Is this destructive vii?

int testCalls = 0;
bool test() {

++testCalls;
return true;

}
void f()

pre(test());

If correctness depends on the values of testCalls, no
Otherwise, fine

28 / 41 106 / 169



Is this destructive vii?

int testCalls = 0;
bool test() {

++testCalls;
return true;

}
void f()

pre(test());

If correctness depends on the values of testCalls, no

Otherwise, fine

28 / 41 107 / 169



Is this destructive vii?

int testCalls = 0;
bool test() {

++testCalls;
return true;

}
void f()

pre(test());

If correctness depends on the values of testCalls, no
Otherwise, fine

28 / 41 108 / 169



Is this destructive viii?
struct List { int d_data; List * d_next; };
void f(List *lp)
{

//#ifndef NDEBUG
int index = 0;
//#endif
while (lp) {
contract_assert(++index < 5);
lp = lp->d_next;

}
}

Always destructive — correctness of future evaluations changes each time
++index is evaluated
No protection from using index and depending on it for correctness

29 / 41 109 / 169



Is this destructive viii?
struct List { int d_data; List * d_next; };
void f(List *lp)
{

//#ifndef NDEBUG
int index = 0;
//#endif
while (lp) {
contract_assert(++index < 5);
lp = lp->d_next;

}
}

Always destructive — correctness of future evaluations changes each time
++index is evaluated

No protection from using index and depending on it for correctness

29 / 41 110 / 169



Is this destructive viii?
struct List { int d_data; List * d_next; };
void f(List *lp)
{

//#ifndef NDEBUG
int index = 0;
//#endif
while (lp) {
contract_assert(++index < 5);
lp = lp->d_next;

}
}

Always destructive — correctness of future evaluations changes each time
++index is evaluated
No protection from using index and depending on it for correctness

29 / 41 111 / 169



Takeaways about Destructive Predicates

No predicate is non-destructive in all contexts
Changes to local objects are likely to be destructive
Side effects within the cone of evaluation are likely to not be destructive
Side effects outside the cone of evaluation are not always destructive

30 / 41 112 / 169



Takeaways about Destructive Predicates

No predicate is non-destructive in all contexts

Changes to local objects are likely to be destructive
Side effects within the cone of evaluation are likely to not be destructive
Side effects outside the cone of evaluation are not always destructive

30 / 41 113 / 169



Takeaways about Destructive Predicates

No predicate is non-destructive in all contexts
Changes to local objects are likely to be destructive

Side effects within the cone of evaluation are likely to not be destructive
Side effects outside the cone of evaluation are not always destructive

30 / 41 114 / 169



Takeaways about Destructive Predicates

No predicate is non-destructive in all contexts
Changes to local objects are likely to be destructive
Side effects within the cone of evaluation are likely to not be destructive

Side effects outside the cone of evaluation are not always destructive

30 / 41 115 / 169



Takeaways about Destructive Predicates

No predicate is non-destructive in all contexts
Changes to local objects are likely to be destructive
Side effects within the cone of evaluation are likely to not be destructive
Side effects outside the cone of evaluation are not always destructive

30 / 41 116 / 169



Prevent violating the prime directive at runtime

Discourage any dependance on evaluation
Minimize the chance of non-encapsulated modifications of existing objects
Trust that const means state does not change

31 / 41 117 / 169



Prevent violating the prime directive at runtime

Discourage any dependance on evaluation

Minimize the chance of non-encapsulated modifications of existing objects
Trust that const means state does not change

31 / 41 118 / 169



Prevent violating the prime directive at runtime

Discourage any dependance on evaluation
Minimize the chance of non-encapsulated modifications of existing objects

Trust that const means state does not change

31 / 41 119 / 169



Prevent violating the prime directive at runtime

Discourage any dependance on evaluation
Minimize the chance of non-encapsulated modifications of existing objects
Trust that const means state does not change

31 / 41 120 / 169



1 Definitions

2 Principles

3 Enforcement

4 Design Decisions

32 / 41 121 / 169



Elision

A non-destructive predicate is always fine to elide

Ignoring a contract assertion gives you the same program state as elision
A platform could provide elision of non-violated contract assertions already

Define the semantic of any check that can be proven as ignore

33 / 41 122 / 169



Elision

A non-destructive predicate is always fine to elide
Ignoring a contract assertion gives you the same program state as elision

A platform could provide elision of non-violated contract assertions already
Define the semantic of any check that can be proven as ignore

33 / 41 123 / 169



Elision

A non-destructive predicate is always fine to elide
Ignoring a contract assertion gives you the same program state as elision
A platform could provide elision of non-violated contract assertions already

Define the semantic of any check that can be proven as ignore

33 / 41 124 / 169



Elision

A non-destructive predicate is always fine to elide
Ignoring a contract assertion gives you the same program state as elision
A platform could provide elision of non-violated contract assertions already

Define the semantic of any check that can be proven as ignore

33 / 41 125 / 169



Repetition

A non-destructive predicate is usually fine to evaluate again

Overly-specific contracts that limit the number of operations might make this
destructive
Those same contracts might make a single evaluation destructive

Repetition gives implementation freedom and user choice as to where code is
generated for checks
Repetition allows detecting many destructive side effects
Experience reports

P3336R0 — only issues were pedantic testing

34 / 41 126 / 169



Repetition

A non-destructive predicate is usually fine to evaluate again
Overly-specific contracts that limit the number of operations might make this
destructive

Those same contracts might make a single evaluation destructive
Repetition gives implementation freedom and user choice as to where code is
generated for checks
Repetition allows detecting many destructive side effects
Experience reports

P3336R0 — only issues were pedantic testing

34 / 41 127 / 169



Repetition

A non-destructive predicate is usually fine to evaluate again
Overly-specific contracts that limit the number of operations might make this
destructive
Those same contracts might make a single evaluation destructive

Repetition gives implementation freedom and user choice as to where code is
generated for checks
Repetition allows detecting many destructive side effects
Experience reports

P3336R0 — only issues were pedantic testing

34 / 41 128 / 169



Repetition

A non-destructive predicate is usually fine to evaluate again
Overly-specific contracts that limit the number of operations might make this
destructive
Those same contracts might make a single evaluation destructive

Repetition gives implementation freedom and user choice as to where code is
generated for checks

Repetition allows detecting many destructive side effects
Experience reports

P3336R0 — only issues were pedantic testing

34 / 41 129 / 169



Repetition

A non-destructive predicate is usually fine to evaluate again
Overly-specific contracts that limit the number of operations might make this
destructive
Those same contracts might make a single evaluation destructive

Repetition gives implementation freedom and user choice as to where code is
generated for checks
Repetition allows detecting many destructive side effects

Experience reports
P3336R0 — only issues were pedantic testing

34 / 41 130 / 169



Repetition

A non-destructive predicate is usually fine to evaluate again
Overly-specific contracts that limit the number of operations might make this
destructive
Those same contracts might make a single evaluation destructive

Repetition gives implementation freedom and user choice as to where code is
generated for checks
Repetition allows detecting many destructive side effects
Experience reports

P3336R0 — only issues were pedantic testing

34 / 41 131 / 169



Repetition

A non-destructive predicate is usually fine to evaluate again
Overly-specific contracts that limit the number of operations might make this
destructive
Those same contracts might make a single evaluation destructive

Repetition gives implementation freedom and user choice as to where code is
generated for checks
Repetition allows detecting many destructive side effects
Experience reports

P3336R0 — only issues were pedantic testing

34 / 41 132 / 169



const-ification

Prevents accidental modification of state in a contract assertion

Allows encapsulated changes that say they are const
Experience reports

P3268R0 — manual analysis of one large codebase
P3336R0 — uses current implementation in gcc

35 / 41 133 / 169



const-ification

Prevents accidental modification of state in a contract assertion
Allows encapsulated changes that say they are const

Experience reports
P3268R0 — manual analysis of one large codebase
P3336R0 — uses current implementation in gcc

35 / 41 134 / 169



const-ification

Prevents accidental modification of state in a contract assertion
Allows encapsulated changes that say they are const
Experience reports

P3268R0 — manual analysis of one large codebase
P3336R0 — uses current implementation in gcc

35 / 41 135 / 169



const-ification

Prevents accidental modification of state in a contract assertion
Allows encapsulated changes that say they are const
Experience reports

P3268R0 — manual analysis of one large codebase

P3336R0 — uses current implementation in gcc

35 / 41 136 / 169



const-ification

Prevents accidental modification of state in a contract assertion
Allows encapsulated changes that say they are const
Experience reports

P3268R0 — manual analysis of one large codebase
P3336R0 — uses current implementation in gcc

35 / 41 137 / 169



Throwing Violation Handlers

Throwing is the primary mitigation strategy available without terminating
Termination for many C++ users is never an option (P2698R0)

36 / 41 138 / 169



Throwing Violation Handlers

Throwing is the primary mitigation strategy available without terminating

Termination for many C++ users is never an option (P2698R0)

36 / 41 139 / 169



Throwing Violation Handlers

Throwing is the primary mitigation strategy available without terminating
Termination for many C++ users is never an option (P2698R0)

36 / 41 140 / 169



The observe semantic

Introducing a contract check into existing programs requires observing
Crashing users depending on Hyrum’s law is often unacceptable
Narrowing contracts is often needed for evolution

37 / 41 141 / 169



The observe semantic

Introducing a contract check into existing programs requires observing

Crashing users depending on Hyrum’s law is often unacceptable
Narrowing contracts is often needed for evolution

37 / 41 142 / 169



The observe semantic

Introducing a contract check into existing programs requires observing
Crashing users depending on Hyrum’s law is often unacceptable

Narrowing contracts is often needed for evolution

37 / 41 143 / 169



The observe semantic

Introducing a contract check into existing programs requires observing
Crashing users depending on Hyrum’s law is often unacceptable
Narrowing contracts is often needed for evolution

37 / 41 144 / 169



Compile Time Semantics

ignore is needed as an option
Algorithmically expensive checks can make a program un-compilable
constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked

observe is needed as an option
For any library used at compile time code must still compile with new releases
Just like runtime libraries require observe so code still runs at runtime with new
releases

38 / 41 145 / 169



Compile Time Semantics

ignore is needed as an option

Algorithmically expensive checks can make a program un-compilable
constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked

observe is needed as an option
For any library used at compile time code must still compile with new releases
Just like runtime libraries require observe so code still runs at runtime with new
releases

38 / 41 146 / 169



Compile Time Semantics

ignore is needed as an option
Algorithmically expensive checks can make a program un-compilable

constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked

observe is needed as an option
For any library used at compile time code must still compile with new releases
Just like runtime libraries require observe so code still runs at runtime with new
releases

38 / 41 147 / 169



Compile Time Semantics

ignore is needed as an option
Algorithmically expensive checks can make a program un-compilable
constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked

observe is needed as an option
For any library used at compile time code must still compile with new releases
Just like runtime libraries require observe so code still runs at runtime with new
releases

38 / 41 148 / 169



Compile Time Semantics

ignore is needed as an option
Algorithmically expensive checks can make a program un-compilable
constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked

observe is needed as an option

For any library used at compile time code must still compile with new releases
Just like runtime libraries require observe so code still runs at runtime with new
releases

38 / 41 149 / 169



Compile Time Semantics

ignore is needed as an option
Algorithmically expensive checks can make a program un-compilable
constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked

observe is needed as an option
For any library used at compile time code must still compile with new releases

Just like runtime libraries require observe so code still runs at runtime with new
releases

38 / 41 150 / 169



Compile Time Semantics

ignore is needed as an option
Algorithmically expensive checks can make a program un-compilable
constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked

observe is needed as an option
For any library used at compile time code must still compile with new releases
Just like runtime libraries require observe so code still runs at runtime with new
releases

38 / 41 151 / 169



Undefined Behavior in Contract Predicates

If semantics change we have a hard time talking about what a predicate will do
Spreading UB to the context around a contract predicate can be bad

P1494R3 gives us a mechanism to prevent this
P3328R0 applies that mechanism to P2900

39 / 41 152 / 169



Undefined Behavior in Contract Predicates

If semantics change we have a hard time talking about what a predicate will do

Spreading UB to the context around a contract predicate can be bad
P1494R3 gives us a mechanism to prevent this
P3328R0 applies that mechanism to P2900

39 / 41 153 / 169



Undefined Behavior in Contract Predicates

If semantics change we have a hard time talking about what a predicate will do
Spreading UB to the context around a contract predicate can be bad

P1494R3 gives us a mechanism to prevent this
P3328R0 applies that mechanism to P2900

39 / 41 154 / 169



Undefined Behavior in Contract Predicates

If semantics change we have a hard time talking about what a predicate will do
Spreading UB to the context around a contract predicate can be bad

P1494R3 gives us a mechanism to prevent this

P3328R0 applies that mechanism to P2900

39 / 41 155 / 169



Undefined Behavior in Contract Predicates

If semantics change we have a hard time talking about what a predicate will do
Spreading UB to the context around a contract predicate can be bad

P1494R3 gives us a mechanism to prevent this
P3328R0 applies that mechanism to P2900

39 / 41 156 / 169



Too much implementation-defined behavior

Only 5 points of implementation-defined behavior:
Selection of contract semantic
Methods of termination
Selection of number of repetitions
Replaceability of the contract-violation handler
When elision might happen

Upcoming paper P3321R0
All of these are for different

40 / 41 157 / 169



Too much implementation-defined behavior

Only 5 points of implementation-defined behavior:

Selection of contract semantic
Methods of termination
Selection of number of repetitions
Replaceability of the contract-violation handler
When elision might happen

Upcoming paper P3321R0
All of these are for different

40 / 41 158 / 169



Too much implementation-defined behavior

Only 5 points of implementation-defined behavior:
Selection of contract semantic

Methods of termination
Selection of number of repetitions
Replaceability of the contract-violation handler
When elision might happen

Upcoming paper P3321R0
All of these are for different

40 / 41 159 / 169



Too much implementation-defined behavior

Only 5 points of implementation-defined behavior:
Selection of contract semantic
Methods of termination

Selection of number of repetitions
Replaceability of the contract-violation handler
When elision might happen

Upcoming paper P3321R0
All of these are for different

40 / 41 160 / 169



Too much implementation-defined behavior

Only 5 points of implementation-defined behavior:
Selection of contract semantic
Methods of termination
Selection of number of repetitions

Replaceability of the contract-violation handler
When elision might happen

Upcoming paper P3321R0
All of these are for different

40 / 41 161 / 169



Too much implementation-defined behavior

Only 5 points of implementation-defined behavior:
Selection of contract semantic
Methods of termination
Selection of number of repetitions
Replaceability of the contract-violation handler

When elision might happen
Upcoming paper P3321R0
All of these are for different

40 / 41 162 / 169



Too much implementation-defined behavior

Only 5 points of implementation-defined behavior:
Selection of contract semantic
Methods of termination
Selection of number of repetitions
Replaceability of the contract-violation handler
When elision might happen

Upcoming paper P3321R0
All of these are for different

40 / 41 163 / 169



Too much implementation-defined behavior

Only 5 points of implementation-defined behavior:
Selection of contract semantic
Methods of termination
Selection of number of repetitions
Replaceability of the contract-violation handler
When elision might happen

Upcoming paper P3321R0

All of these are for different

40 / 41 164 / 169



Too much implementation-defined behavior

Only 5 points of implementation-defined behavior:
Selection of contract semantic
Methods of termination
Selection of number of repetitions
Replaceability of the contract-violation handler
When elision might happen

Upcoming paper P3321R0
All of these are for different

40 / 41 165 / 169



Principle: General Order One (Starfleet)

No starship may interfere with the normal development of any alien life or society.

The contract-checking facility is Starfleet
Each individual contract check is the starship
The program is the non-warp-capable alien life or society

41 / 41 166 / 169



Principle: General Order One (Contracts)

No contract check may interfere with the correctness of a program.

The contract-checking facility is Starfleet

Each individual contract check is the starship
The program is the non-warp-capable alien life or society

41 / 41 167 / 169



Principle: General Order One (Contracts)

No contract check may interfere with the correctness of a program.

The contract-checking facility is Starfleet
Each individual contract check is the starship

The program is the non-warp-capable alien life or society

41 / 41 168 / 169



Principle: General Order One (Contracts)

No contract check may interfere with the correctness of a program.

The contract-checking facility is Starfleet
Each individual contract check is the starship
The program is the non-warp-capable alien life or society

41 / 41 169 / 169


	Definitions
	Principles
	Enforcement
	Design Decisions

