
Contract assertions on function pointers

Timur Doumler (papers@timur.audio)

Document #: P3327R0
Date: 2024-10-16
Project: Programming Language C++
Audience: SG21, EWG

Abstract

In this paper, we explore the design space for an extension to the Contracts MVP proposal
[P2900R9] that would allow placing function contract assertions — pre and post — directly
on pointers to functions and pointers to member functions. We begin with a summary of the
prior art in this design space. We list different use cases for such a feature. We then discuss
the available syntactic space. Finally, we discuss different options for the compile-time and
runtime semantics of this feature, as well as possible specification strategies and their tradeoffs
and limitations.

Contents
1 Introduction . 3
2 Prior art . 4
3 Use cases . 5

3.1 Enable caller-side checking of contracts not visible at the call site 5
3.2 Add a missing function contract check . 5
3.3 Augment function-pointer-based APIs with contract checks 6
3.4 Check function contracts when using function-pointer-based legacy APIs 7
3.5 Inject a contract check via a function pointer . 7
3.6 Augment APIs with caller-facing checks in addition to callee-facing checks 8
3.7 Use in templates . 8

4 Syntax . 9
4.1 Contract assertions on declarations . 9
4.2 Contract assertions on typenames . 9
4.3 Contract assertions on expressions . 10

5 Semantics . 10
5.1 Pointer contract matches function contract . 10
5.2 Pointer drops function contract . 11
5.3 Pointer adds contract . 12
5.4 Pointer contract is different from function contract 13

5.4.1 Caller-facing and callee-facing contracts model (Contracts MVP) 13
5.4.2 Substitution principle model . 14

5.5 Intermediate contracts . 14

1

mailto:papers@timur.audio

5.5.1 Intermediate contract must match caller-facing contract 15
5.5.2 Implicitly drop intermediate contracts . 16
5.5.3 Explicitly drop intermediate contracts . 17
5.5.4 Evaluate intermediate contracts . 17

5.6 Propagation . 17
5.7 Templates and type deduction . 19

6 Specification strategies . 20
6.1 Contract as part of the type . 20
6.2 Contract as part of the value . 21

6.2.1 Thunks . 22
6.2.2 Wide pointers . 22

6.3 Contract as property of the declaration . 23

2

1 Introduction

Indirect function calls through function pointers remain a staple of software interface design and
implementation in C++, and of pervasive use. Consequently, it seems desirable that the Contracts
MVP proposal [P2900R9] supports efficient use of contract assertions with function pointers.
In [P2900R9] today, when assigning the address of a function that itself has function contract
assertions — pre and post — to a pointer to function, and then calling the function through that
pointer, those assertions will be checked. However, [P2900R9] does not allow to attach function
contract assertions directly to the function pointers. This may be desirable for a number of use
cases.
For example, consider an API that relies on function pointers, for example a driver API for
interacting with a hardware device:

typedef int32_t (*device_io_ptr)(void*, uint8_t, uint8_t*);
struct device_io_t {

device_io_ptr device_read;
device_io_ptr device_write;
// ...

};

To detect and mitigate possible misuse of such an API, we may want to add add contract checks to
any function calls made through these function pointers. Such checks can verify preconditions on
the passed-in parameters, postconditions on the returned values, and potentially other parts of the
API’s contract.
The need for such a feature has been recognised and named by a major compiler vendor as a criterion
for whether the Contracts MVP is indeed viable ([P3173R0]). However, despite the interest in such
a feature, no proposal that would allow placing pre and post directly on pointers to functions
and pointers to member functions has been published to date. This paper does not contain such a
proposal, either. Rather, the purpose of this paper is to explore the design space for such a proposal
and to discuss the challenges and open questions that any such proposal must address.
The paper is structured as follows. In Section 2, we summarise the prior art in this design space —
how past C++ Contracts proposals have dealt with the question of contract assertions on function
pointers, and what papers have been published in this design space more recently. In Section 3,
we consider various possible use cases for attaching pre and post directly on function pointers. In
Section 4, we explore the available syntactic space for such an extension. In Section 5, we explore
different options for the compile-time and runtime semantics: when working with pre and post
on function pointers, when should the program compile, when should it not, and what should its
behaviour be — in particular, when calling through a function pointer, which contracts should
be checked when? Finally, in Section 6, we analyse three possible strategies for specifying such
a feature, and their respective tradeoffs and limitations. We discuss where and how a contract
assertion sequence attached to a function pointer should be stored — as part of the pointer’s type,
as part of its value, or as a property of the variable declaration?
Before we can ship a Contracts MVP, we must answer the question whether the Contracts MVP
proposal [P2900R9] should be delayed until we have a consensus solution to the problem of contract
assertions on function pointers, or whether it is acceptable to ship the Contracts MVP without
support for pre and post on function pointers. A related question is, if we decide to ship the
Contracts MVP without such a feature, whether we are cutting off any design space we might want
to consider in the future for adding such a feature as a post-MVP extension.
We do not attempt to give an answer to either question here, but we hope that the material in this
paper will inform that discussion.

3

2 Prior art

A first exploration of placing contract assertions on function pointers — including many of the
thoughts we explored in more depth here — can be found in [N4110]. The paper draws the conclusion
that making these assertions part of the type system is not a viable solution. The idea to make the
contract a property of the declaration instead first appears in [P0246R0] and [P0247R0].
The first concrete proposal for placing contract assertions on function pointers can be found in a
series of papers from the early C++2a Contracts era: [N4415], [P0287R0], and [P0380R0]. In these
papers, contract assertions could be placed directly on function pointers, but assigning a function to
such a pointer, or assigning the value of a pointer to function to another such pointer, was ill-formed
unless the function contract assertions on both entities match. The contract assertions were neither
a part of the type nor a part of the pointer value (Section 6.3). The problem of how to propagate
contract information from typedefs (Section 5.6) was recognised but not solved in these papers: if a
typedef is used to declare a function type or a pointer to function type, any contracts in the typedef
declaration would not transfer to the function or to the pointer.
The motivation given in those papers for this approach was to guarantee that when a function is
called through a pointer, its function contract assertions are still checked. However, in revision
[P0380R1] it was realised that there is a much more effective way to achieve this, without placing a
burden on the user to repeat the same contract assertion sequence everywhere: we can specify that
when a function is called through a pointer, its own function contract assertions are still evaluated as
if it was called directly. This effectively introduced what we now call caller-facing and callee-facing
contracts, with the limitation that the callee-facing contract of a function pointer is empty (or,
to be more precise, cannot yet be specified with function contract assertions). At that point, the
idea to place pre and post directly on function pointers was abandoned and made ill-formed. This
carried over into the Contracts C++2a proposal [P0542R5] and ultimately into today’s Contracts
MVP [P2900R9], where it is now the status quo.
In [P3173R0], a major compiler vendor stated that a Contracts facility that fails to adequately
support efficient use with pointer to functions is woefully inadequate and unready for prime use. At
the WG21 meeting in Tokyo (February 2023), where that paper was discussed, an EWG poll showed
significant interest in such a feature, although there was no consensus that it must be included in a
Contracts MVP ([P3197R0]).
No concrete proposal to add pre and post to function pointers followed, but two papers proposed
to carve out design space in the Contracts MVP for adding such a feature as a later extension.
[P3221R0] proposed making taking the address of a function with function contract assertions
ill-formed, while [P3250R0] proposed to make it ill-formed to deduce the type of such a function.
Both proposals were rejected by SG21.
The latest proposal in this space at the time of writing is [P3271R0]. It does not propose to allow
attaching pre and post to function pointers directly (the approach that we explore in this paper).
Instead, it introduces so-called function usage types, along with new syntax to define them:

int takes_and_returns_positive_numbers(int i) usage
pre (i > 0)
post (r: r > 0);

We can then declare a pointer to such a function usage type, assign the address of a function to
that pointer, and call the function through that pointer, which will perform a check of that usage
type’s contract around the call to the pointed-to function.
In this model, function usage types are a distinct kind of types different from function types. Two
function usage types that differ only in their contract assertion sequence are different types. When
forming a pointer to a function usage type, the type of such a pointer is similar — using the core

4

language definition of that term1 — to the type of a regular function pointer without a contract
assertion sequence, meaning that both types have the same value representation and are thus
ABI-compatible.
The approach in [P3271R0] combines some of the advantages of the type system approach (Sec-
tion 6.1), such as being compatible with templates and type deduction, with the advantages of the
“property of the declaration” approach (Section 6.3), such as no impact on ABI and no breakage of
client code. However, it introduces a novel kind of entity to the language instead of allowing to
attach pre and post directly on function pointers as they exist in C++ today. This might or might
not turn out to be a viable solution to the problem. In this paper, we do not consider solutions
that introduce a new novel of entity instead of using function pointers directly. In this sense, our
paper can be considered complementary material to [P3271R0].

3 Use cases

In this section, we list some known use cases that can serve as motivation for an extension to
[P2900R9] that allows pre and post on function pointers. Some of these use cases may be more
plausible than others, and some may have contradicting requirements; here, we limit ourselves to
describing them, with no attempt at judging or prioritising.

3.1 Enable caller-side checking of contracts not visible at the call site

One possible use case for pre and post on function pointers is to introduce a mechanism to make
the function contract assertions of a function visible in a context that does not see the declaration
of that function, because which function will be called is being determined elsewhere at runtime.
In particular, this can enable caller-side checking of a function’s contract in contexts where this is
currently not possible with [P2900R9].
Consider:

int f(int x) pre(x >= 0);
int g(void (*fptr)(int x) pre (int x >=0)); // definition in another TU

void using_code() {
int (*fptr)(int x) pre(x >= 0) = f;
g(fptr);

}

In this scenario, the definition of g might not know that the function that ends up being called
is f, and might not see its declaration and therefore its sequence of function contract assertions.
However, by using the pointer fptr that has a matching sequence of function contract assertions,
the compiler is able to perform caller-side checking of f’s function contract assertions inside the
definition of g.

3.2 Add a missing function contract check

Another possible use case for pre and post on function pointers is to add contract checks to an
existing function where the declaration of that function cannot be changed for whatever reason:

// legacy function; the behaviour is undefined if x < 0
int f(int x);

int (*f_with_pre)(int x) pre (x >= 0) = f;

1See [conv.qual]/2. For example, int and const int are similar types; so are int[3] and int[].

5

https://timsong-cpp.github.io/cppwp/n4950/conv.qual#2

void using_code() {
f(-3); // No precondition check
f_with_pre(-3); // Precondition may be checked

}

Note that the same effect can already be achieved with [P2900R9] without involving function
pointers. If we cannot modify the declaration of f, but we can modify the definition, we can add
the desired precondition check with a contract_assert statement at the start of the function body.
If we cannot modify the declaration either, we can wrap f with another function or a lambda that
has the desired precondition check:

auto f_with_pre = [](int x) pre (x >= 0) { return f(x); }

Note that such a captureless lambda implicitly converts to a function pointer.

3.3 Augment function-pointer-based APIs with contract checks

There exist numerous C and C++ APIs that make use of function pointers. Consider, for example,
the following code that uses a callback API:

// library code
typedef int(*callback_t)(int);
void register_callback(callback_t);

// application code
int f(int i);
int main() {

register_callback(f);
// ...

}

Now, we might want to augment this callback API with contract assertions. For example, the API
might ensure that no negative numbers are passed into the callback, and expect that no negative
numbers are returned from it. We might want to express those preconditions and postconditions
directly on the API:

typedef int(*callback_t)(int i)
pre (i >= 0)
post (r: r >= 0);

void register_callback(callback_t);

int f(int i); // no pre and post here
int main() {

register_callback(f); // contract will be checked when callback is called
// ...

}

Instead of a callback API, we could also be dealing with a struct-based API like the one from
Section 1:

typedef int32_t (*device_io_ptr)(void*, uint8_t, uint8_t*);
struct device_io_t {

device_io_ptr device_read;
device_io_ptr device_write;
// ...

};

Again, we might want to express preconditions and postconditions on the involved function pointers
directly on the API:

6

typedef int32_t (*device_io_ptr)(void* device_ptr, uint8_t in, uint8_t* out)
pre (device_ptr != nullptr)
pre (out != nullptr)
post (r: r >= 0);

In each case, we want to be able to enable checks of the API’s contract to detect and mitigate
misuse. Depending on the shape of the API, we might want to attach the contract assertions either
to a typedef that is later used to declare parameters and data members of type pointer to function,
or to the declarations of those parameters and data members directly.

3.4 Check function contracts when using function-pointer-based legacy APIs

We might be dealing with legacy function pointer based APIs which look like the one in the previous
example but cannot be changed for whatever reason, so we cannot add pre and post to the API
itself. Instead, we might want to add pre and post to the function passed in. If contract checks are
enabled, we want those assertions to be checked even if the API is entirely unaware of them as the
function pointer itself does not have any function contract assertions:

// library code — legacy API
typedef int(*callback_t)(int);
void register_callback(callback_t);

// application code
int f(int i) pre (i >= 0) post (r: r >= 0);
int main() {

register_callback(f); // contract will be checked when callback is called
// ...

}

Note that this use case is already satisfied by [P2900R9] today: if calling a function f with function
contract assertions, those assertions are guaranteed to be evaluated even if f is called through
a function pointer that does not have any contract assertions attached to it. We might want to
preserve this functionality when adding an extension that allows pre and post on function pointers.

3.5 Inject a contract check via a function pointer

Consider again the legacy callback API from the previous use case. A more complicated scenario
can occur where not only the API itself, but also the passed-in callback f cannot be modified to
add pre and post. In this case, we might want to inject the contract via an intermediate pointer,
and expect that the contract does not get lost when that pointer is passed to the legacy API:

// library code — legacy API
typedef int(*callback_t)(int);
void register_callback(callback_t);

// application code
int f(int i);
int main() {

int (*f_checked)(int i) pre (i >= 0) post (r: r >= 0) = f;
register_callback(f_checked); // contract should be checked when callback is called
// ...

}

Note that this is a variation of use case 3.2, but the pointer with pre and post is now being assigned
to another pointer without matching pre and post. Again, this functionality can be achieved with
[P2900R9] today by using a captureless lambda wrapper instead of an intermediate function pointer.

7

3.6 Augment APIs with caller-facing checks in addition to callee-facing checks

As an extension of use case 3.3, we might want to add pre and post to a function pointer to
express a caller-facing contract, which is checked independently from — and in addition to — the
callee-facing contract, which is the contract on the declaration of the function that the pointer
points to.
Consider for example some numerical algorithm crunchNumbers that takes a pointer to function
and has a precondition that this function, when called, only returns positive numbers. We might
want to express this contract directly on that pointer:

void crunchNumbers(int(*positiveGenerator)() post (r : r > 0)) {
// do stuff with positive numbers returned by positiveGenerator...

}

Now, we might pass different functions into crunchNumbers, which might do different things, and
therefore have their own, distinct contracts:

// This function produces only multiples of three
int f1() post (r: r % 3 == 0);

// This function produces only prime numbers
int f2() post (r: isPrime(r));

// etc.

Now, if we pass f1, f2, etc. into crunchNumbers, we might want both sets of contract assertions to
be checked.
Note that for this use case, these sets are conceptually completely independent from each other.
The functions f1, f2, etc. might not guarantee, in general, that the number returned is always
positive (it is not part of their contract); however, crunchNumbers must call those functions only in
ways where they end up producing positive numbers (because it is part of its contact). Otherwise,
a contract violation will occur, indicating a failure to combine the different program components
correctly.

3.7 Use in templates

Finally, we might want to add contract checks in templates, and pass user-defined function contract
assertions to such templates. For example, we might want to define a std::function that has
particular contract assertions attached to its call operator, or a std::vector of function pointers
that all have a particular sequence of contract assertions attached to them:

// Pointer to function that expects a nonnegative integer:
typedef int (*nonnegative_fptr_t)(int i) pre (i >= 0);

std::function<nonnegative_fptr_t> my_nonnegative_func;
std::vector<nonnegative_fptr_t> my_nonnegative_funcs;
// etc.

This should work correctly with template argument deduction and class template argument deduction
as well:

nonnegative_fptr_t fptr = f;

void test(int i) {
// Template argument deduction:
std::invoke(fptr, i);

8

// Class template argument deduction:
std::function my_nonnegative_func(fptr);
my_nonnegative_func(i);

}

When the underlying function is invoked inside a function template (std::invoke, std::sort,
...), invoked inside a class template’s call operator (std::function), invoked inside some other
member function of a class template (comparator in std::set, std::map, ...), or retrieved from
a container and then invoked by the user (std::vector, ...), the expectation is that the function
contact assertions of the function should be evaluated.

4 Syntax

If we want to attach pre and post to function pointers, we need to understand how and in which
contexts we can spell that, and whether such a syntax could be added as an extension of the existing
contracts syntax in [P2900R9].

4.1 Contract assertions on declarations

In the [P2900R9] grammar, the sequence of pre and post specifiers attached to the declaration
of a function or lambda is represented by the grammar production function-contract-specifier-seq.
The grammar allows for a function-contract-specifier-seq to be attached to any abstract-declarator.
Therefore, an extension to [P2900R9] is feasible that allows attaching pre and post to the declaration
of a variable of type pointer to function or pointer to member function:

int (*nonnegative_fptr)(int i) pre (i >= 0); // OK
int (*X::nonnegative_memfptr)(int i) pre (i >= 0); // OK

It is also syntactically possible to attach pre and post to a typedef or using declaration:
typedef int (*nonnegative_fptr_t)(int i) pre (i >= 0); // OK
using nonnegative_fptr_t = int(*)(int i) pre (i >= 0); // OK

Now, if we declare a pointer variable using one of the above typedefs, we need to choose whether
the pre and post should be attached to the typedef or to the variable declaration. The latter seems
less useful as it would be impossible to use function parameters inside the predicate:

typedef int (*nonnegative_fptr_t)(int i) pre (i >= 0);
nonnegative_ftpr_t my_fptr; // OK; pointer with precondition

typedef int (*fptr_t)(int i);
fptr_t my_fptr pre (/∗ ??? ∗/); // cannot name i here

4.2 Contract assertions on typenames

With the [P2900R9] grammar it is impossible to attach a function-contract-specifier-seq to a type-
identifier ; an attempt to do so would result in parsing ambiguities. This means that we cannot
specify an extension that would allow attaching pre and post directly to the return type of a
function:

int (*ftpr)(int i) pre (i >= 0) get_nonnegative_fptr(); // Error; pre parsed as function name

Instead, we would have to use a typedef:
typedef int (*nonnegative_fptr_t)(int i) pre (i >= 0);
nonnegative_fptr_t get_nonnegative_fptr(); // OK

9

Similarly, it would not be possible to attach pre and post directly to the typename when casting
to a function pointer type with pre and post, when using a function pointer type with pre and
post as a template argument, or in other contexts where a function pointer type appears outside of
a declarator.
In all of these cases, the desired construction can be expressed syntactically with the help of a
typedef. This limitation seems acceptable; to remove it, we would have to adopt an entirely different
syntax for contracts. We do not explore options for an entirely different contracts syntax further
in this paper, but we do note that placing contract assertions on function types (and therefore
also on function pointer types) seems possible2 with the attribute-like syntax of C++2a Contracts
[P0542R5].

4.3 Contract assertions on expressions

Finally, we could consider attaching pre and post to an expression of type pointer to function or
pointer to member function. For example, consider a call expression that evaluates to a function
pointer which is then itself called:

int (*)(int) get_fptr();

void test(int i) {
get_fptr()(i);

}

We might want to attach pre and post directly to the prvalue get_fptr(). The [P2900R9] grammar
does not allow this; neither does any other known proposal for a contracts syntax. In general,
this seems unlikely to be feasible, considering the compexity of the C++ expression grammar and
the fact that even attributes — which are syntactically clearly separated from other constructs —
cannot appertain to expressions, only to entities and statements.

5 Semantics

If we want to allow pre and post on function pointers, we need to define what should happen
when we initialise a function pointer variable with the address of a function, assign the address of a
function to that variable, pass a function pointer into a function as a parameter, return a function
pointer from a function, and evaluate arbitrary expressions involving function pointers, in a world
where any function or function pointer involved in the expression could have an arbitrary sequence
of function contract assertions attached to it.
We need to specify the compile-time semantics of such operations — which combinations should be
well-formed? — as well as the runtime behaviour of a call through the resulting pointer — which
contracts should be checked during such a call? In this section, we discuss the known options.

5.1 Pointer contract matches function contract

The simplest case is that of assigning (or initialising with, passing, returning, etc.) the address of a
function with a particular contract assertion sequence to a function pointer declared with the same
contract assertion sequence.

int f(int i) pre (i >= 0);

2This has been pointed out in [P2935R4] and [P3028R0]. Nevertheless, placing contract assertions on function
types has not been considered by SG21 as one of the requirements for choosing an appropriate contracts syntax; it is
not listed in [P2885R3], which served as the basis for choosing the syntax proposed in [P2961R2] for the Contracts
MVP. A possible explanation is that the idea was not well understood at the time.

10

int (*fptr)(int i) pre (i >= 0);

void test(int i) {
fptr = f;
fptr(i);

}

The only reasonable expectation seems to be that the above code should “just work” and that the
precondition assertion pre (i >= 0) should be evaluated when calling f through fptr.
While it seems clear that the above code should be allowed, and has unambiguous semantics, it is
worth asking the question whether we should require the contract assertion sequence of the pointer
to match that of the function. This would be the direction that was proposed in [N4415], [P0287R0],
and [P0380R0], before being abandoned in later Contracts proposals (Section 2).
Requiring the contract assertion sequences to match satisfies use case 3.1. but excludes all other
use cases. Furthermore, note that when two functions do different things, they will typically have
different contracts, even if they have the same signature (consider for example a function that
computes the square root of a number and one that computes the cubic root). There situations
where two distinct functions might have the same contract, but we do not expect this to be the
common case.
One example of such a situation would be a group of functions that all do the same same thing in
a different way, for example functions implementing different numeric algorithms to compute the
square root that all offer the same guarantees. If we require the contract assertion sequences to
match, we effectively restrict function pointers to always point to a function from one such group,
or at least limit the subset of the contract that can be expressed with function contract assertions
(rather than in plain language) to the common subset of all functions that the given pointer could
point to. Note that the more precisely we specify the plain-language contract of a function with
precondition and postcondition assertions, the the more unlikely it becomes that we end up with
two functions having completely identical contracts.
Another concern with requiring the contract assertion sequences to match is that we would need to
ensure that it is impossible to SFINAE on whether two entities have the same contract assertion
sequence. Failure to do so would violate the Contracts Prime Directive3 from [P2900R9] and impede
future extensions that relax this requirement.
Note that [P2900R9] does not specify how many times any given contract assertion will be evaluated.
Therefore, for the semantics of the code above it does not matter whether we choose a design where
the precondition assertions on f and fptr are distinct and independent, or one where they are
required to be the same.

5.2 Pointer drops function contract

The next interesting case is that of assigning the address of a function with a particular function
contract assertion sequence to a function pointer that does not have any such assertions attached
to it:

int f(int i) pre (i >= 0);
int (*fptr)(int i);

3The Contracts Prime Directive stipulates that the mere addition of a contract assertion should never alter the
semantics of a correct program, and therefore should not be visible to concepts, SFINAE, overload resolution, the
noexcept operator, and other forms of compile-time branching. However, if adding pre and post to a function can
change its type, it would directly violate that principle.

11

void test(int i) {
fptr = f;
fptr(i);

}

For this case, we have multiple possibilities. We could make the assignment ill-formed, which would
satisfy use case 3.1 but be a breaking change to [P2900R9], where the above code is valid today, or
we could continue to allow it.
If we allow it, the question is whether the call through fptr would evaluate the precondition assertion
of f or not. Evaluating the precondition assertion seems to be the only sensible answer: if the
function f has function contract assertions, the expectation is that those assertions will be evaluated
if that function is called, regardless of whether that happens through a pointer or otherwise. A
consequence is that the value of the pointer fptr — without any contract assertions attached to it —
could be passed into a function, returned from a function, be the result of evaluating an expression,
etc. In all cases, the function contract assertions of f would be checked when calling it through the
resulting pointer. This is the behaviour in [P2900R9] today and is required to satisfy use case 3.4.

5.3 Pointer adds contract

The inverse of the previous case is assigning the address of a function that does not have any
function contract assertions to a function pointer that does:

int f(int i);
int (*fptr)(int i) pre (i >= 0);

void test(int i) {
fptr = f;
fptr(i);

}

With [P2900R9] today, the code above does not compile as pre and post on function pointers are
not allowed. If we were to allow them, we need to decide whether the assignment should compile,
and whether the call through fptr should evaluate the precondition assertion of fptr.
Making the assignment ill-formed would satisfy use case 3.1. If we allow the assignment, the only
sensible answer for the runtime behaviour of the call seems to be that the precondition assertion
of fptr should be evaluated: why would we write contract assertions on a pointer if they are not
evaluated when using that pointer? This behaviour would enable use case 3.2.
If we go down this route, then it seems that contract assertions on a parameter declaration should
also be checked when calling a function through that parameter:

int f(int i);

void invoke_ptr(int (*fptr)(int i) pre (i >= 0), int i) {
fptr(i);

}

void test(int i) {
invoke_ptr(f, i);

}

This behaviour would enable use case 3.3.
One implication of this direction is that the contract assertions on a function pointer are now
inevitably unique to that pointer, and therefore must be stored together with the pointer somehow —
either as part of its type, or as part of its value, or as a property of the pointer variable declaration;
each choice comes with tradeoffs and limitations (Section 6).

12

5.4 Pointer contract is different from function contract

Now, let us consider the case of assigning the address of a function with a sequence of function
contract assertions to a function pointer fptr that has a different sequence of contract assertions
(we could construct an analogous test case for initialising a function pointer variable, or passing a
function address into a function taking a function pointer as a parameter):

int f(int i)
pre (i % 2 == 0) // must call with even integer
post (r: r % 2 == 0); // guaranteed to return even integer

int (*fptr)(int i)
pre (i > 0) // must call with positive integer
post (r: r != 0); // guaranteed to return non-zero integer

void test(int i) {
fptr = f;
fptr(i);

}

Again, the question is whether the assignment should compile, and if it does, which assertions
should be evaluated in which order when the call through fptr is made.
If we make the assignment ill-formed for the cases described in Section 5.2 and Section 5.3, it follows
that the assignment in this case should also be ill-formed; this would again satisfy use case 3.1.
If we allow the assignment, it follows from the previous cases that the call through fptr needs to
check all involved contracts: those of f as well as those of fptr. Dropping the contract assertions
of f is inconsistent with [P2900R9] and against the expectation that calling a function will evaluate
the function contract assertions of that function. Dropping the contract assertions of fptr does not
seem to make any sense either because what would then be the purpose of writing them? Checking
all involved contracts also serves the most use cases as it would enable use case 3.6 in addition to
use cases 3.2, 3.3, and 3.4.
If the call through the pointer checks all involved contracts — those of the pointer as well as those of
the pointed-to function — the next question is in what order these checks happen and whether there
are any constraints on which kinds of contract assertions on the two involved entities are allowed in
this scenario. Multiple design directions are theoretically possible which we discuss below.

5.4.1 Caller-facing and callee-facing contracts model (Contracts MVP)

In this model, which is the status quo in the Contracts MVP [P2900R9], a distinction is made
between caller-facing and callee-facing function contract assertions. Both sets of function contract
assertions are completely independent from each other. The sequence in which all these assertions
are evaluated is shown in Figure 1.
This caller/callee model is used to specify contract assertions on virtual functions in the Contracts
MVP. For virtual function calls, the caller-facing contract is that of the statically called function,
while the callee-facing contract is that of the final overrider chosen by virtual dispatch. These are
the only contracts checked in a virtual function call in [P2900R9]; contracts on other classes in the
same inheritance hierarchy are ignored (see also Section 5.5).
This model can be equally applied to other kinds of indirect calls, including calls through a function
pointer. For calls through a function pointer, the caller-facing assertions are those of the pointer
(currently required to be empty by [P2900R9] — this restriction would be relaxed if we allow pre
and post on function pointers), and the callee-facing assertions are those of the pointed-to function.

13

Figure 1: Evaluation sequence of caller-facing and callee-facing function contract assertions in the
Contracts MVP [P2900R9]. In this model, pre and post on function pointers are caller-facing.

5.4.2 Substitution principle model

In the caller/callee model, the contracts on the involved entities are completely independent from
each other. An alternative model for indirect calls is the substitution principle model that Eiffel,
D, and Ada use for contracts on virtual functions. In this model, the involved contracts are not
independent, but subject to constraints: the preconditions in an overriding function can only be
wider than in the overridden function, and the postconditions can only be narrower. This model
can also be applied to indirect calls through a function pointer: the preconditions on the pointed-to
function can only be wider than on the pointer, and the postconditions can only be narrower.
For virtual function calls, SG21 found that this model was not an ideal fit for C++; rationale can be
found in [P3097R0]. Choosing this model for function pointers would therefore create a conceptual
inconsistency in [P2900R9]. It would also raise the question whether or how the substitution
constraints should be enforced. We could attempt to follow the strategy chosen in Eiffel and D
for virtual functions and enforce the constraints by OR-ing the involved precondition checks and
AND-ing the postcondition checks during program execution, or perhaps by performing some kind
of subsumption proof. However, any such approach is complicated by the fact that unlike for virtual
function calls, the author of a function pointer and the function it points know nothing about one
another — they are connected by a third party that does the assignment and cannot reasonably be
restricted by changes the other parties make.

5.5 Intermediate contracts

Now, let us consider what happens when we assign the value of one function pointer to another
function pointer. If both involved function pointers have the same contract assertion sequence, the
situation seems obvious. This code should “just work” and the contract assertion sequence should
be checked on calls through either pointer. But what if the two involved pointers have different
contract assertions? Consider the following example (again, we could construct an analogous test
case for initialising a function pointer variable, or passing a function address into a function taking
a function pointer as a parameter):

14

int f(int i) /∗ may or may not have its own pre and post ∗/;

int (*fptr1)(int i)
pre (i % 2 == 0) // must call with even integer
post (r: r % 2 == 0); // guaranteed to return even integer

int (*fptr2)(int i)
pre (i > 0) // must call with positive integer
post (r: r != 0); // guaranteed to return non-zero integer

void test(int i) {
fptr1 = f;
fptr2 = fptr1; // (1)
fptr2(i); // (2)

}

Note that this example is different from that in Section 5.4 as there are now three sets of contracts
in play: that of f, that of fptr1, and that of fptr2. The question is whether the assignment at (1)
should compile, and if it does, which assertions should be evaluated when the call at (2) is made.
In the caller/callee model, the contract of fptr2 is the caller-facing one, while the contract of
f is the callee-facing one. The contract of fptr1 is neither caller-facing nor callee-facing; it is
an intermediate contract. We can thus rephrase the question: should intermediate contracts be
well-formed, and if they are, should they be checked or not?
Note that if intermediate contracts are supposed to be well-formed and checked, the set of distinct
intermediate contracts for any particular call is unbounded:

void test(int i) {
fptr1 = f;
fptr2 = fptr1;
fptr3 = fptr2;
// ...
fptrn = fptrn_minus_1;
fptrn(i);

}

Note further that this set is not statically known and can depend on a runtime variable:
void test(bool b, int i) {

// ...
fptr3 = b ? fptr1 : fptr2;
fptr3(i);

}

Multiple design directions are theoretically possible which we discuss below. (To meaningfully
specify the semantics of the above case, we also need to specify whether and how contracts should
propagate through expressions; this concern is discussed in Section 5.6).

5.5.1 Intermediate contract must match caller-facing contract

If we choose to enforce that the caller-facing contract assertion sequence (on the function pointer
through which the call is made) and the callee-facing contract assertion sequence (on the function that
ends up being called) are odr-identical, the only sensible choice seems to be that any intermediate
contracts must be odr-identical as well, otherwise the program is ill-formed.
If we allow the caller-facing and the callee-facing contract to be different, we can still enforce that
any intermediate contracts must be odr-identical to the calle-facing contract. This is possible as
conservative choice. Again, we need to make sure that it is impossible to SFINAE on whether two
entities have the same contract assertion sequence.

15

5.5.2 Implicitly drop intermediate contracts

Another option would be to make the above examples well-formed, but silently drop the intermediate
contract, which would never be checked.
Note that intermediate contracts can already arise with [P2900R9] in the context of virtual functions.
For example, consider a doubly-indirect call where a virtual function call happens through a pointer
to member function:

struct Base {
virtual void f() pre(a) post (b);

}

struct Derived {
void f() override pre(c) post (d);

}

void test(Base& b) {
b.f(); // (1)

void (Base::*memptr)() = &Base::f;
(b.*memptr)(); // (2)

}

int main() {
Derived d;
test(d);

}

The above code is well-formed in [P2900R9] today. For the call at (1), the caller-facing contract is
that of Base::f, while the callee-facing is that of Derived::f. Both are checked; the evaluation
sequence is a — c — Derived::f — d — b. However, for the call at (2), the caller-facing contact
is that of the pointer to member function, which is currently required by [P2900R9] to be empty
(this restriction would be relaxed if we allow pre and post on function pointers). The evaluation
sequence is therefore c — Derived::f — d. The contract of Base::f is an intermediate contract
and is not checked.
The philosophy behind this model is that the only contracts we care about for correctness are the
contract on the interface we are using to make the call and the contract on the function whose
implementation we end up calling. Intermediate contracts are irrelevant for this particular call as
they are neither part of the interface that is being used nor part of the implementation that gets
executed, so violating them does not constitute a defect on this particular function invocation.
As we already saw in Section 5.4, virtual function calls and calls through function pointers have
similarities (they are both indirect calls with a caller-side and a callee-side), but they also have
differences. In particular, virtual function hierarchies are known statically, while function pointers
can be reassigned dynamically, i.e. the relationship between a function and a pointer pointing to
it is temporal. If we adopt the [P2900R9] model of silently dropping intermediate contracts to
function pointers, it would mean that the contract assertions on a function pointer only apply when
a function is being called through that specific pointer.
For example, we could imagine a pointer with a contract assertion pre (false). We can store
the address of a function in that pointer. Such a pointer is never intended to be used — calling
a function through it will always result in a contract violation — however we can use its value
elsewhere, for example store it in an other pointer and then call the function through that other
pointer.

16

5.5.3 Explicitly drop intermediate contracts

Alternatively, we could make it ill-formed if an intermediate contract that is not odr-identical with
the caller-facing contract was silently dropped — to prevent this from happening unintentionally —
but allow such assignments, initialisations, etc. with an explicit opt-in syntax that makes the intent
of the developer clear:

void test(int i) {
fptr1 = f;
fptr2 = fptr1; // Error: assignment would implicitly drop contract of fptr1
fptr3 = drop_contract(fptr1) // OK: contract of fptr1 dropped explicitly
fptr3(i) // checks contracts of f and fptr3, but not fptr1

}

This approach seems compatible with the caller/callee model of the Contracts MVP, in which
intermediate contracts are not checked, but recognises that for function pointers it can happen more
easily that a contract ends up being dropped unintentionally than for virtual function hierarchies,
as function pointers can be reassigned dynamically while virtual function hierarchies are known
statically.

5.5.4 Evaluate intermediate contracts

Finally, we could consider breaking from the caller/callee model and check intermediate contracts.
This would mean that the contract on a function pointer becomes “sticky”:

bool a, b, c;
void f();

void (*fptr1)() pre (a) = f;
void (*fptr2)() pre (b) = fptr1;
void (*fptr3)() pre (c) = fptr2;

void test() {
fptr3(); // checks c, then b, then a

}

The contract would also “stick” when function pointers initialised with other function pointers or
are passed as parameters into functions. This would enable use case 3.5.
However, since the set of intermediate contracts is unbounded and not known statically, evaluating
intermediate contracts leads to maintaining an arbitrarily long chain of contracts associated with
each function pointer, perhaps through some kind of linked list structure that would have to be
traversed at runtime for every function call through such a pointer.
Similar to contracts on virtual functions, we could either consider all intermediate contracts to
be independent from each other, or contemplate enforcing constraints on the relationship of all
contracts in such a chain following the substitution principle model (Section 5.4.2). Since the chain
is not known statically, any such enforcement would have to happen at runtime.

5.6 Propagation

The C++ Standard specifies that a function call is an expression of function type or function pointer
type followed by parentheses containing the arguments of the call. In all examples in this section so
far, that expression was an id-expression directly naming a variable of function pointer type. In
this simple case, the caller-facing contract is obviously known — it is that on the declaration of the
named pointer. However, an expression of function pointer type can be arbitrarily complex, raising

17

the question of whether and how the information about the contract of a function pointer should
propagate through such expressions.
To illustrate the issue, consider the following example:

struct C {
auto get_fptr() { return fptr; }

private:
int (*fptr)(int x) pre (x > 0); // (1)

};

void test(int i) {
C c;
c.get_fptr()(i); // (2)

}

The function pointer with a contract assertion sequence is defined as a private data member of a
class at (1). The expression at (2) is a prvalue that is itself the result of calling a member function
that returns the function pointer. In order to insert the precondition check at (2), the contract
check at (1) needs to propagate out of the class and through the expression.
We can make the example slightly more complicated by defining the contract on a typedef:

struct C {
auto get_fptr() { return fptr; }

private:
typedef int (*fptr_t)(int x) pre (x > 0); // (1)
fptr_t fptr;

};

Now, if we want to check the contract on the function pointer, the information from that typedef
also needs to propagate through to the call site.
Making the above examples ill-formed does not seem like a viable choice. If the expression
in the function call is a prvalue such as c.get_fptr(), it is impossible for it to have its own
contract assertions (Section 4.3); silently dropping the contract would likely be surprising to most
users; therefore, the only option is to specify contract assertions on function pointers such that
this information can somehow propagate from typedefs and other places and through arbitrary
expressions. Whether and how this can be achieved depends on the chosen specification strategy
for contract assertions on function pointers; we will discuss three possible strategies in Section 6.
Finally, consider an example where the contract depends on a dynamic variable:

// Function that returns pointer to function that only accepts positive numbers:
typedef int (*positive_fptr_t)(int i) pre(i > 0);
positive_fptr_t get_positive_fptr();

// Function that returns pointer to function that only accepts negative numbers:
typedef int (*negative_fptr_t)(int i) pre(i < 0);
negative_fptr_t get_negative_fptr();

void test(int i, bool b) {
(b ? get_positive_fptr() : get_negative_fptr())(i); // (1)

}

It is unclear whether the above code should be ill-formed, or if not, which precondition should be
checked on the function call at (1).

18

5.7 Templates and type deduction

Finally, we need to consider the semantics of contract assertions on function pointers interacting
with templates and type deduction. The semantics chosen for this case will determine whether we
can enable use case 3.7.
Consider again storing a function pointer with contract assertions that is being used in a template
such as std::function or a std::vector:

// Pointer to function that accepts only positive numbers:
typedef int (*positive_fptr_t)(int i) pre(i > 0);
positive_fptr_t positive_fptr = f;

void test(int i) {
std::function<positive_fptr_t> positive_f = positive_fptr;
positive_f(i); // (1)

std::vector<positive_fptr_t> positive_fs = {positive_fptr};
positive_fs.front()(i); // (2)

}

Do we expect that the contract of positive_fptr will be checked in the calls at (1) and (2)?
What about cases where the function pointer is used to deduce the template argument:

void test(int i) {
std::invoke(positive_fptr, i); // (3)

}

Do we expect that the contract of positive_fptr will be checked in the call at (3)?
Related to this is the question whether two function pointers that only differ in their contract
assertion sequence should trigger two different template instantiations:

// Pointer to function that accepts only positive numbers:
typedef int (*positive_fptr_t)(int i) pre(i > 0);
positive_fptr_t positive_fptr = f;

// Pointer to function that accepts only negative numbers:
typedef int (*negative_fptr_t)(int i) pre(i < 0);
positive_fptr_t negative_fptr = g;

void test(int i) {
std::invoke(positive_fptr, i);
std::invoke(positive_fptr, i); // same or different template instantiation?

}

Furthermore, what should happen when we try to initialise a container with multiple function
pointers that have different contracts:

std::vector v = {positive_fptr, negative_fptr}; // (4)

Should class template argument deduction fail at (4), making the program ill-formed? If not, what
contracts (if any) will be checked if either element of the vector is accessed and then called? What
happens when we swap the two elements in the vector?
The answers to these questions are tightly linked to the specification strategy we choose for contract
assertions on function pointers, which we discuss in the following section.

19

6 Specification strategies

If we want to allow a function pointer to have its own sequence of function contract assertions, this
information has to be stored somewhere. The C++ language gives us three possible places: the
sequence could be a part of the function pointer’s type, it could be a part of its value, or it could be
a property of a particular function pointer variable declaration. Each strategy enables a different
set of semantic options (Section 5) to be implemented, and has different tradeoffs and limitations,
which we discuss in this section.

6.1 Contract as part of the type

Our first option for specifying contract assertions on function pointers is to make them a part of
the pointer’s type. With this approach, two pointers that differ only in their sequence of contract
assertions would have different types. Since the type of a function pointer is just “pointer to some
other type”, it follows that two functions that differ only in their sequence of function contract
assertions would have different types as well.
The type system approach would allow us to either enforce that the caller-side contract or the
callee-side contract must be the same (Section 5.1), or allow them to be different (Sections 5.2,
5.3, and 5.4), by defining appropriate type conversion rules between these types. We could enforce
that intermediate contracts must be the same as the caller-facing one (Section 5.5.1), or drop
intermediate contracts implicitly (Section 5.5.2) or explicitly (Section 5.5.3), all via type conversion
rules; however, we could not build up a chain of “sticky” contracts (Section 5.5.4) through the type
system unless the entire chain is known statically, which is not the case in general.
Propagating contracts through arbitrary expressions (Section 5.6) would happen automatically
through the type system, since the contracts would be part of the type of the expression.
Finally, the type system approach would naturally allow contract assertions to propagate into
templates (Section 5.7).
However, the direct consequence of this design is that for any template that takes a function type
as a template argument — consider std::sort, std::map, std::function, etc. — a difference in
the function contract assertion sequence would trigger a separate template instantiation, even if
the function type is otherwise the same, potentially significantly increasing the amount of distinct
template instantiations in a program.
Another consequence is that, if pre and post are part of the type, then they must be part of name
mangling. Since contract predicates can contain arbitrary C++ expressions, we would then need to
find a way to mangle those too. At this point, contracts also become part of the ABI, which means
that adding or changing the function contract assertions of a function can lead to an ABI break,
which would violate an important design principle that [P2900R9] is built on. Alternatively, we
could possibly avoid making the contract assertion sequence part of the ABI by instead generating
thunks for all pointers that have a type that involves contract assertions, but this would lead to
some form of additional runtime overhead among other tradeoffs (Section 6.2.1).
Regardless of this choice, the type system direction would violate a number of other design principles
of [P2900R9], such as the Contracts Prime Directive and the No Caller-side Language Break
principle.4 Note that this is true regardless of whether we allow function pointers to have contract
assertions distinct from the function they are pointing to and/or distinct from other pointers
pointing to the same function (these options are discussed in Section 5).

4The No caller-side language break principle stipulates that for any existing function f, if any function contract
assertion is added to f and the definition of f still compiles after this addition, then any existing, correct usage of f
should continue to compile and work correctly (as long as no contracts are being violated). However, if adding pre
and post to a function can change its type, client code relying on that type might break in arbitrary ways.

20

Making contracts part of the type system would raise a number of other questions. For example,
what should operator& do, and how should that will interact with type deduction? If we were to
ever have operator& changed to return “pointer to function with that function’s contract assertions”,
this would break code like the following:

int f1() post (r: r > 0);
int f2() post (r: r < 0);

int x() {
auto* f = &f2; // pointer with assertion post (r: r > 0)
if (rand()) {

f = &f1; // assigning to a function with a different, incompatible postcondition
}
f(); // violation if branch was taken! Certainly not the intent of the original code.

}

Finally, how would making pre and post part of a function’s type interact with overload resolution?
Could we overload on different function contract assertions? Or would function contract assertions
behave like noexcept, which is also part of the type system (since C++17) but cannot be overloaded
on? Consider:

void f(int (*)(int x) pre(x == 0)); // Overload 1
void f(int (*)(int x) pre(x > 0)); // Overload 2 — OK or ill-formed?

int r(int x) pre(x == 0);
int s(int x) pre(x > 0);
int t(int x);
int u(int x) pre(x == 0) pre(x == 0);
int v(const int x) pre(x == 0) post(x == 0);

f(&r); // which f overload is called? Overload 1 seems likely
f(&s); // which f overload is called? Overload 2 seems likely
f(&t); // now what?
f(&u); // ...and now?
f(&v); // ...and now?

Any proposal that makes contracts part of the type system needs to answer the questions above.

6.2 Contract as part of the value

Instead of making the sequence of contract assertions on a function pointer part of its type, we
could encode the sequence in the pointer’s value. To our knowledge, this strategy has not been
considered by any previous contracts proposal.
With this approach, the contract assertion sequence of a function pointer would become a dynamic
property, unlike the contract assertion sequence of a function declaration. We would therefore be
unable to statically enforce any relationship between caller-facing, intermediate, and callee-facing
contracts, such as requirements that they be the same. However, we would be able to support
arbitrary, dynamic chains of “sticky” contracts (Section 5.5.4).
Propagating contracts through arbitrary expressions (Section 5.6) would be possible but would
happen dynamically during program execution, rather than statically as in the type system approach.
Generally, it seems inevitable that a value-based approach would incur some amount of runtime
overhead when adding a contract assertion to a function pointer, regardless of whether the contract
is actually ever checked, violating the Zero Overhead principle from [P2900R9].
Below, we consider two different implementation strategies for value-based contracts.

21

6.2.1 Thunks

The obvious implementation approach to encoding contracts in the pointer value would be to
generate a thunk that checks the contract assertions on the pointer and then calls the underlying
function, and to store the address of that thunk in the pointer. This approach seems straightforward
to implement, but has a number of consequences.
First, directly inspecting the value of a pointer might not necessarily tell us whether it has a
contract assertion sequence, as it just stores an address in either case (however, there might be
implementation workarounds for this). Second, and more importantly, if the pointer does have a
contract assertion sequence, the address that is the value of the pointer would no longer be equal to
the address of the function that it is pointing to — invalidating a property that the C++ Standard
tries to guarantee.
In practice, there are already cases where this property is invalidated. For example, when using
dynamic linking, loading a function f from a dynamic library and asking for the address of f will in
practice yield two different answers inside and outside of that dynamic library. However, this new
case would be different as we could get two different answers in the same translation unit, leading
to surprising consequences.
For example, we might want to store pointers to functions in a container, and look up certain
functions in that container by their address. Possible use cases are a user-level vtable, or perhaps
a std::set that tracks which functions have been called already. If contract assertions on such
pointers are part of their value, and implemented such that the pointers store the addresses of
thunks rather than addresses of the actual functions, this means effectively that the same function
can have multiple values that do not compare equal. This would lead to surprising effects such as a
function not being found in the container even if the container contains a pointer to that function.
Moreover, the thunk approach requires devising a strategy for when to allocate and deallocate those
thunks. Depending on the exact semantics we wish to support, we might be able to allocate all
possible thunks statically, or we might have to do this dynamically, raising questions about how
we would then deallocate them, given that there might not be a general way to keep track of the
lifetime of those thunks.

6.2.2 Wide pointers

Instead of generating thunks, we can consider encoding contracts in the pointer value more directly
by making function pointers with contract assertions wide pointers (a.k.a. “fat” pointers) that carry
that information alongside the address of the pointed-to function. For example, such a wide pointer
could have two internal function pointers: one to code that performs the contract check and one to
the pointed-to function.
This approach would have some advantages over the thunk approach. In particular, we would be
able to immediately tell by inspecting the value of the pointer that it has a contract assertion
sequence, and we could preserve the property that when that value is compared to an address, it
could compare equal to the address of the function that the pointer points to.
However, the disadvantage of this approach is that we would have to change the binary representation
of the pointer to one that is ABI-incompatible with function pointers today. If we do not want to
change all function pointers — including those without function contract assertions — to be wide
pointers, this approach seems to require that pointers with function contract assertions must be
of different type than pointers without, and those types to be ABI-incompatible with each other,
which means that we end up with a specification strategy where the contract is part of the type
system after all (Section 6.1).

22

6.3 Contract as property of the declaration

The third approach is to make the sequence of contract assertions on a function pointer a property
of a particular pointer variable declaration, without it being a property of the pointer type or the
pointer value.
This approach was used for the noexcept-ness of a function until C++17 (when noexcept was
made part of the function type instead; see [P0012R1] for rationale). It is still used in other parts
of the language, for example for alignas:

int i = 0;
int j alignas(long) = 0;

The two variables i and j have the same type, the same value (even the exact same bit representation
of the value), and yet the compiler knows about the different alignment of variable j. The same
approach is being used for many kinds of attributes and vendor-specific extensions (e.g., __declspec).
This means that when using pre and post on a function pointer, for example,

void test(int i) {
int (*fptr)(int i) pre (i >= 0) = f; // (1)
fptr(i); // (2)

}

we could avoid the consequences of making pre and post part of the pointer type or the pointer
value. The compiler will see the contract on the declaration of fptr at (1) and will be able to
generate the required checks around the call at (2), while adding pre and post will not have any
effect on the ABI, will not break any client code, will not have additional runtime overhead, etc.
However, the downside of this approach is that with the rules of C++ today, it would be impossible
to keep track of intermediate contracts and enforce any rules on them (Section 5.5), or to propagate
contracts through expressions (Section 5.6). The reason for this is that in C++ today, so-called
backchannel information that is neither part of the type nor part of the value does not propagate
through expressions, out of functions, etc. This includes information such as alignment, whether a
variable was declared using a typedef, and — with this specification strategy — also the contract
assertion sequence. Therefore, in all the code examples in Section 5.6, the contract would just
silently evaporate, as there is no language mechanism in C++ today to make the function call aware
of it. This behaviour would likely be very surprising to the user.
There is a possible solution to this problem. Existing compilers can — and do — propagate different
kinds of backchannel information about “attributed types” in this manner today. Different compilers
have made different implementation decisions in this area, which are not necessarily coherent;
however, we could entertain introducing a mechanism for backchannel propagation to the C++
Standard, that could unify the existing implementation approaches.
However, such a mechanism would not address another problem with this specification strategy: there
would still be no way for a contract assertion sequence to propagate into a template (Section 5.7).
Consider again two function pointers that only differ in their contract assertion sequence:

// Pointer to function that accepts only positive numbers:
typedef int (*positive_fptr_t)(int i) pre(i > 0);
positive_fptr_t positive_fptr = f;

// Pointer to function that accepts only negative numbers:
typedef int (*negative_fptr_t)(int i) pre(i < 0);
positive_fptr_t negative_fptr = g;

void test(int i) {
std::invoke(positive_fptr, i);
std::invoke(negative_fptr, i); // same or different template instantiation?

}

23

Since the contract assertions are not part of the type, the template arguments of positive_fptr and
negative_fptr have the same type, and therefore must result in the same template instantiation.
In other words, the template only sees the type of its template argument, not the backchannel
information, and therefore generates the same code regardless of the contract assertion sequence.
This must be so — doing otherwise would be an ODR violation. Since the contract assertions are
not part of the value either, there is simply no way for std::invoke to be aware of the contract
assertion sequence on either pointer. We are currently not aware of any possible solution to this
problem.

Acknowledgements

Thanks to Gabriel Dos Reis, Peter Bindels, Joshua Berne, Lisa Lippincott, and Daveed Vandevoorde
for the conversations that led to this paper. Thansk to Peter Bindels, Joshua Berne, Lisa Lippincott,
Ville Voutilainen, and Oliver Rosten for reviewing drafts of this paper and providing helpful feedback.

Bibliography

[N4110] J. Daniel Garcia. Exploring the design space of contract specifications for C++. https:
//wg21.link/n4110, 2014-07-06.

[N4415] Gabriel Dos Reis, J. Daniel García, Francesco Logozzo, Manuel Fähndrich, and Shuvendu
Lahiri. Simple Contracts for C++. https://wg21.link/n4415, 2015-04-12.

[P0012R1] Make exception specifications be part of the type system, version 5. Jens Maurer.
https://wg21.link/p0012r1, 2015-10-22.

[P0246R0] John Lakos, Alisdair Meredith, and Nathan Myers. Contract Support Merged Proposal.
https://wg21.link/p0246r0, 2016-02-12.

[P0247R0] Nathan Myers. Criteria for Contract Support. https://wg21.link/p0247, 2016-02-12.

[P0287R0] Gabriel Dos Reis, J. Daniel García, Francesco Logozzo, Manuel Fähndrich, and Shuvendu
Lahiri. Simple Contracts for C++ (R1). https://wg21.link/p0287r0, 2016-02-15.

[P0380R0] A Contact Design. Gabriel Dos Reis and J. Daniel García and John Lakos and Alisdair
Meredith and Nathan Myers and Bjarne Stroustrup. https://wg21.link/p0380r0, 2016-
05-28.

[P0380R1] A Contact Design. Gabriel Dos Reis and J. Daniel García and John Lakos and Alisdair
Meredith and Nathan Myers and Bjarne Stroustrup. https://wg21.link/p0380r1, 2016-
07-11.

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup. Support
for contract based programming in C++. https://wg21.link/p0542r5, 2018-06-08.

[P2885R3] Timur Doumler, Gašper Ažman, Joshua Berne, Andrzej Krzemieński, Ville Voutilainen,
and Tom Honermann. Requirements for a Contracts syntax. https://wg21.link/
p2885r3, 2023-10-02.

[P2900R9] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r9, 2024-10-11.

[P2935R4] Joshua Berne. An Attribute-Like Syntax for Contracts. https://wg21.link/p2935r4,
2023-11-05.

24

https://wg21.link/n4110
https://wg21.link/n4110
https://wg21.link/n4415
https://wg21.link/p0012r1
https://wg21.link/p0246r0
https://wg21.link/p0247
https://wg21.link/p0287r0
https://wg21.link/p0380r0
https://wg21.link/p0380r1
https://wg21.link/p0542r5
https://wg21.link/p2885r3
https://wg21.link/p2885r3
https://wg21.link/p2900r9
https://wg21.link/p2900r9
https://wg21.link/p2935r4

[P2961R2] Timur Doumler and Jens Maurer. A natural syntax for Contracts. https://wg21.link/
p2961r2, 2023-11-08.

[P3028R0] Joshua Berne, Gašper Ažman, Rostislav Khlebnikov, and Timur Doumler. An Overview
of Syntax Choices for Contracts. https://wg21.link/p3028r0, 2023-11-05.

[P3097R0] Timur Doumler, Joshua Berne, and Gašper Ažman. Contracts for C++: Support for
Virtual Functions. https://wg21.link/p3097r0, 2024-04-15.

[P3173R0] Gabriel Dos Reis. P2900R6 May Be Minimal, but It Is Not Viable. https://wg21.
link/p3173r0, 2024-02-15.

[P3197R0] Timur Doumler and John Spicer. A response to the Tokyo EWG polls on the Contracts
MVP (P2900R6). https://wg21.link/p3197r0, 2024-04-12.

[P3221R0] Disable pointers to contracted functions. Jonas Persson. https://wg21.link/p3221r0,
2024-04-15.

[P3250R0] C++ contracts with regards to function pointers. Peter Bindels. https://wg21.link/
p3250r0, 2024-04-22.

[P3271R0] Function Usage Types (Contracts for Function Pointers). Lisa Lippincott. https:
//wg21.link/p3271r0, 2024-05-20.

25

https://wg21.link/p2961r2
https://wg21.link/p2961r2
https://wg21.link/p3028r0
https://wg21.link/p3097r0
https://wg21.link/p3173r0
https://wg21.link/p3173r0
https://wg21.link/p3197r0
https://wg21.link/p3221r0
https://wg21.link/p3250r0
https://wg21.link/p3250r0
https://wg21.link/p3271r0
https://wg21.link/p3271r0

	1 Introduction
	2 Prior art
	3 Use cases
	3.1 Enable caller-side checking of contracts not visible at the call site
	3.2 Add a missing function contract check
	3.3 Augment function-pointer-based APIs with contract checks
	3.4 Check function contracts when using function-pointer-based legacy APIs
	3.5 Inject a contract check via a function pointer
	3.6 Augment APIs with caller-facing checks in addition to callee-facing checks
	3.7 Use in templates

	4 Syntax
	4.1 Contract assertions on declarations
	4.2 Contract assertions on typenames
	4.3 Contract assertions on expressions

	5 Semantics
	5.1 Pointer contract matches function contract
	5.2 Pointer drops function contract
	5.3 Pointer adds contract
	5.4 Pointer contract is different from function contract
	5.4.1 Caller-facing and callee-facing contracts model (Contracts MVP)
	5.4.2 Substitution principle model

	5.5 Intermediate contracts
	5.5.1 Intermediate contract must match caller-facing contract
	5.5.2 Implicitly drop intermediate contracts
	5.5.3 Explicitly drop intermediate contracts
	5.5.4 Evaluate intermediate contracts

	5.6 Propagation
	5.7 Templates and type deduction

	6 Specification strategies
	6.1 Contract as part of the type
	6.2 Contract as part of the value
	6.2.1 Thunks
	6.2.2 Wide pointers

	6.3 Contract as property of the declaration

