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Abstract
This paper introduces function types with usage, novel function types that have associated contracts.

Function types with usage are named function types that are not the type of any individual function.
Instead, they are used as the basis of function pointer and reference types, and describe the generalized
expectations indirect callers have of the functions pointed or referred to.

1 About the paper
The present revision, r1, is intended not as a finished product, but as a progress report and
further exploration of the design space. I’m putting it in the mailing to make it generally
available, but there is no need for SG21 discussion in Wrocław. This is not a paper targeting
C++26.

1.1 History
Revision 1 is an interim progress report, with some revisions.

• The addendum about virtual functions became moot, and was removed.
• The terminology is improved. The term “function usage type” is replaced by “function type with

usage.” This allows more elegant and consistent terms for related types, e.g, “function type without
usage,” “pointer to function with usage,” and “usage-erased reference to function.”

• Revision 1 embraces the keyword-based “alternate syntax” from revision 0. The contextual key-
word based syntax proposed in revision 0 made declarators more complex, and provided little
benefit.

• Revision 1 adopts a strategy of expanding the definition of “similar” ([conv.qual]) to include
function types. The similarity relationship ignores differences in usage.

• An exploration of two related features “declarations of appropriate usage” was added.
• An exploration of library features based on this feature was added.
• Speculation on how function types with usage may improve coroutines has been added.

Revision 0 was presented to SG21 in St. Louis in the afternoon of 2024-06-26. Two polls were taken:

• We want to spend more time considering P3271R0 “Function usage types”, in the MVP timeframe.
Consensus was against. (SF 0; F 1; N 9; A 8; SA 2)

• We want to spend more time considering P3271R0 “Function usage types”, as a post-MVP exten-
sion. Consensus was in favor. (SF 12; F 8; N 2; A 0; SA 0)

Revision 0 contained an addendum outlining how contracts for virtual functions could be understood
and implemented consistently with this proposal. A proposal (D3097r1) along those lines was accepted
by SG21 and EWG in St. Louis.
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2 Introduction: a tale of function usage
As an introduction to function types with usage, let’s consider a scenario in which an existing use of function
pointers is improved by adding contracts.

2.1 The background
A function fancy_calculation is parameterized on an operation, which it will invoke. It uses the
operation in a way that expects these properties:

1. A single argument of type int will be passed to the operation.

2. A result of type int is expected from the operation.

3. The argument passed will be nonnegative; the operation may rely upon this.

4. The result must be nonnegative, and no greater than the argument passed.

Some existing functions, such as identity and halve, are suited to this usage:

int identity( const int x ) { return x; }
int halve ( const int x ) { return x/2; }

Some other functions with the same type, such as twice, are not suited to this usage:

int twice ( const int x ) { return 2*x; }

Users of fancy_calculation nominate various operations to be used, indicating them with function
pointers and references:

void print_fancy_results( const int s )
{
const std::array ops = { &identity, // good choice

&halve, // good choice
&twice }; // bad choice!

std::cout << s << ":";
for ( auto op: ops )

std::cout << " " << fancy_calculation( *op, s );
std::cout << std::endl;
}

These operations are passed to fancy_calculation, which invokes them:

int fancy_calculation( int(&op)(int), const int start )
{
int current = start;
while( true )

{
int next = op( current );
if ( current == next )

break;
current = next;

}
return current;
}

Helpfully, the authors of identity, halve, and twice have provided assertions governing the use of
their functions:

int identity( const int x ) post( r: r == x );
int halve ( const int x ) post( r: r == x/2 );
int twice ( const int x ) pre( can_multiply(2,x) ) post( r: r == 2*x );
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2.2 The problem
We would like to provide assertions governing the use of fancy_calculation. We can begin with some
pre- and postconditions:

int fancy_calculation( int(&op)(int), const int start )
pre( start >= 0 )
post( r: r >= 0 )
post( r: r <= start )
post( r: r == op(r) );

But these assertions don’t specify the restrictions on the function fancy_calculation calls indirectly.
The closest we can come without some new mechanism is to add assertions to the body of fancy_calculation,
surrounding each invocation of the operation:

int fancy_calculation( int(&op)(int), int start )
{
int current = start;
while( true )

{
contract_assert( current >= 0 ); // our responsibility
int next = op( current );
contract_assert( next >= 0 ); // Not our responsibility: these
contract_assert( next <= current ); // fail if op was poorly chosen.

if ( current == next )
break;

current = next;
}

return current;
}

Putting these assertions in the function body is an imperfect solution. It becomes tedious and error-prone
when there are many indirect function calls. It’s invasive: the surrounding code may need to be restructured
to make values available to these assertions. And finally, while these assertions are intended to inform the
choice of function, they are hidden from the code making that choice.

2.3 A mitigation of the problem
To some extent, the problems listed above can be mitigated by introducing an object that wraps the function
pointer:

class fancy_wrapper
{
private:

int(*function)(int);

public:
explicit fancy_wrapper( int(&f)(int) )

: function(&f)
{}

int operator()( const int x ) const
pre( x >= 0 )
post( r: r >= 0 )
post( r: r <= x )
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{
return (*function)(x);

}
};

A wrapper like this has some drawbacks. It introduces a shim function operator() that may incur some
overhead, as parameters must be moved or copied before invoking the pointed-to function. The pre- and
postconditions also no longer apply to the parameters or result of the pointed-to function; they instead apply
to those of operator(). And finally, while the wrapper definition — and thus the contract it contains —
may be made available to the caller of fancy_calculation, the contained contract is overwhelmed by
the volume of boilerplate text surrounding it. The code above is also considerably shortened by providing
a mixture of pointer-like and reference-like semantics; the boilerplate increases if we try to provide separate
pointer-like and reference-like types.

Nevertheless, this wrapper points to a solution. We will introduce new contract-bearing function types
that may be referred to by either pointers or references, but eliminate the unnecessary overhead, both
syntactic and at run-time.

Please don’t be confused: the class fancy_wrapper only illustrates a stage in our thinking. It’s a data
type, while function types with usage, introduced below, are function types. The class fancy_wrapper is
analogous to a “pointer to function with usage,” which is a kind of pointer type.

2.4 The plan
The solution proposed here is in several steps:

1. Gather the conditions imposed on the operation by fancy_calculation together under a name.

function_usage fancy_op:( const int x )->( int r )
pre( x >= 0 )
post( r >= 0 )
post( r <= x );

This defines a function type with usage, which is a new kind of function type. As with an abstract class
type, there are no functions of this type. Instead, this type describes the manner in which a function
of type int(int) will be used by a particular sort of indirect caller.

2. At the point where a particular function is chosen for use with fancy_calculation, use syntax that
expressly indicates that the chosen function is intended to suit the fancy_op usage.

void print_fancy_results( int start )
{
const std::array ops = { &fancy_op{identity}, // good choice

&fancy_op{halve}, // good choice
&fancy_op{twice} }; // bad choice!

// ...
}

The explicit use of fancy_op here designates a function as suitable for a particular usage. The
expression fancy_op{identity} is an lvalue of type fancy_op referring to the identity function.

At this point in compilation, both fancy_calculation’s usage contract and the chosen function’s
contract will be available to tools attempting to prove compatibility across all inputs. But we do not
propose here to prove, or even require, compatibility-in-general; we only propose to check compatibility-
as-used, in the same manner as other aspects of the contracts proposal.

3. Use the type system to create a chain of custody from the point where the function is chosen to the
point where it is called, expressing at each step that the function is intended to suit the usage.
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int fancy_calculation( fancy_op& op, int start );
// halve or twice cannot be bound to the fancy_op& parameter,
// but fancy_op{halve} or fancy_op{twice} can be bound to it.

Pointers and references to fancy_op are distinct from pointers and references to int(int), and also
distinct from pointers and references to other function types with usage, even if those other types have
identical pre- and postconditions. Programs evolve, and usage scenarios that have similar contracts
today may have dissimilar contracts tomorrow.

In the anticipated implementation, pointers and references to fancy_op have the same execution-time
representations as pointers and references to int(int). The distinction in type is purely a compile-
time matter. For pointers, identical representation is essentially required: the type fancy_op* is
similar (in the sense of [conv.qual]) to int(*)(int).

4. When the indirect call is made, check compliance with the conditions in fancy_op as they apply to
the particular invocation. These conditions do not replace the pre- and postconditions of the function
referred to; they are additional conditions imposed by the caller.

int fancy_calculation( fancy_op& op, int start )
{
// ...

int next = op( current );
// Executes, in this order:
// the preconditions of fancy_op
// the preconditions of the function referred to
// the body of the function referred to
// the postconditions of the function referred to
// the postconditions of fancy_op

// ...
}

The poor decision to use twice can be detected here if a particular invocation violates a precondition
of twice or a postcondition of fancy_op. (A precondition of fancy_op is the responsibility of the
caller; a postcondition of the called function is the called function’s responsibility.)

In this example, when start is zero, twice will comply with the usage conditions of fancy_op. When
start is positive but sufficiently small, a postcondition of fancy_op will be violated. Very large values of
start will violate a precondition of twice.

2.5 A look back
The key idea here is that the contract on a function pointer should express the needs of a caller, rather than
just being a contract shared between several functions. A third party — often at a higher level than either
the caller or callee — is typically responsible for choosing functions that meet the needs of the caller.

Once contracts are in heavy use, I expect most function contracts to be nearly unique within a program.
If two different functions may be called under identical circumstances and make identical guarantees about
their results, how would one choose between them? Situations will arise, for example during refactoring or
testing, where two functions will share a contract. Or functions may differ in ways, such as complexity, that
we can’t yet express in contracts. But I expect these situations to be rare.

Some people have suggested that we should change the type of a function pointer &f when f has a
nonempty contract. To me, that seems to be a very disruptive change for very little benefit. If two functions
almost never have the same contract, what would we gain? Contracts on function pointers need to be open
to a range of implementations, while contracts on individual functions may allow little variance. Conversely,
contracts on function pointers may be very specific to a particular caller, while contracts on functions are
open to a wide range of callers. The two should be specified separately.
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3 Hazards to avoid
There are a number of approaches to using contracts in conjunction with function pointers. But to produce a
workable solution, there are also a number of hazards we must avoid. Many approaches founder on the rocks
of one of three hazards: allowing contracts to alter the types of functions, incorporating contract details
into the type system, or requiring a function to explicitly opt in to a contract for indirect use. The present
proposal is designed to avoid these hazards.

3.1 Contracts must not alter the types of functions
If upgrading to a new version of C++ changes the types of functions in a program, it creates a compatibility
nightmare: libraries compiled with one version of the language can become incompatible with the next.
Therefore, at the very least, the types of functions that have no contract annotations must remain the same.

But what of functions with contract annotations? If adding a contract annotation to a formerly-empty-
contract function changes the type of the function, adding contracts to a program becomes a fraught process
with wide-ranging repercussions. Empty-contract functions would also become distinguishable in the type
system, going against our slogan “concepts don’t see contracts.”

To avoid this hazard, the type of a function must be unchanged both by the introduction of contracts
into the language, and by the introduction of a contract to the function itself.

The present proposal does not alter the types of functions in any way.

3.2 Contract details must not become part of the type system
Some approaches rely on a form of duck-typing, wherein type equality is determined by a textual comparison
of contracts. In doing so, they make a canonicalized expression of the contract part of a function pointer’s
type. Such an approach injects the canonicalized contracts into mangled linkage names, creating a strong
disincentive to modifying either an individual contract or the contract system as a whole. In addition, any
alteration of a contract that alters its canonicalized expression becomes visible to the type system, going
against the slogan “concepts don’t see contracts.”

A similar hazard applies when the rules governing type conversions take the details of contracts into
account. The type system, through SFINAE and concepts, is sensitive to the well-formedness of conversions.
Allowing a change in contract details to affect conversions goes against “concepts don’t see contracts.”

While the present proposal does introduce new types, type equality is determined by name. The use of named
types insulates the type system from the contents of contracts. Alteration of a contract affects neither type
equality nor the well-formedness of conversions.

3.3 Function pointer contracts should not be invasive
Some approaches, modeled on the relationship between base and derived classes, require a function’s def-
inition to opt in to a function pointer type’s contract. This invasiveness creates a pressure to continually
modify otherwise-stable functions to opt in to newly-invented function pointer contacts. Conversely, it cre-
ates a disincentive to the introduction of contracts on function pointers, as many functions may need to be
modified or wrapped to opt in to the new contract.

This problem may be mitigated by the use of shim functions that opt in to a contract, but encouraging
the use of such shim functions goes against our zero-overhead principle.

The present proposal avoids invasiveness by recognizing three roles: a function that expresses its implemen-
tation contract, a caller that expresses its usage contract, and a third party that designates the function as
usable by the caller. The designation is a type conversion that may be implemented without a change in
representation, thereby imposing no overhead.
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4 The details

4.1 Types with and without usage
Function types with usage are novel function types, distinct from the kind of function types in C++23.
When a distinction is necessary, the previously-existing kind of function types, are referred to as function
types without usage.

A function type with usage is a definable item [basic.def.odr].

Each function type with usage is based on a function type without usage. The latter type is referred to
as the usage-erased type of the former.

function_usage fancy_op:( const int x )->( int r )
pre( x >= 0 ) // The usage-erased type is int(int)
post( r >= 0 )
post( r <= x );

Specifically, the usage-erased type is arrived at by applying these rules:

• The parameter types of the usage-erased type are arrived at by applying the rules of [dcl.fct]¶5 to the
parameter types of the type with usage (arrays become pointers, top-level const is removed).

• The result type of the usage-erased type is the result type of the type with usage.

• The usage-erased type is noexcept if the type with usage is noexcept.

The qualifiers “with usage,” “without usage,” and “usage-erased” may also be used with pointers and
references:

• fancy_op* is a pointer to function with usage or function pointer with usage.

• int(*)(int) is a pointer to function without usage or function pointer without usage.

• fancy_op& is a reference to function with usage or function reference with usage.

• int(&)(int) is a reference to function without usage or function reference without usage.

• int(*)(int) is the usage-erased type of fancy_op*.

• int(&)(int) is the usage-erased type of fancy_op&.

For convenience, if T is a function, pointer, or reference type without usage, the usage-erased type of T is T
itself.

4.1.1 Type equality

Type equality for function types with usage is determined by comparing fully qualified names and template
arguments, much as it is for class types. This is in contrast to function types without usage, where type
equality is determined by comparing parameter types, result types, and noexceptness. A function type with
usage is not the same type as any function type without usage.

4.1.2 Type similarity

A notion of type similarity is defined in [conv.qual]¶2 and given force largely by [basic.lval]¶11. In brief,
when two types S and T are similar, objects of type S may be accessed through expressions of type T , and
vice-versa.

I propose to extend this notion to function types, decreeing that two function types are similar when
they have the same usage-erased type, with the effect that a function of one type may be called through an
expression of any similar type.

Similarity already extends recursively to types generated by adding cv-qualifiers, “pointer to,” and “array
of” (when the arrays don’t have different known bounds). This property would be preserved, so that when
F and G have the same usage-erased type, “array of three const pointers to F ” will be similar to “array of
three pointers to G.”
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4.2 Function types with usage may be incomplete
It is useful to declare a function type with usage without defining it, leaving the type incomplete. As with
class types, this allows pointers and references to be passed through contexts that don’t have or need the
details of the type — specifically, contexts that neither bind the usage to a function nor call a function
through the type with usage.

Ideally, forward declaration of a function type with usage should reveal only enough information to make
pointers to the type complete (which may simply be the size and alignment of the pointers). Using a keyword
to introduce the type declaration makes this easy:

function_usage fancy_op;

[TODO] Open Question: Must a declaration of an incomplete type with usage specify the language linkage
of the function? Specifically, may language linkage affect the size or alignment of pointers or references to
functions?

4.3 Function types with usage may be produced by templates
To express the needs of function or class templates, we need templates for function types with usage:

template < std::integral T >
function_usage fancy_integral_op:( const T x )->(T r)

pre( x >= T{} )
post( r >= T{} )
post( r <= x );

template < std::integral T >
T fancy_integral_calculation( fancy_integral_op<T>& op, T start );

Templates for function types with usage may be explicitly specialized. The result and parameter types
of the specialization must exactly match the template declaration (array-to-pointer or const-removal adjust-
ments are not performed.) The pre- and postconditions may differ.

template <>
function_usage fancy_integral_op< char >:( const char x )->(char r) // OK

pre( x >= ’0’ )
pre( x <= ’9’ )
post( r >= ’0’ )
post( r <= x );

template <>
function_usage fancy_integral_op< short >:

( const int x )->( short r ) // ill-formed

[TODO] The restriction on result and parameter types is poorly thought out. It seems to suggest instan-
tiating the base template in order to compare it to the specialization. Why would we do that?

4.4 Attaching usage to a function
The syntax used in this paper for attaching usage to a function, e.g. fancy_op{halve}, is a functional-
notation explicit type conversion with a braced initializer list, resulting in direct initialization.1 It is a syntax
we use in other contexts to indicate a nice conversion, and I want to encourage that connotation here.

1Earlier versions of this paper proposed dedicated punctuation, such as fancy_op:->halve. That seemed only to encourage
bikeshedding, and drew attention away from the mechanics of the proposal.
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Niceness in this context involves an intention that the contract of the function is compatible with the
usage contract: perhaps compatible for all use, and at least compatible for the intended use. To allow
tools to help enforce this compatibility, both contracts should be made available locally. Therefore, for a
function type with usage u and a an expression f of function type, I propose that the expression u{f} is
only well-formed when

• The type with usage u is complete, and

• Either the expression f is a constant expression or the type of f is a complete function type with usage.

Both overload resolution and template argument deduction may be applied to the function expression,
and template argument deduction may also be applied to the function type with usage. These should be
applied as if in an analogous function call expression. In the simplest case, the type with usage u1 is not a
template specialization, and we imagine an analogous attachment function attach_u1:

function_usage u1:( usage_func_params )->( usage_result );

u1& attach_u1( usage_result (&f)( usage_func_params ) );

In this case, the expression u1{f} performs template argument deduction and overload resolution in the
same way as a function call expression attach_u1(f).

For a template u2, the attachment function is similarly templated:

template < usage_tmp_params >
function_usage u2:( usage_func_params )->( usage_result );

template < usage_tmp_params >
u2< usage_tmp_params >&
attach_u2( usage_result (&f)( usage_func_params ) );

Explicit template arguments present on either subexpression are applied to the analogous function call: the
expression u2<usage_args>{ f<func_args> } performs template argument deduction and overload
resolution like attach_u2<usage_args>(f<func_args>).

[TODO] See if this analogy can be rewritten in terms of class template argument deduction; it would
probably be more clear. And because a function type with usage is a type, its template arguments should
be more closely analogous to class template arguments than function template arguments.

4.4.1 Other non-cast explicit conversions to types with usage

Because the syntax is so similar, I propose that a function style implicit conversion using parentheses,
e.g., fancy_op(halve), should only be well-formed when fancy_op{halve} is well-formed. A C-style
cast (fancy_op)halve may be allowed in the wider contexts where a static or reinterpret cast would be
allowed. All of these operations have the same result: an expression of type fancy_op referring to the
function halve.

4.5 Null pointer conversions
A null pointer constant is convertible to a pointer to function with usage; no change to the wording of the
standard seems to be necessary to allow this.

4.6 Implicit function usage conversions
I propose to treat pointers and references to function types without usage as indicating functions with
unknown usage contracts. This treatment suggests that a function pointer with usage may be implicitly
converted to its usage-erased type. This should be a standard conversion [conv.general] sequenced before the
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existing function pointer conversion, so that in addition to erasing usage, an implicit conversion sequence
may drop noexcept.

There are no standard conversions between types with usage, or from types without usage to types with
usage.

4.7 Static cast
A static cast may reverse an implicit conversion sequence that contains a function usage conversion. Thus
a static cast may produce a function pointer with usage from a pointer to the usage-erased type. Because
an incomplete function type with usage does not reveal its usage-erased type, such a cast is only well-
formed when the function type with usage is complete. (Dependency on completeness is also a property of
base-to-derived static casts.)

4.8 Reinterpret cast
A reinterpret cast should be able to add, erase, or alter usage, producing a callable result wherever the result
type is similar to either the original function type or the original function type with noexcept removed.
Reinterpret casts may be performed even when the function usage type(s) are incomplete.

Reinterpret casts to or from types with usage pose no problems for the anticipated implementation, as
the usage contract is part of the type, not part of the execution-time data. I don’t think any change is needed
to [expr.reinterpret.cast], with the exception that note 4 in ¶6, which is already too strongly phrased, will
become even less accurate.

4.9 Reference binding
The function usage conversion above makes the usage-erased type of a function type with usage reference-
compatible ([dcl.init.ref]¶4) with the type with usage. Therefore, lvalue references to the usage-erased type
may be bound to lvalues of the function type with usage.

4.10 Calling the function
A call to a function through an expression of incomplete function type is ill-formed.

The restriction in [expr.call]¶6 on calling a function through an expression of different type must be
relaxed to allow calling a function through a type with usage whenever it could be called through the
usage-erased type.2

In the anticipated implementation, the code for checking a usage contract may be understood as using
a class with three inline member functions: a constructor that asserts preconditions, an operator() that
asserts postconditions, and a destructor. An object of the type is constructed immediately before control is
transferred to the called function; postconditions are checked and the object is destroyed immediately after
control returns.

template < assertion_semantic_parameters >
struct __asserter_for_fancy_op

{
references_to_parameters members;
data_saved_for_postconditions more_members;

inline __asserter_for_fancy_op( parameter_refs );
// Called just before transfer of control.
// Stores references to the parameters,
// asserts preconditions, and
// saves data for postconditions.

2It has been suggested that we weaken this restriction further, providing a feature similar to covariant return types of virtual
functions. I don’t know a good way to implement such a feature, and even if I did, it would be beyond the purview of this
paper, and perhaps of SG21.
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inline void operator()( result_ref );
// Called just after control returns.
// Asserts postconditions.

inline ~__asserter_for_fancy_op();
// Called just after asserter postconditions,
// or during stack unwinding.
// Destroys data saved for postconditions.

};

The code to check the assertions may either be inlined into the call site or gathered together under three
linkage names. (I don’t know a universally available technique that combines the three parts into a single
function call, leaves room for saved postcondition data, and neither copies nor moves the parameters or
result of the invoked function. If someone does, that would be an improvement.)

4.11 Member function types with usage
Member functions also need types with usage, so that we can form pointers-to-member-functions with usage.
Incomplete member function types need to be distinguishable from nonmember function types, because
pointers to these types have different layout characteristics. Therefore I suggest using a different keyword
to introduce the declaration of a member function types with usage.

member_function_usage fancy_member_op;

member_function_usage fancy_member_op: C::( const int x )->( int r )
pre( x >= 0 )
post( r >= 0 )
post( r <= x );

Given this declaration, the type fancy_member_op is a “member function type with usage”, and so a
fancy_member_op* is a “pointer to member function with usage.”

5 Declarations of acceptable usage (experimental)
One criticism of the early proposal was that using function usage types involves too much explicit type
conversion. One may desire a way to declare that “it’s OK to use halve as a fancy_op,” or that “it’s OK
to use an even_fancier_op in place of a fancy_op.”

Generally, these situations arise when one has examined two function contracts and found that the
converted-from contract (that of halve or even_fancier_op) places stronger restrictions on the called
function and the converted-to contract (fancy_op) places stronger restrictions on the caller. Verifying this
compatibility, while not a job for a C++ compiler, is a reasonable target for static analysis.

In addition to providing a programmer-friendly convenience, we can ease the burden of static analysis if
we can associate these compatibility checks with a particular translation unit — that is, if many translation
units can rely upon a declaration of compatibility, while only a single translation unit takes responsibility
for the compatibility by providing a definition.

At first glance, treating compatibility as something that is separately declared and defined would seem
to increase overhead: some additional function must be called or some new entity stored. Inlining would
remove the overhead, but would defeat the purpose of separating the declarations from definitions. But in
this case, there is a way to thread the needle, getting zero overhead despite not inlining the definition. We
will introduce a form of declaration that has only one possible non-deleted definition.

5.1 Usage redeclarations
Let’s reuse our identity and halve functions for another purpose: discounting prices. Without usage,
we might write this code:
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int identity( const int x ) post( r: r == x );
int halve ( const int x ) post( r: r == x/2 );

const std::array< int(*)(int), 7 > half_off_weekdays =
{ identity, halve, halve, halve, halve, halve, identity };

Switching to a function type with usage makes the code more expressive, but the array becomes wordier:

function_usage discount:( const int list_price )->( int charged_price )
pre( list_price >= 0 )
post( charged_price >= 0 )
post( charged_price <= list_price );

const std::array< discount*, 7 > half_off_weekdays =
{
discount{identity},
discount{halve}, discount{halve}, discount{halve},

discount{halve}, discount{halve},
discount{identity}

};

In the declaration of the array, the repetition of the type name dominates the text, but contributes little
to our understanding. The sequence of function names has been obscured. It would be better to move the
usage attachments outside of the array initializer, so that only two attachments are necessary. That can be
done by declaring references.

discount& identity_discount = discount{identity};
discount& halve_discount = discount{halve};

const std::array< discount*, 7 > half_off_weekdays =
{
identity_discount,
halve_discount, halve_discount, halve_discount,

halve_discount, halve_discount,
identity_discount

};

That’s better, but the _discount wart we added to our identifiers still clutters the text. The extra
declaration also introduces an opportunity for a subtle error: a clumsy edit to the source might leave
identity_discount not referring to the identity function.

Fundamentally, we don’t want a new identifier. We want to allow the same identifier to refer to the same
function, just with an additional type. We can allow this: let a function to be redeclared under the same
qualified name but with a different type, as long as the types are similar.

discount identity; // identity may be used as a discount
discount halve; // halve may also be used as a discount

const std::array< discount*, 7 > half_off_weekdays =
{ identity, halve, halve, halve, halve, halve, identity };

The language mechanism here is simple overloading. The declarations introduce new names that overload
the original names, in the same namespace. The new name always refers to the function with the same name
in the same namespace with the same signature. (The usage type must therefore be complete at the point
of declaration.)

To avoid introducing ambiguities, these new names are not viable when calling a function, but only when
taking the address of an overload set, as in [over.over], and only when there is a target type.
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As the new name does not refer to a new function, no new linkage name need be created. Despite only
seeing a declaration, the compiler knows that the name refers to the original function.

For the sake of localizing analysis, I think we should allow definitions for these declarations, so we can
pick a translation unit responsible for mating the contracts. We can require the definition to be defaulted.

discount identity = default; // no other non-deleted definition is allowed
discount halve = default;

5.2 Usage conversions
One usage may impose more stringent restrictions on a function than another. For example, a discount
may be more stringent than a price_adjustment. In these cases, it may be useful to specify that one
may sort of function may be used as the other.

function_usage price_adjustment:( const int list_price )->( int charged_price )
pre( list_price >= 0 )
post( charged_price >= 0 );

function_usage discount:( const int list_price )->( int charged_price )
pre( list_price >= 0 )
post( charged_price >= 0 )
post( charged_price <= list_price );

usage_conversion discount->price_adjustment;

Such a conversion would allow discount* to convert to price_adjustment*, and allow price_adjustment&
references to bind to discount lvalues. These would not be standard conversions.

As with usage redeclarations, a definition can be added for the benefit of localizing analysis.

usage_conversion discount->price_adjustment = default;

5.3 Usage declarations and conversions defined as deleted
It may also be possible to ban certain usages or usage conversions by defining them as deleted. More
investigation is needed.

discount twice = delete;
usage_conversion price_adjustment->discount = delete;

discount *x = &discount{twice}; // ill-formed: the best match is deleted

price_adjustment& y = price_adjustment{identity};
discount& z = discount{y}; // ill-formed: deleted conversion

6 Function types with usage in the standard library (speculative)
A handful of extensions to the standard library can make function types with usage more widely useful.
Each of the features listed here is likely to require compiler support, rather than being implementable as a
pure library feature.

6.1 Type traits and concepts
A type trait should distinguish types with usage from those without, and a type trait should erase usage
from a type.
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function_usage fancy_op:( const int x )->( int r )
pre( x >= 0 ) post( r >= 0 ) post( r <= x );

static_assert( is_type_with_usage_v< fancy_op > );
static_assert( is_type_with_usage_v< fancy_op* > );
static_assert( is_type_with_usage_v< fancy_op& > );

static_assert( !is_type_with_usage_v< int()(int) > );
static_assert( !is_type_with_usage_v< int(*)(int) > );
static_assert( !is_type_with_usage_v< int(&)(int) > );

static_assert( is_same_v< int()(int), usage_erased_t< fancy_op > );
static_assert( is_same_v< int(*)(int), usage_erased_t< fancy_op* > );
static_assert( is_same_v< int(&)(int), usage_erased_t< fancy_op& > );

The concepts function_with_usage and function_without_usage are handy below, and I sus-
pect in general.

template < typename T >
concept function_with_usage = is_function_v<T> && is_type_with_usage_v<T>;

template < typename T >
concept function_without_usage = is_function_v<T> && !is_type_with_usage_v<T>;

6.2 function_with_usage_matching
A number of people have expressed the desire to copy the contract from a function into a function type with
usage, in order to provide a match for refactoring or testing. A library template can provide this capability.

template < function_without_usage& f >
function_usage function_usage_matching;

The type produced by this template, function_usage_matching<f>, has the same parameter list,
result type, noexceptness, and contract as the function f. Different values for the argument f will, of course,
produce different function types with usage, even if the argument functions have textually or semantically
indistinguishable contracts.

6.3 Contract asserters
One may sometimes desire to wrap a contract around some operation that cannot be isolated into a function,
e.g., a co_await expression. This desire can be addressed by making available in the library a class similar
to the one described as an implementation detail in section 4.10.

template < function_with_usage T >
class contract_asserter

{
public:

contract_asserter( parameter_refs... );
~contract_asserter();

void operator()( result_ref ) const;
};

Unlike most library classes, this one should be documented to use contract assertions, as the entire purpose
of the class is to invoke the assertion machinery. The constructor asserts the preconditions of T, and saves
and captured data, as well as pointers to parameters used by the postconditions. The postconditions of T
are asserted by operator(), using the saved data.

14



The implementation of the contract_asserter type must be careful not to expose details of the contract
in its examinable properties. Specifically, its size must not vary with the amount of data captured for
postconditions. One way to implement a class like this is as a wrapper around a coroutine; the captured
data can be stored in objects local to the coroutine. After asserting preconditions and capturing data, the
coroutine suspends itself awaiting a result reference. (For this reason, I have referred to this sort of class as
a “cocontract” in some discussions. But the name contract_asserter is more descriptive.)

In conjunction with a feature that lets postconditions capture data, contract asserters allow one contract
to be inserted into another:

int my_fancy_op( const int i )
post( [ fancy_post = contract_asserter<fancy_op>(i) ]

( r: fancy_post(r) );

int replacement_for_f( const int i )
post( [ f_post = contract_asserter<function_usage_matching<f>>(i) ]

( r: f_post(r) );

To facilitate the nesting of contracts, the captures should be performed bottom to top, in the reverse order
of the postconditions.

7 Using types with usage to improve coroutines (speculative)
The execution of a coroutine brings together several separately-written pieces of code in a complex interaction.
The purpose of function contracts is to specify the interfaces between separately-written pieces of code, but
we haven’t yet addressed the full complexity of interactions in a coroutine.

By my count, there are seven kinds of separately-written code involved with a coroutine.

• The caller, which invokes the “ramp function,” written by a user;

• resumers, which invoke the resume member of a coroutine handle, written by users;

• the coroutine_handle, part of the standard library, templated on the promise type;

• the coroutine itself, written, mostly, in [dcl.fct.def.coroutine]¶5, with behavior governed by the promise
type and parameters;

• the coroutine body, written by a user; and

• a complex of operations involved in an await-expression, described in [expr.await], and governed by
the awaiter type;

• a complex of operations involved in a yield-expression, described in [expr.yield], and governed by the
promise type.

As things stand, we have a way to specify a caller’s contract on a coroutine. Because function types with
usage allow us to specify a contract divorced from a function, we can use them to specify conditions to be
asserted around the other portions of coroutine execution.

Specifically, type names looked up in the promise type could designate three contracts:

• A resumer contract, specifying conditions for resumption, either by resume or by coroutine chaining.
This contract applies as if an entire chain of resumed coroutines were a function. The chain begins
with the await_resume resuming the coroutine, and ends with the await_suspend method of a
void-returning or boolean-returning awaiter.

This contract can be copied to the declaration of coroutine_handle<P>::resume() for resumer-
side checking when that resume function is used to resume the coroutine. The resume function in
coroutine_handle<void> has no promise type, and so cannot expose this contract to the caller.

15



Resumption preconditions can be checked in the coroutine as well, and by one coroutine when chaining
to another.

The resumption postcondition of the final coroutine in a chain can be checked within that coroutine,
but, absent heroic implementation effort, the resumption postconditions of earlier coroutines in a chain
cannot be checked.

• A body contract, specifying conditions for entry into and exit from the coroutine body (after the initial
awaiter and before the final awaiter). This contract applies as if the body were a function.

• A yield contract that acts as if yield were a function. Preconditions are checked before yield_value,
and postconditions at the end of the yield-expression, after the internal await-expression.

One more contract may be specified by awaiter types:

• An await contract that acts as if await were a member function of the awaiter. Preconditions are
checked after the awaiter is determined (by the “o expression”) and postconditions at the end of the
await-expression, after await_resume.
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