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Abstract

The SG21 proposal for the Contracts facility seeks to reduce the chance of accidentally writing
destructive contract assertions by making const certain expressions that would not otherwise
be const when used outside a contract assertion. In this paper, we attempt to categorize all
potential expressions to which that transformation could be applied, and we propose several
soundly reasoned alternatives, including possibilities where we remove any semantic changes and
leave this design space for compiler vendors to explore through warnings.
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Revision History
Revision 0

• Original version of the paper for discussion during an SG21 telecon

1 Introduction
SG21’s review of [P3071R1] generated some discussion about the exact set of expressions to which
what has since been dubbed const-ification should be applied as well as whether we should build in
any protections at all to avoid and discourage writing destructive contract assertions that change
the correctness of a program.

As originally proposed and as integrated into [P2900R8], const-ification — which treats an expression
as if it were wrapped in a cast that adds const to the expression’s type — was applied to the
following.

• Id-expressions that name variables having automatic storage duration, including structured
bindings, are implicitly treated as const. This transformation applies to function parameters
and non-static block-scope variables used within a contract-assertion’s predicate.

• *this is const, which then applies the same rules as used within a const member function
to any data members due to the implicit transformation of an id-expression denoting a data
member, d_x, into a class member access expression (*this).d_x. For the same reason, member
functions invoked either implicitly or explicitly through this will select const overloads within
a contract-assertion’s predicate.

Reflector discussion and further experimentation related to this topic raised a variety of questions
and concerns regarding const-ification and particular potential candidates for its application.

• Some objects will inevitably be used with APIs that are not properly const-qualified. Making
these APIs more inconvenient to use within contract assertions might discourage the use of
Contracts in general in certain fields.

• Certain non-const member functions, such as std::map::operator[], can modify an object’s
value but, when used under specific conditions, will not modify any state are thus (effectively)
runtime-conditionally const. Preventing uses where nonmodification has already been ensured
by the user can block natural use cases that would have worked as intended.

• Global objects, frequently intended to be used as singletons, often have APIs that are not
const qualified even if they make no explicit modifications to the named object. Centralized
logging singletons are a common example of such things.

• Deep changes to the const-ness of an object, such as changing T* to const T*, can result in
surprising and untenable changes to the results of type deduction, which is why modifications
through pointers are not actively prevented by the proposal in [P2900R8]. Without some form
of user-defined mechanism to specify deep const behavior, an unbridgeable gap would arise
between built-in pointers and user-defined pointer-like types.
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To address these concerns and to possibly produce a more ideal solution for future users of Contracts
in C++, we can consider changing the mechanism we apply to const-ify an expression, the entities
to which we apply const-ification, and the types of expressions to which we apply a transformation.
To properly evaluate these design alternatives, however, we must first understand the purpose of
const-ification, enumerate the various categories to consider, and then explore potential strategies
to maximize the effectiveness of this feature.

2 Motivation
Many reasons motivate the consideration to remove, keep, or adjust the const-ification aspect of
[P2900R8]. Some reasons are inherent to the design and unique purpose of Contracts, and some are
guided by what will produce a tool that maximizes utility for users of the C++ language.

2.1 Why const-ification?

The Contracts feature being designed by SG21 is built around a central purpose for contract
assertions. Each contract assertion describes a single, discrete algorithm that identifies whether a
contract violation has occurred. Importantly, these checks are encoding in a program parts of the
plain-language contract that itself defines when the evaluation of that program is correct.

For contract assertions to benignly provide information about the program to which they are being
applied, rather than simply producing a different program with functionally different behavior,
they must never themselves alter the correctness of that program; i.e., they must follow the prime
directive of the design for Contracts described in section 3.1 of [P2900R8].

Principle 1: Contract Assertions Do Not Alter Correctness

Neither the presence of a contract assertion nor the evaluation of a contract predicate should
alter the correctness of a program’s evaluation.

From this principle follow many of the design decisions that have been made in [P2900R8]. Impor-
tantly, this principle can be seen to underlie the principles and design decisions that were laid out
in papers such as [P2834R1] and [P2932R3]. This essential property of contract assertions is also a
key part of why adopting the flexible semantics model introduced by [P2877R0] is both viable and
effective.

Contract assertions whose predicates would violate the above principle when evaluated are said
to have destructive predicates, an idea that was first introduced in [P2712R0]. By design, the
specification of contract assertions in [P2900R8] does its best to ensure that simply introducing a
contract assertion into code does not make the assertion destructive. The evaluation of a predicate
can, however, be destructive in some cases.

• The simple presence of certain predicates in a contract assertion within a function might
violate a plain-language contract that prohibits their use, such as a promise a library might
make to refrain from using certain other libraries or language features or to avoid using
profanity when spelling function names.
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• The evaluation of a contract predicate might require enough computation to violate complexity
guarantees of the function, such as a linear check that input is sorted on a binary search
function.

• The evaluation of a predicate might make modifications to program state that introduce, into
a program, defects that violate later plain-language contracts.

In particular, the last category is what we often refer to as destructive side effects. One approach
that could be taken is to simply declare that contract predicates may contain no side effects, but
such a prohibition has a few major drawbacks.

• Only one of the above categories of destructive contract assertions contains predicates that
have side effects at all.

• The core-language definition of side effects1 is specific and hard to avoid in all software. This
issue can largely be alleviated by allowing modifications of nonvolatile objects whose lifetimes
begin and end during the evaluation of the contract predicate — a categorization that is often
referred to as not allowing side effects outside the cone of evaluation of the contract assertion.

• Some core-language side effects — such as reading a volatile variable, allocating and deallocating
memory, or caching the results of complex computations in a mutable variable — are quite
infrequently a change in state that is easily observable and are thus highly unlikely, in practice,
to alter the correctness (or expected behavior) of a program.

• Even many observable side effects — such as logging a trace message about function
invocation — may be desired for evaluation and will often not alter the correctness of a
program.

• The simple act of requiring any particular evaluation restrictions that apply to the entire
evaluation of a contract predicate would preclude either the use of arbitrary functions inside a
predicate (and thus practically all user-defined types or types from the Standard Library) or
the introduction of a new class of functions that guarantee this property.2 The use of Contracts
would be reduced to only toy applications and slideware if one could not, for example, make
use of std::vector::size() or std::string::operator== within a contract-assertion predicate.

In general, however, the most frequent reason a contract predicate is destructive is a direct change
to the state of an object that is relevant to the function’s behavior, such as a function parameter
or local variable. Invoking a function that is semantically nonmutating — even if not strictly free
of side effects — is often an indication that the predicate itself is not destructive. C++, luckily,
already has a concept for describing when operations are expected to be semantically nonmodifying
operations: const.

Therefore, a reasonable approach to reducing the chance that contract predicates are inadvertently
destructive is to minimize their ability to execute non-const operations outside their cone of
evaluation. The questions, then, are twofold.

1The C++ Standard defines a side effect as reading a volatile glvalue, modifying an object, calling a library I/O
function, or calling a function that does any of those things.

2Introducing a new class of functions that provably avoid some forms of destructiveness is one of the stated goals
of the features proposed in [P2680R1] and later [P3285R0], although those proposals aim to vastly further restrict
what is allowed while providing no help to contract predicates that it considers relaxed.
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1. What action should we take to prevent the use of modifying operations?

• Do nothing, which would relegate all potential improvements to warnings provided by
the platform.

• Make selecting some set of non-const operations ill-formed.

• Treat selected objects as const within the contract-assertion predicate.

2. How should we identify, within a contract predicate, which expressions will denote objects
outside the cone of evaluation without risking a sufficiently large number of false positives,
which would make the writing of contract assertions untenable?

Two in-depth analyses of the impact of const-ification as proposed in [P2900R8] have been published
to help understand what it does to real software.

• [P3268R0] provided an analysis of a medium-sized codebase that made use of a homegrown
assertion macro as well as <cassert> and then analyzed the used predicates to see if const-
ification had any detrimental impact. In total, only a minuscule fraction of assertion predicates
needed any change, and most changes resulted in making the used code const-correct where it
was not completely so before.

• In [P3336R0], a sizeable set of libraries that made use of an internal assertion facility was rebuilt
using the GCC implementation of Contracts (with const-ification) as the implementation of
that macro. A similarly minuscule number of issues were encountered, one of which was a
major bug and the rest of which were incompletely const-ified components. In addition, all
unit tests passed with all assertions enabled, indicating an especially high likelihood that no
changes in meaning related to const-ification impacted the correctness of the software.

An important point about both of these analysis, however, is that they address concerns related
to migrating existing, tested assertions to contract assertions with const-ification. In both case
studies libraries with existing mature assertion macros were analyzed, and an important part of
such mature systems is that they are already tested and mostly correct — any critical bugs that
might be cause due to destructive contract assertions have likely been found and fixed long before
the code in question was inspected. Therefore the primary takeaway from these studies should be
about ease of migration and not effectiveness at detecting bugs — the details of the bugs that would
be detected are lost in the time spent already debugging and fixing those issues when they crept
through developement and testing processes and resulted in costly production issues.

2.2 Why Not const-ification?

The reasoning and case studies mentioned above suggest that const-ification can improve the ease
and reliability of writing correct and nondestructive contract-assertion predicates. Of course, a
number of major concerns arise with attempting to apply const-ification to contract-assertion
predicates.

1. The reasons for selecting the entities chosen for const-ification by [P2900R8] are not obvious;
why only local non-static variables?3

3The current limitation of const-ification is that it applies to only variables that are directly part of a function
invocation since those are the most likely to be relevant to the correctness of that function’s behavior. Variables
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2. Modifying variables directly is not allowed, but modifications to objects pointed to by pointers
can freely happen4:

void f(int * x)
pre( x = nullptr ) // Error, x is const.
pre( *x = 5 ); // Ok?

3. Changing the overloads selected by expressions in a contract-assertion predicate — or the
types deduced within those expressions — can have subtle and breaking implications compared
to the natural assumption many would have that the expression will mean the same thing it
means when used outside the contract-assertion predicate.5

The simplest expression of this concern is that users will be surprised to see a contract assertion
pass and then subsequently to see the same expression used in an if statement and not take
the true branch of that conditional:

bool isConst(int& x) { return true; }
bool isConst(const int& x) { return false; }

void f(int x) pre( isConst(x) )
{

if (isConst(x)) {
std::cout << "Good!\n";

}
else {

std::cout << "How Did I Get Here?\n";
}

}

Should a contract predicate be written that uses any form of type deduction to produce
values based on whether function arguments are const, we would then, of course, see cases
in which a contract assertion did not produce the result intended by the user. Consider, for
example, an associative container that can be locked during evaluation so that it does not
allow modifications:

template <typename K, typename V>
class MyMap {

// ...
void lock() { d_locked = true; }
void unlock() { d_locked = false; }
//

};

Unlike std::map, this container provides both const and non-const overloads of operator[].
Both the const overload and, when d_locked is true, the non-const overload will throw an
exception when called with a key that is not in the map.

with broader lifetimes not started or ended by the function invocation are much more likely to have state related to
diagnostics or tracing and to not directly impact function correctness. Proposal 7 and Proposal 8 below explore the
pros and cons of altering this decision.

4Proposal 10 below provides an alternative to address this concern.
5Proposals 1–4 suggest alternate ways to make potential modifications ill-formed without relying on changing

expressions to be const.

6



The const overload is straightforward, throwing when a key is not found:
template <typename T, typename V>
V& MyMap<T,V>::operator[](const K& key) const
{

auto* item = find(key);
if (nullptr == item) {

throw MissingItemError();
}
return item->value();

}

The non-const overload will add a new entry to the map in such cases as long as the map is
not locked:

template <typename T, typename V>
V& MyMap<T,V>::operator[](const K& key)
{

auto* item = find(key);
if (nullptr == item) {

if (d_locked) {
throw MissingItemError();

}
else {

item = insert(key, T{});
}

}
return item->value();

}

Identifying when such a map is modifiable might be useful. For a non-const instance of MyMap,
the map is modifiable when the d_locked flag is false:

template <typename T, typename V>
bool MyMap<K,V>::isModifiable() { return !d_locked; }

A const map, however, is never directly modifiable:
template <typename T, typename V>
bool MyMap<K,V>::isModifiable() const { return false; }

When the map is used in a precondition, we find ourselves getting a less than useful result. A
function might use !isModifiable() to indicate that it expects its parameter to be passed in
while in a locked state6:

template <typename K, typename V>
void f(MyMap<K,V> &map)

pre(!map.isModifiable());

6If a function has a precondition that its argument not be modifiable, C++’s historical answer to this situation is
to simply take the function parameter by const&, and then this runtime issue will not arise.
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Now the above precondition is vacuous due to const-ification, and the bug of f being invoked
with a nonlocked map is going to go undetected.7

4. For any type, essentially two distinct interfaces are potentially exposed to users — one that is
const and one that is non-const. After all, we treat T and const T as different types within
the language for a reason.

Any function as written will be using the objects accessible to it through one of these two
interfaces, and its correctness will depend on which of those interfaces is being used. Having
contract-assertion predicates silently be based on only the const interface means they can also
silently be checking properties that differ from the interface that will be used by the function
implementations themselves.

In all existing places in the language, it is explicit when a switch is made from using the
non-const interface of an object to using the const by binding to a const reference or pointer
or by invoking a const member function (which binds an object to a const version of this).

This mismatch between which interface is being used by contract assertions and by the code
they seek to guard is another way to view the underlying concern that leads to the issues
described above with MyMap::isModifiable.

5. Undisciplined programmers and many legacy codebases do not consistently deploy const-correct
programming styles, so many APIs that might be completely outside a user’s control become
significantly more difficult to use when const_cast must be deployed to invoke functions that
are known to be nonproblematic:

namespace oldLib {
struct OldMechanism { /∗ ... ∗/ };
bool isGood( OldMechanism &mech ); // does not modify mech

}
void f(OldMechanism& mech)

pre( isGood(mech) ) // Error, no overload found.
pre( isGood(const_cast<OldMechanism&>(mech)) ); // Ok, but ick.

Even the workaround above is problematic in many codebases due to a mandate to never use
const_cast under any circumstances.8 Should a codebase allow it, of course, const_cast is
still verbose, macros to simplify it encounter common stigmas against any use of macros, and
what remains is a motivation to refrain from using Contracts to increase program correctness
from a population that could probably benefit most from its use.

3 Proposals
We can consider altering the design of const-ification along two primary axes:

7There is, of course, a teaching moment here in terms of writing good contract assertions; they should always be
checking the actual condition they want to check, not something that is assumed to be equivalent. In this case, the
contract that the parameter not be locked is fundamentally not equivalent to the question of whether the contract
assertion predicate is able to modify the map, and the bug described here arises from that disconnect.

8A codebase that combines both code that cannot be made const-correct and code that must never use const_cast
probably also has other problems with reconciling the interaction between old and modern software.
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1. How we avoid modification, ranging from compiler warnings, making certain constructs
ill-formed, or changing the semantics of contract assertion predicates by making some sub-
expressions const

2. To which expressions we apply the above modifications, ranging from id-expressions that
denote specific kinds of variables to chaining our reasoning to apply modifications to the
results of member access and pointer dereference expressions

3.1 Mechanisms for the Avoidance of Modification

First, we will consider the variety of options regarding how we might address potentially modifying
behavior within a contract assertion.

3.1.1 No Semantic Changes

The simplest approach to contract-assertion predicates is, of course, to treat them as any other
expression and do nothing to attempt to dissuade destructive predicates. Importantly, this approach
does not preclude any implementation warnings that might detect destructive contract assertions.

Proposal 1: No const-ification (Only Warnings)

Change nothing about what is allowed in contract-assertion predicates or what semantics any
expressions have within contract-assertion predicates.

An important concern with the approach of abandoning const-ification and moving to producing
warnings instead is whether warnings can identify approximately the same set of errors that our
other proposals can. While many top-level errors can be reduced to a warning, a compiler is not
freely permitted to perform arbitrary additional overload resolutions that are not already required
for the existing potentially evaluated expressions in the program. Let’s consider an example:

void f(std::vector<int> v)
pre((std::sort(v.begin(), v.end()), true));

To determine if the above precondition is valid when the vector parameter v is treated as const,
overload resolution must be performed on std::sort with parameters that are the return types of
vector<int>::begin() const and vector<int>::end() const respectively, both of which are of the
type vector<int>::const_iterator. Without const-ification, that overload resolution would never
be performed. The problem here, however, is that overload resolution must instantiate template
declarations, which can result in hard errors, new types being defined, and other observable changes
in a program. To implement such a warning in a conforming way, a compiler would need to perform
that extra overload resolution and then somehow unwind all those changes in state. No such
unwinding is currently required anywhere else in the language and would be a huge implementation
hurdle to produce. The introduction of more stateful compile-time evaluation to support reflection
(see [P2996R5]) will only make such unwinding an even greater burden.

Even the determination of whether an overload set would accept a const argument instead of a
non-const argument can result in hard errors that would require significant compiler efforts to
attempt to unwind. An overload set might reject a const parameter for not having a member
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that matches. On the other hand, overload sets containing templates must do template argument
deduction to determine if there is a match, and such deduction can fail in ways that are hard errors.
Consider, for example, a function template that causes a precondition violation when instantiated
with a non-const template parameter:

constexpr int constexpr_sqrt(int x) pre(x >= 0);

template <typename T>
void f(T&& t)

noexcept( constexpr_sqrt( std::is_const_v<T> ? -1 : 1 ) );

Although odd, the semantics of the language would still restrict a compiler from letting a function
template like this cause a warning to turn into a failure to compile, and changing the hard error to
something recoverable contextually might require significant compiler re-engineering.

Implementing a warning such as this without the ability to totally unwind any effects of the extra
overload-resolution attempts would either lead to a warning that escalates itself into an error or,
much worse, a warning that introduces new template instantiations and overloads into a program
and then changes the semantics of the program. Such changes to a program’s semantics would be
thoroughly nonconforming and potentially disastrous.

Therefore, we must consider that warnings alone will be unable to detect a similar range of real-world
use cases with higher-level abstractions that we can detect with const-ification. Additional external
tools or recompilation with a different nonstandard approach might be able to produce such warnings,
but those solutions are outside the scope of what we aim to consider when deciding upon the best
decision for the C++ language itself.

3.1.2 Prevent Modifying Operators

A second alternative that prevents some modifications is to make certain operators ill-formed when
applied to an expression that we have determined should be const-ified.

Proposal 2: No Assignment Operations

Any assignment operator (=,*=,/=,%=,+=,-=,>>=,<<=,&=,^=, and |=), increment operator (++), or
decrement operator (--) is ill-formed if its modifying operand is subject to const-ification.

This first proposal to make operations ill-formed would therefore prevent contract assertions that
increment or decrement local variables or that accidentally make use of = in lieu of ==.9 On the
other hand, no issues related to modifying member functions or free functions are prevented, and
hence this proposal fails to address a wide range of real-world use cases.

Note that this proposal is not limited to only built-in operations and scalar types; it is instead a
syntactic restriction that will also apply when operators are overloaded for user-defined types.

9Note that a top-level assignment operation, such as pre(x=0), is already ill-formed due to the choice of conditional-
expression instead of expression in the grammar for contract assertions. Nested assignments, however, such as
pre((x = 0)) or pre(x == 0 || y = 0 || z == 0), are still grammatically correct.
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3.1.3 Prevent Potentially Modifying Invocations

The other polar extreme is to prevent all operations that might be potentially modifying, which
would include any function invocations that accept a const-ified object by pointer or non-const
reference.

Proposal 3: No Potentially Modifying Operations

Any operation that could modify an operand subject to const-ification is ill-formed.

This aggressive approach to making operations ill-formed certainly prevents anything that might
modify values but will quickly become problematic for all operations that allow for but do not
directly perform modifications, such as begin and end on containers:

void f(vector<int> v)
pre( std::is_sorted(v.begin(), v.end()); // Error, non−const begin and end

This, of course, could be worked around by manually casting to select only const overloads10:
void f(vector<int> v)

pre( std::is_sorted( static_cast<const vector<int>&>(v).begin(),
static_cast<const vector<int>&>(v).end() ) ); // Ok

3.1.4 No Operations Without const Alternative

Next, we could consider, as a choice in the middle of the above two approaches, an alternative in
which we perform overload resolution with the const-ified expressions treated as const but still
continue to use the non-const selected overloads.

Proposal 4: No Operations Without Equivalent const Operations

Any operation that would be ill-formed if an operand subject to const-ification was treated
as const is ill-formed. The const-ified expression is still, however, treated as non-const when
evaluated.

For example, when making use of a non-const Standard container in a contract assertion, we will
be allowed to use functions such as begin or end, which have non-const overloads, but be prevented
from doing so with a mutable-only member function such as clear:

void f(std::vector<int> &v)
pre( v.begin() <= v.end() ) // Ok, const overloads exist.
pre( v.clear() , true ); // Error, no vector::clear() const

On the other hand, because the non-const overload is selected by the expression, we would not detect
problems, such as the call to std::sort shown earlier. While detecting this situation is potentially
challenging, mandating that the second overload resolution be performed with the same overload
set means that no significant implementation challenges are expected.

10Note that we use static_cast here instead of the much-derided const_cast since a static_cast is able to add
cv-qualifiers freely but is unable to perform the more risky operation of removing them.
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3.1.5 Make const-ified Expressions const

Finally, we can consider the approach taken by [P3071R1] and [P2900R8], which is to treat expressions
subject to const-ification as if they were const.

Proposal 5: Choose Nonmodifying Operations

Any expression subject to const-ification is treated as const, selecting const overloads and
being ill-formed if no const overloads are available. (This is the status quo in [P2900R8].)

This approach leverages the common understanding that the semantics of a const and non-const
overload in an overload set should always be functionally equivalent when both are present yet allow
types to express exactly those cases where const on an object should propagate to the return values
produced by a function, such as when begin or end return const iterators.

3.2 Categories of Objects to Avoid Modifying

The approach taken in [P2900R8] to implement const-ification is to identify certain expressions and
to alter the types of those expressions to be const but, importantly, to leave unaltered the types of
the actual objects denoted by those expressions. This method is a very similar to the mechanism
that makes a member access expression, through a pointer to const, give you const references to
members, even when those members are not themselves const.

Let’s consider the kinds of expressions and the types of objects that they might denote to which we
could apply this process.

• Id-expressions can denote a number of different types of entities with different properties. The
first factors to consider for such entities is their scope and storage duration.

– Function parameters

– Block-scope variables having automatic storage duration

– Block-scope variables having other storage durations, i.e., thread local or static

– Nonstatic data members of this within a member function (with an implicit object
parameter) that are not tied to any specific function

– Class members or namespace-scope variables having static or thread-local storage duration

– Temporary objects, such as those returned by value from a function call within the
contract predicate

– Any variables declared within a lambda nested within a contract predicate — including
its function parameters and block-scope variables of any storage duration — must be
considered distinctly.

Any such denoted entity might be one of a number of different types.

– Nonreference, nonpointer objects, which have a value that could be modified

– Pointers, which both have a value and denote another object at a different location
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– References, which denote only an object located somewhere else

– Structured bindings, which name references or name parts of an object with its own
storage duration

• this is a prvalue for a pointer to the implicit object parameter of a member function.

• Member access expressions select a member of a particular type from an object denoted by
the left side of the expression. These members may have a number of distinct properties.

– A member may be mutable, which would allow its mutation even if the member access is
a member of a const expression.

– A member may be a reference, which again would allow modification if the reference was
non-const even if the access is a member of a const expression.

– A member may be a pointer, which would not itself be modifiable if the access is of a
const expression but would allow mutation of the object denoted by the pointer.

• Unary indirection expressions that use the * operator and that access the object pointed to by
a pointer denote an object whose storage duration and scope are never explicitly known.

• Subscripting operators, when applied to pointers, transform into a combination of indirection
and additive expressions — i.e., p[n] is equivalent to *((p)+(n)). Because, when applied to a
built-in pointer, these expressions are accessing a subobject of the array pointed to by the
pointer, const-ification could propagate through these operations in the same way that it does
through indirect member access.

Each of the above expressions denotes objects whose lifetime can be inferred and which might be
considered a candidate for const-ification.

A few considerations can be applied to the above categories to determine if they can potentially
denote objects whose lifetime is outside the cone of evaluation of the contract predicate.

• Any object created outside the contract predicate will be outside the cone of evaluation.

• Any reference created outside the contract predicate or any pointer whose value is set before
the contract predicate is evaluated will denote an object outside the cone of evaluation.

• Any temporary object or any variable declared within a nested lambda will denote an object
inside the cone of evaluation.

• Any temporary reference or pointer will denote an object whose lifetime, relative to the
evaluation of the contract predicate, is unlikely to be known at compile time.

Finally, we must consider some general concerns regarding whether modifying an object whose
lifetime is outside the cone of evaluation of a contract predicate is likely to be a problem.

• Mutable members that are directly accessed might be considered mutable in all situations. In
practice, however, the mutable keyword is often used to allow encapsulated methods to make
changes to the mutable state while still presenting a nonmodified value to clients. Directly
mutating a member without that encapsulation seems likely to be a source of errors that could
be better expressed by enclosing the mutation in a const member function.
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• Reference members are generally initialized when an object is initialized, and they cannot
change. Therefore, reference members refer to an object whose lifetime necessarily encloses
the lifetime of the reference member as well, and they are thus completely outside the cone of
evaluation.

• Any of the above expressions, when they resolve to a user-defined overload, could be considered
for const-ification, but that would be assigning a particular interpretation to such operators
that C++ has not assigned to them in the past. A facility to incorporate user-defined deep
const into the language itself and to define when overloaded operators or other functions
should propagate const to their return values could be useful but would be a far larger feature
than is needed for attaining a general benefit to the Contracts facility.

The current status quo in [P2900R8] applies const-ification based on the following criteria.

• Variables having automatic storage duration are local data whose values are likely to be
pertinent to the local correctness of the program and are thus subject to const-ification.

• Variables having nonautomatic storage duration are assumed to be either locally created or
intended for global non-const use and are thus not subject to const-ification.

• Variables that are references and subject to const-ification are assumed to have been initialized
to something that is also pertinent to the local correctness of the program and are thus subject
to const-ification.

• The implicit object parameter *this is again likely to be pertinent and is subject to const-
ification.

• No further efforts are made to apply const-ification to members or when dereferencing
any pointer other than this. Therefore, reference and mutable members of *this are both
modifiable.

We can identify the following additional rules that could be added without falsely making const an
object created within the cone of evaluation of the contract predicate. Note that, to avoid changing
the semantics of an expression that is inside the cone of evaluation and that just happens to be
const, these rules apply a form of deep const in only those situations where const-ification has been
applied.

• Mutable and reference member accesses could be made const if the object being accessed (the
left-side operand of the member access expression) is one to which const-ification has been
applied.

• References that are initialized to either references or objects that have const-ification applied
to them should carry forward that const-ification lest x.d_x and static_cast<T&>(x).d_x have
const applied differently for no tenable reason, and more importantly, lambda captures by
reference would not then have const applied to member access through those references.

• A pointer value to which const-ification is applied is ostensibly one that cannot have been
modified during the evaluation of a contract predicate and thus will always point outside the
cone of evaluation of the predicate. Therefore, the dereference operator applied to such a
pointer value could be considered for const-ification as well.
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Because we would want the subscripting operator to apply const-ification in the same manner,
const-ification should equally propagate through pointer arithmetic (p+n, n+p, and p-n where
p is const-ified) and then the built-in subscripting operator will follow.

It is possible, however, that a value which is a pointer might be modified through a well-defined
const_cast to point to an object within the cone of evaluation of the predicate:

void assign(int* const & x) {
const_cast<int*&>(x) = new int(0);

}
void f(int* p)

pre( assign(p),
*p *= 5, // *p is within the cone of evaluation.
*p > 3 );

The above example, however, already requires some breaking of the promises associated with
const parameters — using a const_cast to forcibly modify a parameter that would otherwise
not be modifiable — and so does not seem overly concerning. Therefore we could take the
approach of assuming the value of a const-ified pointer does not change during the evaluation
of the contract-assertion predicate, and therefore it is sound to consider the denoted object to
always be outside that cone of evaluation and be subject to const-ification as well.

This rule could be considered a generalization of how this is currently treated in [P2900R8].
Note, however, that this rule would be giving special treatment to built-in pointers; where any
smart pointer type will not get the same treatment, consider that its overloaded operator->
will be opaque to guaranteed analysis about the lifetime of its result. Such special treatment
would potentially encourage users to continue to use raw pointers instead of migrating to the
generally safer smart pointers.

• Objects of nonautomatic storage duration within block scope are generally going to be used
in only that scope, and modifications to those objects are likely to turn contract predicates
destructive. If simply making the supporting storage for contract assertions into static or
thread_local variables were to become common, the unfortunate result would be assertions
that are subtly destructive and untenable.

• Objects at nonblock scopes (and static or thread-local storage duration) are certainly outside
the cone of evaluation of a contract predicate. The primary reason to omit those scopes from
const-ification is to allow them to maintain APIs that are not const correct. However, if we
consider that an insufficient reason to drop const-ification from general use, then we should
consider demanding better APIs for all objects.

In general, APIs that should be a concern are often things such as logging APIs, and using
such APIs directly within a contract predicate does not seem, in practice, to be essential.
Within nested functions, we certainly must allow trace logging, but nothing in this proposal
would alter the internal behavior of functions invoked from a contract predicate.

3.2.1 Scopes and Storage Duration

Now we can consider a variety of proposals for what expressions we should consider to be candidates
for const-ification.
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Proposal 6: Minimal const-ification

Apply const-ification to
• id-expressions denoting variables having automatic storage duration
• the expressions this and *this, whether explicitly or implicitly used
• structured bindings whose corresponding variable would have const-ification applied to

it
• parenthesized expressions that are const-ified, i.e., if E is const-ified, then so is (E)

(This is the status quo in [P2900R8].)

Then we offer two proposals for extending const-ification to nonautomatic variables.

Proposal 7: Block Scope Nonautomatic

In addition to Proposal 6, apply const-ification to id-expressions denoting variables at block
scope having static or thread-local storage duration.

Proposal 8: Global Scope Nonautomatic

In addition to Proposal 7, apply const-ification to id-expressions denoting variables at class or
namespace scope having static or thread-local storage duration. (Therefore, all id-expressions
denoting variables will have const-ification applied to them.)

3.2.2 Deep const

Next, we contemplate two other extensions to more deeply expand const-ification, where we consider
the results of certain operations to be const-ified if their operands are const-ified (not merely const).

This design would allow preventing modifications in some additional cases, but because we lack a
concept of user-defined deep const-ness in the language, we would be unable to apply consistent
benefits to user-defined pointer-like types, such as std::shared_ptr or std::unique_ptr.

The first extension allows us to propagate to members of an object, which can be taken on its
own since direct subobject lifetimes are always going to match (barring obscure shenanigans) their
complete object.

Proposal 9: Reference and Mutable Members

Apply const-ification to member access expressions whose left-side operand is an expression
to which const-ification has been applied.

Second, we can extend const-ification to follow indirection through pointers and pointer arithmetic.
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Proposal 10: Pointer Dereferencing

Apply const-ification to
• a unary expression whose unary-operator is * (i.e., an indirection expression) and whose

operand is a pointer to which const-ification has been applied
• an additive expression whose operator is +, where one operand is a pointer to which

const-ification has been applied (including a subscript expression using the built-in
subscript operator to transform into an indirection applied to an additive expression)

• an additive expression whose operator is -, where the left-side operand is a pointer to
which const-ification has been applied

4 Overview of Solutions
We now have a large number of solutions, which we will summarize here.

First, we identify what we will choose to do for expressions that are subject to const-ification with
five mutually exclusive alternatives.

• Proposal 1: Warnings Only — Produce only warnings; no semantic changes

• Proposal 2: No Assignment — No assignment, increment, or decrement operations allowed

• Proposal 3: No Modifications — No potentially modifying operations

• Proposal 4: No Modify-Only Operations — No operations without nonmodifying alternatives

• Proposal 5: Make const — Treat as const

Second, we can consider which entities should have const-ification applied to them initially, each of
which builds on the set of entities identified by the previous proposal.

• Proposal 6: Automatic Variables — Local non-static variables outside assertion

• Proposal 7: Local Variables — Block-scope variables outside assertion

• Proposal 8: All Variables — All variables outside assertion

Finally, we must determine whether we apply a deeper form of const-ification to certain expressions,
which can each be considered orthogonally.

• Proposal 9: Member Access — Deep const applies to member access expressions

• Proposal 10: Pointer Dereference — Deep const applies to raw pointer dereference

While not all 60 combinations of the above choices are meaningful, we believe that the concerns
that dictate decisions among each of the three categories above are fairly independent and that each
category can be treated as a separate decision.

Throughout this section, we will use the following symbols to indicate different levels of satisfaction
with the concerns we present, where check marks are good and xs are bad.
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• 4: A wide green check indicates a proposal has no concerns and will correctly identify any
presented examples as modifying or nonmodifying.

• 3: A narrow gray check indicates that this proposal has minor concerns that do not seem
overwhelming.

• 7: A narrow gray x indicates that this proposal has major concerns that are not totally
disqualifying.

• 8: A wide red x indicates that this proposal fails to satisfy the concern and fails to identify
any presented example as modifying or nonmodifying.

4.1 Form of const-ification

We will now explore various concerns and code examples that will illuminate the differences between
the various proposals for how to implement protections from modification of const-ified expressions.
For each concern we will identify how well each of the first five proposals address that concern.

• Concern: Implementation Experience

Making no changes to how expressions are evaluated can be considered implemented in all
existing compilers, and thus Proposal 1 can be considered implemented, although a thorough
implementation of this approach that produces useful warnings has not yet been undertaken.

4: Both the GCC and Clang implementations of Contracts have implemented const-ification
as specified in [P2900R8], which means that Proposal 5 can be considered implemented.

8: None of the other proposals in this section have implementation experience.

• Concern: Implementation Feasibility

4: The proposals with implementation experience are obviously feasible to implement as well.

3: Both Proposal 3 and Proposal 4 require performing an additional round of overload resolution
with an already-built overload set, this time with const arguments. While this specification
approach and implementation seem feasible, some situations could lead to surprising results
and could require reconsideration.

• Concern: Forward Compatibility

When presented with a variety of options to consider for standardization and if the choice is
unclear or the room is divided, we can often delay a permanent decision if one option leaves
open the choice to adopt one or more of the other options in the future. This concern led to a
property that has guided many decisions in [P2900R8], i.e., undecided behaviors should be
ill-formed, which was described in [P2932R3].

4: Proposal 3 makes ill-formed many expressions to which the other proposals provide either
normal semantics or const semantics, which means that Proposal 3 leaves open the maximal
amount of opportunity to change to the other proposals in the future.

3: Proposal 4 is similarly forward-compatible to any proposal other than Proposal 3.
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3: Proposal 5 could, in theory, be dropped if we were willing to risk changing some contract-
assertion predicates that evaluate a const overload into expressions that evaluate a correspond-
ing non-const overload. In general, these functions should be semantically similar, though
someone might, for example, have an operator[] const on a container that threw exceptions
when entries do not, while the corresponding operator[] inserted new entries in those cases.

8: The other proposals provide no smooth way to change the proposal we adopt without
significant breakage of user code.

• Concern: Escape Hatch

If we adopt any form of semantic const-ification, cases are inevitable in which a nonmodifying
function needs to be called as part of a contract assertion but is not marked const, either
because that function is sometimes modifying or because it is from a library that has not
provided a const-correct API.

A common example is the use of std::map::operator[], which inserts a new entry into a map
when given a key that is not currently in that map but makes no modifications when used
with a key that is in the map:

void f(std::map<int,int> m, int k)
pre( m.contains(k) && m[k] == 7 );

Since all proposals presented in this paper do not involve restricting contract-assertion
predicates to a special class of functions, all have available to them the same escape hatch
of hiding a const_cast inside a wrapper function that takes a const& argument. The concern
here, however, is that the availability of a direct escape hatch clearly conveys that the author
of the contract-assertion predicate is intentionally working around const-ification.

4: Proposal 1 allows for only warnings, which can always be disabled and thus worked around.

3: Proposal 5 allows any const-ified expression to be turned into a non-const expression through
the use of the appropriate const_cast. This use can even be fairly accurately encapsulated in
a macro using decltype:

#define UNCONST(x) const_cast<std::add_reference_t<decltype(x)>>(x)

This macro will do nothing when applied to most expressions, but when applied to an entity
that has been const-ified, it will produce an expression with the same type as the declared
entity.

The use of const_cast, however, is frowned upon in many codebases, is verbose, and is often
misunderstood. While allowing its encapsulation, as shown in the above macro, in any codebase
seems reasonable, a future Standard might provide this facility within the Standard Library
itself or make it a built-in operator guaranteed to work in only those cases in which a const
qualifier can be safely removed from an expression.

8: Proposal 2, Proposal 3, and Proposal 4 all make a range of expressions ill-formed and do not
provide a clear mechanism to make those expressions well-formed since no semantics could be
changed that would do so. One could, conceivably, static_cast a const-ified expression to its
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own type to remove the effects of these proposals, but doing so requires treating a static_cast
of an expression to the type of that expression as meaningful when it otherwise never is.

• Concern: Consistent Expression Behavior

Understandability of the language is always a concern when the same expression, in very
similar locations, has different meanings. For example, some people might believe that the
assertion in this example should never fail if the precondition passes:

#include <cassert>
bool g(int& x);
bool g(const int& x);
void f(int x)

pre( g(x) )
{

assert( g(x) ); // classic C assert macro, not contract_assert
}

By deducing different types for template parameters during overload resolution, one can easily
produce APIs in which behaviors change based on the const-ness of their arguments. Consider
a metafunction that uses partial specialization to produce different results for const and
non-const arguments:

template <typename T>
struct S {

using type = long long; // 8 bytes on most platforms
};
template <typename T>
struct S<const T> {

using type = int; // 4 bytes on most platforms
};

Using that type, we could deduce the return type of a function based on what is passed to
it:

template <typename T>
auto f(T&& x) -> typename S<T>::type;

Given the above, a precondition checking for properties of f would produce different results if
an expression is treated as const by const-ification:

template <typename T>
void g(T t) pre( sizeof(f(t)) == 4 );

Of course, outside the precondition, f(t) may select a non-const overload and return long long.
This inconsistency could result in subtle problems when attempting to reason about code
within a function body and how assertion predicates relate to that code.

8: Proposal 5 would, of course, invoke the const int& overload of g, which might produce a
different result than the int& overload.

3: Proposal 3 would make ill-formed attempting to bind the parameter x to the int& parameter
of g, resulting in no change of behavior but instead making the program ill-formed. This
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proposal would similarly make ill-formed any cases where Proposal 5 would choose a different
overload.

4: The other proposals would allow the above example and invoke the int& overload of g.

• Concern: Code Dependent on const-ness

In general, an overload set that differentiates its semantics based on whether the provided
arguments are mutable is frowned upon in C++. Of course, one glaring exception occurs when
an overload set is written to explicitly consider static properties of its arguments and return
a value based on that evaluation. Consider, for example, a function that determines if its
parameters are const — something usually done (as the implementation here does) with a
compile-time type trait and not with a function call:

template <typename T>
bool is_const(T&& t) { return std::is_const_v<T>; }

On its own, this function seems inferior to a decltype expression directly combined with
is_const_v, but one might consider a more involved predicate that combines checking of
runtime and compile-time properties to determine if two objects are swappable:

template <typename T, typename U>
bool is_swappable(T&& t, T&& u)
{

if constexpr (!std::is_same_v<std::remove_reference_t<T>,
std::remove_reference_t<U>>) { return false; }

if (!is_const(t) || !is_const(u)) { return false; }
if constexpr (has_get_allocator<T>) {

if (t.get_allocator() != u.get_allocator()) { return false; }
}
return true;

}

In general, when is_swappable is called immediately before std::swap and if that swap invoca-
tion is going to compile at all, the is_const checks will pass:

template <typename T>
void f()
{

T t1, t2;
if (is_swappable(t1,t2)) {

swap(t1,t2);
}

}

However, when this is_swappable function is used on const-ified parameters within a contract
assertion, we will always be told that our variables are not swappable even when they otherwise
are:

template <typename T>
void g()
{
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T t1, t2;
contract_assert(is_swappable(t1,t2)); // always fails
swap(t1,t2);

}

4: Proposal 1 and Proposal 2 would both allow the above example to work as intended.
Proposal 4 would make the above example compile due to the is_swappable function template
being a valid match during both the const and non-const overload resolution on t1 and t2.

7: Proposal 3 would make the above example ill-formed due to is_swappable taking its
parameters by non-const lvalue reference.

8: Worst of all, Proposal 5 would change the meaning of the above code, making the contract
assertion fail in all situations even when the function is called with otherwise swappable
parameters.11

• Concern: Interpret Semantics, Not Syntax

C++ provides numerous ways to perform operations, and for many operations, two mechanisms
— through an overloaded operator and a named function — might be available to perform an
operation:

class MyBigNum {
MyBigNum& operator+=(const MyBigNum& rhs);
MyBigNum& add(const MyBigNum& rhs);

};

The language itself makes using the overloaded operator more natural in some cases, but in
general does not otherwise distinguish between the two mechanisms for providing a user-defined
operation on a type.

8: Proposal 2 makes a clear distinction between member functions and overloaded operators,
applying const-ification to only expressions involving assignment, increment, and decrement
operators without considering any other user-defined functions.

4: All other proposals take into consideration the exposed API of any function that is invoked
through either operator overloading or the function-call syntax, considering only whether the
parameters in question are const when deciding if the expression is considered likely to be
problematic or not.

• Concern: Non-const-correct APIs

Many libraries do not make the effort to annotate nonmutating functions with const at all.
When forced to use such third-party libraries, contract assertions that demand the use of
const qualifiers make writing contract assertions significantly more difficult.

4: Proposal 1 requires no extra use of const and makes all APIs as usable within contract
assertions as they are outside them. Proposal 2 does not impact any use functions that a

11On the other hand, this particular example will always fail when the program is first run, a situation that then
provides a good learning experience and improved understanding of when to use static type checking and when to use
contract assertions. While some might consider this semantic change a bug, others certainly consider it a feature.
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library might provide other than overloads of certain mutating operators that almost certainly
modify something anyway.

7: Proposal 5 makes using non-const-correct APIs more difficult, but allows for a consistent
escape hatch through the use of const_cast. Interest in supporting such use cases might
increase the interest in providing a built-in operator to remove constification.

8: Proposal 3 and Proposal 4 both make using a non-const-correct API ill-formed.

• Concern: Handling of [P3336R0] Issues

Each of the proposals in this section would address different subsets of the issues that were
identified in [P3336R0] when compiling a large number of libraries. Note that this analysis is
still being applied to libraries that are in production and thus have already paid the (possibly
large) cost of identifying and removing any critical errors that const-ification would have
caught immediately.

4: Proposal 5 is the implementation that was used in the analysis, so all issues and bugs
identified by that analysis would be detected.

3: Proposal 3 would make errors based on the issues identified in [P3336R0] and would also
make errors based on all the fixed code without introducing many casts to manually add const
to many expressions.

7: Proposal 2 would detect the destructive predicate identified in BDE and the bugs detected
in Library #3 since those involved assignment and the increment operators. The (major) bug
in Library #4 would go undetected because it involved the invocation of a non-const member
function with no const alternative. None of the other issues with const-correctness would be
detected by this approach.

7 Proposal 1 could, in theory, produce warnings matching any other proposal, but we do
not believe it would be feasible, in practice, for compilers to produce warnings that require
additional overload resolution. Producing warnings equivalent to Proposal 3 would be feasible,
but warnings with significant quantities of false positives are often quickly turned off. Therefore,
warnings that are applied only for situations that would be errors with Proposal 2 are the sole
likely warnings that we will see, and those detect only a small subset of the issues identified in
[P3336R0].

7: Proposal 4 would identify the major identified issues but not all the potential issues that were
detected by const-ification. In particular, in Library #3, using a base class function effectively
returned shared_from_this(), which did not have a const overload. All the expressions that
invoked non-const member functions through that accessor function would go undetected if
the non-const overload of that base class function remained selected.

• Concern: Direct Modification

Consider a contract assertion that captures the return code of an operation while also verifying
that it is a success, where a user has taken what should be a normal expression and blindly
wrapped it in a contract_assert to verify its value:

int doImportantStuff();
// Return zero on success and a nonzero value on failure.
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void f()
{

int rc;
contract_assert( (rc = doImportantStuff()) == 0 ); // assert success?
// ... code that depends on the value in rc

}

When the contract assertion is not evaluated, the above code, of course, fails catastrophically
by not doing the important stuff it intended to do.

4: All proposals except Proposal 1 would make this example ill-formed.

7: Proposal 1 could easily produce a warning for this case.

• Concern: Encapsulated Modification

Now consider an example in which modification is performed through a non-const member
function:

struct Index {
int d_index = 0;
int increment() { return ++d_index; }

}
void f(Index index)
{

contract_assert(index.increment());
// ...

}

4: Proposal 5 would make index a const expression within the contract_assert, and thus
the above would be ill-formed. Both Proposal 3 and Proposal 4 make using this non-const
member function ill-formed.

7: Proposal 1 could produce a warning for this example.

8: Proposal 2 makes the above example well-formed.

• Concern: Nonmodifying Iteration

Now consider a case in which one might pass iterators to a container to a const algorithm to
verify the contents of the container, such as whether an input vector is sorted:

void f(std::vector<int> v)
pre( std::is_sorted(v.begin(),v.end()) );

4: Proposal 5 would allow the above code, invoking the const overloads of begin and end and
passing the resulting const iterators to is_sorted. Proposal 4 allows the calls to begin and
end due to the presence of their const overloads. Proposal 2 leaves the above example as is,
and Proposal 1 would likely be silent on the above example, neither warning nor attempting
to warn.

8: Proposal 3 makes the above code ill-formed.
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• Concern: Modifying Iteration

Now consider a structurally similar example in which a user attempts to use a precondition to
sort a function’s input:

void f(std::vector<int> v)
pre(( std::sort(v.begin(), v.end()) , true ));

4: Proposal 5 causes the attempt to find a usable overload of sort to fail because there is no
viable candidate for const iterators. Proposal 3 does not allow the use of begin and end at all.

8: Proposal 4 allows the calls to begin and end and then uses the results of the non-const
overloads of those functions to find a valid sort to invoke, modifying the vector. Proposal 1
would be unable to viably identify the general case here to produce reliable warnings (though it
could possibly have built-in knowledge of Standard Library templates to catch this particular
case). Proposal 2 does nothing to prevent the above misuse.
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Implementation Experience 4 8 8 8 4

Implementation Feasibility 4 4 3 3 4

Forward Compatibility 8 8 4 3 3

Escape Hatch 4 8 8 8 3

Consistent Expression Behavior 4 4 3 4 8

Code Dependent on const-ness 4 4 7 4 8

Interpret Semantics, Not Syntax 4 8 4 4 4

Non const-correct APIs 4 4 8 8 7

Handling of [P3336R0] Issues 7 7 3 7 4

Direct Modification 7 4 4 4 4

Encapsulated Modification 7 8 4 4 4

Nonmodifying Iteration 4 4 8 4 4

Modifying Iteration 8 8 4 8 4

This analysis provides the following early conclusions.

• We believe being able to express contract assertions on basic data structures is essential to
having a good contract-checking facility; Proposal 3 outright prevents the use of begin and
end on a container, so it, therefore, is not one we will pursue.

• The implementation concerns related to doing a second set of overload resolution to implement
Proposal 4 led us to discontinue pursuit of that option as well.
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4.2 Entities const-ified

When considering to which entities we would apply const-ification, the first five proposals generally
perform the same, so we need not belabor their consideration.

• With Proposal 1, we would not be standardizing any particular entities as const-ified, and
implementations would have complete freedom to apply warnings to any range of entities they
see as appropriate to warn on.

• All other proposals treat specific expressions either as invalid for certain operations or as
const in certain contexts but otherwise have no essential differences to discuss in this section.

This leaves us with a number of concerns to consider when deciding between the proposals presented
for entities to const-ify, which are Proposal 6, Proposal 7, and Proposal 8.

• Concern: Implementation Experience

4: Proposal 6 has been implemented in both Clang and GCC as part of the implementation
of [P2900R8].

• Concern: Implementation Feasibility

4: All these proposals involve only a small change in the conditions under which an expression
naming a variable will be const-ified, so all are equally feasible.

• Concern: Forward Compatibility

8: Since significant broken code could result from applying any form of const-ification to a
wider range of entities, Proposal 6 and Proposal 7 would struggle to expand the set of entities
to which const-ification can be applied if we chose Proposal 8 as the solution we wanted to
champion.

7: Proposal 8 could, in theory, remove const-ification to reduce the set of entities to which it
applies. Subtle changes in behavior, similar to those mentioned for Proposal 5 above, might
be a concern but do not seem insurmountable.

• Concern: Function Parameters

Modification of function parameters in a contract assertion is quite likely to result in a program
whose correctness is independent of the correctness of the same program where the contract
assertions are not evaluated. Here we can see that in action, where evaluating a precondition
might change the result of a later contract-assertion statement:

void f(int x)
pre( x-- > 0 )

{
contract_assert( x > 0 );

}

4: All the proposals for entities to const-ify will consider a function parameter as subject to
const-ification.

• Concern: Automatic Local Variables
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Local variables at block scope are equally subject to causing problems when modified, and
modification of such variable assertions is a frequent cause of bugs:

void f(const std::vector<int> &v)
{

for (int i = 0; i < v.size(); ++i) {
contract_assert(v[++i] >= 0);
// Process every other element with contracts checked, and every element otherwise?

}
}

4: All the proposals for entities to const-ify will consider a block-scope automatic variable as
subject to const-ification.

• Concern: static or thread_local Local Variables

Static local can be used to cache information about a function not specific to a particular
invocation, such as attempting to track whether a function is being called recursively:

void f()
{

thread_local int callDepth = 0;
contract_assert( callDepth++ == 0 );

someOtherFunction();

contract_assert( --callDepth == 0 );
}

Of course, the above contract-assertion predicates are destructive; the correctness of later
invocations of these assertion statements is dependent on having evaluated all earlier instances
with a checked semantic, which is not a property guaranteed by Contracts in [P2900R8].
Discouraging attempts to tie contract-assertion predicates together like this makes the facility
more robust to use confidently in a much broader set of situations.

8: Proposal 6 would allow the above assertion statements because the variable callDepth has
static storage duration.

4: Both Proposal 7 and Proposal 8 would identify callDepth as eligible for const-ification.

• Concern: Global Variables

The same situation that is implemented with a thread_local variable above might instead be
implemented with a global store outside of the function:

class CallDepthTracker {
int increment(const char *fname);
int decrement(const char *fname);

} globalCallTracker;
void f()
{

contract_assert( globalCallTracker.increment("f") == 0 );
someOtherFunction();
contract_assert( globalCallTracker.decrement("f") == 0 );
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}

8: Proposal 6 and Proposal 7 would allow the above assertion statements because the variable
callDepth is a namespace-scope variable.

4: Proposal 8 would identify callDepth as eligible for const-ification.

• Concern: Logging Utilities

Some global utilities are, however, not generally used to satisfy the contract of a program
but rather are used for diagnostics. Logging facilities are an example, and in many programs
that do not concern themselves with produced output and error streams in particular formats,
std::cout and std::cerr are freely used for tracing and diagnostics. A contract assertion
might, while being completely correct, be written to trace its evaluation with log messages
written to standard error:

void f(int x)
pre( []{

std::cout << "f called with x = " << x << std::endl;
return x >= 0;

}()); // check inside immediately invoked lambda to allow for tracing

8: This contract assertion, which is likely to be nondestructive, would be made invalid if global
variables are subject to const-ification with Proposal 8.

4: Both Proposal 6 and Proposal 7 assume that variables at global scope are more likely to
be outside of the set of states on which the correctness of the function might depend, so they
do not subject global variables to const-ification.

• Concern: Easy and Incorrect Workaround

In some cases, a user who does not particularly understand the nuances of the new Contracts
facility in C++ might attempt to avoid warnings or errors that result from const-ification by
simply tossing in keywords until their code compiles. Consider the simple case that produces
a warning or error when any strategy for selecting entities is chosen:

void f()
{

int i = 0;
contract_assert(++i == 0); // Error

}

8: With Proposal 6, the following variations might be thrown out to simply get the code to
compile but also might be highly likely to be less correct than the code that the developer
began with:

void g()
{

static int i = 0;
contract_assert(++i == 0);

}
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By simply throwing in static, the code now compiles, and the user is left with a program
that still behaves incorrectly when contracts are enabled and disabled.

7: With Proposal 7, the naive workaround will fail, but a user may still move a variable outside
of their function to achieve a similarly broken result:

int i = 0; // global variable now
void h()
{

contract_assert(++i == 0); // just trying to make this compile
}

4: Proposal 8 makes all variables declared outside of the contract assertion subject to const-
ification, so there is no simple way to move a variable around to forcibly achieve broken yet
compiling code.
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Implementation Experience 4 8 8

Implementation Feasibility 4 4 4

Forward Compatibility 8 8 7

Function Parameters 4 4 4

Automatic Local Variables 4 4 4

static Local Variables 8 4 4

Global Variables 8 8 4

Logging Utilities 4 4 8

Easy and Incorrect Workaround 8 7 4

Early conclusions from this analysis tell us that extending const-ification to include all variables
outside the contract-assertion predicate seems like a very strong proposal here. While some static
APIs, like logging facilities, might have issues being used directly in a contract-assertion predicate,
we believe that those APIs are both less likely to be used directly in such predicates and can be
worked around in other ways when needed. The middle ground of extending just to nonautomatic
local variables seems to offer less real benefit, so we will not pursue Proposal 7 further.

4.3 Deep const-ness

Finally, we consider the two possible cases where we could apply a form of built-in deep const to
entities, Proposal 9 and Proposal 10.

• Concern: Implementation Experience

8: There is no implementation experience with attempting to apply this form of deep const-ness
within contract predicates.
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• Concern: Implementation Feasibility

7: While the analysis to implement these proposals is predominantly local, it is a novel
approach that would need significant effort to both specify and implement, and that analysis
has not yet been undertaken.

• Concern: Forward Compatibility

8: As with earlier proposals, changing our decision on these proposals would involve applying
const-ification to more or fewer expressions, both of which have potential concerns that would
make such a change highly unlikely to be viable in a future revision of the Standard.

• Concern: Pointer Dereference

When a contract-assertion predicate is provided a pointer value that is itself a value we would
consider for const-ification, the object denoted by that pointer is almost certainly also one
that is outside the cone of evaluation of that predicate:

void f(int * p)
pre( *p += 5 );

4: Only Proposal 10 would make the above code with obviously potentially destructive side
effects ill-formed.

• Concern: Smart Pointer Dereference

The same example as written above but instead written using std::unique_ptr is quite different
in that the pointer being dereferenced is one returned by a const member function and not
necessarily one that points to an object outside the cone of evaluation of the contract-assertion
predicate:

void f(std::unique_ptr<int> p)
pre( *p += 5 );

8: None of the proposals would make the above example ill-formed.

• Concern: Factory Function Dereference

To illustrate the issue with not having user-defined deep const, consider an object whose
operator-> returned a std::unique_ptr to a freshly created object:

struct Validator {
bool validate(); // not const

};
struct S {

std::unique_ptr<G> operator->() const;
};
void f(S s)

pre( s->validate() ); // Modify dynamically allocated object.

Compared to the previous example, the return value of unique_ptr::operator->() is being
dereferenced and modified in both cases, yet without user-provided guidance, we can’t easily
determine that one case should propagate const-ness and another one should not.

30



4: None of the proposals would identify the above example as ill-formed.

• Concern: Mutable Member Variables

Modifying in a contract predicate is probably still unintentional, and a const member function
that encapsulates such modification does provide the promise of const-correct behavior even
though mutation is happening. Without encapsulation, we have no such promise, and thus
making a modification directly within a contract predicate is likely ill advised:

struct S {
mutable bool d_computed = false;

void compute()
pre(( d_computed = true )); // oops

};

4: By having const-ification propagate through member access expressions, the implicitly
constructed member access expression this->d_computed above would be made into a const
expression, and the above example would be ill-formed.

• Concern: Consistency of User-Defined and Built-In Types

Writing user-defined types in C++ that behave in almost all ways as a built-in type is possible.
When doing so, operators are often overloaded with user-provided functions that do not by
necessity have the same semantics as a built-in operator. When properties of a built-in operator
are going to be used that cannot be replicated by an overloaded operator, a pressure arises
to use built-in types more and lose the great benefits of user-defined types, such as smart
pointers:

void f(int * p) pre( (*p) = 5 );
void g(std::shared_ptr<int> p) pre( (*p) = 5 );

8: Proposal 10 introduces propagation of const-ification through pointer dereference that
cannot be replicated for a user-defined type, giving inconsistent results for the above two
preconditions with no ability to alter std::shared_ptr to match the behavior of a built-in
pointer.

4: Proposal 9 does not alter the behavior of an operation that users are able to override and
treats both of the above preconditions equally.

• Concern: Reliable Escape Hatch

As mentioned elsewhere, when we impose a rule to disallow an action in Contracts, we must
either be certain that it can never be allowed or we must consider escape hatches that let
those who are aware of the issues work around the rule locally. For const-ification, that escape
hatch is to const_cast back to a modifiable type. In the case of an id-expression, we have an
even better option because we can const_cast back to the type of the entity denoted by the
id-expression using decltype:

#define UNCONST(x) const_cast<std::add_reference_t<decltype(x)>>(x)
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Importantly, if the entity is actually const, the above macro won’t remove that const and no
risk of the undefined behavior to which that const_cast often exposes you is there.12

8: Solutions that apply const-ification to expressions other than id-expressions will be unable
to rely on decltype being applied to the expression returns the type of the denoted entity
instead of the type of the expression. Proposal 9 and Proposal 10 would introduce expressions
where the above escape hatch does not work.
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Implementation Experience 4 8 8

Implementation Feasibility 4 7 7

Forward Compatibility 8 8 8

Pointer Dereference 8 8 4

Smart Pointer Dereference 8 8 8

Factory Function Dereference 4 4 4

Mutable Member Variables 8 4 8

Consistency of User-Defined and Built-In Types 4 4 8

Reliable Escape Hatch 4 8 8

Early conclusions from this analysis indicate that all options involving deep const seem to have
more concerns than benefits, including serious issues regarding completing and implementing their
specifications, so we will not propose pursuing these options.

4.4 Escape Hatches

Due to that nature software design, we will inevitably encounter cases in which a contract assertion
that is not destructive must still be written in terms of functions that are passed pointers and
references that are not, themselves, const. The most common motivating cases for this scenario are
unchangeable APIs that are not const-correct and APIs that mutate with some input values but
are known to be nonmutating with other input values.

Situations with a contract assertion that cannot be expressed due to const-ification can, of course,
be worked around. Some of these workarounds exist in the language already, and others would
require the introduction of new syntax and semantics.

• Make APIs const-Correct — The ideal solution is for functions that make no modifications
to their parameters to be properly marked with const qualifiers, removing any impedance to
using those functions within contract assertions.

12A built-in operation that removes const-ification (and only const-ification) could be made to work with any
proposal, but such an operation is beyond the scope of this paper. That operation would also have the advantage of
not necessarily working unexpectedly in other situations, such as when applied to a variable captured by value in a
lambda.
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When possible, this approach produces the ideal results: Not only is the quality of software
improved by having contract assertions introduced into it, but the static properties of a
program that are the results of const-correctness are better utilized.

• Wrap APIs in const-Correct APIs — For libraries that cannot be altered, users can write
wrapper functions that accept const pointers and references and that perform the const_cast
in a central, well-vetted location that then forwards on to the underlying non-const-correct
APIs. A function that is conditionally nonmutating, such as std::map::operator[], can be
given a const wrapper that throws if the key requested is not in the map and performs the
const_cast otherwise.

• Apply const_cast —The proposals here specifically do not apply to the results of a const_cast,
and we can remove const-ification through the use of a const_cast to the type of the entity
itself:

int i;
bool check(int&);
void f1() pre( check(i) ); // Error, i is const.
void f2() pre( check( const_cast<int&>(i) ) ); // Ok

Of note, const_cast is often considered inappropriate to use under any circumstances due to
the risks of circumventing the assumptions of users that a const variable will not be modified
and, even worse, is undefined behavior when the modification happens to a variable declared
with a const qualifier on its complete object.

const int j;
bool modify(int&);
void f3() pre( modify( const_cast<int&>(j) ) ); // well−formed but UB

Of course, the concerning undefined behavior happens only when an actual modification
happens to the object with a top-level const qualifier. Users doing the above const_cast must
take it upon themselves to not only construct the declared type of the variable properly, but
to use such a cast only when the const qualifier is due to const-ification, not because it is in a
const member function, it has a const-qualified object, or similar reasons.

• Encapsulate const_cast

As was mentioned earlier in this paper, an encapsulated const_cast that uses decltype can
provide a fair bit of protection against accidentally misusing const_cast to remove const-
ification:

#define UNCONST(x) const_cast<std::add_reference_t<decltype(x)>>(x)

This spelling has significant advantages over the direct use of const_cast within contract
assertions.

– The user does not have to figure out and reproduce the type of the variable.

– When a variable is declared const, this macro will not remove const from the expression
denoting that variable, protecting against at least some of the cases where const_cast
would be deemed inappropriate by many coding standards.
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Of course, using this approach still has limitations.

– Within a const member function, this macro will also remove the const applied to
id-expressions that denote member variables.

– Within a nonmutable nested lambda expression, this macro will also make a by-value
capture within the lambda mutable.

– This approach does not work if any proposal for deep const is adopted, such as Proposal 9
or Proposal 10.

• Add an Operator to Remove const-ification

We could add a built-in operator, which we might call unconst, that, when applied to an
expression, removes any alternative interpretation of the const-ness that happens to that
expression because of const-ification:

int i;
const int j;

bool check(int&);
void f4() pre( check( unconst(i) ) ) // Ok

pre( check( unconst(j) ) ); // Error, j is still const.

Such an operator could overcome the remaining flaws in the macro-based approach.

– By not using a macro, we would avoid stigmas associated with the preprocessor and
issues with tooling understanding this use of the language.

– Errors in use, such as applying the operator outside of a contract assertion or to a
expression that is not subject to const-ification, would be prevented.

– An operator like this would be able to understand deep const and remove its effects when
asked to.

– Such an operator could be defined to produce errors when used in places that have not
been subjected to const-ification, improving the understanding of contract assertions for
anyone attempting to blindly sprinkle it everywhere.

• Add A Label to Remove All const-ification

Also suggested is to provide a mechanism to turn const-ification off in an entire contract
assertion. This option could be accomplished with a label (see [P2755R1] for an overview)
that had this effect:

int i;
bool check(int&);

void f1() pre ( check(i) ); // Error, i is const.
void f2() pre no_constification ( check(i) ); // Ok

Such a label would have the downside of also removing const-ification from all parts of the
expression that do not need it, allowing for accidental modifications to local scalars just
because a non-const-correct API is in use:
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int i;
void f3() pre no_constification( ++i && check(i) ); // Ok?

For all the above escape hatches, concerns must be considered, especially if we are going to consider
an actual change to the language to facilitate working around const-ification.

• Concern: Verbosity

The verbosity of any workaround can be seen as an advantage since it encourages users to
update APIs to alternative const-correct ones. On the other hand, too much boilerplate,
especially to manually reproduce the types of existing variable declarations, is a violation of
software engineers’ oft-repeated desire to not repeat themselves.

4: Fixing APIs clearly has negative verbosity; software is improved and no code remains,
which will be specifically for supporting contract assertions.

3: The macro or operator-based solutions are targeted tools to say exactly what they need to
say and can be made as brief as desired, providing little syntactic overhead or need to repeat
any already-known information.

7: Wrapping APIs solely for the purpose of contract assertions is excessive overhead for many
and can be considered overly verbose.

• Concern: Works With All Proposals

4: Switching to const-correct APIs will work with all the proposals in this paper, as would
any new language feature we propose for this purpose.

7: const_cast based alternatives will work poorly with deep const but should otherwise be
effective.

• Concern: Misusability

4: Writing const-correct APIs to wrap those that are not const-correct can, of course, be
done incorrectly but is just as usable or misusable as the existing C++ language.

8: Manually determining the proper target for a const_cast is highly prone to errors and is
likely to result in mistakes or maintenance issues.

3: Encapsulating const_cast along with the use of decltype works correctly in most practicable
cases.

4: A targeted operator can be designed that does nothing but remove const-ification and
reveal the type of the denoted entity.

8: Removing const-ification from an entire contract assertion works around problems of
non-const-correct APIs but also leaves the user open to all mistakes that might be related to
accidental misuses of const-correct APIs, including built-in operators.

• Concern: Specificity

Working around a non-const-correct API or carefully ensuring that specific parameters will
not lead to modifications when using an API a certain way is an operation to which thought
should be applied. A tool that removes all need for such thought is a step backward from the
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ideal feature if you want to maximize the probability of contract assertions being correct if
they compile.

8: A label to remove all const-ification from a contract assertion is highly susceptible to a
creative developer deploying a macro to apply it everywhere:

#define mypre pre no_constification

4: All other solutions are specific to particular expressions or function calls that have been
flagged as problematic by const-ification and must be worked around.

• Concern: Bikeshedding

Any language feature that introduces new keywords or identifiers with special meaning must
hit the inevitable delay of both finding and agreeing upon how to spell that identifier.

4: Approaches that are not new language features need no bikeshedding.

8: Approaches that do require a keyword obviously do require bikeshedding. In particular,
the most common suggestion for a label is mutable simply because it is already a keyword,
which has the fundamental problem that it is not the contract assertion itself that is in any
way mutable. Similar issues, including a general decision on how labels should be chosen in a
grammatically useful way, would need to be addressed for any new syntax proposal.

• Concern: Language Complexity

Any new operator or feature of the language brings with it cognitive load for users since they
must be aware of what it does if they see it in use and why they would use it instead of other
built-in features that support the same functionality.

8: Both proposals for new language features increase the complexity of the language with
features that are relevant to the use of Contracts in only very particular scenarios. In addition,
these features introduce new special identifiers that users might need to be aware of even if
they never use the new features. Given how they increase language complexity, these features
should first prove their utility in comparison to that cost.

4: The other approaches involve no changes to the language and thus do not increase the
complexity of the language.

• Concern: Not Consuming Syntactic Real Estate

Contract assertions, being a new feature, have many paths of future syntactic evolution.
Any new language feature that affects how we specify contract assertions must not only be
cognizant of current uses of the feature, but also must be compatible with future evolutionary
steps we might want to take.

8: The syntactic space for labels — between the pre, post, or contract_assert and the
parenthesized predicate — is currently unused and is open for any possible future evolution.
Introducing a single label sets a possibly incorrect precedent for all future such evolutionary
features.

4: Approaches not involving a language change do not prevent any form of future evolution
nor does a new unary operator that removes const-ification.
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Verbosity 4 7 8 3 3 3

Works With All Proposals 4 4 4 7 4 4

Misusability 4 4 8 3 4 8

Specificity 4 4 4 4 4 8

Bikeshedding 4 4 4 4 8 8

Language Complexity 4 4 4 4 8 8

Not Consuming Syntactic Real Estate 4 4 4 4 4 8

This analysis provides the following early conclusions.

• The approaches that are already supported by the language itself seem more than sufficient
for handling potential issues and making significant use of contract assertions in real software.

• A new label has significant issues and provides no real benefit over other proposals, so we do
not believe that is the right solution to pursue.

• A new operator might be a viable solution of relatively high utility if we find that significant
real-world use of contract assertions regularly encounters the need to work around const-
ification. That has not been the case in either case study13 that attempted to apply Contracts
with const-ification to libraries with extensive existing use of assertion macros. An operator
of this sort should be explored in the future but not as a requirement for the initial release of
Contracts.

5 Conclusion
The const-ification introduced by [P3071R1] is a powerful tool for minimizing the chance of writing
incorrect contract assertions while not completely impeding a user’s ability to take necessary action
when APIs do not properly mark nonmodifying functions as const.

In the experience of the author of this paper, users often escalate two major issues to the owner of
the contract-checking facility they are using:

• Mistakes where an assignment or modifying expression has been wrapped in an assertion to
verify its return value, resulting in the build where assertions are disabled being completely

13See [P3268R0] and [P3336R0].
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broken

• Well-meaning yet foolhardy attempts to make an assertion expression correct an erroneous
state instead of detecting a violation, again leading to programs that appear to work without
issue in fully checked builds and then begin to fail in production systems where assertions are
disabled

Warnings such as those Proposal 1 would enable or preventing only a small set of syntactically
identified assignment operations such as Proposal 2 would do can have a noticeable impact on
the first category of problems above. For the majority of more involved issues that have been
observed in practice, however, const-ification as proposed in Proposal 5 is the only option that
would consistently identify the most problematic cases without undue false positives.

Given the analysis presented above, we consider the following options worth considering for the
Contracts MVP due to their general correctness, lack of implementation concerns, and usability.

• Proposal 1: Warnings Only — This proposal would sacrifice a great deal of potential protection
against broken uses that could be built into the language for the benefit of removing objections
to [P2900R8] because of the presence of const-ification. Compilers, however, would have the
freedom to pick the ideal range of entities to which to apply const-ification for their users,
warning wherever most appropriate and making local exceptions when pragmatic.

• Proposal 2 with Proposal 8: No Assignment to Any Variables — These proposals combined
directly address a number of the concerns described above while avoiding any change to the
types of expressions used within contract-assertion predicates. While much of their effect can be
achieved with warnings, adopting these proposals would at least indicate that the Committee
is concerned with guiding programmers to more easily write nondestructive contract-assertion
predicates.

• Proposal 5 with Proposal 6: Make const Automatic Variables— As presented in [P2900R8],
this proposal is the current status quo. While imperfect, it has known principles guiding
its design, it includes real implementations with which we have been experimenting, and it
protects against meaningful problems.

• Proposal 5 with Proposal 8: Make const All Variables — We believe that the concerns with
nonautomatic variables are not, in retrospect, significant and that applying const-ification to
all variables that are declared outside the contract assertion is a compelling option to consider.

All the above solutions allow some destructive contract-assertion predicates to be written without
warning or error while making others more difficult to write. (Even Proposal 1 would make it harder
to write nondestructive predicates by removing any firm guardrails against inadvertently making
modifications). At the end of the day, which proposal to pick is a decision based on what is ideal
from the perspectives of language designers and software engineers.
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