
Document #: P3237R1
Date: 2024-10-16
Project: Programming Language C++
Audience: SG21
Reply-to:

Andrei Zissu <andrziss@gmail.com>

Matrix Representation of Contract
Semantics

Contents
Contents
Introduction
Summary of Proposed Changes
Motivation
Proposal
Impact of the Changes
Q&A
Wording
References

Revision History
Revision 0 (April 2024 Mailing)

● Initial revision.
Revision 1 (October 2024 Mailing)

● Properties as bitmasks rather than bit fields.
● Updated some sections.
● Added a code example (link to godbolt).
● Semantic properties are now always represented as a single boolean value.
● Added a questions for SG21 section.
● Added a Q&A paragraph on unsuccessful prior art.

1

mailto:andrziss@gmail.com


Introduction
Contract semantics, as proposed in [P2900R5], already comprise a set of 4 semantics - ignore, enforce, observe,
and quick_enforce (the former “Louis semantic”). Several new semantics are quite likely to be proposed in the
foreseeable future. As can be currently seen with the “Louis semantic” which took a while plus some
considerable discussion to finally be named quick_enforce, deciding upon proper naming of such semantics
often incurs considerable difficulties. This is spurred by the justified fear of an increasing number of contract
semantics posing ever more challenges to the intuitive grasp of their meaning by the C++ community and even
by WG21 members.

We therefore propose a different way of defining contract semantics, which would address the issues
described above and even the design of new contract semantics.

Summary of Proposed Changes
We are proposing that contract semantics (as proposed in [P2900R5]) be defined in terms of separate
properties, and that they be represented as a matrix comprising said properties. While officially orthogonal -
as seen below, some dependencies are expected to exist between them, thus reducing the number of eligible
combinations.

Optionally, we also propose redefining the permissible values of the contract_semantic field of class

contract_violation so as to incorporate the new properties-based representation via combinations of

power-of-2 values rather than the current sequential enum..

Motivation
The contracts status quo represented by [P2900R5] currently includes 4 semantics: ignore, enforce, observe
and quick_enforce. An assume semantic is already viewed as a likely post-MVP proposal. Additional semantics
may be proposed, such as the tentative terminate semantic in [P3205R0].

Describing such a multitude of semantics and comparing them is quickly becoming a challenge. [P3205R0]
tackles that in a way that seems natural and called for – a matrix (this example is from an early version of that
paper, which for demonstration purposes is immaterial):

2



(Note: enforce in the above table is erroneously referred to as ensure.)

Describing contract semantics in this manner affords us a bird’s eye view of all their salient properties, as well
as allowing us to spot missing properties which should be properly specified for each new proposed semantic.

In addition to allowing easier reasoning about the differences between various semantics, such a description
would also allow us to consider the need for new semantics. This could be done by first determining
dependencies between some matrix columns, and from there new semantics allowed by those dependencies
might fall out.

For example, let’s first determine some dependencies:
!checks implies !calls_handler – Not checking the predicate implies the violation handler will never be called.
Similarly: !checks implies !terminates

terminates implies assumed_after – A terminating semantic (with whatever termination means) allows the
compiler to optimize function code following the contract assertion under the assumption that it will only be
executed in-contract. This assumption holds even in semantics (such as enforce) which allow termination to
be bypassed, e.g. by throwing an exception. (Note: One could imagine future terminating semantics which may
challenge this assumption, e.g. conditional or delayed termination.)

Such dependencies help us reduce the combinatorial explosion of legal matrix combinations and therefore of
possible and sensible semantics. Whatever remains after eliminating illegal combinations may inspire
proposals for new semantics.

This paper does not propose any particular set of matrix columns, i.e. contract semantic properties. If this
proposal is adopted, we will have a principle by which such separate properties may be proposed (and
possibly extended later). Thus, this paper can be viewed as mainly a policy proposal.

Proposal
We propose that henceforth contract semantics be described in terms of separate properties (unspecified as
to their actual content in this proposal). The full list of available semantics will be visualized as a matrix, with
each column representing a semantic property and each row a contract semantic. Each property will be
described in terms of a single boolean flag with true and false values.

Going back to the earlier matrix example taken from [P3205R0]: checks, calls handler and assumed afterwould
each be represented as a single property. Terminate lists 4 possible states, which would be represented by the
combination of 2 boolean flags, therefore it would need to be defined as 2 properties . Proposed is a comments
column, not represented as a property.

We further propose that named semantics would still be listed in the standard, but their description in code
will be via a set of constexpr (power of 2) values. (Presumably this could also facilitate command line usage,

3



as compiler flags would not necessarily have to be provided individually for each separate contract semantic
property.) Thus, the current [P2900R8] status quo could be represented as in this code example:
https://compiler-explorer.com/z/684TMYPo8

In terms of library facilities, we optionally propose mandating that the contract_semantic enum field of

class contract_violation will contain only power-of-2 values, making it bitmask-friendly. This would

enable easy inspection/specification of multiple properties en masse. This would require standardizing the
underlying type of the contract_semantic enum - we believe a 32 or 64 bit integer type would more than

suffice for any future expansion, given that new contract semantic properties are expected to be few and far
between (unlike new contract semantics, which are combinations thereof). With a 64-bit underlying type, we
could reserve the upper 32 bits for vendor extensions - this may only prove unsatisfactory if different vendors
may require interactions, thus needing unique universal property values.

With these 2 optional additions in place, the contract semantics listed in the [P2900R5] status quo) could be
described via constexpr definitions. We would currently informally propose the following, semantic aliases
(as listed in the code example mentioned above):

CONTRACT_SEMANTIC(ignore);

CONTRACT_SEMANTIC(observe, evaluates_predicate);

CONTRACT_SEMANTIC(enforce, evaluates_predicate, calls_violation_handler,

enforces, terminates);

CONTRACT_SEMANTIC(quick_enforce, evaluates_predicate, enforces,

terminates);

Impact of the Changes
● No impact on current code, as contracts are not yet part of C++.
● Possible changes in the permitted values of the contract_semantic enum as proposed in [P2900R5].

Q&A

Wouldn’t this create a huge combinatorial matrix and only complicate things?

Not if we reign it in, by means of carefully defining inter-column dependencies as described in this paper.
Thus we would never populate the matrix with semantics made up of property combinations not permissible
as per the defined dependencies.

Didn’t similar past proposals fail?

4

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2900r8.pdf
https://compiler-explorer.com/z/684TMYPo8


Well, yes and no. Several proposals mentioned in [P3227R0] indeed failed to gain traction. However, they
proposed contract semantic properties as first class entities, whereas we propose them as building blocks of
semantic aliases. Whereas we have decided for now to present semantic aliases as an optional addition to this
paper, the fact is that having them as first class entities and precluding any other property combinations as
non-standard (though free to experiment with outside the standard) would most likely solve the main
stumbling block of previous proposals by limiting the number of standard semantic to the same number
presented by the current [P2900R5] status quo.

Wouldn’t the proposed aliases bring us back to the naming conundrums described as motivation for this
proposal?

Well, yes. However, having control over the number of legitimate property combinations (a.k.a semantics) is a
stronger motivation. Having said that, having each alias/semantic directly defined as its set of properties will
greatly aid in understanding their meaning, writing code referring to individual properties rather than full
semantics, and possibly experimentation with new semantics.

Questions for SG21
● Do we agree with the general direction presented in this paper?
● Are we interested in redefining contract_violation::contract_semantic as a set of

power-of-2 boolean combinations?
● Which underlying type would we like to choose, and how do we divide it between

standard and vendor-specific properties? Do the latter need to be universally unique?

Wording
To be added later, if needed.

References
[P2900R5] Joshua Berne, Timur Doumler, Andrzej Krzemieński. 2024-02-15. Contracts for C++.
https://wg21.link/p2900r5

[P3205R0] Gašper Ažman, Jeff Snyder, Andrei Zissu. 2024-04-15. Throwing from a noexcept function should be
a contract violation.
https://isocpp.org/files/papers/P3205R0.pdf

[P3227R0] Gašper Ažman, Timur Doumler. 2024-10-16. Fixing the library API for contract violation handling.
https://isocpp.org/files/papers/P3227R0.pdf

5

https://isocpp.org/files/papers/P3227R0.pdf
https://wg21.link/p2900r5
https://isocpp.org/files/papers/P3205R0.pdf
https://isocpp.org/files/papers/P3227R0.pdf

