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1 Abstract
Deleting a pointer to an incomplete class type is undefined behavior unless that class type has a trivial destructor
and no class-specific deallocation function when completed. This proposal would make such usage ill-formed.

2 Revision History
2024 May mailing (pre-St Louis)

— Apply editorial feedback
— Record outcome of EWG from telecon on May 15, 2024

— preferred resolution is ill-formed, not deprecated
— Provide new wording for preferred resolution
— Forward to Core targeting C++26

2024 February mailing (pre-Tokyo)

— Initial draft of this paper.
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3 Introduction: Deleting Pointers to Incomplete Types
An incomplete type is a type for which there is a declaration but not a definition. For example, the class C below
is of class type, but nothing is known about its definition:
class C; // OK, declaration of incomplete type
class C *cp = 0; // OK, pointer to incomplete type
class C c; // Error, cannot construct an incomplete type

While having a pointer (or even a reference) to an incomplete type is perfectly fine, attempting to do anything
with that type that requires knowing its size, layout, or member function definitions is typically ill-formed. A
particular sore spot in the Standard is what happens when someone tries to delete an object of incomplete type:
class C; // OK, incomplete type
void delC(C *cp)

// Delete the object pointed to by `cp`.
{

delete cp; // What should happen here?
}

As the example above shows, function delC is being asked to know how to delete the object of type C without
knowing its size, layout, or any other aspects of its definition. What happens in the Standard today, and what
should happen instead?

The current C++ Standard allows for calling delete on a pointer to an incomplete type, and that call will
produce undefined behavior unless the complete class type, when defined, has a trivial destructor and does not
declare a class-specific operator delete. In that very special case, the defined behavior happens to be a simple
no-op for the destructor, followed by a call to the global delete operator to reclaim the memory.

Otherwise, the simple act of failing to include a header can subtly turn a perfectly correct program into one
that silently executes undefined behavior. Undefined behavior has all but unbounded potential for bad program
behavior, including security leaks, data corruption, deadlocks, and so on.

Detecting the source of this problem — calling delete on a pointer to an incomplete class type — is easy for
compilers, but detecting the small sliver of well-defined behavior before link time is not simple. The difficult
task of providing effective user warnings for this common class of insidious errors is currently left to compiler
implementers as a matter of quality of implementation (QoI).

3.1 Resolution
After going through the Evolution Working Group process (EWG telecon review), the recommendation is to
make calling delete on a pointer to an incomplete type ill-formed in C++26 without a period of deprecation
since current compilers already give a false-positive warning on such code.
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4 Background
The original C++ Standard defined the behavior of calling delete on a pointer to an incomplete class type —
i.e., when the effect of calling delete on a pointer to the complete class type just happened to be the same
behavior as ignoring the call. The compiler has no way of establishing the well-defined cases on a per-translation-
unit basis, and why this behavior — that is coincidentally the same as if the type were complete — is singled
out to be well defined is unclear1:

7.6.2.9 [expr.delete]2 Delete
5 “If the object being deleted has incomplete class type at the point of deletion and the complete class has a

non-trivial destructor or a deallocation function, the behavior is undefined.”

We note that invoking delete on a pointer to a trivial type that does not overload the class-specific
operator delete can be implemented as simply not invoking the destructor and instead calling just the global
operator delete with the address of the trivial object since the type of the object is not needed once we know
the destructor is trivial.

On a related note, the Standard contains explicit treatment for allowing the reuse of storage for an object by
constructing another object in its place:

6.7.3 [basic.life] Lifetime

“1 … The lifetime of an object o of type T ends when:

— if T is a non-class type, the object is destroyed, or
— if T is a class type, the destructor call starts, or
— the storage which the object occupies is released, or is reused by an object that is not nested within o

(6.7.2 [intro.object]).”
5 “A program may end the lifetime of an object of class type without invoking the destructor, by reusing or

releasing the storage as described above.

[Note 3: A delete-expression (7.6.2.9 [expr.delete]) invokes the destructor prior to releasing the storage. —end
note]

In this case, the destructor is not implicitly invoked.

[Note 4: The correct behavior of a program often depends on the destructor being invoked for each object of
class type. —end note]”

So in the case of calling delete through a pointer to an incomplete class type, we would be ending the object
lifetime by “releasing the storage” and without running the destructor. Note that leaking memory is, in general,
well-defined behavior, and the user determines whether retaining any resources held by such objects is a bug.

The current user experience for this sort of undefined behavior is decidedly suboptimal. Compilers like to warn
users when their code strays within the bounds of undefined behavior, especially when such behavior is easy or
reasonable to diagnose. As an experiment, we created two similar versions of a minimal program: (a) one that
executes only well-defined behavior and (b) one that executes undefined behavior (the only difference being the
triviality of the destructor of the xyz::Widget class):

1The paper authors believe that support for this exception essentially fell out of implementations simply choosing to ignore the
destructor entirely (which was explicitly permitted for C++98 trivial destructors) and call the global operator delete to reclaim
memory. In any event, that sliver of defined behavior happens to match exactly the results of calling the correct delete operator if
the incomplete type turns out to have a trivial destructor once completed.

2All citations to the Standard are to working draft N4981 unless otherwise specified.

5

https://wg21.link/N4981#expr.delete
https://wg21.link/N4981#basic.life
https://wg21.link/N4981#intro.object
https://wg21.link/N4981#expr.delete


(a) Well-Defined Behavior (b) Undefined Behavior

namespace xyz {
struct Widget; // forward decl
Widget* new_widget();

} // close xyz

int main() {
xyz::Widget *p = xyz::new_widget();
delete p;

}

namespace xyz {

struct Widget {
const char *d_name;
int d_data;

// (implicit) trivial destructor
// This is the only difference.

};

Widget* new_widget() {
return new Widget();

}

} // close namespace xyz

namespace xyz {
struct Widget; // forward decl
Widget* new_widget();

} // close xyz

int main() {
xyz::Widget *p = xyz::new_widget();
delete p;

}

namespace xyz {

struct Widget {
const char *d_name;
int d_data;

~Widget() {} // nontrivial dtor
// This is the only difference.

};

Widget* new_widget() {
return new Widget();

}

} // close namespace xyz

Notice that, in the example above, deleting the incomplete widget type is no problem in (a) because that type
is trivially destructible (and doesn’t overload operator delete). Just by adding a user-defined destructor —
that has the exact same definition as the trivial destructor — for the Widget type in (b), we make the behavior
of the program undefined.

We tested these two similar versions using the Godbolt Compiler Explorer to see which compilers warn on this
potential undefined behavior, which warning flags they require, and how long those warnings have been available.

All compilers — even the oldest releases available at Godbolt — report a warning that the destructor might
not run. Only Clang warns that the behavior is undefined, and only MSVC needs a command-line switch, /W2,
to enable the warning. Note that the default warning level for a Visual-Studio-created project is /W3, so the
warning will be reported for the typical user experience.

Note, however, that all compilers give precisely the same warning for both the undefined and the well-defined
case. The warning in the well-defined case cannot be easily cleared other than disabling the warning for both.

Templates further complicate matters. Consider two similar programs where the only difference between the
two is that in the reclaim function (a) is and (b) is not a template. Note that the Widget class is defined after
the reclaim function (template) but before main in both cases.
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(a) Well-Defined Behavior (b) Undefined Behavior

#include <iostream>
#include <new>

namespace xyz {
struct Widget; // forward type decl

void report(); // forward fun decl
// Print number of current widgets.

auto new_widget() -> Widget*; // factory

template <class T> // Note: function template
void reclaim(T *p) {
delete p;

}

struct Widget {
static int s_count; // # active

const char *d_name;
int d_data;

Widget() { ++s_count; }
~Widget() { --s_count; }

};
} // close namespace xyz

int main() {
xyz::Widget* p = xyz::new_widget();
xyz::report(); // prints 1

reclaim(p); // complete class
xyz::report(); // prints 0

}

void xyz::report() {
using namespace std;
cout << Widget::s_count << '\n';

}

auto xyz::new_widget() -> Widget* {
return new Widget();

}

int xyz::Widget::s_count = 0;

#include <iostream>
#include <new>

namespace xyz {
struct Widget; // forward type decl

void report(); // forward fun decl
// Print number of current widgets.

auto new_widget() -> Widget*; // factory

// Only difference: Not a template!
void reclaim(Widget *p) {
delete p;

}

struct Widget {
static int s_count; // # active

const char *d_name;
int d_data;

Widget() { ++s_count; }
~Widget() { --s_count; }

};
} // close namespace xyz

int main() {
xyz::Widget* p = xyz::new_widget();
xyz::report(); // prints 1

reclaim(p); // complete class
xyz::report(); // prints ??

} // (1 on GCC, 0 on Clang)

void xyz::report() {
using namespace std;
cout << Widget::s_count << '\n';

}

auto xyz::new_widget() -> Widget* {
return new Widget();

}

int xyz::Widget::s_count = 0;

In the examples above, example (a) exhibits well-defined behavior because the code for the reclaim function
template is not generated until the point of instantiation, which occurs after the complete definition of the
Widget struct is visible. On the other hand, example (b) invokes undefined behavior because the code for the
(nontemplate) reclaim function is generated as soon as its definition is seen.
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Now suppose we further modify the example above and create c, which is a hybrid of a and b, where the reclaim
function is now a function template of two arguments, one of which is of the template type T and the other is
not (and invites the question of whether it invokes any undefined behavior or if all the behavior it exhibits is
well defined):

(a) Original (c) Revisions

#include <iostream>
#include <new>

namespace xyz {
struct Widget; // forward type decl

void report(); // forward fun decl
// Print number of current widgets.

Widget* new_widget(); // factory

template<class T> ___\
void reclaim(T *p) { ~~~/
delete p;

}

struct Widget {
static int s_count; // # active

const char *d_name;
int d_data;

Widget() { ++s_count; }
~Widget() { --s_count; }

};
} // close namespace

int main() { ___\
xyz::Widget* p = xyz::new_widget(); ~~~/
xyz::report(); // prints 1

reclaim(p); // complete class
xyz::report(); // prints 0

}

void xyz::report() {
using namespace std;
cout << Widget::s_count << '\n';

}

xyz::Widget* xyz::new_widget() {
return new Widget();

}

int xyz::Widget::s_count = 0;

#include <iostream>
#include <new>

namespace xyz {

template<class T>
void reclaim(T *p, Widget *q) {
delete p;
delete q;

}

} // close namespace

int main() {
xyz::Widget* p = xyz::new_widget();
xyz::report(); // prints 1

xyz::Widget* q = xyz::new_widget();
xyz::report(); // prints 2

reclaim(p, q);
xyz::report(); // prints 0

}
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The authors think that the Standard claims this program is actually ill-formed, no diagnostic required (IFNDR),
per 13.8.1 [temp.res.general] bullet (6.6) so that the whole program is free of requirements regardless of whether
the reclaim call occurs. However, all current implementations produce a program having the same behavior
that invokes the correct delete operation for the complete type with both pointers.3

As a final twist in the tale of destructors, C++11 added the capability, with the use of = default, for a private
destructor to be trivial. That addition leads to the following example of a program that is well defined only if
the Widget type is incomplete.

Well-Defined Behavior Ill-Formed

// widget.h
namespace xyz {

class Widget; // forward declaration
Widget* new_widget();

} // close xyz

// program.cpp
#include "widget.h"
#include <new>

int main() {
xyz::Widget *pWidget = xyz::new_widget();
delete pWidget; // OK, trivial class

} // no access control checks

// widget.cpp
#include "widget.h"

namespace xyz {

// *private* trivial destructor for `Widget`
class Widget { ~Widget() = default; };

Widget* new_widget() {
return new Widget();

}

} // close xyz

// widget.h
namespace xyz {

class Widget { ~ Widget() = default;};
Widget* new_widget();

} // close xyz

// program.cpp
#include "widget.h"
#include <new>

int main() {
xyz::Widget *pWidget = xyz::new_widget();
delete pWidget; // inaccessibledestructor

}

// widget.cpp
#include "widget.h"

namespace xyz {

// `Widget` is defined in header.

Widget* new_widget() {
return new Widget();

}

} // close xyz

As seen in the well-formed case, no access checks are performed when the delete operator is called on a pointer to
an incomplete type. The behavior is well defined, however, as long as the complete type has a trivial destructor;
the language does not require an accessible trivial destructor.

In the ill-formed case, we complete the class type before invoking the delete operator, and the access check for
the destructor fails, rendering the program ill-formed.

One final example demonstrates the second cause of undefined behavior when calling delete on a pointer to an
incomplete class type, and that is for a class, even a class with a virtual destructor, providing a class-specific
operator delete. To support the small sliver of well-defined behavior, the compiler must assume that, after

3Despite the seemingly artificially stringent restriction by the Standard, the phased approach to template instantiation means
that the code for calling the function template will not be generated until all definitions within the current TU have been seen.
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destroying an object, it can reclaim that object’s memory by calling the global operator delete. Without
smart linker technology that can see the completed type and fix up the call, no better way is known for a
compiler than calling the global operator; no one is proposing such a feature nor speculating that it would be
implementable.

In this example, observe that the Widget class does have a trivial destructor and yet the delete call still produces
undefined behavior due to the presence of the class-specific operator delete.

Defined Behavior Undefined Behavior

// widget.h
namespace xyz {

struct Widget; // forward declaration

Widget* new_widget();
// Return an unowned pointer to a `Widget`
// created with the `new` operator.

} // close namespace

// program.cpp
#include "widget.h"
#include <new>

int main() {
xyz::Widget *pWidget = xyz::new_widget();
delete pWidget; // OK, Widget is trivial.

}

// widget.cpp
#include "widget.h"

namespace xyz {

struct Widget {
const char *d_name;
int d_data;

// does not have class-specific `delete`
};

Widget* new_widget() {
return new Widget();

}

} // close namespace

// widget.h
namespace xyz {

struct Widget; // forward declaration

Widget* new_widget();
// Return an unowned pointer to a `Widget`
// created with the `new` operator.

} // close namespace

// program.cpp
#include "widget.h"
#include <new>

int main() {
xyz::Widget *pWidget = xyz::new_widget();
delete pWidget; // UB, class-specific delete

}

// widget.cpp
#include "widget.h"

namespace xyz {

struct Widget {
const char *d_name;
int d_data;

void operator delete(void *) {}
};

Widget* new_widget() {
return new Widget();

}

} // close namespace

Hence, any attempt to completely resolve concerns about latent undefined behavior must address overloading
the delete operator, not just handle the destructor. However, it should be evident that significantly more user
classes have non-trivial destructors than provide a class-specific operator delete, so solving just one of the
problems would be significant progress.
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4.1 Improving Solutions With Erroneous Behavior
While we might like to make the whole construct ill-formed in a future Standard, doing so for C++26 would
present difficulties. Conversely, deprecating the behavior now opens the way to making such code ill-formed in
a future Standard, without resolving concerns regarding the potential for invoking undefined behavior.

In January 2023, Thomas Köppe proposed4 a new form of behavior, erroneous behavior (EB), that in many cases
can replace cases of undefined behavior (UB) with minimally specified behavior that is not itself intended to be
reliable but is not unbounded like UB. In so doing, we are often able to plug a potentially dangerous security
vulnerability without sacrificing our ability to subsequently detect and report latent correctness defects in new
or legacy code.

The idea behind specifying behavior as erroneous is to preserve all the discouragement by implementations
and tools that find and report undefined behavior but to define behavior sufficiently to remove the lack of any
requirements and thus the unbounded risk (e.g., time travel) associated with undefined behavior.

Erroneous behavior goes beyond specifying and deprecating the behavior by permitting — or even encouraging
— implementations to detect such behavior at run time and then perform some well-defined operation (e.g.,
initialize a variable to a known, very wrong value or even aborting the program), making clear to users that this
behavior is neither intended nor supported.

Thus, not calling the destructor would be considered erroneous rather than undefined behavior, but not calling
the class-specific operator delete would still be UB. However, this paper’s authors do not see a suitable defined
behavior that could be declared as erroneous when a class-specific operator delete is involved on an incomplete
type.

We will exhibit two new, refined solutions employing erroneous behavior below.

4See [P2795].
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4.2 Doing the Right Thing
All things being equal, a nearly ideal solution would be to simply do the right thing and call the appropriate
destructor even in the presence of an incomplete type. The only drawback would be that programs that invoked
undefined behavior and seemed to work anyway might now exhibit new and possibly even undesirable behavior.

We will consider this general idea as one of our alternate solutions below. A variety of ways are available to
stash a deleter that deterministically does the right thing. While we have some ideas of how to make that
work, being able to do so is unlikely without violating ABI compatibility or incurring a non-negligible (and, for
some, unacceptable) runtime overhead on each call to delete, thus running afoul of the zero-overhead principle.
Moreover, some errors might not be diagnosable until link time, which is usually expressed as IFNDR. (Note
that we can see clear benefits to mandating a link-time diagnostic.)

To demonstrate the feasibility of this approach, we briefly describe two possible implementation directions one
might consider to achieve the desired behavior.

1. new expressions stash a deleter — Have every new expression stash the corresponding delete behav-
ior as a function pointer preceding the allocated object so that delete can always access the necessary
metadata to run the correct cleanup code. Note that this is the behavior of the type-erased deleter in
std::shared_ptr, for example, and similar to the extra bookkeeping the compiler performs behind the
scenes when using array new.

2. delete on incomplete type invokes a magic function — When a class T is defined, the compiler
can define a magic function, __delete_incomplete(T *ptr). As part of the class definition, the compiler
can see the class destructor and any class-specific operator new overloads. Since the magic function has
a known name, the translation unit calling delete would know the name of the magic function that will
be found at link time. The function is guaranteed to be available when linking, lest the earlier call to new
would not be possible. Conversely, if the delete is called on an invalid pointer (i.e., a pointer to an object
that was not allocated by a call to new), then the behavior is already undefined before trying to find the
magic function.

Note that both suggestions above have problems when the destructor or class-specific new operator is not publicly
accessible. Adopting this solution might require the introduction of a requirement that either the new expression
has access, perhaps via friendship, or the compiler assumes access that cannot easily be checked at the call site
for delete.

Also note that we have no easy way to propagate the friendship check, which at best could produce a runtime
failure if such a check could be enabled at all. The earlier example of a program that is well formed only if delete
is invoked on a pointer to an incomplete type might become ill-formed should we decide to follow this direction.

One additional, orthogonal, design decision remains regarding whether to call the stashed function pointer on
every call to delete or only for delete with a pointer to an incomplete class type allowing static dispatch in the
cases where the type is complete, which would match the case for well-defined behavior today. A requirement to
always call the stashed deleter is effectively a dynamic dispatch, adding indirection and an additional function
call to every delete expression; this change, however, would also give the correct behavior when deleting a
pointer to a base class, even when the destructor is not declared as virtual.

Finally note that this approach would introduce hard-to-diagnose behavior changes in code that previously relied
on some delete calls (incorrectly) not invoking the destructor; note that such code has undefined behavior today
but might be working exactly as a user intends on their specific platform.
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5 Problem Statement
Provide a better way for the C++ Standard to describe the behavior resulting from the deletion of an incomplete
type — one whose definition is not known at the point that the code used to delete the object is generated.

5.1 Illustrative Example
This example demonstrates that we cannot determine at the time of translation whether a program has well-
defined behavior or has undefined behavior as that determination depends upon information typically available
to only the linker.

Well-Defined Behavior Undefined Behavior

// widget.h
namespace xyz {

struct Widget; // forward declaration

Widget* new_widget();
// Return an unowned pointer to a `Widget`
// created with the `new` operator.

} // close namespace

// program.cpp
#include "widget.h"
#include <new>

int main() {
xyz::Widget *pWidget = xyz::new_widget();
delete pWidget; // OK, Widget is trivial.

}

// widget.cpp
#include "widget.h"
#include <new>

namespace xyz {

struct Widget {
const char *d_name;
int d_data;

// rule of zero trivial class
};

Widget* new_widget() {
return new Widget();

}

} // close namespace

// widget.h
namespace xyz {

struct Widget; // forward declaration

Widget* new_widget();
// Return an unowned pointer to a `Widget`
// created with the `new` operator.

} // close namespace

// program.cpp
#include "widget.h"
#include <new>

int main() {
xyz::Widget *pWidget = xyz::new_widget();
delete pWidget; // UB, Widget not trivial

}

// widget.cpp
#include "widget.h"
#include <new>

namespace xyz {

struct xyz::Widget {
const char *d_name;
int d_data;

~Widget() {} // nontrivial destructor
};

Widget* new_widget() {
return new Widget();

}

} // close namespace

13



In this case, the question is whether the completed class type has a trivial destructor. The compiler translat-
ing program.cpp has no visibility of the class definition in widget.cpp, and only the linker bringing the two
translated parts together can reveal whether the program contains undefined behavior.

In the well-defined case, the class definition in widget.cpp satisfies the rules of having a trivial destructor; in
the undefined case, the destructor is non-trivial, making the delete expression in program.cpp undefined.

5.2 Business Justification
Undefined behavior is unpredictable and frequently a source of hard-to-detect bugs that often lead to security
vulnerabilities.

5.3 Measure of Success
More behavior for programs becomes well defined without sacrificing a means of ensuring other forms of correct-
ness, thereby benignly reducing this strain of hard-to-diagnose buggy behavior.

6 Probative Questions
— Is it desirable to provide some definition for the undefined behavior?
— Would such a definition compromise our ability to ensure correctness, now or in the future?
— Is it desirable to continue supporting the well-defined behavior?
— What might be the impact of making some of the current undefined behavior ill-formed?
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7 Solutions
In this section, we describe each of the solution candidates in its own separate subsection comprising its motivat-
ing principles and any concerns we might have should that solution be adopted. Note that we avoid repeating
motivating principles unless they are especially relevant to a later solution since all solutions will ultimately be
scored against all principles in the compliance table (see “The Compliance Table”).

7.1 Proposed Solution: delete for Incomplete Class Types Is Deprecated
Absent a strong motivation to support the special case of trivial destructors (and no deallocation function),
making such code ill-formed might seem best. However, much code in use today likely does indeed use this
construct, and making such code ill-formed for C++26 could be a big barrier to adoption. Therefore, we
propose deprecating such use today with a goal of making such code ill-formed in a future Standard, once we
better understand how much of this proposed soon-to-be deprecated code serves a valuable purpose.

Two (at least) distinct reasons indicate that not making deleting incomplete types ill-formed for C++26 would
be preferred.

1. A small sliver of use of this construct is well defined, and making all such use ill-formed would break
perfectly correct well-formed, well-defined code.

2. Just because a function contains a code path that, if called, might invoke UB doesn’t mean that it necessarily
does (or even that the function is always or even ever called). Hence, perfectly correct programs having
this construct in some piece of dead code would abruptly stop working.

— Motivating Principles
— Solution must be implementable.

— A solution that has no known implementation strategy is not viable.
— Solution must be specifiable.

— Some aspects of implementation are outside the scope of the Standard, such as what happens when
undefined behavior occurs or whether specific runtime diagnostics are required before enforced
program termination.

— Detect and report as much UB as possible at compile time.
— The more potential UB that’s detected at compile time, the fewer opportunities for security

vulnerabilities and correctness bugs.
— Minimize requiring implementations to break ABI compatibility.

— An aspect of stability that has long been held dear in WG21, perhaps to a fault, is that the new
versions of the Standard must minimize the need for implementations to break binary compati-
bility with their existing client base.

— Minimize breaking existing code at compile time across one release.
— Ideally, developers will always have at least one Standard release to address working code that is

being deprecated so that they have time to upgrade their code incrementally rather than having
to change all the code in lockstep before upgrading at all.

— Avoid making well-formed code into ill-formed code.
— Backward compatibility of correct programs is essential to the stability and practical use of the

language for production use.
— Avoid making undefined behavior ill-formed across one release.

— Just because the potential exists for undefined behavior to occur does not mean that UB will
happen in all (or even any) circumstances.

— Minimize silent changes to essential runtime behavior.
— Maintaining explicitly stated defined behavior is essential for the stable, safe, and reliable use of

the C++ language.
— Minimize silent changes to nonessential runtime behavior.

— Changing any behavior of conforming code without diagnostics can result in production problems
that are very difficult to diagnose.
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— Minimize silent changes to undefined runtime behavior.
— In theory, any change to undefined behavior that results from defining it is fully Liskov substitutable.

From a practical perspective, however, forcing a particular behavior that differs from what imple-
mentations do now might adversely affect the (e.g., revenue-producing) production programs of their
clients. Implementers would nonetheless be forced to make that change to remain compliant.

— Satisfy the zero-overhead principle.
— The addition of a language feature will ideally have zero runtime performance or per-object space

impact on code that is not written in terms of that feature.
— Minimize additional runtime overhead for pre-existing code.

— The runtime performance and per-object space requirement of pre-existing code shall not (by default)
be pessimized when a new C++ Standard is adopted. That new Standards can be adopted without
penalizing existing users is important.

— Do not leave whether code compiles to QoI.
— Allowing QoI to determine what does and doesn’t compile means that code that compiles and runs

on one compiler might not compile on another, limiting the portability of the language.
— Do not preclude the possibility of better solutions.

— Backward compatibility for a better, more practically viable solution, should one come along, is
not precluded. We want to avoid adopting a less-than-ideal solution if it would preempt future
improvements.

— Concerns
— This solution does not prevent errors.

— Deprecation warnings are left to implementers as a matter of QoI.
— Well-defined behavior is deprecated along with UB.

— We have no way of knowing the difference.

7.2 Alternative Solution: delete Expressions Must Do the Right Thing
The most obvious resolution of undefined behavior is to just do the right thing. That is, we simply remove the
current permission to produce UB and require compilers to produce the correct delete behavior as if the class
type were complete. For some ideas on how this abstract requirement might be accomplished, see Doing the
Right Thing.

— Motivating Principles
— Make C++ harder to use incorrectly.

— Minimize misuse by removing sharp edges, such as needless undefined behavior, so we can improve
the user experience (ideally without loss of functionality, expressibility, or performance).

— Reasonably define gratuitous undefined behavior.
— The undefined behavior has a clear and intuitive defined behavior that is unlikely to wind up

having a better interpretation or purpose.
— Make C++ harder to use incorrectly.

— C++ has rightly earned a reputation of being a sharp tool. We aim to reduce misuse by removing
sharp edges, such as needless undefined behavior, so we can improve the user experience without
loss of functionality or expressibility.

— Make C++ easier to use correctly.
— C++ has rightly earned a reputation of being a sharp tool. We should make it easier for practi-

tioners, especially students, to make the best choices.
— Concerns

— This solution is not known to be implementable in an efficient or effective manner.
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7.3 Alternative Solution: Define Behavior to Not Call the Destructor
Another option is to define the behavior of invoking delete on a pointer to an incomplete class type to simply
not call the destructor, consistent with the discussion in the background material.

Note that the (proposed) deprecated behavior still potentially allows two template instantiations of the same
function to violate the ODR if one instantiation sees the complete class type and the other sees an incomplete
class type. Making the deprecated use case ill-formed would remove this subtle violation in future Standards as
well.

— Motivating Principles
— Solution must be implementable.
— Solution must be specifiable.
— Avoid making well-formed code into ill-formed code.
— Minimize silent changes to essential runtime behavior.
— Minimize silent changes to nonessential runtime behavior.
— Do not leave whether code compiles to QoI.
— Make C++ easier to use correctly.
— Make C++ harder to use incorrectly.

— Concerns
— Leaking is arguably bad behavior.

— The immediate memory of silently leaked objects is reclaimed, but other resources managed by
such objects are not reclaimed. Deterministic calling of destructors separates C++ from garbage-
collected languages managing only memory, so silently failing to deliver on a key feature of C++
language design would arguably be an active step backward.

— This solution removes permission for implementations to do better.
— That is, by codifying this suboptimal behavior, we make it manifestly backward incompatible to

change that defined behavior in the future, should some better alternative present itself.

7.4 Alternative Solution: delete for Incomplete Class Types Is Ill-Formed
While the long term goal is to make such code ill-formed, doing so is likely to break too much code if we make
that change directly in C++26. Much of that ill-formed code would already be undefined behavior (so technically
already broken), yet well-defined cases having trivial destruction can be relied upon today. Moreover, invoked
undefined behavior leaking in dead code isn’t actually a defect, it’s just suboptimal for maintenance purposes.
Finally, code breaking noisily when it previously silently behaved as expected (or as could be tolerated) could
be a deterrent to timely adoption of a new Standard; cf. Hyrum’s Law:

With a sufficient number of users of an API,
it does not matter what you promise in the contract:
all observable behaviors of your system
will be depended on by somebody.

— Motivating Principles
— Detect and report as much UB as possible at compile time.
— Minimize requiring implementations to break ABI compatibility.
— Minimize additional runtime overhead for pre-existing code.
— Do not leave whether code compiles to QoI.
— Do not preclude the possibility of better solutions.
— Minimize requiring implementations to break ABI compatibility.
— Make C++ harder to use incorrectly.

— Concerns
— This solution breaks well-defined code.

— Right now, classes having trivial destructors and no overloaded operator delete work just fine;
some users might feel disenfranchised.

17

https://www.hyrumslaw.com


7.5 Alternative Solution: All Destructors Are Virtual
The only incomplete types that can be deleted are class types because no other incomplete type can make it to a
delete expression before being completed. (For example, an enum type is incomplete only within its definition
for these purposes since the underlying type is determined by any forward declaration.)

Since only class types are impacted, we might decide to require all destructors to become virtual, regardless
of whether the keyword is used, just as noexcept is deduced for destructors when no exception specification is
explicitly supplied. Because the destructor has only one spelling, the linker will know exactly how to resolve the
dynamic dispatch.

— Motivating Principles
— Solution must be specifiable.
— Avoid making well-formed code into ill-formed code.
— Avoid making undefined behavior ill-formed across one release.
— Minimize silent changes to essential runtime behavior.
— Do not leave whether code compiles to QoI.
— Make C++ easier to use correctly.
— Make C++ harder to use incorrectly.

— Concerns
— Forcing dynamic dispatch on all delete operators to find the virtual destructor will likely incur

runtime overhead.
— This solution breaks ABI throughout the language.
— The observable behavior of programs that compile today will be changed.
— This solution cannot solve the problem for unions without even more significant changes to the

language.
— The problem of overloading class-specific operator delete remains unsolved.

7.6 Alternative Solution: delete for Incomplete Class Types Aborts
Both the well-defined behavior (for types that turn out to be trivial with no overloaded delete operator) and
undefined behavior could be replaced with a well-defined call to std::terminate when invoking delete at run
time on a pointer to an object having incomplete type.5,6

— Motivating Principles
— Minimize requiring implementations to break ABI compatibility.
— Minimize breaking existing code at compile time across one release.
— Avoid making well-formed code into ill-formed code.
— Avoid making undefined behavior ill-formed across one release.
— Do not leave whether code compiles to QoI.

— Concerns
— Whether this solution is implementable without breaking ABI or at no cost is unclear.
— This solution might cause currently working (including some currently correct) code to terminate

rather than behave as desired.

5Note that std::terminate is intended for failures in the C++ exception handling facility, and calling std::abort might be more
appropriate. Alternatively, once contracts are added to the language [P2900R3], violating this runtime requirement could be treated
as a precondition violation invoking the violation handler.

6As an implementation-defined QoI alternative, we might consider allowing implementations to emit a static trace before calling
std::abort. A stack trace is not much help to most users but is quite helpful to developers trying to track down where the
problematic delete occurred. C++23 provides a stack trace library that might be used to help display a track trace, although that
library is not required for a freestanding implementation. We note that whether this solution is implementable without ABI break
or at no runtime cost is unclear. Please also note that stack traces are a layer below what the Standard is able to specify (and hence,
we have not considered it as a separate solution).
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7.7 New Alternative Solution: Erroneous Behavior Does Not Call Destructor
This solution specifies that the currently undefined behavior for deleting an incomplete type that does not
overload operator delete will simply not call the destructor; that (defined) behavior will be erroneous. Note
that deleting a pointer to an object of incomplete type that overloads operator delete is still undefined
behavior.

— Motivating Principles
— Minimize requiring implementations to break ABI compatibility.
— Minimize breaking existing code at compile time across one release.
— Avoid making well-formed code into ill-formed code.
— Avoid making undefined behavior ill-formed across one release.
— Minimize silent changes to essential runtime behavior.
— Minimize silent changes to nonessential runtime behavior.
— Minimize additional runtime overhead for pre-existing code.
— Do not leave whether code compiles to QoI.
— Do not preclude the possibility of better solutions.
— Make C++ harder to use incorrectly.
— Reasonably define gratuitous undefined behavior.
— Make C++ harder to use incorrectly.
— Make C++ easier to use correctly.

— Concerns
— All diagnostics are at run time rather than compile time.

— The compiler has no way to know when a call to delete is erroneous.
— This solution does not address UB with operator delete.

— Calling delete on an incomplete type that overloads operator delete is still UB.

7.8 New Alternative Solution: Deprecate, Erroneous Behavior Does Not Call De-
structor

This solution, like the previous one, specifies that the currently undefined behavior for deleting an incomplete
type that does not overload operator delete will not call the destructor and will be erroneous. Additionally,
we will deprecate calling delete on a pointer to an object of any incomplete type.

— Motivating Principles
— Detect and report as much UB as possible at compile time.

— Concerns
— All diagnostics are at run time rather than compile time.
— This solution does not address UB with operator delete.
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8 Curated, Refined, Characterized, and Ranked Principles
We follow the principled-design process described by [P3004R0].

1. Collect the motivating principles presented in the solutions above.
2. Remove any duplicate principles.
3. Refine the principles in place, as needed.
4. Split and/or merge principles, as needed.
5. Append (to the end) any additional relevant principles that come to mind.
6. Provide each principle with an ID for easy reference.
7. Characterize each principle in terms of objectivity and importance.
8. Rank the principles in decreasing order of importance and objectivity, using a pair-wise comparison if

needed.

The table below comprises the refined, characterized, and ranked principles.

Table 7: Rank, Importance, Objectivity, and ID for each Principle
Statement

Rank i o Principle ID Principle Statement
1 @ @ CanImplement Solution must be implementable.
2 @ @ CanSpecify Solution must be specifiable.

12 5 5 MaxUBDetect Maximize detecting and reporting UB at compile time.
7 9 @ MinABIBreak Minimize requiring implementations to break ABI compatibility.
4 9 @ MinBrkNonDeprec Minimize breaking nondeprecated code at compile time.
5 9 @ MinAnyWFtoIF Minimize making any well-formed code into ill-formed code.

10 5 @ MinUBtoIFinSR Minimize making undefined-behavior ill-formed in one release.
3 @ @ MinSilentChgEB Minimize silent changes to essential runtime behavior.

11 5 @ MinSilentChgNE Minimize silent changes to nonessential runtime behavior.
17 1 @ MinSilentChgUB Minimize silent changes to undefined runtime behavior.
8 9 5 MaxZeroOverhead Maximize satisfaction of the zero overhead principle.
6 9 @ MinRuntimeOH Minimize additional runtime overhead for pre-existing code.
9 9 @ MinQoICompiles Minimize ability to compile on QoI.

13 5 5 MinPreclusion Minimize precluding better solutions.
14 5 5 MaxReplaceUB Maximize replacement of gratuitous undefined behavior.
15 5 5 MinMisuse Minimize accidental misuse of C++.
16 5 - MaxEaseOfUse Maximize ease of use of C++.

9 The Compliance Table
Now we will score the solutions against the ranked principles. We introduce the status-quo solution as the
current baseline that viable solutions must beat. Recall that the scale is @ means True (100%), 9 means 90%,
…, 5 means 50%, 1 means 10%, and - means False (0%).
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Table 8: Rank, Importance, Objectivity, and ID for Each Principle,
Ordered for Easy Reference

Rank i o Principle ID Principle Statement
1 @ @ CanImplement Solution must be implementable.
2 @ @ CanSpecify Solution must be specifiable.
3 @ @ MinSilentChgEB Minimize silent changes to essential runtime behavior.
4 9 @ MinBrkNonDeprec Minimize breaking nondeprecated code at compile time.
5 9 @ MinAnyWFtoIF Minimize making any well-formed code into ill-formed code.
6 9 @ MinRuntimeOH Minimize additional runtime overhead for pre-existing code.
7 9 @ MinABIBreak Minimize requiring implementations to break ABI compatibility.
8 9 5 MaxZeroOverhead Maximize satisfaction of the zero overhead principle.
9 9 @ MinQoICompiles Minimize ability to compile on QoI.

10 5 @ MinUBtoIFinSR Minimize making undefined-behavior ill-formed in one release.
11 5 @ MinSilentChgNE Minimize silent changes to nonessential runtime behavior.
12 5 5 MaxUBDetect Maximize detecting and reporting UB at compile time.
13 5 5 MinPreclusion Minimize precluding better solutions.
14 5 5 MaxReplaceUB Maximize replacement of gratuitous undefined behavior.
15 5 5 MinMisuse Minimize accidental misuse of C++.
16 5 - MaxEaseOfUse Maximize ease of use of C++.
17 1 @ MinSilentChgUB Minimize silent changes to undefined runtime behavior.

A. Status Quo: No Change to the Standard
B. Proposed Solution: delete for Incomplete Class Types Is Deprecated
C. Alternative Solution: delete Expressions Must Do the Right Thing
D. Alternative Solution: Define Behavior Not to Call the Destructor
E. Alternative Solution: delete for Incomplete Class Types Is Ill-Formed
F. Alternative Solution: All Destructors Are Virtual
G. Alternative Solution: delete for Incomplete Class Types Aborts
H. New Alternative Solution: Erroneous Behavior Does Not Call Destructor
I. New Alternative Solution: Deprecate, Erroneous Behavior Does Not Call Destructor

Table 9: Compliance Table

Rank i o Principle ID A B C D E F G H I
1 @ @ CanImplement @ @ @ @ @ 9 @ @ @
2 @ @ CanSpecify @ @ @ @ @ 9 @ @ @
3 @ @ MinSilentChgEB @ @ 9 @ @ - 5 @ @
4 9 @ MinBrkNonDeprec @ @ 9 @ - @ 9 @ @
5 9 @ MinAnyWFtoIF @ @ 9 @ - @ @ @ @
6 9 @ MinRuntimeOH @ @ 5 @ @ 1 @ @ @
7 9 @ MinABIBreak @ @ 3 @ @ @ @ @ @
8 9 5 MaxZeroOverhead @ @ 5 @ @ 1 @ @ @
9 9 3 MinQoICompiles @ @ @ @ @ @ @ @ @

10 5 @ MinUBtoIFinSR @ @ @ @ - @ @ @ @
11 5 @ MinSilentChgNE @ @ @ @ @ @ @ @ @
12 5 5 MaxUBDetect - 9 @ 5 @ 7 1 5 9
13 5 5 MinPreclusion @ @ 1 - @ - 5 @ @
14 5 5 MaxReplaceUB - - @ 7 @ 7 @ 7 7
15 5 5 MinMisuse - 5 @ 5 @ @ 5 7 9
16 5 - MaxEaseOfUse 7 5 @ @ 5 @ 7 5 7
17 1 @ MinSilentChgUB @ @ - 9 @ 3 - 9 9
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10 Analysis of the Compliance Table
We now analyze the compliance table scores, row by row.

Ranks 1–3: A B C D E F G H I — CanImplement(@,@), CanSpecify(@,@), MinSilentChgEB(@,@)

The first two rows have full marks across the board, so the third row is the first to differentiate. Solution C
is expected to incur a minor change of behavior by calling trivial destructors through a callback; however, no
observable change of behavior is expected, so we allow C to continue.

On the other hand, solution F has silent visible changes in almost all programs, since all destructors become
virtual; we reject solution F at this point.

Solution G clearly changes the sliver of well-defined behavior by turning correct destruction into an abort, but
one could argue that would be a necessary-but-not-minimal silent change to resolve the many broken programs
with undefined behavior, so we score G as 5 and demote it to lowercase.

Rank 4: A B C D E _ g H I — MinBrkNonDeprec(9,@)

Solution C might break the extreme corner case introduced by C++11 where private destructors can be trivial,
creating programs that are well defined only if pointing to an incomplete type; again, we let solution C continue.

Solution E clearly breaks well-formed code that is not yet deprecated and does so deliberately, so E is rejected.

Solution G changes well-defined behavior to a runtime failure, but this change is not a compile-time breakage,
so we let G pass with a 9.

Rank 5: A B C D _ _ g H I — MinAnyWFtoIF(9,@)

MinAnyWFtoIF is a stronger form of MinBrkNonDeprec that does not allow for breaking even deprecated code.
All solutions still in contention satisfy this principle.

Rank 6: A B C D _ _ g H I — MinRuntimeOH(9,@)

Row C clearly anticipates some kind of runtime overhead to perform some kind of virtual dispatch on every
delete, storing an extra function pointer with every new; however, the overhead is essential to produce correct
program behavior, so C scores 5, and we demote to lowercase. All other remaining solutions satisfy this principle.

Rank 7: A B c D _ _ g H I — MinABIBreak(9,@)

Solution C is not expected to be implemented without breaking ABI, so it is eliminated. All other remaining
solutions satisfy this principle.

Ranks 8–11: A B _ D _ _ g H I

All remaining solutions satisfy these principles.

Rank 12: A B _ D _ _ g H I — MaxUBDetect(5,5)

Solution A makes no effort to report undefined behavior and is rejected at this point. Solution G tries to define
all undefined behavior by turning it into a runtime failure, which is a poor substitute for finding likely errors at
compile time, so it too is rejected by this principle.

Solutions D and H silently resolve the most common cause of undefined behavior by defining delete to not
call the destructor in these cases. That entirely eliminates the category of UB so that it does not need to be
reported but also defines a program to silently leak objects (not memory) and their associated resources that
may accumulate over run time; we score them 5 and demote them to lowercase letters.

Solutions B and I score a 9 for deprecating the causes of undefined behavior but do not get full marks since
deprecation warnings are a matter for QoI, unlike making the construct ill-formed.
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Rank 13: _ B _ d _ _ _ h I — MinPreclusion(5,5)

Solution D, which is already demoted, goes a long way toward providing a complete solution but one that could
not be updated by a future Standard without breaking new valid programs; D is thus eliminated. All other
remaining solutions satisfy this principle.

Rank 14: _ B _ _ _ _ _ h I — MaxReplaceUB(5,5)

Solution B does nothing to actually protect current users from undefined behavior and is eliminated by this
principle.

Solutions H and I define the most significant cause of UB and make it erroneous, allowing them to continue
through the remaining principles.

Rank 15–17: _ _ _ _ _ _ _ h I — MinMisuse(5,5), MaxEaseOfUse(5,-), MinSilentChgUB(1,@)

Rank i o Principle ID h I
15 5 5 MinMisuse 7 9
16 5 - MaxEaseOfUse 5 7
17 1 @ MinSilentChgUB 9 9

Solution I is superior to the already demoted solution H for the 15th and 16th principles, so solution I proceeds
as our preferred solution.

Final: _ _ _ _ _ _ _ _ I
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11 Original Recommendations
The preferred solution is to deprecate all attempts to call delete on a pointer to an incomplete type and define
the behavior in such cases to be erroneous, ending the lifetime of the target object without running its destructor.

This resolution preserves the existing well-defined behavior, now deprecated. Further, open-ended undefined
behavior is now restricted to only the cases of a class type that provides a class-specific delete operator. The
use of erroneous behavior in the case that objects are leaked provides a hook for implementations to give better
diagnostics, at both compile time and run time. This approach can be augmented with deprecation, which would
allow for properly making this use of delete ill-formed in some future Standard.
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12 Reviews
12.1 EWG telecon, May 15, 2024
We presented a simplified view of this paper as a series of slides ([P3320R0]) that focused on the key examples,
which depicted the viable paths leading to either making ill-formed the whole notion of calling delete on a
pointer to an incomplete class or expecting the tool chain to correctly perform the delete, generally using a
path of deprecation to avoid immediately breaking valid code without warning. Our presentation characterized
the choice of direction as choosing between an API break and an ABI break. We concluded with our Original
Recommendation.

The group observed that all the main compilers today already warn on such a delete without attempting to
determine if the type would be appropriate when complete, so the warning we would want to achieve through
deprecation is effectively present and shipping. A quick code search for projects using the compiler-provided
command-line switch to disable the warning revealed a number of programs, the vast majority of which turned
out to be test drivers for the Clang and GCC projects. Given this information, EWG suggested that moving
straight to making this code ill-formed without waiting on a period of deprecation might be more expedient.
The authors noted that the proposed wording for straight ill-formed was also the simplest choice and could be
ready for Core review within the day.

We polled both the Original Recommendation and the alternative of going straight to ill-formed. The original
recommendation did not achieve consensus, and the immediate ill-formed direction had an overwhelming con-
sensus for updating the wording in this paper accordingly and sending directly to Core in St Louis for adoption
in C++26.
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13 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4981], the latest draft at
the time of writing.

13.1 Update core wording
Make delete through a pointer to incomplete class type ill-formed.

7.6.2.9 [expr.delete] Delete
5 If the object being deleted has incomplete class type at the point of deletion and the complete class has a

non-trivial destructor or a deallocation function, the behavior is undefined, the program is ill-formed.

13.2 Add Annex C wording
Add a new paragraph to C.1.7 [diff.cpp23.depr].

[diff.cpp23.expr] Clause 7: expressions
2 Affected subclause: 7.6.2.9 [expr.delete]

Change: Calling delete on a pointer to an incomplete class is ill-formed.

Rationale: Reduce undefined behavior.

Effect on original feature: A valid C++ 2023 program that calls delete on an incomplete class type becomes
ill-formed.

[Example 1:
struct S;

void f(S *p)
{
delete p; // valid in C++23, ill-formed in this document

}

struct S {};

—end_example]

13.3 Close related issues
The concerns of [CWG2880] can no longer arise once this paper is applied, so the issue can be closed as Not A
Defect.
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