
Document number: 	 P3049R1

Date: 	 2024-10-15

Project: 	 Programming Language C++

Audience:	 LEWG

Reply-to:	 Michael Florian Hava <mfh.cpp@gmail.com>
1

node-handles for lists

Abstract
This paper proposes adding node-handle support to list and forward_list.

Tony Table

Revisions
R0: Initial version

Before Proposed
//given:
template<typename T>
void splice_if(list<T> & from, list<T> & to, T val) {
 const auto it{ranges::find(from, val)};

 if(it != from.end())
 to.splice(to.begin(), from, it);
}

//usage:
list<int> & l1 = …; //filled with random ints

//both lists must be available here to move an element
list<int> & l2 = …;
splice_if(l1, l2, 42);

//given:
template<typename T>
list<T>::node_type extract_if(list<T> & from, T val) {
 const auto it{ranges::find(from, val)};

 if(it != from.end()) return from.extract(it);
 return {};
}

//usage:
list<int> & l1 = …; //filled with random ints
auto nh{extract_if(l1, 42)};

//nh can be passed around independently!

// => extraction and insertion can be separated
list<int> & l2 = …;
if(nh) l2.insert(l2.end(), move(nh));

//given:
template<typename T>
void splice_if(forward_list<T> & from,
 forward_list<T> & to, T val) {
 //assume there is a ranges::find_before returning
 // the iterator before val or end()
 const auto it{ranges::find_before(from, val)};

 if(it != from.end())
 to.splice_after(to.before_begin(), from, it);
}

//usage:
forward_list<int> & l1 = …; //filled with random ints

//both lists must be available here to move an element
forward_list<int> & l2 = …;
splice_if(l1, l2, 42);

//given:
template<typename T>
auto extract_if(forward_list<T> & from, T val) {

 //assume there is a ranges::find_before returning
 // the iterator before val or end()
 const auto it{ranges::find_before(from, val)};

 if(it != from.end()) return from.extract_after(it);
 return forward_list<T>::node_type{};
}

//usage:
forward_list<int> & l1 = …; //filled with random ints
auto nh{extract_if(l1, 42)};

//nh can be passed around independently!

// => extraction and insertion can be separated
forward_list<int> & l2 = …;
if(nh) l2.insert_after(l2.before_begin(), move(nh));

 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at1

 1

mailto:mfh.cpp@gmail.com
mailto:michael.hava@risc-software.at

R1: Changes after LEWG Mailing List Review in June 2024:

• Rewrote subsection on cross container node-handle compatibility.

• Added subsection on why list isn't a valid node-handle type.

Motivation
[P0083] introduced the node-handle API to C++17 after extensive evaluation on adding
list::splice-like operations to maps and sets. This novel approach wasn’t without criticism,
e.g. ES 8 from [P0488] reads:

Node handles are an over-specified solution to the relatively simple problem of moving
nodes between associative containers, which can be done with a more conservative
interface similar to std::list::splice. There is a lack of consistency with std::list, where
splicing and merging can be done but there is no node handle-based interface, yet lists
are indeed node based, too. P00832 acknowledges the simpler solution (by Talbot) but
dismisses it as it offered “no further advantages”: however, the further advantages or use
cases node handles allegedly provide are not clear at all.

Whilst we don’t agree that advantages of node-handles aren’t clear - the ability to modify keys in
place between extraction and re-insertion, transferable between compatible containers, as well as
the general ability to extract unmovable values warrants the new API - we agree with the criticism
that there is a lack of consistency with node-based sequences. In order to remedy this, we
propose adding a subset of the node-handle API to node-based sequence containers, namely
list and forward_list.

We consider this important beyond the question of mere consistency as the node-handle API
allows for better separation between source- and target-list compared to the existing splice
functionality.

Design Space
The node-handle API for (unordered) associative containers can be summarized as follows:

Removing aspects related to key lookups (2⃣ , 3⃣ , 5⃣) and for handling key collisions (4⃣), we arrive
at the following API subset for node-based sequence containers, proposed verbatim for list:

Note that whilst this API is syntactically consistent across all classes, the iterator parameter of
insert has varying meanings:

• Ordered, associative: A location to insert as close as possible to.

• Unordered, associative: A hint for where search for an insertion point could start.

• Sequence: The actual insertion point.

using node_type = implementation defined specialization of node_handle; 0⃣

node_type extract(const_iterator pos); 1⃣
node_type extract(const key_type & key); 2⃣
template<typename Key>
node_type extract(Key && key); 3⃣

struct insert_return_type { 4⃣
 iterator position;
 bool inserted;
 node_type node;
};

insert_return_type insert(node_type && handle); 5⃣
iterator insert(const_iterator pos, node_type && handle); 6⃣

using node_type = implementation defined specialization of node_handle;

node_type extract(const_iterator pos);
iterator insert(const_iterator pos, node_type && handle);

 2

http://wg21.link/P0083
http://wg21.link/P0488

As forward_list is singly-linked it cannot efficiently support the same API as other sequence
containers. Therefore its API has been adapted in name and semantics, resulting in member
functions like erase_after instead of erase. We follow this design principle and propose the
following API:

On cross container node-handle compatibility
An advanced feature of the node-handle API is the ability to transfer nodes between compatible
containers of the same category. Compatibility is only dependent on matching allocators and
element types, other attributes (key comparison, hashing strategy and key uniqueness) are
ignored.

For forward_list and list this doesn’t apply as there are no attributes to ignore. Nonetheless
there is group of lists we in theory could provide additional compatibility with: the bucket lists of
an unordered_[multi_]set. As the requirements on elements of unordered sets are a strict
superset of those in lists, it could be possible to move nodes between those two.

However, reviewing [unord.req.general] casts doubt mandating such a compatibility is possible
after all. As only forward iterators are required, there is sufficient leeway for implementation
divergence: MS-STL uses doubly-linked bucket lists whereas libstdc++ uses a singly-linked 2 3

ones. Therefore we don’t propose additional node-type compatibilities.

Extracting multiple nodes at once
One could imagine an extension to the node-handle API that only makes sense for node-based
sequence containers: extracting several consecutive nodes at once and later batch inserting
them.

While we can foresee clever node-handle implementation strategies to support this transparently
for doubly-linked lists, we expect different handle types to be necessary for singly-linked lists if
O(1) range inserts are to be maintained.

As we can’t come up with a convincing use-case for such a facility, we don’t propose them and
suggest future proposals on this topic to introduce a dedicated multi-node-handle instead of
changing the conceptual design of node-handle.

Why list shouldn't be used as node-handle
It has been suggested that list doesn't need a dedicated node-handle type as the type itself
can already act as a multi-node-handle. Apart from the issue of API inconsistency, we don’t
agree with this suggestion as list in general does not provide the same guarantees.

A node-handle is designed as a lightweight, move-only(!) „container“ for up to one node in
transit. Accordingly, per [container.node.overview] it has to be both nothrow-default-
constructible as well as nothrow-move-constructible. Neither of which is mandated for
list per the standard and at east one implementation does not provide said guarantees due to
the usage of sentinel nodes . Therefore we maintain a dedicated node-handle type is necessary 4

for portable code.

using node_type = implementation defined specialization of node_handle;

node_type extract_after(const_iterator pos);
iterator insert_after(const_iterator pos, node_type && handle);

 https://github.com/microsoft/STL/blob/d6efe9416e4ad7d6e245ae9e96023d413794d1eb/stl/inc/2

xhash#L332-L335

 https://github.com/gcc-mirror/gcc/blob/cebbaa2a84586a7345837f74a53b7a0263bf29ee/3

libstdc%2B%2B-v3/include/bits/hashtable_policy.h#L317

 https://github.com/microsoft/STL/blob/926d458f82ae1711d4e92c0341f541a520ef6198/stl/inc/list#L802-4

L908
 3

https://github.com/gcc-mirror/gcc/blob/cebbaa2a84586a7345837f74a53b7a0263bf29ee/libstdc%2B%2B-v3/include/bits/hashtable_policy.h#L317
https://github.com/gcc-mirror/gcc/blob/cebbaa2a84586a7345837f74a53b7a0263bf29ee/libstdc%2B%2B-v3/include/bits/hashtable_policy.h#L317
https://github.com/gcc-mirror/gcc/blob/cebbaa2a84586a7345837f74a53b7a0263bf29ee/libstdc%2B%2B-v3/include/bits/hashtable_policy.h#L317
https://eel.is/c++draft/unord.req.general
https://eel.is/c++draft/container.node.overview
https://github.com/microsoft/STL/blob/d6efe9416e4ad7d6e245ae9e96023d413794d1eb/stl/inc/xhash#L332-L335
https://github.com/microsoft/STL/blob/d6efe9416e4ad7d6e245ae9e96023d413794d1eb/stl/inc/xhash#L332-L335
https://github.com/microsoft/STL/blob/d6efe9416e4ad7d6e245ae9e96023d413794d1eb/stl/inc/xhash#L332-L335
https://github.com/microsoft/STL/blob/926d458f82ae1711d4e92c0341f541a520ef6198/stl/inc/list#L802-L908
https://github.com/microsoft/STL/blob/926d458f82ae1711d4e92c0341f541a520ef6198/stl/inc/list#L802-L908
https://github.com/microsoft/STL/blob/926d458f82ae1711d4e92c0341f541a520ef6198/stl/inc/list#L802-L908

Impact on the Standard
This proposal is a pure library addition. Existing standard library classes are modified in a non-
ABI-breaking way.

Implementation Experience
The proposed design has been implemented at https://github.com/MFHava/STL/tree/P3049.

Proposed Wording
Wording is relative to [N4971]. Additions are presented like this, removals like this and drafting
notes like this.

[version.syn]

[container.node]

[forward.list]

#define __cpp_lib_node_extract 201606YYYYMML //also in <map>, <set>, <unordered_map>, <unordered_set>, <list>,
<forward_list>

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

??.?.?.? Overview [container.node.overview]

1 A node handle is an object that accepts ownership of a single element from a list [list], or a forward_list [forward.list], or an
associative container ([associative.reqmts]), or an unordered associative container ([unord.req]). It may be used to transfer that
ownership to another container with compatible nodes. Containers with compatible nodes have the same node handle type. Elements
may be transferred in either direction between container types in the same row of [tab:container.node.compat].

[DRAFTING NOTE: Even though theoretically possible, we can’t mandate additional compatibilities for various reasons.]

…

4 If a user-defined specialization of pair exists for pair<const Key, T> or pair<Key, T>, where Key is the container’s key_type and
T is the container’s mapped_type, the behavior of operations involving node handles is undefined.

template<unspecified>
class node-handle {
public:
 // These type declarations are described in [container.requirements.general], [associative.reqmts], and [unord.req].

 using value_type = see below; // not present for map containers
 using key_type = see below; // notonly present for setmap containers
 using mapped_type = see below; // notonly present for setmap containers
 using allocator_type = see below;
…
 // [container.node.observers], observers
 value_type& value() const; // not present for map containers
 key_type& key() const; // notonly present for setmap containers
 mapped_type& mapped() const; // notonly present for setmap containers

??.?.?.? Overview [forward.list.overview]

…

namespace std {
 template<class T, class Allocator = allocator<T>>
 class forward_list {
…
 using const_iterator = implementation-defined; // see [container.requirements]
 using node_type = see below;

 // [forward.list.cons], construct/copy/destroy
…
 template<container-compatible-range<T> R>
 iterator insert_range_after(const_iterator position, R&& rg);

 node_type extract_after(const_iterator position);
 iterator insert_after(const_iterator position, node_type&& nh);

 iterator erase_after(const_iterator position);
…
 };
}

 4

https://github.com/MFHava/STL/tree/P3049
http://wg21.link/N4971

[list]

4 An incomplete type T may be used when instantiating forward_list if the allocator meets the allocator completeness requirements
([allocator.requirements.completeness]). T shall be complete before any member of the resulting specialization of forward_list is
referenced.

5 node_type is a specialization of a node-handle class template ([container.node]), such that the public nested types are the same types as
the corresponding types in forward_list.

…

??.?.?.? Modifiers [forward.list.modifiers]

…

20 Returns: An iterator pointing to the last inserted element, or position if rg is empty.

node_type extract_after(const_iterator position);

21 Preconditions: The iterator following position is dereferenceable.

22 Effects: Removes the element pointed to by the iterator following position.

23 Returns: A node_type owning the removed element.

24 Throws: Nothing.

25 Complexity: Constant.

iterator insert_after(const_iterator position, node_type&& nh);

26 Preconditions: nh is empty or get_allocator() == nh.get_allocator() is true.

27 Effects: If nh is empty, has no effect and returns end(). Otherwise, inserts the element owned by nh after position and returns an
iterator pointing to the newly inserted element.

28 Postconditions: nh is empty,

29 Throws: Nothing.

30 Complexity: Constant.

iterator insert_after(const_iterator position, initializer_list<T> il);

??.?.?.? Overview [list.overview]

…

namespace std {
 template<class T, class Allocator = allocator<T>>
 class list {
…
 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 using node_type = see below;

 // [list.cons], construct/copy/destroy
…
 iterator insert(const_iterator position, initializer_list<T> il);

 node_type extract(const_iterator position);
 iterator insert(const_iterator position, node_type&& nh);

 iterator erase(const_iterator position);
…
 };
}

3 An incomplete type T may be used when instantiating list if the allocator meets the allocator completeness requirements
([allocator.requirements.completeness]). T shall be complete before any member of the resulting specialization of list is referenced.

4 node_type is a specialization of a node-handle class template ([container.node]), such that the public nested types are the same types as
the corresponding types in list.

…

??.?.?.? Modifiers [list.modifiers]

…

iterator insert(const_iterator position, initializer_list<T>);

node_type extract(const_iterator position);

1 Preconditions: position is dereferenceable.

 5

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Peter Kulczycki for proof
reading R0.

2 Effects: Removes the element pointed to by position.

3 Returns: A node_type owning the removed element.

4 Throws: Nothing.

5 Complexity: Constant.

iterator insert(const_iterator position, node_type&& nh);

6 Preconditions: nh is empty or get_allocator() == nh.get_allocator() is true.

7 Effects: If nh is empty, has no effect and returns end(). Otherwise, inserts the element owned by nh before position and returns an
iterator pointing to the newly inserted element.

8 Postconditions: nh is empty,

9 Throws: Nothing.

10 Complexity: Constant.

template<class... Args> reference emplace_front(Args&&... args);

 6

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Implementation Experience
	Proposed Wording
	Acknowledgements

