
Document:P1306R3
Revises:P1306R2

Date: 2024-10-13
Audience:EWG
Authors:Andrew Sutton (andrew.sutton@beyondidentity.com)

Sam Goodrick (samuel.goodrick@beyondidentity.com)
Daveed Vandevoorde (daveed@edg.com)
Dan Katz (dkatz85@bloomberg.net)

Expansion statements

Version history
r3 Expansion over a range requires a constant expression. Added support for break and continue
control flow during evaluation.

r2 Adoption of template for syntax. Added support for init-statement, folded pack expansion into
new expansion-init-list mechanism. Updated reflection code to match P2996. Minor updates to wording:
updated handling of switch statements, work around lack of general non-transient constexpr
allocation, eliminated need for definition of an "intervening statement", rebased onto working draft,
updated feature macro value, fixed typos. Addressed CWG review feedback.

r1 Adopted a unified syntax for different forms of expansion statements. Further refinement of semantics
to ensure expansion can be supported for all traversable sequences, including ranges of input iterators.
Added discussion about break and continue within expansions.

r0 Superseded and extended P0589R0, ("Tuple-based for-loops"). to work with more destructurable
objects (e.g., classes, parameter packs). Added a separate constexpr-for variant that a) makes the loop
variable a constant expression in each repeated expansion, and b) makes it possible to expand constexpr
ranges. The latter feature is particularly important for static reflection.

Introduction
This paper proposes a new kind of statement that enables the compile-time repetition of a statement for
each element of a tuple, array, class, range, or brace-delimited list of expressions. Existing methods for
iterating over a heterogeneous container inevitably leverage recursively instantiated templates to allow
some part of the repeated statement to vary (e.g., by type or constant) in each instantiation.

While such behavior can be encapsulated in a single library operation (e.g., Boost.Hana’s for_each) or,
potentially in the future, using the [:expand(…):] construct built on top of P2996 reflection facilities,
there are several reasons to prefer language support. First, repetition is a fundamental building block of
algorithms, and should be expressible directly without complex template instantiation strategies. Second,
such repetition should be as inexpensive as possible. Recursively instantiating templates generates a large
number of specializations, which can consume significant compilation time and memory resources. Third,
library-based approaches rely on placing the repeated statements in a lambda body, which changes the
semantics of something like a return statement. Lastly, "iteration" over destructurable classes
effectively requires language support to implement correctly.

History of this proposal
The idea for expansion statements began with Andrew Sutton's 2017 proposal for tuple-based for loops
(P0589), which noted iteration over parameter packs and braced-init-lists as directions for future work.

P1306R0 superseded Andrew's initial proposal in Aug 2018, adding support for iteration over packs (but
not iteration over braced-init-lists). The R1 revision was accepted by EWG in Kona 2019:

Strongly favor: 22 — Favor: 18 — Neutral: 2 — Against: 0 — Strongly against: 2

A subsequent EWG vote in Cologne 2019 affirmed support for the template for syntax over several
proposed alternatives:

Strongly favor: 3 — Favor: 19 — Neutral: 2 — Against: 3 — Strongly against: 1

Removal of pack expansion
Review by CWG surfaced ambiguity in the syntax proposed for pack expansion. Consider a function:

template <typename... Ts> void fn(Ts... vs) {
([&](auto p) {
template for (auto &v : vs) { /* ... */ }

}(vs), ...);
}

and one of its call sites:

fn(array {1,2,3,4}, array {1,3,5,7}, array {2,4,6,8});

It is far from clear whether the expansion statement containing vs expands over:
- each of the three array arguments (once for each invocation of the lambda), or
- each of the four int elements (of a different array for each invocation of the lambda).

http://wg21.link/p0589

In response to such ambiguity, support for pack iteration was dropped from this proposal in July 2019.

The proposal was seen by CWG in a Jan 2022 telecon; the draft reviewed at that time can be found here.

Revisiting pack expansion in 2024
Work ceased for some time, but the proposal saw renewed interest in response to the advancement of
P2996 ("Reflection for C++26") through WG21.

The R2 revision extended the syntax to permit iteration over arbitrary lists of expressions (akin to a
braced-init-list) which covers iteration over packs as a special case, thus providing the full power of
expansion statements as first envisioned by P0589. The proposed syntax polled favorably by EWG during
discussions of P2994 (“On the Naming of Packs”, by Barry Revzin) in Tokyo 2024, and we believe it
steers clear of any ambiguity.

We opted not to present R2 at St. Louis 2024 following difficulties encountered during implementation.

Restricting expansion over iterable expressions
Revisions of this paper prior to R3 supported expansion over iterable expressions that are not constant
expressions, e.g.,

struct Cls { int a, b, c; };
template for (constexpr auto r = members_of(^Cls)) {

// ...
}

At first glance, this seems fine: The compiler knows the length of the vector returned by
members_of(^Cls), and can expand the body for each element. However, the expansion in question
more or less requires a constexpr vector, which the language is not yet equipped to handle.

We at first attempted to carve out a narrow exception from [expr.const] to permit non-transient constexpr
allocation in this very limited circumstance. Although the wording seemed reasonable, our
implementation experience with Clang left us less than optimistic for this approach: The architecture of
Clang's constant evaluator really does make every effort to prevent dynamic allocations from surviving
the evaluation of a constant expression (certainly necessary to produce a "constexpr vector"). After
some wacky experiments that amounted to trying to "rip the constant evaluator in half" (i.e., separating
the "evaluation state", whereby dynamically allocated values are stored, from the rest of the metadata
pertaining to an evaluation), we decided to fold: as of the R3 revision, we instead propose restricting
expansion over iterable expressions to only cover those that are constant expression.

Regrettably, this makes directly expanding over members_of(^Cls) ill-formed for C++26 – but all is
not lost: By composing members_of with the define_static_array function (also from P2996),
we obtain a constexpr span containing the same reflections from members_of :

https://wiki.edg.com/pub/Wg21telecons2022/Teleconference2022-01-27/d1306r2.pdf

struct Cls { int a, b, c; };
template for (constexpr auto r = members_of(^Cls)) {
template for (constexpr auto r =

define_static_array(members_of(^Cls))) {
// ✅ Good to go!

}

This yields the same expressive power, at the cost of a few extra characters and a bit more memory that
must be persisted during compilation. It's a much better workaround than others we have tried (e.g., the
expand template), and if (when?) WG21 figures out how to support non-transient constexpr allocation,
the original syntax should be able to "just work".

break and continue
The R3 revision also added support for break and continue statements. There was previously
concern that users would expect such statements to exercise control over the code generation / expansion
process at translation time, rather than over the evaluation of the statement. Discussions with others have
convinced us that this will not be an issue, and to give the keywords their most obvious meaning: break
jumps to just after the end of the last expansion, whereas continue jumps to the start of the next
expansion (if any). This behavior is implemented by Bloomberg's Clang/P2996 fork (see below).

Basic usage
Here is an example demonstrating how the Boost.Hana library iterates over the elements of a tuple:

auto tup = std::make_tuple(0, ‘a’, 3.14);
hana::for_each(tup, [&](auto elem) {
std::cout << elem << std::endl;

});

The for_each function applies the generic lambda to each element of the tuple, printing them in turn.
Each call instantiates a new function containing a call to cout for the corresponding tuple element.

Using expansion statementsl, the same code could instead be written as:

auto tup = std::make_tuple(0, ‘a’, 3.14);
template for (auto elem : tup)
std::cout << elem << std::endl;

The template for statement expands the body of the loop once for each element of the tuple, making
the expansion statement above equivalent to the following:

auto&& tup = std::make_tuple(0, ‘a’, 3.14);
{
auto elem = std::get<0>(tup);
std::cout << elem << std::endl;

}
{
auto elem = std::get<1>(tup);
std::cout << elem << std::endl;

}
{
auto elem = std::get<2>(tup);
std::cout << elem << std::endl;

}

The expansion-init-list syntax added in the R2 revision allows an even more concise representation:

template for (auto elem : {0, 'a', 3.14})
std::cout << elem << std::endl;

Although this looks like a braced-init-list, the similarity is purely aesthetic: there is no list-initialization
taking place; the braces serve only to demarcate the domain of expansion.

An expansion statement is not a loop: it is a sequence of instantiations of a provided statement, in which
the associated variable is initialized to each successive element in the expansion-initializer. Because the
variable is re-declared in each instantiation of the body, its type is allowed to vary. This makes expansion
statements a useful tool for defining a number of algorithms on heterogeneous collections.

An expansion statement allows expansion over the following:
● Destructurable classes (including plain structs and tuples),
● Constexpr ranges (including compile-time spans),
● Brace-delimited lists of expressions ("expansion-init-lists", including pack expansions).

Expansion and static reflection
The ability to repeat statements for collections of entities is central to many reflection algorithms. Here is
an early generic implementation of Howard Hinnant’s Types Don’t Know # proposal (N3980) using the
facilities from P2996.

template<HashAlgorithm H, StandardLayoutType T>

bool hash_append(H& algo, const T& t) {

template for (constexpr auto member :

define_static_array(nonstatic_data_members_of(^T)))

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3980.html

hash_append(h, t.[:member:]);

}

Since constexpr appears as a decl-specifier of the variable member, that variable is usable in constant
expressions during each expansion (e.g., suitable for use in a template argument list). This is necessary to
"splice" the reflection variable using the [:member:] syntax, which produces an lvalue designating the
corresponding data member (note: this works even if the type T contains bitfield members). This all
works because the forward-traversable sequence of values returned by define_static_array is a
permitted result of a constant expression (in this case, a compile-time span).

The fully expanded statement is roughly equivalent to the following:
{

constexpr std::vector members =

define_static_array(nonstatic_data_members_of(^T));

{

constexpr member0 = *std::next(std::begin(members), 0);

hash_append(h, t.[:member0:]);

}

{

constexpr member1 *std::next(std::begin(members), 1);

hash_append(h, t.[:member1:]);

}

...
{

constexpr memberK = *std::next(std::begin(members), K);

hash_append(h, t.[:memberK:]);

}

}

A total of K-many instances of the body are expanded, where K is:

std::distance(std::begin(members), std::end(members)).

Note that expansion only occurs when the range is non-dependent (e.g., during template instantiation).

Without expansion statements, something akin to the expand workaround described in P2996
(“Reflection for C++26”) is needed to traverse a list of reflections. One such implementation is shown
below:

P2996 code:
namespace __impl { // start 'expand' definition

template<auto... vals>

struct replicator_type {

template<typename F>

constexpr void operator>>(F body) const {

(body.template operator()<vals>(), ...);

}

};

template<auto... vals>

replicator_type<vals...> replicator = {};

} // namespace __impl

template<typename R>

consteval auto expand(R range) {

std::vector<std::meta::info> args;

for (auto r : range) {

args.push_back(std::meta::reflect_value(r));

}

return substitute(^__impl::replicator, args);

} // end 'expand' definition

template<typename T>

bool hash_append(const T& t) {

[:expand(nonstatic_data_members_of(^T)):] >> [&t]<auto Member> {

hash_append(t.[:Member:]);

};

}

Even with this workaround, we have observed cases for which expand does not suffice: For instance,
because a reflection of a function parameter (P3096) can only be spliced within its corresponding function
body, the tendency of expand to introduce a new function scope prevents splicing parameter values
within the "expanded" lambda body. Expansion statements suffer no such difficulties:

void fn(int a, int b) {

template for (constexpr auto p :

std::meta::define_static_array(parameters_of(^fn))

std::println("Parameter {} = {}", identifier_of(p), [:p:]);

}

Break and continue
As of the R3 revision of this proposal, break jumps to just after the expansion statement, whereas
continue jumps to the end of the current expansion.

// Prints: 1 3 5

template for (auto v : {1,2,3,4,5,6,7,8,9}) {

if (v % 2 == 0) continue;

std::print("v: {} ", v);

if (v % 5 == 0) break;

}

Syntax and semantics
The syntax for an expansion statement is similar to that of a range-based for loop.

expansion-statement:
template for (init-statementopt for-range-declaration : expansion-initializer) statement

An expansion-statement expands statically to a statement equivalent to the following pattern, with the
caveat that the __range variable is elided when the expansion-initializer is an expansion-init-list.

{
init-statement

constexpr-specifieropt auto&& __range = expansion-initializer;
constexpr-specifieropt auto __begin = begin-expr;
constexpr-specifieropt auto __end = end-expr;

constexpr auto __iter_0 = __begin;
<stop expansion if __iter_0 == __end>
{

for-range-declaration = get-expr(__iter_0)>;
statement

}
constexpr auto __iter_1 = next-expr(__iter_0);
<stop expansion if __iter_1 == __end>
{

for-range-declaration = get-expr(__iter_1)>;
statement

}
constexpr auto __iter_2 = next-expr(__iter_1);

// … repeats until __iter_K == __end
}

The optional constexpr-specifier is the token constexpr only if the expansion-declaration includes
constexpr in its decl-specifier-seq; it is otherwise empty. The meaning of the placeholder expressions
begin-expr, end-expr, get-expr, next-expr depend on the form of expansion-initializer. There are three
such forms that the expansion-initializer may take.

If the expansion-initializer is of the form { expr0, ..., exprK }, the expansion is performed over
an integer index I into the K expressions enclosed by the braces (note: some or all of the expressions may
be from a pack expansion), and the placeholder expressions are:

● begin-expr is 0u
● end-expr is K
● get-expr(I) is exprI
● next-expr(I) is exprI+1 .

Otherwise, if the substitution of the expansion-initializer into a range-based for statement of the form
for (auto&& __unspecified : expansion-initializer) ;

would succeed, the expansion is performed over a sequence of iterators I ranging over
expansion-initializer, and the placeholder expressions are:

● begin-expr and end-expr are the same as for a range-based for loop
● get-expr(I) is *I
● next-expr(I) is std::next(I)

Otherwise, if the substitution of the expansion-initializer into a structured binding of the form
auto [I0, I1, ..., IK] = expansion-initializer

would succeed, the expansion is performed over an integer index I into the sequence of members selected
for destructuring, and the placeholder expressions are:

● begin-expr is 0u
● end-expr is K
● get-expr(I) is the Ith entity named by the structured binding
● next-expr(I) is I + 1

Note that the range form of the expansion is intended to be valid for any iterable entity permitted as a
result of a constant expression. In the most general case, this emulates the hand-unrolling of a range-based
for loop over an input range (i.e., a range with input iterators). Here, care must be taken not to
“accidentally” consume range elements by calling std::distance or advancing multiple elements in
a single call to std::next. For destructurable objects and brace-delimited lists of expressions, the
expansion can be trivially implemented in terms of a simple integer index. A compiler might also
optimize (for compile-time) certain range expansions if it can determine the iterator category of the range.

Examples:

auto tup = std::make_tuple(0, ‘a’);
template for (auto& elem : tup)
elem += 1;

assert(tup == make_tuple(1, ‘b’));

A possible expansion is:

{
auto&& __range = tup;
{
auto& elem = std::get<0>(__range);
elem += 1;

}
{
auto& elem = std::get<1>(__range);
elem += 1;

}
}

Below is an example of a constexpr expansion (using define_static_array from P2996):

template for (constexpr int n :
define_static_array(std::vector {1, 2, 3}))

f<n>();

… and its expansion:

{
constexpr auto&& __range =

define_static_array(std::vector {1, 2, 3});
constexpr auto __end = __range.end();

constexpr auto __iter_0 = __range.begin();
{
constexpr int n = *__iter_0;
f<n>();

}
constexpr auto iter_1 = std::next(__iter_0);
{
constexpr int n = *__iter_1;
f<n>();

}
constexpr auto iter_2 = std::next(__iter_1);
{
constexpr int n = *__iter_2;
f<n>();

}
}

Observations and notes
In the following subsections we discuss some specification details and implementation notes.

Required header files
As with the range-based for loop, no additional header files are required to use this feature. Many
expansions (e.g., over arrays) are defined using only core language constructs and do not require header
files. Expanding over tuples does require the <tuple> header file, but that will almost certainly have
been included before the use of the first expansion-statement over such an object.

Enumerating loop bodies
It may be useful to access the instantiation count in the loop body. This could be achieved by using an
enumerate facility:

template for (auto x : enumerate(some_tuple)) {

// x has a count and a value

std::println("{}: {}", x.count, x.value);

// The count is also a compile-time constant.

using T = decltype(x);

std::array<int, T::count> a;

}

The enumerate facility returns a simple tuple adaptor whose elements are (count, value)-pairs, and
should be fairly straightforward to implement.

Implementation experience
The lock3/meta fork of Clang 8 implemented expansion over destructurable and over iterable expressions.

Bloomberg's Clang/P2996 fork supports expansion over expansion-init-lists and over destructurable
expressions, including support for recent extensions proposed by the R2 and R3 revisions (init-statements,
break, continue). We hope to implement the remaining case, expansion over iterable expressions, in
time for the Wrocław 2024 meeting, which would allow us to confidently assert implementation
experience with all facilities proposed by this paper.

For these expansion-statements to work, the enclosed statement must be parsed as if inside a template and

https://github.com/lock3/meta
http://github.com/bloomberg/clang-p2996

then repeatedly instantiated. Moreover, names appearing in expressions within the enclosed statement
may be not ODR-used, even in a non-dependent context: if the expansion-initializer produces no
elements, the result of expansion is an empty statement, and all statements, expressions, and declarations
within the enclosed statement will be effectively erased from the program.

Related discussion
Apparently, there was an overlooked discussion about this feature on std.proposals in 2013
(https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/vseNksuBviI).

Suggested Wording

6.4.2 Point of declaration [basic.scope.pdecl]
Add the following:

11. The locus of a for-range-declaration of a range-based for statement (_stmt.ranged_) or
expansion statement (_stmt.expand_) is immediately after the for-range-initializer or
expansion-initializer.

6.4.3 Block scope [basic.scope.block]
Update (1.1) to include expansion statements:

(1.1) — selection, or iteration, or expansion statement (_stmt.select_, _stmt.iter_, _stmt.expand_)

6.7.7 Temporary objects [class.temporary]
Update (7) to extend the lifetime of temporaries created by an expansion-initializer.

7. The fourth context is when a temporary object other than a function parameter object is created in
the for-range-initializer of a range-based for statement, or in an expansion-initializer of an
expansion statement. If such a temporary object would otherwise be destroyed at the end of the
for-range-initializer or expansion-initializer full-expression, the object persists for the lifetime of the
reference initialized by the for-range-initializer or for the evaluation of the expansion-statement.

8.1 Preamble [stmt.pre]
Add the following:

1. Except as indicated, statements are executed in sequence.
statement:

labeled-statement
attribute-specifier-seqopt expression-statement
attribute-specifier-seqopt compound-statement
attribute-specifier-seqopt selection-statement
attribute-specifier-seqopt iteration-statement
attribute-specifier-seqopt expansion-statement
attribute-specifier-seqopt jump-statement
declaration-statement
attribute-specifier-seqopt try-block

2. A substatement of a statement is one of the following:
(2.1) — for a labeled-statement, its contained statement,
(2.2) — for a compound-statement, any statement of its statement-seq,
(2.3) — for a selection-statement, any of its statements (but not its init-statement), or
(2.4) — for an iteration-statement, its contained statement (but not an init-statement)., or
(2.5) — for an expansion-statement, its contained statement (but not an init-statement).

…

3. A statement S1 encloses a statement S2 if
(3.1) — S1 is a substatement of S1,
(3.2) — S1 is a selection-statement or, iteration-statement, or expansion-statement and S2 is the
init-statement of S1,
…

8.2 Labeled statement [stmt.label]
Add the following:

(3.2) — a label declared in S shall only be referred to by a statement (_stmt.goto_) in S.

4. An identifier label shall not occur in an expansion-statement (_stmt.expand_).

8.6.5 The range-based for statement [stmt.ranged]
Add the following paragraph.

3. An expression is iterable if, when the expression is treated as a for-range-initializer
(_stmt.iter.general_), expressions begin-expr and end-expr can be determined as specified

above and if they are of the form begin(range) and end(range), argument-dependent lookup
finds at least one function or function template for each.

8.6+ Expansion statements [stmt.expand]
Insert this section after [stmt.iter] (and renumber accordingly).

1. Expansion statements specify compile-time repetition, with substitutions, of their substatement.

expansion-statement:
template for (init-statementopt for-range-declaration : expansion-initializer) statement

expansion-init-list:
{ expression-list }

expansion-initializer:
expression
expansion-init-list

[Note 1: An init-statement ends with a semicolon. — end note]

2. The contained statement of an expansion-statement is a control-flow-limited statement
(_stmt.label_).

3. In the decl-specifier-seq of a for-range-declaration in an expansion-statement, each decl-specifier
shall be either a type-specifier or constexpr.

4. If the expansion-initializer is iterable (_stmt.ranged_), the type of the initializer for the for-range
declaration is decltype(*I) where I is an iterator into the range. Otherwise, if the
expansion-initializer is not an expansion-init-list, then it shall be a destructurable expression
(_dcl.struct.bind_) and the initializer is type-dependent (_stmt.dep.expr_). [Note: The name declared
by a for-range-declaration for an expansion-statement is value-dependent (_temp.dep.constexpr_) if
the expansion-initializer is iterable, and is otherwise type-dependent (_temp.dep.expr_) if declared
with a placeholder type. -- end note]

5. For the purpose of name lookup and instantiation, the for-range-declaration and the contained
statement of the expansion-statement are together considered a template definition.

6. An expansion-statement is expanded (as described below) if its expansion-initializer neither
contains a type-dependent expression nor is itself a value-dependent iterable expression. Expansion
entails the repetition of a statement for each element of the expansion-initializer. Each repetition is
called an expansion and is an instantiation (_temp.spec_) of the for-range-declaration (including its
implied initialization) together with the statement.

https://eel.is/c++draft/stmt.iter.general#note-1
https://eel.is/c++draft/stmt.pre#nt:init-statement
https://eel.is/c++draft/stmt.iter.general#1.sentence-3

7. If the expansion-initializer is an expansion-init-list, the expansion-statement is expanded once for
each expression in the contained expression-list; the expansion is equivalent to:

{
init-statement
{ // ith repetition of the substatement

for-range-declaration = get-expri ;
statement

}
}

where get-expri is the ith expression in the expression-list of the expansion-init-list.

8. Otherwise if the expansion-initializer is an iterable expression (_stmt.ranged_) and the
expansion-initializer does not have array type, the expansion-statement is expanded once for each
element in the range computed by the expansion-initializer; the expansion is equivalent to:

{
init-statement
static constexpr auto&& range = expansion-initializer ;
// ith repetition of the substatement
static constexpr auto iteri = get-expri ;
{

for-range-declaration = *iteri ;
statement

}
}

where get-expr0 is the expression:
begin(range)

and every subsequent get-expri is the expression:
get-expri-1 + 1

for all i in the range [0, N), for N such that:
get-exprN == end-expr

where end-expr is the expression:
end(range) .

The names range and iteri are used for exposition only.

[Note 2: The expansion is ill-formed if range is not a constant expression (_expr.const_).— end note]

9. Otherwise, the expansion-initializer shall be destructurable, and the expansion-statement is
expanded once for each element of the identifier-list of a structured binding declaration of the form
auto&& [u1, u2, …, un] = expansion-initializer; where n is the number of elements required
in a valid identifier-list for such a structured binding declaration, and is equivalent to:

{

init-statement
static constexpr-specifieropt auto&& seq = expansion-initializer ;
{ // ith repetition of the substatement

for-range-declaration = get-expri ;
statement

}
}

where get-expri is the initializer for the ith identifier in the corresponding structured binding
declaration. The constexpr-specifier is present in the declaration of seq if constexpr appears in
for-range-declaration. The name seq is used for exposition only.

11. [Example 1:
struct S { int i; short s; };
consteval long f(S s) {
long result = 0;
template for (x: s) {
result += x;

}
return result;

}
static_assert(f(S{1, 2}) == 3);

— end example]

11. [Example 2:
consteval int f(auto... Containers) {
int result = 0;
template for (auto c: { Containers... })
result += c[0];

return result;
}
constexpr int c1[] = {1, 2, 3};
constexpr int c2[] = {4, 3, 2, 1};
static_assert(f(c1, c2) == 5);

— end example]

12. [Example 3:
template <typename T> consteval optional<int> f() {
constexpr vector statics = static_data_members_of(^T);
template for (constexpr meta::info s :

define_static_array(statics))
if (name_of(s) == "ClsId")
return [:s:];

return nullopt;

}
struct Cls { static constexpr int ClsId = 14; };
static_assert(f<Cls>().value() == 14);

— end example]

8.7.2 The break statement [stmt.break]
Modify paragraph 1 to allow break in expansion-statements:

1. A break statement shall be enclosed by (_stmt.pre_) an iteration-statement (_stmt.iter_), an
expansion-statement (_stmt.expand)_), or a switch statement (_stmt.switch_). The break
statement causes termination of the smallest such enclosing statement; control passes to the statement
following the terminated statement, if any.

8.7.3 The continue statement [stmt.cont]
[Editor's note: We recommend the phrase "continuation portion" in lieu of "loop-continuation portion" to
emphasize that an expansion-statement is not a loop.]

Modify paragraph 1 to allow continue in expansion-statements:

1. A continue statement shall be enclosed by (_stmt.pre_) an iteration-statement (_stmt.iter_) or an
expansion-statement (_stmt.expand_). The continue statement causes control to pass to the
loop-continuation portion of the smallest such enclosing statement, that is, to the end of
the loop. More precisely, in each of the statements
while (foo) {
{
// ...

}
contin: ;
}

do {
{
// ...

}
contin: ;
} while (foo);

for (;;) {
{
// ...

}
contin: ;
}

template for (auto e : foo) {
{
// ...

}
contin: ;
}

a continue not contained in an enclosing iteration or expansion statement is equivalent to goto
contin.

9.6 Structured binding declarations [dcl.struct.bind]
Add the following paragraph:

6. An expression E is destructurable if the declaration
auto [identifier-list] = E;

is valid for some identifier-list.

9.12.6 Fallthrough attribute [dcl.attr.fallthrough]
Add the following:

1. The attribute-token fallthrough may be applied to a null statement; such a statement is a fallthrough
statement. No attribute-argument-clause shall be present. A fallthrough statement may only appear
within an enclosing switch statement ([stmt.switch]). The next statement that would be executed after
a fallthrough statement shall be a labeled statement whose label is a case label or default label for the
same switch statement and, if the fallthrough statement is contained in an iteration statement or
expansion statement, the next statement shall be part of the same execution of the substatement of the
innermost enclosing iteration statement or expansion statement. The program is ill-formed if there is
no such statement.

13.8.3.3 Type-dependent expressions [temp.dep.expr]
Add the following (and renumber accordingly):

…
(3.8) — a conversion-function-id that specifies a dependent type, or
(3.8+) — it is a name introduced by a for-range-declaration that contains a placeholder type and is

declared in an expansion-statement (_stmt.expand_) for which the expansion-initializer is not
an iterable (_stmt.ranged_) expression, or

…

13.8.3.4 Value-dependent expressions [temp.dep.constexpr]
Add the following (and renumber accordingly):

…
(2.3) — it is the name of a non-type template parameter,
(2.3+) — it is a name introduced by a for-range-declaration declared in an expansion-statement for

which the expansion-initializer is an iterable expression,
...

15.10 Predefined macro names [cpp.predefined]
Add the following entry to Table 17:

... ...

__cpp_expansion_statements 202410L

... ...

