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abstract

This paper proposes a minimal API that enables stackful context switching without the need for a scheduler. The API is
suitable to act as building-block for high-level constructs such as stackful coroutines as well as cooperative multitasking
(aka user-land/green threads that incorporate a scheduling facility).

This revision addresses concerns, questions and suggestions from the past meetings. The proposed API supersedes the
former proposals N3985,8 P0099R1,11 P0534R312 and P0876R17.31

Because of name clashes with coroutine from C++20, execution context from executor proposals and continuation used in
the context of future::then(), the committee has indicated that fiber is preferable. However, given the foundational,
low-level nature of this proposal, we choose fiber_context, leaving the term fiber for a higher-level facility built on top of this
one.

Informally within this proposal, the term fiber is used to denote the flow of control launched and represented by the
first-class object fiber_context.

1



Revision History

This document supersedes P0876R17.

Changes since P0876R17

• Distinguish between a prepared and a suspended fiber.

• Distinguish the two context switches implied by entry to, and return from, resume_with().

• Remove current_exception_within_fiber(), which became moot in P0876R17.

Changes since P0876R16

• Update to reference N4981.

• Add <fiber_context> header file to headers table.

• Remove resume_with() “Case A” and “Case B” in favor of nested bullet lists. Fix a bug in definition of internal-
resume.

• Revert resume_with() Returns: and Throws: clauses to R15 structure, eliminating “Case C” and “Case D”.

• Use scoped exposition-only terms calling fiber, target fiber and previous fiber instead of quoting the phrases. Give
previous fiber definition its own bullet.

• Eliminate internal-resume parameter after, also definitions of after_entry_copy, after_stack_copy and
after_deleter_copy. Describe internal-resume in terms of the currently running fiber.

• Explicitly state that internal-resume is exposition only, and italicize references.

• Move predicate for first internal-resume definition to start of bullet text. Don’t state the inverse predicate for the
second.

• Remove one level of bullet list nesting from the second internal-resume definition. Sequence the bullet list by
appending “, then” after each item.

• Per EWG in St. Louis, remove implementation defined meaning of currently handled exception and uncaught_exceptions.
Now both are fiber-specific.

• Clarify explicit constructor Throws: clause.

Changes since P0876R15

• [fiber.context.overview] is now “Overview” instead of “Preamble”.

• Make default fiber_context constructor = default. Remove its section from member descriptions.

• In unary constructor, move “Mandates” before “Constraints”. The “Preconditions” entry is actually a Constraint:
move it and remove “Preconditions”.

• In span constructor, stated “Preconditions” are actually “Constraints”.

• In constructor descriptions, use less precise language about copying entry, stack and deleter. Add Note about
them not being fiber_context members. Move mention of stack to a Note.

• Rephrase resume_with()Note about emptying its fiber_context object to avoid the appearance of a normative
statement.

• Remove mention of “legacy behaviour” from current_exception_within_fiber().

• Remove mention of “thread of execution” from “abstract,” “control transfer mechanism” and the section on
std::uncaught_exceptions() and std::current_exception().

• Simplify definitions of implicit fiber vs. explicit fiber.

• Add [intro.fibers] statement that a thread is always running one fiber, but can switch between fibers. This replaces
the more detailed description of what happens when a fiber calls resume() or resume_with().

• In [intro.fibers], hoist “owning thread” definition to its own paragraph 3 and clarify.
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• Remove assertion that a fiber is an execution agent.

• Modify [except.throw] paragraphs 2 and 4, and [except.handle] paragraph 6, to constrain exception propagation to a
fiber.

• Describe explicit fiber as being “prepared,” with a statement that it comes into existence on first resumption.

• Remove a few stray instances of “may”.

• Move assertion that a received fiber_context object could represent either an explicit fiber or an implicit fiber to
a Note.

• Move assertion that no fiber_context object represents a running fiber up to Overview.

• Use successor rather than the more generic continuation to reference the fiber_context object returned by
a terminating fiber.

• Remove nesting from resume_with() Throws:.

• Remove Note that the caller of resume_with() can detect whether the previous fiber has terminated: not necessar-
ily.

• Hoist section on std::uncaught_exceptions() and std::current_exception() to have its own table of
contents entry. Extend with examples of bad behavior when switching out of a catch block to a fiber which itself
catches some exception before switching back to the original fiber.

• Remove explicit delete declarations of copy constructor and copy assignment: these are implicitly deleted.

• Since we want the constructor’s entry and deleter parameters to support move-only objects, remove Cpp17CopyConstructible
requirements.

• For the same reason, state that entry_copy and deleter_copy are initialized rather than copied.

• Therefore “any exception from initialization of entry_copy” and the same for deleter_copy.

• Remove mention of “function call stack” from constructor Throws:.

• stack.data() and stack.size() must meet implementation requirements, not the span<byte> itself.

• Remove Postconditions:other.empty() from move constructor and move assignment: these are implied by defini-
tion.

• Move statement about UB from stack overflow to fiber_context Overview.

• Modify example about early destruction of exceptions to add sequence comments, highlight access to a destroyed
exception object.

• Fix erroneous [fibercontext.mumble] references in class comments.

• Add green changebars for entirely new sections.

• Remove std:: qualification from decay_t in Effects:.

• Remove the destructor Note about encouraging a fiber to terminate voluntarily.

• Clarify that current_exception_within_fiber() is true if std::current_exception() reports excep-
tions “only” within the current fiber. Remove constexpr: compiler can produce object code that might be linked
with alternative runtimes.

• Remove “.” after “;”.

• resume_with() Mandates: is_invocable_r<...> is true. Add periods to Mandates: and Preconditions:.

• Add Preconditions: to span constructor that deletermust not throw. Remove cleanup exceptions from resume_with()
Throws:. Remove “before this point, no exceptions” bullet in Effects:.

• resume_with() evaluates invoke_r(fn). Merge Notes about what its returned can be.

• Substantially rework resume_with() description. Break out and label the four cases: (target not yet entered, target
previously suspended); (previous exited, previous called resume_with()). Use case labels in Effects:, Returns: and
Throws:. Break out internal-resume operation because it’s self-referential.

• Add span constructor Preconditions: for decay_t<D> meeting Cpp17MoveConstructible requirements.

• Remove can_resume() Note about “can resume.”
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• For resume(), use std::identity instead of identity lambda.

Changes since D0876R15

• Updated to reference N4971.

• Inserted a section to clarify relationship between threads and fibers.

• Borrowed “single flow of control” definition for “fiber.”

• Added Note clarifying “flow of control” as state, with reference to [stacktrace.general].

• Changed stacktrace “invocation sequence” to reference “fiber” rather than “thread of execution.”

• Changed “thread” definition to be the execution agent that runs fibers.

• Clarified that if a fiber terminates by returning an empty fiber_context instance, std::terminate is called.

• Added constexpr fiber_context::current_exception_within_fiber.

• Removed definition of “function call stack.”

• Removed change to definition of expression evaluation conflict.

• Removed Note about the second fiber in the program.

• Changed “fiber_context instance” to “fiber_context object.”

• Changed “method” to “member function.”

• Removed paragraph numbers from internal cross-references.

• Clarified editorial directives amongst not-green new text.

• Used “fiber.context” in stable labels.

• Changed the lone remaining preamble section in [fiber.context] from “Empty vs. Non-Empty” to “Preamble.”

• Moved to “Preamble” the 1:1 relationship between non-empty fiber_context objects and suspended fibers.

• Used “Effects: Equivalent to return <expression>” for empty() and operator bool().

• Referenced main instead of main().

Changes since P0876R14

• Invoked “blocks with forward progress guarantee delegation” words of power for resume_with(), guaranteeing
mutual exclusion.

• Fixed Mandates and Throws concerning the entry function and deleter passed to the implicit-stack or explicit-stack
constructor.

• Cleaned up wording around initializing, assigning and testing the exposition-only state member.

• Dampened the optimism of the proposed feature-test macro.

Changes since P0876R13

• At LEWG’s request, retracted changes to uncaught_exceptions() and current_exception(), instead clari-
fying that results may reflect exceptions on other fibers running on the current thread.

• Updated against draft standard N4958.

• Deleted “User-Mode” from new section title “Cooperative Threads” and removed the explanatory paragraph.

• Removed explicit from the explicit-stack constructor.

• Added system_error: resource_unavailable_try_again to the Throws: clause of the implicit-stack con-
structor.

• Changed bad_alloc to system_error: resource_unavailable_try_again in the Throws: clause of the
explicit-stack constructor.
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• Stated that the move constructor and move assignment operator empty the moved-from fiber_context.

• Removed the empty() precondition from assignment operator; instead added the same (! empty()) effect as for
the destructor.

• Removed resume_with() references to “execution context.” Existing section 7.6.1.3 Function call [expr.call] makes
no mention of saving or restoring state.

• Removed bullets in resume_with() Returns: and Throws: clauses regarding resume(), since they can be inferred
from resume_with() and the trivial-lambda equivalence described for resume().

• Removed the Remarks: about concurrent calls from multiple threads from can_resume(), leaving in place the
editorial note about the intentional absence of const.

• Changed exposition-only state member from unspecified-type to void*.

• Sanitized stable names.

• Moved feature-test macro to appropriate section.

• Cleaned up the header-file synopsis.

• Grouped class members with forward references.

• Added std::swap() specialization.

• Added obtrusive paragraph numbers.

• Streamlined single-item dash lists.

• Changed Ensures to Postconditions.

• Changed template parameters from typename to class.

• Tweaked constructor Preconditions:/ Mandates:.

• Clarified that entry_copy, stack_copy and deleter_copy are not intended to be data members of fiber_context.

• Streamlined initialization of these exposition objects.

• “Instantiates a fiber_context” => “Initializes state”

• empty() returns true => empty() is true, et al.

• Removed explicit-stack constructor Preconditions: for stack size and alignment, since Throws: explicitly specifies
exceptions for violations.

• Rephrased Effects: of move constructor.

• Extracted “Let” statements from Effects: to preceding paragraphs.

Changes since P0876R12

• Proposed that uncaught_exceptions() and current_exception() be specific to the current thread of execu-
tion.

• Specified that constructors decay-copy the entry-function.

• Changed span<byte, N> constructor param to simply span<byte>; also accepted deleter function, which it
must decay-copy.

• Specified constructor exceptions.

• Specified that destroying a non-empty fiber_context calls terminate().

• Clarified that when resume_with() is called, empty() becomes true immediately.

• Introduced exposition-only fiber_context::state member to streamline wording.

• Removed concurrency_v2 namespace.

• Changed “Equivalent to” to “As-if”.

• Clarified Preconditions vs. Mandates.
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Changes since P0876R11

• Removed get_stop_source(), get_stop_token(), request_stop() and exposition-only ssource mem-
bers.

• Added a fiber_context constructor accepting a caller-provided uninitialized memory area for the new fiber’s
function call stack.

Bundling a stop_source into fiber_context presented implementability concerns. Although each fiber (specif-
ically, its function call stack) is itself a persistent entity, the fiber_context representing that fiber is not: a new
fiber_context object is synthesized on every suspension. This presents a problem: how does the code that suspends a
fiber find its associated stop_source shared state?

A consumer wishing to pass a std::stop_token to a new fiber can itself instantiate std::stop_source, obtain from
it a stop_token and bind that stop_token in a lambda passed to the fiber_context constructor. Accordingly, the
fiber_context API need not explicitly support that.

Changes since P0876R10

• Removed cancel()method and the cancellation-function constructor argument. Replaced with the std::jthread
stop token handling API: get_stop_source(), get_stop_token() and request_stop(). This simplifies
examples by eliminating launch() and assert_on_cancel.

• Added a section exploring the relationship of fiber_context to the larger C++ ecosystem.

• Reordered some sections to make the paper more accessible for new readers.

Changes since P0876R9

• Removed resume_from_any_thread(), resume_from_any_thread_with(), cancel_from_any_thread()
and can_resume_from_this_thread(), along with stated support for resuming a suspended fiber on some
thread other than the one on which it was launched.

In Belfast, EWG came down strongly against cross-thread fiber resumption. The most emphatic objection was that for a
function referencing TLS, multiple compilers cache TLS pointers on the function’s stack frame. Resuming a fiber containing
that stack frame on some other thread would cause problems. In the best case, the resumed function would merely
reference TLS belonging to the wrong thread – but at some point the original thread will terminate, its TLS will be
destroyed, and the cached pointers will be left dangling.

With fiber_context, any opaque function call might possibly suspend – but invalidating cached TLS pointers across
every opaque function call is deemed unacceptable overhead.

Changes since P0876R8

• Reinstated cancellation function constructor argument.

• Added cancel() and cancel_from_any_thread() member functions.

• Re-removed std::unwind_fiber().

SG1 directed P0876R9 to conform to the Cologne 2019 recommendations, with any other changes proposed in a separate
paper.

Changes since D0876R7

• Cancellation function removed from fiber_context constructor.

• std::unwind_fiber() re-added, with implementation-defined behaviour.

• Added elaboration of filament example to bind cancellation function.

P0876R8 diverged from the recommendations of the second SG1 round in Cologne 2019. It did not introduce cancel() or
cancel_from_any_thread() member functions. In fact it removed the cancellation-function constructor argument.

fiber_context is intended as the lowest-level stackful context-switching API. Binding a cancellation-function on the
fiber stack is a flourish rather than a necessity. It adds overhead in both space (on the fiber stack) and time (to traverse
the stack to retrieve the cancellation-function). For this API, it should suffice to pass the desired cancellation-function to
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resume_with(). If it is important to associate a cancellation-function with a particular fiber earlier in the lifespan of the
fiber, a struct serves.

A more compelling reason to avoid constructing an explicit fiber with a cancellation-function is that no implicit fiber has
any such cancellation-function – and the consuming application cannot tell, a priori, whether a given fiber_context
instance represents an explicit or an implicit fiber. If *this represents an implicit fiber, what should the proposed
cancel() member function do?

Passing a specific cancellation-function to resume_with() avoids that problem.

P0876R8 follows SG1 recommendation in making it Undefined Behaviour to destroy (or assign to) a non-empty fiber_context
instance.

std::unwind_fiber() was reintroduced with implementation-defined behaviour to allow fiber cleanup leveraging
implementation internals. Its use was entirely optional (and auditable).

Changes since P0876R6

• Implicit stack unwinding (by non-C++ exception) removed.

• std::unwind_fiber() removed.

• Cancellation function added to fiber_context constructor.

In Cologne 2019, SG1 took the position that:

• The fiber_context facility is not the only C++ feature that requires “special” unwinding (special function exit
path).

• Such functionality should be decoupled from fiber_context. It requires its own proposal that follows its own
course through WG21 process.

• Depending on this (yet to be written) proposal would unduly delay the fiber_context facility.

• For now, the fiber_context facility should adopt a “less is more” approach, removing promises about implicit
unwinding, placing the burden on the consumer of the facility instead.

• This leaves the way open for fiber_context to integrate with a new, improved unwind facility when such
becomes available.

The idea of making fiber_context’s constructor accept a cancellation function was suggested to permit consumer
opt-in to P0876R5 functionality where permissible, or convey to the fiber in question by any suitable means the need to
clean up and terminate.

Requiring the cancellation function is partly because it remains unclear what the default should be. This could be one of
the questions to be answered by a TS. Moreover, the absence of a default permits specifying later that the default engages
the new, improved unwind facility.

Changes since P0876R5

• std::unwind_exception removed.

• fiber_context::can_resume_from_any_thread() renamed to can_resume_from_this_thread().

• fiber_context::valid() renamed to empty() with inverted sense.

• Material has been added concerning the top-level wrapper logic governing each fiber.

std::unwind_exception was removed in response to deep discussions in Kona 2019 of the surprisingly numerous
problems surfaced by using an ordinary C++ exception for that purpose.

Problems resolved by discarding std::unwind_exception:

• When unwinding a fiber stack, it is essential to know the subsequent fiber to resume. std::unwind_exception
therefore bound a fiber_context. fiber_context is move-only. But C++ exceptions must be copyable.

• It was possible to catch and discard std::unwind_exception, with problematic consequences for its bound
fiber_context.

• Similarly, it was possible to catch std::unwind_exception but not rethrow it.
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• If we attempted to address the problem above by introducing a std::unwind_exception operation to ex-
tract the bound fiber_context, it became possible to rethrow the exception with an empty (moved-from)
fiber_context instance.

• Throwing a C++ exception during C++ exception unwinding terminates the program. It was possible for an
exception implementation based on thread_local to become confused by exceptions on different fibers on the
same thread.

• It was possible to capture std::unwind_exception with std::exception_ptr and migrate it to a different
fiber – or a different thread.
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fiber_context and the larger C++ ecosystem

higher-level libraries fiber_context as building block for higher-level frameworks enumerates a number of
higher-level abstraction libraries built upon the Boost.Context implementation of the API proposed in this paper. This is
not an exhaustive list, but it suffices to illustrate that there is widespread interest in this functionality.

The most significant point about this proposal is that, given fiber_context, all those libraries can be written in standard
C++. They need not themselves be integrated into the Standard.

Because it creates and switches between different function call stacks, though, the fiber_context facility cannot be
written in portable C++. There is real value to integrating this library into the Standard.

Boost.Context is maintained by one individual to support the specific set of processors and operating systems to which he
has access. The fiber_context facility will ensure support in every implementation of the C++ runtime, extending into
the future.

Given the lively ecosystem of open-source libraries, it’s possible that standardizing fiber_context could suffice. It is
not essential that WG21 must standardize additional higher-level libraries before the facility would become useful. The
uptake of Boost.Context illustrates that the community can make good use of fiber_context.

However, the evolution of this proposal and the WG21 discussions thereof have surfaced a number of interesting
adjacencies.

cancellation Given C++ support for concurrency, in various forms, within a program, cancellation of an asynchronous
task remains a topic of widespread interest. It has been much discussed, e.g. in P1677R2,32 P1820R033 and P2175R0.34

Previous revisions of this paper have proposed canceling a suspended fiber by injecting an exception, e.g. using
fiber_context:: resume_with(). A comparable approach was rejected for std::jthread, although it’s worth
noting that cooperative fibers differ in a very significant respect: every fiber suspends at a well-defined point, namely a
call to resume_with().∗

Evolution of the exception mechanism itself14 may affect the viability of using exceptions for cancellation.

This paper simply notes that an invoker can use lambda binding to pass (e.g.) a std::stop_token from the Standard,9

section 33.3, to a fiber at launch time.

modules and optimizations Before modules, the only information the compiler could know about a function in an
external translation unit was what a human coder stated in the relevant header file. But since the information in a module
is prepared by the compiler itself, a subsequent compile of a translation unit that imports that module can know as much
about each module function as it would if the function’s source code was found within the current translation unit.

This permits the compiler to infer and propagate attributes. If a function neither contains a throw statement nor calls other
functions, the compiler can conclude that it doesn’t throw. It can encode this information in the module produced for
that translation unit, so that subsequent compiles can make use of the knowledge. If another function contains no throw
statement and calls only functions known not to throw, it too can be implicitly marked nothrow.

Similarly, when compiling a function that can never return, the compiler can so indicate in the output module. Any caller
whose code path leads unconditionally to any such function can also be known never to return.

In much the same way, the module describing the library’s fiber_context:: resume_with() method can mark it as
can-suspend. Then any caller of resume_with() will also be marked can-suspend, and so forth. The compiler can use this
to improve its optimization tactics around any call to a can-suspend function.

(The can-suspend characteristic of a co_await coroutine function is just as pervasive, but in that case the coder must
manually propagate it.)

synchronization primitives The Standard9 provides an assortment of primitives for synchronizing work between
threads, e.g. sections 33.6, 33.7, 33.8, 33.9, 33.10. An essential behaviour of many such synchronization primitives is to
pause, or suspend, execution of the current thread until some external condition is satisfied.

Such suspension is very different from fiber suspension as proposed in this paper. This proposal neither requires nor implies
a scheduler. A fiber suspends by explicitly designating the next fiber to resume, either by passing its fiber_context to
resume_with() or by returning that fiber_context from its entry-function.

∗Although exception-based cancellation is not implicitly supported, a consumer of fiber_context may still explicitly pass to
resume_with() an invocable that raises an exception in the suspended fiber.
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C++ threads, in contrast, assume a thread scheduler, usually provided by the operating system. Suspending a thread
means passing control to the scheduler, which reallocates CPU resources to other pending threads. At some future time,
the scheduler is responsible for directing some CPU core to resume the suspended thread.

Fiber suspension as implemented by fiber_context is independent of thread suspension. Suspending the running fiber
simply means directing the thread to run a different fiber; the thread continues running. Conversely, suspending the host
thread (e.g. by invoking a synchronization primitive) means that no fiber is running on that thread.

A higher-level fiber-based library that emulates the std::thread API, such as Boost.Fiber,39 necessarily implements a
fiber scheduler, permitting implicit fiber suspension. Standardizing such a library would raise the interesting question of
how to present fiber-aware synchronization primitives.

A straightforward approach is to present a suite of fiber-aware synchronization primitives distinct from, but analogous
to, the thread-based synchronization primitives.∗ A program running multiple fibers within a thread would use fiber-
aware synchronization primitives rather than thread-based synchronization primitives. Evaluating a thread-based
synchronization primitive would suspend the entire thread, as usual, halting all fibers within that thread.

It is tempting to contemplate modifying the semantics of the present suite of synchronization primitives to make them
fiber-aware. Naturally this is a matter of some concern.

For purposes of this fiber_context proposal, though, it is entirely moot.

Execution Agent Local Storage A similar question arises concerning variable storage duration. Should the Standard
introduce a fiber-specific storage duration, e.g. fiber_local, analogous to thread_local9? (section 6.7.5.3 Thread
storage duration)

The Standard defines the general term execution agent (section 33.2.5.1) to allow for multiple kinds of parallelism. It seems
reasonable to assume that over time, new types of execution agents will be defined. Will we want the Standard to present a
new xyz_local storage duration for each new “xyz” execution agent type?

P0772R115 notes that library code should not have to care what kind of execution agent is running it. Already it’s important
to ensure that library code avoids static variables because any such variable prohibits calling that library from more
than one thread. P0772R1 suggests a generalized variable storage duration dynamically local to the innermost current
execution agent.

(The same consideration about library code impacts the above question about presenting fiber-aware synchronization
primitives.)

It’s true that if:

• a particular function relies on a thread_local variable

• the function calls a function that resumes a different fiber

• the other fiber makes a different call to that same function, or to another function that modifies the same thread_local
variable

then on resumption of the original fiber, the function will observe the new value for the thread_local variable.

This is analogous to use of a static variable by multiple threads in the same program – though not as bad, since it doesn’t
produce race-related Undefined Behaviour on top of correctness problems.

std::thread was introduced despite this problem because it’s useful.

Multiple C++ implementations cache a pointer to thread-local storage in the stack frame of a function referencing TLS. If a
suspended fiber were resumed by a thread other than the one on which it previously ran, such cached TLS pointers would
point to TLS for the wrong thread. This is why such cross-thread resumption is forbidden.

(This is the only optimization that has yet been surfaced by implementers as a potentially problematic interaction with
fibers.)

tooling One particularly valuable consequence of adding fiber_context to the Standard will be to add fiber aware-
ness to debuggers, performance analyzers and other tools that inspect a running C++ program.

Such tools need only be aware of fiber_context. They would not need to be further adapted to support higher-level
libraries built on the fiber_context facility.

∗This is the approach taken by Boost.Fiber.
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control transfer mechanism

According to the literature,7 coroutine-like control-transfer operations can be distinguished into the concepts of symmetric
and asymmetric operations.

symmetric fiber A symmetric fiber provides a single control-transfer operation. This single operation requires that the
control is passed explicitly between the fibers.

f1f1.resume() f2 f3 f4
f2.resume() f3.resume() f4.resume()

f1.resume()

1 fiber_context* pf1;
2 fiber_context f4{[&pf1]{
3 pf1->resume();
4 }};
5 fiber_context f3{[&f4]{
6 f4.resume();
7 }};
8 fiber_context f2{[&f3]{
9 f3.resume();

10 }};
11 fiber_context f1{[&f2]{
12 f2.resume();
13 }};
14 pf1=&f1;
15 f1.resume();

In the pseudo-code example above, a chain of fibers is created.

Control is transferred to fiber f1 at line 15 and the lambda passed to constructor of f1 is entered. Control is transferred
from fiber f1 to f2 at line 12 and from f2 to f3 (line 9) and so on. Fiber f4 itself transfers control directly back to fiber f1
at line 3.

asymmetric fiber Two control-transfer operations are part of asymmetric fiber’s interface: one operation for resuming
(resume()) and one for suspending (suspend()) the fiber. The suspending operation returns control back to the calling
fiber.

f1f1.resume() f2 f3 f4

f2.resume()

self::suspend()

f3.resume()

self::suspend()

f4.resume()

self::suspend()

1 // hypothetical API
2 fiber_context f4{[]{
3 self::suspend();
4 }};
5 fiber_context f3{[&f4]{
6 f4.resume();
7 self::suspend();
8 }};
9 fiber_context f2{[&f3]{

10 f3.resume();
11 self::suspend();
12 }};
13 fiber_context f1{[&f2]{
14 f2.resume();
15 self::suspend();
16 }};
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17 f1.resume();

In the pseudo code above execution control is transferred to fiber f1 at line 16. Fiber f1 resumes fiber f2 at line 13 and so
on. At line 2 fiber f4 calls its suspend operation self::suspend(). Fiber f4 is suspended and f3 resumed. Inside the
lambda, f3 returns from f4.resume() and calls self::suspend() (line 6). Fiber f3 gets suspended while f2 will be
resumed and so on ...

The asymmetric version needs N-1 more fiber switches than the variant using symmetric fibers.

While asymmetric fibers establish a caller-callee relationship (strongly coupled), symmetric fibers operate as siblings
(loosely coupled).

Symmetric fibers represent independent flows of control, making symmetric fibers a suitable mechanism for concurrent
programming. Additionally, constructs that produce sequences of values (generators) are easily constructed out of two
symmetric fibers (one represents the caller, the other the callee).

Asymmetric fibers incorporate additional fiber switches as shown in the pseudo code above. It is obvious that for a broad
range of use cases, asymmetric fibers are less efficient than their symmetric counterparts.

Additionally, the calling fiber must be kept alive until the called fiber terminates. Otherwise the call of suspend() will be
undefined behaviour (where to transfer execution control to?).

Symmetric fibers are more efficient, have fewer restrictions (no caller-callee relationship) and can be used to create
a wider set of applications (generators, cooperative multitasking, backtracking ...).

fiber_context as a first-class object

Because the symmetric control-transfer operation requires explicitly passing control between fibers, fibers must be
expressed as first-class objects.

Fibers exposed as first-class objects can be passed to and returned from functions, assigned to variables or stored into
containers. With fibers as first-class objects, a program can explicitly control the flow of execution by suspending and
resuming fibers, enabling control to pass into a function at exactly the point where it previously suspended.

Symmetric control-transfer operations require fibers to be first-class objects. First-class objects can be returned from
functions, assigned to variables or stored into containers.

encapsulating the stack

Each fiber is associated with a function call stack and is responsible for managing the lifespan of its stack (allocation at
construction, deallocation when fiber terminates). The RAII-pattern∗ should apply.

Copying a fiber_context must not be permitted!

If a fiber_context were copyable, then its stack with all the objects allocated on it must be copied too. That presents
two implementation choices.

• One approach would be to capture sufficient metadata to permit object-by-object copying of stack contents. That
would require dramatically more runtime information than is presently available – and would take considerably
more overhead than a coder might expect. Naturally, any one move-only object on the stack would prohibit copying
the entire stack.

• The other approach would be a bytewise copy of the memory occupied by the stack. That would force undefined
behaviour if any stack objects were RAII-classes (managing a resource via RAII pattern). When the first of the fiber
copies terminates (unwinds its stack), the RAII class destructors will release their managed resources. When the
second copy terminates, the same destructors will try to doubly-release the same resources, leading to undefined
behaviour.

∗resource acquisition is initialisation
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A fiber API must:

• encapsulate the stack

• manage lifespan of an explicitly-allocated stack: the stack gets deallocated when fiber_context goes out of
scope

• prevent accidentally copying the stack

Class fiber_context must be move-only.

invalidation at resumption

The framework must prevent the resumption of an already running or terminated (computation has finished) fiber.

Resuming an already running fiber will cause overwriting and corrupting the stack frames (note, the stack is not copyable).
Resuming a terminated fiber will cause undefined behaviour because the stack might already be unwound (objects
allocated on the stack were destroyed or the memory used as stack was already deallocated).

As a consequence each call of resume() will empty the fiber_context instance.

Whether or not a fiber_context is empty can be tested with member function operator bool().

To make this more explicit, functions resume() and resume_with() are rvalue-reference qualified.

The essential points:

• regardless of the number of fiber_context declarations, exactly one fiber_context instance represents each
suspended fiber

• no fiber_context instance represents the currently-running fiber

Section solution: avoiding non-const global variables and undefined behaviour describes how an instance of
fiber_context is synthesized from the active fiber that suspends.

A fiber API must:

• prevent accidentally resuming a running fiber

• prevent accidentally resuming a terminated fiber

• resume() and resume_with() are rvalue-reference qualified

problem: avoiding non-const global variables and undefined behaviour

According to C++ core guidelines,35 non-const global variables should be avoided: they hide dependencies and make the
dependencies subject to unpredictable changes.

Global variables can be changed by assigning them indirectly using a pointer or by a function call. As a consequence, the
compiler can’t cache the value of a global variable in a register, degrading performance (unnecessary loads and stores to
global memory especially in performance critical loops).

Accessing a register is one to three orders of magnitude faster than accessing memory (depending on whether the cache
line is in cache and not invalidated by another core; and depending on whether the page is in the TLB).

The order of initialisation (and thus destruction) of static global variables is not defined, introducing additional problems
with static global variables.

A library designed to be used as building block by other higher-level frameworks should avoid introducing global
variables. If this API were specified in terms of internal global variables, no higher level layer could undo that: it
would be stuck with the global variables.
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switch back to main() by returning Switching back to main() by returning from the fiber function has two
drawbacks: it requires an internal global variable pointing to the suspended main() and restricts the valid use cases.

int main() {
fiber_context f{[]{

...
// switch to ‘main()‘ only by returning

}};
f.resume(); // resume ‘f‘
return 0;

}

For instance the generator pattern is impossible because the only way for a fiber to transfer execution control back to
main() is to terminate. But this means that no way exists to transfer data (sequence of values) back and forth between a
fiber and main().

Switching to main() only by returning is impractical because it limits the applicability of fibers and requires an
internal global variable pointing to main().

static member function returns active fiber_context P0099R010 introduced a static member function
(execution_context::current()) that returned an instance of the active fiber. This allows passing the active fiber m
(for instance representing main()) into the fiber f via lambda capture. This mechanism enables switching back and forth
between the fiber and main(), enabling a rich set of applications (for instance generators).

int main(){
int a;
fiber_context m=fiber_context::current(); // get active fiber
fiber_context f{[&]{

a=0;
int b=1;
for(;;){

m=m.resume(); // switch to ‘main()‘
int next=a+b;
a=b;
b=next;

}
}};
for(int j=0; j<10; ++j) {

f=f.resume(); // resume ‘f‘
std::cout << a << " ";

}
return 0;

}

But this solution requires an internal global variable pointing to the active fiber and some kind of reference count-
ing. Reference counting is needed because fiber_context::current() necessarily requires multiple instances of
fiber_context for the active fiber. Only when the last reference goes out of scope can the fiber be destroyed and its
stack deallocated.

fiber_context f1=fiber_context::current();
fiber_context f2=fiber_context::current();
assert(f1==f2); // f1 and f2 point to the same (active) fiber

Additionally a static member function returning an instance of the active fiber would violate the protection requirements
of sections encapsulating the stack and invalidation at resumption. For instance you could accidentally attempt to resume
the active fiber by invoking resume().

fiber_context m=fiber_context::current();
m.resume(); // tries to resume active fiber == UB

A static member function returning the active fiber requires a reference counted global variable and does not prevent
accidentally attempting to resume the active fiber.
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solution: avoiding non-const global variables and undefined behaviour

The avoid non-const global variables guideline has an important impact on the design of the fiber_context API!

synthesizing the suspended fiber The problem of global variables or the need for a static member function
returning the active fiber can be avoided by synthesizing the suspended fiber and passing it into the resumed fiber (as
parameter when the fiber is first started, or returned from resume()).

1 void foo(){
2 fiber_context f{[](fiber_context&& m){
3 m=std::move(m).resume(); // switch to ‘foo()‘
4 m=std::move(m).resume(); // switch to ‘foo()‘
5 ...
6 }};
7 f=std::move(f).resume(); // start ‘f‘
8 f=std::move(f).resume(); // resume ‘f‘
9 ...

10 }

In the pseudo-code above the fiber f is started by invoking its member function resume() at line 7. This operation
suspends foo, empties instance f and synthesizes a new fiber_context m that is passed as parameter to the lambda of
f (line 2).

Invoking m.resume() (line 3) suspends the lambda, empties m and synthesizes a fiber_context that is returned by
f.resume() at line 7. The synthesized fiber_context is assigned to f. Instance f now represents the suspended fiber
running the lambda (suspended at line 3). Control is transferred from line 3 (lambda) to line 7 (foo()).

Call f.resume() at line 8 empties f and suspends foo() again. A fiber_context representing the suspended foo()
is synthesized, returned from m.resume() and assigned to m at line 3. Control is transferred back to the lambda and
instance m represents the suspended foo().

Function foo() is resumed at line 4 by executing m.resume() so that control returns at line 8 and so on ...

Class symmetric_coroutine<>::yield_type from N39858 is not equivalent to the synthesized fiber_context.

symmetric_coroutine<>::yield_type does not represent the suspended context, instead it is a special representa-
tion of the same coroutine. Thus main() or the current thread’s entry-function can not be represented by yield_type
(see next section representing main() and thread’s entry-function as fiber).

Because symmetric_coroutine<>::yield_type() yields back to the starting point, i.e. invocation of
symmetric_coroutine<>::call_type::operator()(), both instances (call_type as well as yield_type) must
be preserved. Additionally the caller must be kept alive until the called coroutine terminates or UB happens at resumption.

This API is specified in terms of passing the suspended fiber_context. A higher level layer can hide that by
using private variables.

representing main() and thread’s entry-function as fiber As shown in the previous section a synthesized
instance of fiber_context is passed into the resumed fiber.

int main(){
fiber_context f{[](fiber_context&& m){

m=std::move(m).resume(); // switch to ‘main()‘
...

}};
f=std::move(f).resume(); // resume ‘f‘
...
return 0;

}

The mechanism presented in this proposal describes switching between stacks: each fiber has its own stack. The stacks of
main() and explicitly-launched threads are not excluded; these can be used as targets too.
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Thus every program can be considered to consist of fibers – some created by the OS (main() stack; each thread’s
initial stack) and some created explicitly by the code.

This is a nice feature because it allows (the stacks of) main() and each thread’s entry-function to be represented as
fibers. A fiber_context representing main() or a thread’s entry-function can be handled like an explicitly created
fiber_context: it can passed to and returned from functions or stored in a container.

In the code snippet above the suspended main() is represented by instance m and could be stored in containers or
managed just like f by a scheduling algorithm.

The proposed fiber API allows representing and handling main() and the current thread’s entry-function by an
instance of fiber_context in the same way as explicitly created fibers.

fiber returns (terminates) When a fiber returns (terminates), what should happen next? Which fiber should be
resumed next? The only way to avoid internal global variables that point to main() is to explicitly return a non-empty
fiber_context instance that will be resumed after the active fiber terminates.

1 int main(){
2 fiber_context f{[](fiber_context&& m){
3 return std::move(m); // resume ‘main()‘ by returning ‘m‘
4 }};
5 f = std::move(f).resume(); // resume ‘f‘
6 assert(f.empty());
7 return 0;
8 }

In line 5 the fiber is started by invoking resume() on instance f. main() is suspended and an instance of type
fiber_context is synthesized and passed as parameter m to the lambda at line 2. The fiber terminates by returning m.
Control is transferred to main() (returning from f.resume() at line 5) while fiber f is destroyed.

In a more advanced example another fiber_context is used as return value instead of the passed in synthesized fiber.

1 int main(){
2 fiber_context m;
3 fiber_context f1{[&](fiber_context&& f){
4 std::cout << "f1: entered first time" << std::endl;
5 assert(!f);
6 return std::move(m); // resume (main-)fiber that has started ‘f2‘
7 }};
8 fiber_context f2{[&](fiber_context&& f){
9 std::cout << "f2: entered first time" << std::endl;

10 m=std::move(f); // preserve ‘f‘ (== suspended main())
11 return std::move(f1);
12 }};
13 std::move(f2).resume();
14 std::cout << "main: done" << std::endl;
15 return 0;
16 }
17
18 output:
19 f2: entered first time
20 f1: entered first time
21 main: done

At line 13 fiber f2 is resumed and the lambda is entered at line 8. The synthesized fiber_context f (representing
suspended main()) is passed as a parameter f and stored in m (captured by the lambda) at line 10. This is necessary in
order to prevent destructing f when the lambda returns. Fiber f2 uses f1, that was also captured by the lambda, as return
value. Fiber f2 terminates while fiber f1 is resumed (entered the first time). The synthesized fiber_context f passed
into the lambda at line 3 represents the terminated fiber f2 (e.g. the calling fiber). Thus instance f is empty as the assert
statement verifies at line 5. Fiber f1 uses the captured fiber_context m as return value (line 6). Control is returned to
main(), returning from f2.resume() at line 13.
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The entry-function passed to fiber_context’s constructor must have signature
‘fiber_context(fiber_context&&) ‘. Using fiber_context as the return value from such a function
avoids global variables.

returning synthesized fiber_context instance from resume() An instance of fiber_context remains
empty after return from resume() or resume_with(): the synthesized fiber is returned, instead of implicitly updating
the fiber_context instance on which resume() was called.

If the fiber_context object were implicitly updated, the fiber would change its identity because each fiber is associated
with a stack. Each stack contains a chain of function calls (call stack). If this association were implicitly modified,
unexpected behaviour happens.

The example below demonstrates the problem:

1 int main(){
2 fiber_context m,f1,f2,f3;
3 f3=fiber_context{[&](fiber_context&& f)->fiber_context{
4 f2=std::move(f);
5 for(;;){
6 std::cout << "f3 ";
7 std::move(f1).resume();
8 }
9 return {};

10 }};
11 f2=fiber_context{[&](fiber_context&& f)->fiber_context{
12 f1=std::move(f);
13 for(;;){
14 std::cout << "f2 ";
15 std::move(f3).resume();
16 }
17 return {};
18 }};
19 f1=fiber_context{[&](fiber_context&& f)->fiber_context{
20 m=std::move(f);
21 for(;;){
22 std::cout << "f1 ";
23 std::move(f2).resume();
24 }
25 return {};
26 }};
27 std::move(f1).resume();
28 return 0;
29 }
30
31 output:
32 f1 f2 f3 f1 f3 f1 f3 f1 f3 ...

In this pseudo-code the fiber_context object is implicitly updated.

The example creates a circle of fibers: each fiber prints its name and resumes the next fiber (f1 -> f2 -> f3 -> f1 -> ...).

Fiber f1 is started at line 27. The synthesized fiber_context main passed to the resumed fiber is stored but not used:
control flow cycles through the three fibers. The for-loop prints the name f1 and resumes fiber f2. Inside f2’s for-loop the
name is printed and f3 is resumed. Fiber f3 resumes fiber f1 at line 7. Inside f1 control returns from f2.resume(). f1
loops, prints out the name and invokes f2.resume(). But this time fiber f3 instead of f2 is resumed. This is caused by
the fact the instance f2 gets the synthesized fiber_context of f3 implicitly assigned. Remember that at line 7 fiber f3
gets suspended while f1 is resumed through f1.resume().

This problem can be solved by returning the synthesized fiber_context from resume() or resume_with().

int main(){
fiber_context m,f1,f2,f3;
f3=fiber_context{[&](fiber_context&& f)->fiber_context{
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f2=std::move(f);
for(;;){

std::cout << "f3 ";
f2=std::move(f1).resume();

}
return {};

}};
f2=fiber_context{[&](fiber_context&& f)->fiber_context{

f1=std::move(f);
for(;;){

std::cout << "f2 ";
f1=std::move(f3).resume();

}
return {};

}};
f1=fiber_context{[&](fiber_context&& f)->fiber_context{

m=std::move(f);
for(;;){

std::cout << "f1 ";
f3=std::move(f2).resume();

}
return {};

}};
std::move(f1).resume();
return 0;

}

output:
f1 f2 f3 f1 f2 f3 f1 f2 f3 ...

In the example above the synthesized fiber_context returned by each resume() call is specifically move-assigned
to a fiber_context instance other than the one on which resume() was called, to properly track the three fibers. (Of
course this particular example depends on static knowledge of the overall control flow. But the API does not, in general,
require that.)

The synthesized fiber_contextmust be returned from resume() and resume_with() in order to prevent chang-
ing the identity of the fiber.

If the overall control flow isn’t known, member function resume_with() (see section inject function into suspended
fiber) can be used to assign the synthesized fiber_context to the correct fiber_context instance (held by the caller).

class filament{
private:

fiber_context f_;

public:
...
void resume_next( filament& fila){

std::move(fila.f_).resume_with([this](fiber_context&& f)->fiber_context{
f_=std::move(f);
return {};

}
}

};

Picture a higher-level framework in which every fiber can find its associated filament instance, as well as others. Every
context switch must be mediated by passing the target filament instance to the running fiber’s resume_next().

Running fiber A has an associated filament instance filamentA, whose fiber_context filament::f_ is empty –
because fiber A is running.
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Desiring to switch to suspended fiber B (with associated filament filamentB), running fiber A calls
filamentA.resume_next(filamentB).

resume_next() calls filamentB.f_.resume_with(<lambda>). This empties filamentB.f_ – because fiber B is
now running.

The lambda binds &filamentA as this. Running on fiber B, it receives a fiber_context instance representing the
newly-suspended fiber A as its parameter f. It moves that fiber_context instance to filamentA.f_.

The lambda then returns a default-constructed (therefore empty) fiber_context instance. That empty instance is
returned by the previously-suspended resume_with() call in filamentB.resume_next() – which is fine because
resume_next() drops it on the floor anyway.

Thus, the running fiber’s associated filament::f_ is always empty, whereas the filament associated with each
suspended fiber is continually updated with the fiber_context instance representing that fiber.∗

It is not necessary to know the overall control flow. It is sufficient to pass a reference/pointer of the caller (fiber that
gets suspended) to the resumed fiber that move-assigns the synthesized fiber_context to caller (updating the
instance).

inject function into suspended fiber

Sometimes it is useful to inject a new function (for instance, to throw an exception or assign the synthesized fiber to the
caller as described in returning synthesized fiber_context instance from resume()) into a suspended fiber. For this
purpose resume_with() may be called, passing the function fn() to execute.

1 fiber_context f([](fiber_context&& caller){
2 // ...
3 std::move(caller).resume();
4 // ...
5 });
6
7 fiber_context fn(fiber_context&&);
8
9 f = std::move(f).resume();

10 // ...
11 std::move(f).resume_with(fn);

The resume_with() call at line 11 injects function fn() into fiber f as if the resume() call at line 3 had directly called
fn().

Like an entry-function passed to fiber_context, fn() must accept std::fiber_context&& and return
fiber_context. The fiber_context instance returned by fn() will, in turn, be returned to f’s lambda by the
resume() at line 3.

In the example below, suppose that code running on the program’s main fiber calls resume() (line 12), thereby entering
the first lambda. This is the point at which m is synthesized and passed into the lambda at line 2.

Suppose further that after doing some work (line 4), the lambda calls m.resume(), thereby switching back to the main
fiber. The lambda remains suspended in the call to m.resume() at line 5.

At line 18 the main fiber calls f.resume_with() where the passed lambda accepts fiber_context &&. That new
lambda is called on the fiber of the suspended lambda. It is as if the m.resume() call at line 8 directly called the second
lambda.

The function passed to resume_with() has almost the same range of possibilities as any function called on the fiber
represented by f. Its special invocation matters when control leaves it in either of two ways:

1. If it throws an exception, that exception unwinds all previous stack entries in that fiber (such as the first lambda’s)
as well, back to a matching catch clause.†

2. If the function returns, the returned fiber_context instance is returned by the suspended resume() or resume_with()
call.

∗ Boost.Fiber39 uses this pattern for resuming user-land threads.
†As stated in exceptions, if there is no matching catch clause in that fiber, std::terminate() is called.
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1 int data = 0;
2 fiber_context f{[&data](fiber_context&& m){
3 std::cout << "f1: entered first time: " << data << std::endl;
4 data+=1;
5 m=std::move(m).resume();
6 std::cout << "f1: entered second time: " << data << std::endl;
7 data+=1;
8 m=std::move(m).resume();
9 std::cout << "f1: entered third time: " << data << std::endl;

10 return std::move(m);
11 }};
12 f=std::move(f).resume();
13 std::cout << "f1: returned first time: " << data << std::endl;
14 data+=1;
15 f=std::move(f).resume();
16 std::cout << "f1: returned second time: " << data << std::endl;
17 data+=1;
18 f=std::move(f).resume_with([&data](fiber_context&& m){
19 std::cout << "f2: entered: " << data << std::endl;
20 data=-1;
21 return std::move(m);
22 });
23 std::cout << "f1: returned third time" << std::endl;
24
25 output:
26 f1: entered first time: 0
27 f1: returned first time: 1
28 f1: entered second time: 2
29 f1: returned second time: 3
30 f2: entered: 4
31 f1: entered third time: -1
32 f1: returned third time

The f.resume_with(<lambda>) call at line 18 passes control to the second lambda on the fiber of the first lambda.

As usual, resume_with() synthesizes a fiber_context instance representing the calling fiber, passed into the lambda
as m. This particular lambda returns m unchanged at line 21; thus that m instance is returned by the resume() call at line 8.

Finally, the first lambda returns at line 10 the m variable updated at line 8, switching back to the main fiber.

One case worth pointing out is when you call resume_with() on a fiber_context that has not yet been resumed for
the first time:

1 fiber_context topfunc(fiber_context&& prev);
2 fiber_context injected(fiber_context&& prev);
3
4 fiber_context f(topfunc);
5 // topfunc() has not yet been entered
6 std::move(f).resume_with(injected);

In this situation, injected() is called with a fiber_context instance representing the caller of resume_with().
When injected() eventually returns that (or some other) fiber_context instance, the returned
fiber_context instance is passed into topfunc() as its prev parameter.

Member function resume_with() allows you to inject a function into a suspended fiber.

passing data between fibers

Data can be transferred between two fibers via global pointer, a calling wrapper (like std::bind) or lambda capture.

1 int i=1;
2 std::fiber_context lambda{[&i](fiber_context&& caller){
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3 std::cout << "inside lambda,i==" << i << std::endl;
4 i+=1;
5 caller=std::move(caller).resume();
6 return std::move(caller);
7 }};
8 lambda=std::move(lambda).resume();
9 std::cout << "i==" << i << std::endl;

10 lambda=std::move(lambda).resume();
11
12 output:
13 inside lambda,i==1
14 i==2

The resume() call at line 8 enters the lambda and passes 1 into the new fiber. The value is incremented by one, as shown
at line 4. The expression caller.resume() at line 5 resumes the original context (represented within the lambda by
caller).

The call to lambda.resume() at line 10 resumes the lambda, returning from the caller.resume() call at line 5. The
fiber_context instance caller emptied by the resume() call at line 5 is replaced with the new instance returned by
that same resume() call.

Finally the lambda returns (the updated) caller at line 6, terminating its context.

Since the updated caller represents the fiber suspended by the call at line 10, control returns to main().

However, since fiber lambda has now terminated, the updated lambda is empty. Its operator bool() returns false.

Using lambda capture is the preferred way to transfer data between two fibers; global pointers or a calling wrapper
(such as std::bind) are alternatives.

termination

Every fiber_context you launch must terminate gracefully by returning from its entry-function.

When an explicitly-launched fiber’s entry-function returns a non-empty fiber_context instance, the running fiber is
terminated. Control switches to the fiber indicated by the returned fiber_context instance. The entry-function may
return (switch to) any reachable non-empty fiber_context instance – it need not be the instance originally passed in, or
an instance returned from the resume() family of methods.

Calling resume() means: “Please switch to the indicated fiber; I am suspending; please resume me later.”

Returning a particular fiber_context means: “Please switch to the indicated fiber; and by the way, I am done.”

Cancellation of another fiber is not explicitly supported by fiber_context. If it is important for consuming code to
communicate to a suspended fiber the desire that it should terminate, lambda binding may be used to pass some relevant
object, e.g. a stop_token.

It is up to the code running on the fiber in question to observe and respond to any such termination request. The fiber
must be resumed after the request before it could possibly observe the change. Even then, the entry-function might not
immediately return.

One tactic would be to request termination, then loop over resume() or resume_with() calls until the returned
fiber_context is empty(). However, that information is ambiguous.

Suppose we have a fiber_context instance f1 representing suspended fiber F, with an application-specific termination
request mechanism. The running fiber M requests F to terminate, then calls f1.resume(), which in due course returns
another fiber_context instance f2.

f2 has various possible values.

• f2 might be empty. This might mean that fiber F did in fact terminate.

• Alternatively, it might mean that fiber F, instead of terminating, resumed fiber G, which terminated by resuming
fiber M.

• Or fiber F might have terminated by resuming fiber G, which might have terminated by resuming fiber M.
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• In other words, if f2 is empty, fiber M cannot know the present state of fiber F.

• f2 might not be empty. That might mean that fiber F did not terminate before resuming fiber M. f2 would represent
fiber F.

• Or it might mean that fiber F terminated by resuming fiber G, which might have resumed fiber M. f2 would
represent fiber G.

• Or it might mean that fiber F, instead of terminating, resumed fiber G, which resumed fiber M. f2 would (again)
represent fiber G.

• In other words, if f2 is not empty, fiber M cannot know the present state of fiber F.

The autocancel class introduced in Appendix A: support code for examples illustrates a possible cancellation implemen-
tation, subject to the limitations described above.

exceptions

If an uncaught exception escapes from a fiber’s entry-function, std::terminate is called.

fiber_context as building block for higher-level frameworks

A low-level API enables a rich set of higher-level frameworks that provide specific syntaxes/semantics suitable for specific
domains. As an example, the following frameworks are based on the low-level fiber switching API of Boost.Context37

(which implements the API proposed here).

Boost.Coroutine238 implements asymmetric coroutines coroutine<>::push_type and
coroutine<>::pull_type, providing a unidirectional transfer of data. These stackful coroutines are only used in pairs.
When coroutine<>::push_type is explicitly instantiated, coroutine<>::pull_type is synthesized and passed as
parameter into the coroutine function. In the example below, coroutine<>::push_type (variable writer) provides
the resume operation, while coroutine<>::pull_type (variable in) represents the suspend operation. Inside the
lambda,in.get() pulls strings provided by coroutine<>::push_type’s output iterator support.

struct FinalEOL{ ~FinalEOL(){ std::cout << std::endl; } };
std::vector<std::string> words{

"peas", "porridge", "hot", "peas",
"porridge", "cold", "peas", "porridge",
"in", "the", "pot", "nine",
"days", "old" };

int num=5,width=15;
boost::coroutines2::coroutine<std::string>::push_type writer{

[&](boost::coroutines2::coroutine<std::string>::pull_type& in){
FinalEOL eol;
for (;;){

for (int i=0; i<num; ++i){
if (!in){

return;
}
std::cout << std::setw(width) << in.get();
in();

}
std::cout << std::endl;

}
}};

std::copy(std::begin(words), std::end(words), std::begin(writer));

Synca46 (by Grigory Demchenko) is a small, efficient library to perform asynchronous operations using source code that
resembles synchronous operations. The main features are a GO-like syntax, support for transferring execution context
explicitly between different thread pools or schedulers (portals/teleports) and asynchronous network support.
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int fibo(int v){
if (v<2) return v;
int v1,v2;
Waiter()

.go([v,&v1]{ v1=fibo(v-1); })

.go([v,&v2]{ v2=fibo(v-2); })

.wait();
return v1+v2;

}

The code itself looks like synchronous invocations while internally it uses asynchronous scheduling.

Boost.Fiber 39 implements user-land threads and combines fibers with schedulers (the scheduler algorithm is a cus-
tomization point). The API is modelled after the std::thread API and contains objects such as future, mutex,
condition_variable ...

boost::fibers::unbuffered_channel<unsigned int> chan;
boost::fibers::fiber f1{[&chan]{

chan.push(1);
chan.push(1);
chan.push(2);
chan.push(3);
chan.push(5);
chan.push(8);
chan.push(12);
chan.close();

}};
boost::fibers::fiber f2{[&chan]{

for (unsigned int value: chan) {
std::cout << value << " ";

}
std::cout << std::endl;

}};
f1.join();
f2.join();

Facebook’s folly::fibers42 is an asynchronous C++ framework using user-land threads for parallelism. In contrast to
Boost.Fiber, folly::fibers exposes the scheduler and permits integration with various event dispatching libraries.

folly::EventBase ev_base;
auto& fiber_manager=folly::fibers::getFiberManager(ev_base);
folly::fibers::Baton baton;
fiber_manager.addTask([&]{

std::cout << "task 1: start" << std::endl;
baton.wait();
std::cout << "task 1: after baton.wait()" << std::endl;

});
fiber_manager.addTask([&]{

std::cout << "task 2: start" << std::endl;
baton.post();
std::cout << "task 2: after baton.post()" << std::endl;

});
ev_base.loop();

folly::fibers is used in many critical applications at Facebook for instance in mcrouter40 and some other Facebook ser-
vices/libraries like ServiceRouter (routing framework for Thrift41), Node API (graph ORM API for graph databases)
...
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Bloomberg’s quantum43 is a full-featured and powerful C++ framework that allows users to dispatch units of work
(a.k.a. tasks) as coroutines and execute them concurrently using the ’reactor’ pattern. Its main features are support for
streaming futures which allows faster processing of large data sets, task prioritization, fast pre-allocated memory pools
and parallel forEach and mapReduce functions.

// Define a coroutine
int getDummyValue(Bloomberg::quantum::CoroContext<int>::Ptr ctx) {

int value;
... //do some work
ctx->yield(); //be nice and let other coroutines run (optional cooperation)
... //do more work and calculate ’value’
return ctx->set(value);

}
// Create a dispatcher
Bloomberg::quantum::Dispatcher dispatcher;
// Dispatch a work item to do some work and return a value
int result = dispatcher.post(getDummyValue)->get();

quantum is used in large projects at Bloomberg.

Habanero Extreme Scale Software Research Project44 provides a task-based parallel programming model via
its HClib.45 The runtime provides work-stealing, async-finish,∗ parallel-for and future-promise parallel programming
patterns. The library is not an exascale programming system itself, but it manages intra-node resources and schedules
components within an exascale programming system.

Intel’s TBB47 internally uses fibers for long running jobs† as reported by Intel.

userver 48 is a modern open source asynchronous framework with a rich set of abstractions, database connectors/drivers,
protocols and synchronization primitives for fast and comfortable creation of IO-bound C++ microservices, services and
utilities.

As shown in this section a low-level API can act as building block for a rich set of high-level frameworks designed
for specific application domains that require different aspects of design, semantics and syntax.

interaction with STL algorithms

In the following example STL algorithm std::generate and fiber g generate a sequence of Fibonacci numbers and store
them into std::vector v.

int a;
autocancel consumer, generator;
generator = autocancel{[&a,&consumer,&generator](std::fiber_context&& m){

a=0;
int b=1;
while (! generator.stop_requested()){

generator.resume(consumer);
int next=a+b;
a=b;
b=next;

}
return std::move(m);

}};
consumer = autocancel{[&a,&consumer,&generator](std::fiber_context&& m){

std::vector<int> v(10);
std::generate(v.begin(), v.end(), [&a,&consumer,&generator]() mutable {

∗async-finish is a variant of the fork-join model. While a task might fork a group of child tasks, the child tasks might fork even more
tasks. All tasks can potentially run in parallel with each other. The model allows a parent task to selectively join a subset of child tasks.

†because of the requirement to support a broad range of architectures swapcontext() was used
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consumer.resume(generator);
return a;

});
std::cout << "v: ";
for (auto i: v) {

std::cout << i << " ";
}
std::cout << "\n";
return std::move(m);

}};
consumer.resume();

output: v: 0 1 1 2 3 5 8 13 21 34

(See Appendix A: support code for examples for the definition of autocancel.)

The proposed fiber API does not require modifications of the STL and can be used together with existing STL
algorithms.

possible implementation strategies

This proposal does N O T seek to standardize any particular implementation or impose any specific calling con-
vention!

Modern micro-processors are register machines; the content of processor registers represents the execution context of the
program at a given point in time.

Operating systems maintain for each process all relevant data (execution context, other hardware registers etc.) in the
process table. The operating system’s CPU scheduler periodically suspends and resumes processes in order to share CPU
time between multiple processes. When a process is suspended, its execution context (processor registers, instruction
pointer, stack pointer, ...) is stored in the associated process table entry. On resumption, the CPU scheduler loads the
execution context into the CPU and the process continues execution.

The CPU scheduler does a full context switch. Besides preserving the execution context (complete CPU state), the cache
must be invalidated and the memory map modified.

A kernel-level context switch is several orders of magnitude slower than a context switch at user-level.6

hypothetical fiber preserving complete CPU state This strategy tries to preserve the complete CPU state, e.g. all
CPU registers. This requires that the implementation identifies the concrete micro-processor type and supported processor
features. For instance the x86-architecture has several flavours of extensions such as MMX, SSE1-4, AVX1-2, AVX-512.

Depending on the detected processor features, implementations of certain functionality must be switched on or off. The
CPU scheduler in the operating system uses such information for context switching between processes.

A fiber implementation using this strategy requires such a detection mechanism too (equivalent to swapper/system_32()
in the Linux kernel).

Aside from the complexity of such detection mechanisms, preserving the complete CPU state for each fiber switch is
expensive.

A context switch facility that preserves the complete CPU state like an operating system is possible but impractical
for user-land.

fiber switch using the calling convention For fiber_context, not all registers need be preserved because the
context switch is effected by a visible function call. It need not be completely transparent like an operating-system context
switch; it only needs to be as transparent as a call to any other function. The calling convention – the part of the ABI that
specifies how a function’s arguments and return values are passed – determines which subset of micro-processor registers
must be preserved by the called subroutine.
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The calling convention36 of SYSV ABI for x86_64 architecture determines that general purpose registers R12, R13, R14,
R15, RBX and RBP must be preserved by the sub-routine - the first arguments are passed to functions via RDI, RSI, RDX,
RCX, R8 and R9 and return values are stored in RAX, RDX.

So on that platform, the resume() implementation preserves the general purpose registers (R12-R15, RBX and RBP)
specified by the calling convention. In addition, the stack pointer and instruction pointer are preserved and exchanged
too – thus, from the point of view of calling code, resume() behaves like an ordinary function call.

In other words, resume() acts on the level of a simple function invocation – with the same performance characteristics (in
terms of CPU cycles).

This technique is used in Boost.Context37 which acts as building block for (e.g.) folly::fibers and quantum; see section
fiber_context as building block for higher-level frameworks.

in-place substitution at compile time During code generation, a compiler-based implementation could inject the
assembler code responsible for the fiber switch directly into each function that calls resume(). That would save an extra
indirection (JMP + PUSH/MOV of certain registers used to invoke resume()).

CPU state on the stack Because each fiber must preserve CPU registers at suspension and load those registers at
resumption, some storage is required.

Instead of allocating extra memory for each fiber, an implementation can use the stack by simply advancing the stack
pointer at suspension and pushing the CPU registers (CPU state) onto the stack owned by the suspending fiber. When the
fiber is resumed, the values are popped from the stack and loaded into the appropriate registers.

This strategy works because only a running fiber creates new stack frames (moving the stack pointer). While a fiber is
suspended, it is safe to keep the CPU state on its stack.

Using the stack as storage for the CPU state has the additional advantage that fiber_context need not itself contain the
stored CPU state: it need only contain a pointer to the stack location.

Section synthesizing the suspended fiber describes how global variables are avoided by synthesizing a fiber_context
from the active fiber (execution context) and passing this synthesized fiber_context (representing the now-suspended
fiber) into the resumed fiber. Using the stack as storage makes this mechanism very easy to implement.∗ Inside
resume() the code pushes the relevant CPU registers onto the stack, and from the resulting stack address creates
a new fiber_context. This instance is then passed (or returned) into the resumed fiber (see synthesizing the suspended
fiber).

Using the active fiber’s stack as storage for the CPU state is efficient because no additional allocations or dealloca-
tions are required.

std::uncaught_exceptions() and std::current_exception()

Both std::uncaught_exceptions() and std::current_exception() should report exceptions solely on the
current fiber. Reporting exceptions thrown on any other fiber would make them unreliable in practice.

A straightforward implementation could make resume() and resume_with() save and restore the data underlying
std::uncaught_exceptions() and std::current_exception() as part of saving and restoring the rest of the
fiber state. Since std::uncaught_exceptions() and std::current_exception() data is necessarily thread-local,
the likely cost would be a TLS access on every resume() or resume_with() call.

Alternatively, fiber_context’s constructor could update an internal associative container whose key is the high
end of the new fiber stack area. std::uncaught_exceptions() and std::current_exception() could call
upper_bound(), passing the current stack pointer, to discover which stack is current. This would shift the cost from
every context switch to std::uncaught_exceptions() and std::current_exception() calls.

As of 2023, though, the zeitgeist appears to be that std::uncaught_exceptions() and std::current_exception()
are not sufficiently important to warrant altering exception-handling implementations to fix their behavior. This is why, in
the Wording section, it is implementation-defined whether std::uncaught_exceptions() and std::current_exception()
are specific to the current fiber or the current std::thread.

∗The implementation of Boost.Context37 utilizes this technique.
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The following examples have been floated to illustrate problems that can arise when std::uncaught_exceptions()
and std::current_exception() are not local to the current fiber.

In these small examples, the problematic code is obvious. But the power of fibers is that a function need not know whether
some function it calls (or some indirect callee thereof) will resume another fiber. It’s not practical simply to forbid coders
from switching fibers within a catch block.

Premature destruction of exception object In [except.throw] paragraph 4, the destruction of an exception object
is specified to potentially occur when an active handler for the exception exits, not when a handler exits while the exception
is still the currently handled exception. It is possible to observe, with the Boost implementation in an Itanium C++ ABI
environment, cases where an exception is destroyed at a different point than specified (and, in particular, when a handler
for the exception is still active in a fiber).

struct Excp {
Excp(const char *x) : x(x) {}
~Excp() { fprintf(stderr, "Destroying Excp(\"%s\").\n", x); }
const char *const x;

};

int main(void) {
// 0. fiberB is prepared but not yet resumed
fiber_context fiberB{[](fiber_context &&fiberA) {

try {
// 3. fiberB throws Excp("lambda")
throw Excp("lambda");

} catch (const Excp& exc) {
// 4. fiberB catches Excp("lambda"), resumes default fiber
fiberA = std::move(fiberA).resume();
// 8. *** ANY ACCESS TO exc HERE ACCESSES A DESTROYED OBJECT ***
fprintf(stderr, "9. Should destroy Excp(\"lambda\").\n");
// 9. Excp("main") is destroyed instead

}
// 10. fiberB terminates by resuming default fiber
return std::move(fiberA);

}};
try {

// 1. default fiber throws Excp("main")
throw Excp("main");

} catch (const Excp&) {
// 2. default fiber catches Excp("main"), enters fiberB
fiberB = std::move(fiberB).resume();
// 5. current_exception() reports Excp("lambda")
fprintf(stderr, "6. Should destroy Excp(\"main\").\n");
// 6. the current_exception() is destroyed

}
// 7. default fiber resumes fiberB to let it terminate
fiberB = std::move(fiberB).resume();

}

Output:
6. Should destroy Excp("main").
Destroying Excp("lambda").
9. Should destroy Excp("lambda").
Destroying Excp("main").

Throw-expression with no operand Both [expr.throw] paragraph 3 and current_exception() ([propagation]
paragraph 8) reference the “currently handled exception” ([except.handle] paragraph 8). Thus, the construct throw; is by
definition equivalent to std::rethrow_exception(std::current_exception()); ([propagation] paragraph 9).

The existing definition of currently handled exception:

“The exception with the most recently activated handler that is still active is called the currently handled exception.”
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does not clearly constrain the scope to the current thread. This constraint must be inferred from [except.throw] paragraph
2:

“When an exception is thrown, control is transferred to the nearest handler with a matching type ([except.handle]); “nearest”
means the handler for which the compound-statement or ctor-initializer following the try keyword was most recently entered
by the thread of control and not yet exited.”

In any case, if “currently handled exception” means the exception with the most recently activated handler within any
fiber on the current thread, we can get the following result.

1 struct Bad: public std::runtime_error {
2 Bad(): std::runtime_error("Bad") {}
3 };
4
5 struct Worse: public std::runtime_error {
6 Worse(): std::runtime_error("Worse") {}
7 };
8
9 int main(void) {

10 // 0. fiberB is prepared but not yet resumed
11 fiber_context fiberB{[](fiber_context &&fiberA) {
12 try {
13 // 3. fiberB throws Worse
14 throw Worse();
15 } catch (const std::exception& caught) {
16 // 4. fiberB catches Worse, resumes default fiber
17 fiberA = std::move(fiberA).resume();
18 }
19 // 8. fiberB terminates by resuming default fiber
20 return std::move(fiberA);
21 }};
22 std::string thrown{ "Nothing" };
23 try {
24 try {
25 Bad myBad;
26 thrown = myBad.what();
27 // 1. default fiber throws Bad
28 throw myBad;
29 } catch (const std::exception& caught) {
30 // 2. default fiber catches Bad, enters fiberB
31 fiberB = std::move(fiberB).resume();
32 // 5. the most recently activated handler within the thread that
33 // is still active is in fiberB, and its exception is Worse
34 throw;
35 }
36 } catch (const std::exception& caught) {
37 // 6. caught is Worse
38 std::cout << "Situation went from " << thrown << " to " << caught.what()
39 << std::endl;
40 }
41 // 7. default fiber resumes fiberB to let it terminate
42 fiberB = std::move(fiberB).resume();
43 }

Worse still, the exceptions in question aren’t necessarily related to each other, and line 36 is more likely to read catch
(const Bad& caught) – in which case the throw; on line 34 would not be caught.

fiber switch on architectures with register window

The implementation of fiber switch is possible – many libc implementations still provide the ucontext-API (swapcontext()
and related functions)∗ for architectures using a register window (such as SPARC). The implementation of swapcontext()

∗ucontext was removed from POSIX standard by POSIX.1-2008
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could be used as blueprint for a fiber implementation.

how fast is a fiber switch

A fiber switch takes 11 CPU cycles on a x86_64-Linux system∗ using an implementation based on the strategy described in
fiber switch using the calling convention (implemented in Boost.Context,37 branch fiber).

interaction with accelerators

For many core devices several programming models, such as OpenACC, CUDA, OpenCL etc., have been developed
targeting host-directed execution using an attached or integrated accelerator. The CPU executes the main program while
controlling the activity of the accelerator. Accelerator devices typically provide capabilities for efficient vector processing†.
Usually the host-directed execution uses computation offloading that permits executing computationally intensive work
on a separate device (accelerator).4

For instance CUDA devices use a command buffer to establish communication between host and device. The host puts
commands (op-codes) into the command buffer and the device processes them asynchronously.5

It is obvious that a fiber switch does not interact with host-directed device-offloading. A fiber switch works like a function
call (see fiber switch using the calling convention).

multi-threading environment

Any thread in a program may be shared by multiple fibers.

A newly-instantiated fiber is not yet associated with any thread. However, once a fiber has been resumed the first time by
some thread, it must thereafter be resumed only by that same thread.

There could potentially be Undefined Behaviour if:

• a function running on a fiber references thread_local variables

• the compiler/runtime implementation caches a pointer to thread_local storage in that function’s stack frame

• that fiber is suspended, and

• the suspended fiber is resumed on a different thread.

The cached TLS pointer is now pointing to storage belonging to some other thread. If the original thread terminates before
the new thread, the cached TLS pointer is now dangling.

For this reason, it is forbidden to resume a fiber on any thread other than the one on which it was first resumed.
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Wording

This wording is relative to N4981.9

Append to §3.6 [defns.block] as indicated:

[ Note 1 to entry: Unless stated otherwise, blocking blocks the current thread. — end note ]

Modify §4.1.2 [intro.abstract] paragraph 7.3 as indicated:

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting output is
actually delivered before a program an input operation waits for input. What constitutes an interactive device is
implementation-defined.

Modify §6.9.2.1 [intro.multithread.general] paragraph 1 as indicated:

A thread of execution (also known as a thread) is a single flow of control the primary execution agent

([thread.req.lockable.general]) within a program , including the initial invocation of a specific top-level function, and

recursively including every function invocation subsequently executed by the thread . When the host environment first

enters a program, it provides a default thread to perform the program’s execution steps .

When a thread is created, it runs a default fiber ([intro.fibers]).

Insert before §6.9.3 [basic.start] and renumber existing 6.9.3 to 6.9.4:

6.9.3 Fibers and Threads [intro.fibers]

1 A fiber is a single flow of control within a program, including the initial invocation of a specific top-level function, and
recursively including every function invocation subsequently executed by the fiber. The execution steps of a fiber are
performed by a thread.

[ Note: “Flow of control” here refers to state necessary to program execution, for example the contents of a processor’s
registers including its instruction pointer, and the invocation sequence ([stacktrace.general]) of functions that have been
entered but have not yet returned. — end note ]

2 A thread is always running exactly one fiber. Member functions of fiber_context ([fiber.context.class]) can direct the
calling thread to suspend the running fiber and resume a designated other fiber. This transition from one fiber to another is a
context switch.

3 An implicit fiber is the default fiber on any thread. All other fibers are explicit fibers.

4 An explicit fiber is created using fiber_context. Instantiating fiber_context prepares a fiber, which can consume
resources. A fiber can thus be in one of three states: prepared, running or suspended.

5 When a thread first enters a prepared fiber, that thread becomes the fiber’s owning thread. The owning thread never
changes. [ Note: A thread is the owning thread of its default fiber. — end note ] [ Note: If a thread resumes a fiber owned by
another thread, the behaviour is undefined. — end note ]

Modify §14.2 [except.throw] paragraph 2 as indicated:

When an exception is thrown, control is transferred to the nearest handler with a matching type ([except.handle]); “nearest”
means the handler for which the compound-statement or ctor-initializer following the try keyword was most recently entered
by the thread of control running fiber and not yet exited.

Modify §14.2 [except.throw] paragraph 4 Note 3 as indicated:

[ Note 3: A thrown exception does not propagate to other threads fibers unless caught, stored, and rethrown using
appropriate library functions; see [propagation] and [futures]. — end note ]

30

https://eel.is/c++draft/defns.block
https://eel.is/c++draft/intro.abstract
https://eel.is/c++draft/intro.multithread.general
https://eel.is/c++draft/thread.req.lockable.general
https://eel.is/c++draft/basic.start
https://eel.is/c++draft/stacktrace.general
https://eel.is/c++draft/except.throw
https://eel.is/c++draft/except.handle
https://eel.is/c++draft/stmt.block#nt:compound-statement
https://eel.is/c++draft/class.base.init#nt:ctor-initializer
https://eel.is/c++draft/except.throw
https://eel.is/c++draft/propagation
https://eel.is/c++draft/futures


Modify §14.4 [except.handle] paragraph 6 as indicated:

If no match is found among the handlers for a try block, the search for a matching handler continues in a dynamically
surrounding try block of the same thread fiber .

Modify §14.4 [except.handle] paragraph 8 as indicated:

8 The exception with the most recently activated handler in the running fiber ([intro.fibers]) that is still active is called
the currently handled exception.

Modify §14.6.3 [except.uncaught] paragraph 1 as indicated:

... The function std::uncaught_exceptions ([uncaught.exceptions]) returns the number of uncaught exceptions in
the current thread running fiber ([intro.fibers]) .

Insert new final subclause in clause 33 [thread] as indicated:

33.12 fiber_context [fiber.context]

33.12.1 Overview [fiber.context.overview]

1 A fiber_context object is either empty or non-empty. A default-constructed or moved-from fiber_context is empty.
Otherwise, a fiber_context is non-empty, and represents either a prepared or a suspended fiber.

2 An explicit fiber is prepared by passing an entry-function to fiber_context’s constructor. At the first call to one of the
resume() or resume_with() member functions, that entry-function is entered, and the fiber is running.

3 Every call to one of the resume() or resume_with() member functions on an accessible non-empty fiber_context
object performs a context switch.

• suspends the running fiber, making it the previous fiber

• resumes the fiber represented by *this, which was either prepared or suspended, making it the running fiber.

In addition, returning a non-empty fiber_context from a fiber’s entry-function:

• terminates the running fiber

• resumes the fiber represented by the returned fiber_context.

4 When a prepared fiber is first entered, a synthesized non-empty fiber_context object representing the previous fiber
is passed as a parameter to its entry-function. When a suspended fiber is resumed, a synthesized fiber_context object
representing the previous fiber is returned from the relevant resume() or resume_with() member function. [ Note: The
synthesized fiber_context object received in either of those ways might represent either an explicit fiber or an implicit
fiber. — end note ]

5 When a running fiber returns a fiber_context from its entry-function, thus resuming the designated fiber, the
synthesized fiber_context passed into the resumed fiber is empty.

6 If a fiber’s entry-function returns an empty fiber_context object, std::terminate is called. If a fiber’s entry-
function exits via an exception, std::terminate is called.

7 Regardless of the number of fiber_context objects in the program, exactly one of them represents each prepared or
suspended fiber. No fiber_context object represents a running fiber.

8 A fiber_context object can optionally be constructed by passing an explicit span<byte> in which to track the fiber’s
invocation sequence ([stacktrace.general]). If at any time during the life of a fiber the data storage required to track its
invocation sequence exceeds the size() of that span<byte>, the behaviour is undefined.
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33.12.2 Header <fiber_context> synopsis [fiber.context.syn]

namespace std {

// [fibercontext], class fiber_context
class fiber_context;

}

33.12.3 Class fiber_context [fiber.context.class]

namespace std {

class fiber_context {
public:

// [fiber.context.cons], constructors, move and assignment
fiber_context() noexcept = default;

template<class F>
explicit fiber_context(F&& entry);

template<class F, class D>
fiber_context(F&& entry, span<byte> stack, D&& deleter);

~fiber_context();

fiber_context(fiber_context&& other) noexcept;
fiber_context& operator=(fiber_context&& other) noexcept;

// [fiber.context.mem], members
fiber_context resume() &&;
template<class Fn>
fiber_context resume_with(Fn&& fn) &&;

bool can_resume() noexcept;

explicit operator bool() const noexcept;
bool empty() const noexcept;

void swap(fiber_context& other) noexcept;

// [fiber.context.special], specialized algorithms
friend void swap(fiber_context& lhs, fiber_context& rhs) noexcept;

private:
void* state = nullptr; // exposition only

};

} // namespace std

33.12.3.1 Constructors, move and assignment [fiber.context.cons]

template<class F> explicit fiber_context(F&& entry) ;

1 Constraints:

— remove_cvref_t<F> is not the same type as fiber_context.

2 Mandates:

— is_constructible_v<decay_t<F>, F> is true.
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— is_invocable_r_v<fiber_context, decay_t<F>, fiber_context&&> is true.

3 Effects:

— Let entry_copy be an object of type decay_t<F> direct-non-list-initialized with std::forward<F>(entry).

— Initializes state to prepare a fiber that will, when first resumed, enter entry_copy. [ Note: entry_copy is not a
member of fiber_context because it is destroyed on fiber termination, not when a fiber_context object is
destroyed. Storage for entry_copy is associated with state. — end note ]

— Any necessary resources are created. [ Note: This includes storage for the new fiber’s invocation sequence. — end note ]

— The prepared fiber has no owning thread.

4 Postconditions: empty() is false.

5 Throws:

— bad_alloc if unable to allocate storage while preparing the new fiber.

— system_error if unable to prepare the new fiber for any other reason.

— Any exception from initialization of entry_copy.

6 Error conditions:resource_unavailable_try_again – the system lacked the necessary resources to prepare another
fiber.

template<class F, class D> fiber_context(F&& entry, span<byte> stack, D&& deleter) ;

1 Mandates:

— is_constructible_v<decay_t<F>, F> is true.

— is_constructible_v<decay_t<D>, D> is true.

— is_invocable_r_v<fiber_context, decay_t<F>, fiber_context&&> is true.

— is_invocable_v<decay_t<D>, span<byte>> is true.

2 Preconditions:

— decay_t<D> meets the Cpp17MoveConstructible requirements.

— invoke(deleter, stack) does not throw an exception.

3 Effects:

— Let entry_copy be an object of type decay_t<F> direct-non-list-initialized with std::forward<F>(entry).

— Let stack_copy be a copy of stack. [ Note: It might be advantageous to obtain from the host environment a memory
block with a read-only guard page to trap stack overflow. — end note ]

— Let deleter_copy be an object of type decay_t<D> direct-non-list-initialized with std::forward<F>(deleter).

— Initializes state to prepare a fiber that will, when first resumed, enter entry_copy. [ Note: entry_copy, stack_copy
and deleter_copy are not members of fiber_context because they are destroyed on fiber termination, not
when a fiber_context object is destroyed. Storage for entry_copy, stack_copy and deleter_copy is
associated with state. — end note ]

— Any necessary resources are created.

— The prepared fiber has no owning thread.

4 Postconditions: empty() is false.

5 Throws:

— invalid_argument if stack.data() fails to meet implementation-defined alignment requirements.

— length_error if stack.size() is less than the implementation-defined minimum length.

— system_error if unable to prepare the new fiber.

— Any exception from initialization of entry_copy.
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— Any exception from initialization of deleter_copy.

6 Error conditions:resource_unavailable_try_again – the system lacked the necessary resources to prepare another
fiber.

fiber_context(fiber_context&& other) noexcept ;

1 Effects: Initializes state with exchange(other.state, nullptr).

~fiber_context() ;

1 Effects: If empty() is false, terminate is invoked ([except.terminate]).

fiber_context& operator=(fiber_context&& other) noexcept ;

1 Effects:

— If empty() is false, terminate is invoked ([except.terminate]).

— Equivalent to: this->state = exchange(other.state, nullptr).

2 Returns:*this

33.12.3.2 Members [fiber.context.mem]

template<class Fn> fiber_context resume_with(Fn&& fn) && ;

The operation of resume_with() involves at least two and possibly three fibers. Within [fiber.context.mem], for exposition
only:

• Entering resume_with() performs a context switch.

• The calling fiber is the fiber calling resume_with().

• The target fiber is the fiber represented by state.

• resume_with() synthesizes a fiber_context object representing the calling fiber. Let caller be that synthe-
sized fiber_context object.

• Because resume_with() suspends the calling fiber, return from resume_with() necessarily requires some other
fiber to perform a subsequent context switch back to the original calling fiber. When resume_with() returns, that
other fiber is the previous fiber. [ Note: The previous fiber can be other than the target fiber. — end note ]

• Let previous be the synthesized fiber_context object representing the suspended previous fiber.

At entry to resume_with(), the target fiber can either be in the prepared state (not yet entered) or in the suspended state
(waiting to return from resume_with()).

— If the running fiber is suspended, that implies that at some earlier time, it called other. resume_with(), where
other was some non-empty fiber_context object. In that case, let exposition-only internal-resume(before),
where before is a fiber_context object, denote the following sequence of steps:

• Return before from other. resume_with().

— Otherwise, let internal-resume(before) denote the following sequence of steps:

• Execute invoke_r<fiber_context>(entry_copy, std::move(before)) and let successor be the
resulting fiber_context, then

• destroy entry_copy, then

• if stack_copy and deleter_copy exist:

– execute invoke(deleter_copy, stack_copy), then
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– destroy deleter_copy, then

• exit the running fiber, then

• reclaim implementation-provided resources, then

• direct the current thread to resume the fiber represented by successor, then

• execute internal-resume(fiber_context()).

1 Mandates:is_invocable_r_v<fiber_context, decay_t<Fn>, fiber_context&&> is true.

2 Preconditions: can_resume() is true.

3 Effects:

— Resets state so that empty() is true.

— Directs the current thread to suspend the calling fiber and resume the target fiber.

— Associates the calling thread as the target fiber’s owning thread.

— Evaluates invoke_r(std::forward<Fn>(fn), std::move(caller)). Let returned be the fiber_context
object returned by fn. [ Note: returned can be other than caller. returned can be empty. — end note ]

— Executes internal-resume(returned).

4 Returns:

— If the previous fiber resumed the calling fiber by returning a fiber_context object representing the calling fiber, an
empty fiber_context.

— If the previous fiber resumed the calling fiber by calling resume_with(somefn), the fiber_context object re-
turned by invoke_r<fiber_context>(somefn, std::move(previous)).

5 Throws:

If the previous fiber resumed the calling fiber by calling resume_with(somefn):

• Any exception thrown by invoke_r<fiber_context>(somefn, std::move(previous)).

[ Note: resume_with() throws nothing before suspending the calling fiber and ensuring empty() is true. — end note ]

6 Postconditions: empty() is true.

[ Note: Because resume() or resume_with() empties the object on which it is called, these member functions are
rvalue-reference qualified. — end note ]

fiber_context resume() && ;

1 Effects: Equivalent to:
return resume_with(identity());

bool can_resume() noexcept ;

1 Returns:

— false if empty() is true

— true if the fiber represented by *this is in the prepared state (has no owning thread)

— true if the calling thread is the owning thread of the fiber represented by *this

— false otherwise.

[ Editorial note: can_resume() is intentionally not marked const. — end editorial note ]
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bool empty() const noexcept ;

1 Effects: Equivalent to: return (! state);

explicit operator bool() const noexcept ;

1 Effects: Equivalent to: return (! empty());

void swap(fiber_context& other) noexcept ;

1 Effects: Equivalent to: swap(this->state, other.state).

33.12.3.3 Specialized algorithms [fiber.context.special]

friend void swap(fiber_context& lhs, fiber_context& rhs) noexcept ;

1 Effects: Equivalent to: lhs.swap(rhs).

Modify §19.6.1 [stacktrace.general] as indicated:

1 Subclause [stacktrace] describes components that C++ programs may use to store the stacktrace of the current thread of
execution running fiber ([intro.fibers]) and query information about the stored stacktrace at runtime.

2 The invocation sequence of the current evaluation x0 in the current thread of execution running fiber is a sequence
(x0,...,xn) of evaluations such that, for i ≥ 0, xi is within the function invocation xi+1 ([intro.execution]).

Header File

Add a new header file to Table 24 in §16.4.2.3 [headers]:

<fiber_context>

Feature-test Macro

Add a new feature-test macro to §17.3.2 [version.syn] as indicated:

#define __cpp_lib_fiber_context 202XXXL // also in <fiber_context>
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Appendix A: support code for examples

Destroying a non-empty fiber_context instance invokes Undefined Behaviour (see termination). To simplify code
examples in this paper, we introduce an autocancel wrapper class that launches a fiber and tracks the sequence of
fiber_context instances representing that fiber. When an autocancel instance is destroyed, it sets a stop flag and
loops until the fiber voluntarily terminates.

// notify_done is an RAII class that binds a bool& reference and, when
// destroyed, sets the referenced bool true.
class notify_done
{
public:

notify_done(bool& done):
done_(done)

{
done_ = false;

}

notify_done(const notify_done&) = delete;
notify_done& operator=(const notify_done&) = delete;

~notify_done()
{

done_ = true;
}

private:
bool& done_;

};

// autocancel is a wrapper class that launches a fiber and, when destroyed,
// implicitly requests stop on that fiber. It uses the tactic seen in the
// example ’filament’ class to continually update the fiber_context
// representing the fiber of interest. (See "returning synthesized
// std::fiber_context instance from resume()")
class autocancel{
private:

std::fiber_context f_;
bool stop_flag_{false};
bool done_{false};

public:
autocancel() = default;
template <typename Fn>
autocancel(Fn&& entry_function)
{

f_ = std::fiber_context(
[this, entry=std::forward<Fn>(entry_function)]
(std::fiber_context&& prev)
{

notify_done term(done_);
return entry(std::move(prev));

});
}

autocancel(const autocancel&) = delete;
autocancel& operator=(const autocancel&) = delete;
autocancel(autocancel&&) = delete;
autocancel& operator=(autocancel&&) = delete;

~autocancel() {
stop_flag_ = true;
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while (f_ && ! done_) {
resume(*this);

}
assert(done_);

}

bool stop_requested() const noexcept {
return stop_flag_;

}

// for initial entry from a plain fiber rather than an autocancel instance
std::fiber_context resume(){

return std::move(f_).resume();
}

void resume( autocancel& ac){
std::move(ac.f_).resume_with(

[this](std::fiber_context&& f)->std::fiber_context
{

f_ = std::move(f);
return {};

});
}

};
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