
Put std::monostate in <utility>
● Document number: P0472R2
● Date: 2024-09-09
● Reply-to:

David Sankel <camior@gmail.com>
Andrei Zissu <andrziss@gmail.com>

● Audience: Library Evolution

Revision History
Revision 2

● Added Alternatives section, currently referring to std::nullptr_t.
● Proposed Wording - redone.

Revision 1
● Keep std::monostate in <variant> too, for backward compatibility.
● Added a use case (safe invocation utility) in the motivation section.
● Added backward compatibility section.
● Added proposed wording.
● Added co-author.

Revision 0 (2016)
● Original version.

Abstract

std::monostate is currently defined and available in the <variant> header, but its utility is
not limited to variants. We propose adding std::monostate availability to <utility> to
reduce artificial coupling of std::monostate clients to the <variant> header. We are not
proposing removing std::monostate from <variant>, for backward compatibility.

Motivation

mailto:camior@gmail.com
mailto:andrziss@gmail.com


std::monostate is a class that has exactly one value. It is default constructible, copyable and
supports all the comparison operations, or in other words it is a regular type. std::monostate
is about as simple of a type as one could concoct. These properties turn out to be useful for
writing template code.

The first use case is in testing. Does your custom vector or set make any undesirable
assumptions about the types they are instantiated with? If they work properly with
std::monostate, then probably not. std::monostate can be used in this way as a means
to write simple test drivers.

The second use case occurs in more sophisticated template metaprogramming. The well known
std::future class makes use of a "special" template parameter void to indicate that it
carries no information aside from when the future is fulfilled. Using the void keyword to
represent this situation carries a serious implementation burden due to its many strange
properties. While this burden may not be a problem for standard library implementers, it would
be nice to have a simpler option for the more common developer.

Another similar use case involves writing a safe invocation utility which executes a provided
std::invocable and swallows all exceptions (via catch(...)). Such a utility would provide the
returned value wrapped in either a std::optional or a std::expected, which would be returned as
disengaged/unexpected in case the outcome of the invocation was an exception. This utility
would also need to support callables returning void, which for ease of writing generic code we
would want to share the same std::optional/std::expected representation. For this end
std::monostate would be an ideal choice for value/expected type, as it is a regular type while at
the same time cannot be mistakenly assigned or implicitly converted to any other useful type.

std::monostate is a much more natural way to represent "no information" than void is. It
has exactly one value and is a regular type instead of a keyword. Consider how simple the
following code is:

template<typename ExtraInformation = std::monostate>
class Data
{
//...
ExtraInformation m_extraInformation;
};

Here we have a Data template which optionally carries extra information. The use of
std::monostate in this example makes it simple in both specification and implementation to
represent Data objects that carry no additional information.



Alternatives
As has been pointed out on the reflector, there already exists a similar type -
std::nullptr_t. Why wouldn’t we settle for it as a proper general use substitute?

The reason is that misuses of std::monostate are much less likely. std::nullptr_t can
be copied to any pointer type, and can be outputted by both cstdio and iostream families of
facilities. std::monostate is ill-formed in any assignment as well as in streamed output, and
is only well-formed with cstdio functions (with likely QoL warnings). This makes it a better match
for a type that should represent nothingness, something that nothing useful can be done with.

Backward Compatibility

This is a library-only proposal, thus it has no impact on the language.

This is strictly an addition to the <utility> header. The <variant> header is not modified in
any way per this proposal, thus requiring no change in existing codebases. Nor are any other
parts of <utility> modified.

Proposed Wording
Add a new paragraph at the end of [variant.monostate]:
In addition to being available via inclusion of the <variant> header, the class monostate is available when
the <utility> header is included.

Conclusion

std::monostate is a generally useful type and therefore belongs in a more appropriate
header than <variant>. We are proposing adding it to <utility>, while preserving
<variant> as is for backward compatibility.

https://eel.is/c++draft/iterator.synopsis#header:%3citerator%3e
https://eel.is/c++draft/iterator.synopsis#header:%3citerator%3e

