Doc. no. | N4485 |
Date: | 2015-05-23 |
Project: | Programming Language C++ |
Reply to: | Marshall Clow <lwgchair@gmail.com> |
Revised 2015-05-23 at 15:05:40 UTC
Reference ISO/IEC IS 14882:2014(E)
Also see:
This document contains only library issues which have been closed by the Library Working Group (LWG) after being found to be defects in the standard. That is, issues which have a status of DR, TC1, C++11, C++14, or Resolved. See the Library Closed Issues List for issues closed as non-defects. See the Library Active Issues List for active issues and more information. The introductory material in that document also applies to this document.
Section: 17.6.2.3 [using.linkage] Status: TC1 Submitter: Beman Dawes Opened: 1997-11-16 Last modified: 2015-04-08
View all other issues in [using.linkage].
View all issues with TC1 status.
Discussion:
The change specified in the proposed resolution below did not make it into the Standard. This change was accepted in principle at the London meeting, and the exact wording below was accepted at the Morristown meeting.
Proposed resolution:
Change 17.6.2.3 [using.linkage] paragraph 2 from:
It is unspecified whether a name from the Standard C library declared with external linkage has either extern "C" or extern "C++" linkage.
to:
Whether a name from the Standard C library declared with external linkage has extern "C" or extern "C++" linkage is implementation defined. It is recommended that an implementation use extern "C++" linkage for this purpose.
Section: 18.5 [support.start.term] Status: TC1 Submitter: Steve Clamage Opened: 1997-12-12 Last modified: 2015-04-08
View all other issues in [support.start.term].
View all issues with TC1 status.
Discussion:
We appear not to have covered all the possibilities of
exit processing with respect to
atexit registration.
Example 1: (C and C++)
#include <stdlib.h> void f1() { } void f2() { atexit(f1); } int main() { atexit(f2); // the only use of f2 return 0; // for C compatibility }
At program exit, f2 gets called due to its registration in main. Running f2 causes f1 to be newly registered during the exit processing. Is this a valid program? If so, what are its semantics?
Interestingly, neither the C standard, nor the C++ draft standard nor the forthcoming C9X Committee Draft says directly whether you can register a function with atexit during exit processing.
All 3 standards say that functions are run in reverse order of their registration. Since f1 is registered last, it ought to be run first, but by the time it is registered, it is too late to be first.
If the program is valid, the standards are self-contradictory about its semantics.
Example 2: (C++ only)
void F() { static T t; } // type T has a destructor int main() { atexit(F); // the only use of F }
Function F registered with atexit has a local static variable t, and F is called for the first time during exit processing. A local static object is initialized the first time control flow passes through its definition, and all static objects are destroyed during exit processing. Is the code valid? If so, what are its semantics?
Section 18.3 "Start and termination" says that if a function F is registered with atexit before a static object t is initialized, F will not be called until after t's destructor completes.
In example 2, function F is registered with atexit before its local static object O could possibly be initialized. On that basis, it must not be called by exit processing until after O's destructor completes. But the destructor cannot be run until after F is called, since otherwise the object could not be constructed in the first place.
If the program is valid, the standard is self-contradictory about its semantics.
I plan to submit Example 1 as a public comment on the C9X CD, with a recommendation that the results be undefined. (Alternative: make it unspecified. I don't think it is worthwhile to specify the case where f1 itself registers additional functions, each of which registers still more functions.)
I think we should resolve the situation in the whatever way the C committee decides.
For Example 2, I recommend we declare the results undefined.
[See reflector message lib-6500 for further discussion.]
Proposed resolution:
Change section 18.3/8 from:
First, objects with static storage duration are destroyed and functions registered by calling atexit are called. Objects with static storage duration are destroyed in the reverse order of the completion of their constructor. (Automatic objects are not destroyed as a result of calling exit().) Functions registered with atexit are called in the reverse order of their registration. A function registered with atexit before an object obj1 of static storage duration is initialized will not be called until obj1's destruction has completed. A function registered with atexit after an object obj2 of static storage duration is initialized will be called before obj2's destruction starts.
to:
First, objects with static storage duration are destroyed and functions registered by calling atexit are called. Non-local objects with static storage duration are destroyed in the reverse order of the completion of their constructor. (Automatic objects are not destroyed as a result of calling exit().) Functions registered with atexit are called in the reverse order of their registration, except that a function is called after any previously registered functions that had already been called at the time it was registered. A function registered with atexit before a non-local object obj1 of static storage duration is initialized will not be called until obj1's destruction has completed. A function registered with atexit after a non-local object obj2 of static storage duration is initialized will be called before obj2's destruction starts. A local static object obj3 is destroyed at the same time it would be if a function calling the obj3 destructor were registered with atexit at the completion of the obj3 constructor.
Rationale:
See 99-0039/N1215, October 22, 1999, by Stephen D. Clamage for the analysis supporting to the proposed resolution.
Section: 21.4.6.8 [string::swap] Status: TC1 Submitter: Jack Reeves Opened: 1997-12-11 Last modified: 2015-04-08
View all other issues in [string::swap].
View all issues with TC1 status.
Duplicate of: 87
Discussion:
At the very end of the basic_string class definition is the signature: int compare(size_type pos1, size_type n1, const charT* s, size_type n2 = npos) const; In the following text this is defined as: returns basic_string<charT,traits,Allocator>(*this,pos1,n1).compare( basic_string<charT,traits,Allocator>(s,n2);
Since the constructor basic_string(const charT* s, size_type n, const Allocator& a = Allocator()) clearly requires that s != NULL and n < npos and further states that it throws length_error if n == npos, it appears the compare() signature above should always throw length error if invoked like so: str.compare(1, str.size()-1, s); where 's' is some null terminated character array.
This appears to be a typo since the obvious intent is to allow either the call above or something like: str.compare(1, str.size()-1, s, strlen(s)-1);
This would imply that what was really intended was two signatures int compare(size_type pos1, size_type n1, const charT* s) const int compare(size_type pos1, size_type n1, const charT* s, size_type n2) const; each defined in terms of the corresponding constructor.
Proposed resolution:
Replace the compare signature in 21.4 [basic.string] (at the very end of the basic_string synopsis) which reads:
int compare(size_type pos1, size_type n1,
const charT* s, size_type n2 = npos) const;
with:
int compare(size_type pos1, size_type n1,
const charT* s) const;
int compare(size_type pos1, size_type n1,
const charT* s, size_type n2) const;
Replace the portion of 21.4.6.8 [string::swap] paragraphs 5 and 6 which read:
int compare(size_type pos, size_type n1,
charT * s, size_type n2 = npos) const;
Returns:
basic_string<charT,traits,Allocator>(*this, pos, n1).compare(
basic_string<charT,traits,Allocator>( s, n2))
with:
int compare(size_type pos, size_type n1,
const charT * s) const;
Returns:
basic_string<charT,traits,Allocator>(*this, pos, n1).compare(
basic_string<charT,traits,Allocator>( s ))
int compare(size_type pos, size_type n1,
const charT * s, size_type n2) const;
Returns:
basic_string<charT,traits,Allocator>(*this, pos, n1).compare(
basic_string<charT,traits,Allocator>( s, n2))
Editors please note that in addition to splitting the signature, the third argument becomes const, matching the existing synopsis.
Rationale:
While the LWG dislikes adding signatures, this is a clear defect in the Standard which must be fixed. The same problem was also identified in issues 7 (item 5) and 87.
Section: 21 [strings] Status: TC1 Submitter: Matt Austern Opened: 1997-12-15 Last modified: 2015-04-08
View all other issues in [strings].
View all issues with TC1 status.
Discussion:
(1) In 21.4.6.4 [string::insert], the description of template <class InputIterator> insert(iterator, InputIterator, InputIterator) makes no sense. It refers to a member function that doesn't exist. It also talks about the return value of a void function.
(2) Several versions of basic_string::replace don't appear in the class synopsis.
(3) basic_string::push_back appears in the synopsis, but is never described elsewhere. In the synopsis its argument is const charT, which doesn't makes much sense; it should probably be charT, or possible const charT&.
(4) basic_string::pop_back is missing.
(5) int compare(size_type pos, size_type n1, charT* s, size_type n2 = npos) make no sense. First, it's const charT* in the synopsis and charT* in the description. Second, given what it says in RETURNS, leaving out the final argument will always result in an exception getting thrown. This is paragraphs 5 and 6 of 21.4.6.8 [string::swap]
(6) In table 37, in section 21.2.1 [char.traits.require], there's a note for X::move(s, p, n). It says "Copies correctly even where p is in [s, s+n)". This is correct as far as it goes, but it doesn't go far enough; it should also guarantee that the copy is correct even where s in in [p, p+n). These are two orthogonal guarantees, and neither one follows from the other. Both guarantees are necessary if X::move is supposed to have the same sort of semantics as memmove (which was clearly the intent), and both guarantees are necessary if X::move is actually supposed to be useful.
Proposed resolution:
ITEM 1: In 21.3.5.4 [lib.string::insert], change paragraph 16 to
EFFECTS: Equivalent to insert(p - begin(), basic_string(first, last)).
ITEM 2: Not a defect; the Standard is clear.. There are ten versions of replace() in
the synopsis, and ten versions in 21.3.5.6 [lib.string::replace].
ITEM 3: Change the declaration of push_back in the string synopsis (21.3,
[lib.basic.string]) from:
void push_back(const charT)
to
void push_back(charT)
Add the following text immediately after 21.3.5.2 [lib.string::append], paragraph 10.
void basic_string::push_back(charT c);
EFFECTS: Equivalent to append(static_cast<size_type>(1), c);
ITEM 4: Not a defect. The omission appears to have been deliberate.
ITEM 5: Duplicate; see issue 5 (and 87).
ITEM 6: In table 37, Replace:
"Copies correctly even where p is in [s, s+n)."
with:
"Copies correctly even where the ranges [p, p+n) and [s,
s+n) overlap."
Section: 22.3.1.5 [locale.statics] Status: TC1 Submitter: Matt Austern Opened: 1997-12-24 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
It appears there's an important guarantee missing from clause 22. We're told that invoking locale::global(L) sets the C locale if L has a name. However, we're not told whether or not invoking setlocale(s) sets the global C++ locale.
The intent, I think, is that it should not, but I can't find any such words anywhere.
Proposed resolution:
Add a sentence at the end of 22.3.1.5 [locale.statics], paragraph 2:
No library function other than locale::global() shall affect the value returned by locale().
Section: 18.6.1 [new.delete] Status: TC1 Submitter: Steve Clamage Opened: 1998-01-04 Last modified: 2015-04-08
View all other issues in [new.delete].
View all issues with TC1 status.
Discussion:
Scott Meyers, in a comp.std.c++ posting: I just noticed that section 3.7.3.1 of CD2 seems to allow for the possibility that all calls to operator new(0) yield the same pointer, an implementation technique specifically prohibited by ARM 5.3.3.Was this prohibition really lifted? Does the FDIS agree with CD2 in the regard? [Issues list maintainer's note: the IS is the same.]
Proposed resolution:
Change the last paragraph of 3.7.3 from:
Any allocation and/or deallocation functions defined in a C++ program shall conform to the semantics specified in 3.7.3.1 and 3.7.3.2.
to:
Any allocation and/or deallocation functions defined in a C++ program, including the default versions in the library, shall conform to the semantics specified in 3.7.3.1 and 3.7.3.2.
Change 3.7.3.1/2, next-to-last sentence, from :
If the size of the space requested is zero, the value returned shall not be a null pointer value (4.10).
to:
Even if the size of the space requested is zero, the request can fail. If the request succeeds, the value returned shall be a non-null pointer value (4.10) p0 different from any previously returned value p1, unless that value p1 was since passed to an operator delete.
5.3.4/7 currently reads:
When the value of the expression in a direct-new-declarator is zero, the allocation function is called to allocate an array with no elements. The pointer returned by the new-expression is non-null. [Note: If the library allocation function is called, the pointer returned is distinct from the pointer to any other object.]
Retain the first sentence, and delete the remainder.
18.5.1 currently has no text. Add the following:
Except where otherwise specified, the provisions of 3.7.3 apply to the library versions of operator new and operator delete.
To 18.5.1.3, add the following text:
The provisions of 3.7.3 do not apply to these reserved placement forms of operator new and operator delete.
Rationale:
See 99-0040/N1216, October 22, 1999, by Stephen D. Clamage for the analysis supporting to the proposed resolution.
Section: 20.6 [template.bitset] Status: TC1 Submitter: Matt Austern Opened: 1998-01-22 Last modified: 2015-04-08
View other active issues in [template.bitset].
View all other issues in [template.bitset].
View all issues with TC1 status.
Discussion:
(1) bitset<>::operator[] is mentioned in the class synopsis (23.3.5), but it is not documented in 23.3.5.2.
(2) The class synopsis only gives a single signature for bitset<>::operator[], reference operator[](size_t pos). This doesn't make much sense. It ought to be overloaded on const. reference operator[](size_t pos); bool operator[](size_t pos) const.
(3) Bitset's stream input function (23.3.5.3) ought to skip all whitespace before trying to extract 0s and 1s. The standard doesn't explicitly say that, though. This should go in the Effects clause.
Proposed resolution:
ITEMS 1 AND 2:
In the bitset synopsis (20.6 [template.bitset]),
replace the member function
reference operator[](size_t pos);
with the two member functions
bool operator[](size_t pos) const;
reference operator[](size_t pos);
Add the following text at the end of 20.6.2 [bitset.members],
immediately after paragraph 45:
bool operator[](size_t pos) const;
Requires: pos is valid
Throws: nothing
Returns: test(pos)
bitset<N>::reference operator[](size_t pos);
Requires: pos is valid
Throws: nothing
Returns: An object of type bitset<N>::reference such that (*this)[pos] == this->test(pos), and such that (*this)[pos] = val is equivalent to this->set(pos, val);
Rationale:
The LWG believes Item 3 is not a defect. "Formatted input" implies the desired semantics. See 27.7.2.2 [istream.formatted].
Section: 27.7.2.2.3 [istream::extractors] Status: TC1 Submitter: William M. Miller Opened: 1998-03-03 Last modified: 2015-04-08
View all other issues in [istream::extractors].
View all issues with TC1 status.
Discussion:
In 27.6.1.2.3, there is a reference to "eos", which is the only one in the whole draft (at least using Acrobat search), so it's undefined.
Proposed resolution:
In 27.7.2.2.3 [istream::extractors], replace "eos" with "charT()"
Section: 22.3.1.3 [locale.members] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [locale.members].
View all issues with TC1 status.
Discussion:
locale::combine is the only member function of locale (other than constructors and destructor) that is not const. There is no reason for it not to be const, and good reasons why it should have been const. Furthermore, leaving it non-const conflicts with 22.1.1 paragraph 6: "An instance of a locale is immutable."
History: this member function originally was a constructor. it happened that the interface it specified had no corresponding language syntax, so it was changed to a member function. As constructors are never const, there was no "const" in the interface which was transformed into member "combine". It should have been added at that time, but the omission was not noticed.
Proposed resolution:
In 22.3.1 [locale] and also in 22.3.1.3 [locale.members], add "const" to the declaration of member combine:
template <class Facet> locale combine(const locale& other) const;
Section: 22.3.1.3 [locale.members] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [locale.members].
View all issues with TC1 status.
Discussion:
locale::name() is described as returning a string that can be passed to a locale constructor, but there is no matching constructor.
Proposed resolution:
In 22.3.1.3 [locale.members], paragraph 5, replace "locale(name())" with "locale(name().c_str())".
Section: 22.4.1.4 [locale.codecvt] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [locale.codecvt].
View all issues with TC1 status.
Discussion:
The new virtual members ctype_byname<char>::do_widen and do_narrow did not get edited in properly. Instead, the member do_widen appears four times, with wrong argument lists.
Proposed resolution:
The correct declarations for the overloaded members do_narrow and do_widen should be copied from 22.4.1.3 [facet.ctype.special].
Section: 22.4.2.1.2 [facet.num.get.virtuals] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View other active issues in [facet.num.get.virtuals].
View all other issues in [facet.num.get.virtuals].
View all issues with TC1 status.
Discussion:
This section describes the process of parsing a text boolean value from the input
stream. It does not say it recognizes either of the sequences "true" or
"false" and returns the corresponding bool value; instead, it says it recognizes
only one of those sequences, and chooses which according to the received value of a
reference argument intended for returning the result, and reports an error if the other
sequence is found. (!) Furthermore, it claims to get the names from the ctype<>
facet rather than the numpunct<> facet, and it examines the "boolalpha"
flag wrongly; it doesn't define the value "loc"; and finally, it computes
wrongly whether to use numeric or "alpha" parsing.
I believe the correct algorithm is "as if":
// in, err, val, and str are arguments. err = 0; const numpunct<charT>& np = use_facet<numpunct<charT> >(str.getloc()); const string_type t = np.truename(), f = np.falsename(); bool tm = true, fm = true; size_t pos = 0; while (tm && pos < t.size() || fm && pos < f.size()) { if (in == end) { err = str.eofbit; } bool matched = false; if (tm && pos < t.size()) { if (!err && t[pos] == *in) matched = true; else tm = false; } if (fm && pos < f.size()) { if (!err && f[pos] == *in) matched = true; else fm = false; } if (matched) { ++in; ++pos; } if (pos > t.size()) tm = false; if (pos > f.size()) fm = false; } if (tm == fm || pos == 0) { err |= str.failbit; } else { val = tm; } return in;
Notice this works reasonably when the candidate strings are both empty, or equal, or when one is a substring of the other. The proposed text below captures the logic of the code above.
Proposed resolution:
In 22.4.2.1.2 [facet.num.get.virtuals], in the first line of paragraph 14, change "&&" to "&".
Then, replace paragraphs 15 and 16 as follows:
Otherwise target sequences are determined "as if" by calling the members falsename() and truename() of the facet obtained by use_facet<numpunct<charT> >(str.getloc()). Successive characters in the range [in,end) (see [lib.sequence.reqmts]) are obtained and matched against corresponding positions in the target sequences only as necessary to identify a unique match. The input iterator in is compared to end only when necessary to obtain a character. If and only if a target sequence is uniquely matched, val is set to the corresponding value.
The in iterator is always left pointing one position beyond the last character successfully matched. If val is set, then err is set to str.goodbit; or to str.eofbit if, when seeking another character to match, it is found that (in==end). If val is not set, then err is set to str.failbit; or to (str.failbit|str.eofbit)if the reason for the failure was that (in==end). [Example: for targets true:"a" and false:"abb", the input sequence "a" yields val==true and err==str.eofbit; the input sequence "abc" yields err=str.failbit, with in ending at the 'c' element. For targets true:"1" and false:"0", the input sequence "1" yields val==true and err=str.goodbit. For empty targets (""), any input sequence yields err==str.failbit. --end example]
Section: 22.4.2.1.1 [facet.num.get.members] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [facet.num.get.members].
View all issues with TC1 status.
Discussion:
In the list of num_get<> non-virtual members on page 22-23, the member that parses bool values was omitted from the list of definitions of non-virtual members, though it is listed in the class definition and the corresponding virtual is listed everywhere appropriate.
Proposed resolution:
Add at the beginning of 22.4.2.1.1 [facet.num.get.members] another get member for bool&, copied from the entry in 22.4.2.1 [locale.num.get].
Section: 22.4.1.4 [locale.codecvt] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [locale.codecvt].
View all issues with TC1 status.
Duplicate of: 10
Discussion:
In the definitions of codecvt<>::do_out and do_in, they are specified to return noconv if "no conversion is needed". This definition is too vague, and does not say normatively what is done with the buffers.
Proposed resolution:
Change the entry for noconv in the table under paragraph 4 in section 22.4.1.4.2 [locale.codecvt.virtuals] to read:
noconv: internT and externT are the same type, and input sequence is identical to converted sequence.
Change the Note in paragraph 2 to normative text as follows:
If returns noconv, internT and externT are the same type and the converted sequence is identical to the input sequence [from,from_next). to_next is set equal to to, the value of state is unchanged, and there are no changes to the values in [to, to_limit).
Section: 22.4.3.1.2 [facet.numpunct.virtuals] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
The synopsis for numpunct<>::do_thousands_sep, and the definition of numpunct<>::thousands_sep which calls it, specify that it returns a value of type char_type. Here it is erroneously described as returning a "string_type".
Proposed resolution:
In 22.4.3.1.2 [facet.numpunct.virtuals], above paragraph 2, change "string_type" to "char_type".
Section: 22.3.1.1.1 [locale.category] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [locale.category].
View all issues with TC1 status.
Discussion:
In the second table in the section, captioned "Required instantiations", the instantiations for codecvt_byname<> have been omitted. These are necessary to allow users to construct a locale by name from facets.
Proposed resolution:
Add in 22.3.1.1.1 [locale.category] to the table captioned "Required instantiations", in the category "ctype" the lines
codecvt_byname<char,char,mbstate_t>, codecvt_byname<wchar_t,char,mbstate_t>
Section: 27.9.1.9 [ifstream.members] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [ifstream.members].
View all issues with TC1 status.
Discussion:
The description of basic_istream<>::open leaves unanswered questions about how it responds to or changes flags in the error status for the stream. A strict reading indicates that it ignores the bits and does not change them, which confuses users who do not expect eofbit and failbit to remain set after a successful open. There are three reasonable resolutions: 1) status quo 2) fail if fail(), ignore eofbit 3) clear failbit and eofbit on call to open().
Proposed resolution:
In 27.9.1.9 [ifstream.members] paragraph 3, and in 27.9.1.13 [ofstream.members] paragraph 3, under open() effects, add a footnote:
A successful open does not change the error state.
Rationale:
This may seem surprising to some users, but it's just an instance of a general rule: error flags are never cleared by the implementation. The only way error flags are are ever cleared is if the user explicitly clears them by hand.
The LWG believed that preserving this general rule was important enough so that an exception shouldn't be made just for this one case. The resolution of this issue clarifies what the LWG believes to have been the original intent.
Section: 22.4.2.1.2 [facet.num.get.virtuals] Status: CD1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View other active issues in [facet.num.get.virtuals].
View all other issues in [facet.num.get.virtuals].
View all issues with CD1 status.
Discussion:
The current description of numeric input does not account for the possibility of overflow. This is an implicit result of changing the description to rely on the definition of scanf() (which fails to report overflow), and conflicts with the documented behavior of traditional and current implementations.
Users expect, when reading a character sequence that results in a value unrepresentable in the specified type, to have an error reported. The standard as written does not permit this.
Further comments from Dietmar:
I don't feel comfortable with the proposed resolution to issue 23: It kind of simplifies the issue to much. Here is what is going on:
Currently, the behavior of numeric overflow is rather counter intuitive and hard to trace, so I will describe it briefly:
Further discussion from Redmond:
The basic problem is that we've defined our behavior, including our error-reporting behavior, in terms of C90. However, C90's method of reporting overflow in scanf is not technically an "input error". The strto_* functions are more precise.
There was general consensus that failbit should be set upon overflow. We considered three options based on this:
Straw poll: (1) 5; (2) 0; (3) 8.
Discussed at Lillehammer. General outline of what we want the solution to look like: we want to say that overflow is an error, and provide a way to distinguish overflow from other kinds of errors. Choose candidate field the same way scanf does, but don't describe the rest of the process in terms of format. If a finite input field is too large (positive or negative) to be represented as a finite value, then set failbit and assign the nearest representable value. Bill will provide wording.
Discussed at Toronto: N2327 is in alignment with the direction we wanted to go with in Lillehammer. Bill to work on.
Proposed resolution:
Change 22.4.2.1.2 [facet.num.get.virtuals], end of p3:
Stage 3:
The result of stage 2 processing can be one ofThe sequence of chars accumulated in stage 2 (the field) is converted to a numeric value by the rules of one of the functions declared in the header <cstdlib>:
A sequence of chars has been accumulated in stage 2 that is converted (according to the rules of scanf) to a value of the type of val. This value is stored in val and ios_base::goodbit is stored in err.For a signed integer value, the function strtoll.The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure. ios_base::failbit is assigned to err.For an unsigned integer value, the function strtoull.- For a floating-point value, the function strtold.
The numeric value to be stored can be one of:
- zero, if the conversion function fails to convert the entire field. ios_base::failbit is assigned to err.
- the most positive representable value, if the field represents a value too large positive to be represented in val. ios_base::failbit is assigned to err.
- the most negative representable value (zero for unsigned integer), if the field represents a value too large negative to be represented in val. ios_base::failbit is assigned to err.
- the converted value, otherwise.
The resultant numeric value is stored in val.
Change 22.4.2.1.2 [facet.num.get.virtuals], p6-p7:
iter_type do_get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, bool& val) const;-6- Effects: If (str.flags()&ios_base::boolalpha)==0 then input proceeds as it would for a long except that if a value is being stored into val, the value is determined according to the following: If the value to be stored is 0 then false is stored. If the value is 1 then true is stored. Otherwise
err|=ios_base::failbit is performed and no valuetrue is stored.and ios_base::failbit is assigned to err.-7- Otherwise target sequences are determined "as if" by calling the members falsename() and truename() of the facet obtained by use_facet<numpunct<charT> >(str.getloc()). Successive characters in the range [in,end) (see 23.1.1) are obtained and matched against corresponding positions in the target sequences only as necessary to identify a unique match. The input iterator in is compared to end only when necessary to obtain a character. If
and only ifa target sequence is uniquely matched, val is set to the corresponding value. Otherwise false is stored and ios_base::failbit is assigned to err.
Section: 22.4.1.4 [locale.codecvt] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [locale.codecvt].
View all issues with TC1 status.
Duplicate of: 72
Discussion:
The description of codecvt<>::do_out and do_in mentions a symbol "do_convert" which is not defined in the standard. This is a leftover from an edit, and should be "do_in and do_out".
Proposed resolution:
In 22.4.1.4 [locale.codecvt], paragraph 3, change "do_convert" to "do_in or do_out". Also, in 22.4.1.4.2 [locale.codecvt.virtuals], change "do_convert()" to "do_in or do_out".
Section: 21.4.8.9 [string.io] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [string.io].
View all issues with TC1 status.
Duplicate of: 67
Discussion:
In the description of operator<< applied to strings, the standard says that uses the smaller of os.width() and str.size(), to pad "as described in stage 3" elsewhere; but this is inconsistent, as this allows no possibility of space for padding.
Proposed resolution:
Change 21.4.8.9 [string.io] paragraph 4 from:
"... where n is the smaller of os.width() and str.size();
..."
to:
"... where n is the larger of os.width() and str.size();
..."
Section: 27.7.2.1.3 [istream::sentry] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [istream::sentry].
View all issues with TC1 status.
Discussion:
In paragraph 6, the code in the example:
template <class charT, class traits = char_traits<charT> > basic_istream<charT,traits>::sentry( basic_istream<charT,traits>& is, bool noskipws = false) { ... int_type c; typedef ctype<charT> ctype_type; const ctype_type& ctype = use_facet<ctype_type>(is.getloc()); while ((c = is.rdbuf()->snextc()) != traits::eof()) { if (ctype.is(ctype.space,c)==0) { is.rdbuf()->sputbackc (c); break; } } ... }
fails to demonstrate correct use of the facilities described. In particular, it fails to use traits operators, and specifies incorrect semantics. (E.g. it specifies skipping over the first character in the sequence without examining it.)
Proposed resolution:
Remove the example above from 27.7.2.1.3 [istream::sentry] paragraph 6.
Rationale:
The originally proposed replacement code for the example was not correct. The LWG tried in Kona and again in Tokyo to correct it without success. In Tokyo, an implementor reported that actual working code ran over one page in length and was quite complicated. The LWG decided that it would be counter-productive to include such a lengthy example, which might well still contain errors.
Section: 21.4.6.5 [string::erase] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [string::erase].
View all issues with TC1 status.
Discussion:
The string::erase(iterator first, iterator last) is specified to return an element one place beyond the next element after the last one erased. E.g. for the string "abcde", erasing the range ['b'..'d') would yield an iterator for element 'e', while 'd' has not been erased.
Proposed resolution:
In 21.4.6.5 [string::erase], paragraph 10, change:
Returns: an iterator which points to the element immediately following _last_ prior to the element being erased.
to read
Returns: an iterator which points to the element pointed to by _last_ prior to the other elements being erased.
Section: 22.4.1.3.2 [facet.ctype.char.members] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [facet.ctype.char.members].
View all issues with TC1 status.
Duplicate of: 236
Discussion:
The description of the vector form of ctype<char>::is can be interpreted to mean something very different from what was intended. Paragraph 4 says
Effects: The second form, for all *p in the range [low, high), assigns vec[p-low] to table()[(unsigned char)*p].
This is intended to copy the value indexed from table()[] into the place identified in vec[].
Proposed resolution:
Change 22.4.1.3.2 [facet.ctype.char.members], paragraph 4, to read
Effects: The second form, for all *p in the range [low, high), assigns into vec[p-low] the value table()[(unsigned char)*p].
Section: 27.4.2 [narrow.stream.objects] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [narrow.stream.objects].
View all issues with TC1 status.
Discussion:
Sections 27.4.2 [narrow.stream.objects] and 27.4.3 [wide.stream.objects] mention a function ios_base::init, which is not defined. Probably they mean basic_ios<>::init, defined in 27.5.5.2 [basic.ios.cons], paragraph 3.
Proposed resolution:
[R12: modified to include paragraph 5.]
In 27.4.2 [narrow.stream.objects] paragraph 2 and 5, change
ios_base::init
to
basic_ios<char>::init
Also, make a similar change in 27.4.3 [wide.stream.objects] except it should read
basic_ios<wchar_t>::init
Section: 22.3.1.1.1 [locale.category] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [locale.category].
View all issues with TC1 status.
Discussion:
Paragraph 2 implies that the C macros LC_CTYPE etc. are defined in <cctype>, where they are in fact defined elsewhere to appear in <clocale>.
Proposed resolution:
In 22.3.1.1.1 [locale.category], paragraph 2, change "<cctype>" to read "<clocale>".
Section: 22.3.1 [locale] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [locale].
View all issues with TC1 status.
Duplicate of: 378
Discussion:
Paragraph 6, says "An instance of locale is immutable; once a facet reference is obtained from it, ...". This has caused some confusion, because locale variables are manifestly assignable.
Proposed resolution:
In 22.3.1 [locale] replace paragraph 6
An instance of locale is immutable; once a facet reference is obtained from it, that reference remains usable as long as the locale value itself exists.
with
Once a facet reference is obtained from a locale object by calling use_facet<>, that reference remains usable, and the results from member functions of it may be cached and re-used, as long as some locale object refers to that facet.
Section: 27.6.3.4.4 [streambuf.virt.pback] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
The description of the required state before calling virtual member basic_streambuf<>::pbackfail requirements is inconsistent with the conditions described in 27.5.2.2.4 [lib.streambuf.pub.pback] where member sputbackc calls it. Specifically, the latter says it calls pbackfail if:
traits::eq(c,gptr()[-1]) is false
where pbackfail claims to require:
traits::eq(*gptr(),traits::to_char_type(c)) returns false
It appears that the pbackfail description is wrong.
Proposed resolution:
In 27.6.3.4.4 [streambuf.virt.pback], paragraph 1, change:
"traits::eq(*gptr(),traits::to_char_type( c))"
to
"traits::eq(traits::to_char_type(c),gptr()[-1])"
Rationale:
Note deliberate reordering of arguments for clarity in addition to the correction of the argument value.
Section: 22.4.1.4 [locale.codecvt] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [locale.codecvt].
View all issues with TC1 status.
Duplicate of: 43
Discussion:
In the table defining the results from do_out and do_in, the specification for the result error says
encountered a from_type character it could not convert
but from_type is not defined. This clearly is intended to be an externT for do_in, or an internT for do_out.
Proposed resolution:
In 22.4.1.4.2 [locale.codecvt.virtuals] paragraph 4, replace the definition in the table for the case of _error_ with
encountered a character in [from,from_end) that it could not convert.
Section: 22.4.2.2.2 [facet.num.put.virtuals] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [facet.num.put.virtuals].
View all issues with TC1 status.
Discussion:
In paragraph 19, Effects:, members truename() and falsename are used from facet ctype<charT>, but it has no such members. Note that this is also a problem in 22.2.2.1.2, addressed in (4).
Proposed resolution:
In 22.4.2.2.2 [facet.num.put.virtuals], paragraph 19, in the Effects: clause for member put(...., bool), replace the initialization of the string_type value s as follows:
const numpunct& np = use_facet<numpunct<charT> >(loc); string_type s = val ? np.truename() : np.falsename();
Section: 27.5 [iostreams.base] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [iostreams.base].
View all issues with TC1 status.
Discussion:
In 27.5.6.1 [fmtflags.manip], we have a definition for a manipulator named "unitbuf". Unlike other manipulators, it's not listed in synopsis. Similarly for "nounitbuf".
Proposed resolution:
Add to the synopsis for <ios> in 27.5 [iostreams.base], after the entry for "nouppercase", the prototypes:
ios_base& unitbuf(ios_base& str); ios_base& nounitbuf(ios_base& str);
Section: 27.5.3.5 [ios.base.storage] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [ios.base.storage].
View all issues with TC1 status.
Discussion:
In the definitions for ios_base::iword and pword, the lifetime of the storage is specified badly, so that an implementation which only keeps the last value stored appears to conform. In particular, it says:
The reference returned may become invalid after another call to the object's iword member with a different index ...
This is not idle speculation; at least one implementation was done this way.
Proposed resolution:
Add in 27.5.3.5 [ios.base.storage], in both paragraph 2 and also in paragraph 4, replace the sentence:
The reference returned may become invalid after another call to the object's iword [pword] member with a different index, after a call to its copyfmt member, or when the object is destroyed.
with:
The reference returned is invalid after any other operations on the object. However, the value of the storage referred to is retained, so that until the next call to copyfmt, calling iword [pword] with the same index yields another reference to the same value.
substituting "iword" or "pword" as appropriate.
Section: 22.3.1 [locale] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [locale].
View all issues with TC1 status.
Discussion:
In the overview of locale semantics, paragraph 4, is the sentence
If Facet is not present in a locale (or, failing that, in the global locale), it throws the standard exception bad_cast.
This is not supported by the definition of use_facet<>, and represents semantics from an old draft.
Proposed resolution:
In 22.3.1 [locale], paragraph 4, delete the parenthesized expression
(or, failing that, in the global locale)
Section: 22.3.2 [locale.global.templates] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
It has been noticed by Esa Pulkkinen that the definition of "facet" is incomplete. In particular, a class derived from another facet, but which does not define a member id, cannot safely serve as the argument F to use_facet<F>(loc), because there is no guarantee that a reference to the facet instance stored in loc is safely convertible to F.
Proposed resolution:
In the definition of std::use_facet<>(), replace the text in paragraph 1 which reads:
Get a reference to a facet of a locale.
with:
Requires: Facet is a facet class whose definition contains the public static member id as defined in 22.3.1.1.2 [locale.facet].
[ Kona: strike as overspecification the text "(not inherits)" from the original resolution, which read "... whose definition contains (not inherits) the public static member id..." ]
Section: 24.6.3.4 [istreambuf.iterator::op++] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
Following the definition of istreambuf_iterator<>::operator++(int) in paragraph 3, the standard contains three lines of garbage text left over from a previous edit.
istreambuf_iterator<charT,traits> tmp = *this; sbuf_->sbumpc(); return(tmp);
Proposed resolution:
In 24.6.3.4 [istreambuf.iterator::op++], delete the three lines of code at the end of paragraph 3.
Section: 22.4.8 [facets.examples] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [facets.examples].
View all issues with TC1 status.
Discussion:
Paragraph 3 of the locale examples is a description of part of an implementation technique that has lost its referent, and doesn't mean anything.
Proposed resolution:
Delete 22.4.8 [facets.examples] paragraph 3 which begins "This initialization/identification system depends...", or (at the editor's option) replace it with a place-holder to keep the paragraph numbering the same.
Section: 27.5.3 [ios.base] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [ios.base].
View all issues with TC1 status.
Duplicate of: 157
Discussion:
The description of ios_base::iword() and pword() in 27.5.3.4 [ios.members.static], say that if they fail, they "set badbit, which may throw an exception". However, ios_base offers no interface to set or to test badbit; those interfaces are defined in basic_ios<>.
Proposed resolution:
Change the description in 27.5.3.5 [ios.base.storage] in paragraph 2, and also in paragraph 4, as follows. Replace
If the function fails it sets badbit, which may throw an exception.
with
If the function fails, and *this is a base sub-object of a basic_ios<> object or sub-object, the effect is equivalent to calling basic_ios<>::setstate(badbit) on the derived object (which may throw failure).
[Kona: LWG reviewed wording; setstate(failbit) changed to setstate(badbit).]
Section: 21.4 [basic.string] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with TC1 status.
Discussion:
The basic_string<> copy constructor:
basic_string(const basic_string& str, size_type pos = 0, size_type n = npos, const Allocator& a = Allocator());
specifies an Allocator argument default value that is counter-intuitive. The natural choice for a the allocator to copy from is str.get_allocator(). Though this cannot be expressed in default-argument notation, overloading suffices.
Alternatively, the other containers in Clause 23 (deque, list, vector) do not have this form of constructor, so it is inconsistent, and an evident source of confusion, for basic_string<> to have it, so it might better be removed.
Proposed resolution:
In 21.4 [basic.string], replace the declaration of the copy constructor as follows:
basic_string(const basic_string& str); basic_string(const basic_string& str, size_type pos, size_type n = npos, const Allocator& a = Allocator());
In 21.4.1 [string.require], replace the copy constructor declaration as above. Add to paragraph 5, Effects:
In the first form, the Allocator value used is copied from str.get_allocator().
Rationale:
The LWG believes the constructor is actually broken, rather than just an unfortunate design choice.
The LWG considered two other possible resolutions:
A. In 21.4 [basic.string], replace the declaration of the copy constructor as follows:
basic_string(const basic_string& str, size_type pos = 0, size_type n = npos); basic_string(const basic_string& str, size_type pos, size_type n, const Allocator& a);
In 21.4.1 [string.require], replace the copy constructor declaration as above. Add to paragraph 5, Effects:
When no Allocator argument is provided, the string is constructed using the value str.get_allocator().
B. In 21.4 [basic.string], and also in 21.4.1 [string.require], replace the declaration of the copy constructor as follows:
basic_string(const basic_string& str, size_type pos = 0, size_type n = npos);
The proposed resolution reflects the original intent of the LWG. It was also noted by Pete Becker that this fix "will cause a small amount of existing code to now work correctly."
[ Kona: issue editing snafu fixed - the proposed resolution now correctly reflects the LWG consensus. ]
Section: 27 [input.output] Status: CD1 Submitter: Nathan Myers Opened: 1998-08-06 Last modified: 2015-04-08
View all other issues in [input.output].
View all issues with CD1 status.
Discussion:
Many of the specifications for iostreams specify that character values or their int_type equivalents are compared using operators == or !=, though in other places traits::eq() or traits::eq_int_type is specified to be used throughout. This is an inconsistency; we should change uses of == and != to use the traits members instead.
Proposed resolution:
[Pre-Kona: Dietmar supplied wording]
List of changes to clause 27:
tofillch == fill()
traits::eq(fillch, fill())
toc == delim for the next available input character c
traits::eq(c, delim) for the next available input character c
toc == delim for the next available input character c
traits::eq(c, delim) for the next available input character c
toc == delim for the next available input character c
traits::eq(c, delim) for the next available input character c
toc == delim for the next available input character c
traits::eq_int_type(c, delim) for the next available input character c
toThe last condition will never occur if delim == traits::eof()
The last condition will never occur if traits::eq_int_type(delim, traits::eof()).
towhile ((c = is.rdbuf()->snextc()) != traits::eof()) {
while (!traits::eq_int_type(c = is.rdbuf()->snextc(), traits::eof())) {
List of changes to Chapter 21:
toat(xpos+I) == str.at(I) for all elements ...
traits::eq(at(xpos+I), str.at(I)) for all elements ...
toat(xpos+I) == str.at(I) for all elements ...
traits::eq(at(xpos+I), str.at(I)) for all elements ...
toat(xpos+I) == str.at(I) for all elements ...
traits::eq(at(xpos+I), str.at(I)) for all elements ...
toat(xpos+I) == str.at(I) for all elements ...
traits::eq(at(xpos+I), str.at(I)) for all elements ...
toat(xpos+I) == str.at(I) for all elements ...
traits::eq(at(xpos+I), str.at(I)) for all elements ...
toat(xpos+I) == str.at(I) for all elements ...
traits::eq(at(xpos+I), str.at(I)) for all elements ...
toc == delim for the next available input character c
traits::eq(c, delim) for the next available input character c
Notes:
Section: D.7 [depr.str.strstreams] Status: TC1 Submitter: Brendan Kehoe Opened: 1998-06-01 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
See lib-6522 and edit-814.
Proposed resolution:
Change D.7.1 [depr.strstreambuf] (since streambuf is a typedef of basic_streambuf<char>) from:
virtual streambuf<char>* setbuf(char* s, streamsize n);
to:
virtual streambuf* setbuf(char* s, streamsize n);
In D.7.4 [depr.strstream] insert the semicolon now missing after int_type:
namespace std { class strstream : public basic_iostream<char> { public: // Types typedef char char_type; typedef typename char_traits<char>::int_type int_type typedef typename char_traits<char>::pos_type pos_type;
Section: 27.5.3.3 [ios.base.locales] Status: TC1 Submitter: Matt Austern Opened: 1998-06-21 Last modified: 2015-04-08
View all other issues in [ios.base.locales].
View all issues with TC1 status.
Discussion:
Section 27.4.2.3 specifies how imbue() and getloc() work. That section has two RETURNS clauses, and they make no sense as stated. They make perfect sense, though, if you swap them. Am I correct in thinking that paragraphs 2 and 4 just got mixed up by accident?
Proposed resolution:
In 27.5.3.3 [ios.base.locales] swap paragraphs 2 and 4.
Section: 27.5.3.1.1 [ios::failure] Status: TC1 Submitter: Matt Austern Opened: 1998-06-21 Last modified: 2015-04-08
View all other issues in [ios::failure].
View all issues with TC1 status.
Discussion:
27.4.2.1.1, paragraph 2, says that class failure initializes the base class, exception, with exception(msg). Class exception (see 18.6.1) has no such constructor.
Proposed resolution:
Replace 27.5.3.1.1 [ios::failure], paragraph 2, with
EFFECTS: Constructs an object of class failure.
Section: 27.5.3.4 [ios.members.static] Status: CD1 Submitter: Matt Austern Opened: 1998-06-21 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
Two problems
(1) 27.4.2.4 doesn't say what ios_base::sync_with_stdio(f) returns. Does it return f, or does it return the previous synchronization state? My guess is the latter, but the standard doesn't say so.
(2) 27.4.2.4 doesn't say what it means for streams to be synchronized with stdio. Again, of course, I can make some guesses. (And I'm unhappy about the performance implications of those guesses, but that's another matter.)
Proposed resolution:
Change the following sentence in 27.5.3.4 [ios.members.static] returns clause from:
true if the standard iostream objects (27.3) are synchronized and otherwise returns false.
to:
true if the previous state of the standard iostream objects (27.3) was synchronized and otherwise returns false.
Add the following immediately after 27.5.3.4 [ios.members.static], paragraph 2:
When a standard iostream object str is synchronized with a standard stdio stream f, the effect of inserting a character c by
fputc(f, c);is the same as the effect of
str.rdbuf()->sputc(c);for any sequence of characters; the effect of extracting a character c by
c = fgetc(f);is the same as the effect of:
c = str.rdbuf()->sbumpc(c);for any sequences of characters; and the effect of pushing back a character c by
ungetc(c, f);is the same as the effect of
str.rdbuf()->sputbackc(c);for any sequence of characters. [Footnote: This implies that operations on a standard iostream object can be mixed arbitrarily with operations on the corresponding stdio stream. In practical terms, synchronization usually means that a standard iostream object and a standard stdio object share a buffer. --End Footnote]
[pre-Copenhagen: PJP and Matt contributed the definition of "synchronization"]
[post-Copenhagen: proposed resolution was revised slightly: text was added in the non-normative footnote to say that operations on the two streams can be mixed arbitrarily.]
Section: 27.5.3 [ios.base] Status: TC1 Submitter: Matt Austern Opened: 1998-06-21 Last modified: 2015-04-08
View all other issues in [ios.base].
View all issues with TC1 status.
Discussion:
As written, ios_base has a copy constructor and an assignment operator. (Nothing in the standard says it doesn't have one, and all classes have copy constructors and assignment operators unless you take specific steps to avoid them.) However, nothing in 27.4.2 says what the copy constructor and assignment operator do.
My guess is that this was an oversight, that ios_base is, like basic_ios, not supposed to have a copy constructor or an assignment operator.
Jerry Schwarz comments: Yes, its an oversight, but in the opposite sense to what you're suggesting. At one point there was a definite intention that you could copy ios_base. It's an easy way to save the entire state of a stream for future use. As you note, to carry out that intention would have required a explicit description of the semantics (e.g. what happens to the iarray and parray stuff).
Proposed resolution:
In 27.5.3 [ios.base], class ios_base, specify the copy constructor and operator= members as being private.
Rationale:
The LWG believes the difficulty of specifying correct semantics outweighs any benefit of allowing ios_base objects to be copyable.
Section: 23.2 [container.requirements] Status: TC1 Submitter: David Vandevoorde Opened: 1998-06-23 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with TC1 status.
Discussion:
The std::sort algorithm can in general only sort a given sequence by moving around values. The list<>::sort() member on the other hand could move around values or just update internal pointers. Either method can leave iterators into the list<> dereferencable, but they would point to different things.
Does the FDIS mandate anywhere which method should be used for list<>::sort()?
Matt Austern comments:
I think you've found an omission in the standard.
The library working group discussed this point, and there was supposed to be a general requirement saying that list, set, map, multiset, and multimap may not invalidate iterators, or change the values that iterators point to, except when an operation does it explicitly. So, for example, insert() doesn't invalidate any iterators and erase() and remove() only invalidate iterators pointing to the elements that are being erased.
I looked for that general requirement in the FDIS, and, while I found a limited form of it for the sorted associative containers, I didn't find it for list. It looks like it just got omitted.
The intention, though, is that list<>::sort does not invalidate any iterators and does not change the values that any iterator points to. There would be no reason to have the member function otherwise.
Proposed resolution:
Add a new paragraph at the end of 23.1:
Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a container member function or passing a container as an argument to a library function shall not invalidate iterators to, or change the values of, objects within that container.
Rationale:
This was US issue CD2-23-011; it was accepted in London but the change was not made due to an editing oversight. The wording in the proposed resolution below is somewhat updated from CD2-23-011, particularly the addition of the phrase "or change the values of"
Section: 27.5.4.2 [fpos.operations] Status: TC1 Submitter: Matt Austern Opened: 1998-06-23 Last modified: 2015-04-08
View all other issues in [fpos.operations].
View all issues with TC1 status.
Discussion:
First, 27.5.5.2 [basic.ios.cons], table 89. This is pretty obvious: it should be titled "basic_ios<>() effects", not "ios_base() effects".
[The second item is a duplicate; see issue 6 for resolution.]
Second, 27.5.4.2 [fpos.operations] table 88 . There are a couple different things wrong with it, some of which I've already discussed with Jerry, but the most obvious mechanical sort of error is that it uses expressions like P(i) and p(i), without ever defining what sort of thing "i" is.
(The other problem is that it requires support for streampos arithmetic. This is impossible on some systems, i.e. ones where file position is a complicated structure rather than just a number. Jerry tells me that the intention was to require syntactic support for streampos arithmetic, but that it wasn't actually supposed to do anything meaningful except on platforms, like Unix, where genuine arithmetic is possible.)
Proposed resolution:
Change 27.5.5.2 [basic.ios.cons] table 89 title from "ios_base() effects" to "basic_ios<>() effects".
Section: 27.5.5.2 [basic.ios.cons] Status: TC1 Submitter: Matt Austern Opened: 1998-06-23 Last modified: 2015-04-08
View all other issues in [basic.ios.cons].
View all issues with TC1 status.
Discussion:
There's nothing in 27.4.4 saying what basic_ios's destructor does. The important question is whether basic_ios::~basic_ios() destroys rdbuf().
Proposed resolution:
Add after 27.5.5.2 [basic.ios.cons] paragraph 2:
virtual ~basic_ios();
Notes: The destructor does not destroy rdbuf().
Rationale:
The LWG reviewed the additional question of whether or not rdbuf(0) may set badbit. The answer is clearly yes; it may be set via clear(). See 27.5.5.3 [basic.ios.members], paragraph 6. This issue was reviewed at length by the LWG, which removed from the original proposed resolution a footnote which incorrectly said "rdbuf(0) does not set badbit".
Section: 27.6.3.1 [streambuf.cons] Status: TC1 Submitter: Matt Austern Opened: 1998-06-25 Last modified: 2015-04-08
View all other issues in [streambuf.cons].
View all issues with TC1 status.
Discussion:
The class synopsis for basic_streambuf shows a (virtual) destructor, but the standard doesn't say what that destructor does. My assumption is that it does nothing, but the standard should say so explicitly.
Proposed resolution:
Add after 27.6.3.1 [streambuf.cons] paragraph 2:
virtual ~basic_streambuf();
Effects: None.
Section: 27 [input.output] Status: TC1 Submitter: Matt Austern Opened: 1998-06-26 Last modified: 2015-04-08
View all other issues in [input.output].
View all issues with TC1 status.
Discussion:
Several member functions in clause 27 are defined in certain circumstances to return an "invalid stream position", a term that is defined nowhere in the standard. Two places (27.5.2.4.2, paragraph 4, and 27.8.1.4, paragraph 15) contain a cross-reference to a definition in _lib.iostreams.definitions_, a nonexistent section.
I suspect that the invalid stream position is just supposed to be pos_type(-1). Probably best to say explicitly in (for example) 27.5.2.4.2 that the return value is pos_type(-1), rather than to use the term "invalid stream position", define that term somewhere, and then put in a cross-reference.
The phrase "invalid stream position" appears ten times in the C++ Standard. In seven places it refers to a return value, and it should be changed. In three places it refers to an argument, and it should not be changed. Here are the three places where "invalid stream position" should not be changed:
27.8.2.4 [stringbuf.virtuals], paragraph 14
27.9.1.5 [filebuf.virtuals], paragraph 14
D.7.1.3 [depr.strstreambuf.virtuals], paragraph 17
Proposed resolution:
In 27.6.3.4.2 [streambuf.virt.buffer], paragraph 4, change "Returns an object of class pos_type that stores an invalid stream position (_lib.iostreams.definitions_)" to "Returns pos_type(off_type(-1))".
In 27.6.3.4.2 [streambuf.virt.buffer], paragraph 6, change "Returns an object of class pos_type that stores an invalid stream position" to "Returns pos_type(off_type(-1))".
In 27.8.2.4 [stringbuf.virtuals], paragraph 13, change "the object stores an invalid stream position" to "the return value is pos_type(off_type(-1))".
In 27.9.1.5 [filebuf.virtuals], paragraph 13, change "returns an invalid stream position (27.4.3)" to "returns pos_type(off_type(-1))"
In 27.9.1.5 [filebuf.virtuals], paragraph 15, change "Otherwise returns an invalid stream position (_lib.iostreams.definitions_)" to "Otherwise returns pos_type(off_type(-1))"
In D.7.1.3 [depr.strstreambuf.virtuals], paragraph 15, change "the object stores an invalid stream position" to "the return value is pos_type(off_type(-1))"
In D.7.1.3 [depr.strstreambuf.virtuals], paragraph 18, change "the object stores an invalid stream position" to "the return value is pos_type(off_type(-1))"
Section: 27.6.3 [streambuf] Status: TC1 Submitter: Matt Austern Opened: 1998-06-29 Last modified: 2015-04-08
View all other issues in [streambuf].
View all issues with TC1 status.
Discussion:
The class summary for basic_streambuf<>, in 27.5.2, says that showmanyc has return type int. However, 27.5.2.4.3 says that its return type is streamsize.
Proposed resolution:
Change showmanyc's return type in the 27.6.3 [streambuf] class summary to streamsize.
Section: 21.2.3.4 [char.traits.specializations.wchar.t] Status: TC1 Submitter: Matt Austern Opened: 1998-07-01 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
21.1.3.2, paragraph 3, says "The types streampos and wstreampos may be different if the implementation supports no shift encoding in narrow-oriented iostreams but supports one or more shift encodings in wide-oriented streams".
That's wrong: the two are the same type. The <iosfwd> summary in 27.2 says that streampos and wstreampos are, respectively, synonyms for fpos<char_traits<char>::state_type> and fpos<char_traits<wchar_t>::state_type>, and, flipping back to clause 21, we see in 21.1.3.1 and 21.1.3.2 that char_traits<char>::state_type and char_traits<wchar_t>::state_type must both be mbstate_t.
Proposed resolution:
Remove the sentence in 21.2.3.4 [char.traits.specializations.wchar.t] paragraph 3 which begins "The types streampos and wstreampos may be different..." .
Section: 27.6.3.3.2 [streambuf.get.area] Status: TC1 Submitter: Matt Austern Opened: 1998-07-28 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
27.5.2.3.1 says that basic_streambuf::gbump() "Advances the next pointer for the input sequence by n."
The straightforward interpretation is that it is just gptr() += n. An alternative interpretation, though, is that it behaves as if it calls sbumpc n times. (The issue, of course, is whether it might ever call underflow.) There is a similar ambiguity in the case of pbump.
(The "classic" AT&T implementation used the former interpretation.)
Proposed resolution:
Change 27.6.3.3.2 [streambuf.get.area] paragraph 4 gbump effects from:
Effects: Advances the next pointer for the input sequence by n.
to:
Effects: Adds n to the next pointer for the input sequence.
Make the same change to 27.6.3.3.3 [streambuf.put.area] paragraph 4 pbump effects.
Section: 27.7.2.2.1 [istream.formatted.reqmts] Status: TC1 Submitter: Matt Austern Opened: 1998-08-03 Last modified: 2015-04-08
View all other issues in [istream.formatted.reqmts].
View all issues with TC1 status.
Discussion:
Paragraph 1 of 27.6.1.2.1 contains general requirements for all formatted input functions. Some of the functions defined in section 27.6.1.2 explicitly say that those requirements apply ("Behaves like a formatted input member (as described in 27.6.1.2.1)"), but others don't. The question: is 27.6.1.2.1 supposed to apply to everything in 27.6.1.2, or only to those member functions that explicitly say "behaves like a formatted input member"? Or to put it differently: are we to assume that everything that appears in a section called "Formatted input functions" really is a formatted input function? I assume that 27.6.1.2.1 is intended to apply to the arithmetic extractors (27.6.1.2.2), but I assume that it is not intended to apply to extractors like
basic_istream& operator>>(basic_istream& (*pf)(basic_istream&));
and
basic_istream& operator>>(basic_streammbuf*);
There is a similar ambiguity for unformatted input, formatted output, and unformatted output.
Comments from Judy Ward: It seems like the problem is that the basic_istream and basic_ostream operator <<()'s that are used for the manipulators and streambuf* are in the wrong section and should have their own separate section or be modified to make it clear that the "Common requirements" listed in section 27.6.1.2.1 (for basic_istream) and section 27.6.2.5.1 (for basic_ostream) do not apply to them.
Additional comments from Dietmar Kühl: It appears to be somewhat nonsensical to consider the functions defined in 27.7.2.2.3 [istream::extractors] paragraphs 1 to 5 to be "Formatted input function" but since these functions are defined in a section labeled "Formatted input functions" it is unclear to me whether these operators are considered formatted input functions which have to conform to the "common requirements" from 27.7.2.2.1 [istream.formatted.reqmts]: If this is the case, all manipulators, not just ws, would skip whitespace unless noskipws is set (... but setting noskipws using the manipulator syntax would also skip whitespace :-)
It is not clear which functions are to be considered unformatted input functions. As written, it seems that all functions in 27.7.2.3 [istream.unformatted] are unformatted input functions. However, it does not really make much sense to construct a sentry object for gcount(), sync(), ... Also it is unclear what happens to the gcount() if eg. gcount(), putback(), unget(), or sync() is called: These functions don't extract characters, some of them even "unextract" a character. Should this still be reflected in gcount()? Of course, it could be read as if after a call to gcount() gcount() return 0 (the last unformatted input function, gcount(), didn't extract any character) and after a call to putback() gcount() returns -1 (the last unformatted input function putback() did "extract" back into the stream). Correspondingly for unget(). Is this what is intended? If so, this should be clarified. Otherwise, a corresponding clarification should be used.
Proposed resolution:
In 27.6.1.2.2 [lib.istream.formatted.arithmetic], paragraph 1. Change the beginning of the second sentence from "The conversion occurs" to "These extractors behave as formatted input functions (as described in 27.6.1.2.1). After a sentry object is constructed, the conversion occurs"
In 27.6.1.2.3, [lib.istream::extractors], before paragraph 1. Add an effects clause. "Effects: None. This extractor does not behave as a formatted input function (as described in 27.6.1.2.1).
In 27.6.1.2.3, [lib.istream::extractors], paragraph 2. Change the effects clause to "Effects: Calls pf(*this). This extractor does not behave as a formatted input function (as described in 27.6.1.2.1).
In 27.6.1.2.3, [lib.istream::extractors], paragraph 4. Change the effects clause to "Effects: Calls pf(*this). This extractor does not behave as a formatted input function (as described in 27.6.1.2.1).
In 27.6.1.2.3, [lib.istream::extractors], paragraph 12. Change the first two sentences from "If sb is null, calls setstate(failbit), which may throw ios_base::failure (27.4.4.3). Extracts characters from *this..." to "Behaves as a formatted input function (as described in 27.6.1.2.1). If sb is null, calls setstate(failbit), which may throw ios_base::failure (27.4.4.3). After a sentry object is constructed, extracts characters from *this...".
In 27.6.1.3, [lib.istream.unformatted], before paragraph 2. Add an effects clause. "Effects: none. This member function does not behave as an unformatted input function (as described in 27.6.1.3, paragraph 1)."
In 27.6.1.3, [lib.istream.unformatted], paragraph 3. Change the beginning of the first sentence of the effects clause from "Extracts a character" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts a character"
In 27.6.1.3, [lib.istream.unformatted], paragraph 5. Change the beginning of the first sentence of the effects clause from "Extracts a character" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts a character"
In 27.6.1.3, [lib.istream.unformatted], paragraph 7. Change the beginning of the first sentence of the effects clause from "Extracts characters" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts characters"
[No change needed in paragraph 10, because it refers to paragraph 7.]
In 27.6.1.3, [lib.istream.unformatted], paragraph 12. Change the beginning of the first sentence of the effects clause from "Extracts characters" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts characters"
[No change needed in paragraph 15.]
In 27.6.1.3, [lib.istream.unformatted], paragraph 17. Change the beginning of the first sentence of the effects clause from "Extracts characters" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts characters"
[No change needed in paragraph 23.]
In 27.6.1.3, [lib.istream.unformatted], paragraph 24. Change the beginning of the first sentence of the effects clause from "Extracts characters" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts characters"
In 27.6.1.3, [lib.istream.unformatted], before paragraph 27. Add an Effects clause: "Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, reads but does not extract the current input character."
In 27.6.1.3, [lib.istream.unformatted], paragraph 28. Change the first sentence of the Effects clause from "If !good() calls" to Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, if !good() calls"
In 27.6.1.3, [lib.istream.unformatted], paragraph 30. Change the first sentence of the Effects clause from "If !good() calls" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, if !good() calls"
In 27.6.1.3, [lib.istream.unformatted], paragraph 32. Change the first sentence of the Effects clause from "If !good() calls..." to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, if !good() calls..." Add a new sentence to the end of the Effects clause: "[Note: this function extracts no characters, so the value returned by the next call to gcount() is 0.]"
In 27.6.1.3, [lib.istream.unformatted], paragraph 34. Change the first sentence of the Effects clause from "If !good() calls" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, if !good() calls". Add a new sentence to the end of the Effects clause: "[Note: this function extracts no characters, so the value returned by the next call to gcount() is 0.]"
In 27.6.1.3, [lib.istream.unformatted], paragraph 36. Change the first sentence of the Effects clause from "If !rdbuf() is" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of characters extracted and does not affect the value returned by subsequent calls to gcount(). After constructing a sentry object, if rdbuf() is"
In 27.6.1.3, [lib.istream.unformatted], before paragraph 37. Add an Effects clause: "Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of characters extracted and does not affect the value returned by subsequent calls to gcount()." Change the first sentence of paragraph 37 from "if fail()" to "after constructing a sentry object, if fail()".
In 27.6.1.3, [lib.istream.unformatted], paragraph 38. Change the first sentence of the Effects clause from "If fail()" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of characters extracted and does not affect the value returned by subsequent calls to gcount(). After constructing a sentry object, if fail()
In 27.6.1.3, [lib.istream.unformatted], paragraph 40. Change the first sentence of the Effects clause from "If fail()" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of characters extracted and does not affect the value returned by subsequent calls to gcount(). After constructing a sentry object, if fail()
In 27.6.2.5.2 [lib.ostream.inserters.arithmetic], paragraph 1. Change the beginning of the third sentence from "The formatting conversion" to "These extractors behave as formatted output functions (as described in 27.6.2.5.1). After the sentry object is constructed, the conversion occurs".
In 27.6.2.5.3 [lib.ostream.inserters], before paragraph 1. Add an effects clause: "Effects: None. Does not behave as a formatted output function (as described in 27.6.2.5.1).".
In 27.6.2.5.3 [lib.ostream.inserters], paragraph 2. Change the effects clause to "Effects: calls pf(*this). This extractor does not behave as a formatted output function (as described in 27.6.2.5.1).".
In 27.6.2.5.3 [lib.ostream.inserters], paragraph 4. Change the effects clause to "Effects: calls pf(*this). This extractor does not behave as a formatted output function (as described in 27.6.2.5.1).".
In 27.6.2.5.3 [lib.ostream.inserters], paragraph 6. Change the first sentence from "If sb" to "Behaves as a formatted output function (as described in 27.6.2.5.1). After the sentry object is constructed, if sb".
In 27.6.2.6 [lib.ostream.unformatted], paragraph 2. Change the first sentence from "Inserts the character" to "Behaves as an unformatted output function (as described in 27.6.2.6, paragraph 1). After constructing a sentry object, inserts the character".
In 27.6.2.6 [lib.ostream.unformatted], paragraph 5. Change the first sentence from "Obtains characters" to "Behaves as an unformatted output function (as described in 27.6.2.6, paragraph 1). After constructing a sentry object, obtains characters".
In 27.6.2.6 [lib.ostream.unformatted], paragraph 7. Add a new sentence at the end of the paragraph: "Does not behave as an unformatted output function (as described in 27.6.2.6, paragraph 1)."
Rationale:
See J16/99-0043==WG21/N1219, Proposed Resolution to Library Issue 60, by Judy Ward and Matt Austern. This proposed resolution is section VI of that paper.
Section: 27.7.2.3 [istream.unformatted] Status: TC1 Submitter: Matt Austern Opened: 1998-08-06 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with TC1 status.
Discussion:
The introduction to the section on unformatted input (27.6.1.3) says that every unformatted input function catches all exceptions that were thrown during input, sets badbit, and then conditionally rethrows the exception. That seems clear enough. Several of the specific functions, however, such as get() and read(), are documented in some circumstances as setting eofbit and/or failbit. (The standard notes, correctly, that setting eofbit or failbit can sometimes result in an exception being thrown.) The question: if one of these functions throws an exception triggered by setting failbit, is this an exception "thrown during input" and hence covered by 27.6.1.3, or does 27.6.1.3 only refer to a limited class of exceptions? Just to make this concrete, suppose you have the following snippet.
char buffer[N]; istream is; ... is.exceptions(istream::failbit); // Throw on failbit but not on badbit. is.read(buffer, N);
Now suppose we reach EOF before we've read N characters. What iostate bits can we expect to be set, and what exception (if any) will be thrown?
Proposed resolution:
In 27.6.1.3, paragraph 1, after the sentence that begins "If an exception is thrown...", add the following parenthetical comment: "(Exceptions thrown from basic_ios<>::clear() are not caught or rethrown.)"
Rationale:
The LWG looked to two alternative wordings, and choose the proposed resolution as better standardese.
Section: 27.7.2.3 [istream.unformatted] Status: TC1 Submitter: Matt Austern Opened: 1998-08-06 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with TC1 status.
Discussion:
The Effects clause for sync() (27.6.1.3, paragraph 36) says that it "calls rdbuf()->pubsync() and, if that function returns -1 ... returns traits::eof()."
That looks suspicious, because traits::eof() is of type traits::int_type while the return type of sync() is int.
Proposed resolution:
In 27.7.2.3 [istream.unformatted], paragraph 36, change "returns traits::eof()" to "returns -1".
Section: 27.7.3.7 [ostream.unformatted] Status: TC1 Submitter: Matt Austern Opened: 1998-08-11 Last modified: 2015-04-08
View all other issues in [ostream.unformatted].
View all issues with TC1 status.
Discussion:
Clause 27 details an exception-handling policy for formatted input, unformatted input, and formatted output. It says nothing for unformatted output (27.6.2.6). 27.6.2.6 should either include the same kind of exception-handling policy as in the other three places, or else it should have a footnote saying that the omission is deliberate.
Proposed resolution:
In 27.6.2.6, paragraph 1, replace the last sentence ("In any case, the unformatted output function ends by destroying the sentry object, then returning the value specified for the formatted output function.") with the following text:
If an exception is thrown during output, then ios::badbit is turned on [Footnote: without causing an ios::failure to be thrown.] in *this's error state. If (exceptions() & badbit) != 0 then the exception is rethrown. In any case, the unformatted output function ends by destroying the sentry object, then, if no exception was thrown, returning the value specified for the formatted output function.
Rationale:
This exception-handling policy is consistent with that of formatted input, unformatted input, and formatted output.
Section: 27.7.2.2.3 [istream::extractors] Status: TC1 Submitter: Matt Austern Opened: 1998-08-11 Last modified: 2015-04-08
View all other issues in [istream::extractors].
View all issues with TC1 status.
Discussion:
27.6.1.2.3, paragraph 13, is ambiguous. It can be interpreted two different ways, depending on whether the second sentence is read as an elaboration of the first.
Proposed resolution:
Replace 27.7.2.2.3 [istream::extractors], paragraph 13, which begins "If the function inserts no characters ..." with:
If the function inserts no characters, it calls setstate(failbit), which may throw ios_base::failure (27.4.4.3). If it inserted no characters because it caught an exception thrown while extracting characters from sb and failbit is on in exceptions() (27.4.4.3), then the caught exception is rethrown.
Section: D.7.1.3 [depr.strstreambuf.virtuals] Status: TC1 Submitter: Matt Austern Opened: 1998-08-18 Last modified: 2015-04-08
View all other issues in [depr.strstreambuf.virtuals].
View all issues with TC1 status.
Discussion:
D.7.1.3, paragraph 19, says that strstreambuf::setbuf "Performs an operation that is defined separately for each class derived from strstreambuf". This is obviously an incorrect cut-and-paste from basic_streambuf. There are no classes derived from strstreambuf.
Proposed resolution:
D.7.1.3 [depr.strstreambuf.virtuals], paragraph 19, replace the setbuf effects clause which currently says "Performs an operation that is defined separately for each class derived from strstreambuf" with:
Effects: implementation defined, except that setbuf(0,0) has no effect.
Section: 27.7.2.2.3 [istream::extractors] Status: TC1 Submitter: Angelika Langer Opened: 1998-07-14 Last modified: 2015-04-08
View all other issues in [istream::extractors].
View all issues with TC1 status.
Discussion:
Extractors for char* (27.6.1.2.3) do not store a null character after the extracted character sequence whereas the unformatted functions like get() do. Why is this?
Comment from Jerry Schwarz: There is apparently an editing glitch. You'll notice that the last item of the list of what stops extraction doesn't make any sense. It was supposed to be the line that said a null is stored.
Proposed resolution:
27.7.2.2.3 [istream::extractors], paragraph 7, change the last list item from:
A null byte (charT()) in the next position, which may be the first position if no characters were extracted.
to become a new paragraph which reads:
Operator>> then stores a null byte (charT()) in the next position, which may be the first position if no characters were extracted.
Section: 23.3.6 [vector] Status: TC1 Submitter: Andrew Koenig Opened: 1998-07-29 Last modified: 2015-04-08
View all other issues in [vector].
View all issues with TC1 status.
Discussion:
The issue is this: Must the elements of a vector be in contiguous memory?
(Please note that this is entirely separate from the question of whether a vector iterator is required to be a pointer; the answer to that question is clearly "no," as it would rule out debugging implementations)
Proposed resolution:
Add the following text to the end of 23.3.6 [vector], paragraph 1.
The elements of a vector are stored contiguously, meaning that if v is a vector<T, Allocator> where T is some type other than bool, then it obeys the identity &v[n] == &v[0] + n for all 0 <= n < v.size().
Rationale:
The LWG feels that as a practical matter the answer is clearly "yes". There was considerable discussion as to the best way to express the concept of "contiguous", which is not directly defined in the standard. Discussion included:
Section: 18.8 [support.exception], X [uncaught] Status: TC1 Submitter: Steve Clamage Opened: 1998-08-03 Last modified: 2015-04-08
View all other issues in [support.exception].
View all issues with TC1 status.
Discussion:
In article 3E04@pratique.fr, Valentin Bonnard writes:
uncaught_exception() doesn't have a throw specification.
It is intentional ? Does it means that one should be prepared to handle exceptions thrown from uncaught_exception() ?
uncaught_exception() is called in exception handling contexts where exception safety is very important.
Proposed resolution:
In 15.5.3 [except.uncaught], paragraph 1, 18.8 [support.exception], and X [uncaught], add "throw()" to uncaught_exception().
Section: 22.4.5.1 [locale.time.get] Status: TC1 Submitter: Nathan Myers Opened: 1998-08-13 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
The locale facet member time_get<>::do_get_monthname is described in 22.4.5.1.2 [locale.time.get.virtuals] with five arguments, consistent with do_get_weekday and with its specified use by member get_monthname. However, in the synopsis, it is specified instead with four arguments. The missing argument is the "end" iterator value.
Proposed resolution:
In 22.4.5.1 [locale.time.get], add an "end" argument to the declaration of member do_monthname as follows:
virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_base&, ios_base::iostate& err, tm* t) const;
Section: 22.4.1.4 [locale.codecvt] Status: TC1 Submitter: Matt Austern Opened: 1998-09-08 Last modified: 2015-04-08
View all other issues in [locale.codecvt].
View all issues with TC1 status.
Discussion:
The text of codecvt::do_max_length's "Returns" clause (22.2.1.5.2, paragraph 11) is garbled. It has unbalanced parentheses and a spurious n.
Proposed resolution:
Replace 22.4.1.4.2 [locale.codecvt.virtuals] paragraph 11 with the following:
Returns: The maximum value that do_length(state, from, from_end, 1) can return for any valid range [from, from_end) and stateT value state. The specialization codecvt<char, char, mbstate_t>::do_max_length() returns 1.
Section: 22.4.1.4 [locale.codecvt] Status: TC1 Submitter: Matt Austern Opened: 1998-09-18 Last modified: 2015-04-08
View all other issues in [locale.codecvt].
View all issues with TC1 status.
Discussion:
The class synopses for classes codecvt<> (22.2.1.5) and codecvt_byname<> (22.2.1.6) say that the first parameter of the member functions length and do_length is of type const stateT&. The member function descriptions, however (22.2.1.5.1, paragraph 6; 22.2.1.5.2, paragraph 9) say that the type is stateT&. Either the synopsis or the summary must be changed.
If (as I believe) the member function descriptions are correct, then we must also add text saying how do_length changes its stateT argument.
Proposed resolution:
In 22.4.1.4 [locale.codecvt], and also in 22.4.1.5 [locale.codecvt.byname], change the stateT argument type on both member length() and member do_length() from
const stateT&
to
stateT&
In 22.4.1.4.2 [locale.codecvt.virtuals], add to the definition for member do_length a paragraph:
Effects: The effect on the state argument is ``as if'' it called do_in(state, from, from_end, from, to, to+max, to) for to pointing to a buffer of at least max elements.
Section: 22.4.1.4 [locale.codecvt] Status: CD1 Submitter: Matt Austern Opened: 1998-09-25 Last modified: 2015-04-08
View all other issues in [locale.codecvt].
View all issues with CD1 status.
Discussion:
This issue concerns the requirements on classes derived from codecvt, including user-defined classes. What are the restrictions on the conversion from external characters (e.g. char) to internal characters (e.g. wchar_t)? Or, alternatively, what assumptions about codecvt facets can the I/O library make?
The question is whether it's possible to convert from internal characters to external characters one internal character at a time, and whether, given a valid sequence of external characters, it's possible to pick off internal characters one at a time. Or, to put it differently: given a sequence of external characters and the corresponding sequence of internal characters, does a position in the internal sequence correspond to some position in the external sequence?
To make this concrete, suppose that [first, last) is a sequence of M external characters and that [ifirst, ilast) is the corresponding sequence of N internal characters, where N > 1. That is, my_encoding.in(), applied to [first, last), yields [ifirst, ilast). Now the question: does there necessarily exist a subsequence of external characters, [first, last_1), such that the corresponding sequence of internal characters is the single character *ifirst?
(What a "no" answer would mean is that my_encoding translates sequences only as blocks. There's a sequence of M external characters that maps to a sequence of N internal characters, but that external sequence has no subsequence that maps to N-1 internal characters.)
Some of the wording in the standard, such as the description of codecvt::do_max_length (22.4.1.4.2 [locale.codecvt.virtuals], paragraph 11) and basic_filebuf::underflow (27.9.1.5 [filebuf.virtuals], paragraph 3) suggests that it must always be possible to pick off internal characters one at a time from a sequence of external characters. However, this is never explicitly stated one way or the other.
This issue seems (and is) quite technical, but it is important if we expect users to provide their own encoding facets. This is an area where the standard library calls user-supplied code, so a well-defined set of requirements for the user-supplied code is crucial. Users must be aware of the assumptions that the library makes. This issue affects positioning operations on basic_filebuf, unbuffered input, and several of codecvt's member functions.
Proposed resolution:
Add the following text as a new paragraph, following 22.4.1.4.2 [locale.codecvt.virtuals] paragraph 2:
A codecvt facet that is used by basic_filebuf (27.9 [file.streams]) must have the property that if
do_out(state, from, from_end, from_next, to, to_lim, to_next)would return ok, where from != from_end, then
do_out(state, from, from + 1, from_next, to, to_end, to_next)must also return ok, and that if
do_in(state, from, from_end, from_next, to, to_lim, to_next)would return ok, where to != to_lim, then
do_in(state, from, from_end, from_next, to, to + 1, to_next)must also return ok. [Footnote: Informally, this means that basic_filebuf assumes that the mapping from internal to external characters is 1 to N: a codecvt that is used by basic_filebuf must be able to translate characters one internal character at a time. --End Footnote]
[Redmond: Minor change in proposed resolution. Original proposed resolution talked about "success", with a parenthetical comment that success meant returning ok. New wording removes all talk about "success", and just talks about the return value.]
Rationale:
The proposed resoluion says that conversions can be performed one internal character at a time. This rules out some encodings that would otherwise be legal. The alternative answer would mean there would be some internal positions that do not correspond to any external file position.
An example of an encoding that this rules out is one where the internT and externT are of the same type, and where the internal sequence c1 c2 corresponds to the external sequence c2 c1.
It was generally agreed that basic_filebuf relies on this property: it was designed under the assumption that the external-to-internal mapping is N-to-1, and it is not clear that basic_filebuf is implementable without that restriction.
The proposed resolution is expressed as a restriction on codecvt when used by basic_filebuf, rather than a blanket restriction on all codecvt facets, because basic_filebuf is the only other part of the library that uses codecvt. If a user wants to define a codecvt facet that implements a more general N-to-M mapping, there is no reason to prohibit it, so long as the user does not expect basic_filebuf to be able to use it.
Section: 27.5.3 [ios.base] Status: TC1 Submitter: Nico Josuttis Opened: 1998-09-29 Last modified: 2015-04-08
View all other issues in [ios.base].
View all issues with TC1 status.
Discussion:
typo: event_call_back should be event_callback
Proposed resolution:
In the 27.5.3 [ios.base] synopsis change "event_call_back" to "event_callback".
Section: 26.4.1 [complex.syn], 26.4.7 [complex.value.ops] Status: TC1 Submitter: Nico Josuttis Opened: 1998-09-29 Last modified: 2015-04-08
View all other issues in [complex.syn].
View all issues with TC1 status.
Discussion:
In 26.4.1 [complex.syn] polar is declared as follows:
template<class T> complex<T> polar(const T&, const T&);
In 26.4.7 [complex.value.ops] it is declared as follows:
template<class T> complex<T> polar(const T& rho, const T& theta = 0);
Thus whether the second parameter is optional is not clear.
Proposed resolution:
In 26.4.1 [complex.syn] change:
template<class T> complex<T> polar(const T&, const T&);
to:
template<class T> complex<T> polar(const T& rho, const T& theta = 0);
Section: 26.4.1 [complex.syn], 26.4.2 [complex] Status: TC1 Submitter: Nico Josuttis Opened: 1998-09-29 Last modified: 2015-04-08
View all other issues in [complex.syn].
View all issues with TC1 status.
Discussion:
Both 26.2.1 and 26.2.2 contain declarations of global operators for class complex. This redundancy should be removed.
Proposed resolution:
Reduce redundancy according to the general style of the standard.
Section: 21.4 [basic.string] Status: TC1 Submitter: Nico Josuttis Opened: 1998-09-29 Last modified: 2015-04-08
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with TC1 status.
Duplicate of: 89
Discussion:
Many string member functions throw if size is getting or exceeding npos. However, I wonder why they don't throw if size is getting or exceeding max_size() instead of npos. May be npos is known at compile time, while max_size() is known at runtime. However, what happens if size exceeds max_size() but not npos, then? It seems the standard lacks some clarifications here.
Proposed resolution:
After 21.4 [basic.string] paragraph 4 ("The functions described in this clause...") add a new paragraph:
For any string operation, if as a result of the operation, size() would exceed max_size() then the operation throws length_error.
Rationale:
The LWG believes length_error is the correct exception to throw.
Section: 21.4.1 [string.require] Status: TC1 Submitter: Nico Josuttis Opened: 1998-09-29 Last modified: 2015-04-08
View all other issues in [string.require].
View all issues with TC1 status.
Discussion:
The constructor from a range:
template<class InputIterator> basic_string(InputIterator begin, InputIterator end, const Allocator& a = Allocator());
lacks a throws clause. However, I would expect that it throws according to the other constructors if the numbers of characters in the range equals npos (or exceeds max_size(), see above).
Proposed resolution:
In 21.4.1 [string.require], Strike throws paragraphs for constructors which say "Throws: length_error if n == npos."
Rationale:
Throws clauses for length_error if n == npos are no longer needed because they are subsumed by the general wording added by the resolution for issue 83.
Section: 21.4.8.9 [string.io] Status: TC1 Submitter: Nico Josuttis Opened: 1998-09-29 Last modified: 2015-04-08
View all other issues in [string.io].
View all issues with TC1 status.
Discussion:
The effect of operator >> for strings contain the following item:
isspace(c,getloc()) is true for the next available input character c.
Here getloc() has to be replaced by is.getloc().
Proposed resolution:
In 21.4.8.9 [string.io] paragraph 1 Effects clause replace:
isspace(c,getloc()) is true for the next available input character c.
with:
isspace(c,is.getloc()) is true for the next available input character c.
Section: 21.4.8.9 [string.io] Status: CD1 Submitter: Nico Josuttis Opened: 1998-09-29 Last modified: 2015-04-08
View all other issues in [string.io].
View all issues with CD1 status.
Discussion:
Operator >> and getline() for strings read until eof() in the input stream is true. However, this might never happen, if the stream can't read anymore without reaching EOF. So shouldn't it be changed into that it reads until !good() ?
Proposed resolution:
In 21.4.8.9 [string.io], paragraph 1, replace:
Effects: Begins by constructing a sentry object k as if k were constructed by typename basic_istream<charT,traits>::sentry k( is). If bool( k) is true, it calls str.erase() and then extracts characters from is and appends them to str as if by calling str.append(1, c). If is.width() is greater than zero, the maximum number n of characters appended is is.width(); otherwise n is str.max_size(). Characters are extracted and appended until any of the following occurs:
with:
Effects: Behaves as a formatted input function (27.7.2.2.1 [istream.formatted.reqmts]). After constructing a sentry object, if the sentry converts to true, calls str.erase() and then extracts characters from is and appends them to str as if by calling str.append(1,c). If is.width() is greater than zero, the maximum number n of characters appended is is.width(); otherwise n is str.max_size(). Characters are extracted and appended until any of the following occurs:
In 21.4.8.9 [string.io], paragraph 6, replace
Effects: Begins by constructing a sentry object k as if by typename basic_istream<charT,traits>::sentry k( is, true). If bool( k) is true, it calls str.erase() and then extracts characters from is and appends them to str as if by calling str.append(1, c) until any of the following occurs:
with:
Effects: Behaves as an unformatted input function (27.7.2.3 [istream.unformatted]), except that it does not affect the value returned by subsequent calls to basic_istream<>::gcount(). After constructing a sentry object, if the sentry converts to true, calls str.erase() and then extracts characters from is and appends them to str as if by calling str.append(1,c) until any of the following occurs:
[Redmond: Made changes in proposed resolution. operator>> should be a formatted input function, not an unformatted input function. getline should not be required to set gcount, since there is no mechanism for gcount to be set except by one of basic_istream's member functions.]
[Curaçao: Nico agrees with proposed resolution.]
Rationale:
The real issue here is whether or not these string input functions get their characters from a streambuf, rather than by calling an istream's member functions, a streambuf signals failure either by returning eof or by throwing an exception; there are no other possibilities. The proposed resolution makes it clear that these two functions do get characters from a streambuf.
Section: 25 [algorithms] Status: CD1 Submitter: Nico Josuttis Opened: 1998-09-29 Last modified: 2015-04-08
View other active issues in [algorithms].
View all other issues in [algorithms].
View all issues with CD1 status.
Discussion:
The standard does not state, how often a function object is copied, called, or the order of calls inside an algorithm. This may lead to surprising/buggy behavior. Consider the following example:
class Nth { // function object that returns true for the nth element private: int nth; // element to return true for int count; // element counter public: Nth (int n) : nth(n), count(0) { } bool operator() (int) { return ++count == nth; } }; .... // remove third element list<int>::iterator pos; pos = remove_if(coll.begin(),coll.end(), // range Nth(3)), // remove criterion coll.erase(pos,coll.end());
This call, in fact removes the 3rd AND the 6th element. This happens because the usual implementation of the algorithm copies the function object internally:
template <class ForwIter, class Predicate> ForwIter std::remove_if(ForwIter beg, ForwIter end, Predicate op) { beg = find_if(beg, end, op); if (beg == end) { return beg; } else { ForwIter next = beg; return remove_copy_if(++next, end, beg, op); } }
The algorithm uses find_if() to find the first element that should be removed. However, it then uses a copy of the passed function object to process the resulting elements (if any). Here, Nth is used again and removes also the sixth element. This behavior compromises the advantage of function objects being able to have a state. Without any cost it could be avoided (just implement it directly instead of calling find_if()).
Proposed resolution:
Add a new paragraph following 25 [algorithms] paragraph 8:
[Note: Unless otherwise specified, algorithms that take function objects as arguments are permitted to copy those function objects freely. Programmers for whom object identity is important should consider using a wrapper class that points to a noncopied implementation object, or some equivalent solution.]
[Dublin: Pete Becker felt that this may not be a defect, but rather something that programmers need to be educated about. There was discussion of adding wording to the effect that the number and order of calls to function objects, including predicates, not affect the behavior of the function object.]
[Pre-Kona: Nico comments: It seems the problem is that we don't have a clear statement of "predicate" in the standard. People including me seemed to think "a function returning a Boolean value and being able to be called by an STL algorithm or be used as sorting criterion or ... is a predicate". But a predicate has more requirements: It should never change its behavior due to a call or being copied. IMHO we have to state this in the standard. If you like, see section 8.1.4 of my library book for a detailed discussion.]
[Kona: Nico will provide wording to the effect that "unless otherwise specified, the number of copies of and calls to function objects by algorithms is unspecified". Consider placing in 25 [algorithms] after paragraph 9.]
[Santa Cruz: The standard doesn't currently guarantee that functions object won't be copied, and what isn't forbidden is allowed. It is believed (especially since implementations that were written in concert with the standard do make copies of function objects) that this was intentional. Thus, no normative change is needed. What we should put in is a non-normative note suggesting to programmers that if they want to guarantee the lack of copying they should use something like the ref wrapper.]
[Oxford: Matt provided wording.]
Section: 24.2.3 [input.iterators] Status: CD1 Submitter: AFNOR Opened: 1998-10-07 Last modified: 2015-04-08
View all other issues in [input.iterators].
View all issues with CD1 status.
Discussion:
Table 72 in 24.2.3 [input.iterators] specifies semantics for *r++ of:
{ T tmp = *r; ++r; return tmp; }
There are two problems with this. First, the return type is specified to be "T", as opposed to something like "convertible to T". This is too specific: we want to allow *r++ to return an lvalue.
Second, writing the semantics in terms of code misleadingly suggests that the effects *r++ should precisely replicate the behavior of this code, including side effects. (Does this mean that *r++ should invoke the copy constructor exactly as many times as the sample code above would?) See issue 334 for a similar problem.
Proposed resolution:
In Table 72 in 24.2.3 [input.iterators], change the return type for *r++ from T to "convertible to T".
Rationale:
This issue has two parts: the return type, and the number of times the copy constructor is invoked.
The LWG believes the the first part is a real issue. It's inappropriate for the return type to be specified so much more precisely for *r++ than it is for *r. In particular, if r is of (say) type int*, then *r++ isn't int, but int&.
The LWG does not believe that the number of times the copy constructor is invoked is a real issue. This can vary in any case, because of language rules on copy constructor elision. That's too much to read into these semantics clauses.
Additionally, as Dave Abrahams pointed out (c++std-lib-13703): since we're told (24.1/3) that forward iterators satisfy all the requirements of input iterators, we can't impose any requirements in the Input Iterator requirements table that forward iterators don't satisfy.
Section: 23.2.4 [associative.reqmts] Status: CD1 Submitter: AFNOR Opened: 1998-10-07 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with CD1 status.
Discussion:
Set::iterator is described as implementation-defined with a reference to the container requirement; the container requirement says that const_iterator is an iterator pointing to const T and iterator an iterator pointing to T.
23.1.2 paragraph 2 implies that the keys should not be modified to break the ordering of elements. But that is not clearly specified. Especially considering that the current standard requires that iterator for associative containers be different from const_iterator. Set, for example, has the following:
typedef implementation defined iterator;
// See _lib.container.requirements_
23.2 [container.requirements] actually requires that iterator type pointing to T (table 65). Disallowing user modification of keys by changing the standard to require an iterator for associative container to be the same as const_iterator would be overkill since that will unnecessarily significantly restrict the usage of associative container. A class to be used as elements of set, for example, can no longer be modified easily without either redesigning the class (using mutable on fields that have nothing to do with ordering), or using const_cast, which defeats requiring iterator to be const_iterator. The proposed solution goes in line with trusting user knows what he is doing.
Other Options Evaluated:
Option A. In 23.2.4 [associative.reqmts], paragraph 2, after first sentence, and before "In addition,...", add one line:
Modification of keys shall not change their strict weak ordering.
Option B. Add three new sentences to 23.2.4 [associative.reqmts]:
At the end of paragraph 5: "Keys in an associative container are immutable." At the end of paragraph 6: "For associative containers where the value type is the same as the key type, both iterator and const_iterator are constant iterators. It is unspecified whether or not iterator and const_iterator are the same type."
Option C. To 23.2.4 [associative.reqmts], paragraph 3, which currently reads:
The phrase ``equivalence of keys'' means the equivalence relation imposed by the comparison and not the operator== on keys. That is, two keys k1 and k2 in the same container are considered to be equivalent if for the comparison object comp, comp(k1, k2) == false && comp(k2, k1) == false.
add the following:
For any two keys k1 and k2 in the same container, comp(k1, k2) shall return the same value whenever it is evaluated. [Note: If k2 is removed from the container and later reinserted, comp(k1, k2) must still return a consistent value but this value may be different than it was the first time k1 and k2 were in the same container. This is intended to allow usage like a string key that contains a filename, where comp compares file contents; if k2 is removed, the file is changed, and the same k2 (filename) is reinserted, comp(k1, k2) must again return a consistent value but this value may be different than it was the previous time k2 was in the container.]
Proposed resolution:
Add the following to 23.2.4 [associative.reqmts] at the indicated location:
At the end of paragraph 3: "For any two keys k1 and k2 in the same container, calling comp(k1, k2) shall always return the same value."
At the end of paragraph 5: "Keys in an associative container are immutable."
At the end of paragraph 6: "For associative containers where the value type is the same as the key type, both iterator and const_iterator are constant iterators. It is unspecified whether or not iterator and const_iterator are the same type."
Rationale:
Several arguments were advanced for and against allowing set elements to be mutable as long as the ordering was not effected. The argument which swayed the LWG was one of safety; if elements were mutable, there would be no compile-time way to detect of a simple user oversight which caused ordering to be modified. There was a report that this had actually happened in practice, and had been painful to diagnose. If users need to modify elements, it is possible to use mutable members or const_cast.
Simply requiring that keys be immutable is not sufficient, because the comparison object may indirectly (via pointers) operate on values outside of the keys.
The types iterator and const_iterator are permitted to be different types to allow for potential future work in which some member functions might be overloaded between the two types. No such member functions exist now, and the LWG believes that user functionality will not be impaired by permitting the two types to be the same. A function that operates on both iterator types can be defined for const_iterator alone, and can rely on the automatic conversion from iterator to const_iterator.
[Tokyo: The LWG crafted the proposed resolution and rationale.]
Section: 26.6.5 [template.slice.array] Status: TC1 Submitter: AFNOR Opened: 1998-10-07 Last modified: 2015-04-08
View all other issues in [template.slice.array].
View all issues with TC1 status.
Discussion:
This is the only place in the whole standard where the implementation has to document something private.
Proposed resolution:
Remove the comment which says "// remainder implementation defined" from:
Section: 18.7.1 [type.info] Status: TC1 Submitter: AFNOR Opened: 1998-10-07 Last modified: 2015-04-08
View all other issues in [type.info].
View all issues with TC1 status.
Discussion:
In 18.6.1, paragraphs 8-9, the lifetime of the return value of exception::what() is left unspecified. This issue has implications with exception safety of exception handling: some exceptions should not throw bad_alloc.
Proposed resolution:
Add to 18.7.1 [type.info] paragraph 9 (exception::what notes clause) the sentence:
The return value remains valid until the exception object from which it is obtained is destroyed or a non-const member function of the exception object is called.
Rationale:
If an exception object has non-const members, they may be used to set internal state that should affect the contents of the string returned by what().
Section: X [depr.lib.binders] Status: CD1 Submitter: Bjarne Stroustrup Opened: 1998-10-07 Last modified: 2015-04-08
View all other issues in [depr.lib.binders].
View all issues with CD1 status.
Discussion:
There are no versions of binders that apply to non-const elements of a sequence. This makes examples like for_each() using bind2nd() on page 521 of "The C++ Programming Language (3rd)" non-conforming. Suitable versions of the binders need to be added.
Further discussion from Nico:
What is probably meant here is shown in the following example:
class Elem { public: void print (int i) const { } void modify (int i) { } };
int main() { vector<Elem> coll(2); for_each (coll.begin(), coll.end(), bind2nd(mem_fun_ref(&Elem::print),42)); // OK for_each (coll.begin(), coll.end(), bind2nd(mem_fun_ref(&Elem::modify),42)); // ERROR }
The error results from the fact that bind2nd() passes its first argument (the argument of the sequence) as constant reference. See the following typical implementation:
template <class Operation> class binder2nd : public unary_function<typename Operation::first_argument_type, typename Operation::result_type> { protected: Operation op; typename Operation::second_argument_type value; public: binder2nd(const Operation& o, const typename Operation::second_argument_type& v) : op(o), value(v) {}typename Operation::result_type operator()(const typename Operation::first_argument_type& x) const { return op(x, value); } };
The solution is to overload operator () of bind2nd for non-constant arguments:
template <class Operation> class binder2nd : public unary_function<typename Operation::first_argument_type, typename Operation::result_type> { protected: Operation op; typename Operation::second_argument_type value; public: binder2nd(const Operation& o, const typename Operation::second_argument_type& v) : op(o), value(v) {}typename Operation::result_type operator()(const typename Operation::first_argument_type& x) const { return op(x, value); } typename Operation::result_type operator()(typename Operation::first_argument_type& x) const { return op(x, value); } };
Proposed resolution:
Howard believes there is a flaw in this resolution. See c++std-lib-9127. We may need to reopen this issue.
In X [depr.lib.binders] in the declaration of binder1st after:
typename Operation::result_type
operator()(const typename Operation::second_argument_type& x) const;
insert:
typename Operation::result_type
operator()(typename Operation::second_argument_type& x) const;
In X [depr.lib.binders] in the declaration of binder2nd after:
typename Operation::result_type
operator()(const typename Operation::first_argument_type& x) const;
insert:
typename Operation::result_type
operator()(typename Operation::first_argument_type& x) const;
[Kona: The LWG discussed this at some length.It was agreed that this is a mistake in the design, but there was no consensus on whether it was a defect in the Standard. Straw vote: NAD - 5. Accept proposed resolution - 3. Leave open - 6.]
[Copenhagen: It was generally agreed that this was a defect. Strap poll: NAD - 0. Accept proposed resolution - 10. Leave open - 1.]
Section: 24.6.3 [istreambuf.iterator], 24.6.3.5 [istreambuf.iterator::equal] Status: TC1 Submitter: Nathan Myers Opened: 1998-10-15 Last modified: 2015-04-08
View all other issues in [istreambuf.iterator].
View all issues with TC1 status.
Discussion:
Member istreambuf_iterator<>::equal is not declared "const", yet 24.6.3.6 [istreambuf.iterator::op==] says that operator==, which is const, calls it. This is contradictory.
Proposed resolution:
In 24.6.3 [istreambuf.iterator] and also in 24.6.3.5 [istreambuf.iterator::equal], replace:
bool equal(istreambuf_iterator& b);
with:
bool equal(const istreambuf_iterator& b) const;
Section: 24.6.4.1 [ostreambuf.iter.cons] Status: TC1 Submitter: Matt Austern Opened: 1998-10-20 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
The requires clause for ostreambuf_iterator's constructor from an ostream_type (24.5.4.1, paragraph 1) reads "s is not null". However, s is a reference, and references can't be null.
Proposed resolution:
In 24.6.4.1 [ostreambuf.iter.cons]:
Move the current paragraph 1, which reads "Requires: s is not null.", from the first constructor to the second constructor.
Insert a new paragraph 1 Requires clause for the first constructor reading:
Requires: s.rdbuf() is not null.
Section: 18.6.1.3 [new.delete.placement] Status: TC1 Submitter: Steve Clamage Opened: 1998-10-28 Last modified: 2015-04-08
View all other issues in [new.delete.placement].
View all issues with TC1 status.
Duplicate of: 196
Discussion:
Section 18.5.1.3 contains the following example:
[Example: This can be useful for constructing an object at a known address: char place[sizeof(Something)]; Something* p = new (place) Something(); -end example]
First code line: "place" need not have any special alignment, and the following constructor could fail due to misaligned data.
Second code line: Aren't the parens on Something() incorrect? [Dublin: the LWG believes the () are correct.]
Examples are not normative, but nevertheless should not show code that is invalid or likely to fail.
Proposed resolution:
Replace the first line of code in the example in 18.6.1.3 [new.delete.placement] with:
void* place = operator new(sizeof(Something));
Section: D.7.4.1 [depr.strstream.cons] Status: TC1 Submitter: Steve Clamage Opened: 1998-11-02 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
D.7.4.1 strstream constructors paragraph 2 says:
Effects: Constructs an object of class strstream, initializing the base class with iostream(& sb) and initializing sb with one of the two constructors:
- If mode&app==0, then s shall designate the first element of an array of n elements. The constructor is strstreambuf(s, n, s).
- If mode&app==0, then s shall designate the first element of an array of n elements that contains an NTBS whose first element is designated by s. The constructor is strstreambuf(s, n, s+std::strlen(s)).
Notice the second condition is the same as the first. I think the second condition should be "If mode&app==app", or "mode&app!=0", meaning that the append bit is set.
Proposed resolution:
In D.7.3.1 [depr.ostrstream.cons] paragraph 2 and D.7.4.1 [depr.strstream.cons] paragraph 2, change the first condition to (mode&app)==0 and the second condition to (mode&app)!=0.
Section: 27.7.3.6.2 [ostream.inserters.arithmetic] Status: CD1 Submitter: Matt Austern Opened: 1998-11-20 Last modified: 2015-04-08
View all other issues in [ostream.inserters.arithmetic].
View all issues with CD1 status.
Discussion:
The effects clause for numeric inserters says that insertion of a value x, whose type is either bool, short, unsigned short, int, unsigned int, long, unsigned long, float, double, long double, or const void*, is delegated to num_put, and that insertion is performed as if through the following code fragment:
bool failed = use_facet< num_put<charT,ostreambuf_iterator<charT,traits> > >(getloc()).put(*this, *this, fill(), val). failed();
This doesn't work, because num_put<>::put is only overloaded for the types bool, long, unsigned long, double, long double, and const void*. That is, the code fragment in the standard is incorrect (it is diagnosed as ambiguous at compile time) for the types short, unsigned short, int, unsigned int, and float.
We must either add new member functions to num_put, or else change the description in ostream so that it only calls functions that are actually there. I prefer the latter.
Proposed resolution:
Replace 27.6.2.5.2, paragraph 1 with the following:
The classes num_get<> and num_put<> handle locale-dependent numeric formatting and parsing. These inserter functions use the imbued locale value to perform numeric formatting. When val is of type bool, long, unsigned long, double, long double, or const void*, the formatting conversion occurs as if it performed the following code fragment:
bool failed = use_facet< num_put<charT,ostreambuf_iterator<charT,traits> > >(getloc()).put(*this, *this, fill(), val). failed();When val is of type short the formatting conversion occurs as if it performed the following code fragment:
ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield; bool failed = use_facet< num_put<charT,ostreambuf_iterator<charT,traits> > >(getloc()).put(*this, *this, fill(), baseflags == ios_base::oct || baseflags == ios_base::hex ? static_cast<long>(static_cast<unsigned short>(val)) : static_cast<long>(val)). failed();When val is of type int the formatting conversion occurs as if it performed the following code fragment:
ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield; bool failed = use_facet< num_put<charT,ostreambuf_iterator<charT,traits> > >(getloc()).put(*this, *this, fill(), baseflags == ios_base::oct || baseflags == ios_base::hex ? static_cast<long>(static_cast<unsigned int>(val)) : static_cast<long>(val)). failed();When val is of type unsigned short or unsigned int the formatting conversion occurs as if it performed the following code fragment:
bool failed = use_facet< num_put<charT,ostreambuf_iterator<charT,traits> > >(getloc()).put(*this, *this, fill(), static_cast<unsigned long>(val)). failed();When val is of type float the formatting conversion occurs as if it performed the following code fragment:
bool failed = use_facet< num_put<charT,ostreambuf_iterator<charT,traits> > >(getloc()).put(*this, *this, fill(), static_cast<double>(val)). failed();
[post-Toronto: This differs from the previous proposed resolution; PJP provided the new wording. The differences are in signed short and int output.]
Rationale:
The original proposed resolution was to cast int and short to long, unsigned int and unsigned short to unsigned long, and float to double, thus ensuring that we don't try to use nonexistent num_put<> member functions. The current proposed resolution is more complicated, but gives more expected results for hex and octal output of signed short and signed int. (On a system with 16-bit short, for example, printing short(-1) in hex format should yield 0xffff.)
Section: 27.7.2.2.2 [istream.formatted.arithmetic] Status: CD1 Submitter: Matt Austern Opened: 1998-11-20 Last modified: 2015-04-08
View all other issues in [istream.formatted.arithmetic].
View all issues with CD1 status.
Discussion:
Formatted input is defined for the types short, unsigned short, int, unsigned int, long, unsigned long, float, double, long double, bool, and void*. According to section 27.6.1.2.2, formatted input of a value x is done as if by the following code fragment:
typedef num_get< charT,istreambuf_iterator<charT,traits> > numget; iostate err = 0; use_facet< numget >(loc).get(*this, 0, *this, err, val); setstate(err);
According to section 22.4.2.1.1 [facet.num.get.members], however, num_get<>::get() is only overloaded for the types bool, long, unsigned short, unsigned int, unsigned long, unsigned long, float, double, long double, and void*. Comparing the lists from the two sections, we find that 27.6.1.2.2 is using a nonexistent function for types short and int.
Proposed resolution:
In 27.7.2.2.2 [istream.formatted.arithmetic] Arithmetic Extractors, remove the two lines (1st and 3rd) which read:
operator>>(short& val); ... operator>>(int& val);
And add the following at the end of that section (27.6.1.2.2) :
operator>>(short& val);The conversion occurs as if performed by the following code fragment (using the same notation as for the preceding code fragment):
typedef num_get< charT,istreambuf_iterator<charT,traits> > numget; iostate err = 0; long lval; use_facet< numget >(loc).get(*this, 0, *this, err, lval); if (err == 0 && (lval < numeric_limits<short>::min() || numeric_limits<short>::max() < lval)) err = ios_base::failbit; setstate(err);operator>>(int& val);The conversion occurs as if performed by the following code fragment (using the same notation as for the preceding code fragment):
typedef num_get< charT,istreambuf_iterator<charT,traits> > numget; iostate err = 0; long lval; use_facet< numget >(loc).get(*this, 0, *this, err, lval); if (err == 0 && (lval < numeric_limits<int>::min() || numeric_limits<int>::max() < lval)) err = ios_base::failbit; setstate(err);
[Post-Tokyo: PJP provided the above wording.]
Section: 17.6.5.12 [res.on.exception.handling] Status: TC1 Submitter: Judy Ward Opened: 1998-12-15 Last modified: 2015-04-08
View all other issues in [res.on.exception.handling].
View all issues with TC1 status.
Discussion:
Section 17.6.5.12 [res.on.exception.handling] states:
"An implementation may strengthen the exception-specification for a function by removing listed exceptions."
The problem is that if an implementation is allowed to do this for virtual functions, then a library user cannot write a class that portably derives from that class.
For example, this would not compile if ios_base::failure::~failure had an empty exception specification:
#include <ios> #include <string> class D : public std::ios_base::failure { public: D(const std::string&); ~D(); // error - exception specification must be compatible with // overridden virtual function ios_base::failure::~failure() };
Proposed resolution:
Change Section 17.6.5.12 [res.on.exception.handling] from:
"may strengthen the exception-specification for a function"
to:
"may strengthen the exception-specification for a non-virtual function".
Section: 17.6.4.3 [reserved.names] Status: CD1 Submitter: Judy Ward Opened: 1998-12-15 Last modified: 2015-04-08
View all other issues in [reserved.names].
View all issues with CD1 status.
Discussion:
The original issue asked whether a library implementor could specialize standard library templates for built-in types. (This was an issue because users are permitted to explicitly instantiate standard library templates.)
Specializations are no longer a problem, because of the resolution to core issue 259. Under the proposed resolution, it will be legal for a translation unit to contain both a specialization and an explicit instantiation of the same template, provided that the specialization comes first. In such a case, the explicit instantiation will be ignored. Further discussion of library issue 120 assumes that the core 259 resolution will be adopted.
However, as noted in lib-7047, one piece of this issue still remains: what happens if a standard library implementor explicitly instantiates a standard library templates? It's illegal for a program to contain two different explicit instantiations of the same template for the same type in two different translation units (ODR violation), and the core working group doesn't believe it is practical to relax that restriction.
The issue, then, is: are users allowed to explicitly instantiate standard library templates for non-user defined types? The status quo answer is 'yes'. Changing it to 'no' would give library implementors more freedom.
This is an issue because, for performance reasons, library implementors often need to explicitly instantiate standard library templates. (for example, std::basic_string<char>) Does giving users freedom to explicitly instantiate standard library templates for non-user defined types make it impossible or painfully difficult for library implementors to do this?
John Spicer suggests, in lib-8957, that library implementors have a mechanism they can use for explicit instantiations that doesn't prevent users from performing their own explicit instantiations: put each explicit instantiation in its own object file. (Different solutions might be necessary for Unix DSOs or MS-Windows DLLs.) On some platforms, library implementors might not need to do anything special: the "undefined behavior" that results from having two different explicit instantiations might be harmless.
Proposed resolution:
Append to 17.6.4.3 [reserved.names] paragraph 1:
A program may explicitly instantiate any templates in the standard library only if the declaration depends on the name of a user-defined type of external linkage and the instantiation meets the standard library requirements for the original template.
[Kona: changed the wording from "a user-defined name" to "the name of a user-defined type"]
Rationale:
The LWG considered another possible resolution:
In light of the resolution to core issue 259, no normative changes in the library clauses are necessary. Add the following non-normative note to the end of 17.6.4.3 [reserved.names] paragraph 1:
[Note: A program may explicitly instantiate standard library templates, even when an explicit instantiation does not depend on a user-defined name. --end note]
The LWG rejected this because it was believed that it would make it unnecessarily difficult for library implementors to write high-quality implementations. A program may not include an explicit instantiation of the same template, for the same template arguments, in two different translation units. If users are allowed to provide explicit instantiations of Standard Library templates for built-in types, then library implementors aren't, at least not without nonportable tricks.
The most serious problem is a class template that has writeable static member variables. Unfortunately, such class templates are important and, in existing Standard Library implementations, are often explicitly specialized by library implementors: locale facets, which have a writeable static member variable id. If a user's explicit instantiation collided with the implementations explicit instantiation, iostream initialization could cause locales to be constructed in an inconsistent state.
One proposed implementation technique was for Standard Library implementors to provide explicit instantiations in separate object files, so that they would not be picked up by the linker when the user also provides an explicit instantiation. However, this technique only applies for Standard Library implementations that are packaged as static archives. Most Standard Library implementations nowadays are packaged as dynamic libraries, so this technique would not apply.
The Committee is now considering standardization of dynamic linking. If there are such changes in the future, it may be appropriate to revisit this issue later.
Section: 27.6.3 [streambuf] Status: TC1 Submitter: Judy Ward Opened: 1998-12-15 Last modified: 2015-04-08
View all other issues in [streambuf].
View all issues with TC1 status.
Discussion:
Section 27.5.2 describes the streambuf classes this way:
The class streambuf is a specialization of the template class basic_streambuf specialized for the type char.
The class wstreambuf is a specialization of the template class basic_streambuf specialized for the type wchar_t.
This implies that these classes must be template specializations, not typedefs.
It doesn't seem this was intended, since Section 27.5 has them declared as typedefs.
Proposed resolution:
Remove 27.6.3 [streambuf] paragraphs 2 and 3 (the above two sentences).
Rationale:
The streambuf synopsis already has a declaration for the typedefs and that is sufficient.
Section: 26.6.5.4 [slice.arr.fill], 26.6.7.4 [gslice.array.fill], 26.6.8.4 [mask.array.fill], 26.6.9.4 [indirect.array.fill] Status: CD1 Submitter: Judy Ward Opened: 1998-12-15 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
One of the operator= in the valarray helper arrays is const and one is not. For example, look at slice_array. This operator= in Section 26.6.5.2 [slice.arr.assign] is const:
void operator=(const valarray<T>&) const;
but this one in Section 26.6.5.4 [slice.arr.fill] is not:
void operator=(const T&);
The description of the semantics for these two functions is similar.
Proposed resolution:
26.6.5 [template.slice.array] Template class slice_array
In the class template definition for slice_array, replace the member function declaration
void operator=(const T&);with
void operator=(const T&) const;
26.6.5.4 [slice.arr.fill] slice_array fill function
Change the function declaration
void operator=(const T&);to
void operator=(const T&) const;
26.6.7 [template.gslice.array] Template class gslice_array
In the class template definition for gslice_array, replace the member function declaration
void operator=(const T&);with
void operator=(const T&) const;
26.6.7.4 [gslice.array.fill] gslice_array fill function
Change the function declaration
void operator=(const T&);to
void operator=(const T&) const;
26.6.8 [template.mask.array] Template class mask_array
In the class template definition for mask_array, replace the member function declaration
void operator=(const T&);with
void operator=(const T&) const;
26.6.8.4 [mask.array.fill] mask_array fill function
Change the function declaration
void operator=(const T&);to
void operator=(const T&) const;
26.6.9 [template.indirect.array] Template class indirect_array
In the class template definition for indirect_array, replace the member function declaration
void operator=(const T&);with
void operator=(const T&) const;
26.6.9.4 [indirect.array.fill] indirect_array fill function
Change the function declaration
void operator=(const T&);to
void operator=(const T&) const;
[Redmond: Robert provided wording.]
Rationale:
There's no good reason for one version of operator= being const and another one not. Because of issue 253, this now matters: these functions are now callable in more circumstances. In many existing implementations, both versions are already const.
Section: 22.4.1.2 [locale.ctype.byname] Status: TC1 Submitter: Judy Ward Opened: 1998-12-15 Last modified: 2015-04-08
View all other issues in [locale.ctype.byname].
View all issues with TC1 status.
Discussion:
In Section 22.4.1.2 [locale.ctype.byname] ctype_byname<charT>::do_scan_is() and do_scan_not() are declared to return a const char* not a const charT*.
Proposed resolution:
Change Section 22.4.1.2 [locale.ctype.byname] do_scan_is() and do_scan_not() to return a const charT*.
Section: 26.6.2 [template.valarray] Status: TC1 Submitter: Judy Ward Opened: 1998-12-15 Last modified: 2015-04-08
View all other issues in [template.valarray].
View all issues with TC1 status.
Discussion:
In Section 26.6.2 [template.valarray] valarray<T>::operator!() is declared to return a valarray<T>, but in Section 26.6.2.6 [valarray.unary] it is declared to return a valarray<bool>. The latter appears to be correct.
Proposed resolution:
Change in Section 26.6.2 [template.valarray] the declaration of operator!() so that the return type is valarray<bool>.
Section: 22.4.1.1.2 [locale.ctype.virtuals] Status: TC1 Submitter: Judy Ward Opened: 1998-12-15 Last modified: 2015-04-08
View all other issues in [locale.ctype.virtuals].
View all issues with TC1 status.
Discussion:
Typos in 22.2.1.1.2 need to be fixed.
Proposed resolution:
In Section 22.4.1.1.2 [locale.ctype.virtuals] change:
do_widen(do_narrow(c),0) == c
to:
do_widen(do_narrow(c,0)) == c
and change:
(is(M,c) || !ctc.is(M, do_narrow(c),dfault) )
to:
(is(M,c) || !ctc.is(M, do_narrow(c,dfault)) )
Section: X [auto.ptr] Status: TC1 Submitter: Greg Colvin Opened: 1999-02-17 Last modified: 2015-04-08
View all other issues in [auto.ptr].
View all issues with TC1 status.
Discussion:
There are two problems with the current auto_ptr wording in the standard:
First, the auto_ptr_ref definition cannot be nested because auto_ptr<Derived>::auto_ptr_ref is unrelated to auto_ptr<Base>::auto_ptr_ref. Also submitted by Nathan Myers, with the same proposed resolution.
Second, there is no auto_ptr assignment operator taking an auto_ptr_ref argument.
I have discussed these problems with my proposal coauthor, Bill Gibbons, and with some compiler and library implementors, and we believe that these problems are not desired or desirable implications of the standard.
25 Aug 1999: The proposed resolution now reflects changes suggested by Dave Abrahams, with Greg Colvin's concurrence; 1) changed "assignment operator" to "public assignment operator", 2) changed effects to specify use of release(), 3) made the conversion to auto_ptr_ref const.
2 Feb 2000: Lisa Lippincott comments: [The resolution of] this issue states that the conversion from auto_ptr to auto_ptr_ref should be const. This is not acceptable, because it would allow initialization and assignment from _any_ const auto_ptr! It also introduces an implementation difficulty in writing this conversion function -- namely, somewhere along the line, a const_cast will be necessary to remove that const so that release() may be called. This may result in undefined behavior [7.1.5.1/4]. The conversion operator does not have to be const, because a non-const implicit object parameter may be bound to an rvalue [13.3.3.1.4/3] [13.3.1/5].
Tokyo: The LWG removed the following from the proposed resolution:
In 20.10.4 [meta.unary], paragraph 2, and 20.10.4.3 [meta.unary.prop], paragraph 2, make the conversion to auto_ptr_ref const:
template<class Y> operator auto_ptr_ref<Y>() const throw();
Proposed resolution:
In 20.10.4 [meta.unary], paragraph 2, move the auto_ptr_ref definition to namespace scope.
In 20.10.4 [meta.unary], paragraph 2, add a public assignment operator to the auto_ptr definition:
auto_ptr& operator=(auto_ptr_ref<X> r) throw();
Also add the assignment operator to 20.10.4.3 [meta.unary.prop]:
auto_ptr& operator=(auto_ptr_ref<X> r) throw()Effects: Calls reset(p.release()) for the auto_ptr p that r holds a reference to.
Returns: *this.
Section: 27.7.2.3 [istream.unformatted], 27.7.3.5 [ostream.seeks] Status: TC1 Submitter: Angelika Langer Opened: 1999-02-22 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with TC1 status.
Discussion:
Currently, the standard does not specify how seekg() and seekp() indicate failure. They are not required to set failbit, and they can't return an error indication because they must return *this, i.e. the stream. Hence, it is undefined what happens if they fail. And they can fail, for instance, when a file stream is disconnected from the underlying file (is_open()==false) or when a wide character file stream must perform a state-dependent code conversion, etc.
The stream functions seekg() and seekp() should set failbit in the stream state in case of failure.
Proposed resolution:
Add to the Effects: clause of seekg() in 27.7.2.3 [istream.unformatted] and to the Effects: clause of seekp() in 27.7.3.5 [ostream.seeks]:
In case of failure, the function calls setstate(failbit) (which may throw ios_base::failure).
Rationale:
Setting failbit is the usual error reporting mechanism for streams
Section: 23.2.4 [associative.reqmts], 23.2.3 [sequence.reqmts] Status: CD1 Submitter: Andrew Koenig Opened: 1999-03-02 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with CD1 status.
Duplicate of: 451
Discussion:
Table 67 (23.1.1) says that container::erase(iterator) returns an iterator. Table 69 (23.1.2) says that in addition to this requirement, associative containers also say that container::erase(iterator) returns void. That's not an addition; it's a change to the requirements, which has the effect of making associative containers fail to meet the requirements for containers.
Proposed resolution:
In 23.2.4 [associative.reqmts], in Table 69 Associative container requirements, change the return type of a.erase(q) from void to iterator. Change the assertion/not/pre/post-condition from "erases the element pointed to by q" to "erases the element pointed to by q. Returns an iterator pointing to the element immediately following q prior to the element being erased. If no such element exists, a.end() is returned."
In 23.2.4 [associative.reqmts], in Table 69 Associative container requirements, change the return type of a.erase(q1, q2) from void to iterator. Change the assertion/not/pre/post-condition from "erases the elements in the range [q1, q2)" to "erases the elements in the range [q1, q2). Returns q2."
In 23.4.4 [map], in the map class synopsis; and in 23.4.5 [multimap], in the multimap class synopsis; and in 23.4.6 [set], in the set class synopsis; and in 23.4.7 [multiset], in the multiset class synopsis: change the signature of the first erase overload to
iterator erase(iterator position);
and change the signature of the third erase overload to
iterator erase(iterator first, iterator last);
[Pre-Kona: reopened at the request of Howard Hinnant]
[Post-Kona: the LWG agrees the return type should be iterator, not void. (Alex Stepanov agrees too.) Matt provided wording.]
[ Sydney: the proposed wording went in the right direction, but it wasn't good enough. We want to return an iterator from the range form of erase as well as the single-iterator form. Also, the wording is slightly different from the wording we have for sequences; there's no good reason for having a difference. Matt provided new wording, (reflected above) which we will review at the next meeting. ]
[ Redmond: formally voted into WP. ]
Section: 23.3.5.3 [list.capacity] Status: TC1 Submitter: Howard Hinnant Opened: 1999-03-06 Last modified: 2015-04-08
View all other issues in [list.capacity].
View all issues with TC1 status.
Discussion:
The description reads:
-1- Effects:
if (sz > size()) insert(end(), sz-size(), c); else if (sz < size()) erase(begin()+sz, end()); else ; // do nothing
Obviously list::resize should not be specified in terms of random access iterators.
Proposed resolution:
Change 23.3.5.3 [list.capacity] paragraph 1 to:
Effects:
if (sz > size()) insert(end(), sz-size(), c); else if (sz < size()) { iterator i = begin(); advance(i, sz); erase(i, end()); }
[Dublin: The LWG asked Howard to discuss exception safety offline with David Abrahams. They had a discussion and believe there is no issue of exception safety with the proposed resolution.]
Section: 23.4.4 [map] Status: TC1 Submitter: Howard Hinnant Opened: 1999-03-06 Last modified: 2015-04-08
View all other issues in [map].
View all issues with TC1 status.
Discussion:
The title says it all.
Proposed resolution:
Insert in 23.4.4 [map], paragraph 2, after operator= in the map declaration:
allocator_type get_allocator() const;
Section: 23.3.6.2 [vector.cons] Status: TC1 Submitter: Howard Hinnant Opened: 1999-03-06 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
The complexity description says: "It does at most 2N calls to the copy constructor of T and logN reallocations if they are just input iterators ...".
This appears to be overly restrictive, dictating the precise memory/performance tradeoff for the implementor.
Proposed resolution:
Change 23.3.6.2 [vector.cons], paragraph 1 to:
-1- Complexity: The constructor template <class InputIterator> vector(InputIterator first, InputIterator last) makes only N calls to the copy constructor of T (where N is the distance between first and last) and no reallocations if iterators first and last are of forward, bidirectional, or random access categories. It makes order N calls to the copy constructor of T and order logN reallocations if they are just input iterators.
Rationale:
"at most 2N calls" is correct only if the growth factor is greater than or equal to 2.
Section: 27.7.2.3 [istream.unformatted] Status: CD1 Submitter: Howard Hinnant Opened: 1999-03-06 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with CD1 status.
Discussion:
I may be misunderstanding the intent, but should not seekg set only the input stream and seekp set only the output stream? The description seems to say that each should set both input and output streams. If that's really the intent, I withdraw this proposal.
Proposed resolution:
In section 27.6.1.3 change:
basic_istream<charT,traits>& seekg(pos_type pos); Effects: If fail() != true, executes rdbuf()->pubseekpos(pos).
To:
basic_istream<charT,traits>& seekg(pos_type pos); Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::in).
In section 27.6.1.3 change:
basic_istream<charT,traits>& seekg(off_type& off, ios_base::seekdir dir); Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).
To:
basic_istream<charT,traits>& seekg(off_type& off, ios_base::seekdir dir); Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::in).
In section 27.6.2.4, paragraph 2 change:
-2- Effects: If fail() != true, executes rdbuf()->pubseekpos(pos).
To:
-2- Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::out).
In section 27.6.2.4, paragraph 4 change:
-4- Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).
To:
-4- Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::out).
[Dublin: Dietmar Kühl thinks this is probably correct, but would like the opinion of more iostream experts before taking action.]
[Tokyo: Reviewed by the LWG. PJP noted that although his docs are incorrect, his implementation already implements the Proposed Resolution.]
[Post-Tokyo: Matt Austern comments:
Is it a problem with basic_istream and basic_ostream, or is it a problem
with basic_stringbuf?
We could resolve the issue either by changing basic_istream and
basic_ostream, or by changing basic_stringbuf. I prefer the latter
change (or maybe both changes): I don't see any reason for the standard to
require that std::stringbuf s(std::string("foo"), std::ios_base::in);
s.pubseekoff(0, std::ios_base::beg); must fail.
This requirement is a bit weird. There's no similar requirement
for basic_streambuf<>::seekpos, or for basic_filebuf<>::seekoff or
basic_filebuf<>::seekpos.]
Section: 22.3.1 [locale] Status: TC1 Submitter: Angelika Langer Opened: 1999-03-17 Last modified: 2015-04-08
View all other issues in [locale].
View all issues with TC1 status.
Discussion:
Section 22.3.1 [locale] says:
-4- In the call to use_facet<Facet>(loc), the type argument chooses a facet, making available all members of the named type. If Facet is not present in a locale (or, failing that, in the global locale), it throws the standard exception bad_cast. A C++ program can check if a locale implements a particular facet with the template function has_facet<Facet>().
This contradicts the specification given in section
22.3.2 [locale.global.templates]:
template <class Facet> const Facet& use_facet(const
locale& loc);
-1- Get a reference to a facet of a locale.
-2- Returns: a reference to the corresponding facet of loc, if present.
-3- Throws: bad_cast if has_facet<Facet>(loc) is false.
-4- Notes: The reference returned remains valid at least as long as any copy of loc exists
Proposed resolution:
Remove the phrase "(or, failing that, in the global locale)" from section 22.1.1.
Rationale:
Needed for consistency with the way locales are handled elsewhere in the standard.
Section: 23.2.3 [sequence.reqmts] Status: TC1 Submitter: Andrew Koenig Opened: 1999-03-30 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with TC1 status.
Discussion:
The sentence introducing the Optional sequence operation table (23.1.1 paragraph 12) has two problems:
A. It says ``The operations in table 68 are provided only for the containers for which
they take constant time.''
That could be interpreted in two ways, one of them being ``Even though table 68 shows
particular operations as being provided, implementations are free to omit them if they
cannot implement them in constant time.''
B. That paragraph says nothing about amortized constant time, and it should.
Proposed resolution:
Replace the wording in 23.1.1 paragraph 12 which begins ``The operations in table 68 are provided only..." with:
Table 68 lists sequence operations that are provided for some types of sequential containers but not others. An implementation shall provide these operations for all container types shown in the ``container'' column, and shall implement them so as to take amortized constant time.
Section: 21.4.6.4 [string::insert], 21.4.6.6 [string::replace] Status: TC1 Submitter: Arch Robison Opened: 1999-04-28 Last modified: 2015-04-08
View all other issues in [string::insert].
View all issues with TC1 status.
Discussion:
Sections 21.3.6.4 paragraph 1 and 21.3.6.6 paragraph 1 surely have misprints where they
say:
xpos <= pos and pos < size();
Surely the document meant to say ``xpos < size()'' in both places.
[Judy Ward also sent in this issue for 21.3.6.4 with the same proposed resolution.]
Proposed resolution:
Change Sections 21.3.6.4 paragraph 1 and 21.3.6.6 paragraph 1, the line which says:
xpos <= pos and pos < size();
to:
xpos <= pos and xpos < size();
Section: 25.4.8 [alg.lex.comparison] Status: TC1 Submitter: Howard Hinnant Opened: 1999-06-20 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
The lexicographical_compare complexity is specified as:
"At most min((last1 - first1), (last2 - first2))
applications of the corresponding comparison."
The best I can do is twice that expensive.
Nicolai Josuttis comments in lib-6862: You mean, to check for equality you have to check both < and >? Yes, IMO you are right! (and Matt states this complexity in his book)
Proposed resolution:
Change 25.4.8 [alg.lex.comparison] complexity to:
At most 2*min((last1 - first1), (last2 - first2)) applications of the corresponding comparison.
Change the example at the end of paragraph 3 to read:
[Example:
for ( ; first1 != last1 && first2 != last2 ; ++first1, ++first2) {
if (*first1 < *first2) return true;
if (*first2 < *first1) return false;
}
return first1 == last1 && first2 != last2;
--end example]
Section: 23.3.3.2 [deque.cons] Status: TC1 Submitter: Herb Sutter Opened: 1999-05-09 Last modified: 2015-04-08
View all other issues in [deque.cons].
View all issues with TC1 status.
Discussion:
In 23.3.3.2 [deque.cons] paragraph 6, the deque ctor that takes an iterator range appears to have complexity requirements which are incorrect, and which contradict the complexity requirements for insert(). I suspect that the text in question, below, was taken from vector:
Complexity: If the iterators first and last are forward iterators, bidirectional iterators, or random access iterators the constructor makes only N calls to the copy constructor, and performs no reallocations, where N is last - first.
The word "reallocations" does not really apply to deque. Further, all of the following appears to be spurious:
It makes at most 2N calls to the copy constructor of T and log N reallocations if they are input iterators.1)
1) The complexity is greater in the case of input iterators because each element must be added individually: it is impossible to determine the distance between first abd last before doing the copying.
This makes perfect sense for vector, but not for deque. Why should deque gain an efficiency advantage from knowing in advance the number of elements to insert?
Proposed resolution:
In 23.3.3.2 [deque.cons] paragraph 6, replace the Complexity description, including the footnote, with the following text (which also corrects the "abd" typo):
Complexity: Makes last - first calls to the copy constructor of T.
Section: 26.4.6 [complex.ops] Status: TC1 Submitter: Angelika Langer Opened: 1999-05-12 Last modified: 2015-04-08
View all other issues in [complex.ops].
View all issues with TC1 status.
Discussion:
The extractor for complex numbers is specified as:
template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, complex<T>& x);
Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u is the real part and v is the imaginary part (lib.istream.formatted).
Requires: The input values be convertible to T. If bad input is encountered, calls is.setstate(ios::failbit) (which may throw ios::failure (lib.iostate.flags).
Returns: is .
Is it intended that the extractor for complex numbers does not skip
whitespace, unlike all other extractors in the standard library do?
Shouldn't a sentry be used?
The inserter for complex numbers is specified as:
template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);
Effects: inserts the complex number x onto the stream o as if it were implemented as follows:
template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x)
{
basic_ostringstream<charT, traits> s;
s.flags(o.flags());
s.imbue(o.getloc());
s.precision(o.precision());
s << '(' << x.real() << "," << x.imag() << ')';
return o << s.str();
}
Is it intended that the inserter for complex numbers ignores the field width and does not do any padding? If, with the suggested implementation above, the field width were set in the stream then the opening parentheses would be adjusted, but the rest not, because the field width is reset to zero after each insertion.
I think that both operations should use sentries, for sake of consistency with the other inserters and extractors in the library. Regarding the issue of padding in the inserter, I don't know what the intent was.
Proposed resolution:
After 26.4.6 [complex.ops] paragraph 14 (operator>>), add a Notes clause:
Notes: This extraction is performed as a series of simpler extractions. Therefore, the skipping of whitespace is specified to be the same for each of the simpler extractions.
Rationale:
For extractors, the note is added to make it clear that skipping whitespace follows an "all-or-none" rule.
For inserters, the LWG believes there is no defect; the standard is correct as written.
Section: 17.6.5.4 [global.functions] Status: TC1 Submitter: Lois Goldthwaite Opened: 1999-06-04 Last modified: 2015-04-08
View all other issues in [global.functions].
View all issues with TC1 status.
Discussion:
The library had many global functions until 17.4.1.1 [lib.contents] paragraph 2 was added:
All library entities except macros, operator new and operator delete are defined within the namespace std or namespaces nested within namespace std.
It appears "global function" was never updated in the following:
17.4.4.3 - Global functions [lib.global.functions]
-1- It is unspecified whether any global functions in the C++ Standard Library are defined as inline (dcl.fct.spec).
-2- A call to a global function signature described in Clauses lib.language.support through lib.input.output behaves the same as if the implementation declares no additional global function signatures.*
[Footnote: A valid C++ program always calls the expected library global function. An implementation may also define additional global functions that would otherwise not be called by a valid C++ program. --- end footnote]
-3- A global function cannot be declared by the implementation as taking additional default arguments.
17.4.4.4 - Member functions [lib.member.functions]
-2- An implementation can declare additional non-virtual member function signatures within a class:-- by adding arguments with default values to a member function signature; The same latitude does not extend to the implementation of virtual or global functions, however.
Proposed resolution:
Change "global" to "global or non-member" in:
17.4.4.3 [lib.global.functions] section title,
17.4.4.3 [lib.global.functions] para 1,
17.4.4.3 [lib.global.functions] para 2 in 2 places plus 2 places in the footnote,
17.4.4.3 [lib.global.functions] para 3,
17.4.4.4 [lib.member.functions] para 2
Rationale:
Because operator new and delete are global, the proposed resolution was changed from "non-member" to "global or non-member.
Section: 22.4.8 [facets.examples] Status: TC1 Submitter: Jeremy Siek Opened: 1999-06-03 Last modified: 2015-04-08
View all other issues in [facets.examples].
View all issues with TC1 status.
Discussion:
In 22.4.8 [facets.examples] paragraph 13, the do_truename() and do_falsename() functions in the example facet BoolNames should be const. The functions they are overriding in numpunct_byname<char> are const.
Proposed resolution:
In 22.4.8 [facets.examples] paragraph 13, insert "const" in two places:
string do_truename() const { return "Oui Oui!"; }
string do_falsename() const { return "Mais Non!"; }
Section: 23.2.3 [sequence.reqmts] Status: C++11 Submitter: Andrew Koenig Opened: 1999-06-28 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with C++11 status.
Discussion:
Suppose that c and c1 are sequential containers and i is an iterator that refers to an element of c. Then I can insert a copy of c1's elements into c ahead of element i by executing
c.insert(i, c1.begin(), c1.end());
If c is a vector, it is fairly easy for me to find out where the newly inserted elements are, even though i is now invalid:
size_t i_loc = i - c.begin(); c.insert(i, c1.begin(), c1.end());
and now the first inserted element is at c.begin()+i_loc and one
past the last is at c.begin()+i_loc+c1.size().
But what if c is a list? I can still find the location of one
past the last inserted element, because i is still valid.
To find the location of the first inserted element, though,
I must execute something like
for (size_t n = c1.size(); n; --n) --i;
because i is now no longer a random-access iterator.
Alternatively, I might write something like
bool first = i == c.begin(); list<T>::iterator j = i; if (!first) --j; c.insert(i, c1.begin(), c1.end()); if (first) j = c.begin(); else ++j;
which, although wretched, requires less overhead.
But I think the right solution is to change the definition of insert
so that instead of returning void, it returns an iterator that refers
to the first element inserted, if any, and otherwise is a copy of its
first argument.
[ Summit: ]
Reopened by Alisdair.
[ Post Summit Alisdair adds: ]
In addition to the original rationale for C++03, this change also gives a consistent interface for all container insert operations i.e. they all return an iterator to the (first) inserted item.
Proposed wording provided.
[ 2009-07 Frankfurt ]
Q: why isn't this change also proposed for associative containers?
A: The returned iterator wouldn't necessarily point to a contiguous range.
Moved to Ready.
Proposed resolution:
23.2.3 [sequence.reqmts] Table 83 change return type from void to iterator for the following rows:
Table 83 — Sequence container requirements (in addition to container) Expression Return type Assertion/note pre-/post-condition a.insert(p,n,t) voiditeratorInserts n copies of t before p. a.insert(p,i,j) voiditeratorEach iterator in the range [i,j) shall be dereferenced exactly once. pre: i and j are not iterators into a. Inserts copies of elements in [i, j) before p a.insert(p,il) voiditeratora.insert(p, il.begin(), il.end()).
Add after p6 23.2.3 [sequence.reqmts]:
-6- ...
The iterator returned from a.insert(p,n,t) points to the copy of the first element inserted into a, or p if n == 0.
The iterator returned from a.insert(p,i,j) points to the copy of the first element inserted into a, or p if i == j.
The iterator returned from a.insert(p,il) points to the copy of the first element inserted into a, or p if il is empty.
p2 23.3.3 [deque] Update class definition, change return type from void to iterator:
voiditerator insert(const_iterator position, size_type n, const T& x); template <class InputIterator>voiditerator insert(const_iterator position, InputIterator first, InputIterator last);voiditerator insert(const_iterator position, initializer_list<T>);
23.3.3.4 [deque.modifiers] change return type from void to iterator on following declarations:
voiditerator insert(const_iterator position, size_type n, const T& x); template <class InputIterator>voiditerator insert(const_iterator position, InputIterator first, InputIterator last);
Add the following (missing) declaration
iterator insert(const_iterator position, initializer_list<T>);
23.3.4 [forwardlist] Update class definition, change return type from void to iterator:
voiditerator insert_after(const_iterator position, initializer_list<T> il);voiditerator insert_after(const_iterator position, size_type n, const T& x); template <class InputIterator>voiditerator insert_after(const_iterator position, InputIterator first, InputIterator last);
p8 23.3.4.5 [forwardlist.modifiers] change return type from void to iterator:
voiditerator insert_after(const_iterator position, size_type n, const T& x);
Add paragraph:
Returns: position.
p10 23.3.4.5 [forwardlist.modifiers] change return type from void to iterator:
template <class InputIterator>voiditerator insert_after(const_iterator position, InputIterator first, InputIterator last);
Add paragraph:
Returns: position.
p12 23.3.4.5 [forwardlist.modifiers] change return type from void to iterator on following declarations:
voiditerator insert_after(const_iterator position, initializer_list<T> il);
change return type from void to iterator on following declarations:
p2 23.3.5 [list] Update class definition, change return type from void to iterator:
voiditerator insert(const_iterator position, size_type n, const T& x); template <class InputIterator>voiditerator insert(const_iterator position, InputIterator first, InputIterator last);voiditerator insert(const_iterator position, initializer_list<T>);
23.3.5.4 [list.modifiers] change return type from void to iterator on following declarations:
voiditerator insert(const_iterator position, size_type n, const T& x); template <class InputIterator>voiditerator insert(const_iterator position, InputIterator first, InputIterator last);
Add the following (missing) declaration
iterator insert(const_iterator position, initializer_list<T>);
p2 23.3.6 [vector]
Update class definition, change return type from void to iterator:
voiditerator insert(const_iterator position, T&& x);voiditerator insert(const_iterator position, size_type n, const T& x); template <class InputIterator>voiditerator insert(const_iterator position, InputIterator first, InputIterator last);voiditerator insert(const_iterator position, initializer_list<T>);
23.3.6.5 [vector.modifiers] change return type from void to iterator on following declarations:
voiditerator insert(const_iterator position, size_type n, const T& x); template <class InputIterator>voiditerator insert(const_iterator position, InputIterator first, InputIterator last);
Add the following (missing) declaration
iterator insert(const_iterator position, initializer_list<T>);
p1 23.3.7 [vector.bool] Update class definition, change return type from void to iterator:
voiditerator insert (const_iterator position, size_type n, const bool& x); template <class InputIterator>voiditerator insert(const_iterator position, InputIterator first, InputIterator last);voiditerator insert(const_iterator position, initializer_list<bool> il);
p5 21.4 [basic.string] Update class definition, change return type from void to iterator:
voiditerator insert(const_iterator p, size_type n, charT c); template<class InputIterator>voiditerator insert(const_iterator p, InputIterator first, InputIterator last);voiditerator insert(const_iterator p, initializer_list<charT>);
p13 21.4.6.4 [string::insert] change return type from void to iterator:
voiditerator insert(const_iterator p, size_type n, charT c);
Add paragraph:
Returns: an iterator which refers to the copy of the first inserted character, or p if n == 0.
p15 21.4.6.4 [string::insert] change return type from void to iterator:
template<class InputIterator>voiditerator insert(const_iterator p, InputIterator first, InputIterator last);
Add paragraph:
Returns: an iterator which refers to the copy of the first inserted character, or p if first == last.
p17 21.4.6.4 [string::insert] change return type from void to iterator:
voiditerator insert(const_iterator p, initializer_list<charT> il);
Add paragraph:
Returns: an iterator which refers to the copy of the first inserted character, or p if il is empty.
Rationale:
[ The following was the C++98/03 rationale and does not necessarily apply to the proposed resolution in the C++0X time frame: ]
The LWG believes this was an intentional design decision and so is not a defect. It may be worth revisiting for the next standard.
Section: 25.2.7 [alg.find.first.of] Status: TC1 Submitter: Matt McClure Opened: 1999-06-30 Last modified: 2015-04-08
View all other issues in [alg.find.first.of].
View all issues with TC1 status.
Discussion:
Proposed resolution:
Change 25.2.7 [alg.find.first.of] paragraph 2 from:
Returns: The first iterator i in the range [first1, last1) such that for some integer j in the range [first2, last2) ...
to:
Returns: The first iterator i in the range [first1, last1) such that for some iterator j in the range [first2, last2) ...
Section: 23.2.3 [sequence.reqmts] Status: TC1 Submitter: Ed Brey Opened: 1999-06-21 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with TC1 status.
Discussion:
For both sequences and associative containers, a.clear() has the
semantics of erase(a.begin(),a.end()), which is undefined for an empty
container since erase(q1,q2) requires that q1 be dereferenceable
(23.1.1,3 and 23.1.2,7). When the container is empty, a.begin() is
not dereferenceable.
The requirement that q1 be unconditionally dereferenceable causes many
operations to be intuitively undefined, of which clearing an empty
container is probably the most dire.
Since q1 and q2 are only referenced in the range [q1, q2), and [q1,
q2) is required to be a valid range, stating that q1 and q2 must be
iterators or certain kinds of iterators is unnecessary.
Proposed resolution:
In 23.1.1, paragraph 3, change:
p and q2 denote valid iterators to a, q and q1 denote valid dereferenceable iterators to a, [q1, q2) denotes a valid range
to:
p denotes a valid iterator to a, q denotes a valid dereferenceable iterator to a, [q1, q2) denotes a valid range in a
In 23.1.2, paragraph 7, change:
p and q2 are valid iterators to a, q and q1 are valid dereferenceable iterators to a, [q1, q2) is a valid range
to
p is a valid iterator to a, q is a valid dereferenceable iterator to a, [q1, q2) is a valid range into a
Section: 22.4.1.1.2 [locale.ctype.virtuals] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [locale.ctype.virtuals].
View all issues with TC1 status.
Discussion:
The semantics of scan_is() (paragraphs 4 and 6) is not exactly described because there is no function is() which only takes a character as argument. Also, in the effects clause (paragraph 3), the semantic is also kept vague.
Proposed resolution:
In 22.4.1.1.2 [locale.ctype.virtuals] paragraphs 4 and 6, change the returns clause from:
"... such that is(*p) would..."
to: "... such that is(m, *p) would...."
Section: 22.4.1.3.2 [facet.ctype.char.members] Status: CD1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [facet.ctype.char.members].
View all issues with CD1 status.
Duplicate of: 207
Discussion:
The description of the array version of narrow() (in paragraph 11) is flawed: There is no member do_narrow() which takes only three arguments because in addition to the range a default character is needed.
Additionally, for both widen and narrow we have two signatures followed by a Returns clause that only addresses one of them.
Proposed resolution:
Change the returns clause in 22.4.1.3.2 [facet.ctype.char.members] paragraph 10 from:
Returns: do_widen(low, high, to).
to:
Returns: do_widen(c) or do_widen(low, high, to), respectively.
Change 22.4.1.3.2 [facet.ctype.char.members] paragraph 10 and 11 from:
char narrow(char c, char /*dfault*/) const; const char* narrow(const char* low, const char* high, char /*dfault*/, char* to) const;
Returns: do_narrow(low, high, to).
to:
char narrow(char c, char dfault) const; const char* narrow(const char* low, const char* high, char dfault, char* to) const;
Returns: do_narrow(c, dfault) or do_narrow(low, high, dfault, to), respectively.
[Kona: 1) the problem occurs in additional places, 2) a user defined version could be different.]
[Post-Tokyo: Dietmar provided the above wording at the request of the LWG. He could find no other places the problem occurred. He asks for clarification of the Kona "a user defined version..." comment above. Perhaps it was a circuitous way of saying "dfault" needed to be uncommented?]
[Post-Toronto: the issues list maintainer has merged in the proposed resolution from issue 207, which addresses the same paragraphs.]
Section: 22.4.2.1.2 [facet.num.get.virtuals] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View other active issues in [facet.num.get.virtuals].
View all other issues in [facet.num.get.virtuals].
View all issues with TC1 status.
Discussion:
The table in paragraph 7 for the length modifier does not list the length modifier l to be applied if the type is double. Thus, the standard asks the implementation to do undefined things when using scanf() (the missing length modifier for scanf() when scanning doubles is actually a problem I found quite often in production code, too).
Proposed resolution:
In 22.4.2.1.2 [facet.num.get.virtuals], paragraph 7, add a row in the Length Modifier table to say that for double a length modifier l is to be used.
Rationale:
The standard makes an embarrassing beginner's mistake.
Section: 27.4 [iostream.objects] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [iostream.objects].
View all issues with TC1 status.
Discussion:
There are conflicting statements about where the class Init is defined. According to 27.4 [iostream.objects] paragraph 2 it is defined as basic_ios::Init, according to 27.5.3 [ios.base] it is defined as ios_base::Init.
Proposed resolution:
Change 27.4 [iostream.objects] paragraph 2 from "basic_ios::Init" to "ios_base::Init".
Rationale:
Although not strictly wrong, the standard was misleading enough to warrant the change.
Section: 27.5.3.3 [ios.base.locales] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [ios.base.locales].
View all issues with TC1 status.
Discussion:
There is a small discrepancy between the declarations of imbue(): in 27.5.3 [ios.base] the argument is passed as locale const& (correct), in 27.5.3.3 [ios.base.locales] it is passed as locale const (wrong).
Proposed resolution:
In 27.5.3.3 [ios.base.locales] change the imbue argument from "locale const" to "locale const&".
Section: 27.6.3.4.2 [streambuf.virt.buffer] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [streambuf.virt.buffer].
View all issues with TC1 status.
Discussion:
The default behavior of setbuf() is described only for the situation that gptr() != 0 && gptr() != egptr(): namely to do nothing. What has to be done in other situations is not described although there is actually only one reasonable approach, namely to do nothing, too.
Since changing the buffer would almost certainly mess up most buffer management of derived classes unless these classes do it themselves, the default behavior of setbuf() should always be to do nothing.
Proposed resolution:
Change 27.6.3.4.2 [streambuf.virt.buffer], paragraph 3, Default behavior, to: "Default behavior: Does nothing. Returns this."
Section: 27.6.3.4.3 [streambuf.virt.get] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
The description of the meaning of the result of showmanyc() seems to be rather strange: It uses calls to underflow(). Using underflow() is strange because this function only reads the current character but does not extract it, uflow() would extract the current character. This should be fixed to use sbumpc() instead.
Proposed resolution:
Change 27.6.3.4.3 [streambuf.virt.get] paragraph 1, showmanyc()returns clause, by replacing the word "supplied" with the words "extracted from the stream".
Section: 27.7.2.1 [istream] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [istream].
View all issues with TC1 status.
Discussion:
The paragraph 4 refers to the function exception() which is not defined. Probably, the referred function is basic_ios<>::exceptions().
Proposed resolution:
In 27.7.2.1 [istream], 27.7.2.3 [istream.unformatted], paragraph 1, 27.7.3.1 [ostream], paragraph 3, and 27.7.3.6.1 [ostream.formatted.reqmts], paragraph 1, change "exception()" to "exceptions()".
[Note to Editor: "exceptions" with an "s" is the correct spelling.]
Section: 27.7.2.2.2 [istream.formatted.arithmetic] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [istream.formatted.arithmetic].
View all issues with TC1 status.
Discussion:
The note in the second paragraph pretends that the first argument is an object of type istream_iterator. This is wrong: It is an object of type istreambuf_iterator.
Proposed resolution:
Change 27.7.2.2.2 [istream.formatted.arithmetic] from:
The first argument provides an object of the istream_iterator class...
to
The first argument provides an object of the istreambuf_iterator class...
Section: 22.4.5.3.2 [locale.time.put.virtuals] Status: TC1 Submitter: Angelika Langer Opened: 1999-07-23 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
In 22.4.5.3.2 [locale.time.put.virtuals] the do_put() function is specified
as taking a fill character as an argument, but the description of the
function does not say whether the character is used at all and, if so,
in which way. The same holds for any format control parameters that
are accessible through the ios_base& argument, such as the
adjustment or the field width. Is strftime() supposed to use the fill
character in any way? In any case, the specification of
time_put.do_put() looks inconsistent to me.
Is the
signature of do_put() wrong, or is the effects clause incomplete?
Proposed resolution:
Add the following note after 22.4.5.3.2 [locale.time.put.virtuals] paragraph 2:
[Note: the fill argument may be used in the implementation-defined formats, or by derivations. A space character is a reasonable default for this argument. --end Note]
Rationale:
The LWG felt that while the normative text was correct, users need some guidance on what to pass for the fill argument since the standard doesn't say how it's used.
Section: 27.7.3.1 [ostream] Status: CD1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [ostream].
View all issues with CD1 status.
Discussion:
Paragraph 2 explicitly states that none of the basic_ostream functions falling into one of the groups "formatted output functions" and "unformatted output functions" calls any stream buffer function which might call a virtual function other than overflow(). Basically this is fine but this implies that sputn() (this function would call the virtual function xsputn()) is never called by any of the standard output functions. Is this really intended? At minimum it would be convenient to call xsputn() for strings... Also, the statement that overflow() is the only virtual member of basic_streambuf called is in conflict with the definition of flush() which calls rdbuf()->pubsync() and thereby the virtual function sync() (flush() is listed under "unformatted output functions").
In addition, I guess that the sentence starting with "They may use other public members of basic_ostream ..." probably was intended to start with "They may use other public members of basic_streamuf..." although the problem with the virtual members exists in both cases.
I see two obvious resolutions:
Proposed resolution:
Change the last sentence of 27.6.2.1 (lib.ostream) paragraph 2 from:
They may use other public members of basic_ostream except that they do not invoke any virtual members of rdbuf() except overflow().
to:
They may use other public members of basic_ostream except that they shall not invoke any virtual members of rdbuf() except overflow(), xsputn(), and sync().
[Kona: the LWG believes this is a problem. Wish to ask Jerry or PJP why the standard is written this way.]
[Post-Tokyo: Dietmar supplied wording at the request of the LWG. He comments: The rules can be made a little bit more specific if necessary be explicitly spelling out what virtuals are allowed to be called from what functions and eg to state specifically that flush() is allowed to call sync() while other functions are not.]
Section: 27.7.3.6.4 [ostream.inserters.character] Status: CD1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [ostream.inserters.character].
View all issues with CD1 status.
Discussion:
Paragraph 4 states that the length is determined using traits::length(s). Unfortunately, this function is not defined for example if the character type is wchar_t and the type of s is char const*. Similar problems exist if the character type is char and the type of s is either signed char const* or unsigned char const*.
Proposed resolution:
Change 27.7.3.6.4 [ostream.inserters.character] paragraph 4 from:
Effects: Behaves like an formatted inserter (as described in lib.ostream.formatted.reqmts) of out. After a sentry object is constructed it inserts characters. The number of characters starting at s to be inserted is traits::length(s). Padding is determined as described in lib.facet.num.put.virtuals. The traits::length(s) characters starting at s are widened using out.widen (lib.basic.ios.members). The widened characters and any required padding are inserted into out. Calls width(0).
to:
Effects: Behaves like a formatted inserter (as described in lib.ostream.formatted.reqmts) of out. After a sentry object is constructed it inserts n characters starting at s, where n is the number that would be computed as if by:
- traits::length(s) for the overload where the first argument is of type basic_ostream<charT, traits>& and the second is of type const charT*, and also for the overload where the first argument is of type basic_ostream<char, traits>& and the second is of type const char*.
- std::char_traits<char>::length(s) for the overload where the first argument is of type basic_ostream<charT, traits>& and the second is of type const char*.
- traits::length(reinterpret_cast<const char*>(s)) for the other two overloads.
Padding is determined as described in lib.facet.num.put.virtuals. The n characters starting at s are widened using out.widen (lib.basic.ios.members). The widened characters and any required padding are inserted into out. Calls width(0).
[Santa Cruz: Matt supplied new wording]
[Kona: changed "where n is" to " where n is the number that would be computed as if by"]
Rationale:
We have five separate cases. In two of them we can use the user-supplied traits class without any fuss. In the other three we try to use something as close to that user-supplied class as possible. In two cases we've got a traits class that's appropriate for char and what we've got is a const signed char* or a const unsigned char*; that's close enough so we can just use a reinterpret cast, and continue to use the user-supplied traits class. Finally, there's one case where we just have to give up: where we've got a traits class for some arbitrary charT type, and we somehow have to deal with a const char*. There's nothing better to do but fall back to char_traits<char>
Section: 27.7.3.7 [ostream.unformatted] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [ostream.unformatted].
View all issues with TC1 status.
Discussion:
The first paragraph begins with a descriptions what has to be done in formatted output functions. Probably this is a typo and the paragraph really want to describe unformatted output functions...
Proposed resolution:
In 27.7.3.7 [ostream.unformatted] paragraph 1, the first and last sentences, change the word "formatted" to "unformatted":
"Each unformatted output function begins ..."
"... value specified for the unformatted output function."
Section: 27.8.2.4 [stringbuf.virtuals] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [stringbuf.virtuals].
View all issues with TC1 status.
Discussion:
Paragraph 8, Notes, of this section seems to mandate an extremely inefficient way of buffer handling for basic_stringbuf, especially in view of the restriction that basic_ostream member functions are not allowed to use xsputn() (see 27.7.3.1 [ostream]): For each character to be inserted, a new buffer is to be created.
Of course, the resolution below requires some handling of simultaneous input and output since it is no longer possible to update egptr() whenever epptr() is changed. A possible solution is to handle this in underflow().
Proposed resolution:
In 27.8.2.4 [stringbuf.virtuals] paragraph 8, Notes, insert the words "at least" as in the following:
To make a write position available, the function reallocates (or initially allocates) an array object with a sufficient number of elements to hold the current array object (if any), plus at least one additional write position.
Section: 27.8.5 [stringstream] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
The classes basic_stringstream (27.8.5 [stringstream]), basic_istringstream (27.8.3 [istringstream]), and basic_ostringstream (27.8.4 [ostringstream]) are inconsistent in their definition of the type traits_type: For istringstream, this type is defined, for the other two it is not. This should be consistent.
Proposed resolution:
Proposed resolution:
To the declarations of basic_ostringstream (27.8.4 [ostringstream]) and basic_stringstream (27.8.5 [stringstream]) add:
typedef traits traits_type;
Section: 27.9.1.5 [filebuf.virtuals] Status: CD1 Submitter: Dietmar Kühl Opened: 1999-07-20 Last modified: 2015-04-08
View all other issues in [filebuf.virtuals].
View all issues with CD1 status.
Discussion:
Overridden virtual functions, seekpos()
In 27.9.1.1 [filebuf] paragraph 3, it is stated that a joint input and output position is maintained by basic_filebuf. Still, the description of seekpos() seems to talk about different file positions. In particular, it is unclear (at least to me) what is supposed to happen to the output buffer (if there is one) if only the input position is changed. The standard seems to mandate that the output buffer is kept and processed as if there was no positioning of the output position (by changing the input position). Of course, this can be exactly what you want if the flag ios_base::ate is set. However, I think, the standard should say something like this:
Plus the appropriate error handling, that is...
Proposed resolution:
Change the unnumbered paragraph in 27.8.1.4 (lib.filebuf.virtuals) before paragraph 14 from:
pos_type seekpos(pos_type sp, ios_base::openmode = ios_base::in | ios_base::out);
Alters the file position, if possible, to correspond to the position stored in sp (as described below).
- if (which&ios_base::in)!=0, set the file position to sp, then update the input sequence
- if (which&ios_base::out)!=0, then update the output sequence, write any unshift sequence, and set the file position to sp.
to:
pos_type seekpos(pos_type sp, ios_base::openmode = ios_base::in | ios_base::out);
Alters the file position, if possible, to correspond to the position stored in sp (as described below). Altering the file position performs as follows:
1. if (om & ios_base::out)!=0, then update the output sequence and write any unshift sequence;
2. set the file position to sp;
3. if (om & ios_base::in)!=0, then update the input sequence;
where om is the open mode passed to the last call to open(). The operation fails if is_open() returns false.
[Kona: Dietmar is working on a proposed resolution.]
[Post-Tokyo: Dietmar supplied the above wording.]
Section: 27.7.2.3 [istream.unformatted] Status: TC1 Submitter: Greg Comeau, Dietmar Kühl Opened: 1999-07-23 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with TC1 status.
Discussion:
In 27.7.2.1 [istream] the function ignore() gets an object of type streamsize as first argument. However, in 27.7.2.3 [istream.unformatted] paragraph 23 the first argument is of type int.
As far as I can see this is not really a contradiction because everything is consistent if streamsize is typedef to be int. However, this is almost certainly not what was intended. The same thing happened to basic_filebuf::setbuf(), as described in issue 173.
Darin Adler also submitted this issue, commenting: Either 27.6.1.1 should be modified to show a first parameter of type int, or 27.6.1.3 should be modified to show a first parameter of type streamsize and use numeric_limits<streamsize>::max.
Proposed resolution:
In 27.7.2.3 [istream.unformatted] paragraph 23 and 24, change both uses of int in the description of ignore() to streamsize.
Section: 27.9.1.5 [filebuf.virtuals] Status: TC1 Submitter: Greg Comeau, Dietmar Kühl Opened: 1999-07-23 Last modified: 2015-04-08
View all other issues in [filebuf.virtuals].
View all issues with TC1 status.
Discussion:
In 27.9.1.1 [filebuf] the function setbuf() gets an object of type streamsize as second argument. However, in 27.9.1.5 [filebuf.virtuals] paragraph 9 the second argument is of type int.
As far as I can see this is not really a contradiction because everything is consistent if streamsize is typedef to be int. However, this is almost certainly not what was intended. The same thing happened to basic_istream::ignore(), as described in issue 172.
Proposed resolution:
In 27.9.1.5 [filebuf.virtuals] paragraph 9, change all uses of int in the description of setbuf() to streamsize.
Section: D.6 [depr.ios.members] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-23 Last modified: 2015-04-08
View all other issues in [depr.ios.members].
View all issues with TC1 status.
Discussion:
According to paragraph 1 of this section, streampos is the type OFF_T, the same type as streamoff. However, in paragraph 6 the streampos gets the type POS_T
Proposed resolution:
Change D.6 [depr.ios.members] paragraph 1 from "typedef OFF_T streampos;" to "typedef POS_T streampos;"
Section: D.6 [depr.ios.members] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-23 Last modified: 2015-04-08
View all other issues in [depr.ios.members].
View all issues with TC1 status.
Discussion:
According to paragraph 8 of this section, the methods basic_streambuf::pubseekpos(), basic_ifstream::open(), and basic_ofstream::open "may" be overloaded by a version of this function taking the type ios_base::open_mode as last argument argument instead of ios_base::openmode (ios_base::open_mode is defined in this section to be an alias for one of the integral types). The clause specifies, that the last argument has a default argument in three cases. However, this generates an ambiguity with the overloaded version because now the arguments are absolutely identical if the last argument is not specified.
Proposed resolution:
In D.6 [depr.ios.members] paragraph 8, remove the default arguments for basic_streambuf::pubseekpos(), basic_ifstream::open(), and basic_ofstream::open().
Section: D.6 [depr.ios.members] Status: TC1 Submitter: Dietmar Kühl Opened: 1999-07-23 Last modified: 2015-04-08
View all other issues in [depr.ios.members].
View all issues with TC1 status.
Discussion:
The "overload" for the function exceptions() in paragraph 8 gives the impression that there is another function of this function defined in class ios_base. However, this is not the case. Thus, it is hard to tell how the semantics (paragraph 9) can be implemented: "Call the corresponding member function specified in clause 27 [input.output]."
Proposed resolution:
In D.6 [depr.ios.members] paragraph 8, move the declaration of the function exceptions()into class basic_ios.
Section: 23.2 [container.requirements] Status: CD1 Submitter: Judy Ward Opened: 1998-07-02 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with CD1 status.
Discussion:
Currently the following will not compile on two well-known standard library implementations:
#include <set> using namespace std; void f(const set<int> &s) { set<int>::iterator i; if (i==s.end()); // s.end() returns a const_iterator }
The reason this doesn't compile is because operator== was implemented as a member function of the nested classes set:iterator and set::const_iterator, and there is no conversion from const_iterator to iterator. Surprisingly, (s.end() == i) does work, though, because of the conversion from iterator to const_iterator.
I don't see a requirement anywhere in the standard that this must work. Should there be one? If so, I think the requirement would need to be added to the tables in section 24.1.1. I'm not sure about the wording. If this requirement existed in the standard, I would think that implementors would have to make the comparison operators non-member functions.
This issues was also raised on comp.std.c++ by Darin Adler. The example given was:
bool check_equal(std::deque<int>::iterator i, std::deque<int>::const_iterator ci) { return i == ci; }
Comment from John Potter:
In case nobody has noticed, accepting it will break reverse_iterator.
The fix is to make the comparison operators templated on two types.
template <class Iterator1, class Iterator2> bool operator== (reverse_iterator<Iterator1> const& x, reverse_iterator<Iterator2> const& y);Obviously: return x.base() == y.base();
Currently, no reverse_iterator to const_reverse_iterator compares are valid.
BTW, I think the issue is in support of bad code. Compares should be between two iterators of the same type. All std::algorithms require the begin and end iterators to be of the same type.
Proposed resolution:
Insert this paragraph after 23.2 [container.requirements] paragraph 7:
In the expressions
i == j i != j i < j i <= j i >= j i > j i - jWhere i and j denote objects of a container's iterator type, either or both may be replaced by an object of the container's const_iterator type referring to the same element with no change in semantics.
[post-Toronto: Judy supplied a proposed resolution saying that iterator and const_iterator could be freely mixed in iterator comparison and difference operations.]
[Redmond: Dave and Howard supplied a new proposed resolution which explicitly listed expressions; there was concern that the previous proposed resolution was too informal.]
Rationale:
The LWG believes it is clear that the above wording applies only to the nested types X::iterator and X::const_iterator, where X is a container. There is no requirement that X::reverse_iterator and X::const_reverse_iterator can be mixed. If mixing them is considered important, that's a separate issue. (Issue 280.)
Section: 21.4 [basic.string] Status: CD1 Submitter: Dave Abrahams Opened: 1999-07-01 Last modified: 2015-04-08
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with CD1 status.
Discussion:
It is the constness of the container which should control whether it can be modified through a member function such as erase(), not the constness of the iterators. The iterators only serve to give positioning information.
Here's a simple and typical example problem which is currently very difficult or impossible to solve without the change proposed below.
Wrap a standard container C in a class W which allows clients to find and read (but not modify) a subrange of (C.begin(), C.end()]. The only modification clients are allowed to make to elements in this subrange is to erase them from C through the use of a member function of W.
[ post Bellevue, Alisdair adds: ]
This issue was implemented by N2350 for everything but basic_string.
Note that the specific example in this issue (basic_string) is the one place we forgot to amend in N2350, so we might open this issue for that single container?
[ Sophia Antipolis: ]
This was a fix that was intended for all standard library containers, and has been done for other containers, but string was missed.
The wording updated.
We did not make the change in replace, because this change would affect the implementation because the string may be written into. This is an issue that should be taken up by concepts.
We note that the supplied wording addresses the initializer list provided in N2679.
Proposed resolution:
Update the following signature in the basic_string class template definition in 21.4 [basic.string], p5:
namespace std { template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> > class basic_string { ... iterator insert(const_iterator p, charT c); void insert(const_iterator p, size_type n, charT c); template<class InputIterator> void insert(const_iterator p, InputIterator first, InputIterator last); void insert(const_iterator p, initializer_list<charT>); ... iterator erase(const_iterator const_position); iterator erase(const_iterator first, const_iterator last); ... }; }
Update the following signatures in 21.4.6.4 [string::insert]:
iterator insert(const_iterator p, charT c); void insert(const_iterator p, size_type n, charT c); template<class InputIterator> void insert(const_iterator p, InputIterator first, InputIterator last); void insert(const_iterator p, initializer_list<charT>);
Update the following signatures in 21.4.6.5 [string::erase]:
iterator erase(const_iterator const_position); iterator erase(const_iterator first, const_iterator last);
Rationale:
The issue was discussed at length. It was generally agreed that 1) There is no major technical argument against the change (although there is a minor argument that some obscure programs may break), and 2) Such a change would not break const correctness. The concerns about making the change were 1) it is user detectable (although only in boundary cases), 2) it changes a large number of signatures, and 3) it seems more of a design issue that an out-and-out defect.
The LWG believes that this issue should be considered as part of a general review of const issues for the next revision of the standard. Also see issue 200.
Section: 20.3 [pairs] Status: TC1 Submitter: Andrew Koenig Opened: 1999-08-03 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with TC1 status.
Discussion:
The claim has surfaced in Usenet that expressions such as
make_pair("abc", 3)
are illegal, notwithstanding their use in examples, because template instantiation tries to bind the first template
parameter to const char (&)[4], which type is uncopyable.
I doubt anyone intended that behavior...
Proposed resolution:
In 20.2 [utility], paragraph 1 change the following declaration of make_pair():
template <class T1, class T2> pair<T1,T2> make_pair(const T1&, const T2&);
to:
template <class T1, class T2> pair<T1,T2> make_pair(T1, T2);
In 20.3 [pairs] paragraph 7 and the line before, change:
template <class T1, class T2> pair<T1, T2> make_pair(const T1& x, const T2& y);
to:
template <class T1, class T2> pair<T1, T2> make_pair(T1 x, T2 y);
and add the following footnote to the effects clause:
According to 12.8 [class.copy], an implementation is permitted to not perform a copy of an argument, thus avoiding unnecessary copies.
Rationale:
Two potential fixes were suggested by Matt Austern and Dietmar Kühl, respectively, 1) overloading with array arguments, and 2) use of a reference_traits class with a specialization for arrays. Andy Koenig suggested changing to pass by value. In discussion, it appeared that this was a much smaller change to the standard that the other two suggestions, and any efficiency concerns were more than offset by the advantages of the solution. Two implementors reported that the proposed resolution passed their test suites.
Section: 17 [library] Status: CD1 Submitter: Al Stevens Opened: 1999-08-15 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with CD1 status.
Discussion:
Many references to size_t throughout the document omit the std:: namespace qualification.
For example, 17.6.4.6 [replacement.functions] paragraph 2:
operator new(size_t) operator new(size_t, const std::nothrow_t&) operator new[](size_t) operator new[](size_t, const std::nothrow_t&)
Proposed resolution:
In 17.6.4.6 [replacement.functions] paragraph 2: replace:
- operator new(size_t)
- operator new(size_t, const std::nothrow_t&)
- operator new[](size_t)
- operator new[](size_t, const std::nothrow_t&)
by:
- operator new(std::size_t) - operator new(std::size_t, const std::nothrow_t&) - operator new[](std::size_t) - operator new[](std::size_t, const std::nothrow_t&)
In [lib.allocator.requirements] 20.1.5, paragraph 4: replace:
The typedef members pointer, const_pointer, size_type, and difference_type are required to be T*, T const*, size_t, and ptrdiff_t, respectively.
by:
The typedef members pointer, const_pointer, size_type, and difference_type are required to be T*, T const*, std::size_t, and std::ptrdiff_t, respectively.
In [lib.allocator.members] 20.4.1.1, paragraphs 3 and 6: replace:
3 Notes: Uses ::operator new(size_t) (18.4.1).
6 Note: the storage is obtained by calling ::operator new(size_t), but it is unspecified when or how often this function is called. The use of hint is unspecified, but intended as an aid to locality if an implementation so desires.
by:
3 Notes: Uses ::operator new(std::size_t) (18.4.1).
6 Note: the storage is obtained by calling ::operator new(std::size_t), but it is unspecified when or how often this function is called. The use of hint is unspecified, but intended as an aid to locality if an implementation so desires.
In [lib.char.traits.require] 21.1.1, paragraph 1: replace:
In Table 37, X denotes a Traits class defining types and functions for the character container type CharT; c and d denote values of type CharT; p and q denote values of type const CharT*; s denotes a value of type CharT*; n, i and j denote values of type size_t; e and f denote values of type X::int_type; pos denotes a value of type X::pos_type; and state denotes a value of type X::state_type.
by:
In Table 37, X denotes a Traits class defining types and functions for the character container type CharT; c and d denote values of type CharT; p and q denote values of type const CharT*; s denotes a value of type CharT*; n, i and j denote values of type std::size_t; e and f denote values of type X::int_type; pos denotes a value of type X::pos_type; and state denotes a value of type X::state_type.
In [lib.char.traits.require] 21.1.1, table 37: replace the return type of X::length(p): "size_t" by "std::size_t".
In [lib.std.iterator.tags] 24.3.3, paragraph 2: replace:
typedef ptrdiff_t difference_type;
by:
typedef std::ptrdiff_t difference_type;
In [lib.locale.ctype] 22.2.1.1 put namespace std { ...} around the declaration of template <class charT> class ctype.
In [lib.iterator.traits] 24.3.1, paragraph 2 put namespace std { ...} around the declaration of:
template<class Iterator> struct iterator_traits
template<class T> struct iterator_traits<T*>
template<class T> struct iterator_traits<const T*>
Rationale:
The LWG believes correcting names like size_t and ptrdiff_t to std::size_t and std::ptrdiff_t to be essentially editorial. There there can't be another size_t or ptrdiff_t meant anyway because, according to 17.6.4.3.3 [extern.types],
For each type T from the Standard C library, the types ::T and std::T are reserved to the implementation and, when defined, ::T shall be identical to std::T.
The issue is treated as a Defect Report to make explicit the Project Editor's authority to make this change.
[Post-Tokyo: Nico Josuttis provided the above wording at the request of the LWG.]
[Toronto: This is tangentially related to issue 229, but only tangentially: the intent of this issue is to address use of the name size_t in contexts outside of namespace std, such as in the description of ::operator new. The proposed changes should be reviewed to make sure they are correct.]
[pre-Copenhagen: Nico has reviewed the changes and believes them to be correct.]
Section: 27.7.4 [std.manip] Status: CD1 Submitter: Andy Sawyer Opened: 1999-07-07 Last modified: 2015-04-08
View all other issues in [std.manip].
View all issues with CD1 status.
Discussion:
27.7.4 [std.manip] paragraph 3 says (clause numbering added for exposition):
Returns: An object s of unspecified type such that if [1] out is an (instance of) basic_ostream then the expression out<<s behaves as if f(s) were called, and if [2] in is an (instance of) basic_istream then the expression in>>s behaves as if f(s) were called. Where f can be defined as: ios_base& f(ios_base& str, ios_base::fmtflags mask) { // reset specified flags str.setf(ios_base::fmtflags(0), mask); return str; } [3] The expression out<<s has type ostream& and value out. [4] The expression in>>s has type istream& and value in.
Given the definitions [1] and [2] for out and in, surely [3] should read: "The expression out << s has type basic_ostream& ..." and [4] should read: "The expression in >> s has type basic_istream& ..."
If the wording in the standard is correct, I can see no way of implementing any of the manipulators so that they will work with wide character streams.
e.g. wcout << setbase( 16 );
Must have value 'wcout' (which makes sense) and type 'ostream&' (which doesn't).
The same "cut'n'paste" type also seems to occur in Paras 4,5,7 and 8. In addition, Para 6 [setfill] has a similar error, but relates only to ostreams.
I'd be happier if there was a better way of saying this, to make it clear that the value of the expression is "the same specialization of basic_ostream as out"&
Proposed resolution:
Replace section 27.7.4 [std.manip] except paragraph 1 with the following:
2- The type designated smanip in each of the following function descriptions is implementation-specified and may be different for each function.
smanip resetiosflags(ios_base::fmtflags mask);
-3- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits> then the expression out<<s behaves as if f(s, mask) were called, or if in is an instance of basic_istream<charT,traits> then the expression in>>s behaves as if f(s, mask) were called. The function f can be defined as:*
[Footnote: The expression cin >> resetiosflags(ios_base::skipws) clears ios_base::skipws in the format flags stored in the basic_istream<charT,traits> object cin (the same as cin >> noskipws), and the expression cout << resetiosflags(ios_base::showbase) clears ios_base::showbase in the format flags stored in the basic_ostream<charT,traits> object cout (the same as cout << noshowbase). --- end footnote]
ios_base& f(ios_base& str, ios_base::fmtflags mask)
{
// reset specified flags
str.setf(ios_base::fmtflags(0), mask);
return str;
}
The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has type basic_istream<charT,traits>& and value in.
smanip setiosflags(ios_base::fmtflags mask);
-4- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits> then the expression out<<s behaves as if f(s, mask) were called, or if in is an instance of basic_istream<charT,traits> then the expression in>>s behaves as if f(s, mask) were called. The function f can be defined as:
ios_base& f(ios_base& str, ios_base::fmtflags mask)
{
// set specified flags
str.setf(mask);
return str;
}
The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has type basic_istream<charT,traits>& and value in.
smanip setbase(int base);
-5- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits> then the expression out<<s behaves as if f(s, base) were called, or if in is an instance of basic_istream<charT,traits> then the expression in>>s behaves as if f(s, base) were called. The function f can be defined as:
ios_base& f(ios_base& str, int base)
{
// set basefield
str.setf(base == 8 ? ios_base::oct :
base == 10 ? ios_base::dec :
base == 16 ? ios_base::hex :
ios_base::fmtflags(0), ios_base::basefield);
return str;
}
The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has type basic_istream<charT,traits>& and value in.
smanip setfill(char_type c);
-6- Returns: An object s of unspecified type such that if out is (or is derived from) basic_ostream<charT,traits> and c has type charT then the expression out<<s behaves as if f(s, c) were called. The function f can be defined as:
template<class charT, class traits>
basic_ios<charT,traits>& f(basic_ios<charT,traits>& str, charT c)
{
// set fill character
str.fill(c);
return str;
}
The expression out<<s has type basic_ostream<charT,traits>& and value out.
smanip setprecision(int n);
-7- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits> then the expression out<<s behaves as if f(s, n) were called, or if in is an instance of basic_istream<charT,traits> then the expression in>>s behaves as if f(s, n) were called. The function f can be defined as:
ios_base& f(ios_base& str, int n)
{
// set precision
str.precision(n);
return str;
}
The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has type basic_istream<charT,traits>& and value in
.
smanip setw(int n);
-8- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits> then the expression out<<s behaves as if f(s, n) were called, or if in is an instance of basic_istream<charT,traits> then the expression in>>s behaves as if f(s, n) were called. The function f can be defined as:
ios_base& f(ios_base& str, int n)
{
// set width
str.width(n);
return str;
}
The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has type basic_istream<charT,traits>& and value in.
[Kona: Andy Sawyer and Beman Dawes will work to improve the wording of the proposed resolution.]
[Tokyo - The LWG noted that issue 216 involves the same paragraphs.]
[Post-Tokyo: The issues list maintainer combined the proposed resolution of this issue with the proposed resolution for issue 216 as they both involved the same paragraphs, and were so intertwined that dealing with them separately appear fraught with error. The full text was supplied by Bill Plauger; it was cross checked against changes supplied by Andy Sawyer. It should be further checked by the LWG.]
Section: 18.3.2.7 [numeric.special] Status: CD1 Submitter: Gabriel Dos Reis Opened: 1999-07-21 Last modified: 2015-04-08
View all other issues in [numeric.special].
View all issues with CD1 status.
Discussion:
bools are defined by the standard to be of integer types, as per 3.9.1 [basic.fundamental] paragraph 7. However "integer types" seems to have a special meaning for the author of 18.2. The net effect is an unclear and confusing specification for numeric_limits<bool> as evidenced below.
18.2.1.2/7 says numeric_limits<>::digits is, for built-in integer types, the number of non-sign bits in the representation.
4.5/4 states that a bool promotes to int ; whereas 4.12/1 says any non zero arithmetical value converts to true.
I don't think it makes sense at all to require numeric_limits<bool>::digits and numeric_limits<bool>::digits10 to be meaningful.
The standard defines what constitutes a signed (resp. unsigned) integer types. It doesn't categorize bool as being signed or unsigned. And the set of values of bool type has only two elements.
I don't think it makes sense to require numeric_limits<bool>::is_signed to be meaningful.
18.2.1.2/18 for numeric_limits<integer_type>::radix says:
For integer types, specifies the base of the representation.186)
This disposition is at best misleading and confusing for the standard requires a "pure binary numeration system" for integer types as per 3.9.1/7
The footnote 186) says: "Distinguishes types with base other than 2 (e.g BCD)." This also erroneous as the standard never defines any integer types with base representation other than 2.
Furthermore, numeric_limits<bool>::is_modulo and numeric_limits<bool>::is_signed have similar problems.
Proposed resolution:
Append to the end of 18.3.2.7 [numeric.special]:
The specialization for bool shall be provided as follows:
namespace std { template<> class numeric_limits<bool> { public: static const bool is_specialized = true; static bool min() throw() { return false; } static bool max() throw() { return true; } static const int digits = 1; static const int digits10 = 0; static const bool is_signed = false; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static bool epsilon() throw() { return 0; } static bool round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static bool infinity() throw() { return 0; } static bool quiet_NaN() throw() { return 0; } static bool signaling_NaN() throw() { return 0; } static bool denorm_min() throw() { return 0; } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = false; static const bool traps = false; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; }
[Tokyo: The LWG desires wording that specifies exact values rather than more general wording in the original proposed resolution.]
[Post-Tokyo: At the request of the LWG in Tokyo, Nico Josuttis provided the above wording.]
Section: 20.9 [function.objects] Status: CD1 Submitter: UK Panel Opened: 1999-07-26 Last modified: 2015-04-08
View all other issues in [function.objects].
View all issues with CD1 status.
Discussion:
Paragraph 4 of 20.9 [function.objects] says:
[Example: To negate every element of a: transform(a.begin(), a.end(), a.begin(), negate<double>()); The corresponding functions will inline the addition and the negation. end example]
(Note: The "addition" referred to in the above is in para 3) we can find no other wording, except this (non-normative) example which suggests that any "inlining" will take place in this case.
Indeed both:
17.4.4.3 Global Functions [lib.global.functions] 1 It is unspecified whether any global functions in the C++ Standard Library are defined as inline (7.1.2).
and
17.4.4.4 Member Functions [lib.member.functions] 1 It is unspecified whether any member functions in the C++ Standard Library are defined as inline (7.1.2).
take care to state that this may indeed NOT be the case.
Thus the example "mandates" behavior that is explicitly not required elsewhere.
Proposed resolution:
In 20.9 [function.objects] paragraph 1, remove the sentence:
They are important for the effective use of the library.
Remove 20.9 [function.objects] paragraph 2, which reads:
Using function objects together with function templates increases the expressive power of the library as well as making the resulting code much more efficient.
In 20.9 [function.objects] paragraph 4, remove the sentence:
The corresponding functions will inline the addition and the negation.
[Kona: The LWG agreed there was a defect.]
[Tokyo: The LWG crafted the proposed resolution.]
Section: 20.6.2 [bitset.members] Status: CD1 Submitter: Darin Adler Opened: 1999-08-13 Last modified: 2015-04-08
View all other issues in [bitset.members].
View all issues with CD1 status.
Discussion:
In section 20.6.2 [bitset.members], paragraph 13 defines the bitset::set operation to take a second parameter of type int. The function tests whether this value is non-zero to determine whether to set the bit to true or false. The type of this second parameter should be bool. For one thing, the intent is to specify a Boolean value. For another, the result type from test() is bool. In addition, it's possible to slice an integer that's larger than an int. This can't happen with bool, since conversion to bool has the semantic of translating 0 to false and any non-zero value to true.
Proposed resolution:
In 20.6 [template.bitset] Para 1 Replace:
bitset<N>& set(size_t pos, int val = true );
With:
bitset<N>& set(size_t pos, bool val = true );
In 20.6.2 [bitset.members] Para 12(.5) Replace:
bitset<N>& set(size_t pos, int val = 1 );
With:
bitset<N>& set(size_t pos, bool val = true );
[Kona: The LWG agrees with the description. Andy Sawyer will work on better P/R wording.]
[Post-Tokyo: Andy provided the above wording.]
Rationale:
bool is a better choice. It is believed that binary compatibility is not an issue, because this member function is usually implemented as inline, and because it is already the case that users cannot rely on the type of a pointer to a nonvirtual member of a standard library class.
Section: 25.3.3 [alg.swap] Status: CD1 Submitter: Andrew Koenig Opened: 1999-08-14 Last modified: 2015-04-08
View all other issues in [alg.swap].
View all issues with CD1 status.
Discussion:
The description of iter_swap in 25.2.2 paragraph 7,says that it
``exchanges the values'' of the objects to which two iterators
refer.
What it doesn't say is whether it does so using swap
or using the assignment operator and copy constructor.
This
question is an important one to answer, because swap is specialized to
work efficiently for standard containers.
For example:
vector<int> v1, v2; iter_swap(&v1, &v2);
Is this call to iter_swap equivalent to calling swap(v1, v2)? Or is it equivalent to
{ vector<int> temp = v1; v1 = v2; v2 = temp; }
The first alternative is O(1); the second is O(n).
A LWG member, Dave Abrahams, comments:
Not an objection necessarily, but I want to point out the cost of that requirement:
iter_swap(list<T>::iterator, list<T>::iterator)
can currently be specialized to be more efficient than iter_swap(T*,T*) for many T (by using splicing). Your proposal would make that optimization illegal.
[Kona: The LWG notes the original need for iter_swap was proxy iterators which are no longer permitted.]
Proposed resolution:
Change the effect clause of iter_swap in 25.2.2 paragraph 7 from:
Exchanges the values pointed to by the two iterators a and b.
to
swap(*a, *b).
Rationale:
It's useful to say just what iter_swap does. There may be some iterators for which we want to specialize iter_swap, but the fully general version should have a general specification.
Note that in the specific case of list<T>::iterator, iter_swap should not be specialized as suggested above. That would do much more than exchanging the two iterators' values: it would change predecessor/successor relationships, possibly moving the iterator from one list to another. That would surely be inappropriate.
Section: 27.5.3.2 [fmtflags.state] Status: TC1 Submitter: Andrew Koenig Opened: 1999-08-25 Last modified: 2015-04-08
View all other issues in [fmtflags.state].
View all issues with TC1 status.
Discussion:
27.4.2.2 paragraph 9 claims that setprecision() sets the precision,
and includes a parenthetical note saying that it is the number of
digits after the decimal point.
This claim is not strictly correct. For example, in the default
floating-point output format, setprecision sets the number of
significant digits printed, not the number of digits after the decimal
point.
I would like the committee to look at the definition carefully and
correct the statement in 27.4.2.2
Proposed resolution:
Remove from 27.5.3.2 [fmtflags.state], paragraph 9, the text "(number of digits after the decimal point)".
Section: 25.4.6 [alg.heap.operations] Status: TC1 Submitter: Markus Mauhart Opened: 1999-09-24 Last modified: 2015-04-08
View all other issues in [alg.heap.operations].
View all issues with TC1 status.
Duplicate of: 216
Discussion:
25.3.6 [lib.alg.heap.operations] states two key properties of a heap [a,b), the first of them
is
`"(1) *a is the largest element"
I think this is incorrect and should be changed to the wording in the proposed
resolution.
Actually there are two independent changes:
A-"part of largest equivalence class" instead of "largest", cause 25.3 [lib.alg.sorting] asserts "strict weak ordering" for all its sub clauses.
B-Take 'an oldest' from that equivalence class, otherwise the heap functions could not be used for a priority queue as explained in 23.2.3.2.2 [lib.priqueue.members] (where I assume that a "priority queue" respects priority AND time).
Proposed resolution:
Change 25.4.6 [alg.heap.operations] property (1) from:
(1) *a is the largest element
to:
(1) There is no element greater than *a
Section: 27.7.2.1.3 [istream::sentry] Status: TC1 Submitter: Matt Austern Opened: 1999-10-13 Last modified: 2015-04-08
View all other issues in [istream::sentry].
View all issues with TC1 status.
Discussion:
Suppose that is.flags() & ios_base::skipws is nonzero. What should basic_istream<>::sentry's constructor do if it reaches eof while skipping whitespace? 27.6.1.1.2/5 suggests it should set failbit. Should it set eofbit as well? The standard doesn't seem to answer that question.
On the one hand, nothing in 27.7.2.1.3 [istream::sentry] says that basic_istream<>::sentry should ever set eofbit. On the other hand, 27.7.2.1 [istream] paragraph 4 says that if extraction from a streambuf "returns traits::eof(), then the input function, except as explicitly noted otherwise, completes its actions and does setstate(eofbit)". So the question comes down to whether basic_istream<>::sentry's constructor is an input function.
Comments from Jerry Schwarz:
It was always my intention that eofbit should be set any time that a virtual returned something to indicate eof, no matter what reason iostream code had for calling the virtual.
The motivation for this is that I did not want to require streambufs to behave consistently if their virtuals are called after they have signaled eof.
The classic case is a streambuf reading from a UNIX file. EOF isn't really a state for UNIX file descriptors. The convention is that a read on UNIX returns 0 bytes to indicate "EOF", but the file descriptor isn't shut down in any way and future reads do not necessarily also return 0 bytes. In particular, you can read from tty's on UNIX even after they have signaled "EOF". (It isn't always understood that a ^D on UNIX is not an EOF indicator, but an EOL indicator. By typing a "line" consisting solely of ^D you cause a read to return 0 bytes, and by convention this is interpreted as end of file.)
Proposed resolution:
Add a sentence to the end of 27.6.1.1.2 paragraph 2:
If is.rdbuf()->sbumpc() or is.rdbuf()->sgetc() returns traits::eof(), the function calls setstate(failbit | eofbit) (which may throw ios_base::failure).
Section: X [iterator.concepts] Status: CD1 Submitter: Beman Dawes Opened: 1999-11-03 Last modified: 2015-04-08
View all other issues in [iterator.concepts].
View all issues with CD1 status.
Discussion:
Is a pointer or reference obtained from an iterator still valid after destruction of the iterator?
Is a pointer or reference obtained from an iterator still valid after the value of the iterator changes?
#include <iostream> #include <vector> #include <iterator> int main() { typedef std::vector<int> vec_t; vec_t v; v.push_back( 1 ); // Is a pointer or reference obtained from an iterator still // valid after destruction of the iterator? int * p = &*v.begin(); std::cout << *p << '\n'; // OK? // Is a pointer or reference obtained from an iterator still // valid after the value of the iterator changes? vec_t::iterator iter( v.begin() ); p = &*iter++; std::cout << *p << '\n'; // OK? return 0; }
The standard doesn't appear to directly address these questions. The standard needs to be clarified. At least two real-world cases have been reported where library implementors wasted considerable effort because of the lack of clarity in the standard. The question is important because requiring pointers and references to remain valid has the effect for practical purposes of prohibiting iterators from pointing to cached rather than actual elements of containers.
The standard itself assumes that pointers and references obtained from an iterator are still valid after iterator destruction or change. The definition of reverse_iterator::operator*(), 24.5.1.3.3 [reverse.iter.conv], which returns a reference, defines effects:
Iterator tmp = current; return *--tmp;
The definition of reverse_iterator::operator->(), 24.5.1.3.4 [reverse.iter.op.star], which returns a pointer, defines effects:
return &(operator*());
Because the standard itself assumes pointers and references remain valid after iterator destruction or change, the standard should say so explicitly. This will also reduce the chance of user code breaking unexpectedly when porting to a different standard library implementation.
Proposed resolution:
Add a new paragraph to X [iterator.concepts]:
Destruction of an iterator may invalidate pointers and references previously obtained from that iterator.
Replace paragraph 1 of 24.5.1.3.3 [reverse.iter.conv] with:
Effects:
this->tmp = current; --this->tmp; return *this->tmp;[Note: This operation must use an auxiliary member variable, rather than a temporary variable, to avoid returning a reference that persists beyond the lifetime of its associated iterator. (See X [iterator.concepts].) The name of this member variable is shown for exposition only. --end note]
[Post-Tokyo: The issue has been reformulated purely in terms of iterators.]
[Pre-Toronto: Steve Cleary pointed out the no-invalidation assumption by reverse_iterator. The issue and proposed resolution was reformulated yet again to reflect this reality.]
[Copenhagen: Steve Cleary pointed out that reverse_iterator assumes its underlying iterator has persistent pointers and references. Andy Koenig pointed out that it is possible to rewrite reverse_iterator so that it no longer makes such an assupmption. However, this issue is related to issue 299. If we decide it is intentional that p[n] may return by value instead of reference when p is a Random Access Iterator, other changes in reverse_iterator will be necessary.]
Rationale:
This issue has been discussed extensively. Note that it is not an issue about the behavior of predefined iterators. It is asking whether or not user-defined iterators are permitted to have transient pointers and references. Several people presented examples of useful user-defined iterators that have such a property; examples include a B-tree iterator, and an "iota iterator" that doesn't point to memory. Library implementors already seem to be able to cope with such iterators: they take pains to avoid forming references to memory that gets iterated past. The only place where this is a problem is reverse_iterator, so this issue changes reverse_iterator to make it work.
This resolution does not weaken any guarantees provided by predefined iterators like list<int>::iterator. Clause 23 should be reviewed to make sure that guarantees for predefined iterators are as strong as users expect.
Section: 17.6.3.5 [allocator.requirements] Status: TC1 Submitter: Matt Austern Opened: 1999-11-19 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with TC1 status.
Discussion:
Suppose that A is a class that conforms to the Allocator requirements of Table 32, and a is an object of class A What should be the return value of a.allocate(0)? Three reasonable possibilities: forbid the argument 0, return a null pointer, or require that the return value be a unique non-null pointer.
Proposed resolution:
Add a note to the allocate row of Table 32: "[Note: If n == 0, the return value is unspecified. --end note]"
Rationale:
A key to understanding this issue is that the ultimate use of allocate() is to construct an iterator, and that iterator for zero length sequences must be the container's past-the-end representation. Since this already implies special case code, it would be over-specification to mandate the return value.
Section: 24.2.5 [forward.iterators] Status: CD1 Submitter: Matt Austern Opened: 1999-11-19 Last modified: 2015-04-08
View all other issues in [forward.iterators].
View all issues with CD1 status.
Discussion:
In table 74, the return type of the expression *a is given as T&, where T is the iterator's value type. For constant iterators, however, this is wrong. ("Value type" is never defined very precisely, but it is clear that the value type of, say, std::list<int>::const_iterator is supposed to be int, not const int.)
Proposed resolution:
In table 74, in the *a and *r++ rows, change the return type from "T&" to "T& if X is mutable, otherwise const T&". In the a->m row, change the return type from "U&" to "U& if X is mutable, otherwise const U&".
[Tokyo: The LWG believes this is the tip of a larger iceberg; there are multiple const problems with the STL portion of the library and that these should be addressed as a single package. Note that issue 180 has already been declared NAD Future for that very reason.]
[Redmond: the LWG thinks this is separable from other constness issues. This issue is just cleanup; it clarifies language that was written before we had iterator_traits. Proposed resolution was modified: the original version only discussed *a. It was pointed out that we also need to worry about *r++ and a->m.]
Section: 18.3.2 [limits] Status: CD1 Submitter: Stephen Cleary Opened: 1999-12-21 Last modified: 2015-04-08
View all other issues in [limits].
View all issues with CD1 status.
Discussion:
In some places in this section, the terms "fundamental types" and "scalar types" are used when the term "arithmetic types" is intended. The current usage is incorrect because void is a fundamental type and pointers are scalar types, neither of which should have specializations of numeric_limits.
[Lillehammer: it remains true that numeric_limits is using imprecise language. However, none of the proposals for changed wording are clearer. A redesign of numeric_limits is needed, but this is more a task than an open issue.]
Proposed resolution:
Change 18.3 [support.limits] to:
-1- The headers <limits>, <climits>, <cfloat>, and <cinttypes> supply characteristics of implementation-dependent
fundamentalarithmetic types (3.9.1).
Change 18.3.2 [limits] to:
-1- The numeric_limits component provides a C++ program with information about various properties of the implementation's representation of the
fundamentalarithmetic types.-2- Specializations shall be provided for each
fundamentalarithmetic type, both floating point and integer, including bool. The member is_specialized shall be true for all such specializations of numeric_limits.-4- Non-
fundamentalarithmetic standard types, such as complex<T> (26.3.2), shall not have specializations.
Change 18.3.2.3 [numeric.limits] to:
-1- The member is_specialized makes it possible to distinguish between fundamental types, which have specializations, and non-scalar types, which do not.
Section: 25.3.9 [alg.unique] Status: CD1 Submitter: Andrew Koenig Opened: 2000-01-13 Last modified: 2015-04-08
View all other issues in [alg.unique].
View all issues with CD1 status.
Discussion:
What should unique() do if you give it a predicate that is not an equivalence relation? There are at least two plausible answers:
1. You can't, because 25.2.8 says that it it "eliminates all but the first element from every consecutive group of equal elements..." and it wouldn't make sense to interpret "equal" as meaning anything but an equivalence relation. [It also doesn't make sense to interpret "equal" as meaning ==, because then there would never be any sense in giving a predicate as an argument at all.]
2. The word "equal" should be interpreted to mean whatever the predicate says, even if it is not an equivalence relation (and in particular, even if it is not transitive).
The example that raised this question is from Usenet:
int f[] = { 1, 3, 7, 1, 2 }; int* z = unique(f, f+5, greater<int>());
If one blindly applies the definition using the predicate greater<int>, and ignore the word "equal", you get:
Eliminates all but the first element from every consecutive group of elements referred to by the iterator i in the range [first, last) for which *i > *(i - 1).
The first surprise is the order of the comparison. If we wanted to
allow for the predicate not being an equivalence relation, then we
should surely compare elements the other way: pred(*(i - 1), *i). If
we do that, then the description would seem to say: "Break the
sequence into subsequences whose elements are in strictly increasing
order, and keep only the first element of each subsequence". So the
result would be 1, 1, 2. If we take the description at its word, it
would seem to call for strictly DEcreasing order, in which case the
result should be 1, 3, 7, 2.
In fact, the SGI implementation of unique() does neither: It yields 1,
3, 7.
Proposed resolution:
Change 25.3.9 [alg.unique] paragraph 1 to:
For a nonempty range, eliminates all but the first element from every consecutive group of equivalent elements referred to by the iterator i in the range [first+1, last) for which the following conditions hold: *(i-1) == *i or pred(*(i-1), *i) != false.
Also insert a new paragraph, paragraph 2a, that reads: "Requires: The comparison function must be an equivalence relation."
[Redmond: discussed arguments for and against requiring the comparison function to be an equivalence relation. Straw poll: 14-2-5. First number is to require that it be an equivalence relation, second number is to explicitly not require that it be an equivalence relation, third number is people who believe they need more time to consider the issue. A separate issue: Andy Sawyer pointed out that "i-1" is incorrect, since "i" can refer to the first iterator in the range. Matt provided wording to address this problem.]
[Curaçao: The LWG changed "... the range (first, last)..." to "... the range [first+1, last)..." for clarity. They considered this change close enough to editorial to not require another round of review.]
Rationale:
The LWG also considered an alternative resolution: change 25.3.9 [alg.unique] paragraph 1 to:
For a nonempty range, eliminates all but the first element from every consecutive group of elements referred to by the iterator i in the range (first, last) for which the following conditions hold: *(i-1) == *i or pred(*(i-1), *i) != false.
Also insert a new paragraph, paragraph 1a, that reads: "Notes: The comparison function need not be an equivalence relation."
Informally: the proposed resolution imposes an explicit requirement that the comparison function be an equivalence relation. The alternative resolution does not, and it gives enough information so that the behavior of unique() for a non-equivalence relation is specified. Both resolutions are consistent with the behavior of existing implementations.
Section: 18.6.1.1 [new.delete.single] Status: CD1 Submitter: Howard Hinnant Opened: 1999-08-29 Last modified: 2015-04-08
View all other issues in [new.delete.single].
View all issues with CD1 status.
Discussion:
As specified, the implementation of the nothrow version of operator new does not necessarily call the ordinary operator new, but may instead simply call the same underlying allocator and return a null pointer instead of throwing an exception in case of failure.
Such an implementation breaks code that replaces the ordinary version of new, but not the nothrow version. If the ordinary version of new/delete is replaced, and if the replaced delete is not compatible with pointers returned from the library versions of new, then when the replaced delete receives a pointer allocated by the library new(nothrow), crash follows.
The fix appears to be that the lib version of new(nothrow) must call the ordinary new. Thus when the ordinary new gets replaced, the lib version will call the replaced ordinary new and things will continue to work.
An alternative would be to have the ordinary new call new(nothrow). This seems sub-optimal to me as the ordinary version of new is the version most commonly replaced in practice. So one would still need to replace both ordinary and nothrow versions if one wanted to replace the ordinary version.
Another alternative is to put in clear text that if one version is replaced, then the other must also be replaced to maintain compatibility. Then the proposed resolution below would just be a quality of implementation issue. There is already such text in paragraph 7 (under the new(nothrow) version). But this nuance is easily missed if one reads only the paragraphs relating to the ordinary new.
N2158 has been written explaining the rationale for the proposed resolution below.
Proposed resolution:
Change 18.5.1.1 [new.delete.single]:
void* operator new(std::size_t size, const std::nothrow_t&) throw();-5- Effects: Same as above, except that it is called by a placement version of a new-expression when a C++ program prefers a null pointer result as an error indication, instead of a bad_alloc exception.
-6- Replaceable: a C++ program may define a function with this function signature that displaces the default version defined by the C++ Standard library.
-7- Required behavior: Return a non-null pointer to suitably aligned storage (3.7.4), or else return a null pointer. This nothrow version of operator new returns a pointer obtained as if acquired from the (possibly replaced) ordinary version. This requirement is binding on a replacement version of this function.
-8- Default behavior:
- Calls operator new(size).
- If the call to operator new(size) returns normally, returns the result of that call, else
- if the call to operator new(size) throws an exception, returns a null pointer.
Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether the attempt involves a call to the Standard C library function malloc is unspecified.Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last argument to set_new_handler() was a null pointer, return a null pointer.Otherwise, the function calls the current new_handler (18.5.2.2). If the called function returns, the loop repeats.The loop terminates when an attempt to allocate the requested storage is successful or when a called new_handler function does not return. If the called new_handler function terminates by throwing a bad_alloc exception, the function returns a null pointer.-9- [Example:
T* p1 = new T; // throws bad_alloc if it fails T* p2 = new(nothrow) T; // returns 0 if it fails--end example]
void operator delete(void* ptr) throw();void operator delete(void* ptr, const std::nothrow_t&) throw();-10- Effects: The deallocation function (3.7.4.2) called by a delete-expression to render the value of ptr invalid.
-11- Replaceable: a C++ program may define a function with this function signature that displaces the default version defined by the C++ Standard library.
-12- Requires: the value of ptr is null or the value returned by an earlier call to the
default(possibly replaced) operator new(std::size_t) or operator new(std::size_t, const std::nothrow_t&).-13- Default behavior:
- For a null value of ptr, do nothing.
- Any other value of ptr shall be a value returned earlier by a call to the default operator new, which was not invalidated by an intervening call to operator delete(void*) (17.4.3.7). For such a non-null value of ptr, reclaims storage allocated by the earlier call to the default operator new.
-14- Remarks: It is unspecified under what conditions part or all of such reclaimed storage is allocated by a subsequent call to operator new or any of calloc, malloc, or realloc, declared in <cstdlib>.
void operator delete(void* ptr, const std::nothrow_t&) throw();-15- Effects: Same as above, except that it is called by the implementation when an exception propagates from a nothrow placement version of the new-expression (i.e. when the constructor throws an exception).
-16- Replaceable: a C++ program may define a function with this function signature that displaces the default version defined by the C++ Standard library.
-17- Requires: the value of ptr is null or the value returned by an earlier call to the (possibly replaced) operator new(std::size_t) or operator new(std::size_t, const std::nothrow_t&).
-18- Default behavior: Calls operator delete(ptr).
Change 18.5.1.2 [new.delete.array]
void* operator new[](std::size_t size, const std::nothrow_t&) throw();-5- Effects: Same as above, except that it is called by a placement version of a new-expression when a C++ program prefers a null pointer result as an error indication, instead of a bad_alloc exception.
-6- Replaceable: a C++ program can define a function with this function signature that displaces the default version defined by the C++ Standard library.
-7- Required behavior:
Same as for operator new(std::size_t, const std::nothrow_t&). This nothrow version of operator new[] returns a pointer obtained as if acquired from the ordinary version.Return a non-null pointer to suitably aligned storage (3.7.4), or else return a null pointer. This nothrow version of operator new returns a pointer obtained as if acquired from the (possibly replaced) operator new[](std::size_t size). This requirement is binding on a replacement version of this function.-8- Default behavior:
Returns operator new(size, nothrow).
- Calls operator new[](size).
- If the call to operator new[](size) returns normally, returns the result of that call, else
- if the call to operator new[](size) throws an exception, returns a null pointer.
void operator delete[](void* ptr) throw(); void operator delete[](void* ptr, const std::nothrow_t&) throw();-9- Effects: The deallocation function (3.7.4.2) called by the array form of a delete-expression to render the value of ptr invalid.
-10- Replaceable: a C++ program can define a function with this function signature that displaces the default version defined by the C++ Standard library.
-11- Requires: the value of ptr is null or the value returned by an earlier call to operator new[](std::size_t) or operator new[](std::size_t, const std::nothrow_t&).
-12- Default behavior: Calls operator delete(ptr) or operator delete[](ptr
, std::nothrow) respectively.
Rationale:
Yes, they may become unlinked, and that is by design. If a user replaces one, the user should also replace the other.
[ Reopened due to a gcc conversation between Howard, Martin and Gaby. Forwarding or not is visible behavior to the client and it would be useful for the client to know which behavior it could depend on. ]
[ Batavia: Robert voiced serious reservations about backwards compatibility for his customers. ]
Section: X [iterator.concepts] Status: TC1 Submitter: Stephen Cleary Opened: 2000-02-02 Last modified: 2015-04-08
View all other issues in [iterator.concepts].
View all issues with TC1 status.
Discussion:
In 24.1 paragraph 5, it is stated ". . . Dereferenceable and past-the-end values are always non-singular."
This places an unnecessary restriction on past-the-end iterators for containers with forward iterators (for example, a singly-linked list). If the past-the-end value on such a container was a well-known singular value, it would still satisfy all forward iterator requirements.
Removing this restriction would allow, for example, a singly-linked list without a "footer" node.
This would have an impact on existing code that expects past-the-end iterators obtained from different (generic) containers being not equal.
Proposed resolution:
Change X [iterator.concepts] paragraph 5, the last sentence, from:
Dereferenceable and past-the-end values are always non-singular.
to:
Dereferenceable values are always non-singular.
Rationale:
For some kinds of containers, including singly linked lists and zero-length vectors, null pointers are perfectly reasonable past-the-end iterators. Null pointers are singular.
Section: 21.4 [basic.string] Status: TC1 Submitter: Igor Stauder Opened: 2000-02-11 Last modified: 2015-04-08
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with TC1 status.
Discussion:
In Section 21.4 [basic.string] the basic_string member function declarations use a consistent style except for the following functions:
void push_back(const charT); basic_string& assign(const basic_string&); void swap(basic_string<charT,traits,Allocator>&);
- push_back, assign, swap: missing argument name
- push_back: use of const with charT (i.e. POD type passed by value
not by reference - should be charT or const charT& )
- swap: redundant use of template parameters in argument
basic_string<charT,traits,Allocator>&
Proposed resolution:
In Section 21.4 [basic.string] change the basic_string member function declarations push_back, assign, and swap to:
void push_back(charT c); basic_string& assign(const basic_string& str); void swap(basic_string& str);
Rationale:
Although the standard is in general not consistent in declaration style, the basic_string declarations are consistent other than the above. The LWG felt that this was sufficient reason to merit the change.
Section: 25 [algorithms] Status: TC1 Submitter: Lisa Lippincott Opened: 2000-02-15 Last modified: 2015-04-08
View other active issues in [algorithms].
View all other issues in [algorithms].
View all issues with TC1 status.
Discussion:
In paragraph 9 of section 25 [algorithms], it is written:
In the description of the algorithms operators + and - are used for some of the iterator categories for which they do not have to be defined. In these cases the semantics of [...] a-b is the same as of
return distance(a, b);
Proposed resolution:
On the last line of paragraph 9 of section 25 [algorithms] change "a-b" to "b-a".
Rationale:
There are two ways to fix the defect; change the description to b-a or change the return to distance(b,a). The LWG preferred the former for consistency.
Section: 21.4.8.9 [string.io] Status: TC1 Submitter: Scott Snyder Opened: 2000-02-04 Last modified: 2015-04-08
View all other issues in [string.io].
View all issues with TC1 status.
Discussion:
The description of the stream extraction operator for std::string (section 21.3.7.9 [lib.string.io]) does not contain a requirement that failbit be set in the case that the operator fails to extract any characters from the input stream.
This implies that the typical construction
std::istream is; std::string str; ... while (is >> str) ... ;
(which tests failbit) is not required to terminate at EOF.
Furthermore, this is inconsistent with other extraction operators, which do include this requirement. (See sections 27.7.2.2 [istream.formatted] and 27.7.2.3 [istream.unformatted]), where this requirement is present, either explicitly or implicitly, for the extraction operators. It is also present explicitly in the description of getline (istream&, string&, charT) in section 21.4.8.9 [string.io] paragraph 8.)
Proposed resolution:
Insert new paragraph after paragraph 2 in section 21.4.8.9 [string.io]:
If the function extracts no characters, it calls is.setstate(ios::failbit) which may throw ios_base::failure (27.4.4.3).
Section: 25.4.7 [alg.min.max] Status: TC1 Submitter: Nico Josuttis Opened: 2000-02-26 Last modified: 2015-04-08
View all other issues in [alg.min.max].
View all issues with TC1 status.
Discussion:
The standard doesn't specify what min_element() and max_element() shall return if the range is empty (first equals last). The usual implementations return last. This problem seems also apply to partition(), stable_partition(), next_permutation(), and prev_permutation().
Proposed resolution:
In 25.4.7 [alg.min.max] - Minimum and maximum, paragraphs 7 and 9, append: Returns last if first==last.
Rationale:
The LWG looked in some detail at all of the above mentioned algorithms, but believes that except for min_element() and max_element() it is already clear that last is returned if first == last.
Section: 23.4.6 [set], 23.4.7 [multiset] Status: CD1 Submitter: Judy Ward Opened: 2000-02-28 Last modified: 2015-04-08
View all other issues in [set].
View all issues with CD1 status.
Duplicate of: 450
Discussion:
The specification for the associative container requirements in Table 69 state that the find member function should "return iterator; const_iterator for constant a". The map and multimap container descriptions have two overloaded versions of find, but set and multiset do not, all they have is:
iterator find(const key_type & x) const;
Proposed resolution:
Change the prototypes for find(), lower_bound(), upper_bound(), and equal_range() in section 23.4.6 [set] and section 23.4.7 [multiset] to each have two overloads:
iterator find(const key_type & x); const_iterator find(const key_type & x) const;iterator lower_bound(const key_type & x); const_iterator lower_bound(const key_type & x) const;iterator upper_bound(const key_type & x); const_iterator upper_bound(const key_type & x) const;pair<iterator, iterator> equal_range(const key_type & x); pair<const_iterator, const_iterator> equal_range(const key_type & x) const;
[Tokyo: At the request of the LWG, Judy Ward provided wording extending the proposed resolution to lower_bound, upper_bound, and equal_range.]
Section: 22.4.8 [facets.examples] Status: TC1 Submitter: Martin Sebor Opened: 2000-02-29 Last modified: 2015-04-08
View all other issues in [facets.examples].
View all issues with TC1 status.
Discussion:
The example in 22.2.8, paragraph 11 contains the following errors:
1) The member function `My::JCtype::is_kanji()' is non-const; the function must be const in order for it to be callable on a const object (a reference to which which is what std::use_facet<>() returns).
2) In file filt.C, the definition of `JCtype::id' must be qualified with the name of the namespace `My'.
3) In the definition of `loc' and subsequently in the call to use_facet<>() in main(), the name of the facet is misspelled: it should read `My::JCtype' rather than `My::JCType'.
Proposed resolution:
Replace the "Classifying Japanese characters" example in 22.2.8, paragraph 11 with the following:
#include <locale>
namespace My { using namespace std; class JCtype : public locale::facet { public: static locale::id id; // required for use as a new locale facet bool is_kanji (wchar_t c) const; JCtype() {} protected: ~JCtype() {} }; }
// file: filt.C #include <iostream> #include <locale> #include "jctype" // above std::locale::id My::JCtype::id; // the static JCtype member declared above.
int main() { using namespace std; typedef ctype<wchar_t> wctype; locale loc(locale(""), // the user's preferred locale... new My::JCtype); // and a new feature ... wchar_t c = use_facet<wctype>(loc).widen('!'); if (!use_facet<My::JCtype>(loc).is_kanji(c)) cout << "no it isn't!" << endl; return 0; }
Section: 27.5.3.7 [ios.base.cons] Status: TC1 Submitter: Jonathan Schilling, Howard Hinnant Opened: 2000-03-13 Last modified: 2015-04-08
View all issues with TC1 status.
Discussion:
The pre-conditions for the ios_base destructor are described in 27.4.2.7 paragraph 2:
Effects: Destroys an object of class ios_base. Calls each registered callback pair (fn,index) (27.4.2.6) as (*fn)(erase_event,*this,index) at such time that any ios_base member function called from within fn has well defined results.
But what is not clear is: If no callback functions were ever registered, does it matter whether the ios_base members were ever initialized?
For instance, does this program have defined behavior:
#include <ios>class D : public std::ios_base { };int main() { D d; }
It seems that registration of a callback function would surely affect the state of an ios_base. That is, when you register a callback function with an ios_base, the ios_base must record that fact somehow.
But if after construction the ios_base is in an indeterminate state, and that state is not made determinate before the destructor is called, then how would the destructor know if any callbacks had indeed been registered? And if the number of callbacks that had been registered is indeterminate, then is not the behavior of the destructor undefined?
By comparison, the basic_ios class description in 27.4.4.1 paragraph 2 makes it explicit that destruction before initialization results in undefined behavior.
Proposed resolution:
Modify 27.4.2.7 paragraph 1 from
Effects: Each ios_base member has an indeterminate value after construction.
to
Effects: Each ios_base member has an indeterminate value after construction. These members must be initialized by calling basic_ios::init. If an ios_base object is destroyed before these initializations have taken place, the behavior is undefined.
Section: 22.4.2.1.2 [facet.num.get.virtuals] Status: CD1 Submitter: Matt Austern Opened: 2000-03-14 Last modified: 2015-04-08
View other active issues in [facet.num.get.virtuals].
View all other issues in [facet.num.get.virtuals].
View all issues with CD1 status.
Discussion:
Stage 2 processing of numeric conversion is broken.
Table 55 in 22.2.2.1.2 says that when basefield is 0 the integral conversion specifier is %i. A %i specifier determines a number's base by its prefix (0 for octal, 0x for hex), so the intention is clearly that a 0x prefix is allowed. Paragraph 8 in the same section, however, describes very precisely how characters are processed. (It must be done "as if" by a specified code fragment.) That description does not allow a 0x prefix to be recognized.
Very roughly, stage 2 processing reads a char_type ct. It converts ct to a char, not by using narrow but by looking it up in a translation table that was created by widening the string literal "0123456789abcdefABCDEF+-". The character "x" is not found in that table, so it can't be recognized by stage 2 processing.
Proposed resolution:
In 22.2.2.1.2 paragraph 8, replace the line:
static const char src[] = "0123456789abcdefABCDEF+-";
with the line:
static const char src[] = "0123456789abcdefxABCDEFX+-";
Rationale:
If we're using the technique of widening a string literal, the string literal must contain every character we wish to recognize. This technique has the consequence that alternate representations of digits will not be recognized. This design decision was made deliberately, with full knowledge of that limitation.
Section: 17.5.1.4 [structure.specifications] Status: TC1 Submitter: Judy Ward Opened: 2000-03-17 Last modified: 2015-04-08
View all other issues in [structure.specifications].
View all issues with TC1 status.
Discussion:
Section 21.3.6.8 describes the basic_string::compare function this way:
21.3.6.8 - basic_string::compare [lib.string::compare] int compare(size_type pos1, size_type n1, const basic_string<charT,traits,Allocator>& str , size_type pos2 , size_type n2 ) const; -4- Returns: basic_string<charT,traits,Allocator>(*this,pos1,n1).compare( basic_string<charT,traits,Allocator>(str,pos2,n2)) .
and the constructor that's implicitly called by the above is defined to throw an out-of-range exception if pos > str.size(). See section 21.4.1 [string.require] paragraph 4.
On the other hand, the compare function descriptions themselves don't have "Throws: " clauses and according to 17.3.1.3, paragraph 3, elements that do not apply to a function are omitted.
So it seems there is an inconsistency in the standard -- are the "Effects" clauses correct, or are the "Throws" clauses missing?
Proposed resolution:
In 17.5.1.4 [structure.specifications] paragraph 3, the footnote 148 attached to the sentence "Descriptions of function semantics contain the following elements (as appropriate):", insert the word "further" so that the foot note reads:
To save space, items that do not apply to a function are omitted. For example, if a function does not specify any further preconditions, there will be no "Requires" paragraph.
Rationale:
The standard is somewhat inconsistent, but a failure to note a throw condition in a throws clause does not grant permission not to throw. The inconsistent wording is in a footnote, and thus non-normative. The proposed resolution from the LWG clarifies the footnote.
Section: 25.3.10 [alg.reverse] Status: TC1 Submitter: Dave Abrahams Opened: 2000-03-21 Last modified: 2015-04-08
View all other issues in [alg.reverse].
View all issues with TC1 status.
Discussion:
Shouldn't the effects say "applies iter_swap to all pairs..."?
Proposed resolution:
In 25.3.10 [alg.reverse], replace:
Effects: For each non-negative integer i <= (last - first)/2, applies swap to all pairs of iterators first + i, (last - i) - 1.
with:
Effects: For each non-negative integer i <= (last - first)/2, applies iter_swap to all pairs of iterators first + i, (last - i) - 1.
Section: 23.2.4 [associative.reqmts] Status: TC1 Submitter: Ed Brey Opened: 2000-03-23 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with TC1 status.
Discussion:
In the associative container requirements table in 23.1.2 paragraph 7, a.clear() has complexity "log(size()) + N". However, the meaning of N is not defined.
Proposed resolution:
In the associative container requirements table in 23.1.2 paragraph 7, the complexity of a.clear(), change "log(size()) + N" to "linear in size()".
Rationale:
It's the "log(size())", not the "N", that is in error: there's no difference between O(N) and O(N + log(N)). The text in the standard is probably an incorrect cut-and-paste from the range version of erase.
Section: 17.6.5.4 [global.functions] Status: CD1 Submitter: Dave Abrahams Opened: 2000-04-01 Last modified: 2015-04-08
View all other issues in [global.functions].
View all issues with CD1 status.
Discussion:
Are algorithms in std:: allowed to use other algorithms without qualification, so functions in user namespaces might be found through Koenig lookup?
For example, a popular standard library implementation includes this implementation of std::unique:
namespace std { template <class _ForwardIter> _ForwardIter unique(_ForwardIter __first, _ForwardIter __last) { __first = adjacent_find(__first, __last); return unique_copy(__first, __last, __first); } }
Imagine two users on opposite sides of town, each using unique on his own sequences bounded by my_iterators . User1 looks at his standard library implementation and says, "I know how to implement a more efficient unique_copy for my_iterators", and writes:
namespace user1 { class my_iterator; // faster version for my_iterator my_iterator unique_copy(my_iterator, my_iterator, my_iterator); }
user1::unique_copy() is selected by Koenig lookup, as he intended.
User2 has other needs, and writes:
namespace user2 { class my_iterator; // Returns true iff *c is a unique copy of *a and *b. bool unique_copy(my_iterator a, my_iterator b, my_iterator c); }
User2 is shocked to find later that his fully-qualified use of std::unique(user2::my_iterator, user2::my_iterator, user2::my_iterator) fails to compile (if he's lucky). Looking in the standard, he sees the following Effects clause for unique():
Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by the iterator i in the range [first, last) for which the following corresponding conditions hold: *i == *(i - 1) or pred(*i, *(i - 1)) != false
The standard gives user2 absolutely no reason to think he can interfere with std::unique by defining names in namespace user2. His standard library has been built with the template export feature, so he is unable to inspect the implementation. User1 eventually compiles his code with another compiler, and his version of unique_copy silently stops being called. Eventually, he realizes that he was depending on an implementation detail of his library and had no right to expect his unique_copy() to be called portably.
On the face of it, and given above scenario, it may seem obvious that the implementation of unique() shown is non-conforming because it uses unique_copy() rather than ::std::unique_copy(). Most standard library implementations, however, seem to disagree with this notion.
[Tokyo: Steve Adamczyk from the core working group indicates that "std::" is sufficient; leading "::" qualification is not required because any namespace qualification is sufficient to suppress Koenig lookup.]
Proposed resolution:
Add a paragraph and a note at the end of 17.6.5.4 [global.functions]:
Unless otherwise specified, no global or non-member function in the standard library shall use a function from another namespace which is found through argument-dependent name lookup (3.4.2 [basic.lookup.argdep]).
[Note: the phrase "unless otherwise specified" is intended to allow Koenig lookup in cases like that of ostream_iterators:
Effects:*out_stream << value;
if(delim != 0) *out_stream << delim;
return (*this);--end note]
[Tokyo: The LWG agrees that this is a defect in the standard, but is as yet unsure if the proposed resolution is the best solution. Furthermore, the LWG believes that the same problem of unqualified library names applies to wording in the standard itself, and has opened issue 229 accordingly. Any resolution of issue 225 should be coordinated with the resolution of issue 229.]
[Toronto: The LWG is not sure if this is a defect in the standard. Most LWG members believe that an implementation of std::unique like the one quoted in this issue is already illegal, since, under certain circumstances, its semantics are not those specified in the standard. The standard's description of unique does not say that overloading adjacent_find should have any effect.]
[Curaçao: An LWG-subgroup spent an afternoon working on issues 225, 226, and 229. Their conclusion was that the issues should be separated into an LWG portion (Howard's paper, N1387=02-0045), and a EWG portion (Dave will write a proposal). The LWG and EWG had (separate) discussions of this plan the next day. The proposed resolution for this issue is in accordance with Howard's paper.]
Rationale:
It could be argued that this proposed isn't strictly necessary, that the Standard doesn't grant implementors license to write a standard function that behaves differently than specified in the Standard just because of an unrelated user-defined name in some other namespace. However, this is at worst a clarification. It is surely right that algorithsm shouldn't pick up random names, that user-defined names should have no effect unless otherwise specified. Issue 226 deals with the question of when it is appropriate for the standard to explicitly specify otherwise.
Section: 17.6.4.3 [reserved.names] Status: CD1 Submitter: Dave Abrahams Opened: 2000-04-01 Last modified: 2015-04-08
View all other issues in [reserved.names].
View all issues with CD1 status.
Discussion:
The issues are:
1. How can a 3rd party library implementor (lib1) write a version of a standard algorithm which is specialized to work with his own class template?
2. How can another library implementor (lib2) write a generic algorithm which will take advantage of the specialized algorithm in lib1?
This appears to be the only viable answer under current language rules:
namespace lib1 { // arbitrary-precision numbers using T as a basic unit template <class T> class big_num { //... };// defining this in namespace std is illegal (it would be an // overload), so we hope users will rely on Koenig lookup template <class T> void swap(big_int<T>&, big_int<T>&); }#include <algorithm> namespace lib2 { template <class T> void generic_sort(T* start, T* end) { ... // using-declaration required so we can work on built-in types using std::swap; // use Koenig lookup to find specialized algorithm if available swap(*x, *y); } }
This answer has some drawbacks. First of all, it makes writing lib2 difficult and somewhat slippery. The implementor needs to remember to write the using-declaration, or generic_sort will fail to compile when T is a built-in type. The second drawback is that the use of this style in lib2 effectively "reserves" names in any namespace which defines types which may eventually be used with lib2. This may seem innocuous at first when applied to names like swap, but consider more ambiguous names like unique_copy() instead. It is easy to imagine the user wanting to define these names differently in his own namespace. A definition with semantics incompatible with the standard library could cause serious problems (see issue 225).
Why, you may ask, can't we just partially specialize std::swap()? It's because the language doesn't allow for partial specialization of function templates. If you write:
namespace std { template <class T> void swap(lib1::big_int<T>&, lib1::big_int<T>&); }
You have just overloaded std::swap, which is illegal under the current language rules. On the other hand, the following full specialization is legal:
namespace std { template <> void swap(lib1::other_type&, lib1::other_type&); }
This issue reflects concerns raised by the "Namespace issue with specialized swap" thread on comp.lang.c++.moderated. A similar set of concerns was earlier raised on the boost.org mailing list and the ACCU-general mailing list. Also see library reflector message c++std-lib-7354.
J. C. van Winkel points out (in c++std-lib-9565) another unexpected fact: it's impossible to output a container of std::pair's using copy and an ostream_iterator, as long as both pair-members are built-in or std:: types. That's because a user-defined operator<< for (for example) std::pair<const std::string, int> will not be found: lookup for operator<< will be performed only in namespace std. Opinions differed on whether or not this was a defect, and, if so, whether the defect is that something is wrong with user-defined functionality and std, or whether it's that the standard library does not provide an operator<< for std::pair<>.
Proposed resolution:
Adopt the wording proposed in Howard Hinnant's paper N1523=03-0106, "Proposed Resolution To LWG issues 225, 226, 229".
[Tokyo: Summary, "There is no conforming way to extend std::swap for user defined templates." The LWG agrees that there is a problem. Would like more information before proceeding. This may be a core issue. Core issue 229 has been opened to discuss the core aspects of this problem. It was also noted that submissions regarding this issue have been received from several sources, but too late to be integrated into the issues list. ]
[Post-Tokyo: A paper with several proposed resolutions, J16/00-0029==WG21/N1252, "Shades of namespace std functions " by Alan Griffiths, is in the Post-Tokyo mailing. It should be considered a part of this issue.]
[Toronto: Dave Abrahams and Peter Dimov have proposed a resolution that involves core changes: it would add partial specialization of function template. The Core Working Group is reluctant to add partial specialization of function templates. It is viewed as a large change, CWG believes that proposal presented leaves some syntactic issues unanswered; if the CWG does add partial specialization of function templates, it wishes to develop its own proposal. The LWG continues to believe that there is a serious problem: there is no good way for users to force the library to use user specializations of generic standard library functions, and in certain cases (e.g. transcendental functions called by valarray and complex) this is important. Koenig lookup isn't adequate, since names within the library must be qualified with std (see issue 225), specialization doesn't work (we don't have partial specialization of function templates), and users aren't permitted to add overloads within namespace std. ]
[Copenhagen: Discussed at length, with no consensus. Relevant papers in the pre-Copenhagen mailing: N1289, N1295, N1296. Discussion focused on four options. (1) Relax restrictions on overloads within namespace std. (2) Mandate that the standard library use unqualified calls for swap and possibly other functions. (3) Introduce helper class templates for swap and possibly other functions. (4) Introduce partial specialization of function templates. Every option had both support and opposition. Straw poll (first number is support, second is strongly opposed): (1) 6, 4; (2) 6, 7; (3) 3, 8; (4) 4, 4.]
[Redmond: Discussed, again no consensus. Herb presented an argument that a user who is defining a type T with an associated swap should not be expected to put that swap in namespace std, either by overloading or by partial specialization. The argument is that swap is part of T's interface, and thus should to in the same namespace as T and only in that namespace. If we accept this argument, the consequence is that standard library functions should use unqualified call of swap. (And which other functions? Any?) A small group (Nathan, Howard, Jeremy, Dave, Matt, Walter, Marc) will try to put together a proposal before the next meeting.]
[Curaçao: An LWG-subgroup spent an afternoon working on issues 225, 226, and 229. Their conclusion was that the issues should be separated into an LWG portion (Howard's paper, N1387=02-0045), and a EWG portion (Dave will write a proposal). The LWG and EWG had (separate) discussions of this plan the next day. The proposed resolution is the one proposed by Howard.]
[Santa Cruz: the LWG agreed with the general direction of Howard's paper, N1387. (Roughly: Koenig lookup is disabled unless we say otherwise; this issue is about when we do say otherwise.) However, there were concerns about wording. Howard will provide new wording. Bill and Jeremy will review it.]
[Kona: Howard proposed the new wording. The LWG accepted his proposed resolution.]
Rationale:
Informally: introduce a Swappable concept, and specify that the value types of the iterators passed to certain standard algorithms (such as iter_swap, swap_ranges, reverse, rotate, and sort) conform to that concept. The Swappable concept will make it clear that these algorithms use unqualified lookup for the calls to swap. Also, in 26.6.3.3 [valarray.transcend] paragraph 1, state that the valarray transcendentals use unqualified lookup.
Section: 25.3.3 [alg.swap] Status: TC1 Submitter: Dave Abrahams Opened: 2000-04-09 Last modified: 2015-04-08
View all other issues in [alg.swap].
View all issues with TC1 status.
Discussion:
25.2.2 reads:
template<class T> void swap(T& a, T& b);
Requires: Type T is Assignable (_lib.container.requirements_).
Effects: Exchanges values stored in two locations.
The only reasonable** generic implementation of swap requires construction of a new temporary copy of one of its arguments:
template<class T> void swap(T& a, T& b); { T tmp(a); a = b; b = tmp; }
But a type which is only Assignable cannot be swapped by this implementation.
**Yes, there's also an unreasonable implementation which would require T to be DefaultConstructible instead of CopyConstructible. I don't think this is worthy of consideration:
template<class T> void swap(T& a, T& b); { T tmp; tmp = a; a = b; b = tmp; }
Proposed resolution:
Change 25.2.2 paragraph 1 from:
Requires: Type T is Assignable (23.1).
to:
Requires: Type T is CopyConstructible (20.1.3) and Assignable (23.1)
Section: 22.4 [locale.categories] Status: CD1 Submitter: Dietmar Kühl Opened: 2000-04-20 Last modified: 2015-04-08
View all other issues in [locale.categories].
View all issues with CD1 status.
Discussion:
The sections 22.4.1.2 [locale.ctype.byname], 22.4.1.5 [locale.codecvt.byname], sref ref="22.2.1.6", 22.4.3.2 [locale.numpunct.byname], 22.4.4.2 [locale.collate.byname], 22.4.5.4 [locale.time.put.byname], 22.4.6.4 [locale.moneypunct.byname], and 22.4.7.2 [locale.messages.byname] overspecify the definitions of the "..._byname" classes by listing a bunch of virtual functions. At the same time, no semantics of these functions are defined. Real implementations do not define these functions because the functional part of the facets is actually implemented in the corresponding base classes and the constructor of the "..._byname" version just provides suitable date used by these implementations. For example, the 'numpunct' methods just return values from a struct. The base class uses a statically initialized struct while the derived version reads the contents of this struct from a table. However, no virtual function is defined in 'numpunct_byname'.
For most classes this does not impose a problem but specifically for 'ctype' it does: The specialization for 'ctype_byname<char>' is required because otherwise the semantics would change due to the virtual functions defined in the general version for 'ctype_byname': In 'ctype<char>' the method 'do_is()' is not virtual but it is made virtual in both 'ctype<cT>' and 'ctype_byname<cT>'. Thus, a class derived from 'ctype_byname<char>' can tell whether this class is specialized or not under the current specification: Without the specialization, 'do_is()' is virtual while with specialization it is not virtual.
Proposed resolution:
Change section 22.2.1.2 (lib.locale.ctype.byname) to become:
namespace std { template <class charT> class ctype_byname : public ctype<charT> { public: typedef ctype<charT>::mask mask; explicit ctype_byname(const char*, size_t refs = 0); protected: ~ctype_byname(); // virtual }; }
Change section 22.2.1.6 (lib.locale.codecvt.byname) to become:
namespace std { template <class internT, class externT, class stateT> class codecvt_byname : public codecvt<internT, externT, stateT> { public: explicit codecvt_byname(const char*, size_t refs = 0); protected: ~codecvt_byname(); // virtual }; }
Change section 22.2.3.2 (lib.locale.numpunct.byname) to become:
namespace std { template <class charT> class numpunct_byname : public numpunct<charT> { // this class is specialized for char and wchar_t. public: typedef charT char_type; typedef basic_string<charT> string_type; explicit numpunct_byname(const char*, size_t refs = 0); protected: ~numpunct_byname(); // virtual }; }
Change section 22.2.4.2 (lib.locale.collate.byname) to become:
namespace std { template <class charT> class collate_byname : public collate<charT> { public: typedef basic_string<charT> string_type; explicit collate_byname(const char*, size_t refs = 0); protected: ~collate_byname(); // virtual }; }
Change section 22.2.5.2 (lib.locale.time.get.byname) to become:
namespace std { template <class charT, class InputIterator = istreambuf_iterator<charT> > class time_get_byname : public time_get<charT, InputIterator> { public: typedef time_base::dateorder dateorder; typedef InputIterator iter_type
explicit time_get_byname(const char*, size_t refs = 0); protected: ~time_get_byname(); // virtual }; }
Change section 22.2.5.4 (lib.locale.time.put.byname) to become:
namespace std { template <class charT, class OutputIterator = ostreambuf_iterator<charT> > class time_put_byname : public time_put<charT, OutputIterator> { public: typedef charT char_type; typedef OutputIterator iter_type;
explicit time_put_byname(const char*, size_t refs = 0); protected: ~time_put_byname(); // virtual }; }"
Change section 22.2.6.4 (lib.locale.moneypunct.byname) to become:
namespace std { template <class charT, bool Intl = false> class moneypunct_byname : public moneypunct<charT, Intl> { public: typedef money_base::pattern pattern; typedef basic_string<charT> string_type;
explicit moneypunct_byname(const char*, size_t refs = 0); protected: ~moneypunct_byname(); // virtual }; }
Change section 22.2.7.2 (lib.locale.messages.byname) to become:
namespace std { template <class charT> class messages_byname : public messages<charT> { public: typedef messages_base::catalog catalog; typedef basic_string<charT> string_type;
explicit messages_byname(const char*, size_t refs = 0); protected: ~messages_byname(); // virtual }; }
Remove section 22.4.1.4 [locale.codecvt] completely (because in this case only those members are defined to be virtual which are defined to be virtual in 'ctype<cT>'.)
[Post-Tokyo: Dietmar Kühl submitted this issue at the request of the LWG to solve the underlying problems raised by issue 138.]
[Copenhagen: proposed resolution was revised slightly, to remove three last virtual functions from messages_byname.]
Section: 17.6.1.1 [contents] Status: CD1 Submitter: Steve Clamage Opened: 2000-04-19 Last modified: 2015-04-08
View all other issues in [contents].
View all issues with CD1 status.
Discussion:
Throughout the library chapters, the descriptions of library entities refer to other library entities without necessarily qualifying the names.
For example, section 25.2.2 "Swap" describes the effect of swap_ranges in terms of the unqualified name "swap". This section could reasonably be interpreted to mean that the library must be implemented so as to do a lookup of the unqualified name "swap", allowing users to override any ::std::swap function when Koenig lookup applies.
Although it would have been best to use explicit qualification with "::std::" throughout, too many lines in the standard would have to be adjusted to make that change in a Technical Corrigendum.
Issue 182, which addresses qualification of size_t, is a special case of this.
Proposed resolution:
To section 17.4.1.1 "Library contents" Add the following paragraph:
Whenever a name x defined in the standard library is mentioned, the name x is assumed to be fully qualified as ::std::x, unless explicitly described otherwise. For example, if the Effects section for library function F is described as calling library function G, the function ::std::G is meant.
[Post-Tokyo: Steve Clamage submitted this issue at the request of the LWG to solve a problem in the standard itself similar to the problem within implementations of library identified by issue 225. Any resolution of issue 225 should be coordinated with the resolution of this issue.]
[post-Toronto: Howard is undecided about whether it is appropriate for all standard library function names referred to in other standard library functions to be explicitly qualified by std: it is common advice that users should define global functions that operate on their class in the same namespace as the class, and this requires argument-dependent lookup if those functions are intended to be called by library code. Several LWG members are concerned that valarray appears to require argument-dependent lookup, but that the wording may not be clear enough to fall under "unless explicitly described otherwise".]
[Curaçao: An LWG-subgroup spent an afternoon working on issues 225, 226, and 229. Their conclusion was that the issues should be separated into an LWG portion (Howard's paper, N1387=02-0045), and a EWG portion (Dave will write a proposal). The LWG and EWG had (separate) discussions of this plan the next day. This paper resolves issues 225 and 226. In light of that resolution, the proposed resolution for the current issue makes sense.]
Section: 17 [library] Status: CD1 Submitter: Beman Dawes Opened: 2000-04-26 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with CD1 status.
Discussion:
Issue 227 identified an instance (std::swap) where Assignable was specified without also specifying CopyConstructible. The LWG asked that the standard be searched to determine if the same defect existed elsewhere.
There are a number of places (see proposed resolution below) where Assignable is specified without also specifying CopyConstructible. There are also several cases where both are specified. For example, 26.5.1 [rand.req].
Proposed resolution:
In 23.2 [container.requirements] table 65 for value_type: change "T is Assignable" to "T is CopyConstructible and Assignable"
In 23.2.4 [associative.reqmts] table 69 X::key_type; change
"Key is Assignable" to "Key is
CopyConstructible and Assignable"
In 24.2.4 [output.iterators] paragraph 1, change:
A class or a built-in type X satisfies the requirements of an output iterator if X is an Assignable type (23.1) and also the following expressions are valid, as shown in Table 73:
to:
A class or a built-in type X satisfies the requirements of an output iterator if X is a CopyConstructible (20.1.3) and Assignable type (23.1) and also the following expressions are valid, as shown in Table 73:
[Post-Tokyo: Beman Dawes submitted this issue at the request of the LWG. He asks that the 25.3.5 [alg.replace] and 25.3.6 [alg.fill] changes be studied carefully, as it is not clear that CopyConstructible is really a requirement and may be overspecification.]
[Portions of the resolution for issue 230 have been superceded by the resolution of issue 276.]
Rationale:
The original proposed resolution also included changes to input iterator, fill, and replace. The LWG believes that those changes are not necessary. The LWG considered some blanket statement, where an Assignable type was also required to be Copy Constructible, but decided against this because fill and replace really don't require the Copy Constructible property.
Section: 22.4.2.2.2 [facet.num.put.virtuals] Status: CD1 Submitter: James Kanze, Stephen Clamage Opened: 2000-04-25 Last modified: 2015-04-08
View all other issues in [facet.num.put.virtuals].
View all issues with CD1 status.
Discussion:
What is the following program supposed to output?
#include <iostream> int main() { std::cout.setf( std::ios::scientific , std::ios::floatfield ) ; std::cout.precision( 0 ) ; std::cout << 1.00 << '\n' ; return 0 ; }
From my C experience, I would expect "1e+00"; this is what printf("%.0e" , 1.00 ); does. G++ outputs "1.000000e+00".
The only indication I can find in the standard is 22.2.2.2.2/11, where it says "For conversion from a floating-point type, if (flags & fixed) != 0 or if str.precision() > 0, then str.precision() is specified in the conversion specification." This is an obvious error, however, fixed is not a mask for a field, but a value that a multi-bit field may take -- the results of and'ing fmtflags with ios::fixed are not defined, at least not if ios::scientific has been set. G++'s behavior corresponds to what might happen if you do use (flags & fixed) != 0 with a typical implementation (floatfield == 3 << something, fixed == 1 << something, and scientific == 2 << something).
Presumably, the intent is either (flags & floatfield) != 0, or (flags & floatfield) == fixed; the first gives something more or less like the effect of precision in a printf floating point conversion. Only more or less, of course. In order to implement printf formatting correctly, you must know whether the precision was explicitly set or not. Say by initializing it to -1, instead of 6, and stating that for floating point conversions, if precision < -1, 6 will be used, for fixed point, if precision < -1, 1 will be used, etc. Plus, of course, if precision == 0 and flags & floatfield == 0, 1 should be = used. But it probably isn't necessary to emulate all of the anomalies of printf:-).
Proposed resolution:
Replace 22.4.2.2.2 [facet.num.put.virtuals], paragraph 11, with the following sentence:
For conversion from a floating-point type, str.precision() is specified in the conversion specification.
Rationale:
The floatfield determines whether numbers are formatted as if with %f, %e, or %g. If the fixed bit is set, it's %f, if scientific it's %e, and if both bits are set, or neither, it's %g.
Turning to the C standard, a precision of 0 is meaningful for %f and %e. For %g, precision 0 is taken to be the same as precision 1.
The proposed resolution has the effect that if neither fixed nor scientific is set we'll be specifying a precision of 0, which will be internally turned into 1. There's no need to call it out as a special case.
The output of the above program will be "1e+00".
[Post-Curaçao: Howard provided improved wording covering the case where precision is 0 and mode is %g.]
Section: 17.6.4.3 [reserved.names] Status: CD1 Submitter: Peter Dimov Opened: 2000-04-18 Last modified: 2015-04-08
View all other issues in [reserved.names].
View all issues with CD1 status.
Discussion:
17.4.3.1/1 uses the term "depends" to limit the set of allowed specializations of standard templates to those that "depend on a user-defined name of external linkage."
This term, however, is not adequately defined, making it possible to construct a specialization that is, I believe, technically legal according to 17.4.3.1/1, but that specializes a standard template for a built-in type such as 'int'.
The following code demonstrates the problem:
#include <algorithm>template<class T> struct X { typedef T type; };namespace std { template<> void swap(::X<int>::type& i, ::X<int>::type& j); }
Proposed resolution:
Change "user-defined name" to "user-defined type".
Rationale:
This terminology is used in section 2.5.2 and 4.1.1 of The C++ Programming Language. It disallows the example in the issue, since the underlying type itself is not user-defined. The only possible problem I can see is for non-type templates, but there's no possible way for a user to come up with a specialization for bitset, for example, that might not have already been specialized by the implementor?
[Toronto: this may be related to issue 120.]
[post-Toronto: Judy provided the above proposed resolution and rationale.]
Section: 23.2.4 [associative.reqmts] Status: CD1 Submitter: Andrew Koenig Opened: 2000-04-30 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with CD1 status.
Discussion:
If mm is a multimap and p is an iterator into the multimap, then mm.insert(p, x) inserts x into mm with p as a hint as to where it should go. Table 69 claims that the execution time is amortized constant if the insert winds up taking place adjacent to p, but does not say when, if ever, this is guaranteed to happen. All it says it that p is a hint as to where to insert.
The question is whether there is any guarantee about the relationship between p and the insertion point, and, if so, what it is.
I believe the present state is that there is no guarantee: The user can supply p, and the implementation is allowed to disregard it entirely.
Additional comments from Nathan:
The vote [in Redmond] was on whether to elaborately specify the use of
the hint, or to require behavior only if the value could be inserted
adjacent to the hint. I would like to ensure that we have a chance to
vote for a deterministic treatment: "before, if possible, otherwise
after, otherwise anywhere appropriate", as an alternative to the
proposed "before or after, if possible, otherwise [...]".
[Toronto: there was general agreement that this is a real defect: when inserting an element x into a multiset that already contains several copies of x, there is no way to know whether the hint will be used. The proposed resolution was that the new element should always be inserted as close to the hint as possible. So, for example, if there is a subsequence of equivalent values, then providing a.begin() as the hint means that the new element should be inserted before the subsequence even if a.begin() is far away. JC van Winkel supplied precise wording for this proposed resolution, and also for an alternative resolution in which hints are only used when they are adjacent to the insertion point.]
[Copenhagen: the LWG agreed to the original proposed resolution, in which an insertion hint would be used even when it is far from the insertion point. This was contingent on seeing a example implementation showing that it is possible to implement this requirement without loss of efficiency. John Potter provided such a example implementation.]
[Redmond: The LWG was reluctant to adopt the proposal that emerged from Copenhagen: it seemed excessively complicated, and went beyond fixing the defect that we identified in Toronto. PJP provided the new wording described in this issue. Nathan agrees that we shouldn't adopt the more detailed semantics, and notes: "we know that you can do it efficiently enough with a red-black tree, but there are other (perhaps better) balanced tree techniques that might differ enough to make the detailed semantics hard to satisfy."]
[Curaçao: Nathan should give us the alternative wording he suggests so the LWG can decide between the two options.]
[Lillehammer: The LWG previously rejected the more detailed semantics, because it seemed more loike a new feature than like defect fixing. We're now more sympathetic to it, but we (especially Bill) are still worried about performance. N1780 describes a naive algorithm, but it's not clear whether there is a non-naive implementation. Is it possible to implement this as efficently as the current version of insert?]
[Post Lillehammer: N1780 updated in post meeting mailing with feedback from Lillehammer with more information regarding performance. ]
[ Batavia: 1780 accepted with minor wording changes in the proposed wording (reflected in the proposed resolution below). Concerns about the performance of the algorithm were satisfactorily met by 1780. 371 already handles the stability of equal ranges and so that part of the resolution from 1780 is no longer needed (or reflected in the proposed wording below). ]
Proposed resolution:
Change the indicated rows of the "Associative container requirements" Table in 23.2.4 [associative.reqmts] to:
expression | return type | assertion/note pre/post-condition |
complexity |
---|---|---|---|
a_eq.insert(t) | iterator | inserts t and returns the iterator pointing to the newly inserted element. If a range containing elements equivalent to t exists in a_eq, t is inserted at the end of that range. | logarithmic |
a.insert(p,t) | iterator |
inserts t if and only if there is no element with key equivalent to the
key of t in containers with unique keys; always inserts t in containers
with equivalent keys. always returns the iterator pointing to the element with key
equivalent to the key of t. |
logarithmic in general, but amortized constant if t is inserted right |
Section: 20.7.9.1 [allocator.members] Status: CD1 Submitter: Dietmar Kühl Opened: 2000-04-24 Last modified: 2015-04-08
View all other issues in [allocator.members].
View all issues with CD1 status.
Discussion:
In paragraphs 12 and 13 the effects of construct() and destruct() are described as returns but the functions actually return void.
Proposed resolution:
Substitute "Returns" by "Effect".
Section: 24.5.1.1 [reverse.iterator] Status: CD1 Submitter: Dietmar Kühl Opened: 2000-04-24 Last modified: 2015-04-08
View all other issues in [reverse.iterator].
View all issues with CD1 status.
Discussion:
The declaration of reverse_iterator lists a default constructor. However, no specification is given what this constructor should do.
Proposed resolution:
In section 24.5.1.3.1 [reverse.iter.cons] add the following paragraph:
reverse_iterator()
Default initializes current. Iterator operations applied to the resulting iterator have defined behavior if and only if the corresponding operations are defined on a default constructed iterator of type Iterator.
[pre-Copenhagen: Dietmar provide wording for proposed resolution.]
Section: 23.3.3.2 [deque.cons] Status: CD1 Submitter: Dietmar Kühl Opened: 2000-04-24 Last modified: 2015-04-08
View all other issues in [deque.cons].
View all issues with CD1 status.
Discussion:
The complexity specification in paragraph 6 says that the complexity is linear in first - last. Even if operator-() is defined on iterators this term is in general undefined because it would have to be last - first.
Proposed resolution:
Change paragraph 6 from
Linear in first - last.
to become
Linear in distance(first, last).
Section: 27.8.2.1 [stringbuf.cons] Status: CD1 Submitter: Dietmar Kühl Opened: 2000-05-11 Last modified: 2015-04-08
View all other issues in [stringbuf.cons].
View all issues with CD1 status.
Discussion:
In 27.7.1.1 paragraph 4 the results of calling the constructor of 'basic_stringbuf' are said to be str() == str. This is fine that far but consider this code:
std::basic_stringbuf<char> sbuf("hello, world", std::ios_base::openmode(0)); std::cout << "'" << sbuf.str() << "'\n";
Paragraph 3 of 27.7.1.1 basically says that in this case neither the output sequence nor the input sequence is initialized and paragraph 2 of 27.7.1.2 basically says that str() either returns the input or the output sequence. None of them is initialized, ie. both are empty, in which case the return from str() is defined to be basic_string<cT>().
However, probably only test cases in some testsuites will detect this "problem"...
Proposed resolution:
Remove 27.7.1.1 paragraph 4.
Rationale:
We could fix 27.7.1.1 paragraph 4, but there would be no point. If we fixed it, it would say just the same thing as text that's already in the standard.
Section: 25.3.9 [alg.unique] Status: CD1 Submitter: Angelika Langer Opened: 2000-05-15 Last modified: 2015-04-08
View all other issues in [alg.unique].
View all issues with CD1 status.
Discussion:
The complexity of unique and unique_copy are inconsistent with each other and inconsistent with the implementations. The standard specifies:
for unique():
-3- Complexity: If the range (last - first) is not empty, exactly (last - first) - 1 applications of the corresponding predicate, otherwise no applications of the predicate.
for unique_copy():
-7- Complexity: Exactly last - first applications of the corresponding predicate.
The implementations do it the other way round: unique() applies the predicate last-first times and unique_copy() applies it last-first-1 times.
As both algorithms use the predicate for pair-wise comparison of sequence elements I don't see a justification for unique_copy() applying the predicate last-first times, especially since it is not specified to which pair in the sequence the predicate is applied twice.
Proposed resolution:
Change both complexity sections in 25.3.9 [alg.unique] to:
Complexity: For nonempty ranges, exactly last - first - 1 applications of the corresponding predicate.
Section: 25.2.8 [alg.adjacent.find] Status: CD1 Submitter: Angelika Langer Opened: 2000-05-15 Last modified: 2015-04-08
View all other issues in [alg.adjacent.find].
View all issues with CD1 status.
Discussion:
The complexity section of adjacent_find is defective:
template <class ForwardIterator> ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last BinaryPredicate pred);-1- Returns: The first iterator i such that both i and i + 1 are in the range [first, last) for which the following corresponding conditions hold: *i == *(i + 1), pred(*i, *(i + 1)) != false. Returns last if no such iterator is found.
-2- Complexity: Exactly find(first, last, value) - first applications of the corresponding predicate.
In the Complexity section, it is not defined what "value" is supposed to mean. My best guess is that "value" means an object for which one of the conditions pred(*i,value) or pred(value,*i) is true, where i is the iterator defined in the Returns section. However, the value type of the input sequence need not be equality-comparable and for this reason the term find(first, last, value) - first is meaningless.
A term such as find_if(first, last, bind2nd(pred,*i)) - first or find_if(first, last, bind1st(pred,*i)) - first might come closer to the intended specification. Binders can only be applied to function objects that have the function call operator declared const, which is not required of predicates because they can have non-const data members. For this reason, a specification using a binder could only be an "as-if" specification.
Proposed resolution:
Change the complexity section in 25.2.8 [alg.adjacent.find] to:
For a nonempty range, exactly min((i - first) + 1, (last - first) - 1) applications of the corresponding predicate, where i is adjacent_find's return value.
[Copenhagen: the original resolution specified an upper bound. The LWG preferred an exact count.]
Section: 25.3.9 [alg.unique] Status: CD1 Submitter: Angelika Langer Opened: 2000-05-15 Last modified: 2015-04-08
View all other issues in [alg.unique].
View all issues with CD1 status.
Discussion:
Some popular implementations of unique_copy() create temporary copies of values in the input sequence, at least if the input iterator is a pointer. Such an implementation is built on the assumption that the value type is CopyConstructible and Assignable.
It is common practice in the standard that algorithms explicitly specify any additional requirements that they impose on any of the types used by the algorithm. An example of an algorithm that creates temporary copies and correctly specifies the additional requirements is accumulate(), 26.5.1 [rand.req].
Since the specifications of unique() and unique_copy() do not require CopyConstructible and Assignable of the InputIterator's value type the above mentioned implementations are not standard-compliant. I cannot judge whether this is a defect in the standard or a defect in the implementations.
Proposed resolution:
In 25.2.8 change:
-4- Requires: The ranges [first, last) and [result, result+(last-first)) shall not overlap.
to:
-4- Requires: The ranges [first, last) and [result, result+(last-first)) shall not overlap. The expression *result = *first must be valid. If neither InputIterator nor OutputIterator meets the requirements of forward iterator then the value type of InputIterator must be copy constructible. Otherwise copy constructible is not required.
[Redmond: the original proposed resolution didn't impose an explicit requirement that the iterator's value type must be copy constructible, on the grounds that an input iterator's value type must always be copy constructible. Not everyone in the LWG thought that this requirement was clear from table 72. It has been suggested that it might be possible to implement unique_copy without requiring assignability, although current implementations do impose that requirement. Howard provided new wording.]
[ Curaçao: The LWG changed the PR editorially to specify "neither...nor...meet..." as clearer than "both...and...do not meet...". Change believed to be so minor as not to require re-review. ]
Section: 25.3.4 [alg.transform], 26.5 [rand] Status: CD1 Submitter: Angelika Langer Opened: 2000-05-15 Last modified: 2015-04-08
View all other issues in [alg.transform].
View all issues with CD1 status.
Discussion:
The algorithms transform(), accumulate(), inner_product(), partial_sum(), and adjacent_difference() require that the function object supplied to them shall not have any side effects.
The standard defines a side effect in 1.9 [intro.execution] as:
-7- Accessing an object designated by a volatile lvalue (basic.lval), modifying an object, calling a library I/O function, or calling a function that does any of those operations are all side effects, which are changes in the state of the execution environment.
As a consequence, the function call operator of a function object supplied to any of the algorithms listed above cannot modify data members, cannot invoke any function that has a side effect, and cannot even create and modify temporary objects. It is difficult to imagine a function object that is still useful under these severe limitations. For instance, any non-trivial transformator supplied to transform() might involve creation and modification of temporaries, which is prohibited according to the current wording of the standard.
On the other hand, popular implementations of these algorithms exhibit uniform and predictable behavior when invoked with a side-effect-producing function objects. It looks like the strong requirement is not needed for efficient implementation of these algorithms.
The requirement of side-effect-free function objects could be replaced by a more relaxed basic requirement (which would hold for all function objects supplied to any algorithm in the standard library):
A function objects supplied to an algorithm shall not invalidate any iterator or sequence that is used by the algorithm. Invalidation of the sequence includes destruction of the sorting order if the algorithm relies on the sorting order (see section 25.3 - Sorting and related operations [lib.alg.sorting]).
I can't judge whether it is intended that the function objects supplied to transform(), accumulate(), inner_product(), partial_sum(), or adjacent_difference() shall not modify sequence elements through dereferenced iterators.
It is debatable whether this issue is a defect or a change request. Since the consequences for user-supplied function objects are drastic and limit the usefulness of the algorithms significantly I would consider it a defect.
Proposed resolution:
Things to notice about these changes:
Change 25.2.3/2 from:
-2- Requires: op and binary_op shall not have any side effects.
to:
-2- Requires: in the ranges [first1, last1], [first2, first2 + (last1 - first1)] and [result, result + (last1- first1)], op and binary_op shall neither modify elements nor invalidate iterators or subranges. [Footnote: The use of fully closed ranges is intentional --end footnote]
Change 25.2.3/2 from:
-2- Requires: op and binary_op shall not have any side effects.
to:
-2- Requires: op and binary_op shall not invalidate iterators or subranges, or modify elements in the ranges [first1, last1], [first2, first2 + (last1 - first1)], and [result, result + (last1 - first1)]. [Footnote: The use of fully closed ranges is intentional --end footnote]
Change 26.4.1/2 from:
-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable (lib.container.requirements) types. binary_op shall not cause side effects.
to:
-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable (lib.container.requirements) types. In the range [first, last], binary_op shall neither modify elements nor invalidate iterators or subranges. [Footnote: The use of a fully closed range is intentional --end footnote]
Change 26.4.2/2 from:
-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable (lib.container.requirements) types. binary_op1 and binary_op2 shall not cause side effects.
to:
-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable (lib.container.requirements) types. In the ranges [first, last] and [first2, first2 + (last - first)], binary_op1 and binary_op2 shall neither modify elements nor invalidate iterators or subranges. [Footnote: The use of fully closed ranges is intentional --end footnote]
Change 26.4.3/4 from:
-4- Requires: binary_op is expected not to have any side effects.
to:
-4- Requires: In the ranges [first, last] and [result, result + (last - first)], binary_op shall neither modify elements nor invalidate iterators or subranges. [Footnote: The use of fully closed ranges is intentional --end footnote]
Change 26.4.4/2 from:
-2- Requires: binary_op shall not have any side effects.
to:
-2- Requires: In the ranges [first, last] and [result, result + (last - first)], binary_op shall neither modify elements nor invalidate iterators or subranges. [Footnote: The use of fully closed ranges is intentional --end footnote]
[Toronto: Dave Abrahams supplied wording.]
[Copenhagen: Proposed resolution was modified slightly. Matt added footnotes pointing out that the use of closed ranges was intentional.]
Section: 27.7.2.3 [istream.unformatted] Status: CD1 Submitter: Martin Sebor Opened: 2000-05-15 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with CD1 status.
Discussion:
basic_istream<>::get(), and basic_istream<>::getline(), are unclear with respect to the behavior and side-effects of the named functions in case of an error.
27.6.1.3, p1 states that "... If the sentry object returns true, when converted to a value of type bool, the function endeavors to obtain the requested input..." It is not clear from this (or the rest of the paragraph) what precisely the behavior should be when the sentry ctor exits by throwing an exception or when the sentry object returns false. In particular, what is the number of characters extracted that gcount() returns supposed to be?
27.6.1.3 p8 and p19 say about the effects of get() and getline(): "... In any case, it then stores a null character (using charT()) into the next successive location of the array." Is not clear whether this sentence applies if either of the conditions above holds (i.e., when sentry fails).
Proposed resolution:
Add to 27.6.1.3, p1 after the sentence
"... If the sentry object returns true, when converted to a value of type bool, the function endeavors to obtain the requested input."
the following
"Otherwise, if the sentry constructor exits by throwing an exception or if the sentry object returns false, when converted to a value of type bool, the function returns without attempting to obtain any input. In either case the number of extracted characters is set to 0; unformatted input functions taking a character array of non-zero size as an argument shall also store a null character (using charT()) in the first location of the array."
Rationale:
Although the general philosophy of the input functions is that the argument should not be modified upon failure, getline historically added a terminating null unconditionally. Most implementations still do that. Earlier versions of the draft standard had language that made this an unambiguous requirement; those words were moved to a place where their context made them less clear. See Jerry Schwarz's message c++std-lib-7618.
Section: 23.3.6.5 [vector.modifiers] Status: CD1 Submitter: Lisa Lippincott Opened: 2000-06-06 Last modified: 2015-04-08
View other active issues in [vector.modifiers].
View all other issues in [vector.modifiers].
View all issues with CD1 status.
Discussion:
Paragraph 2 of 23.3.6.5 [vector.modifiers] describes the complexity of vector::insert:
Complexity: If first and last are forward iterators, bidirectional iterators, or random access iterators, the complexity is linear in the number of elements in the range [first, last) plus the distance to the end of the vector. If they are input iterators, the complexity is proportional to the number of elements in the range [first, last) times the distance to the end of the vector.
First, this fails to address the non-iterator forms of insert.
Second, the complexity for input iterators misses an edge case -- it requires that an arbitrary number of elements can be added at the end of a vector in constant time.
I looked to see if deque had a similar problem, and was surprised to find that deque places no requirement on the complexity of inserting multiple elements (23.3.3.4 [deque.modifiers], paragraph 3):
Complexity: In the worst case, inserting a single element into a deque takes time linear in the minimum of the distance from the insertion point to the beginning of the deque and the distance from the insertion point to the end of the deque. Inserting a single element either at the beginning or end of a deque always takes constant time and causes a single call to the copy constructor of T.
Proposed resolution:
Change Paragraph 2 of 23.3.6.5 [vector.modifiers] to
Complexity: The complexity is linear in the number of elements inserted plus the distance to the end of the vector.
[For input iterators, one may achieve this complexity by first inserting at the end of the vector, and then using rotate.]
Change 23.3.3.4 [deque.modifiers], paragraph 3, to:
Complexity: The complexity is linear in the number of elements inserted plus the shorter of the distances to the beginning and end of the deque. Inserting a single element at either the beginning or the end of a deque causes a single call to the copy constructor of T.
Rationale:
This is a real defect, and proposed resolution fixes it: some complexities aren't specified that should be. This proposed resolution does constrain deque implementations (it rules out the most naive possible implementations), but the LWG doesn't see a reason to permit that implementation.
Section: 22.4.5 [category.time] Status: CD1 Submitter: Martin Sebor Opened: 2000-06-22 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
There is no requirement that any of time_get member functions set ios::eofbit when they reach the end iterator while parsing their input. Since members of both the num_get and money_get facets are required to do so (22.2.2.1.2, and 22.2.6.1.2, respectively), time_get members should follow the same requirement for consistency.
Proposed resolution:
Add paragraph 2 to section 22.2.5.1 with the following text:
If the end iterator is reached during parsing by any of the get() member functions, the member sets ios_base::eofbit in err.
Rationale:
Two alternative resolutions were proposed. The LWG chose this one because it was more consistent with the way eof is described for other input facets.
Section: 23.3.5.5 [list.ops] Status: CD1 Submitter: Brian Parker Opened: 2000-07-14 Last modified: 2015-04-08
View all other issues in [list.ops].
View all issues with CD1 status.
Discussion:
Section 23.3.5.5 [list.ops] states that
void splice(iterator position, list<T, Allocator>& x);
invalidates all iterators and references to list x.
This is unnecessary and defeats an important feature of splice. In fact, the SGI STL guarantees that iterators to x remain valid after splice.
Proposed resolution:
Add a footnote to 23.3.5.5 [list.ops], paragraph 1:
[Footnote: As specified in [default.con.req], paragraphs 4-5, the semantics described in this clause applies only to the case where allocators compare equal. --end footnote]
In 23.3.5.5 [list.ops], replace paragraph 4 with:
Effects: Inserts the contents of x before position and x becomes empty. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
In 23.3.5.5 [list.ops], replace paragraph 7 with:
Effects: Inserts an element pointed to by i from list x before position and removes the element from x. The result is unchanged if position == i or position == ++i. Pointers and references to *i continue to refer to this same element but as a member of *this. Iterators to *i (including i itself) continue to refer to the same element, but now behave as iterators into *this, not into x.
In 23.3.5.5 [list.ops], replace paragraph 12 with:
Requires: [first, last) is a valid range in x. The result is undefined if position is an iterator in the range [first, last). Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
[pre-Copenhagen: Howard provided wording.]
Rationale:
The original proposed resolution said that iterators and references would remain "valid". The new proposed resolution clarifies what that means. Note that this only applies to the case of equal allocators. From [default.con.req] paragraph 4, the behavior of list when allocators compare nonequal is outside the scope of the standard.
Section: 27.8.2 [stringbuf] Status: CD1 Submitter: Martin Sebor Opened: 2000-07-28 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The synopsis for the template class basic_stringbuf doesn't list a typedef for the template parameter Allocator. This makes it impossible to determine the type of the allocator at compile time. It's also inconsistent with all other template classes in the library that do provide a typedef for the Allocator parameter.
Proposed resolution:
Add to the synopses of the class templates basic_stringbuf (27.7.1), basic_istringstream (27.7.2), basic_ostringstream (27.7.3), and basic_stringstream (27.7.4) the typedef:
typedef Allocator allocator_type;
Section: 27.8 [string.streams] Status: CD1 Submitter: Martin Sebor Opened: 2000-07-28 Last modified: 2015-04-08
View all other issues in [string.streams].
View all issues with CD1 status.
Discussion:
27.7.2.2, p1 uses a C-style cast rather than the more appropriate const_cast<> in the Returns clause for basic_istringstream<>::rdbuf(). The same C-style cast is being used in 27.7.3.2, p1, D.7.2.2, p1, and D.7.3.2, p1, and perhaps elsewhere. 27.7.6, p1 and D.7.2.2, p1 are missing the cast altogether.
C-style casts have not been deprecated, so the first part of this issue is stylistic rather than a matter of correctness.
Proposed resolution:
In 27.7.2.2, p1 replace
-1- Returns: (basic_stringbuf<charT,traits,Allocator>*)&sb.
with
-1- Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).
In 27.7.3.2, p1 replace
-1- Returns: (basic_stringbuf<charT,traits,Allocator>*)&sb.
with
-1- Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).
In 27.7.6, p1, replace
-1- Returns: &sb
with
-1- Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).
In D.7.2.2, p1 replace
-2- Returns: &sb.
with
-2- Returns: const_cast<strstreambuf*>(&sb).
Section: 26.6.2.2 [valarray.cons], 26.6.2.3 [valarray.assign] Status: CD1 Submitter: Robert Klarer Opened: 2000-07-31 Last modified: 2015-04-08
View all other issues in [valarray.cons].
View all issues with CD1 status.
Discussion:
This discussion is adapted from message c++std-lib-7056 posted November 11, 1999. I don't think that anyone can reasonably claim that the problem described below is NAD.
These valarray constructors can never be called:
template <class T> valarray<T>::valarray(const slice_array<T> &); template <class T> valarray<T>::valarray(const gslice_array<T> &); template <class T> valarray<T>::valarray(const mask_array<T> &); template <class T> valarray<T>::valarray(const indirect_array<T> &);
Similarly, these valarray assignment operators cannot be called:
template <class T> valarray<T> valarray<T>::operator=(const slice_array<T> &); template <class T> valarray<T> valarray<T>::operator=(const gslice_array<T> &); template <class T> valarray<T> valarray<T>::operator=(const mask_array<T> &); template <class T> valarray<T> valarray<T>::operator=(const indirect_array<T> &);
Please consider the following example:
#include <valarray> using namespace std; int main() { valarray<double> va1(12); valarray<double> va2(va1[slice(1,4,3)]); // line 1 }
Since the valarray va1 is non-const, the result of the sub-expression va1[slice(1,4,3)] at line 1 is an rvalue of type const std::slice_array<double>. This slice_array rvalue is then used to construct va2. The constructor that is used to construct va2 is declared like this:
template <class T> valarray<T>::valarray(const slice_array<T> &);
Notice the constructor's const reference parameter. When the constructor is called, a slice_array must be bound to this reference. The rules for binding an rvalue to a const reference are in 8.5.3, paragraph 5 (see also 13.3.3.1.4). Specifically, paragraph 5 indicates that a second slice_array rvalue is constructed (in this case copy-constructed) from the first one; it is this second rvalue that is bound to the reference parameter. Paragraph 5 also requires that the constructor that is used for this purpose be callable, regardless of whether the second rvalue is elided. The copy-constructor in this case is not callable, however, because it is private. Therefore, the compiler should report an error.
Since slice_arrays are always rvalues, the valarray constructor that has a parameter of type const slice_array<T> & can never be called. The same reasoning applies to the three other constructors and the four assignment operators that are listed at the beginning of this post. Furthermore, since these functions cannot be called, the valarray helper classes are almost entirely useless.
Proposed resolution:
slice_array:
gslice_array:
mask_array:
indirect_array:
[Proposed resolution was modified in Santa Cruz: explicitly make copy constructor and copy assignment operators public, instead of removing them.]
Rationale:
Keeping the valarray constructors private is untenable. Merely making valarray a friend of the helper classes isn't good enough, because access to the copy constructor is checked in the user's environment.
Making the assignment operator public is not strictly necessary to solve this problem. A majority of the LWG (straw poll: 13-4) believed we should make the assignment operators public, in addition to the copy constructors, for reasons of symmetry and user expectation.
Section: 19.2 [std.exceptions], 27.5.3.1.1 [ios::failure] Status: CD1 Submitter: Dave Abrahams Opened: 2000-08-01 Last modified: 2015-04-08
View all other issues in [std.exceptions].
View all issues with CD1 status.
Discussion:
Many of the standard exception types which implementations are required to throw are constructed with a const std::string& parameter. For example:
19.1.5 Class out_of_range [lib.out.of.range] namespace std { class out_of_range : public logic_error { public: explicit out_of_range(const string& what_arg); }; } 1 The class out_of_range defines the type of objects thrown as excep- tions to report an argument value not in its expected range. out_of_range(const string& what_arg); Effects: Constructs an object of class out_of_range. Postcondition: strcmp(what(), what_arg.c_str()) == 0.
There are at least two problems with this:
There may be no cure for (1) other than changing the interface to out_of_range, though one could reasonably argue that (1) is not a defect. Personally I don't care that much if out-of-memory is reported when I only have 20 bytes left, in the case when out_of_range would have been reported. People who use exception-specifications might care a lot, though.
There is a cure for (2), but it isn't completely obvious. I think a note for implementors should be made in the standard. Avoiding possible termination in this case shouldn't be left up to chance. The cure is to use a reference-counted "string" implementation in the exception object. I am not necessarily referring to a std::string here; any simple reference-counting scheme for a NTBS would do.
Further discussion, in email:
...I'm not so concerned about (1). After all, a library implementation can add const char* constructors as an extension, and users don't need to avail themselves of the standard exceptions, though this is a lame position to be forced into. FWIW, std::exception and std::bad_alloc don't require a temporary basic_string.
...I don't think the fixed-size buffer is a solution to the problem,
strictly speaking, because you can't satisfy the postcondition
strcmp(what(), what_arg.c_str()) == 0
For all values of what_arg (i.e. very long values). That means that
the only truly conforming solution requires a dynamic allocation.
Further discussion, from Redmond:
The most important progress we made at the Redmond meeting was realizing that there are two separable issues here: the const string& constructor, and the copy constructor. If a user writes something like throw std::out_of_range("foo"), the const string& constructor is invoked before anything gets thrown. The copy constructor is potentially invoked during stack unwinding.
The copy constructor is a more serious problem, becuase failure during stack unwinding invokes terminate. The copy constructor must be nothrow. Curaçao: Howard thinks this requirement may already be present.
The fundamental problem is that it's difficult to get the nothrow requirement to work well with the requirement that the exception objects store a string of unbounded size, particularly if you also try to make the const string& constructor nothrow. Options discussed include:
(Not all of these options are mutually exclusive.)
Proposed resolution:
Change 19.2.1 [logic.error]
namespace std { class logic_error : public exception { public: explicit logic_error(const string& what_arg); explicit logic_error(const char* what_arg); }; }...
logic_error(const char* what_arg);
-4- Effects: Constructs an object of class logic_error.
-5- Postcondition: strcmp(what(), what_arg) == 0.
Change 19.2.2 [domain.error]
namespace std { class domain_error : public logic_error { public: explicit domain_error(const string& what_arg); explicit domain_error(const char* what_arg); }; }...
domain_error(const char* what_arg);
-4- Effects: Constructs an object of class domain_error.
-5- Postcondition: strcmp(what(), what_arg) == 0.
Change 19.2.3 [invalid.argument]
namespace std { class invalid_argument : public logic_error { public: explicit invalid_argument(const string& what_arg); explicit invalid_argument(const char* what_arg); }; }...
invalid_argument(const char* what_arg);
-4- Effects: Constructs an object of class invalid_argument.
-5- Postcondition: strcmp(what(), what_arg) == 0.
Change 19.2.4 [length.error]
namespace std { class length_error : public logic_error { public: explicit length_error(const string& what_arg); explicit length_error(const char* what_arg); }; }...
length_error(const char* what_arg);
-4- Effects: Constructs an object of class length_error.
-5- Postcondition: strcmp(what(), what_arg) == 0.
Change 19.2.5 [out.of.range]
namespace std { class out_of_range : public logic_error { public: explicit out_of_range(const string& what_arg); explicit out_of_range(const char* what_arg); }; }...
out_of_range(const char* what_arg);
-4- Effects: Constructs an object of class out_of_range.
-5- Postcondition: strcmp(what(), what_arg) == 0.
Change 19.2.6 [runtime.error]
namespace std { class runtime_error : public exception { public: explicit runtime_error(const string& what_arg); explicit runtime_error(const char* what_arg); }; }...
runtime_error(const char* what_arg);
-4- Effects: Constructs an object of class runtime_error.
-5- Postcondition: strcmp(what(), what_arg) == 0.
Change 19.2.7 [range.error]
namespace std { class range_error : public runtime_error { public: explicit range_error(const string& what_arg); explicit range_error(const char* what_arg); }; }...
range_error(const char* what_arg);
-4- Effects: Constructs an object of class range_error.
-5- Postcondition: strcmp(what(), what_arg) == 0.
Change 19.2.8 [overflow.error]
namespace std { class overflow_error : public runtime_error { public: explicit overflow_error(const string& what_arg); explicit overflow_error(const char* what_arg); }; }...
overflow_error(const char* what_arg);
-4- Effects: Constructs an object of class overflow_error.
-5- Postcondition: strcmp(what(), what_arg) == 0.
Change 19.2.9 [underflow.error]
namespace std { class underflow_error : public runtime_error { public: explicit underflow_error(const string& what_arg); explicit underflow_error(const char* what_arg); }; }...
underflow_error(const char* what_arg);
-4- Effects: Constructs an object of class underflow_error.
-5- Postcondition: strcmp(what(), what_arg) == 0.
Change 27.5.3.1.1 [ios::failure]
namespace std { class ios_base::failure : public exception { public: explicit failure(const string& msg); explicit failure(const char* msg); virtual const char* what() const throw(); }; }...
failure(const char* msg);
-4- Effects: Constructs an object of class failure.
-5- Postcondition: strcmp(what(), msg) == 0.
Rationale:
Throwing a bad_alloc while trying to construct a message for another exception-derived class is not necessarily a bad thing. And the bad_alloc constructor already has a no throw spec on it (18.4.2.1).
Future:
All involved would like to see const char* constructors added, but this should probably be done for C++0X as opposed to a DR.
I believe the no throw specs currently decorating these functions could be improved by some kind of static no throw spec checking mechanism (in a future C++ language). As they stand, the copy constructors might fail via a call to unexpected. I think what is intended here is that the copy constructors can't fail.
[Pre-Sydney: reopened at the request of Howard Hinnant. Post-Redmond: James Kanze noticed that the copy constructors of exception-derived classes do not have nothrow clauses. Those classes have no copy constructors declared, meaning the compiler-generated implicit copy constructors are used, and those compiler-generated constructors might in principle throw anything.]
[ Batavia: Merged copy constructor and assignment operator spec into exception and added ios::failure into the proposed resolution. ]
[ Oxford: The proposed resolution simply addresses the issue of constructing the exception objects with const char* and string literals without the need to explicit include or construct a std::string. ]
Section: 27.5.5.3 [basic.ios.members] Status: CD1 Submitter: Martin Sebor Opened: 2000-08-21 Last modified: 2015-04-08
View all other issues in [basic.ios.members].
View all issues with CD1 status.
Discussion:
27.4.4.2, p17 says
-17- Before copying any parts of rhs, calls each registered callback pair (fn,index) as (*fn)(erase_event,*this,index). After all parts but exceptions() have been replaced, calls each callback pair that was copied from rhs as (*fn)(copy_event,*this,index).
The name copy_event isn't defined anywhere. The intended name was copyfmt_event.
Proposed resolution:
Replace copy_event with copyfmt_event in the named paragraph.
Section: 17.6.3.5 [allocator.requirements] Status: CD1 Submitter: Matt Austern Opened: 2000-08-22 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with CD1 status.
Discussion:
From lib-7752:
I've been assuming (and probably everyone else has been assuming) that allocator instances have a particular property, and I don't think that property can be deduced from anything in Table 32.
I think we have to assume that allocator type conversion is a homomorphism. That is, if x1 and x2 are of type X, where X::value_type is T, and if type Y is X::template rebind<U>::other, then Y(x1) == Y(x2) if and only if x1 == x2.
Further discussion: Howard Hinnant writes, in lib-7757:
I think I can prove that this is not provable by Table 32. And I agree it needs to be true except for the "and only if". If x1 != x2, I see no reason why it can't be true that Y(x1) == Y(x2). Admittedly I can't think of a practical instance where this would happen, or be valuable. But I also don't see a need to add that extra restriction. I think we only need:
if (x1 == x2) then Y(x1) == Y(x2)
If we decide that == on allocators is transitive, then I think I can prove the above. But I don't think == is necessarily transitive on allocators. That is:
Given x1 == x2 and x2 == x3, this does not mean x1 == x3.
Example:
x1 can deallocate pointers from: x1, x2, x3
x2 can deallocate pointers from: x1, x2, x4
x3 can deallocate pointers from: x1, x3
x4 can deallocate pointers from: x2, x4x1 == x2, and x2 == x4, but x1 != x4
[Toronto: LWG members offered multiple opinions. One opinion is that it should not be required that x1 == x2 implies Y(x1) == Y(x2), and that it should not even be required that X(x1) == x1. Another opinion is that the second line from the bottom in table 32 already implies the desired property. This issue should be considered in light of other issues related to allocator instances.]
Proposed resolution:
Accept proposed wording from N2436 part 3.
[Lillehammer: Same conclusion as before: this should be considered as part of an allocator redesign, not solved on its own.]
[ Batavia: An allocator redesign is not forthcoming and thus we fixed this one issue. ]
[ Toronto: Reopened at the request of the project editor (Pete) because the proposed wording did not fit within the indicated table. The intent of the resolution remains unchanged. Pablo to work with Pete on improved wording. ]
[ Kona (2007): The LWG adopted the proposed resolution of N2387 for this issue which was subsequently split out into a separate paper N2436 for the purposes of voting. The resolution in N2436 addresses this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 21.4.4 [string.capacity] Status: CD1 Submitter: Chris Newton Opened: 2000-08-27 Last modified: 2015-04-08
View all other issues in [string.capacity].
View all issues with CD1 status.
Discussion:
Paraphrased from a message that Chris Newton posted to comp.std.c++:
The standard's description of basic_string<>::operator[] seems to violate const correctness.
The standard (21.3.4/1) says that "If pos < size(), returns data()[pos]." The types don't work. The return value of data() is const charT*, but operator[] has a non-const version whose return type is reference.
Proposed resolution:
In section 21.3.4, paragraph 1, change "data()[pos]" to "*(begin() + pos)".
Section: 24.6.1.2 [istream.iterator.ops] Status: CD1 Submitter: Martin Sebor Opened: 2000-08-27 Last modified: 2015-04-08
View all other issues in [istream.iterator.ops].
View all issues with CD1 status.
Discussion:
The synopsis of istream_iterator::operator++(int) in 24.5.1 shows it as returning the iterator by value. 24.5.1.2, p5 shows the same operator as returning the iterator by reference. That's incorrect given the Effects clause below (since a temporary is returned). The `&' is probably just a typo.
Proposed resolution:
Change the declaration in 24.5.1.2, p5 from
istream_iterator<T,charT,traits,Distance>& operator++(int);
to
istream_iterator<T,charT,traits,Distance> operator++(int);
(that is, remove the `&').
Section: 24.6.1.2 [istream.iterator.ops] Status: CD1 Submitter: Martin Sebor Opened: 2000-08-27 Last modified: 2015-04-08
View all other issues in [istream.iterator.ops].
View all issues with CD1 status.
Discussion:
24.5.1, p3 lists the synopsis for
template <class T, class charT, class traits, class Distance> bool operator!=(const istream_iterator<T,charT,traits,Distance>& x, const istream_iterator<T,charT,traits,Distance>& y);
but there is no description of what the operator does (i.e., no Effects or Returns clause) in 24.5.1.2.
Proposed resolution:
Add paragraph 7 to the end of section 24.5.1.2 with the following text:
template <class T, class charT, class traits, class Distance> bool operator!=(const istream_iterator<T,charT,traits,Distance>& x, const istream_iterator<T,charT,traits,Distance>& y);
-7- Returns: !(x == y).
Section: 17.5.2.1.3 [bitmask.types] Status: CD1 Submitter: Beman Dawes Opened: 2000-09-03 Last modified: 2015-04-08
View all other issues in [bitmask.types].
View all issues with CD1 status.
Discussion:
The ~ operation should be applied after the cast to int_type.
Proposed resolution:
Change 17.3.2.1.2 [lib.bitmask.types] operator~ from:
bitmask operator~ ( bitmask X ) { return static_cast< bitmask>(static_cast<int_type>(~ X)); }
to:
bitmask operator~ ( bitmask X ) { return static_cast< bitmask>(~static_cast<int_type>(X)); }
Section: 21.4 [basic.string] Status: CD1 Submitter: Kevlin Henney Opened: 2000-09-04 Last modified: 2015-04-08
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with CD1 status.
Discussion:
The note in paragraph 6 suggests that the invalidation rules for references, pointers, and iterators in paragraph 5 permit a reference- counted implementation (actually, according to paragraph 6, they permit a "reference counted implementation", but this is a minor editorial fix).
However, the last sub-bullet is so worded as to make a reference-counted implementation unviable. In the following example none of the conditions for iterator invalidation are satisfied:
// first example: "*******************" should be printed twice string original = "some arbitrary text", copy = original; const string & alias = original; string::const_iterator i = alias.begin(), e = alias.end(); for(string::iterator j = original.begin(); j != original.end(); ++j) *j = '*'; while(i != e) cout << *i++; cout << endl; cout << original << endl;
Similarly, in the following example:
// second example: "some arbitrary text" should be printed out string original = "some arbitrary text", copy = original; const string & alias = original; string::const_iterator i = alias.begin(); original.begin(); while(i != alias.end()) cout << *i++;
I have tested this on three string implementations, two of which were reference counted. The reference-counted implementations gave "surprising behavior" because they invalidated iterators on the first call to non-const begin since construction. The current wording does not permit such invalidation because it does not take into account the first call since construction, only the first call since various member and non-member function calls.
Proposed resolution:
Change the following sentence in 21.3 paragraph 5 from
Subsequent to any of the above uses except the forms of insert() and erase() which return iterators, the first call to non-const member functions operator[](), at(), begin(), rbegin(), end(), or rend().
to
Following construction or any of the above uses, except the forms of insert() and erase() that return iterators, the first call to non- const member functions operator[](), at(), begin(), rbegin(), end(), or rend().
Section: 23.2.4 [associative.reqmts] Status: CD1 Submitter: John Potter Opened: 2000-09-07 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with CD1 status.
Duplicate of: 102
Discussion:
Table 69 requires linear time if [i, j) is sorted. Sorted is necessary but not sufficient. Consider inserting a sorted range of even integers into a set<int> containing the odd integers in the same range.
Related issue: 102
Proposed resolution:
In Table 69, in section 23.1.2, change the complexity clause for insertion of a range from "N log(size() + N) (N is the distance from i to j) in general; linear if [i, j) is sorted according to value_comp()" to "N log(size() + N), where N is the distance from i to j".
[Copenhagen: Minor fix in proposed resolution: fixed unbalanced parens in the revised wording.]
Rationale:
Testing for valid insertions could be less efficient than simply inserting the elements when the range is not both sorted and between two adjacent existing elements; this could be a QOI issue.
The LWG considered two other options: (a) specifying that the complexity was linear if [i, j) is sorted according to value_comp() and between two adjacent existing elements; or (b) changing to Klog(size() + N) + (N - K) (N is the distance from i to j and K is the number of elements which do not insert immediately after the previous element from [i, j) including the first). The LWG felt that, since we can't guarantee linear time complexity whenever the range to be inserted is sorted, it's more trouble than it's worth to say that it's linear in some special cases.
Section: 20.3 [pairs] Status: CD1 Submitter: Martin Sebor Opened: 2000-09-11 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with CD1 status.
Discussion:
I don't see any requirements on the types of the elements of the std::pair container in 20.2.2. From the descriptions of the member functions it appears that they must at least satisfy the requirements of 20.1.3 [lib.copyconstructible] and 20.1.4 [lib.default.con.req], and in the case of the [in]equality operators also the requirements of 20.1.1 [lib.equalitycomparable] and 20.1.2 [lib.lessthancomparable].
I believe that the the CopyConstructible requirement is unnecessary in the case of 20.2.2, p2.
Proposed resolution:
Change the Effects clause in 20.2.2, p2 from
-2- Effects: Initializes its members as if implemented: pair() : first(T1()), second(T2()) {}
to
-2- Effects: Initializes its members as if implemented: pair() : first(), second() {}
Rationale:
The existing specification of pair's constructor appears to be a historical artifact: there was concern that pair's members be properly zero-initialized when they are built-in types. At one time there was uncertainty about whether they would be zero-initialized if the default constructor was written the obvious way. This has been clarified by core issue 178, and there is no longer any doubt that the straightforward implementation is correct.
Section: 18.8.2 [bad.exception] Status: CD1 Submitter: Martin Sebor Opened: 2000-09-24 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The synopsis for std::bad_exception lists the function ~bad_exception() but there is no description of what the function does (the Effects clause is missing).
Proposed resolution:
Remove the destructor from the class synopses of bad_alloc (18.6.2.1 [bad.alloc]), bad_cast (18.7.2 [bad.cast]), bad_typeid (18.7.3 [bad.typeid]), and bad_exception (18.8.2 [bad.exception]).
Rationale:
This is a general problem with the exception classes in clause 18. The proposed resolution is to remove the destructors from the class synopses, rather than to document the destructors' behavior, because removing them is more consistent with how exception classes are described in clause 19.
Section: 22.3.1 [locale] Status: CD1 Submitter: Martin Sebor Opened: 2000-10-05 Last modified: 2015-04-08
View all other issues in [locale].
View all issues with CD1 status.
Discussion:
The synopsis of the class std::locale in 22.1.1 contains two typos: the semicolons after the declarations of the default ctor locale::locale() and the copy ctor locale::locale(const locale&) are missing.
Proposed resolution:
Add the missing semicolons, i.e., change
// construct/copy/destroy: locale() throw() locale(const locale& other) throw()
in the synopsis in 22.1.1 to
// construct/copy/destroy: locale() throw(); locale(const locale& other) throw();
Section: 25.4.3 [alg.binary.search] Status: CD1 Submitter: Matt Austern Opened: 2000-10-18 Last modified: 2015-04-08
View all other issues in [alg.binary.search].
View all issues with CD1 status.
Duplicate of: 472
Discussion:
Each of the four binary search algorithms (lower_bound, upper_bound, equal_range, binary_search) has a form that allows the user to pass a comparison function object. According to 25.3, paragraph 2, that comparison function object has to be a strict weak ordering.
This requirement is slightly too strict. Suppose we are searching through a sequence containing objects of type X, where X is some large record with an integer key. We might reasonably want to look up a record by key, in which case we would want to write something like this:
struct key_comp { bool operator()(const X& x, int n) const { return x.key() < n; } } std::lower_bound(first, last, 47, key_comp());
key_comp is not a strict weak ordering, but there is no reason to prohibit its use in lower_bound.
There's no difficulty in implementing lower_bound so that it allows the use of something like key_comp. (It will probably work unless an implementor takes special pains to forbid it.) What's difficult is formulating language in the standard to specify what kind of comparison function is acceptable. We need a notion that's slightly more general than that of a strict weak ordering, one that can encompass a comparison function that involves different types. Expressing that notion may be complicated.
Additional questions raised at the Toronto meeting:
Additional discussion from Copenhagen:
Proposed resolution:
Change 25.3 [lib.alg.sorting] paragraph 3 from:
3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i, *j) != false defaults to *i < *j != false. For the algorithms to work correctly, comp has to induce a strict weak ordering on the values.
to:
3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i, *j) != false defaults to *i < *j != false. For algorithms other than those described in lib.alg.binary.search (25.3.3) to work correctly, comp has to induce a strict weak ordering on the values.
Add the following paragraph after 25.3 [lib.alg.sorting] paragraph 5:
-6- A sequence [start, finish) is partitioned with respect to an expression f(e) if there exists an integer n such that for all 0 <= i < distance(start, finish), f(*(begin+i)) is true if and only if i < n.
Change 25.3.3 [lib.alg.binary.search] paragraph 1 from:
-1- All of the algorithms in this section are versions of binary search and assume that the sequence being searched is in order according to the implied or explicit comparison function. They work on non-random access iterators minimizing the number of comparisons, which will be logarithmic for all types of iterators. They are especially appropriate for random access iterators, because these algorithms do a logarithmic number of steps through the data structure. For non-random access iterators they execute a linear number of steps.
to:
-1- All of the algorithms in this section are versions of binary search and assume that the sequence being searched is partitioned with respect to an expression formed by binding the search key to an argument of the implied or explicit comparison function. They work on non-random access iterators minimizing the number of comparisons, which will be logarithmic for all types of iterators. They are especially appropriate for random access iterators, because these algorithms do a logarithmic number of steps through the data structure. For non-random access iterators they execute a linear number of steps.
Change 25.3.3.1 [lib.lower.bound] paragraph 1 from:
-1- Requires: Type T is LessThanComparable (lib.lessthancomparable).
to:
-1- Requires: The elements e of [first, last) are partitioned with respect to the expression e < value or comp(e, value)
Remove 25.3.3.1 [lib.lower.bound] paragraph 2:
-2- Effects: Finds the first position into which value can be inserted without violating the ordering.
Change 25.3.3.2 [lib.upper.bound] paragraph 1 from:
-1- Requires: Type T is LessThanComparable (lib.lessthancomparable).
to:
-1- Requires: The elements e of [first, last) are partitioned with respect to the expression !(value < e) or !comp(value, e)
Remove 25.3.3.2 [lib.upper.bound] paragraph 2:
-2- Effects: Finds the furthermost position into which value can be inserted without violating the ordering.
Change 25.3.3.3 [lib.equal.range] paragraph 1 from:
-1- Requires: Type T is LessThanComparable (lib.lessthancomparable).
to:
-1- Requires: The elements e of [first, last) are partitioned with respect to the expressions e < value and !(value < e) or comp(e, value) and !comp(value, e). Also, for all elements e of [first, last), e < value implies !(value < e) or comp(e, value) implies !comp(value, e)
Change 25.3.3.3 [lib.equal.range] paragraph 2 from:
-2- Effects: Finds the largest subrange [i, j) such that the value can be inserted at any iterator k in it without violating the ordering. k satisfies the corresponding conditions: !(*k < value) && !(value < *k) or comp(*k, value) == false && comp(value, *k) == false.
to:
-2- Returns: make_pair(lower_bound(first, last, value), upper_bound(first, last, value)) or make_pair(lower_bound(first, last, value, comp), upper_bound(first, last, value, comp))
Change 25.3.3.3 [lib.binary.search] paragraph 1 from:
-1- Requires: Type T is LessThanComparable (lib.lessthancomparable).
to:
-1- Requires: The elements e of [first, last) are partitioned with respect to the expressions e < value and !(value < e) or comp(e, value) and !comp(value, e). Also, for all elements e of [first, last), e < value implies !(value < e) or comp(e, value) implies !comp(value, e)
[Copenhagen: Dave Abrahams provided this wording]
[Redmond: Minor changes in wording. (Removed "non-negative", and changed the "other than those described in" wording.) Also, the LWG decided to accept the "optional" part.]
Rationale:
The proposed resolution reinterprets binary search. Instead of thinking about searching for a value in a sorted range, we view that as an important special case of a more general algorithm: searching for the partition point in a partitioned range.
We also add a guarantee that the old wording did not: we ensure that the upper bound is no earlier than the lower bound, that the pair returned by equal_range is a valid range, and that the first part of that pair is the lower bound.
Section: 27.7.2.5 [iostreamclass] Status: CD1 Submitter: Martin Sebor Opened: 2000-11-02 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
Class template basic_iostream has no typedefs. The typedefs it inherits from its base classes can't be used, since (for example) basic_iostream<T>::traits_type is ambiguous.
Proposed resolution:
Add the following to basic_iostream's class synopsis in 27.7.2.5 [iostreamclass], immediately after public:
// types: typedef charT char_type; typedef typename traits::int_type int_type; typedef typename traits::pos_type pos_type; typedef typename traits::off_type off_type; typedef traits traits_type;
Section: 27.5.5.4 [iostate.flags] Status: CD1 Submitter: Martin Sebor Opened: 2000-11-02 Last modified: 2015-04-08
View all other issues in [iostate.flags].
View all issues with CD1 status.
Duplicate of: 569
Discussion:
27.4.4.3, p4 says about the postcondition of the function: If rdbuf()!=0 then state == rdstate(); otherwise rdstate()==state|ios_base::badbit.
The expression on the right-hand-side of the operator==() needs to be parenthesized in order for the whole expression to ever evaluate to anything but non-zero.
Proposed resolution:
Add parentheses like so: rdstate()==(state|ios_base::badbit).
Section: 27 [input.output] Status: CD1 Submitter: Martin Sebor Opened: 2000-11-02 Last modified: 2015-04-08
View all other issues in [input.output].
View all issues with CD1 status.
Discussion:
27.5.2.4.2, p4, and 27.8.1.6, p2, 27.8.1.7, p3, 27.8.1.9, p2, 27.8.1.10, p3 refer to in and/or out w/o ios_base:: qualification. That's incorrect since the names are members of a dependent base class (14.6.2 [temp.dep]) and thus not visible.
Proposed resolution:
Qualify the names with the name of the class of which they are members, i.e., ios_base.
Section: 17.6.3.5 [allocator.requirements] Status: CD1 Submitter: Martin Sebor Opened: 2000-11-02 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with CD1 status.
Discussion:
I see that table 31 in 20.1.5, p3 allows T in std::allocator<T> to be of any type. But the synopsis in 20.4.1 calls for allocator<>::address() to be overloaded on reference and const_reference, which is ill-formed for all T = const U. In other words, this won't work:
template class std::allocator<const int>;
The obvious solution is to disallow specializations of allocators on const types. However, while containers' elements are required to be assignable (which rules out specializations on const T's), I think that allocators might perhaps be potentially useful for const values in other contexts. So if allocators are to allow const types a partial specialization of std::allocator<const T> would probably have to be provided.
Proposed resolution:
Change the text in row 1, column 2 of table 32 in 20.1.5, p3 from
any type
to
any non-const, non-reference type
[Redmond: previous proposed resolution was "any non-const, non-volatile, non-reference type". Got rid of the "non-volatile".]
Rationale:
Two resolutions were originally proposed: one that partially specialized std::allocator for const types, and one that said an allocator's value type may not be const. The LWG chose the second. The first wouldn't be appropriate, because allocators are intended for use by containers, and const value types don't work in containers. Encouraging the use of allocators with const value types would only lead to unsafe code.
The original text for proposed resolution 2 was modified so that it also forbids volatile types and reference types.
[Curaçao: LWG double checked and believes volatile is correctly excluded from the PR.]
Section: 22.4.2.1.1 [facet.num.get.members] Status: CD1 Submitter: Matt Austern Opened: 2000-11-02 Last modified: 2015-04-08
View all other issues in [facet.num.get.members].
View all issues with CD1 status.
Discussion:
In 22.2.2.1.1, we have a list of overloads for num_get<>::get(). There are eight overloads, all of which are identical except for the last parameter. The overloads are:
There is a similar list, in 22.2.2.1.2, of overloads for num_get<>::do_get(). In this list, the last parameter has the types:
These two lists are not identical. They should be, since get is supposed to call do_get with exactly the arguments it was given.
Proposed resolution:
In 22.4.2.1.1 [facet.num.get.members], change
iter_type get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, short& val) const;
to
iter_type get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, float& val) const;
Section: 23.2 [container.requirements] Status: CD1 Submitter: Peter Dimov Opened: 2000-11-07 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with CD1 status.
Discussion:
23.1/3 states that the objects stored in a container must be Assignable. 23.4.4 [map], paragraph 2, states that map satisfies all requirements for a container, while in the same time defining value_type as pair<const Key, T> - a type that is not Assignable.
It should be noted that there exists a valid and non-contradictory interpretation of the current text. The wording in 23.1/3 avoids mentioning value_type, referring instead to "objects stored in a container." One might argue that map does not store objects of type map::value_type, but of map::mapped_type instead, and that the Assignable requirement applies to map::mapped_type, not map::value_type.
However, this makes map a special case (other containers store objects of type value_type) and the Assignable requirement is needlessly restrictive in general.
For example, the proposed resolution of active library issue 103 is to make set::iterator a constant iterator; this means that no set operations can exploit the fact that the stored objects are Assignable.
This is related to, but slightly broader than, closed issue 140.
Proposed resolution:
23.1/3: Strike the trailing part of the sentence:
, and the additional requirements of Assignable types from 23.1/3
so that it reads:
-3- The type of objects stored in these components must meet the requirements of CopyConstructible types (lib.copyconstructible).
23.1/4: Modify to make clear that this requirement is not for all containers. Change to:
-4- Table 64 defines the Assignable requirement. Some containers require this property of the types to be stored in the container. T is the type used to instantiate the container. t is a value of T, and u is a value of (possibly const) T.
23.1, Table 65: in the first row, change "T is Assignable" to "T is CopyConstructible".
23.2.1/2: Add sentence for Assignable requirement. Change to:
-2- A deque satisfies all of the requirements of a container and of a reversible container (given in tables in lib.container.requirements) and of a sequence, including the optional sequence requirements (lib.sequence.reqmts). In addition to the requirements on the stored object described in 23.1[lib.container.requirements], the stored object must also meet the requirements of Assignable. Descriptions are provided here only for operations on deque that are not described in one of these tables or for operations where there is additional semantic information.
23.2.2/2: Add Assignable requirement to specific methods of list. Change to:
-2- A list satisfies all of the requirements of a container and of a reversible container (given in two tables in lib.container.requirements) and of a sequence, including most of the the optional sequence requirements (lib.sequence.reqmts). The exceptions are the operator[] and at member functions, which are not provided. [Footnote: These member functions are only provided by containers whose iterators are random access iterators. --- end foonote]
list does not require the stored type T to be Assignable unless the following methods are instantiated: [Footnote: Implementors are permitted but not required to take advantage of T's Assignable properties for these methods. -- end foonote]
list<T,Allocator>& operator=(const list<T,Allocator>& x ); template <class InputIterator> void assign(InputIterator first, InputIterator last); void assign(size_type n, const T& t);Descriptions are provided here only for operations on list that are not described in one of these tables or for operations where there is additional semantic information.
23.2.4/2: Add sentence for Assignable requirement. Change to:
-2- A vector satisfies all of the requirements of a container and of a reversible container (given in two tables in lib.container.requirements) and of a sequence, including most of the optional sequence requirements (lib.sequence.reqmts). The exceptions are the push_front and pop_front member functions, which are not provided. In addition to the requirements on the stored object described in 23.1[lib.container.requirements], the stored object must also meet the requirements of Assignable. Descriptions are provided here only for operations on vector that are not described in one of these tables or for operations where there is additional semantic information.
Rationale:
list, set, multiset, map, multimap are able to store non-Assignables. However, there is some concern about list<T>: although in general there's no reason for T to be Assignable, some implementations of the member functions operator= and assign do rely on that requirement. The LWG does not want to forbid such implementations.
Note that the type stored in a standard container must still satisfy the requirements of the container's allocator; this rules out, for example, such types as "const int". See issue 274 for more details.
In principle we could also relax the "Assignable" requirement for individual vector member functions, such as push_back. However, the LWG did not see great value in such selective relaxation. Doing so would remove implementors' freedom to implement vector::push_back in terms of vector::insert.
Section: 23.3.5.5 [list.ops] Status: CD1 Submitter: P.J. Plauger Opened: 2000-11-27 Last modified: 2015-04-08
View all other issues in [list.ops].
View all issues with CD1 status.
Discussion:
Section 23.3.5.5 [list.ops] states that
void splice(iterator position, list<T, Allocator>& x);
invalidates all iterators and references to list x.
But what does the C++ Standard mean by "invalidate"? You can still dereference the iterator to a spliced list element, but you'd better not use it to delimit a range within the original list. For the latter operation, it has definitely lost some of its validity.
If we accept the proposed resolution to issue 250, then we'd better clarify that a "valid" iterator need no longer designate an element within the same container as it once did. We then have to clarify what we mean by invalidating a past-the-end iterator, as when a vector or string grows by reallocation. Clearly, such an iterator has a different kind of validity. Perhaps we should introduce separate terms for the two kinds of "validity."
Proposed resolution:
Add the following text to the end of section X [iterator.concepts], after paragraph 5:
An invalid iterator is an iterator that may be singular. [Footnote: This definition applies to pointers, since pointers are iterators. The effect of dereferencing an iterator that has been invalidated is undefined.]
[post-Copenhagen: Matt provided wording.]
[Redmond: General agreement with the intent, some objections to the wording. Dave provided new wording.]
Rationale:
This resolution simply defines a term that the Standard uses but never defines, "invalid", in terms of a term that is defined, "singular".
Why do we say "may be singular", instead of "is singular"? That's becuase a valid iterator is one that is known to be nonsingular. Invalidating an iterator means changing it in such a way that it's no longer known to be nonsingular. An example: inserting an element into the middle of a vector is correctly said to invalidate all iterators pointing into the vector. That doesn't necessarily mean they all become singular.
Section: 24.5.1 [reverse.iterators] Status: CD1 Submitter: Steve Cleary Opened: 2000-11-27 Last modified: 2015-04-08
View all other issues in [reverse.iterators].
View all issues with CD1 status.
Discussion:
This came from an email from Steve Cleary to Fergus in reference to issue 179. The library working group briefly discussed this in Toronto and believed it should be a separate issue. There was also some reservations about whether this was a worthwhile problem to fix.
Steve said: "Fixing reverse_iterator. std::reverse_iterator can (and should) be changed to preserve these additional requirements." He also said in email that it can be done without breaking user's code: "If you take a look at my suggested solution, reverse_iterator doesn't have to take two parameters; there is no danger of breaking existing code, except someone taking the address of one of the reverse_iterator global operator functions, and I have to doubt if anyone has ever done that. . . But, just in case they have, you can leave the old global functions in as well -- they won't interfere with the two-template-argument functions. With that, I don't see how any user code could break."
Proposed resolution:
Section: 24.5.1.1 [reverse.iterator] add/change the following declarations:
A) Add a templated assignment operator, after the same manner as the templated copy constructor, i.e.: template < class U > reverse_iterator < Iterator >& operator=(const reverse_iterator< U >& u); B) Make all global functions (except the operator+) have two template parameters instead of one, that is, for operator ==, !=, <, >, <=, >=, - replace: template < class Iterator > typename reverse_iterator< Iterator >::difference_type operator-( const reverse_iterator< Iterator >& x, const reverse_iterator< Iterator >& y); with: template < class Iterator1, class Iterator2 > typename reverse_iterator < Iterator1 >::difference_type operator-( const reverse_iterator < Iterator1 > & x, const reverse_iterator < Iterator2 > & y);
Also make the addition/changes for these signatures in 24.5.1.3 [reverse.iter.ops].
[ Copenhagen: The LWG is concerned that the proposed resolution introduces new overloads. Experience shows that introducing overloads is always risky, and that it would be inappropriate to make this change without implementation experience. It may be desirable to provide this feature in a different way. ]
[ Lillehammer: We now have implementation experience, and agree that this solution is safe and correct. ]
Section: 25.4.7 [alg.min.max] Status: CD1 Submitter: Martin Sebor Opened: 2000-12-02 Last modified: 2015-04-08
View all other issues in [alg.min.max].
View all issues with CD1 status.
Duplicate of: 486
Discussion:
The requirements in 25.3.7, p1 and 4 call for T to satisfy the requirements of LessThanComparable ( [lessthancomparable]) and CopyConstructible (17.6.3.1 [utility.arg.requirements]). Since the functions take and return their arguments and result by const reference, I believe the CopyConstructible requirement is unnecessary.
Proposed resolution:
Remove the CopyConstructible requirement. Specifically, replace 25.3.7, p1 with
-1- Requires: Type T is LessThanComparable ( [lessthancomparable]).
and replace 25.3.7, p4 with
-4- Requires: Type T is LessThanComparable ( [lessthancomparable]).
Section: 22.4.2.2.2 [facet.num.put.virtuals] Status: CD1 Submitter: Howard Hinnant Opened: 2000-12-05 Last modified: 2015-04-08
View all other issues in [facet.num.put.virtuals].
View all issues with CD1 status.
Discussion:
Paragraph 16 mistakenly singles out integral types for inserting thousands_sep() characters. This conflicts with the syntax for floating point numbers described under 22.2.3.1/2.
Proposed resolution:
Change paragraph 16 from:
For integral types, punct.thousands_sep() characters are inserted into the sequence as determined by the value returned by punct.do_grouping() using the method described in 22.4.3.1.2 [facet.numpunct.virtuals].
To:
For arithmetic types, punct.thousands_sep() characters are inserted into the sequence as determined by the value returned by punct.do_grouping() using the method described in 22.4.3.1.2 [facet.numpunct.virtuals].
[ Copenhagen: Opinions were divided about whether this is actually an inconsistency, but at best it seems to have been unintentional. This is only an issue for floating-point output: The standard is unambiguous that implementations must parse thousands_sep characters when performing floating-point. The standard is also unambiguous that this requirement does not apply to the "C" locale. ]
[ A survey of existing practice is needed; it is believed that some implementations do insert thousands_sep characters for floating-point output and others fail to insert thousands_sep characters for floating-point input even though this is unambiguously required by the standard. ]
[Post-Curaçao: the above proposed resolution is the consensus of Howard, Bill, Pete, Benjamin, Nathan, Dietmar, Boris, and Martin.]
Section: 25.3.5 [alg.replace] Status: CD1 Submitter: Martin Sebor Opened: 2000-12-15 Last modified: 2015-04-08
View all other issues in [alg.replace].
View all issues with CD1 status.
Duplicate of: 483
Discussion:
(revision of the further discussion) There are a number of problems with the requires clauses for the algorithms in 25.1 and 25.2. The requires clause of each algorithm should describe the necessary and sufficient requirements on the inputs to the algorithm such that the algorithm compiles and runs properly. Many of the requires clauses fail to do this. Here is a summary of the kinds of mistakes:
Here is the list of algorithms that contain mistakes:
Also, in the requirements for EqualityComparable, the requirement that the operator be defined for const objects is lacking.
Proposed resolution:
20.1.1 Change p1 from
In Table 28, T is a type to be supplied by a C++ program instantiating a template, a, b, and c are values of type T.
to
In Table 28, T is a type to be supplied by a C++ program instantiating a template, a, b, and c are values of type const T.
25 Between p8 and p9
Add the following sentence:
When the description of an algorithm gives an expression such as *first == value for a condition, it is required that the expression evaluate to either true or false in boolean contexts.
25.1.2 Change p1 by deleting the requires clause.
25.1.6 Change p1 by deleting the requires clause.
25.1.9
Change p4 from
-4- Requires: Type T is EqualityComparable (20.1.1), type Size is convertible to integral type (4.7.12.3).
to
-4- Requires: The type Size is convertible to integral type (4.7.12.3).
25.2.4 Change p1 from
-1- Requires: Type T is Assignable (23.1 ) (and, for replace(), EqualityComparable (20.1.1 )).
to
-1- Requires: The expression *first = new_value must be valid.
and change p4 from
-4- Requires: Type T is Assignable (23.1) (and, for replace_copy(), EqualityComparable (20.1.1)). The ranges [first, last) and [result, result + (last - first)) shall not overlap.
to
-4- Requires: The results of the expressions *first and new_value must be writable to the result output iterator. The ranges [first, last) and [result, result + (last - first)) shall not overlap.
25.2.5 Change p1 from
-1- Requires: Type T is Assignable (23.1). The type Size is convertible to an integral type (4.7.12.3).
to
-1- Requires: The expression value must be is writable to the output iterator. The type Size is convertible to an integral type (4.7.12.3).
25.2.7 Change p1 from
-1- Requires: Type T is EqualityComparable (20.1.1).
to
-1- Requires: The value type of the iterator must be Assignable (23.1).
Rationale:
The general idea of the proposed solution is to remove the faulty requires clauses and let the returns and effects clauses speak for themselves. That is, the returns clauses contain expressions that must be valid, and therefore already imply the correct requirements. In addition, a sentence is added at the beginning of chapter 25 saying that expressions given as conditions must evaluate to true or false in a boolean context. An alternative would be to say that the type of these condition expressions must be literally bool, but that would be imposing a greater restriction that what the standard currently says (which is convertible to bool).
Section: 20.9.6 [comparisons] Status: CD1 Submitter: Martin Sebor Opened: 2000-12-26 Last modified: 2015-04-08
View other active issues in [comparisons].
View all other issues in [comparisons].
View all issues with CD1 status.
Discussion:
The example in 20.9.6 [comparisons], p6 shows how to use the C library function strcmp() with the function pointer adapter ptr_fun(). But since it's unspecified whether the C library functions have extern "C" or extern "C++" linkage [17.6.2.3 [using.linkage]], and since function pointers with different the language linkage specifications (7.5 [dcl.link]) are incompatible, whether this example is well-formed is unspecified.
Proposed resolution:
Change 20.9.6 [comparisons] paragraph 6 from:
[Example:
replace_if(v.begin(), v.end(), not1(bind2nd(ptr_fun(strcmp), "C")), "C++");replaces each C with C++ in sequence v.
to:
[Example:
int compare(const char*, const char*); replace_if(v.begin(), v.end(), not1(bind2nd(ptr_fun(compare), "abc")), "def");replaces each abc with def in sequence v.
Also, remove footnote 215 in that same paragraph.
[Copenhagen: Minor change in the proposed resolution. Since this issue deals in part with C and C++ linkage, it was believed to be too confusing for the strings in the example to be "C" and "C++". ]
[Redmond: More minor changes. Got rid of the footnote (which seems to make a sweeping normative requirement, even though footnotes aren't normative), and changed the sentence after the footnote so that it corresponds to the new code fragment.]
Section: 27.9.1.7 [ifstream.cons] Status: CD1 Submitter: Martin Sebor Opened: 2000-12-31 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
27.9.1.7 [ifstream.cons], p2, 27.9.1.11 [ofstream.cons], p2, and 27.9.1.15 [fstream.cons], p2 say about the effects of each constructor:
... If that function returns a null pointer, calls setstate(failbit) (which may throw ios_base::failure).
The parenthetical note doesn't apply since the ctors cannot throw an exception due to the requirement in 27.5.5.2 [basic.ios.cons], p3 that exceptions() be initialized to ios_base::goodbit.
Proposed resolution:
Strike the parenthetical note from the Effects clause in each of the paragraphs mentioned above.
Section: 25.5 [alg.c.library] Status: CD1 Submitter: Judy Ward Opened: 2000-12-30 Last modified: 2015-04-08
View all other issues in [alg.c.library].
View all issues with CD1 status.
Discussion:
The <cstdlib> header file contains prototypes for bsearch and qsort (C++ Standard section 25.4 paragraphs 3 and 4) and other prototypes (C++ Standard section 21.4 paragraph 1 table 49) that require the typedef size_t. Yet size_t is not listed in the <cstdlib> synopsis table 78 in section 25.4.
Proposed resolution:
Add the type size_t to Table 78 (section 25.4) and add the type size_t <cstdlib> to Table 97 (section C.2).
Rationale:
Since size_t is in <stdlib.h>, it must also be in <cstdlib>.
Section: 19.4 [errno] Status: CD1 Submitter: Judy Ward Opened: 2000-12-30 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
ISO/IEC 9899:1990/Amendment1:1994 Section 4.3 States: "The list of macros defined in <errno.h> is adjusted to include a new macro, EILSEQ"
ISO/IEC 14882:1998(E) section 19.3 does not refer to the above amendment.
Proposed resolution:
Update Table 26 (section 19.3) "Header <cerrno> synopsis" and Table 95 (section C.2) "Standard Macros" to include EILSEQ.
Section: 25.4.5 [alg.set.operations] Status: CD1 Submitter: Matt Austern Opened: 2001-01-03 Last modified: 2015-04-08
View all other issues in [alg.set.operations].
View all issues with CD1 status.
Discussion:
The standard library contains four algorithms that compute set operations on sorted ranges: set_union, set_intersection, set_difference, and set_symmetric_difference. Each of these algorithms takes two sorted ranges as inputs, and writes the output of the appropriate set operation to an output range. The elements in the output range are sorted.
The ordinary mathematical definitions are generalized so that they apply to ranges containing multiple copies of a given element. Two elements are considered to be "the same" if, according to an ordering relation provided by the user, neither one is less than the other. So, for example, if one input range contains five copies of an element and another contains three, the output range of set_union will contain five copies, the output range of set_intersection will contain three, the output range of set_difference will contain two, and the output range of set_symmetric_difference will contain two.
Because two elements can be "the same" for the purposes of these set algorithms, without being identical in other respects (consider, for example, strings under case-insensitive comparison), this raises a number of unanswered questions:
The standard should either answer these questions, or explicitly say that the answers are unspecified. I prefer the former option, since, as far as I know, all existing implementations behave the same way.
Proposed resolution:
Add the following to the end of 25.4.5.2 [set.union] paragraph 5:
If [first1, last1) contains m elements that are equivalent to each other and [first2, last2) contains n elements that are equivalent to them, then max(m, n) of these elements will be copied to the output range: all m of these elements from [first1, last1), and the last max(n-m, 0) of them from [first2, last2), in that order.
Add the following to the end of 25.4.5.3 [set.intersection] paragraph 5:
If [first1, last1) contains m elements that are equivalent to each other and [first2, last2) contains n elements that are equivalent to them, the first min(m, n) of those elements from [first1, last1) are copied to the output range.
Add a new paragraph, Notes, after 25.4.5.4 [set.difference] paragraph 4:
If [first1, last1) contains m elements that are equivalent to each other and [first2, last2) contains n elements that are equivalent to them, the last max(m-n, 0) elements from [first1, last1) are copied to the output range.
Add a new paragraph, Notes, after 25.4.5.5 [set.symmetric.difference] paragraph 4:
If [first1, last1) contains m elements that are equivalent to each other and [first2, last2) contains n elements that are equivalent to them, then |m - n| of those elements will be copied to the output range: the last m - n of these elements from [first1, last1) if m > n, and the last n - m of these elements from [first2, last2) if m < n.
[Santa Cruz: it's believed that this language is clearer than what's in the Standard. However, it's also believed that the Standard may already make these guarantees (although not quite in these words). Bill and Howard will check and see whether they think that some or all of these changes may be redundant. If so, we may close this issue as NAD.]
Rationale:
For simple cases, these descriptions are equivalent to what's already in the Standard. For more complicated cases, they describe the behavior of existing implementations.
Section: 27.5.5.3 [basic.ios.members] Status: CD1 Submitter: Martin Sebor Opened: 2001-01-05 Last modified: 2015-04-08
View all other issues in [basic.ios.members].
View all issues with CD1 status.
Discussion:
The Effects clause of the member function copyfmt() in 27.4.4.2, p15 doesn't consider the case where the left-hand side argument is identical to the argument on the right-hand side, that is (this == &rhs). If the two arguments are identical there is no need to copy any of the data members or call any callbacks registered with register_callback(). Also, as Howard Hinnant points out in message c++std-lib-8149 it appears to be incorrect to allow the object to fire erase_event followed by copyfmt_event since the callback handling the latter event may inadvertently attempt to access memory freed by the former.
Proposed resolution:
Change the Effects clause in 27.4.4.2, p15 from
-15- Effects:Assigns to the member objects of *this the corresponding member objects of rhs, except that...
to
-15- Effects:If (this == &rhs) does nothing. Otherwise assigns to the member objects of *this the corresponding member objects of rhs, except that...
Section: 17.6.4.3.1 [macro.names] Status: CD1 Submitter: James Kanze Opened: 2001-01-11 Last modified: 2015-04-08
View all other issues in [macro.names].
View all issues with CD1 status.
Discussion:
Paragraph 2 of 17.6.4.3.1 [macro.names] reads: "A translation unit that includes a header shall not contain any macros that define names declared in that header." As I read this, it would mean that the following program is legal:
#define npos 3.14 #include <sstream>
since npos is not defined in <sstream>. It is, however, defined in <string>, and it is hard to imagine an implementation in which <sstream> didn't include <string>.
I think that this phrase was probably formulated before it was decided that a standard header may freely include other standard headers. The phrase would be perfectly appropriate for C, for example. In light of 17.6.5.2 [res.on.headers] paragraph 1, however, it isn't stringent enough.
Proposed resolution:
For 17.6.4.3.1 [macro.names], replace the current wording, which reads:
Each name defined as a macro in a header is reserved to the implementation for any use if the translation unit includes the header.168)
A translation unit that includes a header shall not contain any macros that define names declared or defined in that header. Nor shall such a translation unit define macros for names lexically identical to keywords.
168) It is not permissible to remove a library macro definition by using the #undef directive.
with the wording:
A translation unit that includes a standard library header shall not #define or #undef names declared in any standard library header.
A translation unit shall not #define or #undef names lexically identical to keywords.
[Lillehammer: Beman provided new wording]
Section: 26.8 [c.math] Status: CD1 Submitter: Jens Maurer Opened: 2001-01-12 Last modified: 2015-04-08
View other active issues in [c.math].
View all other issues in [c.math].
View all issues with CD1 status.
Discussion:
Table 80 lists the contents of the <cmath> header. It does not list abs(). However, 26.5, paragraph 6, which lists added signatures present in <cmath>, does say that several overloads of abs() should be defined in <cmath>.
Proposed resolution:
Add abs to Table 80. Also, remove the parenthetical list of functions "(abs(), div(), rand(), srand())" from 26.6 [numarray], paragraph 1.
[Copenhagen: Modified proposed resolution so that it also gets rid of that vestigial list of functions in paragraph 1.]
Rationale:
All this DR does is fix a typo; it's uncontroversial. A separate question is whether we're doing the right thing in putting some overloads in <cmath> that we aren't also putting in <cstdlib>. That's issue 323.
Section: 20.3 [pairs] Status: C++11 Submitter: Martin Sebor Opened: 2001-01-14 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with C++11 status.
Discussion:
The synopsis of the header <utility> in 20.2 [utility] lists the complete set of equality and relational operators for pair but the section describing the template and the operators only describes operator==() and operator<(), and it fails to mention any requirements on the template arguments. The remaining operators are not mentioned at all.
[ 2009-09-27 Alisdair reopens. ]
The issue is a lack of wording specifying the semantics of std::pair relational operators. The rationale is that this is covered by catch-all wording in the relops component, and that as relops directly precedes pair in the document this is an easy connection to make.
Reading the current working paper I make two observations:
- relops no longer immediately precedes pair in the order of specification. However, even if it did, there is a lot of pair specification itself between the (apparently) unrelated relops and the relational operators for pair. (The catch-all still requires operator== and operator< to be specified explicitly)
- No other library component relies on the catch-all clause. The following all explicitly document all six relational operators, usually in a manner that could have deferred to the relops clause.
tuple unique_ptr duration time_point basic_string queue stack move_iterator reverse_iterator regex submatch thread::idThe container components provide their own (equivalent) definition in 23.2.1 [container.requirements.general] Table 90 -- Container requirements and do so do not defer to relops.
Shared_ptr explicitly documents operator!= and does not supply the other 3 missing operators (>,>=,<=) so does not meet the reqirements of the relops clause.
Weak_ptr only supports operator< so would not be covered by relops.
At the very least I would request a note pointing to the relops clause we rely on to provide this definition. If this route is taken, I would recommend reducing many of the above listed clauses to a similar note rather than providing redundant specification.
My preference would be to supply the 4 missing specifications consistent with the rest of the library.
[ 2009-10-11 Daniel opens 1233 which deals with the same issue as it pertains to unique_ptr. ]
[ 2009-10 Santa Cruz: ]
Move to Ready
Proposed resolution:
After p20 20.3 [pairs] add:
template <class T1, class T2> bool operator!=(const pair<T1,T2>& x, const pair<T1,T2>& y);Returns: !(x==y)
template <class T1, class T2> bool operator> (const pair<T1,T2>& x, const pair<T1,T2>& y);Returns: y < x
template <class T1, class T2> bool operator>=(const pair<T1,T2>& x, const pair<T1,T2>& y);Returns: !(x < y)
template <class T1, class T2> bool operator<=(const pair<T1,T2>& x, const pair<T1,T2>& y);Returns: !(y < x)
Rationale:
20.2.1 [operators] paragraph 10 already specifies the semantics. That paragraph says that, if declarations of operator!=, operator>, operator<=, and operator>= appear without definitions, they are defined as specified in 20.2.1 [operators]. There should be no user confusion, since that paragraph happens to immediately precede the specification of pair.
Section: 20.9.7 [logical.operations] Status: CD1 Submitter: Martin Sebor Opened: 2001-01-06 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The class templates const_mem_fun_t in 20.5.8, p8 and const_mem_fun1_t in 20.5.8, p9 derive from unary_function<T*, S>, and binary_function<T*, A, S>, respectively. Consequently, their argument_type, and first_argument_type members, respectively, are both defined to be T* (non-const). However, their function call member operator takes a const T* argument. It is my opinion that argument_type should be const T* instead, so that one can easily refer to it in generic code. The example below derived from existing code fails to compile due to the discrepancy:
template <class T>
void foo (typename T::argument_type arg) // #1
{
typename T::result_type (T::*pf) (typename
T::argument_type)
const = // #2
&T::operator();
}
struct X { /* ... */ };
int main ()
{
const X x;
foo<std::const_mem_fun_t<void, X>
>(&x);
// #3
}
#1 foo() takes a plain unqualified X* as an argument
#2 the type of the pointer is incompatible with the type of the member
function
#3 the address of a constant being passed to a function taking a non-const
X*
Proposed resolution:
Replace the top portion of the definition of the class template const_mem_fun_t in 20.5.8, p8
template <class S, class T> class const_mem_fun_t
: public
unary_function<T*, S> {
with
template <class S, class T> class const_mem_fun_t
: public
unary_function<const T*, S> {
Also replace the top portion of the definition of the class template const_mem_fun1_t in 20.5.8, p9
template <class S, class T, class A> class const_mem_fun1_t
: public
binary_function<T*, A, S> {
with
template <class S, class T, class A> class const_mem_fun1_t
: public
binary_function<const T*, A, S> {
Rationale:
This is simply a contradiction: the argument_type typedef, and the argument type itself, are not the same.
Section: 18.6.1.2 [new.delete.array] Status: CD1 Submitter: John A. Pedretti Opened: 2001-01-10 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The default behavior of operator delete[] described in 18.5.1.2, p12 - namely that for non-null value of ptr, the operator reclaims storage allocated by the earlier call to the default operator new[] - is not correct in all cases. Since the specified operator new[] default behavior is to call operator new (18.5.1.2, p4, p8), which can be replaced, along with operator delete, by the user, to implement their own memory management, the specified default behavior of operator delete[] must be to call operator delete.
Proposed resolution:
Change 18.5.1.2, p12 from
-12- Default behavior:
- For a null value of ptr , does nothing.
- Any other value of ptr shall be a value returned earlier by a call to the default operator new[](std::size_t). [Footnote: The value must not have been invalidated by an intervening call to operator delete[](void*) (17.6.4.9 [res.on.arguments]). --- end footnote] For such a non-null value of ptr , reclaims storage allocated by the earlier call to the default operator new[].
to
-12- Default behavior: Calls operator delete(ptr) or operator delete(ptr, std::nothrow) respectively.
and expunge paragraph 13.
Section: 23.3.5.5 [list.ops] Status: CD1 Submitter: John Pedretti Opened: 2001-01-23 Last modified: 2015-04-08
View all other issues in [list.ops].
View all issues with CD1 status.
Discussion:
The "Effects" clause for list::merge() (23.3.5.5 [list.ops], p23) appears to be incomplete: it doesn't cover the case where the argument list is identical to *this (i.e., this == &x). The requirement in the note in p24 (below) is that x be empty after the merge which is surely unintended in this case.
Proposed resolution:
In 23.3.5.5 [list.ops], replace paragraps 23-25 with:
23 Effects: if (&x == this) does nothing; otherwise, merges the two sorted ranges [begin(), end()) and [x.begin(), x.end()). The result is a range in which the elements will be sorted in non-decreasing order according to the ordering defined by comp; that is, for every iterator i in the range other than the first, the condition comp(*i, *(i - 1)) will be false.
24 Notes: Stable: if (&x != this), then for equivalent elements in the two original ranges, the elements from the original range [begin(), end()) always precede the elements from the original range [x.begin(), x.end()). If (&x != this) the range [x.begin(), x.end()) is empty after the merge.
25 Complexity: At most size() + x.size() - 1 applications of comp if (&x ! = this); otherwise, no applications of comp are performed. If an exception is thrown other than by a comparison there are no effects.
[Copenhagen: The original proposed resolution did not fix all of the problems in 23.3.5.5 [list.ops], p22-25. Three different paragraphs (23, 24, 25) describe the effects of merge. Changing p23, without changing the other two, appears to introduce contradictions. Additionally, "merges the argument list into the list" is excessively vague.]
[Post-Curaçao: Robert Klarer provided new wording.]
Section: 21.4.1 [string.require] Status: CD1 Submitter: Martin Sebor Opened: 2001-01-27 Last modified: 2015-04-08
View all other issues in [string.require].
View all issues with CD1 status.
Discussion:
The effects clause for the basic_string template ctor in 21.3.1, p15 leaves out the third argument of type Allocator. I believe this to be a mistake.
Proposed resolution:
Replace
-15- Effects: If InputIterator is an integral type, equivalent to
basic_string(static_cast<size_type>(begin), static_cast<value_type>(end))
with
-15- Effects: If InputIterator is an integral type, equivalent to
basic_string(static_cast<size_type>(begin), static_cast<value_type>(end), a)
Section: 20.6.4 [bitset.operators] Status: CD1 Submitter: Matt Austern Opened: 2001-02-05 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
In 23.3.5.3, we are told that bitset's input operator "Extracts up to N (single-byte) characters from is.", where is is a stream of type basic_istream<charT, traits>.
The standard does not say what it means to extract single byte characters from a stream whose character type, charT, is in general not a single-byte character type. Existing implementations differ.
A reasonable solution will probably involve widen() and/or narrow(), since they are the supplied mechanism for converting a single character between char and arbitrary charT.
Narrowing the input characters is not the same as widening the literals '0' and '1', because there may be some locales in which more than one wide character maps to the narrow character '0'. Narrowing means that alternate representations may be used for bitset input, widening means that they may not be.
Note that for numeric input, num_get<> (22.2.2.1.2/8) compares input characters to widened version of narrow character literals.
From Pete Becker, in c++std-lib-8224:
Different writing systems can have different representations for the digits that represent 0 and 1. For example, in the Unicode representation of the Devanagari script (used in many of the Indic languages) the digit 0 is 0x0966, and the digit 1 is 0x0967. Calling narrow would translate those into '0' and '1'. But Unicode also provides the ASCII values 0x0030 and 0x0031 for for the Latin representations of '0' and '1', as well as code points for the same numeric values in several other scripts (Tamil has no character for 0, but does have the digits 1-9), and any of these values would also be narrowed to '0' and '1'.
...
It's fairly common to intermix both native and Latin representations of numbers in a document. So I think the rule has to be that if a wide character represents a digit whose value is 0 then the bit should be cleared; if it represents a digit whose value is 1 then the bit should be set; otherwise throw an exception. So in a Devanagari locale, both 0x0966 and 0x0030 would clear the bit, and both 0x0967 and 0x0031 would set it. Widen can't do that. It would pick one of those two values, and exclude the other one.
From Jens Maurer, in c++std-lib-8233:
Whatever we decide, I would find it most surprising if bitset conversion worked differently from int conversion with regard to alternate local representations of numbers.
Thus, I think the options are:
- Have a new defect issue for 22.2.2.1.2/8 so that it will require the use of narrow().
- Have a defect issue for bitset() which describes clearly that widen() is to be used.
Proposed resolution:
Replace the first two sentences of paragraph 5 with:
Extracts up to N characters from is. Stores these characters in a temporary object str of type basic_string<charT, traits>, then evaluates the expression x = bitset<N>(str).
Replace the third bullet item in paragraph 5 with:
Rationale:
Input for bitset should work the same way as numeric input. Using widen does mean that alternative digit representations will not be recognized, but this was a known consequence of the design choice.
Section: 22.4.1.5 [locale.codecvt.byname] Status: CD1 Submitter: Howard Hinnant Opened: 2001-01-24 Last modified: 2015-04-08
View all other issues in [locale.codecvt.byname].
View all issues with CD1 status.
Discussion:
22.2.1.5/3 introduces codecvt in part with:
codecvt<wchar_t,char,mbstate_t> converts between the native character sets for tiny and wide characters. Instantiations on mbstate_t perform conversion between encodings known to the library implementor.
But 22.2.1.5.2/10 describes do_length in part with:
... codecvt<wchar_t, char, mbstate_t> ... return(s) the lesser of max and (from_end-from).
The semantics of do_in and do_length are linked. What one does must be consistent with what the other does. 22.2.1.5/3 leads me to believe that the vendor is allowed to choose the algorithm that codecvt<wchar_t,char,mbstate_t>::do_in performs so that it makes his customers happy on a given platform. But 22.2.1.5.2/10 explicitly says what codecvt<wchar_t,char,mbstate_t>::do_length must return. And thus indirectly specifies the algorithm that codecvt<wchar_t,char,mbstate_t>::do_in must perform. I believe that this is not what was intended and is a defect.
Discussion from the -lib reflector:
This proposal would have the effect of making the semantics of
all of the virtual functions in codecvt<wchar_t, char,
mbstate_t> implementation specified. Is that what we want, or
do we want to mandate specific behavior for the base class virtuals
and leave the implementation specified behavior for the codecvt_byname
derived class? The tradeoff is that former allows implementors to
write a base class that actually does something useful, while the
latter gives users a way to get known and specified---albeit
useless---behavior, and is consistent with the way the standard
handles other facets. It is not clear what the original intention
was.
Nathan has suggest a compromise: a character that is a widened version of the characters in the basic execution character set must be converted to a one-byte sequence, but there is no such requirement for characters that are not part of the basic execution character set.
Proposed resolution:
Change 22.2.1.5.2/5 from:
The instantiations required in Table 51 (lib.locale.category), namely codecvt<wchar_t,char,mbstate_t> and codecvt<char,char,mbstate_t>, store no characters. Stores no more than (to_limit-to) destination elements. It always leaves the to_next pointer pointing one beyond the last element successfully stored.
to:
Stores no more than (to_limit-to) destination elements, and leaves the to_next pointer pointing one beyond the last element successfully stored. codecvt<char,char,mbstate_t> stores no characters.
Change 22.2.1.5.2/10 from:
-10- Returns: (from_next-from) where from_next is the largest value in the range [from,from_end] such that the sequence of values in the range [from,from_next) represents max or fewer valid complete characters of type internT. The instantiations required in Table 51 (21.1.1.1.1), namely codecvt<wchar_t, char, mbstate_t> and codecvt<char, char, mbstate_t>, return the lesser of max and (from_end-from).
to:
-10- Returns: (from_next-from) where from_next is the largest value in the range [from,from_end] such that the sequence of values in the range [from,from_next) represents max or fewer valid complete characters of type internT. The instantiation codecvt<char, char, mbstate_t> returns the lesser of max and (from_end-from).
[Redmond: Nathan suggested an alternative resolution: same as above, but require that, in the default encoding, a character from the basic execution character set would map to a single external character. The straw poll was 8-1 in favor of the proposed resolution.]
Rationale:
The default encoding should be whatever users of a given platform would expect to be the most natural. This varies from platform to platform. In many cases there is a preexisting C library, and users would expect the default encoding to be whatever C uses in the default "C" locale. We could impose a guarantee like the one Nathan suggested (a character from the basic execution character set must map to a single external character), but this would rule out important encodings that are in common use: it would rule out JIS, for example, and it would rule out a fixed-width encoding of UCS-4.
[Curaçao: fixed rationale typo at the request of Ichiro Koshida; "shift-JIS" changed to "JIS".]
Section: 18.2 [support.types] Status: CD1 Submitter: Steve Clamage Opened: 2001-02-21 Last modified: 2015-04-08
View all other issues in [support.types].
View all issues with CD1 status.
Discussion:
Spliced together from reflector messages c++std-lib-8294 and -8295:
18.1, paragraph 5, reads: "The macro offsetof accepts a restricted set of type arguments in this International Standard. type shall be a POD structure or a POD union (clause 9). The result of applying the offsetof macro to a field that is a static data member or a function member is undefined."
For the POD requirement, it doesn't say "no diagnostic required" or "undefined behavior". I read 1.4 [intro.compliance], paragraph 1, to mean that a diagnostic is required. It's not clear whether this requirement was intended. While it's possible to provide such a diagnostic, the extra complication doesn't seem to add any value.
Proposed resolution:
Change 18.1, paragraph 5, to "If type is not a POD structure or a POD union the results are undefined."
[Copenhagen: straw poll was 7-4 in favor. It was generally agreed that requiring a diagnostic was inadvertent, but some LWG members thought that diagnostics should be required whenever possible.]
Section: 23.3.5 [list] Status: CD1 Submitter: Howard Hinnant Opened: 2001-03-13 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
From reflector message c++std-lib-8330. See also lib-8317.
The standard is currently inconsistent in 23.3.5.3 [list.capacity] paragraph 1 and 23.3.5.4 [list.modifiers] paragraph 1. 23.2.3.3/1, for example, says:
-1- Any sequence supporting operations back(), push_back() and pop_back() can be used to instantiate stack. In particular, vector (lib.vector), list (lib.list) and deque (lib.deque) can be used.
But this is false: vector<bool> can not be used, because the container adaptors return a T& rather than using the underlying container's reference type.
This is a contradiction that can be fixed by:
I propose 3. This does not preclude option 2 if we choose to do it later (see issue 96); the issues are independent. Option 3 offers a small step towards support for proxied containers. This small step fixes a current contradiction, is easy for vendors to implement, is already implemented in at least one popular lib, and does not break any code.
Proposed resolution:
Summary: Add reference and const_reference typedefs to queue, priority_queue and stack. Change return types of "value_type&" to "reference". Change return types of "const value_type&" to "const_reference". Details:
Change 23.2.3.1/1 from:
namespace std { template <class T, class Container = deque<T> > class queue { public: typedef typename Container::value_type value_type; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; public: explicit queue(const Container& = Container()); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } value_type& front() { return c.front(); } const value_type& front() const { return c.front(); } value_type& back() { return c.back(); } const value_type& back() const { return c.back(); } void push(const value_type& x) { c.push_back(x); } void pop() { c.pop_front(); } };
to:
namespace std { template <class T, class Container = deque<T> > class queue { public: typedef typename Container::value_type value_type; typedef typename Container::reference reference; typedef typename Container::const_reference const_reference; typedef typename Container::value_type value_type; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; public: explicit queue(const Container& = Container()); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } reference front() { return c.front(); } const_reference front() const { return c.front(); } reference back() { return c.back(); } const_reference back() const { return c.back(); } void push(const value_type& x) { c.push_back(x); } void pop() { c.pop_front(); } };
Change 23.2.3.2/1 from:
namespace std { template <class T, class Container = vector<T>, class Compare = less<typename Container::value_type> > class priority_queue { public: typedef typename Container::value_type value_type; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; Compare comp; public: explicit priority_queue(const Compare& x = Compare(), const Container& = Container()); template <class InputIterator> priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare(), const Container& = Container()); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } const value_type& top() const { return c.front(); } void push(const value_type& x); void pop(); }; // no equality is provided }
to:
namespace std { template <class T, class Container = vector<T>, class Compare = less<typename Container::value_type> > class priority_queue { public: typedef typename Container::value_type value_type; typedef typename Container::reference reference; typedef typename Container::const_reference const_reference; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; Compare comp; public: explicit priority_queue(const Compare& x = Compare(), const Container& = Container()); template <class InputIterator> priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare(), const Container& = Container()); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } const_reference top() const { return c.front(); } void push(const value_type& x); void pop(); }; // no equality is provided }
And change 23.2.3.3/1 from:
namespace std { template <class T, class Container = deque<T> > class stack { public: typedef typename Container::value_type value_type; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; public: explicit stack(const Container& = Container()); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } value_type& top() { return c.back(); } const value_type& top() const { return c.back(); } void push(const value_type& x) { c.push_back(x); } void pop() { c.pop_back(); } }; template <class T, class Container> bool operator==(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator< (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator> (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y); }
to:
namespace std { template <class T, class Container = deque<T> > class stack { public: typedef typename Container::value_type value_type; typedef typename Container::reference reference; typedef typename Container::const_reference const_reference; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; public: explicit stack(const Container& = Container()); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } reference top() { return c.back(); } const_reference top() const { return c.back(); } void push(const value_type& x) { c.push_back(x); } void pop() { c.pop_back(); } }; template <class T, class Container> bool operator==(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator< (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator> (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y); }
[Copenhagen: This change was discussed before the IS was released and it was deliberately not adopted. Nevertheless, the LWG believes (straw poll: 10-2) that it is a genuine defect.]
Section: 27 [input.output] Status: CD1 Submitter: Martin Sebor Opened: 2001-03-15 Last modified: 2015-04-08
View all other issues in [input.output].
View all issues with CD1 status.
Discussion:
Table 82 in section 27 mentions the header <cstdlib> for String streams (27.8 [string.streams]) and the headers <cstdio> and <cwchar> for File streams (27.9 [file.streams]). It's not clear why these headers are mentioned in this context since they do not define any of the library entities described by the subclauses. According to 17.6.1.1 [contents], only such headers are to be listed in the summary.
Proposed resolution:
Remove <cstdlib> and <cwchar> from Table 82.
[Copenhagen: changed the proposed resolution slightly. The original proposed resolution also said to remove <cstdio> from Table 82. However, <cstdio> is mentioned several times within section 27.9 [file.streams], including 27.9.2 [c.files].]
Section: 17.6.1.2 [headers], 19.4 [errno] Status: CD1 Submitter: Steve Clamage Opened: 2001-03-21 Last modified: 2015-04-08
View all other issues in [headers].
View all issues with CD1 status.
Discussion:
Exactly how should errno be declared in a conforming C++ header?
The C standard says in 7.1.4 that it is unspecified whether errno is a macro or an identifier with external linkage. In some implementations it can be either, depending on compile-time options. (E.g., on Solaris in multi-threading mode, errno is a macro that expands to a function call, but is an extern int otherwise. "Unspecified" allows such variability.)
The C++ standard:
I find no other references to errno.
We should either explicitly say that errno must be a macro, even though it need not be a macro in C, or else explicitly leave it unspecified. We also need to say something about namespace std. A user who includes <cerrno> needs to know whether to write errno, or ::errno, or std::errno, or else <cerrno> is useless.
Two acceptable fixes:
errno must be a macro. This is trivially satisfied by adding
#define errno (::std::errno)
to the headers if errno is not already a macro. You then always
write errno without any scope qualification, and it always expands
to a correct reference. Since it is always a macro, you know to
avoid using errno as a local identifer.
errno is in the global namespace. This fix is inferior, because ::errno is not guaranteed to be well-formed.
[ This issue was first raised in 1999, but it slipped through the cracks. ]
Proposed resolution:
Change the Note in section 17.4.1.2p5 from
Note: the names defined as macros in C include the following: assert, errno, offsetof, setjmp, va_arg, va_end, and va_start.
to
Note: the names defined as macros in C include the following: assert, offsetof, setjmp, va_arg, va_end, and va_start.
In section 19.3, change paragraph 2 from
The contents are the same as the Standard C library header <errno.h>.
to
The contents are the same as the Standard C library header <errno.h>, except that errno shall be defined as a macro.
Rationale:
C++ must not leave it up to the implementation to decide whether or not a name is a macro; it must explicitly specify exactly which names are required to be macros. The only one that really works is for it to be a macro.
[Curaçao: additional rationale added.]
Section: 27.7.3.1 [ostream] Status: CD1 Submitter: Andy Sawyer Opened: 2001-03-21 Last modified: 2015-04-08
View all other issues in [ostream].
View all issues with CD1 status.
Discussion:
In 27.7.3.1 [ostream], the synopsis of class basic_ostream says:
// partial specializationss template<class traits> basic_ostream<char,traits>& operator<<( basic_ostream<char,traits>&, const char * );
Problems:
Proposed resolution:
In the synopsis in 27.7.3.1 [ostream], remove the // partial specializationss comment. Also remove the same comment (correctly spelled, but still incorrect) from the synopsis in 27.7.3.6.4 [ostream.inserters.character].
[ Pre-Redmond: added 27.7.3.6.4 [ostream.inserters.character] because of Martin's comment in c++std-lib-8939. ]
Section: 20 [utilities] Status: CD1 Submitter: Martin Sebor Opened: 2001-03-29 Last modified: 2015-04-08
View all other issues in [utilities].
View all issues with CD1 status.
Discussion:
Table 27 in section 20 lists the header <memory> (only) for Memory (lib.memory) but neglects to mention the headers <cstdlib> and <cstring> that are discussed in 20.10.6 [meta.rel].
Proposed resolution:
Add <cstdlib> and <cstring> to Table 27, in the same row as <memory>.
Section: 23.3.5.5 [list.ops] Status: CD1 Submitter: Andy Sawyer Opened: 2001-05-01 Last modified: 2015-04-08
View all other issues in [list.ops].
View all issues with CD1 status.
Discussion:
23.3.5.5 [list.ops], Para 21 describes the complexity of list::unique as: "If the range (last - first) is not empty, exactly (last - first) -1 applications of the corresponding predicate, otherwise no applications of the predicate)".
"(last - first)" is not a range.
Proposed resolution:
Change the "range" from (last - first) to [first, last).
Section: 23.2.4 [associative.reqmts] Status: CD1 Submitter: Martin Sebor Opened: 2001-05-04 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with CD1 status.
Discussion:
Table 69 says this about a_uniq.insert(t):
inserts t if and only if there is no element in the container with key equivalent to the key of t. The bool component of the returned pair indicates whether the insertion takes place and the iterator component of the pair points to the element with key equivalent to the key of t.
The description should be more specific about exactly how the bool component indicates whether the insertion takes place.
Proposed resolution:
Change the text in question to
...The bool component of the returned pair is true if and only if the insertion takes place...
Section: 22 [localization] Status: CD1 Submitter: Martin Sebor Opened: 2001-05-04 Last modified: 2015-04-08
View all other issues in [localization].
View all issues with CD1 status.
Discussion:
The localization section of the standard refers to specializations of the facet templates as instantiations even though the required facets are typically specialized rather than explicitly (or implicitly) instantiated. In the case of ctype<char> and ctype_byname<char> (and the wchar_t versions), these facets are actually required to be specialized. The terminology should be corrected to make it clear that the standard doesn't mandate explicit instantiation (the term specialization encompasses both explicit instantiations and specializations).
Proposed resolution:
In the following paragraphs, replace all occurrences of the word instantiation or instantiations with specialization or specializations, respectively:
22.1.1.1.1, p4, Table 52, 22.2.1.1, p2, 22.2.1.5, p3, 22.2.1.5.1, p5, 22.2.1.5.2, p10, 22.2.2, p2, 22.2.3.1, p1, 22.2.3.1.2, p1, p2 and p3, 22.2.4.1, p1, 22.2.4.1.2, p1, 22,2,5, p1, 22,2,6, p2, 22.2.6.3.2, p7, and Footnote 242.
And change the text in 22.1.1.1.1, p4 from
An implementation is required to provide those instantiations for facet templates identified as members of a category, and for those shown in Table 52:
to
An implementation is required to provide those specializations...
[Nathan will review these changes, and will look for places where explicit specialization is necessary.]
Rationale:
This is a simple matter of outdated language. The language to describe templates was clarified during the standardization process, but the wording in clause 22 was never updated to reflect that change.
Section: 22.4.3.2 [locale.numpunct.byname] Status: CD1 Submitter: Martin Sebor Opened: 2001-05-12 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The definition of the numpunct_byname template contains the following comment:
namespace std { template <class charT> class numpunct_byname : public numpunct<charT> { // this class is specialized for char and wchar_t. ...
There is no documentation of the specializations and it seems conceivable that an implementation will not explicitly specialize the template at all, but simply provide the primary template.
Proposed resolution:
Remove the comment from the text in 22.2.3.2 and from the proposed resolution of library issue 228.
Section: 18.6.1.1 [new.delete.single], 18.6.1.2 [new.delete.array] Status: CD1 Submitter: Beman Dawes Opened: 2001-05-15 Last modified: 2015-04-08
View all other issues in [new.delete.single].
View all issues with CD1 status.
Discussion:
The standard specifies 17.5.1.4 [structure.specifications] that "Required behavior" elements describe "the semantics of a function definition provided by either the implementation or a C++ program."
The standard specifies 17.5.1.4 [structure.specifications] that "Requires" elements describe "the preconditions for calling the function."
In the sections noted below, the current wording specifies "Required Behavior" for what are actually preconditions, and thus should be specified as "Requires".
Proposed resolution:
In 18.6.1.1 [new.delete.single] Para 12 Change:
Required behavior: accept a value of ptr that is null or that was returned by an earlier call ...
to:
Requires: the value of ptr is null or the value returned by an earlier call ...
In 18.6.1.2 [new.delete.array] Para 11 Change:
Required behavior: accept a value of ptr that is null or that was returned by an earlier call ...
to:
Requires: the value of ptr is null or the value returned by an earlier call ...
Section: 23.3.5.2 [list.cons] Status: CD1 Submitter: Howard Hinnant Opened: 2001-05-17 Last modified: 2015-04-08
View all other issues in [list.cons].
View all issues with CD1 status.
Discussion:
Section 23.3.5.2 [list.cons], paragraphs 6-8 specify that list assign (both forms) have the "effects" of a call to erase followed by a call to insert.
I would like to document that implementers have the freedom to implement assign by other methods, as long as the end result is the same and the exception guarantee is as good or better than the basic guarantee.
The motivation for this is to use T's assignment operator to recycle existing nodes in the list instead of erasing them and reallocating them with new values. It is also worth noting that, with careful coding, most common cases of assign (everything but assignment with true input iterators) can elevate the exception safety to strong if T's assignment has a nothrow guarantee (with no extra memory cost). Metrowerks does this. However I do not propose that this subtlety be standardized. It is a QoI issue.
Existing practise: Metrowerks and SGI recycle nodes, Dinkumware and Rogue Wave don't.
Proposed resolution:
Change 23.3.5.2 [list.cons]/7 from:
Effects:
erase(begin(), end()); insert(begin(), first, last);
to:
Effects: Replaces the contents of the list with the range [first, last).
In 23.2.3 [sequence.reqmts], in Table 67 (sequence requirements), add two new rows:
a.assign(i,j) void pre: i,j are not iterators into a. Replaces elements in a with a copy of [i, j). a.assign(n,t) void pre: t is not a reference into a. Replaces elements in a with n copies of t.
Change 23.3.5.2 [list.cons]/8 from:
Effects:
erase(begin(), end()); insert(begin(), n, t);
to:
Effects: Replaces the contents of the list with n copies of t.
[Redmond: Proposed resolution was changed slightly. Previous version made explicit statement about exception safety, which wasn't consistent with the way exception safety is expressed elsewhere. Also, the change in the sequence requirements is new. Without that change, the proposed resolution would have required that assignment of a subrange would have to work. That too would have been overspecification; it would effectively mandate that assignment use a temporary. Howard provided wording. ]
[Curaçao: Made editorial improvement in wording; changed "Replaces elements in a with copies of elements in [i, j)." with "Replaces the elements of a with a copy of [i, j)." Changes not deemed serious enough to requre rereview.]
Section: 22.4.2.1.2 [facet.num.get.virtuals] Status: CD1 Submitter: Kevin Djang Opened: 2001-05-17 Last modified: 2015-04-08
View other active issues in [facet.num.get.virtuals].
View all other issues in [facet.num.get.virtuals].
View all issues with CD1 status.
Discussion:
Section 22.2.2.1.2 at p7 states that "A length specifier is added to the conversion function, if needed, as indicated in Table 56." However, Table 56 uses the term "length modifier", not "length specifier".
Proposed resolution:
In 22.2.2.1.2 at p7, change the text "A length specifier is added ..." to be "A length modifier is added ..."
Rationale:
C uses the term "length modifier". We should be consistent.
Section: 23.2 [container.requirements] Status: CD1 Submitter: Matt Austern Opened: 2001-05-17 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with CD1 status.
Discussion:
It's widely assumed that, if X is a container, iterator_traits<X::iterator>::value_type and iterator_traits<X::const_iterator>::value_type should both be X::value_type. However, this is nowhere stated. The language in Table 65 is not precise about the iterators' value types (it predates iterator_traits), and could even be interpreted as saying that iterator_traits<X::const_iterator>::value_type should be "const X::value_type".
Related issue: 279.
Proposed resolution:
In Table 65 ("Container Requirements"), change the return type for X::iterator to "iterator type whose value type is T". Change the return type for X::const_iterator to "constant iterator type whose value type is T".
Rationale:
This belongs as a container requirement, rather than an iterator requirement, because the whole notion of iterator/const_iterator pairs is specific to containers' iterator.
It is existing practice that (for example) iterator_traits<list<int>::const_iterator>::value_type is "int", rather than "const int". This is consistent with the way that const pointers are handled: the standard already requires that iterator_traits<const int*>::value_type is int.
Section: 24.2.4 [output.iterators] Status: CD1 Submitter: Dave Abrahams Opened: 2001-06-07 Last modified: 2015-04-08
View other active issues in [output.iterators].
View all other issues in [output.iterators].
View all issues with CD1 status.
Discussion:
Table 73 suggests that output iterators have value types. It requires the expression "*a = t". Additionally, although Table 73 never lists "a = t" or "X(a) = t" in the "expressions" column, it contains a note saying that "a = t" and "X(a) = t" have equivalent (but nowhere specified!) semantics.
According to 24.1/9, t is supposed to be "a value of value type T":
In the following sections, a and b denote values of X, n denotes a value of the difference type Distance, u, tmp, and m denote identifiers, r denotes a value of X&, t denotes a value of value type T.
Two other parts of the standard that are relevant to whether output iterators have value types:
The first of these passages suggests that "*i" is supposed to return a useful value, which contradicts the note in 24.1.2/2 saying that the only valid use of "*i" for output iterators is in an expression of the form "*i = t". The second of these passages appears to contradict Table 73, because it suggests that "*i"'s return value should be void. The second passage is also broken in the case of a an iterator type, like non-const pointers, that satisfies both the output iterator requirements and the forward iterator requirements.
What should the standard say about *i's return value when i is an output iterator, and what should it say about that t is in the expression "*i = t"? Finally, should the standard say anything about output iterators' pointer and reference types?
Proposed resolution:
24.1 p1, change
All iterators i support the expression *i, resulting in a value of some class, enumeration, or built-in type T, called the value type of the iterator.
to
All input iterators i support the expression *i, resulting in a value of some class, enumeration, or built-in type T, called the value type of the iterator. All output iterators support the expression *i = o where o is a value of some type that is in the set of types that are writable to the particular iterator type of i.
24.1 p9, add
o denotes a value of some type that is writable to the output iterator.
Table 73, change
*a = t
to
*r = o
and change
*r++ = t
to
*r++ = o
[post-Redmond: Jeremy provided wording]
Rationale:
The LWG considered two options: change all of the language that seems to imply that output iterators have value types, thus making it clear that output iterators have no value types, or else define value types for output iterator consistently. The LWG chose the former option, because it seems clear that output iterators were never intended to have value types. This was a deliberate design decision, and any language suggesting otherwise is simply a mistake.
A future revision of the standard may wish to revisit this design decision.
Section: 22.4.6.3.2 [locale.moneypunct.virtuals] Status: CD1 Submitter: Martin Sebor Opened: 2001-07-02 Last modified: 2015-04-08
View all other issues in [locale.moneypunct.virtuals].
View all issues with CD1 status.
Discussion:
The Returns clause in 22.2.6.3.2, p3 says about moneypunct<charT>::do_grouping()
Returns: A pattern defined identically as the result of numpunct<charT>::do_grouping().241)
Footnote 241 then reads
This is most commonly the value "\003" (not "3").
The returns clause seems to imply that the two member functions must return an identical value which in reality may or may not be true, since the facets are usually implemented in terms of struct std::lconv and return the value of the grouping and mon_grouping, respectively. The footnote also implies that the member function of the moneypunct facet (rather than the overridden virtual functions in moneypunct_byname) most commonly return "\003", which contradicts the C standard which specifies the value of "" for the (most common) C locale.
Proposed resolution:
Replace the text in Returns clause in 22.2.6.3.2, p3 with the following:
Returns: A pattern defined identically as, but not necessarily equal to, the result of numpunct<charT>::do_grouping().241)
and replace the text in Footnote 241 with the following:
To specify grouping by 3s the value is "\003", not "3".
Rationale:
The fundamental problem is that the description of the locale facet virtuals serves two purposes: describing the behavior of the base class, and describing the meaning of and constraints on the behavior in arbitrary derived classes. The new wording makes that separation a little bit clearer. The footnote (which is nonnormative) is not supposed to say what the grouping is in the "C" locale or in any other locale. It is just a reminder that the values are interpreted as small integers, not ASCII characters.
Section: 22.3.1.1.1 [locale.category] Status: CD1 Submitter: Tiki Wan Opened: 2001-07-06 Last modified: 2015-04-08
View all other issues in [locale.category].
View all issues with CD1 status.
Duplicate of: 447
Discussion:
The wchar_t versions of time_get and time_get_byname are listed incorrectly in table 52, required instantiations. In both cases the second template parameter is given as OutputIterator. It should instead be InputIterator, since these are input facets.
Proposed resolution:
In table 52, required instantiations, in 22.3.1.1.1 [locale.category], change
time_get<wchar_t, OutputIterator> time_get_byname<wchar_t, OutputIterator>
to
time_get<wchar_t, InputIterator> time_get_byname<wchar_t, InputIterator>
[Redmond: Very minor change in proposed resolution. Original had a typo, wchart instead of wchar_t.]
Section: 22.4.6.2.2 [locale.money.put.virtuals] Status: CD1 Submitter: Martin Sebor Opened: 2001-07-07 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The sprintf format string , "%.01f" (that's the digit one), in the description of the do_put() member functions of the money_put facet in 22.2.6.2.2, p1 is incorrect. First, the f format specifier is wrong for values of type long double, and second, the precision of 01 doesn't seem to make sense. What was most likely intended was "%.0Lf"., that is a precision of zero followed by the L length modifier.
Proposed resolution:
Change the format string to "%.0Lf".
Rationale:
Fixes an obvious typo
Section: 23.3.6.3 [vector.capacity], 23.3.6.5 [vector.modifiers] Status: CD1 Submitter: Anthony Williams Opened: 2001-07-13 Last modified: 2015-04-08
View other active issues in [vector.capacity].
View all other issues in [vector.capacity].
View all issues with CD1 status.
Discussion:
There is an apparent contradiction about which circumstances can cause a reallocation of a vector in Section 23.3.6.3 [vector.capacity] and section 23.3.6.5 [vector.modifiers].
23.3.6.3 [vector.capacity],p5 says:
Notes: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to reserve() until the time when an insertion would make the size of the vector greater than the size specified in the most recent call to reserve().
Which implies if I do
std::vector<int> vec; vec.reserve(23); vec.reserve(0); vec.insert(vec.end(),1);
then the implementation may reallocate the vector for the insert, as the size specified in the previous call to reserve was zero.
However, the previous paragraphs (23.3.6.3 [vector.capacity], p1-2) state:
(capacity) Returns: The total number of elements the vector can hold without requiring reallocation
...After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens; and equal to the previous value of capacity() otherwise...
This implies that vec.capacity() is still 23, and so the insert() should not require a reallocation, as vec.size() is 0. This is backed up by 23.3.6.5 [vector.modifiers], p1:
(insert) Notes: Causes reallocation if the new size is greater than the old capacity.
Though this doesn't rule out reallocation if the new size is less than the old capacity, I think the intent is clear.
Proposed resolution:
Change the wording of 23.3.6.3 [vector.capacity] paragraph 5 to:
Notes: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to reserve() until the time when an insertion would make the size of the vector greater than the value of capacity().
[Redmond: original proposed resolution was modified slightly. In the original, the guarantee was that there would be no reallocation until the size would be greater than the value of capacity() after the most recent call to reserve(). The LWG did not believe that the "after the most recent call to reserve()" added any useful information.]
Rationale:
There was general agreement that, when reserve() is called twice in succession and the argument to the second invocation is smaller than the argument to the first, the intent was for the second invocation to have no effect. Wording implying that such cases have an effect on reallocation guarantees was inadvertant.
Section: 27.5.3.1.1 [ios::failure] Status: CD1 Submitter: PremAnand M. Rao Opened: 2001-08-23 Last modified: 2015-04-08
View all other issues in [ios::failure].
View all issues with CD1 status.
Discussion:
With the change in 17.6.5.12 [res.on.exception.handling] to state "An implementation may strengthen the exception-specification for a non-virtual function by removing listed exceptions." (issue 119) and the following declaration of ~failure() in ios_base::failure
namespace std { class ios_base::failure : public exception { public: ... virtual ~failure(); ... }; }
the class failure cannot be implemented since in 18.7.1 [type.info] the destructor of class exception has an empty exception specification:
namespace std { class exception { public: ... virtual ~exception() throw(); ... }; }
Proposed resolution:
Remove the declaration of ~failure().
Rationale:
The proposed resolution is consistent with the way that destructors of other classes derived from exception are handled.
Section: 27.7.3.8 [ostream.manip] Status: CD1 Submitter: PremAnand M. Rao Opened: 2001-08-27 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
A footnote in 27.7.3.8 [ostream.manip] states:
[Footnote: The effect of executing cout << endl is to insert a newline character in the output sequence controlled by cout, then synchronize it with any external file with which it might be associated. --- end foonote]
Does the term "file" here refer to the external device? This leads to some implementation ambiguity on systems with fully buffered files where a newline does not cause a flush to the device.
Choosing to sync with the device leads to significant performance penalties for each call to endl, while not sync-ing leads to errors under special circumstances.
I could not find any other statement that explicitly defined the behavior one way or the other.
Proposed resolution:
Remove footnote 300 from section 27.7.3.8 [ostream.manip].
Rationale:
We already have normative text saying what endl does: it inserts a newline character and calls flush. This footnote is at best redundant, at worst (as this issue says) misleading, because it appears to make promises about what flush does.
Section: 23.4.4.3 [map.access] Status: CD1 Submitter: Andrea Griffini Opened: 2001-09-02 Last modified: 2015-04-08
View all other issues in [map.access].
View all issues with CD1 status.
Discussion:
The current standard describes map::operator[] using a code example. That code example is however quite inefficient because it requires several useless copies of both the passed key_type value and of default constructed mapped_type instances. My opinion is that was not meant by the comitee to require all those temporary copies.
Currently map::operator[] behaviour is specified as:
Returns: (*((insert(make_pair(x, T()))).first)).second.
This specification however uses make_pair that is a template function of which parameters in this case will be deduced being of type const key_type& and const T&. This will create a pair<key_type,T> that isn't the correct type expected by map::insert so another copy will be required using the template conversion constructor available in pair to build the required pair<const key_type,T> instance.
If we consider calling of key_type copy constructor and mapped_type default constructor and copy constructor as observable behaviour (as I think we should) then the standard is in this place requiring two copies of a key_type element plus a default construction and two copy construction of a mapped_type (supposing the addressed element is already present in the map; otherwise at least another copy construction for each type).
A simple (half) solution would be replacing the description with:
Returns: (*((insert(value_type(x, T()))).first)).second.
This will remove the wrong typed pair construction that requires one extra copy of both key and value.
However still the using of map::insert requires temporary objects while the operation, from a logical point of view, doesn't require any.
I think that a better solution would be leaving free an implementer to use a different approach than map::insert that, because of its interface, forces default constructed temporaries and copies in this case. The best solution in my opinion would be just requiring map::operator[] to return a reference to the mapped_type part of the contained element creating a default element with the specified key if no such an element is already present in the container. Also a logarithmic complexity requirement should be specified for the operation.
This would allow library implementers to write alternative implementations not using map::insert and reaching optimal performance in both cases of the addressed element being present or absent from the map (no temporaries at all and just the creation of a new pair inside the container if the element isn't present). Some implementer has already taken this option but I think that the current wording of the standard rules that as non-conforming.
Proposed resolution:
Replace 23.4.4.3 [map.access] paragraph 1 with
-1- Effects: If there is no key equivalent to x in the map, inserts value_type(x, T()) into the map.
-2- Returns: A reference to the mapped_type corresponding to x in *this.
-3- Complexity: logarithmic.
[This is the second option mentioned above. Howard provided wording. We may also wish to have a blanket statement somewhere in clause 17 saying that we do not intend the semantics of sample code fragments to be interpreted as specifing exactly how many copies are made. See issue 98 for a similar problem.]
Rationale:
This is the second solution described above; as noted, it is consistent with existing practice.
Note that we now need to specify the complexity explicitly, because we are no longer defining operator[] in terms of insert.
Section: 21.2.1 [char.traits.require] Status: CD1 Submitter: Andy Sawyer Opened: 2001-09-06 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
Table 37, in 21.2.1 [char.traits.require], descibes char_traits::assign as:
X::assign(c,d) assigns c = d.
And para 1 says:
[...] c and d denote values of type CharT [...]
Naturally, if c and d are values, then the assignment is (effectively) meaningless. It's clearly intended that (in the case of assign, at least), 'c' is intended to be a reference type.
I did a quick survey of the four implementations I happened to have lying around, and sure enough they all have signatures:
assign( charT&, const charT& );
(or the equivalent). It's also described this way in Nico's book. (Not to mention the synopses of char_traits<char> in 21.1.3.1 and char_traits<wchar_t> in 21.1.3.2...)
Proposed resolution:
Add the following to 21.1.1 para 1:
r denotes an lvalue of CharT
and change the description of assign in the table to:
X::assign(r,d) assigns r = d
Section: 17 [library] Status: CD1 Submitter: Detlef Vollmann Opened: 2001-09-05 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with CD1 status.
Discussion:
From c++std-edit-873:
17.6.1.2 [headers], Table 11. In this table, the header <strstream> is missing.
This shows a general problem: The whole clause 17 refers quite often to clauses 18 through 27, but D.7 is also a part of the standard library (though a deprecated one).
Proposed resolution:
To 17.6.1.2 [headers] Table 11, C++ Library Headers, add "<strstream>".
In the following places, change "clauses 17 through 27" to "clauses 17 through 27 and Annex D":
Section: 25.3.5 [alg.replace] Status: CD1 Submitter: Detlef Vollmann Opened: 2001-09-07 Last modified: 2015-04-08
View all other issues in [alg.replace].
View all issues with CD1 status.
Discussion:
From c++std-edit-876:
In section 25.3.5 [alg.replace] before p4: The name of the first parameter of template replace_copy_if should be "InputIterator" instead of "Iterator". According to 17.5.2.1 [type.descriptions] p1 the parameter name conveys real normative meaning.
Proposed resolution:
Change Iterator to InputIterator.
Section: 22.4 [locale.categories] Status: CD1 Submitter: Martin Sebor Opened: 2001-09-17 Last modified: 2015-04-08
View all other issues in [locale.categories].
View all issues with CD1 status.
Discussion:
From Stage 2 processing in 22.4.2.1.2 [facet.num.get.virtuals], p8 and 9 (the original text or the text corrected by the proposed resolution of issue 221) it seems clear that no whitespace is allowed within a number, but 22.4.3.1 [locale.numpunct], p2, which gives the format for integer and floating point values, says that whitespace is optional between a plusminus and a sign.
The text needs to be clarified to either consistently allow or disallow whitespace between a plusminus and a sign. It might be worthwhile to consider the fact that the C library stdio facility does not permit whitespace embedded in numbers and neither does the C or C++ core language (the syntax of integer-literals is given in 2.13.2 [lex.icon], that of floating-point-literals in 2.13.4 [lex.fcon] of the C++ standard).
Proposed resolution:
Change the first part of 22.4.3.1 [locale.numpunct] paragraph 2 from:
The syntax for number formats is as follows, where digit represents the radix set specified by the fmtflags argument value, whitespace is as determined by the facet ctype<charT> (22.2.1.1), and thousands-sep and decimal-point are the results of corresponding numpunct<charT> members. Integer values have the format:
integer ::= [sign] units sign ::= plusminus [whitespace] plusminus ::= '+' | '-' units ::= digits [thousands-sep units] digits ::= digit [digits]
to:
The syntax for number formats is as follows, where digit represents the radix set specified by the fmtflags argument value, and thousands-sep and decimal-point are the results of corresponding numpunct<charT> members. Integer values have the format:
integer ::= [sign] units sign ::= plusminus plusminus ::= '+' | '-' units ::= digits [thousands-sep units] digits ::= digit [digits]
Rationale:
It's not clear whether the format described in 22.4.3.1 [locale.numpunct] paragraph 2 has any normative weight: nothing in the standard says how, or whether, it's used. However, there's no reason for it to differ gratuitously from the very specific description of numeric processing in 22.4.2.1.2 [facet.num.get.virtuals]. The proposed resolution removes all mention of "whitespace" from that format.
Section: 22.4.1 [category.ctype], 17.5.2.1.3 [bitmask.types] Status: CD1 Submitter: Martin Sebor Opened: 2001-09-17 Last modified: 2015-04-08
View all other issues in [category.ctype].
View all issues with CD1 status.
Discussion:
The ctype_category::mask type is declared to be an enum in 22.4.1 [category.ctype] with p1 then stating that it is a bitmask type, most likely referring to the definition of bitmask type in 17.5.2.1.3 [bitmask.types], p1. However, the said definition only applies to clause 27, making the reference in 22.2.1 somewhat dubious.
Proposed resolution:
Clarify 17.3.2.1.2, p1 by changing the current text from
Several types defined in clause 27 are bitmask types. Each bitmask type can be implemented as an enumerated type that overloads certain operators, as an integer type, or as a bitset (20.6 [template.bitset]).
to read
Several types defined in clauses lib.language.support through lib.input.output and Annex D are bitmask types. Each bitmask type can be implemented as an enumerated type that overloads certain operators, as an integer type, or as a bitset (lib.template.bitset).
Additionally, change the definition in 22.2.1 to adopt the same convention as in clause 27 by replacing the existing text with the following (note, in particluar, the cross-reference to 17.3.2.1.2 in 22.2.1, p1):
22.2.1 The ctype category [lib.category.ctype]
namespace std { class ctype_base { public: typedef T mask; // numeric values are for exposition only. static const mask space = 1 << 0; static const mask print = 1 << 1; static const mask cntrl = 1 << 2; static const mask upper = 1 << 3; static const mask lower = 1 << 4; static const mask alpha = 1 << 5; static const mask digit = 1 << 6; static const mask punct = 1 << 7; static const mask xdigit = 1 << 8; static const mask alnum = alpha | digit; static const mask graph = alnum | punct; }; }The type mask is a bitmask type (17.5.2.1.3 [bitmask.types]).
[Curaçao: The LWG notes that T above should be bold-italics to be consistent with the rest of the standard.]
Section: 22.3.1.1.1 [locale.category] Status: CD1 Submitter: Martin Sebor Opened: 2001-09-18 Last modified: 2015-04-08
View all other issues in [locale.category].
View all issues with CD1 status.
Discussion:
It's unclear whether 22.1.1.1.1, p3 says that has_facet<Facet>(loc) returns true for any Facet from Table 51 or whether it includes Table 52 as well:
For any locale loc either constructed, or returned by locale::classic(), and any facet Facet that is a member of a standard category, has_facet<Facet>(loc) is true. Each locale member function which takes a locale::category argument operates on the corresponding set of facets.
It seems that it comes down to which facets are considered to be members of a standard category. Intuitively, I would classify all the facets in Table 52 as members of their respective standard categories, but there are an unbounded set of them...
The paragraph implies that, for instance, has_facet<num_put<C, OutputIterator> >(loc) must always return true. I don't think that's possible. If it were, then use_facet<num_put<C, OutputIterator> >(loc) would have to return a reference to a distinct object for each valid specialization of num_put<C, OutputIteratory>, which is clearly impossible.
On the other hand, if none of the facets in Table 52 is a member of a standard category then none of the locale member functions that operate on entire categories of facets will work properly.
It seems that what p3 should mention that it's required (permitted?) to hold only for specializations of Facet from Table 52 on C from the set { char, wchar_t }, and InputIterator and OutputIterator from the set of { {i,o}streambuf_iterator<{char,wchar_t}> }.
Proposed resolution:
In 22.3.1.1.1 [locale.category], paragraph 3, change "that is a member of a standard category" to "shown in Table 51".
Rationale:
The facets in Table 52 are an unbounded set. Locales should not be required to contain an infinite number of facets.
It's not necessary to talk about which values of InputIterator and OutputIterator must be supported. Table 51 already contains a complete list of the ones we need.
Section: 23.3.6.3 [vector.capacity] Status: CD1 Submitter: Anthony Williams Opened: 2001-09-27 Last modified: 2015-04-08
View other active issues in [vector.capacity].
View all other issues in [vector.capacity].
View all issues with CD1 status.
Discussion:
It is a common idiom to reduce the capacity of a vector by swapping it with an empty one:
std::vector<SomeType> vec; // fill vec with data std::vector<SomeType>().swap(vec); // vec is now empty, with minimal capacity
However, the wording of 23.3.6.3 [vector.capacity]paragraph 5 prevents the capacity of a vector being reduced, following a call to reserve(). This invalidates the idiom, as swap() is thus prevented from reducing the capacity. The proposed wording for issue 329 does not affect this. Consequently, the example above requires the temporary to be expanded to cater for the contents of vec, and the contents be copied across. This is a linear-time operation.
However, the container requirements state that swap must have constant complexity (23.2 [container.requirements] note to table 65).
This is an important issue, as reallocation affects the validity of references and iterators.
If the wording of 23.2.4.2p5 is taken to be the desired intent, then references and iterators remain valid after a call to swap, if they refer to an element before the new end() of the vector into which they originally pointed, in which case they refer to the element at the same index position. Iterators and references that referred to an element whose index position was beyond the new end of the vector are invalidated.
If the note to table 65 is taken as the desired intent, then there are two possibilities with regard to iterators and references:
Proposed resolution:
Add a new paragraph after 23.3.6.3 [vector.capacity] paragraph 5:
void swap(vector<T,Allocator>& x);Effects: Exchanges the contents and capacity() of *this with that of x.
Complexity: Constant time.
[This solves the problem reported for this issue. We may also have a problem with a circular definition of swap() for other containers.]
Rationale:
swap should be constant time. The clear intent is that it should just do pointer twiddling, and that it should exchange all properties of the two vectors, including their reallocation guarantees.
Section: 17 [library] Status: Resolved Submitter: Martin Sebor Opened: 2001-10-09 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with Resolved status.
Discussion:
The synopses of the C++ library headers clearly show which names are required to be defined in each header. Since in order to implement the classes and templates defined in these headers declarations of other templates (but not necessarily their definitions) are typically necessary the standard in 17.4.4, p1 permits library implementers to include any headers needed to implement the definitions in each header.
For instance, although it is not explicitly specified in the synopsis of <string>, at the point of definition of the std::basic_string template the declaration of the std::allocator template must be in scope. All current implementations simply include <memory> from within <string>, either directly or indirectly, to bring the declaration of std::allocator into scope.
Additionally, however, some implementation also include <istream> and <ostream> at the top of <string> to bring the declarations of std::basic_istream and std::basic_ostream into scope (which are needed in order to implement the string inserter and extractor operators (21.3.7.9 [lib.string.io])). Other implementations only include <iosfwd>, since strictly speaking, only the declarations and not the full definitions are necessary.
Obviously, it is possible to implement <string> without actually providing the full definitions of all the templates std::basic_string uses (std::allocator, std::basic_istream, and std::basic_ostream). Furthermore, not only is it possible, doing so is likely to have a positive effect on compile-time efficiency.
But while it may seem perfectly reasonable to expect a program that uses the std::basic_string insertion and extraction operators to also explicitly include <istream> or <ostream>, respectively, it doesn't seem reasonable to also expect it to explicitly include <memory>. Since what's reasonable and what isn't is highly subjective one would expect the standard to specify what can and what cannot be assumed. Unfortunately, that isn't the case.
The examples below demonstrate the issue.
Example 1:
It is not clear whether the following program is complete:
#include <string> extern std::basic_ostream<char> &strm; int main () { strm << std::string ("Hello, World!\n"); }
or whether one must explicitly include <memory> or <ostream> (or both) in addition to <string> in order for the program to compile.
Example 2:
Similarly, it is unclear whether the following program is complete:
#include <istream> extern std::basic_iostream<char> &strm; int main () { strm << "Hello, World!\n"; }
or whether one needs to explicitly include <ostream>, and perhaps even other headers containing the definitions of other required templates:
#include <ios> #include <istream> #include <ostream> #include <streambuf> extern std::basic_iostream<char> &strm; int main () { strm << "Hello, World!\n"; }
Example 3:
Likewise, it seems unclear whether the program below is complete:
#include <iterator> bool foo (std::istream_iterator<int> a, std::istream_iterator<int> b) { return a == b; } int main () { }
or whether one should be required to include <istream>.
There are many more examples that demonstrate this lack of a requirement. I believe that in a good number of cases it would be unreasonable to require that a program explicitly include all the headers necessary for a particular template to be specialized, but I think that there are cases such as some of those above where it would be desirable to allow implementations to include only as much as necessary and not more.
[ post Bellevue: ]
Position taken in prior reviews is that the idea of a table of header dependencies is a good one. Our view is that a full paper is needed to do justice to this, and we've made that recommendation to the issue author.
[ 2009-07 Frankfurt ]
Resolved. Handled by LWG 1178.
Proposed resolution:
For every C++ library header, supply a minimum set of other C++ library headers that are required to be included by that header. The proposed list is below (C++ headers for C Library Facilities, table 12 in 17.4.1.2, p3, are omitted):
+------------+--------------------+ | C++ header |required to include | +============+====================+ |<algorithm> | | +------------+--------------------+ |<bitset> | | +------------+--------------------+ |<complex> | | +------------+--------------------+ |<deque> |<memory> | +------------+--------------------+ |<exception> | | +------------+--------------------+ |<fstream> |<ios> | +------------+--------------------+ |<functional>| | +------------+--------------------+ |<iomanip> |<ios> | +------------+--------------------+ |<ios> |<streambuf> | +------------+--------------------+ |<iosfwd> | | +------------+--------------------+ |<iostream> |<istream>, <ostream>| +------------+--------------------+ |<istream> |<ios> | +------------+--------------------+ |<iterator> | | +------------+--------------------+ |<limits> | | +------------+--------------------+ |<list> |<memory> | +------------+--------------------+ |<locale> | | +------------+--------------------+ |<map> |<memory> | +------------+--------------------+ |<memory> | | +------------+--------------------+ |<new> |<exception> | +------------+--------------------+ |<numeric> | | +------------+--------------------+ |<ostream> |<ios> | +------------+--------------------+ |<queue> |<deque> | +------------+--------------------+ |<set> |<memory> | +------------+--------------------+ |<sstream> |<ios>, <string> | +------------+--------------------+ |<stack> |<deque> | +------------+--------------------+ |<stdexcept> | | +------------+--------------------+ |<streambuf> |<ios> | +------------+--------------------+ |<string> |<memory> | +------------+--------------------+ |<strstream> | | +------------+--------------------+ |<typeinfo> |<exception> | +------------+--------------------+ |<utility> | | +------------+--------------------+ |<valarray> | | +------------+--------------------+ |<vector> |<memory> | +------------+--------------------+
Rationale:
The portability problem is real. A program that works correctly on one implementation might fail on another, because of different header dependencies. This problem was understood before the standard was completed, and it was a conscious design choice.
One possible way to deal with this, as a library extension, would be an <all> header.
Hinnant: It's time we dealt with this issue for C++0X. Reopened.
Section: 21.8 [c.strings] Status: CD1 Submitter: Clark Nelson Opened: 2001-10-19 Last modified: 2015-04-08
View other active issues in [c.strings].
View all other issues in [c.strings].
View all issues with CD1 status.
Discussion:
C99, and presumably amendment 1 to C90, specify that <wchar.h> declares struct tm as an incomplete type. However, table 48 in 21.8 [c.strings] does not mention the type tm as being declared in <cwchar>. Is this omission intentional or accidental?
Proposed resolution:
In section 21.8 [c.strings], add "tm" to table 48.
Section: X [iterator.concepts] Status: CD1 Submitter: Jeremy Siek Opened: 2001-10-20 Last modified: 2015-04-08
View all other issues in [iterator.concepts].
View all issues with CD1 status.
Discussion:
Iterator member functions and operators that do not change the state of the iterator should be defined as const member functions or as functions that take iterators either by const reference or by value. The standard does not explicitly state which functions should be const. Since this a fairly common mistake, the following changes are suggested to make this explicit.
The tables almost indicate constness properly through naming: r for non-const and a,b for const iterators. The following changes make this more explicit and also fix a couple problems.
Proposed resolution:
In X [iterator.concepts] Change the first section of p9 from "In the following sections, a and b denote values of X..." to "In the following sections, a and b denote values of type const X...".
In Table 73, change
a->m U& ...
to
a->m const U& ... r->m U& ...
In Table 73 expression column, change
*a = t
to
*r = t
[Redmond: The container requirements should be reviewed to see if the same problem appears there.]
Section: 22.3.1.1.1 [locale.category] Status: CD1 Submitter: P.J. Plauger, Nathan Myers Opened: 2001-10-23 Last modified: 2015-04-08
View all other issues in [locale.category].
View all issues with CD1 status.
Discussion:
In 22.3.1.1.1 [locale.category] paragraph 1, the category members are described as bitmask elements. In fact, the bitmask requirements in 17.5.2.1.3 [bitmask.types] don't seem quite right: none and all are bitmask constants, not bitmask elements.
In particular, the requirements for none interact poorly with the requirement that the LC_* constants from the C library must be recognizable as C++ locale category constants. LC_* values should not be mixed with these values to make category values.
We have two options for the proposed resolution. Informally: option 1 removes the requirement that LC_* values be recognized as category arguments. Option 2 changes the category type so that this requirement is implementable, by allowing none to be some value such as 0x1000 instead of 0.
Nathan writes: "I believe my proposed resolution [Option 2] merely re-expresses the status quo more clearly, without introducing any changes beyond resolving the DR.
Proposed resolution:
Replace the first two paragraphs of 22.3.1.1 [locale.types] with:
typedef int category;Valid category values include the locale member bitmask elements collate, ctype, monetary, numeric, time, and messages, each of which represents a single locale category. In addition, locale member bitmask constant none is defined as zero and represents no category. And locale member bitmask constant all is defined such that the expression
(collate | ctype | monetary | numeric | time | messages | all) == allis true, and represents the union of all categories. Further the expression (X | Y), where X and Y each represent a single category, represents the union of the two categories.
locale member functions expecting a category argument require one of the category values defined above, or the union of two or more such values. Such a category argument identifies a set of locale categories. Each locale category, in turn, identifies a set of locale facets, including at least those shown in Table 51:
[Curaçao: need input from locale experts.]
Rationale:
The LWG considered, and rejected, an alternate proposal (described as "Option 2" in the discussion). The main reason for rejecting it was that library implementors were concerened about implementation difficult, given that getting a C++ library to work smoothly with a separately written C library is already a delicate business. Some library implementers were also concerned about the issue of adding extra locale categories.
Option 2:
Replace the first paragraph of 22.3.1.1 [locale.types] with:Valid category values include the enumerated values. In addition, the result of applying commutative operators | and & to any two valid values is valid, and results in the setwise union and intersection, respectively, of the argument categories. The values all and none are defined such that for any valid value cat, the expressions (cat | all == all), (cat & all == cat), (cat | none == cat) and (cat & none == none) are true. For non-equal values cat1 and cat2 of the remaining enumerated values, (cat1 & cat2 == none) is true. For any valid categories cat1 and cat2, the result of (cat1 & ~cat2) is valid, and equals the setwise union of those categories found in cat1 but not found in cat2. [Footnote: it is not required that all equal the setwise union of the other enumerated values; implementations may add extra categories.]
Section: 24.6.2 [ostream.iterator] Status: CD1 Submitter: Andy Sawyer Opened: 2001-10-24 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
24.5.2 [lib.ostream.iterator] states:
[...] private: // basic_ostream<charT,traits>* out_stream; exposition only // const char* delim; exposition only
Whilst it's clearly marked "exposition only", I suspect 'delim' should be of type 'const charT*'.
Proposed resolution:
In 24.6.2 [ostream.iterator], replace const char* delim with const charT* delim.
Section: 21.2.2 [char.traits.typedefs] Status: CD1 Submitter: Martin Sebor Opened: 2001-12-02 Last modified: 2015-04-08
View all other issues in [char.traits.typedefs].
View all issues with CD1 status.
Discussion:
(1) There are no requirements on the stateT template parameter of fpos listed in 27.4.3. The interface appears to require that the type be at least Assignable and CopyConstructible (27.4.3.1, p1), and I think also DefaultConstructible (to implement the operations in Table 88).
21.1.2, p3, however, only requires that char_traits<charT>::state_type meet the requirements of CopyConstructible types.
(2) Additionally, the stateT template argument has no corresponding typedef in fpos which might make it difficult to use in generic code.
Proposed resolution:
Modify 21.1.2, p4 from
Requires: state_type shall meet the requirements of CopyConstructible types (20.1.3).
Requires: state_type shall meet the requirements of Assignable (23.1, p4), CopyConstructible (20.1.3), and DefaultConstructible (20.1.4) types.
Rationale:
The LWG feels this is two issues, as indicated above. The first is a defect---std::basic_fstream is unimplementable without these additional requirements---and the proposed resolution fixes it. The second is questionable; who would use that typedef? The class template fpos is used only in a very few places, all of which know the state type already. Unless motivation is provided, the second should be considered NAD.
Section: 20.3 [pairs] Status: Resolved Submitter: Martin Sebor Opened: 2001-12-02 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with Resolved status.
Discussion:
The class template std::pair defines a template ctor (20.2.2, p4) but no template assignment operator. This may lead to inefficient code since assigning an object of pair<C, D> to pair<A, B> where the types C and D are distinct from but convertible to A and B, respectively, results in a call to the template copy ctor to construct an unnamed temporary of type pair<A, B> followed by an ordinary (perhaps implicitly defined) assignment operator, instead of just a straight assignment.
Proposed resolution:
Add the following declaration to the definition of std::pair:
template<class U, class V> pair& operator=(const pair<U, V> &p);
And also add a paragraph describing the effects of the function template to the end of 20.2.2:
template<class U, class V> pair& operator=(const pair<U, V> &p);
Effects: first = p.first; second = p.second; Returns: *this
[Curaçao: There is no indication this is was anything other than a design decision, and thus NAD. May be appropriate for a future standard.]
[
Pre Bellevue: It was recognized that this was taken care of by
N1856,
and thus moved from NAD Future to NAD EditorialResolved.
]
Section: 23.2.4 [associative.reqmts] Status: CD1 Submitter: Hans Aberg Opened: 2001-12-17 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with CD1 status.
Discussion:
Discussions in the thread "Associative container lower/upper bound requirements" on comp.std.c++ suggests that there is a defect in the C++ standard, Table 69 of section 23.1.2, "Associative containers", [lib.associative.reqmts]. It currently says:
a.find(k): returns an iterator pointing to an element with the key equivalent to k, or a.end() if such an element is not found.
a.lower_bound(k): returns an iterator pointing to the first element with key not less than k.
a.upper_bound(k): returns an iterator pointing to the first element with key greater than k.
We have "or a.end() if such an element is not found" for find, but not for upper_bound or lower_bound. As the text stands, one would be forced to insert a new element into the container and return an iterator to that in case the sought iterator does not exist, which does not seem to be the intention (and not possible with the "const" versions).
Proposed resolution:
Change Table 69 of section 23.2.4 [associative.reqmts] indicated entries to:
a.lower_bound(k): returns an iterator pointing to the first element with key not less than k, or a.end() if such an element is not found.
a.upper_bound(k): returns an iterator pointing to the first element with key greater than k, or a.end() if such an element is not found.
[Curaçao: LWG reviewed PR.]
Section: 23.2.3 [sequence.reqmts] Status: CD1 Submitter: Yaroslav Mironov Opened: 2002-01-23 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with CD1 status.
Discussion:
Table 68 "Optional Sequence Operations" in 23.1.1/12 specifies operational semantics for "a.back()" as "*--a.end()", which may be ill-formed [because calling operator-- on a temporary (the return) of a built-in type is ill-formed], provided a.end() returns a simple pointer rvalue (this is almost always the case for std::vector::end(), for example). Thus, the specification is not only incorrect, it demonstrates a dangerous construct: "--a.end()" may successfully compile and run as intended, but after changing the type of the container or the mode of compilation it may produce compile-time error.
Proposed resolution:
Change the specification in table 68 "Optional Sequence Operations" in 23.1.1/12 for "a.back()" from
*--a.end()
to
{ iterator tmp = a.end(); --tmp; return *tmp; }
and the specification for "a.pop_back()" from
a.erase(--a.end())
to
{ iterator tmp = a.end(); --tmp; a.erase(tmp); }
[Curaçao: LWG changed PR from "{ X::iterator tmp = a.end(); return *--tmp; }" to "*a.rbegin()", and from "{ X::iterator tmp = a.end(); a.erase(--tmp); }" to "a.erase(rbegin())".]
[There is a second possible defect; table 68 "Optional Sequence Operations" in the "Operational Semantics" column uses operations present only in the "Reversible Container" requirements, yet there is no stated dependency between these separate requirements tables. Ask in Santa Cruz if the LWG would like a new issue opened.]
[Santa Cruz: the proposed resolution is even worse than what's in the current standard: erase is undefined for reverse iterator. If we're going to make the change, we need to define a temporary and use operator--. Additionally, we don't know how prevalent this is: do we need to make this change in more than one place? Martin has volunteered to review the standard and see if this problem occurs elsewhere.]
[Oxford: Matt provided new wording to address the concerns raised in Santa Cruz. It does not appear that this problem appears anywhere else in clauses 23 or 24.]
[Kona: In definition of operational semantics of back(), change "*tmp" to "return *tmp;"]
Section: 22.4.2.1.2 [facet.num.get.virtuals] Status: CD1 Submitter: Martin Sebor Opened: 2002-03-12 Last modified: 2015-04-08
View other active issues in [facet.num.get.virtuals].
View all other issues in [facet.num.get.virtuals].
View all issues with CD1 status.
Discussion:
I don't think thousands_sep is being treated correctly after decimal_point has been seen. Since grouping applies only to the integral part of the number, the first such occurrence should, IMO, terminate Stage 2. (If it does not terminate it, then 22.2.2.1.2, p12 and 22.2.3.1.2, p3 need to explain how thousands_sep is to be interpreted in the fractional part of a number.)
The easiest change I can think of that resolves this issue would be something like below.
Proposed resolution:
Change the first sentence of 22.2.2.1.2, p9 from
If discard is true then the position of the character is remembered, but the character is otherwise ignored. If it is not discarded, then a check is made to determine if c is allowed as the next character of an input field of the conversion specifier returned by stage 1. If so it is accumulated.
to
If discard is true, then if '.' has not yet been accumulated, then the position of the character is remembered, but the character is otherwise ignored. Otherwise, if '.' has already been accumulated, the character is discarded and Stage 2 terminates. ...
Rationale:
We believe this reflects the intent of the Standard. Thousands sep characters after the decimal point are not useful in any locale. Some formatting conventions do group digits that follow the decimal point, but they usually introduce a different grouping character instead of reusing the thousand sep character. If we want to add support for such conventions, we need to do so explicitly.
Section: 22.4.2.2.1 [facet.num.put.members] Status: CD1 Submitter: Martin Sebor Opened: 2002-03-12 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
22.2.2.2.1, p1:
iter_type put (iter_type out, ios_base& str, char_type fill, bool val) const; ... 1 Returns: do_put (out, str, fill, val).
AFAICS, the behavior of do_put (..., bool) is not documented anywhere, however, 22.2.2.2.2, p23:
iter_type put (iter_type out, ios_base& str, char_type fill, bool val) const;Effects: If (str.flags() & ios_base::boolalpha) == 0 then do out = do_put(out, str, fill, (int)val) Otherwise do
string_type s = val ? use_facet<ctype<charT> >(loc).truename() : use_facet<ctype<charT> >(loc).falsename();and then insert the characters of s into out. out.
This means that the bool overload of do_put() will never be called, which contradicts the first paragraph. Perhaps the declaration should read do_put(), and not put()?
Note also that there is no Returns clause for this function, which should probably be corrected, just as should the second occurrence of "out." in the text.
I think the least invasive change to fix it would be something like the following:
Proposed resolution:
In 22.4.2.2.2 [facet.num.put.virtuals], just above paragraph 1, remove the bool overload.
In 22.4.2.2.2 [facet.num.put.virtuals], p23, make the following changes
Replace put() with do_put() in the declaration of the member function.
Change the Effects clause to a Returns clause (to avoid the requirement to call do_put(..., int) from do_put (..., bool)) like so:
23 Returns: If (str.flags() & ios_base::boolalpha) == 0 then do_put (out, str, fill, (long)val) Otherwise the function obtains a string s as if by
string_type s = val ? use_facet<ctype<charT> >(loc).truename() : use_facet<ctype<charT> >(loc).falsename();and then inserts each character c of s into out via *out++ = c and returns out.
Rationale:
This fixes a couple of obvious typos, and also fixes what appears to be a requirement of gratuitous inefficiency.
Section: 22.3.1 [locale] Status: CD1 Submitter: Martin Sebor Opened: 2002-03-12 Last modified: 2015-04-08
View all other issues in [locale].
View all issues with CD1 status.
Discussion:
22.1.1, p7 (copied below) allows iostream formatters and extractors to make assumptions about the values returned from facet members. However, such assumptions are apparently not guaranteed to hold in other cases (e.g., when the facet members are being called directly rather than as a result of iostream calls, or between successive calls to the same iostream functions with no interevening calls to imbue(), or even when the facet member functions are called from other member functions of other facets). This restriction prevents locale from being implemented efficiently.
Proposed resolution:
Change the first sentence in 22.1.1, p7 from
In successive calls to a locale facet member function during a call to an iostream inserter or extractor or a streambuf member function, the returned result shall be identical. [Note: This implies that such results may safely be reused without calling the locale facet member function again, and that member functions of iostream classes cannot safely call imbue() themselves, except as specified elsewhere. --end note]
to
In successive calls to a locale facet member function on a facet object installed in the same locale, the returned result shall be identical. ...
Rationale:
This change is reasonable becuase it clarifies the intent of this part of the standard.
Section: X [depr.lib.binders] Status: CD1 Submitter: Andrew Demkin Opened: 2002-04-26 Last modified: 2015-04-08
View all other issues in [depr.lib.binders].
View all issues with CD1 status.
Discussion:
The definition of bind1st() (X [depr.lib.binders]) can result in the construction of an unsafe binding between incompatible pointer types. For example, given a function whose first parameter type is 'pointer to T', it's possible without error to bind an argument of type 'pointer to U' when U does not derive from T:
foo(T*, int); struct T {}; struct U {}; U u; int* p; int* q; for_each(p, q, bind1st(ptr_fun(foo), &u)); // unsafe binding
The definition of bind1st() includes a functional-style conversion to map its argument to the expected argument type of the bound function (see below):
typename Operation::first_argument_type(x)
A functional-style conversion (X [depr.lib.binders]) is defined to be semantically equivalent to an explicit cast expression (X [depr.lib.binders]), which may (according to 5.4, paragraph 5) be interpreted as a reinterpret_cast, thus masking the error.
The problem and proposed change also apply to X [depr.lib.binders].
Proposed resolution:
Add this sentence to the end of X [depr.lib.binders]/1: "Binders bind1st and bind2nd are deprecated in favor of std::tr1::bind."
(Notes to editor: (1) when and if tr1::bind is incorporated into the standard, "std::tr1::bind" should be changed to "std::bind". (2) 20.5.6 should probably be moved to Annex D.
Rationale:
There is no point in fixing bind1st and bind2nd. tr1::bind is a superior solution. It solves this problem and others.
Section: 27.5.3.1.1 [ios::failure] Status: CD1 Submitter: Walter Brown and Marc Paterno Opened: 2002-05-20 Last modified: 2015-04-08
View all other issues in [ios::failure].
View all issues with CD1 status.
Discussion:
The destructor of ios_base::failure should have an empty throw specification, because the destructor of its base class, exception, is declared in this way.
Proposed resolution:
Change the destructor to
virtual ~failure() throw();
Rationale:
Fixes an obvious glitch. This is almost editorial.
Section: 27.6.3.4.2 [streambuf.virt.buffer] Status: CD1 Submitter: Walter Brown, Marc Paterno Opened: 2002-05-10 Last modified: 2015-04-08
View all other issues in [streambuf.virt.buffer].
View all issues with CD1 status.
Discussion:
27.6.3.4.2 [streambuf.virt.buffer] paragraph 1 is inconsistent with the Effects clause for seekoff.
Proposed resolution:
Make this paragraph, the Effects clause for setbuf, consistent in wording with the Effects clause for seekoff in paragraph 3 by amending paragraph 1 to indicate the purpose of setbuf:
Original text:
1 Effects: Performs an operation that is defined separately for each class derived from basic_streambuf in this clause (27.7.1.3, 27.8.1.4).
Proposed text:
1 Effects: Influences stream buffering in a way that is defined separately for each class derived from basic_streambuf in this clause (27.7.1.3, 27.8.1.4).
Rationale:
The LWG doesn't believe there is any normative difference between the existing wording and what's in the proposed resolution, but the change may make the intent clearer.
Section: 27 [input.output] Status: CD1 Submitter: Walter Brown, Marc Paterno Opened: 2002-05-10 Last modified: 2015-04-08
View all other issues in [input.output].
View all issues with CD1 status.
Discussion:
Some stream and streambuf member functions are declared non-const, even thought they appear only to report information rather than to change an object's logical state. They should be declared const. See document N1360 for details and rationale.
The list of member functions under discussion: in_avail, showmanyc, tellg, tellp, is_open.
Related issue: 73
Proposed resolution:
In 27.8.1.5, 27.8.1.7, 27.8.1.8, 27.8.1.10, 27.8.1.11, and 27.8.1.13
Replace
bool is_open();
with
bool is_open() const;
Rationale:
Of the changes proposed in N1360, the only one that is safe is changing the filestreams' is_open to const. The LWG believed that this was NAD the first time it considered this issue (issue 73), but now thinks otherwise. The corresponding streambuf member function, after all,is already const.
The other proposed changes are less safe, because some streambuf functions that appear merely to report a value do actually perform mutating operations. It's not even clear that they should be considered "logically const", because streambuf has two interfaces, a public one and a protected one. These functions may, and often do, change the state as exposed by the protected interface, even if the state exposed by the public interface is unchanged.
Note that implementers can make this change in a binary compatible way by providing both overloads; this would be a conforming extension.
Section: 27.4 [iostream.objects] Status: CD1 Submitter: Ruslan Abdikeev Opened: 2002-07-08 Last modified: 2015-04-08
View all other issues in [iostream.objects].
View all issues with CD1 status.
Discussion:
Is it safe to use standard iostream objects from constructors of static objects? Are standard iostream objects constructed and are their associations established at that time?
Surpisingly enough, Standard does NOT require that.
27.3/2 [lib.iostream.objects] guarantees that standard iostream objects are constructed and their associations are established before the body of main() begins execution. It also refers to ios_base::Init class as the panacea for constructors of static objects.
However, there's nothing in 27.3 [lib.iostream.objects], in 27.4.2 [lib.ios.base], and in 27.4.2.1.6 [lib.ios::Init], that would require implementations to allow access to standard iostream objects from constructors of static objects.
Details:
Core text refers to some magic object ios_base::Init, which will be discussed below:
"The [standard iostream] objects are constructed, and their associations are established at some time prior to or during first time an object of class basic_ios<charT,traits>::Init is constructed, and in any case before the body of main begins execution." (27.3/2 [lib.iostream.objects])
The first non-normative footnote encourages implementations to initialize standard iostream objects earlier than required.
However, the second non-normative footnote makes an explicit and unsupported claim:
"Constructors and destructors for static objects can access these [standard iostream] objects to read input from stdin or write output to stdout or stderr." (27.3/2 footnote 265 [lib.iostream.objects])
The only bit of magic is related to that ios_base::Init class. AFAIK, the rationale behind ios_base::Init was to bring an instance of this class to each translation unit which #included <iostream> or related header. Such an inclusion would support the claim of footnote quoted above, because in order to use some standard iostream object it is necessary to #include <iostream>.
However, while Standard explicitly describes ios_base::Init as an appropriate class for doing the trick, I failed to found a mention of an _instance_ of ios_base::Init in Standard.
Proposed resolution:
Add to 27.4 [iostream.objects], p2, immediately before the last sentence of the paragraph, the following two sentences:
If a translation unit includes <iostream>, or explicitly constructs an ios_base::Init object, these stream objects shall be constructed before dynamic initialization of non-local objects defined later in that translation unit, and these stream objects shall be destroyed after the destruction of dynamically initialized non-local objects defined later in that translation unit.
[Lillehammer: Matt provided wording.]
[Mont Tremblant: Matt provided revised wording.]
Rationale:
The original proposed resolution unconditionally required implementations to define an ios_base::Init object of some implementation-defined name in the header <iostream>. That's an overspecification. First, defining the object may be unnecessary and even detrimental to performance if an implementation can guarantee that the 8 standard iostream objects will be initialized before any other user-defined object in a program. Second, there is no need to require implementations to document the name of the object.
The new proposed resolution gives users guidance on what they need to do to ensure that stream objects are constructed during startup.
Section: 27.7.2.3 [istream.unformatted] Status: CD1 Submitter: Ray Lischner Opened: 2002-07-15 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with CD1 status.
Discussion:
Defect report for description of basic_istream::get (section 27.7.2.3 [istream.unformatted]), paragraph 15. The description for the get function with the following signature:
basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb);
is incorrect. It reads
Effects: Calls get(s,n,widen('\n'))
which I believe should be:
Effects: Calls get(sb,widen('\n'))
Proposed resolution:
Change the Effects paragraph to:
Effects: Calls get(sb,this->widen('\n'))
[Pre-Oxford: Minor correction from Howard: replaced 'widen' with 'this->widen'.]
Rationale:
Fixes an obvious typo.
Section: 23.2 [container.requirements] Status: CD1 Submitter: Frank Compagner Opened: 2002-07-20 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with CD1 status.
Discussion:
The requirements for multiset and multimap containers (23.1 [lib.containers.requirements], 23.1.2 [lib.associative.reqmnts], 23.3.2 [lib.multimap] and 23.3.4 [lib.multiset]) make no mention of the stability of the required (mutating) member functions. It appears the standard allows these functions to reorder equivalent elements of the container at will, yet the pervasive red-black tree implementation appears to provide stable behaviour.
This is of most concern when considering the behaviour of erase(). A stability requirement would guarantee the correct working of the following 'idiom' that removes elements based on a certain predicate function.
multimap<int, int> m; multimap<int, int>::iterator i = m.begin(); while (i != m.end()) { if (pred(i)) m.erase (i++); else ++i; }
Although clause 23.1.2/8 guarantees that i remains a valid iterator througout this loop, absence of the stability requirement could potentially result in elements being skipped. This would make this code incorrect, and, furthermore, means that there is no way of erasing these elements without iterating first over the entire container, and second over the elements to be erased. This would be unfortunate, and have a negative impact on both performance and code simplicity.
If the stability requirement is intended, it should be made explicit (probably through an extra paragraph in clause 23.1.2).
If it turns out stability cannot be guaranteed, i'd argue that a remark or footnote is called for (also somewhere in clause 23.1.2) to warn against relying on stable behaviour (as demonstrated by the code above). If most implementations will display stable behaviour, any problems emerging on an implementation without stable behaviour will be hard to track down by users. This would also make the need for an erase_if() member function that much greater.
This issue is somewhat related to LWG issue 130.
Proposed resolution:
Add the following to the end of 23.2.4 [associative.reqmts] paragraph 4: "For multiset and multimap, insertand erase are stable: they preserve the relative ordering of equivalent elements.
[Lillehammer: Matt provided wording]
[Joe Gottman points out that the provided wording does not address multimap and multiset. N1780 also addresses this issue and suggests wording.]
[Mont Tremblant: Changed set and map to multiset and multimap.]
Rationale:
The LWG agrees that this guarantee is necessary for common user idioms to work, and that all existing implementations provide this property. Note that this resolution guarantees stability for multimap and multiset, not for all associative containers in general.
Section: 27.7.2.2.1 [istream.formatted.reqmts], 27.7.3.6.1 [ostream.formatted.reqmts] Status: CD1 Submitter: Keith Baker Opened: 2002-07-23 Last modified: 2015-04-08
View all other issues in [istream.formatted.reqmts].
View all issues with CD1 status.
Discussion:
In 27.7.2.2.1 [istream.formatted.reqmts] and 27.7.3.6.1 [ostream.formatted.reqmts] (exception()&badbit) != 0 is used in testing for rethrow, yet exception() is the constructor to class std::exception in 18.7.1 [type.info] that has no return type. Should member function exceptions() found in 27.5.5 [ios] be used instead?
Proposed resolution:
In 27.7.2.2.1 [istream.formatted.reqmts] and 27.7.3.6.1 [ostream.formatted.reqmts], change "(exception()&badbit) != 0" to "(exceptions()&badbit) != 0".
Rationale:
Fixes an obvious typo.
Section: 27.8.2.4 [stringbuf.virtuals] Status: CD1 Submitter: Ray Lischner Opened: 2002-08-14 Last modified: 2015-04-08
View all other issues in [stringbuf.virtuals].
View all issues with CD1 status.
Discussion:
In Section 27.8.2.4 [stringbuf.virtuals]: Table 90, Table 91, and paragraph 14 all contain references to "basic_ios::" which should be "ios_base::".
Proposed resolution:
Change all references to "basic_ios" in Table 90, Table 91, and paragraph 14 to "ios_base".
Rationale:
Fixes an obvious typo.
Section: 27.8.2.4 [stringbuf.virtuals] Status: CD1 Submitter: Ray Lischner Opened: 2002-08-14 Last modified: 2015-04-08
View all other issues in [stringbuf.virtuals].
View all issues with CD1 status.
Discussion:
In Section 27.8.2.4 [stringbuf.virtuals], Table 90, the implication is that the four conditions should be mutually exclusive, but they are not. The first two cases, as written, are subcases of the third.
As written, it is unclear what should be the result if cases 1 and 2 are both true, but case 3 is false.
Proposed resolution:
Rewrite these conditions as:
(which & (ios_base::in|ios_base::out)) == ios_base::in
(which & (ios_base::in|ios_base::out)) == ios_base::out
(which & (ios_base::in|ios_base::out)) == (ios_base::in|ios_base::out) and way == either ios_base::beg or ios_base::end
Otherwise
Rationale:
It's clear what we wanted to say, we just failed to say it. This fixes it.
Section: 22.4.1.1.2 [locale.ctype.virtuals] Status: CD1 Submitter: Martin Sebor Opened: 2002-09-06 Last modified: 2015-04-08
View all other issues in [locale.ctype.virtuals].
View all issues with CD1 status.
Discussion:
The last sentence in 22.2.1.1.2, p11 below doesn't seem to make sense.
charT do_widen (char c) const; -11- Effects: Applies the simplest reasonable transformation from a char value or sequence of char values to the corresponding charT value or values. The only characters for which unique transformations are required are those in the basic source character set (2.2). For any named ctype category with a ctype<charT> facet ctw and valid ctype_base::mask value M (is(M, c) || !ctw.is(M, do_widen(c))) is true.
Shouldn't the last sentence instead read
For any named ctype category with a ctype<char> facet ctc and valid ctype_base::mask value M (ctc.is(M, c) || !is(M, do_widen(c))) is true.
I.e., if the narrow character c is not a member of a class of characters then neither is the widened form of c. (To paraphrase footnote 224.)
Proposed resolution:
Replace the last sentence of 22.4.1.1.2 [locale.ctype.virtuals], p11 with the following text:
For any named ctype category with a ctype<char> facet ctc and valid ctype_base::mask value M, (ctc.is(M, c) || !is(M, do_widen(c))) is true.
[Kona: Minor edit. Added a comma after the M for clarity.]
Rationale:
The LWG believes this is just a typo, and that this is the correct fix.
Section: 22.4.1.5 [locale.codecvt.byname] Status: CD1 Submitter: Martin Sebor Opened: 2002-09-06 Last modified: 2015-04-08
View all other issues in [locale.codecvt.byname].
View all issues with CD1 status.
Discussion:
Tables 53 and 54 in 22.4.1.5 [locale.codecvt.byname] are both titled "convert result values," when surely "do_in/do_out result values" must have been intended for Table 53 and "do_unshift result values" for Table 54.
Table 54, row 3 says that the meaning of partial is "more characters needed to be supplied to complete termination." The function is not supplied any characters, it is given a buffer which it fills with characters or, more precisely, destination elements (i.e., an escape sequence). So partial means that space for more than (to_limit - to) destination elements was needed to terminate a sequence given the value of state.
Proposed resolution:
Change the title of Table 53 to "do_in/do_out result values" and the title of Table 54 to "do_unshift result values."
Change the text in Table 54, row 3 (the partial row), under the heading Meaning, to "space for more than (to_limit - to) destination elements was needed to terminate a sequence given the value of state."
Section: 22.4.1.5 [locale.codecvt.byname] Status: CD1 Submitter: Martin Sebor Opened: 2002-09-06 Last modified: 2015-04-08
View all other issues in [locale.codecvt.byname].
View all issues with CD1 status.
Discussion:
All but one codecvt member functions that take a state_type argument list as one of their preconditions that the state_type argument have a valid value. However, according to 22.2.1.5.2, p6, codecvt::do_unshift() is the only codecvt member that is supposed to return error if the state_type object is invalid.
It seems to me that the treatment of state_type by all codecvt member functions should be the same and the current requirements should be changed. Since the detection of invalid state_type values may be difficult in general or computationally expensive in some specific cases, I propose the following:
Proposed resolution:
Add a new paragraph before 22.2.1.5.2, p5, and after the function declaration below
result do_unshift(stateT& state, externT* to, externT* to_limit, externT*& to_next) const;
as follows:
Requires: (to <= to_end) well defined and true; state initialized, if at the beginning of a sequence, or else equal to the result of converting the preceding characters in the sequence.
and change the text in Table 54, row 4, the error row, under the heading Meaning, from
state has invalid value
to
an unspecified error has occurred
Rationale:
The intent is that implementations should not be required to detect invalid state values; such a requirement appears nowhere else. An invalid state value is a precondition violation, i.e. undefined behavior. Implementations that do choose to detect invalid state values, or that choose to detect any other kind of error, may return error as an indication.
Section: 24.2.6 [bidirectional.iterators] Status: CD1 Submitter: ysapir (submitted via comp.std.c++) Opened: 2002-10-17 Last modified: 2015-04-08
View all other issues in [bidirectional.iterators].
View all issues with CD1 status.
Discussion:
Following a discussion on the boost list regarding end iterators and the possibility of performing operator--() on them, it seems to me that there is a typo in the standard. This typo has nothing to do with that discussion.
I have checked this newsgroup, as well as attempted a search of the Active/Defect/Closed Issues List on the site for the words "s is derefer" so I believe this has not been proposed before. Furthermore, the "Lists by Index" mentions only DR 299 on section 24.1.4, and DR 299 is not related to this issue.
The standard makes the following assertion on bidirectional iterators, in section 24.1.4 [lib.bidirectional.iterators], Table 75:
operational assertion/note expression return type semantics pre/post-condition --r X& pre: there exists s such that r == ++s. post: s is dereferenceable. --(++r) == r. --r == --s implies r == s. &r == &--r.
(See http://lists.boost.org/Archives/boost/2002/10/37636.php.)
In particular, "s is dereferenceable" seems to be in error. It seems that the intention was to say "r is dereferenceable".
If it were to say "r is dereferenceable" it would make perfect sense. Since s must be dereferenceable prior to operator++, then the natural result of operator-- (to undo operator++) would be to make r dereferenceable. Furthermore, without other assertions, and basing only on precondition and postconditions, we could not otherwise know this. So it is also interesting information.
Proposed resolution:
Change the guarantee to "postcondition: r is dereferenceable."
Rationale:
Fixes an obvious typo
Section: 25.4.3.3 [equal.range] Status: CD1 Submitter: Hans Bos Opened: 2002-10-18 Last modified: 2015-04-08
View all other issues in [equal.range].
View all issues with CD1 status.
Discussion:
Section 25.4.3.3 [equal.range] states that at most 2 * log(last - first) + 1 comparisons are allowed for equal_range.
It is not possible to implement equal_range with these constraints.
In a range of one element as in:
int x = 1; equal_range(&x, &x + 1, 1)
it is easy to see that at least 2 comparison operations are needed.
For this case at most 2 * log(1) + 1 = 1 comparison is allowed.
I have checked a few libraries and they all use the same (nonconforming) algorithm for equal_range that has a complexity of
2* log(distance(first, last)) + 2.
I guess this is the algorithm that the standard assumes for equal_range.
It is easy to see that 2 * log(distance) + 2 comparisons are enough since equal range can be implemented with lower_bound and upper_bound (both log(distance) + 1).
I think it is better to require something like 2log(distance) + O(1) (or even logarithmic as multiset::equal_range). Then an implementation has more room to optimize for certain cases (e.g. have log(distance) characteristics when at most match is found in the range but 2log(distance) + 4 for the worst case).
Proposed resolution:
In 25.4.3.1 [lower.bound]/4, change log(last - first) + 1 to log2(last - first) + O(1).
In 25.4.3.2 [upper.bound]/4, change log(last - first) + 1 to log2(last - first) + O(1).
In 25.4.3.3 [equal.range]/4, change 2*log(last - first) + 1 to 2*log2(last - first) + O(1).
[Matt provided wording]
Rationale:
The LWG considered just saying O(log n) for all three, but decided that threw away too much valuable information. The fact that lower_bound is twice as fast as equal_range is important. However, it's better to allow an arbitrary additive constant than to specify an exact count. An exact count would have to involve floor or ceil. It would be too easy to get this wrong, and don't provide any substantial value for users.
Section: 24.5.1.3.11 [reverse.iter.op-=] Status: CD1 Submitter: Matt Austern Opened: 2002-10-23 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
In 24.5.1.3.11 [reverse.iter.op-=], reverse_iterator<>::operator[] is specified as having a return type of reverse_iterator::reference, which is the same as iterator_traits<Iterator>::reference. (Where Iterator is the underlying iterator type.)
The trouble is that Iterator's own operator[] doesn't necessarily have a return type of iterator_traits<Iterator>::reference. Its return type is merely required to be convertible to Iterator's value type. The return type specified for reverse_iterator's operator[] would thus appear to be impossible.
With the resolution of issue 299, the type of a[n] will continue to be required (for random access iterators) to be convertible to the value type, and also a[n] = t will be a valid expression. Implementations of reverse_iterator will likely need to return a proxy from operator[] to meet these requirements. As mentioned in the comment from Dave Abrahams, the simplest way to specify that reverse_iterator meet this requirement to just mandate it and leave the return type of operator[] unspecified.
Proposed resolution:
In 24.5.1.2 [reverse.iter.requirements] change:
reference operator[](difference_type n) const;
to:
unspecified operator[](difference_type n) const; // see 24.2.7 [random.access.iterators]
[ Comments from Dave Abrahams: IMO we should resolve 386 by just saying that the return type of reverse_iterator's operator[] is unspecified, allowing the random access iterator requirements to impose an appropriate return type. If we accept 299's proposed resolution (and I think we should), the return type will be readable and writable, which is about as good as we can do. ]
Section: 26.4 [complex.numbers] Status: CD1 Submitter: Gabriel Dos Reis Opened: 2002-11-08 Last modified: 2015-04-08
View other active issues in [complex.numbers].
View all other issues in [complex.numbers].
View all issues with CD1 status.
Discussion:
The absence of explicit description of std::complex<T> layout makes it imposible to reuse existing software developed in traditional languages like Fortran or C with unambigous and commonly accepted layout assumptions. There ought to be a way for practitioners to predict with confidence the layout of std::complex<T> whenever T is a numerical datatype. The absence of ways to access individual parts of a std::complex<T> object as lvalues unduly promotes severe pessimizations. For example, the only way to change, independently, the real and imaginary parts is to write something like
complex<T> z; // ... // set the real part to r z = complex<T>(r, z.imag()); // ... // set the imaginary part to i z = complex<T>(z.real(), i);
At this point, it seems appropriate to recall that a complex number is, in effect, just a pair of numbers with no particular invariant to maintain. Existing practice in numerical computations has it that a complex number datatype is usually represented by Cartesian coordinates. Therefore the over-encapsulation put in the specification of std::complex<> is not justified.
Proposed resolution:
Add the following requirements to 26.4 [complex.numbers] as 26.3/4:
If z is an lvalue expression of type cv std::complex<T> then
- the expression reinterpret_cast<cv T(&)[2]>(z) is well-formed; and
- reinterpret_cast<cv T(&)[2]>(z)[0] designates the real part of z; and
- reinterpret_cast<cv T(&)[2]>(z)[1] designates the imaginary part of z.
Moreover, if a is an expression of pointer type cv complex<T>* and the expression a[i] is well-defined for an integer expression i then:
- reinterpret_cast<cv T*>(a)[2*i] designates the real part of a[i]; and
- reinterpret_cast<cv T*>(a)[2*i+1] designates the imaginary part of a[i].
In 26.4.2 [complex] and 26.4.3 [complex.special] add the following member functions (changing T to concrete types as appropriate for the specializations).
void real(T); void imag(T);
Add to 26.4.4 [complex.members]
T real() const;Returns: the value of the real component
void real(T val);Assigns val to the real component.
T imag() const;Returns: the value of the imaginary component
void imag(T val);Assigns val to the imaginary component.
[Kona: The layout guarantee is absolutely necessary for C compatibility. However, there was disagreement about the other part of this proposal: retrieving elements of the complex number as lvalues. An alternative: continue to have real() and imag() return rvalues, but add set_real() and set_imag(). Straw poll: return lvalues - 2, add setter functions - 5. Related issue: do we want reinterpret_cast as the interface for converting a complex to an array of two reals, or do we want to provide a more explicit way of doing it? Howard will try to resolve this issue for the next meeting.]
[pre-Sydney: Howard summarized the options in n1589.]
[ Bellevue: ]
Second half of proposed wording replaced and moved to Ready.
[ Pre-Sophia Antipolis, Howard adds: ]
Added the members to 26.4.3 [complex.special] and changed from Ready to Review.
[ Post-Sophia Antipolis: ]
Moved from WP back to Ready so that the "and 26.4.3 [complex.special]" in the proposed resolution can be officially applied.
Rationale:
The LWG believes that C99 compatibility would be enough justification for this change even without other considerations. All existing implementations already have the layout proposed here.
Section: 26.6.2.4 [valarray.access] Status: CD1 Submitter: Gabriel Dos Reis Opened: 2002-11-08 Last modified: 2015-04-08
View all other issues in [valarray.access].
View all issues with CD1 status.
Duplicate of: 77
Discussion:
Consider the following program:
#include <iostream> #include <ostream> #include <vector> #include <valarray> #include <algorithm> #include <iterator> template<typename Array> void print(const Array& a) { using namespace std; typedef typename Array::value_type T; copy(&a[0], &a[0] + a.size(), ostream_iterator<T>(std::cout, " ")); } template<typename T, unsigned N> unsigned size(T(&)[N]) { return N; } int main() { double array[] = { 0.89, 9.3, 7, 6.23 }; std::vector<double> v(array, array + size(array)); std::valarray<double> w(array, size(array)); print(v); // #1 std::cout << std::endl; print(w); // #2 std::cout << std::endl; }
While the call numbered #1 succeeds, the call numbered #2 fails because the const version of the member function valarray<T>::operator[](size_t) returns a value instead of a const-reference. That seems to be so for no apparent reason, no benefit. Not only does that defeats users' expectation but it also does hinder existing software (written either in C or Fortran) integration within programs written in C++. There is no reason why subscripting an expression of type valarray<T> that is const-qualified should not return a const T&.
Proposed resolution:
In the class synopsis in 26.6.2 [template.valarray], and in 26.6.2.4 [valarray.access] just above paragraph 1, change
T operator[](size_t const);
to
const T& operator[](size_t const);
[Kona: fixed a minor typo: put semicolon at the end of the line wehre it belongs.]
Rationale:
Return by value seems to serve no purpose. Valaray was explicitly designed to have a specified layout so that it could easily be integrated with libraries in other languages, and return by value defeats that purpose. It is believed that this change will have no impact on allowable optimizations.
Section: 22.3.3.2 [conversions] Status: CD1 Submitter: James Kanze Opened: 2002-12-10 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The specifications of toupper and tolower both specify the functions as const, althought they are not member functions, and are not specified as const in the header file synopsis in section 22.3 [locales].
Proposed resolution:
In 22.3.3.2 [conversions], remove const from the function declarations of std::toupper and std::tolower
Rationale:
Fixes an obvious typo
Section: 26.8 [c.math] Status: CD1 Submitter: James Kanze Opened: 2003-01-03 Last modified: 2015-04-08
View other active issues in [c.math].
View all other issues in [c.math].
View all issues with CD1 status.
Discussion:
In 26.8 [c.math], the C++ standard refers to the C standard for the definition of rand(); in the C standard, it is written that "The implementation shall behave as if no library function calls the rand function."
In 25.3.12 [alg.random.shuffle], there is no specification as to how the two parameter version of the function generates its random value. I believe that all current implementations in fact call rand() (in contradiction with the requirement avove); if an implementation does not call rand(), there is the question of how whatever random generator it does use is seeded. Something is missing.
Proposed resolution:
In [lib.c.math], add a paragraph specifying that the C definition of rand shal be modified to say that "Unless otherwise specified, the implementation shall behave as if no library function calls the rand function."
In [lib.alg.random.shuffle], add a sentence to the effect that "In the two argument form of the function, the underlying source of random numbers is implementation defined. [Note: in particular, an implementation is permitted to use rand.]
Rationale:
The original proposed resolution proposed requiring the two-argument from of random_shuffle to use rand. We don't want to do that, because some existing implementations already use something else: gcc uses lrand48, for example. Using rand presents a problem if the number of elements in the sequence is greater than RAND_MAX.
Section: 20.6.1 [bitset.cons] Status: CD1 Submitter: Martin Sebor Opened: 2003-01-05 Last modified: 2015-04-08
View all other issues in [bitset.cons].
View all issues with CD1 status.
Discussion:
23.3.5.1, p6 [lib.bitset.cons] talks about a generic character having the value of 0 or 1 but there is no definition of what that means for charT other than char and wchar_t. And even for those two types, the values 0 and 1 are not actually what is intended -- the values '0' and '1' are. This, along with the converse problem in the description of to_string() in 23.3.5.2, p33, looks like a defect remotely related to DR 303.
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#303
23.3.5.1: -6- An element of the constructed string has value zero if the corresponding character in str, beginning at position pos, is 0. Otherwise, the element has the value one.
23.3.5.2: -33- Effects: Constructs a string object of the appropriate type and initializes it to a string of length N characters. Each character is determined by the value of its corresponding bit position in *this. Character position N ?- 1 corresponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit positions. Bit value zero becomes the character 0, bit value one becomes the character 1.
Also note the typo in 23.3.5.1, p6: the object under construction is a bitset, not a string.
[ Sophia Antipolis: ]
We note that bitset has been moved from section 23 to section 20, by another issue (842) previously resolved at this meeting.
Disposition: move to ready.
We request that Howard submit a separate issue regarding the three to_string overloads.
Proposed resolution:
Change the constructor's function declaration immediately before 20.6.1 [bitset.cons] p3 to:
template <class charT, class traits, class Allocator> explicit bitset(const basic_string<charT, traits, Allocator>& str, typename basic_string<charT, traits, Allocator>::size_type pos = 0, typename basic_string<charT, traits, Allocator>::size_type n = basic_string<charT, traits, Allocator>::npos, charT zero = charT('0'), charT one = charT('1'))
Change the first two sentences of 20.6.1 [bitset.cons] p6 to: "An element of the constructed string has value 0 if the corresponding character in str, beginning at position pos, is zero. Otherwise, the element has the value 1.
Change the text of the second sentence in 23.3.5.1, p5 to read: "The function then throws invalid_argument if any of the rlen characters in str beginning at position pos is other than zero or one. The function uses traits::eq() to compare the character values."
Change the declaration of the to_string member function immediately before 20.6.2 [bitset.members] p33 to:
template <class charT, class traits, class Allocator> basic_string<charT, traits, Allocator> to_string(charT zero = charT('0'), charT one = charT('1')) const;
Change the last sentence of 20.6.2 [bitset.members] p33 to: "Bit value 0 becomes the character zero, bit value 1 becomes the character one.
Change 20.6.4 [bitset.operators] p8 to:
Returns:
os << x.template to_string<charT,traits,allocator<charT> >( use_facet<ctype<charT> >(os.getloc()).widen('0'), use_facet<ctype<charT> >(os.getloc()).widen('1'));
Rationale:
There is a real problem here: we need the character values of '0' and '1', and we have no way to get them since strings don't have imbued locales. In principle the "right" solution would be to provide an extra object, either a ctype facet or a full locale, which would be used to widen '0' and '1'. However, there was some discomfort about using such a heavyweight mechanism. The proposed resolution allows those users who care about this issue to get it right.
We fix the inserter to use the new arguments. Note that we already fixed the analogous problem with the extractor in issue 303.
[ post Bellevue: ]
We are happy with the resolution as proposed, and we move this to Ready.
[ Howard adds: ]
The proposed wording neglects the 3 newer to_string overloads.
Section: 20.7.9.1 [allocator.members] Status: CD1 Submitter: Markus Mauhart Opened: 2003-02-27 Last modified: 2015-04-08
View all other issues in [allocator.members].
View all issues with CD1 status.
Discussion:
20.7.9.1 [allocator.members] allocator members, contains the following 3 lines:
12 Returns: new((void *) p) T( val) void destroy(pointer p); 13 Returns: ((T*) p)->~T()
The type cast "(T*) p" in the last line is redundant cause we know that std::allocator<T>::pointer is a typedef for T*.
Proposed resolution:
Replace "((T*) p)" with "p".
Rationale:
Just a typo, this is really editorial.
Section: 17.6.3.5 [allocator.requirements] Status: CD1 Submitter: Markus Mauhart Opened: 2003-02-27 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with CD1 status.
Discussion:
I think that in par2 of [default.con.req] the last two lines of table 32 contain two incorrect type casts. The lines are ...
a.construct(p,t) Effect: new((void*)p) T(t) a.destroy(p) Effect: ((T*)p)?->~T()
.... with the prerequisits coming from the preceding two paragraphs, especially from table 31:
alloc<T> a ;// an allocator for T alloc<T>::pointer p ;// random access iterator // (may be different from T*) alloc<T>::reference r = *p;// T& T const& t ;
For that two type casts ("(void*)p" and "(T*)p") to be well-formed this would require then conversions to T* and void* for all alloc<T>::pointer, so it would implicitely introduce extra requirements for alloc<T>::pointer, additionally to the only current requirement (being a random access iterator).
Proposed resolution:
Accept proposed wording from N2436 part 1.
Note: Actually I would prefer to replace "((T*)p)?->dtor_name" with "p?->dtor_name", but AFAICS this is not possible cause of an omission in 13.5.6 [over.ref] (for which I have filed another DR on 29.11.2002).
[Kona: The LWG thinks this is somewhere on the border between Open and NAD. The intend is clear: construct constructs an object at the location p. It's reading too much into the description to think that literally calling new is required. Tweaking this description is low priority until we can do a thorough review of allocators, and, in particular, allocators with non-default pointer types.]
[ Batavia: Proposed resolution changed to less code and more description. ]
[ post Oxford: This would be rendered NAD Editorial by acceptance of N2257. ]
[ Kona (2007): The LWG adopted the proposed resolution of N2387 for this issue which was subsequently split out into a separate paper N2436 for the purposes of voting. The resolution in N2436 addresses this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 17.6.3.5 [allocator.requirements], 20.7.9.1 [allocator.members] Status: CD1 Submitter: Markus Mauhart Opened: 2003-02-27 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with CD1 status.
Discussion:
This applies to the new expression that is contained in both par12 of 20.7.9.1 [allocator.members] and in par2 (table 32) of [default.con.req]. I think this new expression is wrong, involving unintended side effects.
20.7.9.1 [allocator.members] contains the following 3 lines:
11 Returns: the largest value N for which the call allocate(N,0) might succeed. void construct(pointer p, const_reference val); 12 Returns: new((void *) p) T( val)
[default.con.req] in table 32 has the following line:
a.construct(p,t) Effect: new((void*)p) T(t)
.... with the prerequisits coming from the preceding two paragraphs, especially from table 31:
alloc<T> a ;// an allocator for T alloc<T>::pointer p ;// random access iterator // (may be different from T*) alloc<T>::reference r = *p;// T& T const& t ;
Cause of using "new" but not "::new", any existing "T::operator new" function will hide the global placement new function. When there is no "T::operator new" with adequate signature, every_alloc<T>::construct(..) is ill-formed, and most std::container<T,every_alloc<T>> use it; a workaround would be adding placement new and delete functions with adequate signature and semantic to class T, but class T might come from another party. Maybe even worse is the case when T has placement new and delete functions with adequate signature but with "unknown" semantic: I dont like to speculate about it, but whoever implements any_container<T,any_alloc> and wants to use construct(..) probably must think about it.
Proposed resolution:
Replace "new" with "::new" in both cases.
Section: 21.4.6.8 [string::swap] Status: CD1 Submitter: Beman Dawes Opened: 2003-03-25 Last modified: 2015-04-08
View all other issues in [string::swap].
View all issues with CD1 status.
Discussion:
std::basic_string, 21.4 [basic.string] paragraph 2 says that basic_string "conforms to the requirements of a Sequence, as specified in (23.1.1)." The sequence requirements specified in (23.1.1) to not include any prohibition on swap members throwing exceptions.
Section 23.2 [container.requirements] paragraph 10 does limit conditions under which exceptions may be thrown, but applies only to "all container types defined in this clause" and so excludes basic_string::swap because it is defined elsewhere.
Eric Niebler points out that 21.4 [basic.string] paragraph 5 explicitly permits basic_string::swap to invalidates iterators, which is disallowed by 23.2 [container.requirements] paragraph 10. Thus the standard would be contradictory if it were read or extended to read as having basic_string meet 23.2 [container.requirements] paragraph 10 requirements.
Yet several LWG members have expressed the belief that the original intent was that basic_string::swap should not throw exceptions as specified by 23.2 [container.requirements] paragraph 10, and that the standard is unclear on this issue. The complexity of basic_string::swap is specified as "constant time", indicating the intent was to avoid copying (which could cause a bad_alloc or other exception). An important use of swap is to ensure that exceptions are not thrown in exception-safe code.
Note: There remains long standing concern over whether or not it is possible to reasonably meet the 23.2 [container.requirements] paragraph 10 swap requirements when allocators are unequal. The specification of basic_string::swap exception requirements is in no way intended to address, prejudice, or otherwise impact that concern.
Proposed resolution:
In 21.4.6.8 [string::swap], add a throws clause:
Throws: Shall not throw exceptions.
Section: 17.6.4.6 [replacement.functions], 18.6.1 [new.delete] Status: CD1 Submitter: Matt Austern Opened: 2003-04-24 Last modified: 2015-04-08
View all other issues in [replacement.functions].
View all issues with CD1 status.
Discussion:
The eight basic dynamic memory allocation functions (single-object and array versions of ::operator new and ::operator delete, in the ordinary and nothrow forms) are replaceable. A C++ program may provide an alternative definition for any of them, which will be used in preference to the implementation's definition.
Three different parts of the standard mention requirements on replacement functions: 17.6.4.6 [replacement.functions], 18.6.1.1 [new.delete.single] and 18.6.1.2 [new.delete.array], and 3.7.3 [basic.stc.auto].
None of these three places say whether a replacement function may be declared inline. 18.6.1.1 [new.delete.single] paragraph 2 specifies a signature for the replacement function, but that's not enough: the inline specifier is not part of a function's signature. One might also reason from 7.1.2 [dcl.fct.spec] paragraph 2, which requires that "an inline function shall be defined in every translation unit in which it is used," but this may not be quite specific enough either. We should either explicitly allow or explicitly forbid inline replacement memory allocation functions.
Proposed resolution:
Add a new sentence to the end of 17.6.4.6 [replacement.functions] paragraph 3: "The program's definitions shall not be specified as inline. No diagnostic is required."
[Kona: added "no diagnostic is required"]
Rationale:
The fact that inline isn't mentioned appears to have been nothing more than an oversight. Existing implementations do not permit inline functions as replacement memory allocation functions. Providing this functionality would be difficult in some cases, and is believed to be of limited value.
Section: 25.5 [alg.c.library] Status: CD1 Submitter: Ray Lischner Opened: 2003-04-08 Last modified: 2015-04-08
View all other issues in [alg.c.library].
View all issues with CD1 status.
Discussion:
Section 25.5 [alg.c.library] describes bsearch and qsort, from the C standard library. Paragraph 4 does not list any restrictions on qsort, but it should limit the base parameter to point to POD. Presumably, qsort sorts the array by copying bytes, which requires POD.
Proposed resolution:
In 25.5 [alg.c.library] paragraph 4, just after the declarations and before the nonnormative note, add these words: "both of which have the same behavior as the original declaration. The behavior is undefined unless the objects in the array pointed to by base are of POD type."
[Something along these lines is clearly necessary. Matt provided wording.]
Section: 23.3.6.5 [vector.modifiers] Status: CD1 Submitter: Dave Abrahams Opened: 2003-04-27 Last modified: 2015-04-08
View other active issues in [vector.modifiers].
View all other issues in [vector.modifiers].
View all issues with CD1 status.
Discussion:
There is a possible defect in the standard: the standard text was never intended to prevent arbitrary ForwardIterators, whose operations may throw exceptions, from being passed, and it also wasn't intended to require a temporary buffer in the case where ForwardIterators were passed (and I think most implementations don't use one). As is, the standard appears to impose requirements that aren't met by any existing implementation.
Proposed resolution:
Replace 23.3.6.5 [vector.modifiers] paragraph 1 with:
1- Notes: Causes reallocation if the new size is greater than the old capacity. If no reallocation happens, all the iterators and references before the insertion point remain valid. If an exception is thrown other than by the copy constructor or assignment operator of T or by any InputIterator operation there are no effects.
[We probably need to say something similar for deque.]
Section: X [iterator.concepts] Status: CD1 Submitter: Nathan Myers Opened: 2003-06-03 Last modified: 2015-04-08
View all other issues in [iterator.concepts].
View all issues with CD1 status.
Discussion:
Clause X [iterator.concepts], paragraph 5, says that the only expression that is defined for a singular iterator is "an assignment of a non-singular value to an iterator that holds a singular value". This means that destroying a singular iterator (e.g. letting an automatic variable go out of scope) is technically undefined behavior. This seems overly strict, and probably unintentional.
Proposed resolution:
Change the sentence in question to "... the only exceptions are destroying an iterator that holds a singular value, or the assignment of a non-singular value to an iterator that holds a singular value."
Section: 27.9.1.9 [ifstream.members], 27.9.1.13 [ofstream.members] Status: CD1 Submitter: Nathan Myers Opened: 2003-06-03 Last modified: 2015-04-08
View all other issues in [ifstream.members].
View all issues with CD1 status.
Discussion:
A strict reading of 27.9.1 [fstreams] shows that opening or closing a basic_[io]fstream does not affect the error bits. This means, for example, that if you read through a file up to EOF, and then close the stream and reopen it at the beginning of the file, the EOF bit in the stream's error state is still set. This is counterintuitive.
The LWG considered this issue once before, as issue 22, and put in a footnote to clarify that the strict reading was indeed correct. We did that because we believed the standard was unambiguous and consistent, and that we should not make architectural changes in a TC. Now that we're working on a new revision of the language, those considerations no longer apply.
Proposed resolution:
Change 27.9.1.9 [ifstream.members], para. 3 from:
Calls rdbuf()->open(s,mode|in). If that function returns a null pointer, calls setstate(failbit) (which may throw ios_base::failure [Footnote: (lib.iostate.flags)].
to:
Calls rdbuf()->open(s,mode|in). If that function returns a null pointer, calls setstate(failbit) (which may throw ios_base::failure [Footnote: (lib.iostate.flags)), else calls clear().
Change 27.9.1.13 [ofstream.members], para. 3 from:
Calls rdbuf()->open(s,mode|out). If that function returns a null pointer, calls setstate(failbit) (which may throw ios_base::failure [Footnote: (lib.iostate.flags)).
to:
Calls rdbuf()->open(s,mode|out). If that function returns a null pointer, calls setstate(failbit) (which may throw ios_base::failure [Footnote: (lib.iostate.flags)), else calls clear().
Change 27.9.1.17 [fstream.members], para. 3 from:
Calls rdbuf()->open(s,mode), If that function returns a null pointer, calls setstate(failbit), (which may throw ios_base::failure). (lib.iostate.flags) )
to:
Calls rdbuf()->open(s,mode), If that function returns a null pointer, calls setstate(failbit), (which may throw ios_base::failure). (lib.iostate.flags) ), else calls clear().
[Kona: the LWG agrees this is a good idea. Post-Kona: Bill provided wording. He suggests having open, not close, clear the error flags.]
[Post-Sydney: Howard provided a new proposed resolution. The old one didn't make sense because it proposed to fix this at the level of basic_filebuf, which doesn't have access to the stream's error state. Howard's proposed resolution fixes this at the level of the three fstream class template instead.]
Section: 23.3.5.2 [list.cons], 23.3.5.4 [list.modifiers] Status: CD1 Submitter: Hans Bos Opened: 2003-06-07 Last modified: 2015-04-08
View all other issues in [list.cons].
View all issues with CD1 status.
Discussion:
Sections 23.3.5.2 [list.cons] and 23.3.5.4 [list.modifiers] list comparison operators (==, !=, <, <=, >, =>) for queue and stack. Only the semantics for queue::operator== (23.3.5.2 [list.cons] par2) and queue::operator< (23.3.5.2 [list.cons] par3) are defined.
Proposed resolution:
Add the following new paragraphs after 23.3.5.2 [list.cons] paragraph 3:
operator!=Returns: x.c != y.c
operator>Returns: x.c > y.c
operator<=Returns: x.c <= y.c
operator>=Returns: x.c >= y.c
Add the following paragraphs at the end of 23.3.5.4 [list.modifiers]:
operator==Returns: x.c == y.c
operator<Returns: x.c < y.c
operator!=Returns: x.c != y.c
operator>Returns: x.c > y.c
operator<=Returns: x.c <= y.c
operator>=Returns: x.c >= y.c
[Kona: Matt provided wording.]
Rationale:
There isn't any real doubt about what these operators are supposed to do, but we ought to spell it out.
Section: 25.4.5 [alg.set.operations] Status: CD1 Submitter: Daniel Frey Opened: 2003-07-09 Last modified: 2015-04-08
View all other issues in [alg.set.operations].
View all issues with CD1 status.
Discussion:
25.4.5 [alg.set.operations] paragraph 1 reads: "The semantics of the set operations are generalized to multisets in a standard way by defining union() to contain the maximum number of occurrences of every element, intersection() to contain the minimum, and so on."
This is wrong. The name of the functions are set_union() and set_intersection(), not union() and intersection().
Proposed resolution:
Change that sentence to use the correct names.
Section: 27.5.5.4 [iostate.flags] Status: CD1 Submitter: Martin Sebor Opened: 2003-07-10 Last modified: 2015-04-08
View all other issues in [iostate.flags].
View all issues with CD1 status.
Duplicate of: 429
Discussion:
The Effects clause in 27.5.5.4 [iostate.flags] paragraph 5 says that the function only throws if the respective bits are already set prior to the function call. That's obviously not the intent. The typo ought to be corrected and the text reworded as: "If (state & exceptions()) == 0, returns. ..."
Proposed resolution:
In 27.5.5.4 [iostate.flags] paragraph 5, replace "If (rdstate() & exceptions()) == 0" with "If ((state | (rdbuf() ? goodbit : badbit)) & exceptions()) == 0".
[Kona: the original proposed resolution wasn't quite right. We really do mean rdstate(); the ambiguity is that the wording in the standard doesn't make it clear whether we mean rdstate() before setting the new state, or rdsate() after setting it. We intend the latter, of course. Post-Kona: Martin provided wording.]
Section: 27.7.2.2.3 [istream::extractors] Status: CD1 Submitter: Bo Persson Opened: 2003-07-13 Last modified: 2015-04-08
View all other issues in [istream::extractors].
View all issues with CD1 status.
Discussion:
The second sentence of the proposed resolution says:
"If it inserted no characters because it caught an exception thrown while extracting characters from sb and ..."
However, we are not extracting from sb, but extracting from the basic_istream (*this) and inserting into sb. I can't really tell if "extracting" or "sb" is a typo.
[ Sydney: Definitely a real issue. We are, indeed, extracting characters from an istream and not from sb. The problem was there in the FDIS and wasn't fixed by issue 64. Probably what was intended was to have *this instead of sb. We're talking about the exception flag state of a basic_istream object, and there's only one basic_istream object in this discussion, so that would be a consistent interpretation. (But we need to be careful: the exception policy of this member function must be consistent with that of other extractors.) PJP will provide wording. ]
Proposed resolution:
Change the sentence from:
If it inserted no characters because it caught an exception thrown while extracting characters from sb and failbit is on in exceptions(), then the caught exception is rethrown.
to:
If it inserted no characters because it caught an exception thrown while extracting characters from *this and failbit is on in exceptions(), then the caught exception is rethrown.
Section: 23.3.6.5 [vector.modifiers] Status: CD1 Submitter: Matt Austern Opened: 2003-08-19 Last modified: 2015-04-08
View other active issues in [vector.modifiers].
View all other issues in [vector.modifiers].
View all issues with CD1 status.
Discussion:
Consider the following code fragment:
int A[8] = { 1,3,5,7,9,8,4,2 }; std::vector<int> v(A, A+8); std::vector<int>::iterator i1 = v.begin() + 3; std::vector<int>::iterator i2 = v.begin() + 4; v.erase(i1);
Which iterators are invalidated by v.erase(i1): i1, i2, both, or neither?
On all existing implementations that I know of, the status of i1 and i2 is the same: both of them will be iterators that point to some elements of the vector (albeit not the same elements they did before). You won't get a crash if you use them. Depending on exactly what you mean by "invalidate", you might say that neither one has been invalidated because they still point to something, or you might say that both have been invalidated because in both cases the elements they point to have been changed out from under the iterator.
The standard doesn't say either of those things. It says that erase invalidates all iterators and references "after the point of the erase". This doesn't include i1, since it's at the point of the erase instead of after it. I can't think of any sensible definition of invalidation by which one can say that i2 is invalidated but i1 isn't.
(This issue is important if you try to reason about iterator validity based only on the guarantees in the standard, rather than reasoning from typical implementation techniques. Strict debugging modes, which some programmers find useful, do not use typical implementation techniques.)
Proposed resolution:
In 23.3.6.5 [vector.modifiers] paragraph 3, change "Invalidates all the iterators and references after the point of the erase" to "Invalidates iterators and references at or after the point of the erase".
Rationale:
I believe this was essentially a typographical error, and that it was taken for granted that erasing an element invalidates iterators that point to it. The effects clause in question treats iterators and references in parallel, and it would seem counterintuitive to say that a reference to an erased value remains valid.
Section: 27.7.2.4 [istream.manip] Status: CD1 Submitter: Martin Sebor Opened: 2003-09-18 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
According to 27.6.1.4, the ws() manipulator is not required to construct the sentry object. The manipulator is also not a member function so the text in 27.6.1, p1 through 4 that describes the exception policy for istream member functions does not apply. That seems inconsistent with the rest of extractors and all the other input functions (i.e., ws will not cause a tied stream to be flushed before extraction, it doesn't check the stream's exceptions or catch exceptions thrown during input, and it doesn't affect the stream's gcount).
Proposed resolution:
Add to 27.7.2.4 [istream.manip], immediately before the first sentence of paragraph 1, the following text:
Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of characters extracted and does not affect the value returned by subsequent calls to is.gcount(). After constructing a sentry object...
[Post-Kona: Martin provided wording]
Section: 18.3.3 [c.limits] Status: CD1 Submitter: Martin Sebor Opened: 2003-09-18 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
Given two overloads of the function foo(), one taking an argument of type
int and the other taking a long, which one will the call foo(LONG_MAX)
resolve to? The expected answer should be foo(long), but whether that
is true depends on the #defintion of the LONG_MAX macro, specifically
its type. This issue is about the fact that the type of these macros
is not actually required to be the same as the the type each respective
limit.
Section 18.2.2 of the C++ Standard does not specify the exact types of
the XXX_MIN and XXX_MAX macros #defined in the <climits> and <limits.h>
headers such as INT_MAX and LONG_MAX and instead defers to the C standard.
Section 5.2.4.2.1, p1 of the C standard specifies that "The values [of
these constants] shall be replaced by constant expressions suitable for use
in #if preprocessing directives. Moreover, except for CHAR_BIT and MB_LEN_MAX,
the following shall be replaced by expressions that have the same type as
would an expression that is an object of the corresponding type converted
according to the integer promotions."
The "corresponding type converted according to the integer promotions" for
LONG_MAX is, according to 6.4.4.1, p5 of the C standard, the type of long
converted to the first of the following set of types that can represent it:
int, long int, long long int. So on an implementation where (sizeof(long)
== sizeof(int)) this type is actually int, while on an implementation where
(sizeof(long) > sizeof(int)) holds this type will be long.
This is not an issue in C since the type of the macro cannot be detected
by any conforming C program, but it presents a portability problem in C++
where the actual type is easily detectable by overload resolution.
[Kona: the LWG does not believe this is a defect. The C macro definitions are what they are; we've got a better mechanism, std::numeric_limits, that is specified more precisely than the C limit macros. At most we should add a nonnormative note recommending that users who care about the exact types of limit quantities should use <limits> instead of <climits>.]
Proposed resolution:
Change 18.3.3 [c.limits], paragraph 2:
-2- The contents are the same as the Standard C library header <limits.h>. [Note: The types of the macros in <climits> are not guaranteed to match the type to which they refer.--end note]
Section: 27.7.2.1.3 [istream::sentry] Status: C++11 Submitter: Martin Sebor Opened: 2003-09-18 Last modified: 2015-04-08
View all other issues in [istream::sentry].
View all issues with C++11 status.
Discussion:
27.7.2.1.3 [istream::sentry], p2 says that istream::sentry ctor prepares for input if is.good() is true. p4 then goes on to say that the ctor sets the sentry::ok_ member to true if the stream state is good after any preparation. 27.7.2.2.1 [istream.formatted.reqmts], p1 then says that a formatted input function endeavors to obtain the requested input if the sentry's operator bool() returns true. Given these requirements, no formatted extractor should ever set failbit if the initial stream rdstate() == eofbit. That is contrary to the behavior of all implementations I tested. The program below prints out
eof = 1, fail = 0 eof = 1, fail = 1
on all of them.
#include <sstream> #include <cstdio> int main() { std::istringstream strm ("1"); int i = 0; strm >> i; std::printf ("eof = %d, fail = %d\n", !!strm.eof (), !!strm.fail ()); strm >> i; std::printf ("eof = %d, fail = %d\n", !!strm.eof (), !!strm.fail ()); }
Comments from Jerry Schwarz (c++std-lib-11373):
Jerry Schwarz wrote:
I don't know where (if anywhere) it says it in the standard, but the
formatted extractors are supposed to set failbit if they don't extract
any characters. If they didn't then simple loops like
while (cin >> x);
would loop forever.
Further comments from Martin Sebor:
The question is which part of the extraction should prevent this from happening
by setting failbit when eofbit is already set. It could either be the sentry
object or the extractor. It seems that most implementations have chosen to
set failbit in the sentry [...] so that's the text that will need to be
corrected.
Pre Berlin: This issue is related to 342. If the sentry sets failbit when it finds eofbit already set, then you can never seek away from the end of stream.
Kona: Possibly NAD. If eofbit is set then good() will return false. We then set ok to false. We believe that the sentry's constructor should always set failbit when ok is false, and we also think the standard already says that. Possibly it could be clearer.
[ 2009-07 Frankfurt ]
Moved to Ready.
Proposed resolution:
Change 27.7.2.1.3 [istream::sentry], p2 to:
explicit sentry(basic_istream<charT,traits>& is , bool noskipws = false);-2- Effects: If is.good() is
truefalse, calls is.setstate(failbit). Otherwise prepares for formatted or unformatted input. ...
Section: 27.9.1 [fstreams] Status: CD1 Submitter: Martin Sebor Opened: 2003-09-18 Last modified: 2015-04-08
View all other issues in [fstreams].
View all issues with CD1 status.
Discussion:
7.19.1, p2, of C99 requires that the FILE type only be declared in <stdio.h>. None of the (implementation-defined) members of the struct is mentioned anywhere for obvious reasons.
C++ says in 27.8.1, p2 that FILE is a type that's defined in <cstdio>. Is it really the intent that FILE be a complete type or is an implementation allowed to just declare it without providing a full definition?
Proposed resolution:
In the first sentence of 27.9.1 [fstreams] paragraph 2, change "defined" to "declared".
Rationale:
We don't want to impose any restrictions beyond what the C standard already says. We don't want to make anything implementation defined, because that imposes new requirements in implementations.
Section: 17.6.4.3 [reserved.names] Status: CD1 Submitter: Martin Sebor Opened: 2003-09-18 Last modified: 2015-04-08
View all other issues in [reserved.names].
View all issues with CD1 status.
Discussion:
It has been suggested that 17.4.3.1, p1 may or may not allow programs to explicitly specialize members of standard templates on user-defined types. The answer to the question might have an impact where library requirements are given using the "as if" rule. I.e., if programs are allowed to specialize member functions they will be able to detect an implementation's strict conformance to Effects clauses that describe the behavior of the function in terms of the other member function (the one explicitly specialized by the program) by relying on the "as if" rule.
Proposed resolution:
Add the following sentence to 17.6.4.3 [reserved.names], p1:
It is undefined for a C++ program to add declarations or definitions to namespace std or namespaces within namespace std unless otherwise specified. A program may add template specializations for any standard library template to namespace std. Such a specialization (complete or partial) of a standard library template results in undefined behavior unless the declaration depends on a user-defined type of external linkage and unless the specialization meets the standard library requirements for the original template.168) A program has undefined behavior if it declares
- an explicit specialization of any member function of a standard library class template, or
- an explicit specialization of any member function template of a standard library class or class template, or
- an explicit or partial specialization of any member class template of a standard library class or class template.
A program may explicitly instantiate any templates in the standard library only if the declaration depends on the name of a user-defined type of external linkage and the instantiation meets the standard library requirements for the original template.
[Kona: straw poll was 6-1 that user programs should not be allowed to specialize individual member functions of standard library class templates, and that doing so invokes undefined behavior. Post-Kona: Martin provided wording.]
[Sydney: The LWG agrees that the standard shouldn't permit users to specialize individual member functions unless they specialize the whole class, but we're not sure these words say what we want them to; they could be read as prohibiting the specialization of any standard library class templates. We need to consult with CWG to make sure we use the right wording.]
Section: 20.7.11 [temporary.buffer] Status: CD1 Submitter: Martin Sebor Opened: 2003-09-18 Last modified: 2015-04-08
View all other issues in [temporary.buffer].
View all issues with CD1 status.
Discussion:
The standard is not clear about the requirements on the value returned from a call to get_temporary_buffer(0). In particular, it fails to specify whether the call should return a distinct pointer each time it is called (like operator new), or whether the value is unspecified (as if returned by malloc). The standard also fails to mention what the required behavior is when the argument is less than 0.
Proposed resolution:
Change 20.10.3 [meta.help] paragraph 2 from "...or a pair of 0 values if no storage can be obtained" to "...or a pair of 0 values if no storage can be obtained or if n <= 0."
[Kona: Matt provided wording]
Section: 25.2.13 [alg.search], 25.3.6 [alg.fill], 25.3.7 [alg.generate] Status: CD1 Submitter: Martin Sebor Opened: 2003-09-18 Last modified: 2015-04-08
View all other issues in [alg.search].
View all issues with CD1 status.
Discussion:
The complexity requirements for these function templates are incorrect (or don't even make sense) for negative n:
25.1.9, p7 (search_n):
Complexity: At most (last1 - first1) * count applications
of the corresponding predicate.
25.2.5, p3 (fill_n):
Complexity: Exactly last - first (or n) assignments.
25.2.6, p3 (generate_n):
Complexity: Exactly last - first (or n) assignments.
In addition, the Requirements or the Effects clauses for the latter two templates don't say anything about the behavior when n is negative.
Proposed resolution:
Change 25.1.9, p7 to
Complexity: At most (last1 - first1) * count applications of the corresponding predicate if count is positive, or 0 otherwise.
Change 25.2.5, p2 to
Effects: Assigns value through all the iterators in the range [first, last), or [first, first + n) if n is positive, none otherwise.
Change 25.2.5, p3 to:
Complexity: Exactly last - first (or n if n is positive, or 0 otherwise) assignments.
Change 25.2.6, p1 to (notice the correction for the misspelled "through"):
Effects: Invokes the function object genand assigns the return value of gen through all the iterators in the range [first, last), or [first, first + n) if n is positive, or [first, first) otherwise.
Change 25.2.6, p3 to:
Complexity: Exactly last - first (or n if n is positive, or 0 otherwise) assignments.
Rationale:
Informally, we want to say that whenever we see a negative number we treat it the same as if it were zero. We believe the above changes do that (although they may not be the minimal way of saying so). The LWG considered and rejected the alternative of saying that negative numbers are undefined behavior.
Section: 22.4.2.1.2 [facet.num.get.virtuals] Status: C++11 Submitter: Martin Sebor Opened: 2003-09-18 Last modified: 2015-04-08
View other active issues in [facet.num.get.virtuals].
View all other issues in [facet.num.get.virtuals].
View all issues with C++11 status.
Discussion:
The requirements specified in Stage 2 and reiterated in the rationale of DR 221 (and echoed again in DR 303) specify that num_get<charT>:: do_get() compares characters on the stream against the widened elements of "012...abc...ABCX+-"
An implementation is required to allow programs to instantiate the num_get template on any charT that satisfies the requirements on a user-defined character type. These requirements do not include the ability of the character type to be equality comparable (the char_traits template must be used to perform tests for equality). Hence, the num_get template cannot be implemented to support any arbitrary character type. The num_get template must either make the assumption that the character type is equality-comparable (as some popular implementations do), or it may use char_traits<charT> to do the comparisons (some other popular implementations do that). This diversity of approaches makes it difficult to write portable programs that attempt to instantiate the num_get template on user-defined types.
[Kona: the heart of the problem is that we're theoretically supposed to use traits classes for all fundamental character operations like assignment and comparison, but facets don't have traits parameters. This is a fundamental design flaw and it appears all over the place, not just in this one place. It's not clear what the correct solution is, but a thorough review of facets and traits is in order. The LWG considered and rejected the possibility of changing numeric facets to use narrowing instead of widening. This may be a good idea for other reasons (see issue 459), but it doesn't solve the problem raised by this issue. Whether we use widen or narrow the num_get facet still has no idea which traits class the user wants to use for the comparison, because only streams, not facets, are passed traits classes. The standard does not require that two different traits classes with the same char_type must necessarily have the same behavior.]
Informally, one possibility: require that some of the basic character operations, such as eq, lt, and assign, must behave the same way for all traits classes with the same char_type. If we accept that limitation on traits classes, then the facet could reasonably be required to use char_traits<charT>.
[ 2009-07 Frankfurt ]
There was general agreement that the standard only needs to specify the behavior when the character type is char or wchar_t.
Beman: we don't need to worry about C++1x because there is a non-zero possibility that we would have a replacement facility for iostreams that would solve these problems.
We need to change the following sentence in [locale.category], paragraph 6 to specify that C is char and wchar_t:
"A template formal parameter with name C represents the set of all possible specializations on a parameter that satisfies the requirements for a character on which any member of the iostream components can be instantiated."
We also need to specify in 27 that the basic character operations, such as eq, lt, and assign use std::char_traits.
Daniel volunteered to provide wording.
[ 2009-09-19 Daniel provided wording. ]
[ 2009-10 Santa Cruz: ]
Leave as Open. Alisdair and/or Tom will provide wording based on discussions. We want to clearly state that streams and locales work just on char and wchar_t (except where otherwise specified).
[ 2010-02-06 Tom updated the proposed wording. ]
[ The original proposed wording is preserved here: ]
Change 22.3.1.1.1 [locale.category]/6:
[..] A template formal parameter with name C represents the set of all possible specializations on a char or wchar_t parameter
that satisfies the requirements for a character on which any of the iostream components can be instantiated. [..]Add the following sentence to the end of 22.4.2 [category.numeric]/2:
[..] These specializations refer to [..], and also for the ctype<> facet to perform character classification. Implementations are encouraged but not required to use the char_traits<charT> functions for all comparisons and assignments of characters of type charT that do not belong to the set of required specializations.
Change 22.4.2.1.2 [facet.num.get.virtuals]/3:
Stage 2: If in==end then stage 2 terminates. Otherwise a charT is taken from in and local variables are initialized as if by
char_type ct = *in; using tr = char_traits<char_type>; const char_type* pos = tr::find(atoms, sizeof(src) - 1, ct); char c = src[find(atoms, atoms + sizeof(src) - 1, ct) - atomspos ? pos - atoms : sizeof(src) - 1]; if (tr::eq(ct,ct ==use_facet<numpunct<charT>(loc).decimal_point())) c = '.'; bool discard = tr::eq(ct,ct ==use_facet<numpunct<charT>(loc).thousands_sep()) && use_facet<numpunct<charT> >(loc).grouping().length() != 0;where the values src and atoms are defined as if by: [..]
[Remark of the author: I considered to replace the initialization "char_type ct = *in;" by the sequence "char_type ct; tr::assign(ct, *in);", but decided against it, because it is a copy-initialization context, not an assignment]
Add the following sentence to the end of 22.4.5 [category.time]/1:
[..] Their members use [..] , to determine formatting details. Implementations are encouraged but not required to use the char_traits<charT> functions for all comparisons and assignments of characters of type charT that do not belong to the set of required specializations.
Change 22.4.5.1.1 [locale.time.get.members]/8 bullet 4:
The next element of fmt is equal to '%'For the next element c of fmt char_traits<char_type>::eq(c, use_facet<ctype<char_type>>(f.getloc()).widen('%')) == true, [..]Add the following sentence to the end of 22.4.6 [category.monetary]/2:
Their members use [..] to determine formatting details. Implementations are encouraged but not required to use the char_traits<charT> functions for all comparisons and assignments of characters of type charT that do not belong to the set of required specializations.
Change 22.4.6.1.2 [locale.money.get.virtuals]/4:
[..] The value units is produced as if by:
for (int i = 0; i < n; ++i) buf2[i] = src[char_traits<charT>::find(atoms,atoms+sizeof(src), buf1[i]) - atoms]; buf2[n] = 0; sscanf(buf2, "%Lf", &units);Change 22.4.6.2.2 [locale.money.put.virtuals]/1:
[..] for character buffers buf1 and buf2. If for the first character c in digits or buf2
is equal to ct.widen('-')char_traits<charT>::eq(c, ct.widen('-')) == true, [..]Add a footnote to the first sentence of 27.7.2.2.2 [istream.formatted.arithmetic]/1:
As in the case of the inserters, these extractors depend on the locale's num_get<> (22.4.2.1) object to perform parsing the input stream data.(footnote) [..]
footnote) If the traits of the input stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
Add a footnote to the second sentence of 27.7.3.6.2 [ostream.inserters.arithmetic]/1:
Effects: The classes num_get<> and num_put<> handle locale-dependent numeric formatting and parsing. These inserter functions use the imbued locale value to perform numeric formatting.(footnote) [..]
footnote) If the traits of the output stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
Add a footnote after the first sentence of 27.7.5 [ext.manip]/4:
Returns: An object of unspecified type such that if in is an object of type basic_istream<charT, traits> then the expression in >> get_money(mon, intl) behaves as if it called f(in, mon, intl), where the function f is defined as:(footnote) [..]
footnote) If the traits of the input stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
Add a footnote after the first sentence of 27.7.5 [ext.manip]/5:
Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits> then the expression out << put_money(mon, intl) behaves as a formatted input function that calls f(out, mon, intl), where the function f is defined as:(footnote) [..]
footnote) If the traits of the output stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
13) Add a footnote after the first sentence of 27.7.5 [ext.manip]/8:
Returns: An object of unspecified type such that if in is an object of type basic_istream<charT, traits> then the expression in >>get_time(tmb, fmt) behaves as if it called f(in, tmb, fmt), where the function f is defined as:(footnote) [..]
footnote) If the traits of the input stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
Add a footnote after the first sentence of 27.7.5 [ext.manip]/10:
Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits> then the expression out <<put_time(tmb, fmt) behaves as if it called f(out, tmb, fmt), where the function f is defined as:(footnote) [..]
footnote) If the traits of the output stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
[ 2010 Pittsburgh: ]
Moved to Ready with only two of the bullets. The original wording is preserved here:
Change 22.3.1.1.1 [locale.category]/6:
[..] A template formal parameter with name C represents the set
of all possible specializations on aof types containing char, wchar_t, and any other implementation-defined character typeparameterthat satisfies the requirements for a character on which any of the iostream components can be instantiated. [..]Add the following sentence to the end of 22.4.2 [category.numeric]/2:
[..] These specializations refer to [..], and also for the ctype<> facet to perform character classification. [Note: Implementations are encouraged but not required to use the char_traits<charT> functions for all comparisons and assignments of characters of type charT that do not belong to the set of required specializations - end note].
Change 22.4.2.1.2 [facet.num.get.virtuals]/3:
Stage 2: If in==end then stage 2 terminates. Otherwise a charT is taken from in and local variables are initialized as if by
char_type ct = *in; using tr = char_traits<char_type>; const char_type* pos = tr::find(atoms, sizeof(src) - 1, ct); char c = src[find(atoms, atoms + sizeof(src) - 1, ct) - atomspos ? pos - atoms : sizeof(src) - 1]; if (tr::eq(ct,ct ==use_facet<numpunct<charT>(loc).decimal_point())) c = '.'; bool discard = tr::eq(ct,ct ==use_facet<numpunct<charT>(loc).thousands_sep()) && use_facet<numpunct<charT> >(loc).grouping().length() != 0;where the values src and atoms are defined as if by: [..]
[Remark of the author: I considered to replace the initialization "char_type ct = *in;" by the sequence "char_type ct; tr::assign(ct, *in);", but decided against it, because it is a copy-initialization context, not an assignment]
Add the following sentence to the end of 22.4.5 [category.time]/1:
[..] Their members use [..] , to determine formatting details. [Note: Implementations are encouraged but not required to use the char_traits<charT> functions for all comparisons and assignments of characters of type charT that do not belong to the set of required specializations - end note].
Change 22.4.5.1.1 [locale.time.get.members]/8 bullet 4:
The next element of fmt is equal to '%'For the next element c of fmt char_traits<char_type>::eq(c, use_facet<ctype<char_type>>(f.getloc()).widen('%')) == true, [..]Add the following sentence to the end of 22.4.6 [category.monetary]/2:
Their members use [..] to determine formatting details. [Note: Implementations are encouraged but not required to use the char_traits<charT> functions for all comparisons and assignments of characters of type charT that do not belong to the set of required specializations - end note].
Change 22.4.6.1.2 [locale.money.get.virtuals]/4:
[..] The value units is produced as if by:
for (int i = 0; i < n; ++i) buf2[i] = src[char_traits<charT>::find(atoms,atoms+sizeof(src), buf1[i]) - atoms]; buf2[n] = 0; sscanf(buf2, "%Lf", &units);Change 22.4.6.2.2 [locale.money.put.virtuals]/1:
[..] for character buffers buf1 and buf2. If for the first character c in digits or buf2
is equal to ct.widen('-')char_traits<charT>::eq(c, ct.widen('-')) == true, [..]Add a new paragraph after the first paragraph of 27.2.2 [iostreams.limits.pos]/1:
In the classes of clause 27, a template formal parameter with name charT represents one of the set of types containing char, wchar_t, and any other implementation-defined character type that satisfies the requirements for a character on which any of the iostream components can be instantiated.
Add a footnote to the first sentence of 27.7.2.2.2 [istream.formatted.arithmetic]/1:
As in the case of the inserters, these extractors depend on the locale's num_get<> (22.4.2.1) object to perform parsing the input stream data.(footnote) [..]
footnote) If the traits of the input stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
Add a footnote to the second sentence of 27.7.3.6.2 [ostream.inserters.arithmetic]/1:
Effects: The classes num_get<> and num_put<> handle locale-dependent numeric formatting and parsing. These inserter functions use the imbued locale value to perform numeric formatting.(footnote) [..]
footnote) If the traits of the output stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
Add a footnote after the first sentence of 27.7.5 [ext.manip]/4:
Returns: An object of unspecified type such that if in is an object of type basic_istream<charT, traits> then the expression in >> get_money(mon, intl) behaves as if it called f(in, mon, intl), where the function f is defined as:(footnote) [..]
footnote) If the traits of the input stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
Add a footnote after the first sentence of 27.7.5 [ext.manip]/5:
Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits> then the expression out << put_money(mon, intl) behaves as a formatted input function that calls f(out, mon, intl), where the function f is defined as:(footnote) [..]
footnote) If the traits of the output stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
Add a footnote after the first sentence of 27.7.5 [ext.manip]/8:
Returns: An object of unspecified type such that if in is an object of type basic_istream<charT, traits> then the expression in >>get_time(tmb, fmt) behaves as if it called f(in, tmb, fmt), where the function f is defined as:(footnote) [..]
footnote) If the traits of the input stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
Add a footnote after the first sentence of 27.7.5 [ext.manip]/10:
Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits> then the expression out <<put_time(tmb, fmt) behaves as if it called f(out, tmb, fmt), where the function f is defined as:(footnote) [..]
footnote) If the traits of the output stream has different semantics for lt(), eq(), and assign() than char_traits<char_type>, this may give surprising results.
Proposed resolution:
Change 22.3.1.1.1 [locale.category]/6:
[..] A template formal parameter with name C represents the set
of all possible specializations on aof types containing char, wchar_t, and any other implementation-defined character typeparameterthat satisfies the requirements for a character on which any of the iostream components can be instantiated. [..]
Add a new paragraph after the first paragraph of 27.2.2 [iostreams.limits.pos]/1:
In the classes of clause 27, a template formal parameter with name charT represents one of the set of types containing char, wchar_t, and any other implementation-defined character type that satisfies the requirements for a character on which any of the iostream components can be instantiated.
Section: 21.4.6.5 [string::erase] Status: CD1 Submitter: Martin Sebor Opened: 2003-09-18 Last modified: 2015-04-08
View all other issues in [string::erase].
View all issues with CD1 status.
Discussion:
23.1.1, p3 along with Table 67 specify as a prerequisite for a.erase(q) that q must be a valid dereferenceable iterator into the sequence a.
However, 21.3.5.5, p5 describing string::erase(p) only requires that p be a valid iterator.
This may be interepreted as a relaxation of the general requirement, which is most likely not the intent.
Proposed resolution:
Remove 21.4.6.5 [string::erase] paragraph 5.
Rationale:
The LWG considered two options: changing the string requirements to match the general container requirements, or just removing the erroneous string requirements altogether. The LWG chose the latter option, on the grounds that duplicating text always risks the possibility that it might be duplicated incorrectly.
Section: 26.6.2.5 [valarray.sub] Status: C++11 Submitter: Martin Sebor Opened: 2003-09-18 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
The standard fails to specify the behavior of valarray::operator[](slice) and other valarray subset operations when they are passed an "invalid" slice object, i.e., either a slice that doesn't make sense at all (e.g., slice (0, 1, 0) or one that doesn't specify a valid subset of the valarray object (e.g., slice (2, 1, 1) for a valarray of size 1).
[Kona: the LWG believes that invalid slices should invoke undefined behavior. Valarrays are supposed to be designed for high performance, so we don't want to require specific checking. We need wording to express this decision.]
[ Bellevue: ]
Please note that the standard also fails to specify the behavior of slice_array and gslice_array in the valid case. Bill Plauger will endeavor to provide revised wording for slice_array and gslice_array.
[ post-Bellevue: Bill provided wording. ]
[ 2009-07 Frankfurt ]
Move to Ready.
[ 2009-11-04 Pete opens: ]
The resolution to LWG issue 430 has not been applied — there have been changes to the underlying text, and the resolution needs to be reworked.
[ 2010-03-09 Matt updated wording. ]
[ 2010 Pittsburgh: Moved to Ready for Pittsburgh. ]
Proposed resolution:
Replace 26.6.2.5 [valarray.sub], with the following:
The member operator is overloaded to provide several ways to select sequences of elements from among those controlled by *this. Each of these operations returns a subset of the array. The const-qualified versions return this subset as a new valarray. The non-const versions return a class template object which has reference semantics to the original array, working in conjunction with various overloads of operator= (and other assigning operators) to allow selective replacement (slicing) of the controlled sequence. In each case the selected element(s) must exist.
valarray<T> operator[](slice slicearr) const;This function returns an object of class valarray<T> containing those elements of the controlled sequence designated by slicearr. [Example:
valarray<char> v0("abcdefghijklmnop", 16); valarray<char> v1("ABCDE", 5); v0[slice(2, 5, 3)] = v1; // v0 == valarray<char>("abAdeBghCjkDmnEp", 16)end example]
valarray<T> operator[](slice slicearr);This function selects those elements of the controlled sequence designated by slicearr. [Example:
valarray<char> v0("abcdefghijklmnop", 16); valarray<char> v1("ABCDE", 5); v0[slice(2, 5, 3)] = v1; // v0 == valarray<char>("abAdeBghCjkDmnEp", 16)end example]
valarray<T> operator[](const gslice& gslicearr) const;This function returns an object of class valarray<T> containing those elements of the controlled sequence designated by gslicearr. [Example:
valarray<char> v0("abcdefghijklmnop", 16); const size_t lv[] = {2, 3}; const size_t dv[] = {7, 2}; const valarray<size_t> len(lv, 2), str(dv, 2); // v0[gslice(3, len, str)] returns // valarray<char>("dfhkmo", 6)end example]
gslice_array<T> operator[](const gslice& gslicearr);This function selects those elements of the controlled sequence designated by gslicearr. [Example:
valarray<char> v0("abcdefghijklmnop", 16); valarray<char> v1("ABCDEF", 6); const size_t lv[] = {2, 3}; const size_t dv[] = {7, 2}; const valarray<size_t> len(lv, 2), str(dv, 2); v0[gslice(3, len, str)] = v1; // v0 == valarray<char>("abcAeBgCijDlEnFp", 16)end example]
valarray<T> operator[](const valarray<bool>& boolarr) const;This function returns an object of class valarray<T> containing those elements of the controlled sequence designated by boolarr. [Example:
valarray<char> v0("abcdefghijklmnop", 16); const bool vb[] = {false, false, true, true, false, true}; // v0[valarray<bool>(vb, 6)] returns // valarray<char>("cdf", 3)end example]
mask_array<T> operator[](const valarray<bool>& boolarr);This function selects those elements of the controlled sequence designated by boolarr. [Example:
valarray<char> v0("abcdefghijklmnop", 16); valarray<char> v1("ABC", 3); const bool vb[] = {false, false, true, true, false, true}; v0[valarray<bool>(vb, 6)] = v1; // v0 == valarray<char>("abABeCghijklmnop", 16)end example]
valarray<T> operator[](const valarray<size_t>& indarr) const;This function returns an object of class valarray<T> containing those elements of the controlled sequence designated by indarr. [Example:
valarray<char> v0("abcdefghijklmnop", 16); const size_t vi[] = {7, 5, 2, 3, 8}; // v0[valarray<size_t>(vi, 5)] returns // valarray<char>("hfcdi", 5)end example]
indirect_array<T> operator[](const valarray<size_t>& indarr);This function selects those elements of the controlled sequence designated by indarr. [Example:
valarray<char> v0("abcdefghijklmnop", 16); valarray<char> v1("ABCDE", 5); const size_t vi[] = {7, 5, 2, 3, 8}; v0[valarray<size_t>(vi, 5)] = v1; // v0 == valarray<char>("abCDeBgAEjklmnop", 16)end example]
Section: 17.6.3.5 [allocator.requirements], 25 [algorithms] Status: Resolved Submitter: Matt Austern Opened: 2003-09-20 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with Resolved status.
Discussion:
Clause 17.6.3.5 [allocator.requirements] paragraph 4 says that implementations are permitted to supply containers that are unable to cope with allocator instances and that container implementations may assume that all instances of an allocator type compare equal. We gave implementers this latitude as a temporary hack, and eventually we want to get rid of it. What happens when we're dealing with allocators that don't compare equal?
In particular: suppose that v1 and v2 are both objects of type vector<int, my_alloc> and that v1.get_allocator() != v2.get_allocator(). What happens if we write v1.swap(v2)? Informally, three possibilities:
1. This operation is illegal. Perhaps we could say that an implementation is required to check and to throw an exception, or perhaps we could say it's undefined behavior.
2. The operation performs a slow swap (i.e. using three invocations of operator=, leaving each allocator with its original container. This would be an O(N) operation.
3. The operation swaps both the vectors' contents and their allocators. This would be an O(1) operation. That is:
my_alloc a1(...); my_alloc a2(...); assert(a1 != a2); vector<int, my_alloc> v1(a1); vector<int, my_alloc> v2(a2); assert(a1 == v1.get_allocator()); assert(a2 == v2.get_allocator()); v1.swap(v2); assert(a1 == v2.get_allocator()); assert(a2 == v1.get_allocator());
[Kona: This is part of a general problem. We need a paper saying how to deal with unequal allocators in general.]
[pre-Sydney: Howard argues for option 3 in N1599. ]
[ 2007-01-12, Howard: This issue will now tend to come up more often with move constructors and move assignment operators. For containers, these members transfer resources (i.e. the allocated memory) just like swap. ]
[ Batavia: There is agreement to overload the container swap on the allocator's Swappable requirement using concepts. If the allocator supports Swappable, then container's swap will swap allocators, else it will perform a "slow swap" using copy construction and copy assignment. ]
[ 2009-04-28 Pablo adds: ]
Fixed in N2525. I argued for marking this Tentatively-Ready right after Bellevue, but there was a concern that N2525 would break in the presence of the RVO. (That breakage had nothing to do with swap, but never-the-less). I addressed that breakage in in N2840 (Summit) by means of a non-normative reference:
[Note: in situations where the copy constructor for a container is elided, this function is not called. The behavior in these cases is as if select_on_container_copy_construction returned x — end note]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2982.
Proposed resolution:
Section: 27.8.2.4 [stringbuf.virtuals] Status: CD1 Submitter: Christian W Brock Opened: 2003-09-24 Last modified: 2015-04-08
View all other issues in [stringbuf.virtuals].
View all issues with CD1 status.
Discussion:
27.7.1.3 par 8 says:
Notes: The function can make a write position available only if ( mode & ios_base::out) != 0. To make a write position available, the function reallocates (or initially allocates) an array object with a sufficient number of elements to hold the current array object (if any), plus one additional write position. If ( mode & ios_base::in) != 0, the function alters the read end pointer egptr() to point just past the new write position (as does the write end pointer epptr()).
The sentences "plus one additional write position." and especially "(as does the write end pointer epptr())" COULD by interpreted (and is interpreted by at least my library vendor) as:
post-condition: epptr() == pptr()+1
This WOULD force sputc() to call the virtual overflow() each time.
The proposed change also affects Defect Report 169.
Proposed resolution:
27.7.1.1/2 Change:
2- Notes: The function allocates no array object.
to:
2- Postcondition: str() == "".
27.7.1.1/3 Change:
-3- Effects: Constructs an object of class basic_stringbuf, initializing the base class with basic_streambuf() (lib.streambuf.cons), and initializing mode with which . Then copies the content of str into the basic_stringbuf underlying character sequence and initializes the input and output sequences according to which. If which & ios_base::out is true, initializes the output sequence with the underlying sequence. If which & ios_base::in is true, initializes the input sequence with the underlying sequence.
to:
-3- Effects: Constructs an object of class basic_stringbuf, initializing the base class with basic_streambuf() (lib.streambuf.cons), and initializing mode with which. Then copies the content of str into the basic_stringbuf underlying character sequence. If which & ios_base::out is true, initializes the output sequence such that pbase() points to the first underlying character, epptr() points one past the last underlying character, and if (which & ios_base::ate) is true, pptr() is set equal to epptr() else pptr() is set equal to pbase(). If which & ios_base::in is true, initializes the input sequence such that eback() and gptr() point to the first underlying character and egptr() points one past the last underlying character.
27.7.1.2/1 Change:
-1- Returns: A basic_string object whose content is equal to the basic_stringbuf underlying character sequence. If the buffer is only created in input mode, the underlying character sequence is equal to the input sequence; otherwise, it is equal to the output sequence. In case of an empty underlying character sequence, the function returns basic_string<charT,traits,Allocator>().
to:
-1- Returns: A basic_string object whose content is equal to the basic_stringbuf underlying character sequence. If the basic_stringbuf was created only in input mode, the resultant basic_string contains the character sequence in the range [eback(), egptr()). If the basic_stringbuf was created with (which & ios_base::out) being true then the resultant basic_string contains the character sequence in the range [pbase(), high_mark) where high_mark represents the position one past the highest initialized character in the buffer. Characters can be initialized either through writing to the stream, or by constructing the basic_stringbuf with a basic_string, or by calling the str(basic_string) member function. In the case of calling the str(basic_string) member function, all characters initialized prior to the call are now considered uninitialized (except for those characters re-initialized by the new basic_string). Otherwise the basic_stringbuf has been created in neither input nor output mode and a zero length basic_string is returned.
27.7.1.2/2 Change:
-2- Effects: If the basic_stringbuf's underlying character sequence is not empty, deallocates it. Then copies the content of s into the basic_stringbuf underlying character sequence and initializes the input and output sequences according to the mode stored when creating the basic_stringbuf object. If (mode&ios_base::out) is true, then initializes the output sequence with the underlying sequence. If (mode&ios_base::in) is true, then initializes the input sequence with the underlying sequence.
to:
-2- Effects: Copies the content of s into the basic_stringbuf underlying character sequence. If mode & ios_base::out is true, initializes the output sequence such that pbase() points to the first underlying character, epptr() points one past the last underlying character, and if (mode & ios_base::ate) is true, pptr() is set equal to epptr() else pptr() is set equal to pbase(). If mode & ios_base::in is true, initializes the input sequence such that eback() and gptr() point to the first underlying character and egptr() points one past the last underlying character.
Remove 27.2.1.2/3. (Same rationale as issue 238: incorrect and unnecessary.)
27.7.1.3/1 Change:
1- Returns: If the input sequence has a read position available, returns traits::to_int_type(*gptr()). Otherwise, returns traits::eof().
to:
1- Returns: If the input sequence has a read position available, returns traits::to_int_type(*gptr()). Otherwise, returns traits::eof(). Any character in the underlying buffer which has been initialized is considered to be part of the input sequence.
27.7.1.3/9 Change:
-9- Notes: The function can make a write position available only if ( mode & ios_base::out) != 0. To make a write position available, the function reallocates (or initially allocates) an array object with a sufficient number of elements to hold the current array object (if any), plus one additional write position. If ( mode & ios_base::in) != 0, the function alters the read end pointer egptr() to point just past the new write position (as does the write end pointer epptr()).
to:
-9- The function can make a write position available only if ( mode & ios_base::out) != 0. To make a write position available, the function reallocates (or initially allocates) an array object with a sufficient number of elements to hold the current array object (if any), plus one additional write position. If ( mode & ios_base::in) != 0, the function alters the read end pointer egptr() to point just past the new write position.
27.7.1.3/12 Change:
-12- _ If (newoff + off) < 0, or (xend - xbeg) < (newoff + off), the positioning operation fails. Otherwise, the function assigns xbeg + newoff + off to the next pointer xnext .
to:
-12- _ If (newoff + off) < 0, or if (newoff + off) refers to an uninitialized character (as defined in 27.8.2.3 [stringbuf.members] paragraph 1), the positioning operation fails. Otherwise, the function assigns xbeg + newoff + off to the next pointer xnext .
[post-Kona: Howard provided wording. At Kona the LWG agreed that something along these lines was a good idea, but the original proposed resolution didn't say enough about the effect of various member functions on the underlying character sequences.]
Rationale:
The current basic_stringbuf description is over-constrained in such a way as to prohibit vendors from making this the high-performance in-memory stream it was meant to be. The fundamental problem is that the pointers: eback(), gptr(), egptr(), pbase(), pptr(), epptr() are observable from a derived client, and the current description restricts the range [pbase(), epptr()) from being grown geometrically. This change allows, but does not require, geometric growth of this range.
Backwards compatibility issues: These changes will break code that derives from basic_stringbuf, observes epptr(), and depends upon [pbase(), epptr()) growing by one character on each call to overflow() (i.e. test suites). Otherwise there are no backwards compatibility issues.
27.7.1.1/2: The non-normative note is non-binding, and if it were binding, would be over specification. The recommended change focuses on the important observable fact.
27.7.1.1/3: This change does two things: 1. It describes exactly what must happen in terms of the sequences. The terms "input sequence" and "output sequence" are not well defined. 2. It introduces a common extension: open with app or ate mode. I concur with issue 238 that paragraph 4 is both wrong and unnecessary.
27.7.1.2/1: This change is the crux of the efficiency issue. The resultant basic_string is not dependent upon epptr(), and thus implementors are free to grow the underlying buffer geometrically during overflow() *and* place epptr() at the end of that buffer.
27.7.1.2/2: Made consistent with the proposed 27.7.1.1/3.
27.7.1.3/1: Clarifies that characters written to the stream beyond the initially specified string are available for reading in an i/o basic_streambuf.
27.7.1.3/9: Made normative by removing "Notes:", and removed the trailing parenthetical comment concerning epptr().
27.7.1.3/12: Restricting the positioning to [xbeg, xend) is no longer allowable since [pbase(), epptr()) may now contain uninitialized characters. Positioning is only allowable over the initialized range.
Section: 20.6.2 [bitset.members] Status: CD1 Submitter: Martin Sebor Opened: 2003-10-15 Last modified: 2015-04-08
View all other issues in [bitset.members].
View all issues with CD1 status.
Discussion:
It has been pointed out a number of times that the bitset to_string() member function template is tedious to use since callers must explicitly specify the entire template argument list (3 arguments). At least two implementations provide a number of overloads of this template to make it easier to use.
Proposed resolution:
In order to allow callers to specify no template arguments at all, just the first one (charT), or the first 2 (charT and traits), in addition to all three template arguments, add the following three overloads to both the interface (declarations only) of the class template bitset as well as to section 23.3.5.2, immediately after p34, the Returns clause of the existing to_string() member function template:
template <class charT, class traits> basic_string<charT, traits, allocator<charT> > to_string () const; -34.1- Returns: to_string<charT, traits, allocator<charT> >(). template <class charT> basic_string<charT, char_traits<charT>, allocator<charT> > to_string () const; -34.2- Returns: to_string<charT, char_traits<charT>, allocator<charT> >(). basic_string<char, char_traits<char>, allocator<char> > to_string () const; -34.3- Returns: to_string<char, char_traits<char>, allocator<char> >().
[Kona: the LWG agrees that this is an improvement over the status quo. Dietmar thought about an alternative using a proxy object but now believes that the proposed resolution above is the right choice. ]
Section: 21.4.8.9 [string.io] Status: CD1 Submitter: Martin Sebor Opened: 2003-10-15 Last modified: 2015-04-08
View all other issues in [string.io].
View all issues with CD1 status.
Discussion:
It has been pointed out that the proposed resolution in DR 25 may not be
quite up to snuff:
http://gcc.gnu.org/ml/libstdc++/2003-09/msg00147.html
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#25
It looks like Petur is right. The complete corrected text is copied below. I think we may have have been confused by the reference to 22.2.2.2.2 and the subsequent description of `n' which actually talks about the second argument to sputn(), not about the number of fill characters to pad with.
So the question is: was the original text correct? If the intent was to follow classic iostreams then it most likely wasn't, since setting width() to less than the length of the string doesn't truncate it on output. This is also the behavior of most implementations (except for SGI's standard iostreams where the operator does truncate).
Proposed resolution:
Change the text in 21.3.7.9, p4 from
If bool(k) is true, inserts characters as if by calling os.rdbuf()->sputn(str.data(), n), padding as described in stage 3 of lib.facet.num.put.virtuals, where n is the larger of os.width() and str.size();
to
If bool(k) is true, determines padding as described in lib.facet.num.put.virtuals, and then inserts the resulting sequence of characters seq as if by calling os.rdbuf()->sputn(seq, n), where n is the larger of os.width() and str.size();
[Kona: it appears that neither the original wording, DR25, nor the proposed resolution, is quite what we want. We want to say that the string will be output, padded to os.width() if necessary. We don't want to duplicate the padding rules in clause 22, because they're complicated, but we need to be careful because they weren't quite written with quite this case in mind. We need to say what the character sequence is, and then defer to clause 22. Post-Kona: Benjamin provided wording.]
Section: 22.3.1.1.2 [locale.facet] Status: CD1 Submitter: Martin Sebor Opened: 2003-10-15 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
Is "const std::ctype<char>" a valid template argument to has_facet, use_facet, and the locale template ctor? And if so, does it designate the same Facet as the non-const "std::ctype<char>?" What about "volatile std::ctype<char>?" Different implementations behave differently: some fail to compile, others accept such types but behave inconsistently.
Proposed resolution:
Change 22.1.1.1.2, p1 to read:
Template parameters in this clause which are required to be facets are those named Facet in declarations. A program that passes a type that is not a facet, or a type that refers to volatile-qualified facet, as an (explicit or deduced) template parameter to a locale function expecting a facet, is ill-formed. A const-qualified facet is a valid template argument to any locale function that expects a Facet template parameter.
[Kona: changed the last sentence from a footnote to normative text.]
Section: 23.2.3 [sequence.reqmts] Status: CD1 Submitter: Howard Hinnant Opened: 2003-10-20 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with CD1 status.
Discussion:
Section 23.2.3 [sequence.reqmts], paragraphs 9-11, fixed up the problem noticed with statements like:
vector<int> v(10, 1);
The intent of the above statement was to construct with:
vector(size_type, const value_type&);
but early implementations failed to compile as they bound to:
template <class InputIterator> vector(InputIterator f, InputIterator l);
instead.
Paragraphs 9-11 say that if InputIterator is an integral type, then the member template constructor will have the same effect as:
vector<static_cast<size_type>(f), static_cast<value_type>(l));
(and similarly for the other member template functions of sequences).
There is also a note that describes one implementation technique:
One way that sequence implementors can satisfy this requirement is to specialize the member template for every integral type.
This might look something like:
template <class T> struct vector { typedef unsigned size_type; explicit vector(size_type) {} vector(size_type, const T&) {} template <class I> vector(I, I); // ... }; template <class T> template <class I> vector<T>::vector(I, I) { ... } template <> template <> vector<int>::vector(int, int) { ... } template <> template <> vector<int>::vector(unsigned, unsigned) { ... } // ...
Label this solution 'A'.
The standard also says:
Less cumbersome implementation techniques also exist.
A popular technique is to not specialize as above, but instead catch every call with the member template, detect the type of InputIterator, and then redirect to the correct logic. Something like:
template <class T> template <class I> vector<T>::vector(I f, I l) { choose_init(f, l, int2type<is_integral<I>::value>()); } template <class T> template <class I> vector<T>::choose_init(I f, I l, int2type<false>) { // construct with iterators } template <class T> template <class I> vector<T>::choose_init(I f, I l, int2type<true>) { size_type sz = static_cast<size_type>(f); value_type v = static_cast<value_type>(l); // construct with sz,v }
Label this solution 'B'.
Both of these solutions solve the case the standard specifically mentions:
vector<int> v(10, 1); // ok, vector size 10, initialized to 1
However, (and here is the problem), the two solutions have different behavior in some cases where the value_type of the sequence is not an integral type. For example consider:
pair<char, char> p('a', 'b'); vector<vector<pair<char, char> > > d('a', 'b');
The second line of this snippet is likely an error. Solution A catches the error and refuses to compile. The reason is that there is no specialization of the member template constructor that looks like:
template <> template <> vector<vector<pair<char, char> > >::vector(char, char) { ... }
So the expression binds to the unspecialized member template constructor, and then fails (compile time) because char is not an InputIterator.
Solution B compiles the above example though. 'a' is casted to an unsigned integral type and used to size the outer vector. 'b' is static casted to the inner vector using it's explicit constructor:
explicit vector(size_type n);
and so you end up with a static_cast<size_type>('a') by static_cast<size_type>('b') matrix.
It is certainly possible that this is what the coder intended. But the explicit qualifier on the inner vector has been thwarted at any rate.
The standard is not clear whether the expression:
vector<vector<pair<char, char> > > d('a', 'b');
(and similar expressions) are:
My preference is listed in the order presented.
There are still other techniques for implementing the requirements of paragraphs 9-11, namely the "restricted template technique" (e.g. enable_if). This technique is the most compact and easy way of coding the requirements, and has the behavior of #2 (rejects the above expression).
Choosing 1 would allow all implementation techniques I'm aware of. Choosing 2 would allow only solution 'A' and the enable_if technique. Choosing 3 would allow only solution 'B'.
Possible wording for a future standard if we wanted to actively reject the expression above would be to change "static_cast" in paragraphs 9-11 to "implicit_cast" where that is defined by:
template <class T, class U> inline T implicit_cast(const U& u) { return u; }
Proposed resolution:
Replace 23.2.3 [sequence.reqmts] paragraphs 9 - 11 with:
For every sequence defined in this clause and in clause lib.strings:
If the constructor
template <class InputIterator> X(InputIterator f, InputIterator l, const allocator_type& a = allocator_type())
is called with a type InputIterator that does not qualify as an input iterator, then the constructor will behave as if the overloaded constructor:
X(size_type, const value_type& = value_type(), const allocator_type& = allocator_type())
were called instead, with the arguments static_cast<size_type>(f), l and a, respectively.
If the member functions of the forms:
template <class InputIterator> // such as insert() rt fx1(iterator p, InputIterator f, InputIterator l); template <class InputIterator> // such as append(), assign() rt fx2(InputIterator f, InputIterator l); template <class InputIterator> // such as replace() rt fx3(iterator i1, iterator i2, InputIterator f, InputIterator l);
are called with a type InputIterator that does not qualify as an input iterator, then these functions will behave as if the overloaded member functions:
rt fx1(iterator, size_type, const value_type&); rt fx2(size_type, const value_type&); rt fx3(iterator, iterator, size_type, const value_type&);
were called instead, with the same arguments.
In the previous paragraph the alternative binding will fail if f is not implicitly convertible to X::size_type or if l is not implicitly convertible to X::value_type.
The extent to which an implementation determines that a type cannot be an input iterator is unspecified, except that as a minimum integral types shall not qualify as input iterators.
[ Kona: agreed that the current standard requires v('a', 'b') to be accepted, and also agreed that this is surprising behavior. The LWG considered several options, including something like implicit_cast, which doesn't appear to be quite what we want. We considered Howards three options: allow acceptance or rejection, require rejection as a compile time error, and require acceptance. By straw poll (1-6-1), we chose to require a compile time error. Post-Kona: Howard provided wording. ]
[ Sydney: The LWG agreed with this general direction, but there was some discomfort with the wording in the original proposed resolution. Howard submitted new wording, and we will review this again in Redmond. ]
[Redmond: one very small change in wording: the first argument is cast to size_t. This fixes the problem of something like vector<vector<int> >(5, 5), where int is not implicitly convertible to the value type.]
Rationale:
The proposed resolution fixes:
vector<int> v(10, 1);
since as integral types 10 and 1 must be disqualified as input iterators and therefore the (size,value) constructor is called (as if).
The proposed resolution breaks:
vector<vector<T> > v(10, 1);
because the integral type 1 is not *implicitly* convertible to vector<T>. The wording above requires a diagnostic.
The proposed resolution leaves the behavior of the following code unspecified.
struct A { operator int () const {return 10;} }; struct B { B(A) {} }; vector<B> v(A(), A());
The implementation may or may not detect that A is not an input iterator and employee the (size,value) constructor. Note though that in the above example if the B(A) constructor is qualified explicit, then the implementation must reject the constructor as A is no longer implicitly convertible to B.
Section: 27.5.4 [fpos] Status: CD1 Submitter: Vincent Leloup Opened: 2003-11-17 Last modified: 2015-04-08
View all other issues in [fpos].
View all issues with CD1 status.
Discussion:
In section 27.5.4.1 [fpos.members] fpos<stateT>::state() is declared non const, but in section 27.5.4 [fpos] it is declared const.
Proposed resolution:
In section 27.5.4.1 [fpos.members], change the declaration of fpos<stateT>::state() to const.
Section: 27.7.3.4 [ostream::sentry] Status: CD1 Submitter: Vincent Leloup Opened: 2003-11-18 Last modified: 2015-04-08
View all other issues in [ostream::sentry].
View all issues with CD1 status.
Discussion:
In section 27.7.3.4 [ostream::sentry] paragraph 4, in description part basic_ostream<charT, traits>::sentry::operator bool() is declared as non const, but in section 27.6.2.3, in synopsis it is declared const.
Proposed resolution:
In section 27.7.3.4 [ostream::sentry] paragraph 4, change the declaration of sentry::operator bool() to const.
Section: 27.9.1.4 [filebuf.members] Status: CD1 Submitter: Vincent Leloup Opened: 2003-11-20 Last modified: 2015-04-08
View all other issues in [filebuf.members].
View all issues with CD1 status.
Discussion:
In section 27.9.1.4 [filebuf.members] par6, in effects description of basic_filebuf<charT, traits>::close(), overflow(EOF) is used twice; should be overflow(traits::eof()).
Proposed resolution:
Change overflow(EOF) to overflow(traits::eof()).
Section: 27.9.1 [fstreams] Status: CD1 Submitter: Vincent Leloup Opened: 2003-11-20 Last modified: 2015-04-08
View all other issues in [fstreams].
View all issues with CD1 status.
Discussion:
27.9.1.9 [ifstream.members] p1, 27.9.1.13 [ofstream.members] p1, 27.9.1.17 [fstream.members] p1 seems have same problem as exposed in LWG issue 252.
Proposed resolution:
[Sydney: Genuine defect. 27.8.1.13 needs a cast to cast away constness. The other two places are stylistic: we could change the C-style casts to const_cast. Post-Sydney: Howard provided wording. ]
Change 27.8.1.7/1 from:
Returns: (basic_filebuf<charT,traits>*)&sb.
to:
Returns: const_cast<basic_filebuf<charT,traits>*>(&sb).
Change 27.8.1.10/1 from:
Returns: (basic_filebuf<charT,traits>*)&sb.
to:
Returns: const_cast<basic_filebuf<charT,traits>*>(&sb).
Change 27.8.1.13/1 from:
Returns: &sb.
to:
Returns: const_cast<basic_filebuf<charT,traits>*>(&sb).
Section: 24.4.1 [iterator.traits] Status: CD1 Submitter: Dave Abrahams Opened: 2003-12-09 Last modified: 2015-04-08
View all other issues in [iterator.traits].
View all issues with CD1 status.
Discussion:
The standard places no restrictions at all on the reference type of input, output, or forward iterators (for forward iterators it only specifies that *x must be value_type& and doesn't mention the reference type). Bidirectional iterators' reference type is restricted only by implication, since the base iterator's reference type is used as the return type of reverse_iterator's operator*, which must be T& in order to be a conforming forward iterator.
Here's what I think we ought to be able to expect from an input or forward iterator's reference type R, where a is an iterator and V is its value_type
A mutable forward iterator ought to satisfy, for x of type V:
{ R r = *a; r = x; } is equivalent to *a = x;
I think these requirements capture existing container iterators (including vector<bool>'s), but render istream_iterator invalid; its reference type would have to be changed to a constant reference.
(Jeremy Siek) During the discussion in Sydney, it was felt that a simpler long term solution for this was needed. The solution proposed was to require reference to be the same type as *a and pointer to be the same type as a->. Most iterators in the Standard Library already meet this requirement. Some iterators are output iterators, and do not need to meet the requirement, and others are only specified through the general iterator requirements (which will change with this resolution). The sole case where there is an explicit definition of the reference type that will need to change is istreambuf_iterator which returns charT from operator* but has a reference type of charT&. We propose changing the reference type of istreambuf_iterator to charT.
The other option for resolving the issue with pointer, mentioned in the note below, is to remove pointer altogether. I prefer placing requirements on pointer to removing it for two reasons. First, pointer will become useful for implementing iterator adaptors and in particular, reverse_iterator will become more well defined. Second, removing pointer is a rather drastic and publicly-visible action to take.
The proposed resolution technically enlarges the requirements for iterators, which means there are existing iterators (such as istreambuf_iterator, and potentially some programmer-defined iterators) that will no longer meet the requirements. Will this break existing code? The scenario in which it would is if an algorithm implementation (say in the Standard Library) is changed to rely on iterator_traits::reference, and then is used with one of the iterators that do not have an appropriately defined iterator_traits::reference.
The proposed resolution makes one other subtle change. Previously, it was required that output iterators have a difference_type and value_type of void, which means that a forward iterator could not be an output iterator. This is clearly a mistake, so I've changed the wording to say that those types may be void.
Proposed resolution:
In 24.4.1 [iterator.traits], after:
be defined as the iterator's difference type, value type and iterator category, respectively.
add
In addition, the types
iterator_traits<Iterator>::reference iterator_traits<Iterator>::pointermust be defined as the iterator's reference and pointer types, that is, the same type as the type of *a and a->, respectively.
In 24.4.1 [iterator.traits], change:
In the case of an output iterator, the types
iterator_traits<Iterator>::difference_type iterator_traits<Iterator>::value_typeare both defined as void.
to:
In the case of an output iterator, the types
iterator_traits<Iterator>::difference_type iterator_traits<Iterator>::value_type iterator_traits<Iterator>::reference iterator_traits<Iterator>::pointermay be defined as void.
In 24.6.3 [istreambuf.iterator], change:
typename traits::off_type, charT*, charT&>
to:
typename traits::off_type, charT*, charT>
[ Redmond: there was concern in Sydney that this might not be the only place where things were underspecified and needed to be changed. Jeremy reviewed iterators in the standard and confirmed that nothing else needed to be changed. ]
Section: 24.2.7 [random.access.iterators] Status: CD1 Submitter: Dave Abrahams Opened: 2004-01-07 Last modified: 2015-04-08
View all other issues in [random.access.iterators].
View all issues with CD1 status.
Discussion:
Table 76, the random access iterator requirement table, says that the return type of a[n] must be "convertible to T". When an iterator's value_type T is an abstract class, nothing is convertible to T. Surely this isn't an intended restriction?
Proposed resolution:
Change the return type to "convertible to T const&".
Section: 18.2 [support.types] Status: CD1 Submitter: Pete Becker Opened: 2004-01-15 Last modified: 2015-04-08
View all other issues in [support.types].
View all issues with CD1 status.
Discussion:
Original text:
The macro offsetof accepts a restricted set of type arguments in this International Standard. type shall be a POD structure or a POD union (clause 9). The result of applying the offsetof macro to a field that is a static data member or a function member is undefined."
Revised text:
"If type is not a POD structure or a POD union the results are undefined."
Looks to me like the revised text should have replaced only the second sentence. It doesn't make sense standing alone.
Proposed resolution:
Change 18.1, paragraph 5, to:
The macro offsetof accepts a restricted set of type arguments in this International Standard. If type is not a POD structure or a POD union the results are undefined. The result of applying the offsetof macro to a field that is a static data member or a function member is undefined."
Section: 27.8.2.4 [stringbuf.virtuals] Status: CD1 Submitter: Bill Plauger Opened: 2004-01-30 Last modified: 2015-04-08
View all other issues in [stringbuf.virtuals].
View all issues with CD1 status.
Discussion:
pos_type basic_stringbuf::seekoff(off_type, ios_base::seekdir, ios_base::openmode);
is obliged to fail if nothing has been inserted into the stream. This is unnecessary and undesirable. It should be permissible to seek to an effective offset of zero.
[ Sydney: Agreed that this is an annoying problem: seeking to zero should be legal. Bill will provide wording. ]
Proposed resolution:
Change the sentence from:
For a sequence to be positioned, if its next pointer (either gptr() or pptr()) is a null pointer, the positioning operation fails.
to:
For a sequence to be positioned, if its next pointer (either gptr() or pptr()) is a null pointer and the new offset newoff is nonzero, the positioning operation fails.
Section: 27.4 [iostream.objects] Status: CD1 Submitter: Bill Plauger Opened: 2004-01-30 Last modified: 2015-04-08
View all other issues in [iostream.objects].
View all issues with CD1 status.
Discussion:
Both cerr::tie() and wcerr::tie() are obliged to be null at program startup. This is overspecification and overkill. It is both traditional and useful to tie cerr to cout, to ensure that standard output is drained whenever an error message is written. This behavior should at least be permitted if not required. Same for wcerr::tie().
Proposed resolution:
Add to the description of cerr:
After the object cerr is initialized, cerr.tie() returns &cout. Its state is otherwise the same as required for basic_ios<char>::init (lib.basic.ios.cons).
Add to the description of wcerr:
After the object wcerr is initialized, wcerr.tie() returns &wcout. Its state is otherwise the same as required for basic_ios<wchar_t>::init (lib.basic.ios.cons).
[Sydney: straw poll (3-1): we should require, not just permit, cout and cerr to be tied on startup. Pre-Redmond: Bill will provide wording.]
Section: 17.6.1.2 [headers] Status: CD1 Submitter: Bill Plauger Opened: 2004-01-30 Last modified: 2015-04-08
View all other issues in [headers].
View all issues with CD1 status.
Discussion:
The C++ Standard effectively requires that the traditional C headers (of the form <xxx.h>) be defined in terms of the newer C++ headers (of the form <cxxx>). Clauses 17.4.1.2/4 and D.5 combine to require that:
The rules were left in this form despited repeated and heated objections from several compiler vendors. The C headers are often beyond the direct control of C++ implementors. In some organizations, it's all they can do to get a few #ifdef __cplusplus tests added. Third-party library vendors can perhaps wrap the C headers. But neither of these approaches supports the drastic restructuring required by the C++ Standard. As a result, it is still widespread practice to ignore this conformance requirement, nearly seven years after the committee last debated this topic. Instead, what is often implemented is:
The practical benefit for implementors with the second approach is that they can use existing C library headers, as they are pretty much obliged to do. The practical cost for programmers facing a mix of implementations is that they have to assume weaker rules:
There also exists the possibility of subtle differences due to Koenig lookup, but there are so few non-builtin types defined in the C headers that I've yet to see an example of any real problems in this area.
It is worth observing that the rate at which programmers fall afoul of these differences has remained small, at least as measured by newsgroup postings and our own bug reports. (By an overwhelming margin, the commonest problem is still that programmers include <string> and can't understand why the typename string isn't defined -- this a decade after the committee invented namespace std, nominally for the benefit of all programmers.)
We should accept the fact that we made a serious mistake and rectify it, however belatedly, by explicitly allowing either of the two schemes for declaring C names in headers.
[Sydney: This issue has been debated many times, and will certainly have to be discussed in full committee before any action can be taken. However, the preliminary sentiment of the LWG was in favor of the change. (6 yes, 0 no, 2 abstain) Robert Klarer suggests that we might also want to undeprecate the C-style .h headers.]
Proposed resolution:
Add to 17.6.1.2 [headers], para. 4:
Except as noted in clauses 18 through 27 and Annex D, the contents of each header cname shall be the same as that of the corresponding header name.h, as specified in ISO/IEC 9899:1990 Programming Languages C (Clause 7), or ISO/IEC:1990 Programming Languages-C AMENDMENT 1: C Integrity, (Clause 7), as appropriate, as if by inclusion. In the C++ Standard Library, however, the declarations
and definitions(except for names which are defined as macros in C) are within namespace scope (3.3.5) of the namespace std. It is unspecified whether these names are first declared within the global namespace scope and are then injected into namespace std by explicit using-declarations (7.3.3 [namespace.udecl]).
Change D.5 [depr.c.headers], para. 2-3:
-2- Every C header, each of which has a name of the form name.h, behaves as if each name placed in the Standard library namespace by the corresponding cname header is
alsoplaced within the global namespace scope.of the namespace std and is followed by an explicit using-declaration (7.3.3 [namespace.udecl]).It is unspecified whether these names are first declared or defined within namespace scope (3.3.6 [basic.scope.namespace]) of the namespace std and are then injected into the global namespace scope by explicit using-declarations (7.3.3 [namespace.udecl]).-3- [Example: The header <cstdlib> assuredly provides its declarations and definitions within the namespace std. It may also provide these names within the global namespace. The header <stdlib.h>
makes these available also inassuredly provides the same declarations and definitions within the global namespace, much as in the C Standard. It may also provide these names within the namespace std. -- end example]
Section: 20.6.1 [bitset.cons] Status: CD1 Submitter: Dag Henriksson Opened: 2004-01-30 Last modified: 2015-04-08
View all other issues in [bitset.cons].
View all issues with CD1 status.
Discussion:
The constructor from unsigned long says it initializes "the first M bit positions to the corresponding bit values in val. M is the smaller of N and the value CHAR_BIT * sizeof(unsigned long)."
Object-representation vs. value-representation strikes again. CHAR_BIT * sizeof (unsigned long) does not give us the number of bits an unsigned long uses to hold the value. Thus, the first M bit position above is not guaranteed to have any corresponding bit values in val.
Proposed resolution:
In 20.6.1 [bitset.cons] paragraph 2, change "M is the smaller of N and the value CHAR_BIT * sizeof (unsigned long). (249)" to "M is the smaller of N and the number of bits in the value representation (section 3.9 [basic.types]) of unsigned long."
Section: 27.9.1 [fstreams] Status: CD1 Submitter: Ben Hutchings Opened: 2004-04-01 Last modified: 2015-04-08
View all other issues in [fstreams].
View all issues with CD1 status.
Discussion:
The second parameters of the non-default constructor and of the open member function for basic_fstream, named "mode", are optional according to the class declaration in 27.8.1.11 [lib.fstream]. The specifications of these members in 27.8.1.12 [lib.fstream.cons] and 27.8.1.13 lib.fstream.members] disagree with this, though the constructor declaration has the "explicit" function-specifier implying that it is intended to be callable with one argument.
Proposed resolution:
In 27.9.1.15 [fstream.cons], change
explicit basic_fstream(const char* s, ios_base::openmode mode);
to
explicit basic_fstream(const char* s, ios_base::openmode mode = ios_base::in|ios_base::out);
In 27.9.1.17 [fstream.members], change
void open(const char*s, ios_base::openmode mode);
to
void open(const char*s, ios_base::openmode mode = ios_base::in|ios_base::out);
Section: 22.4.5.1.2 [locale.time.get.virtuals] Status: CD1 Submitter: Bill Plauger Opened: 2004-03-23 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
Template time_get currently contains difficult, if not impossible, requirements for do_date_order, do_get_time, and do_get_date. All require the implementation to scan a field generated by the %x or %X conversion specifier in strftime. Yes, do_date_order can always return no_order, but that doesn't help the other functions. The problem is that %x can be nearly anything, and it can vary widely with locales. It's horribly onerous to have to parse "third sunday after Michaelmas in the year of our Lord two thousand and three," but that's what we currently ask of do_get_date. More practically, it leads some people to think that if %x produces 10.2.04, we should know to look for dots as separators. Still not easy.
Note that this is the opposite effect from the intent stated in the footnote earlier in this subclause:
"In other words, user confirmation is required for reliable parsing of user-entered dates and times, but machine-generated formats can be parsed reliably. This allows parsers to be aggressive about interpreting user variations on standard formats."
We should give both implementers and users an easier and more reliable alternative: provide a (short) list of alternative delimiters and say what the default date order is for no_order. For backward compatibility, and maximum latitude, we can permit an implementation to parse whatever %x or %X generates, but we shouldn't require it.
Proposed resolution:
In the description:
iter_type do_get_time(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const;
2 Effects: Reads characters starting at suntil it has extracted those struct tm members, and remaining format characters, used by time_put<>::put to produce the format specified by 'X', or until it encounters an error or end of sequence.
change: 'X'
to: "%H:%M:%S"
Change
iter_type do_get_date(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; 4 Effects: Reads characters starting at s until it has extracted those struct tm members, and remaining format characters, used by time_put<>::put to produce the format specified by 'x', or until it encounters an error.
to
iter_type do_get_date(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const;
4 Effects: Reads characters starting at s until it has extracted those struct tm members, and remaining format characters, used by time_put<>::put to produce one of the following formats, or until it encounters an error. The format depends on the value returned by date_order() as follows:
date_order() format no_order "%m/%d/%y" dmy "%d/%m/%y" mdy "%m/%d/%y" ymd "%y/%m/%d" ydm "%y/%d/%m"
An implementation may also accept additional implementation-defined formats.
[Redmond: agreed that this is a real problem. The solution is probably to match C99's parsing rules. Bill provided wording. ]
Section: 23.3.6 [vector], 23.4.4 [map] Status: CD1 Submitter: Thorsten Ottosen Opened: 2004-05-12 Last modified: 2015-04-08
View all other issues in [vector].
View all issues with CD1 status.
Discussion:
To add slightly more convenience to vector<T> and map<Key,T> we should consider to add
Rationale:
Proposed resolution:
In 23.3.6 [vector], add the following to the vector synopsis after "element access" and before "modifiers":
// [lib.vector.data] data access pointer data(); const_pointer data() const;
Add a new subsection of 23.3.6 [vector]:
23.2.4.x vector data access
pointer data(); const_pointer data() const;Returns: A pointer such that [data(), data() + size()) is a valid range. For a non-empty vector, data() == &front().
Complexity: Constant time.
Throws: Nothing.
In 23.4.4 [map], add the following to the map synopsis immediately after the line for operator[]:
T& at(const key_type& x); const T& at(const key_type& x) const;
Add the following to 23.4.4.3 [map.access]:
T& at(const key_type& x); const T& at(const key_type& x) const;Returns: A reference to the element whose key is equivalent to x, if such an element is present in the map.
Throws: out_of_range if no such element is present.
Rationale:
Neither of these additions provides any new functionality but the LWG agreed that they are convenient, especially for novices. The exception type chosen for at, std::out_of_range, was chosen to match vector::at.
Section: 17.6.1.2 [headers] Status: CD1 Submitter: Steve Clamage Opened: 2004-06-03 Last modified: 2015-04-08
View all other issues in [headers].
View all issues with CD1 status.
Discussion:
C header <iso646.h> defines macros for some operators, such as not_eq for !=.
Section 17.6.1.2 [headers] "Headers" says that except as noted in clauses 18 through 27, the <cname> C++ header contents are the same as the C header <name.h>. In particular, table 12 lists <ciso646> as a C++ header.
I don't find any other mention of <ciso646>, or any mention of <iso646.h>, in clauses 17 thorough 27. That implies that the contents of <ciso646> are the same as C header <iso646.h>.
Annex C (informative, not normative) in [diff.header.iso646.h] C.2.2.2 "Header <iso646.h>" says that the alternative tokens are not defined as macros in <ciso646>, but does not mention the contents of <iso646.h>.
I don't find any normative text to support C.2.2.2.
Proposed resolution:
Add to section 17.4.1.2 Headers [lib.headers] a new paragraph after paragraph 6 (the one about functions must be functions):
Identifiers that are keywords or operators in C++ shall not be defined as macros in C++ standard library headers. [Footnote:In particular, including the standard header <iso646.h> or <ciso646> has no effect.
[post-Redmond: Steve provided wording.]
Section: 21.2.3.1 [char.traits.specializations.char] Status: CD1 Submitter: Martin Sebor Opened: 2004-06-28 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
Table 37 describes the requirements on Traits::compare() in terms of those on Traits::lt(). 21.1.3.1, p6 requires char_traits<char>::lt() to yield the same result as operator<(char, char).
Most, if not all, implementations of char_traits<char>::compare() call memcmp() for efficiency. However, the C standard requires both memcmp() and strcmp() to interpret characters under comparison as unsigned, regardless of the signedness of char. As a result, all these char_traits implementations fail to meet the requirement imposed by Table 37 on compare() when char is signed.
Read email thread starting with c++std-lib-13499 for more.
Proposed resolution:
Change 21.1.3.1, p6 from
The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==, and < respectively.
to
The two-argument member assign is defined identically to the built-in operator =. The two argument members eq and lt are defined identically to the built-in operators == and < for type unsigned char.
[Redmond: The LWG agreed with this general direction, but we also need to change eq to be consistent with this change. Post-Redmond: Martin provided wording.]
Section: 27.5.5.4 [iostate.flags] Status: CD1 Submitter: Martin Sebor Opened: 2004-06-28 Last modified: 2015-04-08
View all other issues in [iostate.flags].
View all issues with CD1 status.
Discussion:
The program below is required to compile but when run it typically produces unexpected results due to the user-defined conversion from std::cout or any object derived from basic_ios to void*.
#include <cassert> #include <iostream> int main () { assert (std::cin.tie () == std::cout); // calls std::cout.ios::operator void*() }
Proposed resolution:
Replace std::basic_ios<charT, traits>::operator void*() with another conversion operator to some unspecified type that is guaranteed not to be convertible to any other type except for bool (a pointer-to-member might be one such suitable type). In addition, make it clear that the pointer type need not be a pointer to a complete type and when non-null, the value need not be valid.
Specifically, change in [lib.ios] the signature of
operator void*() const;
to
operator unspecified-bool-type() const;
and change [lib.iostate.flags], p1 from
operator void*() const;
to
operator unspecified-bool-type() const; -1- Returns: if fail() then a value that will evaluate false in a boolean context; otherwise a value that will evaluate true in a boolean context. The value type returned shall not be convertible to int. -2- [Note: This conversion can be used in contexts where a bool is expected (e.g., an if condition); however, implicit conversions (e.g., to int) that can occur with bool are not allowed, eliminating some sources of user error. One possible implementation choice for this type is pointer-to-member. - end note]
[Redmond: 5-4 straw poll in favor of doing this.]
[Lillehammer: Doug provided revised wording for "unspecified-bool-type".]
Section: 23.3.6 [vector] Status: CD1 Submitter: Martin Sebor Opened: 2004-06-28 Last modified: 2015-04-08
View all other issues in [vector].
View all issues with CD1 status.
Discussion:
The overloads of relational operators for vector<bool> specified in [lib.vector.bool] are redundant (they are semantically identical to those provided for the vector primary template) and may even be diagnosed as ill-formed (refer to Daveed Vandevoorde's explanation in c++std-lib-13647).
Proposed resolution:
Remove all overloads of overloads of relational operators for vector<bool> from [lib.vector.bool].
Section: 18.8.1 [exception] Status: C++11 Submitter: Martin Sebor Opened: 2004-06-28 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
[lib.exception] specifies the following:
exception (const exception&) throw(); exception& operator= (const exception&) throw(); -4- Effects: Copies an exception object. -5- Notes: The effects of calling what() after assignment are implementation-defined.
First, does the Note only apply to the assignment operator? If so, what are the effects of calling what() on a copy of an object? Is the returned pointer supposed to point to an identical copy of the NTBS returned by what() called on the original object or not?
Second, is this Note intended to extend to all the derived classes in section 19? I.e., does the standard provide any guarantee for the effects of what() called on a copy of any of the derived class described in section 19?
Finally, if the answer to the first question is no, I believe it constitutes a defect since throwing an exception object typically implies invoking the copy ctor on the object. If the answer is yes, then I believe the standard ought to be clarified to spell out exactly what the effects are on the copy (i.e., after the copy ctor was called).
[Redmond: Yes, this is fuzzy. The issue of derived classes is fuzzy too.]
[ Batavia: Howard provided wording. ]
[ Bellevue: ]
Eric concerned this is unimplementable, due to nothrow guarantees. Suggested implementation would involve reference counting.
Is the implied reference counting subtle enough to call out a note on implementation? Probably not.
If reference counting required, could we tighten specification further to require same pointer value? Probably an overspecification, especially if exception classes defer evalutation of final string to calls to what().
Remember issue moved open and not resolved at Batavia, but cannot remember who objected to canvas a disenting opinion - please speak up if you disagree while reading these minutes!
Move to Ready as we are accepting words unmodified.
[ Sophia Antipolis: ]
The issue was pulled from Ready. It needs to make clear that only homogenous copying is intended to be supported, not coping from a derived to a base.
[ Batavia (2009-05): ]
Howard supplied the following replacement wording for paragraph 7 of the proposed resolution:
-7- Postcondition: what() shall return the same NTBS as would be obtained by using static_cast to cast the rhs to the same types as the lhs and then calling what() on that possibly sliced object.
Pete asks what "the same NTBS" means.
[ 2009-07-30 Niels adds: ]
Further discussion in the thread starting with c++std-lib-24512.
[ 2009-09-24 Niels provided updated wording: ]
I think the resolution should at least guarantee that the result of what() is independent of whether the compiler does copy-elision. And for any class derived from std::excepion that has a constructor that allows specifying a what_arg, it should make sure that the text of a user-provided what_arg is preserved, when the object is copied. Note that all the implementations I've tested already appear to satisfy the proposed resolution, including MSVC 2008 SP1, Apache stdcxx-4.2.1, GCC 4.1.2, GCC 4.3.2, and CodeGear C++ 6.13.
The proposed resolution was updated with help from Daniel Krügler; the update aims to clarify that the proposed postcondition only applies to homogeneous copying.
[ 2009-10 Santa Cruz: ]
Moved to Ready after inserting "publicly accessible" in two places.
Proposed resolution:
Change 18.8.1 [exception] to:
-1- The class exception defines the base class for the types of objects thrown as exceptions by C++ standard library components, and certain expressions, to report errors detected during program execution.
Each standard library class T that derives from class exception shall have a publicly accessible copy constructor and a publicly accessible copy assignment operator that do not exit with an exception. These member functions shall preserve the following postcondition: If two objects lhs and rhs both have dynamic type T, and lhs is a copy of rhs, then strcmp(lhs.what(), rhs.what()) == 0.
...
exception(const exception& rhs) throw(); exception& operator=(const exception& rhs) throw();-4- Effects: Copies an exception object.
-5- Remarks: The effects of calling what() after assignment are implementation-defined.-5- Postcondition: If *this and rhs both have dynamic type exception then strcmp(what(), rhs.what()) == 0.
Section: 22.4.1.1 [locale.ctype] Status: C++11 Submitter: Martin Sebor Opened: 2004-07-01 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Most ctype member functions come in two forms: one that operates on a single character at a time and another form that operates on a range of characters. Both forms are typically described by a single Effects and/or Returns clause.
The Returns clause of each of the single-character non-virtual forms suggests that the function calls the corresponding single character virtual function, and that the array form calls the corresponding virtual array form. Neither of the two forms of each virtual member function is required to be implemented in terms of the other.
There are three problems:
1. One is that while the standard does suggest that each non-virtual member function calls the corresponding form of the virtual function, it doesn't actually explicitly require it.
Implementations that cache results from some of the virtual member functions for some or all values of their arguments might want to call the array form from the non-array form the first time to fill the cache and avoid any or most subsequent virtual calls. Programs that rely on each form of the virtual function being called from the corresponding non-virtual function will see unexpected behavior when using such implementations.
2. The second problem is that either form of each of the virtual functions can be overridden by a user-defined function in a derived class to return a value that is different from the one produced by the virtual function of the alternate form that has not been overriden.
Thus, it might be possible for, say, ctype::widen(c) to return one value, while for ctype::widen(&c, &c + 1, &wc) to set wc to another value. This is almost certainly not intended. Both forms of every function should be required to return the same result for the same character, otherwise the same program using an implementation that calls one form of the functions will behave differently than when using another implementation that calls the other form of the function "under the hood."
3. The last problem is that the standard text fails to specify whether one form of any of the virtual functions is permitted to be implemented in terms of the other form or not, and if so, whether it is required or permitted to call the overridden virtual function or not.
Thus, a program that overrides one of the virtual functions so that it calls the other form which then calls the base member might end up in an infinite loop if the called form of the base implementation of the function in turn calls the other form.
Lillehammer: Part of this isn't a real problem. We already talk about caching. 22.1.1/6 But part is a real problem. ctype virtuals may call each other, so users don't know which ones to override to avoid avoid infinite loops.
This is a problem for all facet virtuals, not just ctype virtuals, so we probably want a blanket statement in clause 22 for all facets. The LWG is leaning toward a blanket prohibition, that a facet's virtuals may never call each other. We might want to do that in clause 27 too, for that matter. A review is necessary. Bill will provide wording.
[ 2009-07 Frankfurt, Howard provided wording directed by consensus. ]
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Add paragraph 3 to 22.4 [locale.categories]:
-3- Within this clause it is unspecified if one virtual function calls another virtual function.
Rationale:
We are explicitly not addressing bullet item #2, thus giving implementors more latitude. Users will have to override both virtual functions, not just one.
Section: 27.7.3.6.4 [ostream.inserters.character] Status: CD1 Submitter: Martin Sebor Opened: 2004-07-01 Last modified: 2015-04-08
View all other issues in [ostream.inserters.character].
View all issues with CD1 status.
Discussion:
I think Footnote 297 is confused. The paragraph it applies to seems quite clear in that widen() is only called if the object is not a char stream (i.e., not basic_ostream<char>), so it's irrelevant what the value of widen(c) is otherwise.
Proposed resolution:
I propose to strike the Footnote.
Section: 25.2.4 [alg.foreach] Status: CD1 Submitter: Stephan T. Lavavej, Jaakko Jarvi Opened: 2004-07-09 Last modified: 2015-04-08
View all other issues in [alg.foreach].
View all issues with CD1 status.
Discussion:
It is not clear whether the function object passed to for_each is allowed to modify the elements of the sequence being iterated over.
for_each is classified without explanation in [lib.alg.nonmodifying], "25.1 Non-modifying sequence operations". 'Non-modifying sequence operation' is never defined.
25(5) says: "If an algorithm's Effects section says that a value pointed to by any iterator passed as an argument is modified, then that algorithm has an additional type requirement: The type of that argument shall satisfy the requirements of a mutable iterator (24.1)."
for_each's Effects section does not mention whether arguments can be modified:
"Effects: Applies f to the result of dereferencing every iterator in the range [first, last), starting from first and proceeding to last - 1."
Every other algorithm in [lib.alg.nonmodifying] is "really" non-modifying in the sense that neither the algorithms themselves nor the function objects passed to the algorithms may modify the sequences or elements in any way. This DR affects only for_each.
We suspect that for_each's classification in "non-modifying sequence operations" means that the algorithm itself does not inherently modify the sequence or the elements in the sequence, but that the function object passed to it may modify the elements it operates on.
The original STL document by Stepanov and Lee explicitly prohibited the function object from modifying its argument. The "obvious" implementation of for_each found in several standard library implementations, however, does not impose this restriction. As a result, we suspect that the use of for_each with function objects that modify their arguments is wide-spread. If the restriction was reinstated, all such code would become non-conforming. Further, none of the other algorithms in the Standard could serve the purpose of for_each (transform does not guarantee the order in which its function object is called).
We suggest that the standard be clarified to explicitly allow the function object passed to for_each modify its argument.
Proposed resolution:
Add a nonnormative note to the Effects in 25.2.4 [alg.foreach]: If the type of 'first' satisfies the requirements of a mutable iterator, 'f' may apply nonconstant functions through the dereferenced iterators passed to it.
Rationale:
The LWG believes that nothing in the standard prohibits function objects that modify the sequence elements. The problem is that for_each is in a secion entitled "nonmutating algorithms", and the title may be confusing. A nonnormative note should clarify that.
Section: 24.2.5 [forward.iterators] Status: CD1 Submitter: Dave Abrahams Opened: 2004-07-11 Last modified: 2015-04-08
View all other issues in [forward.iterators].
View all issues with CD1 status.
Duplicate of: 477
Discussion:
The Forward Iterator requirements table contains the following:
expression return type operational precondition semantics ========== ================== =========== ========================== a->m U& if X is mutable, (*a).m pre: (*a).m is well-defined. otherwise const U& r->m U& (*r).m pre: (*r).m is well-defined.
The second line may be unnecessary. Paragraph 11 of [lib.iterator.requirements] says:
In the following sections, a and b denote values of type const X, n denotes a value of the difference type Distance, u, tmp, and m denote identifiers, r denotes a value of X&, t denotes a value of value type T, o denotes a value of some type that is writable to the output iterator.
Because operators can be overloaded on an iterator's const-ness, the current requirements allow iterators to make many of the operations specified using the identifiers a and b invalid for non-const iterators.
Related issue: 477
Proposed resolution:
Remove the "r->m" line from the Forward Iterator requirements table. Change
"const X"
to
"X or const X"
in paragraph 11 of [lib.iterator.requirements].
Rationale:
This is a defect because it constrains an lvalue to returning a modifiable lvalue.
Section: 20.3 [pairs], 20.4 [tuple] Status: Resolved Submitter: Andrew Koenig Opened: 2004-09-14 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with Resolved status.
Discussion:
(Based on recent comp.std.c++ discussion)
Pair (and tuple) should specialize std::swap to work in terms of std::swap on their components. For example, there's no obvious reason why swapping two objects of type pair<vector<int>, list<double> > should not take O(1).
[Lillehammer: We agree it should be swappable. Howard will provide wording.]
[ Post Oxford: We got swap for pair but accidently missed tuple. tuple::swap is being tracked by 522. ]
Proposed resolution:
Wording provided in N1856.
Rationale:
Recommend NADResolved, fixed by
N1856.
Section: 24.2.4 [output.iterators] Status: Resolved Submitter: Chris Jefferson Opened: 2004-10-13 Last modified: 2015-04-08
View other active issues in [output.iterators].
View all other issues in [output.iterators].
View all issues with Resolved status.
Discussion:
The note on 24.1.2 Output iterators insufficiently limits what can be performed on output iterators. While it requires that each iterator is progressed through only once and that each iterator is written to only once, it does not require the following things:
Note: Here it is assumed that x is an output iterator of type X which has not yet been assigned to.
a) That each value of the output iterator is written to: The standard allows: ++x; ++x; ++x;
b) That assignments to the output iterator are made in order X a(x); ++a; *a=1; *x=2; is allowed
c) Chains of output iterators cannot be constructed: X a(x); ++a; X b(a); ++b; X c(b); ++c; is allowed, and under the current wording (I believe) x,a,b,c could be written to in any order.
I do not believe this was the intension of the standard?
[Lillehammer: Real issue. There are lots of constraints we intended but didn't specify. Should be solved as part of iterator redesign.]
[ 2009-07 Frankfurt ]
Bill provided wording according to consensus.
[ 2009-07-21 Alisdair requests change from Review to Open. See thread starting with c++std-lib-24459 for discussion. ]
[ 2009-10 Santa Cruz: ]
Modified wording. Set to Review.
[ 2009-10 Santa Cruz: ]
Move to Ready after looking at again in a larger group in Santa Cruz.
[ 2010 Pittsburgh: ]
Moved to
NAD EditorialResolved. Rationale added below.
Rationale:
Solved by N3066.
Proposed resolution:
Change Table 101 — Output iterator requirements in 24.2.4 [output.iterators]:
Table 101 — Output iterator requirements Expression Return type Operational semantics Assertion/note pre-/post-condition X(a) a = t is equivalent to X(a) = t. note: a destructor is assumed. X u(a);
X u = a;*r = o result is not used Post: r is not required to be dereferenceable. r is incrementable. ++r X& &r == &++r Post: r is dereferenceable, unless otherwise specified. r is not required to be incrementable. r++ convertible to const X& {X tmp = r;
++r;
return tmp;}Post: r is dereferenceable, unless otherwise specified. r is not required to be incrementable. *r++ = o; result is not used
Section: 25.3.11 [alg.rotate] Status: CD1 Submitter: Howard Hinnant Opened: 2004-11-22 Last modified: 2015-04-08
View all other issues in [alg.rotate].
View all issues with CD1 status.
Discussion:
rotate takes 3 iterators: first, middle and last which point into a sequence, and rearranges the sequence such that the subrange [middle, last) is now at the beginning of the sequence and the subrange [first, middle) follows. The return type is void.
In many use cases of rotate, the client needs to know where the subrange [first, middle) starts after the rotate is performed. This might look like:
rotate(first, middle, last); Iterator i = advance(first, distance(middle, last));
Unless the iterators are random access, the computation to find the start of the subrange [first, middle) has linear complexity. However, it is not difficult for rotate to return this information with negligible additional computation expense. So the client could code:
Iterator i = rotate(first, middle, last);
and the resulting program becomes significantly more efficient.
While the backwards compatibility hit with this change is not zero, it is very small (similar to that of lwg 130), and there is a significant benefit to the change.
Proposed resolution:
In 25 [algorithms] p2, change:
template<class ForwardIterator>voidForwardIterator rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator last);
In 25.3.11 [alg.rotate], change:
template<class ForwardIterator>voidForwardIterator rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator last);
In 25.3.11 [alg.rotate] insert a new paragraph after p1:
Returns: first + (last - middle).
[ The LWG agrees with this idea, but has one quibble: we want to make sure not to give the impression that the function "advance" is actually called, just that the nth iterator is returned. (Calling advance is observable behavior, since users can specialize it for their own iterators.) Howard will provide wording. ]
[Howard provided wording for mid-meeting-mailing Jun. 2005.]
[ Toronto: moved to Ready. ]
Section: 22 [localization] Status: CD1 Submitter: Beman Dawes Opened: 2005-01-10 Last modified: 2015-04-08
View all other issues in [localization].
View all issues with CD1 status.
Discussion:
It appears that there are no requirements specified for many of the template parameters in clause 22. It looks like this issue has never come up, except perhaps for Facet.
Clause 22 isn't even listed in 17.3.2.1 [lib.type.descriptions], either, which is the wording that allows requirements on template parameters to be identified by name.
So one issue is that 17.3.2.1 [lib.type.descriptions] Should be changed to cover clause 22. A better change, which will cover us in the future, would be to say that it applies to all the library clauses. Then if a template gets added to any library clause we are covered.
charT, InputIterator, and other names with requirements defined elsewhere are fine, assuming the 17.3.2.1 [lib.type.descriptions] fix. But there are a few template arguments names which I don't think have requirements given elsewhere:
Proposed resolution:
Change 17.5.2.1 [type.descriptions], paragraph 1, from:
The Requirements subclauses may describe names that are used to specify constraints on template arguments.153) These names are used in clauses 20, 23, 25, and 26 to describe the types that may be supplied as arguments by a C++ program when instantiating template components from the library.
to:
The Requirements subclauses may describe names that are used to specify constraints on template arguments.153) These names are used in library clauses to describe the types that may be supplied as arguments by a C++ program when instantiating template components from the library.
In the front matter of class 22, locales, add:
Template parameter types internT and externT shall meet the requirements of charT (described in 21 [strings]).
Rationale:
Again, a blanket clause isn't blanket enough. Also, we've got a couple of names that we don't have blanket requirement statements for. The only issue is what to do about stateT. This wording is thin, but probably adequate.
Section: 23.3.6 [vector] Status: CD1 Submitter: richard@ex-parrot.com Opened: 2005-02-10 Last modified: 2015-04-08
View all other issues in [vector].
View all issues with CD1 status.
Discussion:
In the synopsis of the std::vector<bool> specialisation in 23.3.6 [vector], the non-template assign() function has the signature
void assign( size_type n, const T& t );
The type, T, is not defined in this context.
Proposed resolution:
Replace "T" with "value_type".
Section: 18.3.2.4 [numeric.limits.members] Status: CD1 Submitter: Martin Sebor Opened: 2005-03-02 Last modified: 2015-04-08
View all other issues in [numeric.limits.members].
View all issues with CD1 status.
Discussion:
18.2.1.2, p59 says this much about the traps member of numeric_limits:
static const bool traps;
-59- true if trapping is implemented for the type.204)
Footnote 204: Required by LIA-1.
It's not clear what is meant by "is implemented" here.
In the context of floating point numbers it seems reasonable to expect to be able to use traps to determine whether a program can "safely" use infinity(), quiet_NaN(), etc., in arithmetic expressions, that is without causing a trap (i.e., on UNIX without having to worry about getting a signal). When traps is true, I would expect any of the operations in section 7 of IEEE 754 to cause a trap (and my program to get a SIGFPE). So, for example, on Alpha, I would expect traps to be true by default (unless I compiled my program with the -ieee option), false by default on most other popular architectures, including IA64, MIPS, PA-RISC, PPC, SPARC, and x86 which require traps to be explicitly enabled by the program.
Another possible interpretation of p59 is that traps should be true on any implementation that supports traps regardless of whether they are enabled by default or not. I don't think such an interpretation makes the traps member very useful, even though that is how traps is implemented on several platforms. It is also the only way to implement traps on platforms that allow programs to enable and disable trapping at runtime.
Proposed resolution:
Change p59 to read:
True if, at program startup, there exists a value of the type that would cause an arithmetic operation using that value to trap.
Rationale:
Real issue, since trapping can be turned on and off. Unclear what a static query can say about a dynamic issue. The real advice we should give users is to use cfenv for these sorts of queries. But this new proposed resolution is at least consistent and slightly better than nothing.
Section: 25.3.13 [alg.partitions] Status: C++11 Submitter: Sean Parent, Joe Gottman Opened: 2005-05-04 Last modified: 2015-04-08
View all other issues in [alg.partitions].
View all issues with C++11 status.
Discussion:
Problem: The iterator requirements for partition() and stable_partition() [25.2.12] are listed as BidirectionalIterator, however, there are efficient algorithms for these functions that only require ForwardIterator that have been known since before the standard existed. The SGI implementation includes these (see http://www.sgi.com/tech/stl/partition.html and http://www.sgi.com/tech/stl/stable_partition.html).
[ 2009-04-30 Alisdair adds: ]
Now we have concepts this is easier to express!
Proposed resolution:
Add the following signature to:
Header <algorithm> synopsis [algorithms.syn]
p3 Partitions 25.3.13 [alg.partitions]template<ForwardIterator Iter, Predicate<auto, Iter::value_type> Pred> requires ShuffleIterator<Iter> && CopyConstructible<Pred> Iter partition(Iter first, Iter last, Pred pred);Update p3 Partitions 25.3.13 [alg.partitions]:
Complexity:
At most (last - first)/2 swaps. Exactly last - first applications of the predicate are done.If Iter satisfies BidirectionalIterator, at most (last - first)/2 swaps. Exactly last - first applications of the predicate are done.If Iter merely satisfied ForwardIterator at most (last - first) swaps are done. Exactly (last - first) applications of the predicate are done.
[Editorial note: I looked for existing precedent in how we might call out distinct overloads overloads from a set of constrained templates, but there is not much existing practice to lean on. advance/distance were the only algorithms I could find, and that wording is no clearer.]
[ 2009-07 Frankfurt ]
Hinnant: if you want to partition your std::forward_list, you'll need partition() to accept ForwardIterators.
No objection to Ready.
Move to Ready.
Proposed resolution:
Change 25.2.12 from
template<class BidirectionalIterator, class Predicate> BidirectionalIterator partition(BidirectionalIterato r first, BidirectionalIterator last, Predicate pred);
to
template<class ForwardIterator, class Predicate> ForwardIterator partition(ForwardIterator first, ForwardIterator last, Predicate pred);
Change the complexity from
At most (last - first)/2 swaps are done. Exactly (last - first) applications of the predicate are done.
to
If ForwardIterator is a bidirectional_iterator, at most (last - first)/2 swaps are done; otherwise at most (last - first) swaps are done. Exactly (last - first) applications of the predicate are done.
Rationale:
Partition is a "foundation" algorithm useful in many contexts (like sorting as just one example) - my motivation for extending it to include forward iterators is foward_list - without this extension you can't partition an foward_list (without writing your own partition). Holes like this in the standard library weaken the argument for generic programming (ideally I'd be able to provide a library that would refine std::partition() to other concepts without fear of conflicting with other libraries doing the same - but that is a digression). I consider the fact that partition isn't defined to work for ForwardIterator a minor embarrassment.
[Mont Tremblant: Moved to Open, request motivation and use cases by next meeting. Sean provided further rationale by post-meeting mailing.]
Section: 26.5.1 [rand.req], TR1 5.1.1 [tr.rand.req] Status: CD1 Submitter: Walter Brown Opened: 2005-07-03 Last modified: 2015-04-08
View all other issues in [rand.req].
View all issues with CD1 status.
Discussion:
Table 17: Random distribution requirements
Row 1 requires that each random distribution provide a nested type "input_type"; this type denotes the type of the values that the distribution consumes.
Inspection of all distributions in [tr.rand.dist] reveals that each distribution provides a second typedef ("result_type") that denotes the type of the values the distribution produces when called.
Proposed resolution:
It seems to me that this is also a requirement for all distributions and should therefore be indicated as such via a new second row to this table 17:
X::result_type | T | --- | compile-time |
[ Berlin: Voted to WP. N1932 adopts the proposed resolution: see Table 5 row 1. ]
Section: 26.5 [rand], TR1 5.1.3 [tr.rand.var] Status: CD1 Submitter: Walter Brown Opened: 2005-07-03 Last modified: 2015-04-08
View all other issues in [rand].
View all issues with CD1 status.
Discussion:
Paragraph 11 of [tr.rand.var] equires that the member template
template<class T> result_type operator() (T value);
return
distribution()(e, value)
However, not all distributions have an operator() with a corresponding signature.
[ Berlin: As a working group we voted in favor of N1932 which makes this moot: variate_generator has been eliminated. Then in full committee we voted to give this issue WP status (mistakenly). ]
Proposed resolution:
We therefore recommend that we insert the following precondition before paragraph 11:
Precondition: distribution().operator()(e,value) is well-formed.
Section: 26.5.5 [rand.predef], TR1 5.1.5 [tr.rand.predef] Status: CD1 Submitter: Walter Brown Opened: 2005-07-03 Last modified: 2015-04-08
View all other issues in [rand.predef].
View all issues with CD1 status.
Discussion:
The fifth of these engines with predefined parameters, ranlux64_base_01, appears to have an unintentional error for which there is a simple correction. The two pre-defined subtract_with_carry_01 engines are given as:
typedef subtract_with_carry_01<float, 24, 10, 24> ranlux_base_01; typedef subtract_with_carry_01<double, 48, 10, 24> ranlux64_base_01;
We demonstrate below that ranlux64_base_01 fails to meet the intent of the random number generation proposal, but that the simple correction to
typedef subtract_with_carry_01<double, 48, 5, 12> ranlux64_base_01;
does meet the intent of defining well-known good parameterizations.
The ranlux64_base_01 engine as presented fails to meet the intent for predefined engines, stated in proposal N1398 (section E):
In order to make good random numbers available to a large number of library users, this proposal not only defines generic random-number engines, but also provides a number of predefined well-known good parameterizations for those.
The predefined ranlux_base_01 engine has been proven [1,2,3] to have a very long period and so meets this criterion. This property makes it suitable for use in the excellent discard_block engines defined subsequently. The proof of long period relies on the fact (proven in [1]) that 2**(w*r) - 2**(w*s) + 1 is prime (w, r, and s are template parameters to subtract_with_carry_01, as defined in [tr.rand.eng.sub1]).
The ranlux64_base_01 engine as presented in [tr.rand.predef] uses w=48, r=24, s=10. For these numbers, the combination 2**(w*r)-2**(w*s)+1 is non-prime (though explicit factorization would be a challenge). In consequence, while it is certainly possible for some seeding states that this engine would have a very long period, it is not at all "well-known" that this is the case. The intent in the N1398 proposal involved the base of the ranlux64 engine, which finds heavy use in the physics community. This is isomorphic to the predefined ranlux_base_01, but exploits the ability of double variables to hold (at least) 48 bits of mantissa, to deliver 48 random bits at a time rather than 24.
Proposed resolution:
To achieve this intended behavior, the correct template parameteriztion would be:
typedef subtract_with_carry_01<double, 48, 5, 12> ranlux64_base_01;
The sequence of mantissa bits delivered by this is isomorphic (treating each double as having the bits of two floats) to that delivered by ranlux_base_01.
References:
[ Berlin: Voted to WP. N1932 adopts the proposed resolution in 26.3.5, just above paragraph 5. ]
Section: 23.2.5 [unord.req], TR1 6.3.1 [tr.unord.req] Status: CD1 Submitter: Matt Austern Opened: 2005-07-03 Last modified: 2015-04-08
View other active issues in [unord.req].
View all other issues in [unord.req].
View all issues with CD1 status.
Discussion:
Issue 371 deals with stability of multiset/multimap under insert and erase (i.e. do they preserve the relative order in ranges of equal elements). The same issue applies to unordered_multiset and unordered_multimap.
[ Moved to open (from review): There is no resolution. ]
[ Toronto: We have a resolution now. Moved to Review. Some concern was noted as to whether this conflicted with existing practice or not. An additional concern was in specifying (partial) ordering for an unordered container. ]
Proposed resolution:
Wording for the proposed resolution is taken from the equivalent text for associative containers.
Change 23.2.5 [unord.req], Unordered associative containers, paragraph 6 to:
An unordered associative container supports unique keys if it may contain at most one element for each key. Otherwise, it supports equivalent keys. unordered_set and unordered_map support unique keys. unordered_multiset and unordered_multimap support equivalent keys. In containers that support equivalent keys, elements with equivalent keys are adjacent to each other. For unordered_multiset and unordered_multimap, insert and erase preserve the relative ordering of equivalent elements.
Change 23.2.5 [unord.req], Unordered associative containers, paragraph 8 to:
The elements of an unordered associative container are organized into buckets. Keys with the same hash code appear in the same bucket. The number of buckets is automatically increased as elements are added to an unordered associative container, so that the average number of elements per bucket is kept below a bound. Rehashing invalidates iterators, changes ordering between elements, and changes which buckets elements appear in, but does not invalidate pointers or references to elements. For unordered_multiset and unordered_multimap, rehashing preserves the relative ordering of equivalent elements.
Section: 23.3.2 [array], TR1 6.2.2 [tr.array.array] Status: CD1 Submitter: Pete Becker Opened: 2005-07-03 Last modified: 2015-04-08
View other active issues in [array].
View all other issues in [array].
View all issues with CD1 status.
Discussion:
array<>::data() is present in the class synopsis, but not documented.
Proposed resolution:
Add a new section, after 6.2.2.3:
T* data() const T* data() const;
Returns: elems.
Change 6.2.2.4/2 to:
In the case where N == 0, begin() == end(). The return value of data() is unspecified.
Section: 20.9.10 [func.bind], TR1 3.6 [tr.func.bind] Status: CD1 Submitter: Pete Becker Opened: 2005-07-03 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
In the original proposal for binders, the return type of bind() when called with a pointer to member data as it's callable object was defined to be mem_fn(ptr); when Peter Dimov and I unified the descriptions of the TR1 function objects we hoisted the descriptions of return types into the INVOKE pseudo-function and into result_of. Unfortunately, we left pointer to member data out of result_of, so bind doesn't have any specified behavior when called with a pointer to member data.
Proposed resolution:
[ Pete and Peter will provide wording. ]
In 20.5.4 [lib.func.ret] ([tr.func.ret]) p3 add the following bullet after bullet 2:
[ Peter provided wording. ]
Section: 20.9.4 [refwrap], TR1 2.1.2 [tr.util.refwrp.refwrp] Status: CD1 Submitter: Pete Becker Opened: 2005-07-03 Last modified: 2015-04-08
View all other issues in [refwrap].
View all issues with CD1 status.
Discussion:
2.1.2/3, second bullet item currently says that reference_wrapper<T> is derived from unary_function<T, R> if T is:
a pointer to member function type with cv-qualifier cv and no arguments; the type T1 is cv T* and R is the return type of the pointer to member function;
The type of T1 can't be cv T*, 'cause that's a pointer to a pointer to member function. It should be a pointer to the class that T is a pointer to member of. Like this:
a pointer to a member function R T0::f() cv (where cv represents the member function's cv-qualifiers); the type T1 is cv T0*
Similarly, bullet item 2 in 2.1.2/4 should be:
a pointer to a member function R T0::f(T2) cv (where cv represents the member function's cv-qualifiers); the type T1 is cv T0*
Proposed resolution:
Change bullet item 2 in 2.1.2/3:
- a pointer to member function
type with cv-qualifier cv and no arguments; the type T1 is cv T* and R is the return type of the pointer to member functionR T0::f() cv (where cv represents the member function's cv-qualifiers); the type T1 is cv T0*
Change bullet item 2 in 2.1.2/4:
- a pointer to member function
with cv-qualifier cv and taking one argument of type T2; the type T1 is cv T* and R is the return type of the pointer to member functionR T0::f(T2) cv (where cv represents the member function's cv-qualifiers); the type T1 is cv T0*
Section: 20.4 [tuple], TR1 6.1 [tr.tuple] Status: CD1 Submitter: Andy Koenig Opened: 2005-07-03 Last modified: 2015-04-08
View all other issues in [tuple].
View all issues with CD1 status.
Discussion:
Tuple doesn't define swap(). It should.
[ Berlin: Doug to provide wording. ]
[ Batavia: Howard to provide wording. ]
[ Toronto: Howard to provide wording (really this time). ]
[ Bellevue: Alisdair provided wording. ]
Proposed resolution:
Add these signatures to 20.4 [tuple]
template <class... Types> void swap(tuple<Types...>& x, tuple<Types...>& y); template <class... Types> void swap(tuple<Types...>&& x, tuple<Types...>& y); template <class... Types> void swap(tuple<Types...>& x, tuple<Types...>&& y);
Add this signature to 20.4.2 [tuple.tuple]
void swap(tuple&&);
Add the following two sections to the end of the tuple clauses
20.3.1.7 tuple swap [tuple.swap]
void swap(tuple&& rhs);Requires: Each type in Types shall be Swappable.
Effects: Calls swap for each element in *this and its corresponding element in rhs.
Throws: Nothing, unless one of the element-wise swap calls throw an exception.
20.3.1.8 tuple specialized algorithms [tuple.special]
template <class... Types> void swap(tuple<Types...>& x, tuple<Types...>& y); template <class... Types> void swap(tuple<Types...>&& x, tuple<Types...>& y); template <class... Types> void swap(tuple<Types...>& x, tuple<Types...>&& y);Effects: x.swap(y)
Section: 28 [re] Status: CD1 Submitter: Eric Niebler Opened: 2005-07-01 Last modified: 2015-04-08
View other active issues in [re].
View all other issues in [re].
View all issues with CD1 status.
Discussion:
This defect is also being discussed on the Boost developers list. The full discussion can be found here: http://lists.boost.org/boost/2005/07/29546.php
-- Begin original message --
Also, I may have found another issue, closely related to the one under discussion. It regards case-insensitive matching of named character classes. The regex_traits<> provides two functions for working with named char classes: lookup_classname and isctype. To match a char class such as [[:alpha:]], you pass "alpha" to lookup_classname and get a bitmask. Later, you pass a char and the bitmask to isctype and get a bool yes/no answer.
But how does case-insensitivity work in this scenario? Suppose we're doing a case-insensitive match on [[:lower:]]. It should behave as if it were [[:lower:][:upper:]], right? But there doesn't seem to be enough smarts in the regex_traits interface to do this.
Imagine I write a traits class which recognizes [[:fubar:]], and the "fubar" char class happens to be case-sensitive. How is the regex engine to know that? And how should it do a case-insensitive match of a character against the [[:fubar:]] char class? John, can you confirm this is a legitimate problem?
I see two options:
1) Add a bool icase parameter to lookup_classname. Then, lookup_classname( "upper", true ) will know to return lower|upper instead of just upper.
2) Add a isctype_nocase function
I prefer (1) because the extra computation happens at the time the pattern is compiled rather than when it is executed.
-- End original message --
For what it's worth, John has also expressed his preference for option (1) above.
Proposed resolution:
Adopt the proposed resolution in N2409.
[ Kona (2007): The LWG adopted the proposed resolution of N2409 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 20.10.4 [meta.unary], TR1 4.5 [tr.meta.unary] Status: Resolved Submitter: Robert Klarer Opened: 2005-07-11 Last modified: 2015-04-08
View all other issues in [meta.unary].
View all issues with Resolved status.
Discussion:
It is not completely clear how the primary type traits deal with cv-qualified types. And several of the secondary type traits seem to be lacking a definition.
[ Berlin: Howard to provide wording. ]
Proposed resolution:
Wording provided in N2028. A revision (N2157) provides more detail for motivation.
Rationale:
Solved by revision (N2157) in the WP.
Section: 20.9.10.3 [func.bind.bind], TR1 3.6.3 [tr.func.bind.bind] Status: CD1 Submitter: Peter Dimov Opened: 2005-10-01 Last modified: 2015-04-08
View all other issues in [func.bind.bind].
View all issues with CD1 status.
Discussion:
The original bind proposal gives the guarantee that tr1::bind(f, t1, ..., tN) does not throw when the copy constructors of f, t1, ..., tN don't.
This guarantee is not present in the final version of TR1.
I'm pretty certain that we never removed it on purpose. Editorial omission? :-)
[ Berlin: not quite editorial, needs proposed wording. ]
[ Batavia: Doug to translate wording to variadic templates. ]
[ Toronto: We agree but aren't quite happy with the wording. The "t"'s no longer refer to anything. Alan to provide improved wording. ]
[ Pre-Bellevue: Alisdair provided wording. ]
TR1 proposed resolution:
In TR1 3.6.3 [tr.func.bind.bind], add a new paragraph after p2:
Throws: Nothing unless one of the copy constructors of f, t1, t2, ..., tN throws an exception.
Add a new paragraph after p4:
Throws: nothing unless one of the copy constructors of f, t1, t2, ..., tN throws an exception.
Proposed resolution:
In 20.9.10.3 [func.bind.bind], add a new paragraph after p2:
Throws: Nothing unless the copy constructor of F or of one of the types in the BoundArgs... pack expansion throws an exception.
In 20.9.10.3 [func.bind.bind], add a new paragraph after p4:
Throws: Nothing unless the copy constructor of F or of one of the types in the BoundArgs... pack expansion throws an exception.
Section: 21.4 [basic.string] Status: CD1 Submitter: Matt Austern Opened: 2005-11-15 Last modified: 2015-04-08
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with CD1 status.
Discussion:
Issue 69, which was incorporated into C++03, mandated that the elements of a vector must be stored in contiguous memory. Should the same also apply to basic_string?
We almost require contiguity already. Clause 23.4.7 [multiset] defines operator[] as data()[pos]. What's missing is a similar guarantee if we access the string's elements via the iterator interface.
Given the existence of data(), and the definition of operator[] and at in terms of data, I don't believe it's possible to write a useful and standard- conforming basic_string that isn't contiguous. I'm not aware of any non-contiguous implementation. We should just require it.
Proposed resolution:
Add the following text to the end of 21.4 [basic.string], paragraph 2.
The characters in a string are stored contiguously, meaning that if s is a basic_string<charT, Allocator>, then it obeys the identity &*(s.begin() + n) == &*s.begin() + n for all 0 <= n < s.size().
Rationale:
Not standardizing this existing practice does not give implementors more freedom. We thought it might a decade ago. But the vendors have spoken both with their implementations, and with their voice at the LWG meetings. The implementations are going to be contiguous no matter what the standard says. So the standard might as well give string clients more design choices.
Section: 27.7.2.3 [istream.unformatted] Status: CD1 Submitter: Martin Sebor Opened: 2005-11-23 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with CD1 status.
Discussion:
The array forms of unformatted input functions don't seem to have well-defined semantics for zero-element arrays in a couple of cases. The affected ones (istream::get() and istream::getline()) are supposed to terminate when (n - 1) characters are stored, which obviously can never be true when (n == 0) holds to start with. See c++std-lib-16071.
Proposed resolution:
I suggest changing 27.6.1.3, p7 (istream::get()), bullet 1 to read:
Change 27.6.1.3, p9:
If the function stores no characters, it calls setstate(failbit) (which may throw ios_base::failure (27.4.4.3)). In any case, if (n > 0) is true it then stores a null character into the next successive location of the array.
and similarly p17 (istream::getline()), bullet 3 to:
In addition, to clarify that istream::getline() must not store the terminating NUL character unless the the array has non-zero size, Robert Klarer suggests in c++std-lib-16082 to change 27.6.1.3, p20 to read:
In any case, provided (n > 0) is true, it then stores a null character (using charT()) into the next successive location of the array.
[ post-Redmond: Pete noticed that the current resolution for get requires writing to out of bounds memory when n == 0. Martin provided fix. ]
Section: 20.8.2.2.10 [util.smartptr.getdeleter], TR1 2.2.3.10 [tr.util.smartptr.getdeleter] Status: CD1 Submitter: Paolo Carlini Opened: 2005-11-09 Last modified: 2015-04-08
View all other issues in [util.smartptr.getdeleter].
View all issues with CD1 status.
Discussion:
I'm seeing something that looks like a typo. The Return of get_deleter says:
If *this owns a deleter d...
but get_deleter is a free function!
Proposed resolution:
Therefore, I think should be:
If
*thisp owns a deleter d...
Section: 21.4 [basic.string] Status: CD1 Submitter: Alisdair Meredith Opened: 2005-11-16 Last modified: 2015-04-08
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with CD1 status.
Discussion:
OK, we all know std::basic_string is bloated and already has way too many members. However, I propose it is missing 3 useful members that are often expected by users believing it is a close approximation of the container concept. All 3 are listed in table 71 as 'optional'
i/ pop_back.
This is the one I feel most strongly about, as I only just discovered it was missing as we are switching to a more conforming standard library <g>
I find it particularly inconsistent to support push_back, but not pop_back.
ii/ back.
There are certainly cases where I want to examine the last character of a string before deciding to append, or to trim trailing path separators from directory names etc. *rbegin() somehow feels inelegant.
iii/ front
This one I don't feel strongly about, but if I can get the first two, this one feels that it should be added as a 'me too' for consistency.
I believe this would be similarly useful to the data() member recently added to vector, or at() member added to the maps.
Proposed resolution:
Add the following members to definition of class template basic_string, 21.3p7
void pop_back () const charT & front() const charT & front() const charT & back() const charT & back()
Add the following paragraphs to basic_string description
21.3.4p5
const charT & front() const charT & front()Precondition: !empty()
Effects: Equivalent to operator[](0).
21.3.4p6
const charT & back() const charT & back()Precondition: !empty()
Effects: Equivalent to operator[]( size() - 1).
21.3.5.5p10
void pop_back ()Precondition: !empty()
Effects: Equivalent to erase( size() - 1, 1 ).
Update Table 71: (optional sequence operations) Add basic_string to the list of containers for the following operations.
a.front() a.back() a.push_back() a.pop_back() a[n]
[ Berlin: Has support. Alisdair provided wording. ]
Section: 21.4.6.8 [string::swap] Status: CD1 Submitter: Beman Dawes Opened: 2005-12-14 Last modified: 2015-04-08
View all other issues in [string::swap].
View all issues with CD1 status.
Discussion:
std::string::swap currently says for effects and postcondition:
Effects: Swaps the contents of the two strings.
Postcondition: *this contains the characters that were in s, s contains the characters that were in *this.
Specifying both Effects and Postcondition seems redundant, and the postcondition needs to be made stronger. Users would be unhappy if the characters were not in the same order after the swap.
Proposed resolution:
Effects: Swaps the contents of the two strings.Postcondition: *this contains the same sequence of characters that
werewas in s, s contains the same sequence of characters thatwerewas in *this.
Section: 27.7.2.3 [istream.unformatted] Status: CD1 Submitter: Paolo Carlini Opened: 2006-02-12 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with CD1 status.
Discussion:
In the most recent working draft, I'm still seeing:
seekg(off_type& off, ios_base::seekdir dir)
and
seekp(pos_type& pos) seekp(off_type& off, ios_base::seekdir dir)
that is, by reference off and pos arguments.
Proposed resolution:
After 27.6.1.3p42 change:
basic_istream<charT,traits>& seekg(off_type&off, ios_base::seekdir dir);
After 27.6.2.4p1 change:
basic_ostream<charT,traits>& seekp(pos_type&pos);
After 27.6.2.4p3 change:
basic_ostream<charT,traits>& seekp(off_type&off, ios_base::seekdir dir);
Section: 25.3.9 [alg.unique] Status: CD1 Submitter: Howard Hinnant Opened: 2006-02-09 Last modified: 2015-04-08
View all other issues in [alg.unique].
View all issues with CD1 status.
Discussion:
I believe I botched the resolution of 241 "Does unique_copy() require CopyConstructible and Assignable?" which now has WP status.
This talks about unique_copy requirements and currently reads:
-5- Requires: The ranges [first, last) and [result, result+(last-first)) shall not overlap. The expression *result = *first shall be valid. If neither InputIterator nor OutputIterator meets the requirements of forward iterator then the value type of InputIterator must be CopyConstructible (20.1.3). Otherwise CopyConstructible is not required.
The problem (which Paolo discovered) is that when the iterators are at their most restrictive (InputIterator, OutputIterator), then we want InputIterator::value_type to be both CopyConstructible and CopyAssignable (for the most efficient implementation). However this proposed resolution only makes it clear that it is CopyConstructible, and that one can assign from *first to *result. This latter requirement does not necessarily imply that you can:
*first = *first;
Proposed resolution:
-5- Requires: The ranges [first, last) and [result, result+(last-first)) shall not overlap. The expression *result = *first shall be valid. If neither InputIterator nor OutputIterator meets the requirements of forward iterator then the
value typevalue_type of InputIterator must be CopyConstructible (20.1.3) and Assignable. Otherwise CopyConstructible is not required.
Section: 26.7.4 [partial.sum] Status: C++11 Submitter: Marc Schoolderman Opened: 2006-02-06 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
There are some problems in the definition of partial_sum and adjacent_difference in 26.4 [lib.numeric.ops]
Unlike accumulate and inner_product, these functions are not parametrized on a "type T", instead, 26.4.3 [lib.partial.sum] simply specifies the effects clause as;
Assigns to every element referred to by iterator i in the range [result,result + (last - first)) a value correspondingly equal to
((...(* first + *( first + 1)) + ...) + *( first + ( i - result )))
And similarly for BinaryOperation. Using just this definition, it seems logical to expect that:
char i_array[4] = { 100, 100, 100, 100 }; int o_array[4]; std::partial_sum(i_array, i_array+4, o_array);
Is equivalent to
int o_array[4] = { 100, 100+100, 100+100+100, 100+100+100+100 };
i.e. 100, 200, 300, 400, with addition happening in the result type, int.
Yet all implementations I have tested produce 100, -56, 44, -112, because they are using an accumulator of the InputIterator's value_type, which in this case is char, not int.
The issue becomes more noticeable when the result of the expression *i + *(i+1) or binary_op(*i, *i-1) can't be converted to the value_type. In a contrived example:
enum not_int { x = 1, y = 2 }; ... not_int e_array[4] = { x, x, y, y }; std::partial_sum(e_array, e_array+4, o_array);
Is it the intent that the operations happen in the input type, or in the result type?
If the intent is that operations happen in the result type, something like this should be added to the "Requires" clause of 26.4.3/4 [lib.partial.sum]:
The type of *i + *(i+1) or binary_op(*i, *(i+1)) shall meet the requirements of CopyConstructible (20.1.3) and Assignable (23.1) types.
(As also required for T in 26.4.1 [lib.accumulate] and 26.4.2 [lib.inner.product].)
The "auto initializer" feature proposed in N1894 is not required to implement partial_sum this way. The 'narrowing' behaviour can still be obtained by using the std::plus<> function object.
If the intent is that operations happen in the input type, then something like this should be added instead;
The type of *first shall meet the requirements of CopyConstructible (20.1.3) and Assignable (23.1) types. The result of *i + *(i+1) or binary_op(*i, *(i+1)) shall be convertible to this type.
The 'widening' behaviour can then be obtained by writing a custom proxy iterator, which is somewhat involved.
In both cases, the semantics should probably be clarified.
26.4.4 [lib.adjacent.difference] is similarly underspecified, although all implementations seem to perform operations in the 'result' type:
unsigned char i_array[4] = { 4, 3, 2, 1 }; int o_array[4]; std::adjacent_difference(i_array, i_array+4, o_array);
o_array is 4, -1, -1, -1 as expected, not 4, 255, 255, 255.
In any case, adjacent_difference doesn't mention the requirements on the value_type; it can be brought in line with the rest of 26.4 [lib.numeric.ops] by adding the following to 26.4.4/2 [lib.adjacent.difference]:
The type of *first shall meet the requirements of CopyConstructible (20.1.3) and Assignable (23.1) types."
[ Berlin: Giving output iterator's value_types very controversial. Suggestion of adding signatures to allow user to specify "accumulator". ]
[ Bellevue: ]
The intent of the algorithms is to perform their calculations using the type of the input iterator. Proposed wording provided.
[ Sophia Antipolis: ]
We did not agree that the proposed resolution was correct. For example, when the arguments are types (float*, float*, double*), the highest-quality solution would use double as the type of the accumulator. If the intent of the wording is to require that the type of the accumulator must be the input_iterator's value_type, the wording should specify it.
[ 2009-05-09 Alisdair adds: ]
Now that we have the facility, the 'best' accumulator type could probably be deduced as:
std::common_type<InIter::value_type, OutIter::reference>::typeThis type would then have additional requirements of constructability and incrementability/assignability.
If this extracting an accumulator type from a pair/set of iterators (with additional requirements on that type) is a problem for multiple functions, it might be worth extracting into a SharedAccumulator concept or similar.
I'll go no further in writing up wording now, until the group gives a clearer indication of preferred direction.
[ 2009-07 Frankfurt ]
The proposed resolution isn't quite right. For example, "the type of *first" should be changed to "iterator::value_type" or similar. Daniel volunteered to correct the wording.
[ 2009-07-29 Daniel corrected wording. ]
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Change 26.7.4 [partial.sum]/1 as indicated:
Effects: Let VT be InputIterator's value type. For a nonempty range, initializes an accumulator acc of type VT with *first and performs *result = acc. For every iterator i in [first + 1, last) in order, acc is then modified by acc = acc + *i or acc = binary_op(acc, *i) and is assigned to *(result + (i - first)).
Assigns to every element referred to by iterator i in the range [result,result + (last - first)) a value correspondingly equal to((...(*first + *(first + 1)) + ...) + *(first + (i - result)))
orbinary_op(binary_op(..., binary_op(*first, *(first + 1)),...), *(first + (i - result)))
Change 26.7.4 [partial.sum]/3 as indicated:
Complexity: Exactly max((last - first) - 1, 0) applications of
binary_opthe binary operation.
Change 26.7.4 [partial.sum]/4 as indicated:
Requires: VT shall be constructible from the type of *first, the result of acc + *i or binary_op(acc, *i) shall be implicitly convertible to VT, and the result of the expression acc shall be writable to the result output iterator. In the ranges [first,last] and [result,result + (last - first)] [..]
Change 26.7.5 [adjacent.difference]/1 as indicated:
Effects: Let VT be InputIterator's value type. For a nonempty range, initializes an accumulator acc of type VT with *first and performs *result = acc. For every iterator i in [first + 1, last) in order, initializes a value val of type VT with *i, assigns the result of val - acc or binary_op(val, acc) to *(result + (i - first)) and modifies acc = std::move(val).
Assigns to every element referred to by iterator i in the range [result + 1, result + (last - first)) a value correspondingly equal to*(first + (i - result)) - *(first + (i - result) - 1)
orbinary_op(*(first + (i - result)), *(first + (i - result) - 1)).
result gets the value of *first.
Change 26.7.5 [adjacent.difference]/2 as indicated:
Requires: VT shall be MoveAssignable ([moveassignable]) and shall be constructible from the type of *first. The result of the expression acc and the result of the expression val - acc or binary_op(val, acc) shall be writable to the result output iterator. In the ranges [first,last] [..]
Change 26.7.5 [adjacent.difference]/5 as indicated:
Complexity: Exactly max((last - first) - 1, 0) applications of
binary_opthe binary operation.
Section: 20.8.2.2.5 [util.smartptr.shared.obs], TR1 2.2.3.5 [tr.util.smartptr.shared.obs] Status: CD1 Submitter: Martin Sebor Opened: 2005-10-15 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.obs].
View all issues with CD1 status.
Discussion:
I'm trying to reconcile the note in tr.util.smartptr.shared.obs, p6 that talks about the operator*() member function of shared_ptr:
Notes: When T is void, attempting to instantiate this member function renders the program ill-formed. [Note: Instantiating shared_ptr<void> does not necessarily result in instantiating this member function. --end note]
with the requirement in temp.inst, p1:
The implicit instantiation of a class template specialization causes the implicit instantiation of the declarations, but not of the definitions...
I assume that what the note is really trying to say is that "instantiating shared_ptr<void> *must not* result in instantiating this member function." That is, that this function must not be declared a member of shared_ptr<void>. Is my interpretation correct?
Proposed resolution:
Change 2.2.3.5p6
-6-
Notes:When T is void,attempting to instantiate this member function renders the program ill-formed. [Note: Instantiating shared_ptr<void> does not necessarily result in instantiating this member function. --end note]it is unspecified whether this member function is declared or not, and if so, what its return type is, except that the declaration (although not necessarily the definition) of the function shall be well-formed.
Section: 20.8.2.2 [util.smartptr.shared], TR1 2.2.3 [tr.util.smartptr.shared] Status: CD1 Submitter: Martin Sebor Opened: 2005-10-16 Last modified: 2015-04-08
View other active issues in [util.smartptr.shared].
View all other issues in [util.smartptr.shared].
View all issues with CD1 status.
Discussion:
Is the void specialization of the template assignment operator taking a shared_ptr<void> as an argument supposed be well-formed?
I.e., is this snippet well-formed:
shared_ptr<void> p; p.operator=<void>(p);
Gcc complains about auto_ptr<void>::operator*() returning a reference to void. I suspect it's because shared_ptr has two template assignment operators, one of which takes auto_ptr, and the auto_ptr template gets implicitly instantiated in the process of overload resolution.
The only way I see around it is to do the same trick with auto_ptr<void> operator*() as with the same operator in shared_ptr<void>.
PS Strangely enough, the EDG front end doesn't mind the code, even though in a small test case (below) I can reproduce the error with it as well.
template <class T> struct A { T& operator*() { return *(T*)0; } }; template <class T> struct B { void operator= (const B&) { } template <class U> void operator= (const B<U>&) { } template <class U> void operator= (const A<U>&) { } }; int main () { B<void> b; b.operator=<void>(b); }
Proposed resolution:
In [lib.memory] change:
template<class X> class auto_ptr; template<> class auto_ptr<void>;
In [lib.auto.ptr]/2 add the following before the last closing brace:
template<> class auto_ptr<void> { public: typedef void element_type; };
Section: 20.8.2.2.5 [util.smartptr.shared.obs], TR1 2.2.3.5 [tr.util.smartptr.shared.obs] Status: CD1 Submitter: Martin Sebor Opened: 2005-10-18 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.obs].
View all issues with CD1 status.
Discussion:
Peter Dimov wrote: To: C++ libraries mailing list Message c++std-lib-15614 [...] The intent is for both use_count() and unique() to work in a threaded environment. They are intrinsically prone to race conditions, but they never return garbage.
This is a crucial piece of information that I really wish were captured in the text. Having this in a non-normative note would have made everything crystal clear to me and probably stopped me from ever starting this discussion :) Instead, the sentence in p12 "use only for debugging and testing purposes, not for production code" very strongly suggests that implementations can and even are encouraged to return garbage (when threads are involved) for performance reasons.
How about adding an informative note along these lines:
Note: Implementations are encouraged to provide well-defined behavior for use_count() and unique() even in the presence of multiple threads.
I don't necessarily insist on the exact wording, just that we capture the intent.
Proposed resolution:
Change 20.8.2.2.5 [util.smartptr.shared.obs] p12:
[Note: use_count() is not necessarily efficient.
Use only for debugging and testing purposes, not for production code.--end note]
Change 20.8.2.3.5 [util.smartptr.weak.obs] p3:
[Note: use_count() is not necessarily efficient.
Use only for debugging and testing purposes, not for production code.--end note]
Section: 26.6.4 [class.slice] Status: CD1 Submitter: Howard Hinnant Opened: 2005-11-03 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
If one explicitly constructs a slice or glice with the default constructor, does the standard require this slice to have any usable state? It says "creates a slice which specifies no elements", which could be interpreted two ways:
Here is a bit of code to illustrate:
#include <iostream> #include <valarray> int main() { std::valarray<int> v(10); std::valarray<int> v2 = v[std::slice()]; std::cout << "v[slice()].size() = " << v2.size() << '\n'; }
Is the behavior undefined? Or should the output be:
v[slice()].size() = 0
There is a similar question and wording for gslice at 26.3.6.1p1.
Proposed resolution:
[Martin suggests removing the second sentence in 26.6.4.2 [cons.slice] as well.]
Change 26.6.4.2 [cons.slice]:
1 -
The default constructor for slice creates a slice which specifies no elements.The default constructor is equivalent to slice(0, 0, 0). A default constructor is provided only to permit the declaration of arrays of slices. The constructor with arguments for a slice takes a start, length, and stride parameter.
Change 26.6.6.2 [gslice.cons]:
1 -
The default constructor creates a gslice which specifies no elements.The default constructor is equivalent to gslice(0, valarray<size_t>(), valarray<size_t>()). The constructor with arguments builds a gslice based on a specification of start, lengths, and strides, as explained in the previous section.
Section: 20.8.2.2.10 [util.smartptr.getdeleter], TR1 2.2.3.2 [tr.util.smartptr.shared.dest] Status: CD1 Submitter: Matt Austern Opened: 2006-01-10 Last modified: 2015-04-08
View all other issues in [util.smartptr.getdeleter].
View all issues with CD1 status.
Discussion:
The description of ~shared_ptr doesn't say when the shared_ptr's deleter, if any, is destroyed. In principle there are two possibilities: it is destroyed unconditionally whenever ~shared_ptr is executed (which, from an implementation standpoint, means that the deleter is copied whenever the shared_ptr is copied), or it is destroyed immediately after the owned pointer is destroyed (which, from an implementation standpoint, means that the deleter object is shared between instances). We should say which it is.
Proposed resolution:
Add after the first sentence of 20.8.2.2.10 [util.smartptr.getdeleter]/1:
The returned pointer remains valid as long as there exists a shared_ptr instance that owns d.
[Note: it is unspecified whether the pointer remains valid longer than that. This can happen if the implementation doesn't destroy the deleter until all weak_ptr instances in the ownership group are destroyed. -- end note]
Section: 26.8 [c.math] Status: CD1 Submitter: Howard Hinnant Opened: 2006-01-12 Last modified: 2015-04-08
View other active issues in [c.math].
View all other issues in [c.math].
View all issues with CD1 status.
Discussion:
Assuming we adopt the C compatibility package from C99 what should be the return type of the following signature be:
? pow(float, int);
C++03 says that the return type should be float. TR1 and C90/99 say the return type should be double. This can put clients into a situation where C++03 provides answers that are not as high quality as C90/C99/TR1. For example:
#include <math.h> int main() { float x = 2080703.375F; double y = pow(x, 2); }
Assuming an IEEE 32 bit float and IEEE 64 bit double, C90/C99/TR1 all suggest:
y = 4329326534736.390625
which is exactly right. While C++98/C++03 demands:
y = 4329326510080.
which is only approximately right.
I recommend that C++0X adopt the mixed mode arithmetic already adopted by Fortran, C and TR1 and make the return type of pow(float,int) be double.
[ Kona (2007): Other functions that are affected by this issue include ldexp, scalbln, and scalbn. We also believe that there is a typo in 26.7/10: float nexttoward(float, long double); [sic] should be float nexttoward(float, float); Proposed Disposition: Review (the proposed resolution appears above, rather than below, the heading "Proposed resolution") ]
[Howard, post Kona:]
Unfortunately I strongly disagree with a part of the resolution from Kona. I am moving from New to Open instead of to Review because I do not believe we have consensus on the intent of the resolution.
This issue does not include ldexp, scalbln, and scalbn because the second integral parameter in each of these signatures (from C99) is not a generic parameter according to C99 7.22p2. The corresponding C++ overloads are intended (as far as I know) to correspond directly to C99's definition of generic parameter.
For similar reasons, I do not believe that the second long double parameter of nexttoward, nor the return type of this function, is in error. I believe the correct signature is:
float nexttoward(float, long double);which is what both the C++0X working paper and C99 state (as far as I currently understand).
This is really only about pow(float, int). And this is because C++98 took one route (with pow only) and C99 took another (with many math functions in <tgmath.h>. The proposed resolution basically says: C++98 got it wrong and C99 got it right; let's go with C99.
[ Bellevue: ]
This signature was not picked up from C99. Instead, if one types pow(2.0f,2), the promotion rules will invoke "double pow(double, double)", which generally gives special treatment for integral exponents, preserving full accuracy of the result. New proposed wording provided.
Proposed resolution:
Change 26.8 [c.math] p10:
The added signatures are:
...float pow(float, int);...double pow(double, int);...long double pow(long double, int);
Section: X [cmplxh], TR1 8.3 [tr.c99.cmplxh] Status: CD1 Submitter: Howard Hinnant Opened: 2006-01-23 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
Previously xxx.h was parsable by C++. But in the case of C99's <complex.h> it isn't. Otherwise we could model it just like <string.h>, <cstring>, <string>:
In the case of C's complex, the C API won't compile in C++. So we have:
The ? can't refer to the C API. TR1 currently says:
Proposed resolution:
Change 26.3.11 [cmplxh]:
The header behaves as if it includes the header <ccomplex>.
, and provides sufficient using declarations to declare in the global namespace all function and type names declared or defined in the neader <complex>.[Note: <complex.h> does not promote any interface into the global namespace as there is no C interface to promote. --end note]
Section: 25.3.12 [alg.random.shuffle] Status: CD1 Submitter: Martin Sebor Opened: 2006-01-25 Last modified: 2015-04-08
View all other issues in [alg.random.shuffle].
View all issues with CD1 status.
Discussion:
...is specified to shuffle its range by calling swap but not how (or even that) it's supposed to use the RandomNumberGenerator argument passed to it.
Shouldn't we require that the generator object actually be used by the algorithm to obtain a series of random numbers and specify how many times its operator() should be invoked by the algorithm?
See N2391 and N2423 for some further discussion.
Proposed resolution:
Adopt the proposed resolution in N2423.
[ Kona (2007): The LWG adopted the proposed resolution of N2423 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 25.4 [alg.sorting] Status: C++11 Submitter: Martin Sebor Opened: 2006-02-05 Last modified: 2015-04-08
View all other issues in [alg.sorting].
View all issues with C++11 status.
Discussion:
In 25, p8 we allow BinaryPredicates to return a type that's convertible to bool but need not actually be bool. That allows predicates to return things like proxies and requires that implementations be careful about what kinds of expressions they use the result of the predicate in (e.g., the expression in if (!pred(a, b)) need not be well-formed since the negation operator may be inaccessible or return a type that's not convertible to bool).
Here's the text for reference:
...if an algorithm takes BinaryPredicate binary_pred as its argument and first1 and first2 as its iterator arguments, it should work correctly in the construct if (binary_pred(*first1, first2)){...}.
In 25.3, p2 we require that the Compare function object return true of false, which would seem to preclude such proxies. The relevant text is here:
Compare is used as a function object which returns true if the first argument is less than the second, and false otherwise...
[ Portland: Jack to define "convertible to bool" such that short circuiting isn't destroyed. ]
[ 2009-07-28 Reopened by Alisdair. No longer solved by concepts. ]
[ 2009-10 Santa Cruz: ]
Move to Review once wording received. Stefanus to send proposed wording.
[ 2009-10 Santa Cruz: ]
Move to Review once wording received. Stefanus to send proposed wording.
[ 2009-10-24 Stefanus supplied wording. ]
Move to Review once wording received. Stefanus to send proposed wording. Old proposed wording here:
I think we could fix this by rewording 25.3, p2 to read somthing like:
-2- Compare is
used as a function object which returns true if the first argumenta BinaryPredicate. The return value of the function call operator applied to an object of type Compare, when converted to type bool, yields true if the first argument of the call is less than the second, and false otherwise. Compare comp is used throughout for algorithms assuming an ordering relation. It is assumed that comp will not apply any non-constant function through the dereferenced iterator.
[ 2010-01-17: ]
Howard expresses concern that the current direction of the proposed wording outlaws expressions such as:
if (!comp(x, y))Daniel provides wording which addresses that concern.
The previous wording is saved here:
Change 25.4 [alg.sorting] p2:
Compare is used as a function object. The return value of the function call operator applied to an object of type Compare, when converted to type bool, yields true if the first argument of the call
which returns true if the first argumentis less than the second, and false otherwise. Compare comp is used throughout for algorithms assuming an ordering relation. It is assumed that comp will not apply any non-constant function through the dereferenced iterator.
[ 2010-01-22 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 25.1 [algorithms.general]/7+8 as indicated. [This change is recommended to bring the return value requirements of BinaryPredicate and Compare in sync.]
7 The Predicate parameter is used whenever an algorithm expects a function object that when applied to the result of dereferencing the corresponding iterator returns a value testable as true. In other words, if an algorithm takes Predicate pred as its argument and first as its iterator argument, it should work correctly in the construct
if (pred(*first)){...}pred(*first) contextually converted to bool (4 [conv]). The function object pred shall not apply any nonconstant function through the dereferenced iterator. This function object may be a pointer to function, or an object of a type with an appropriate function call operator.8 The BinaryPredicate parameter is used whenever an algorithm expects a function object that when applied to the result of dereferencing two corresponding iterators or to dereferencing an iterator and type T when T is part of the signature returns a value testable as true. In other words, if an algorithm takes BinaryPredicate binary_pred as its argument and first1 and first2 as its iterator arguments, it should work correctly in the construct
if (binary_pred(*first1, *first2)){...}binary_pred(*first1, *first2) contextually converted to bool (4 [conv]). BinaryPredicate always takes the first iterator type as its first argument, that is, in those cases when T value is part of the signature, it should work correctly in thecontext of if (binary_pred(*first1, value)){...}construct binary_pred(*first1, value) contextually converted to bool (4 [conv]). binary_pred shall not apply any non-constant function through the dereferenced iterators.
Change 25.4 [alg.sorting]/2 as indicated:
2 Compare is
used asa function object type (20.9 [function.objects]). The return value of the function call operation applied to an object of type Compare, when contextually converted to type bool (4 [conv]), yields true if the first argument of the callwhich returns true if the first argumentis less than the second, and false otherwise. Compare comp is used throughout for algorithms assuming an ordering relation. It is assumed that comp will not apply any non-constant function through the dereferenced iterator.
Section: 18.3.2 [limits] Status: CD1 Submitter: Martin Sebor Opened: 2006-02-19 Last modified: 2015-04-08
View all other issues in [limits].
View all issues with CD1 status.
Discussion:
18.3.2 [limits], p2 requires implementations to provide specializations of the
numeric_limits
template for each scalar type. While this
could be interepreted to include cv-qualified forms of such types such
an interepretation is not reflected in the synopsis of the
<limits>
header.
The absence of specializations of the template on cv-qualified forms
of fundamental types makes numeric_limits
difficult to
use in generic code where the constness (or volatility) of a type is
not always immediately apparent. In such contexts, the primary
template ends up being instantiated instead of the provided
specialization, typically yielding unexpected behavior.
Require that specializations of numeric_limits
on
cv-qualified fundamental types have the same semantics as those on the
unqualifed forms of the same types.
Proposed resolution:
Add to the synopsis of the <limits>
header,
immediately below the declaration of the primary template, the
following:
template <class T> class numeric_limits<const T>; template <class T> class numeric_limits<volatile T>; template <class T> class numeric_limits<const volatile T>;
Add a new paragraph to the end of 18.3.2.3 [numeric.limits], with the following text:
-new-para- The value of each member of a numeric_limits
specialization on a cv-qualified T is equal to the value of the same
member of numeric_limits<T>
.
[ Portland: Martin will clarify that user-defined types get cv-specializations automatically. ]
Section: 24.5.2.6.5 [inserter] Status: CD1 Submitter: Howard Hinnant Opened: 2006-02-21 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The declaration of std::inserter is:
template <class Container, class Iterator> insert_iterator<Container> inserter(Container& x, Iterator i);
The template parameter Iterator in this function is completely unrelated to the template parameter Container when it doesn't need to be. This causes the code to be overly generic. That is, any type at all can be deduced as Iterator, whether or not it makes sense. Now the same is true of Container. However, for every free (unconstrained) template parameter one has in a signature, the opportunity for a mistaken binding grows geometrically.
It would be much better if inserter had the following signature instead:
template <class Container> insert_iterator<Container> inserter(Container& x, typename Container::iterator i);
Now there is only one free template parameter. And the second argument to inserter must be implicitly convertible to the container's iterator, else the call will not be a viable overload (allowing other functions in the overload set to take precedence). Furthermore, the first parameter must have a nested type named iterator, or again the binding to std::inserter is not viable. Contrast this with the current situation where any type can bind to Container or Iterator and those types need not be anything closely related to containers or iterators.
This can adversely impact well written code. Consider:
#include <iterator> #include <string> namespace my { template <class String> struct my_type {}; struct my_container { template <class String> void push_back(const my_type<String>&); }; template <class String> void inserter(const my_type<String>& m, my_container& c) {c.push_back(m);} } // my int main() { my::my_container c; my::my_type<std::string> m; inserter(m, c); }
Today this code fails because the call to inserter binds to std::inserter instead of to my::inserter. However with the proposed change std::inserter will no longer be a viable function which leaves only my::inserter in the overload resolution set. Everything works as the client intends.
To make matters a little more insidious, the above example works today if you simply change the first argument to an rvalue:
inserter(my::my_type(), c);
It will also work if instantiated with some string type other than std::string (or any other std type). It will also work if <iterator> happens to not get included.
And it will fail again for such inocuous reaons as my_type or my_container privately deriving from any std type.
It seems unfortunate that such simple changes in the client's code can result in such radically differing behavior.
Proposed resolution:
Change 24.2:
24.2 Header <iterator> synopsis
... template <class Container, class Iterator> insert_iterator<Container> inserter(Container& x,Iteratortypename Container::iterator i); ...
Change 24.4.2.5:
24.4.2.5 Class template insert_iterator
... template <class Container, class Iterator> insert_iterator<Container> inserter(Container& x,Iteratortypename Container::iterator i); ...
Change 24.4.2.6.5:
24.4.2.6.5 inserter
template <class Container, class Inserter> insert_iterator<Container> inserter(Container& x,Insertertypename Container::iterator i);-1- Returns: insert_iterator<Container>(x,
typename Container::iterator(i)).
[ Kona (2007): This issue will probably be addressed as a part of the concepts overhaul of the library anyway, but the proposed resolution is correct in the absence of concepts. Proposed Disposition: Ready ]
Section: 27.8 [string.streams] Status: CD1 Submitter: Martin Sebor Opened: 2006-02-23 Last modified: 2015-04-08
View all other issues in [string.streams].
View all issues with CD1 status.
Discussion:
For better efficiency, the requirement on the stringbuf ctor that
takes a string argument should be loosened up to let it set
epptr()
beyond just one past the last initialized
character just like overflow()
has been changed to be
allowed to do (see issue 432). That way the first call to
sputc()
on an object won't necessarily cause a call to
overflow
. The corresponding change should be made to the
string overload of the str()
member function.
Proposed resolution:
Change 27.7.1.1, p3 of the Working Draft, N1804, as follows:
explicit basic_stringbuf(const basic_string<charT,traits,Allocator>& str, ios_base::openmode which = ios_base::in | ios_base::out);-3- Effects: Constructs an object of class basic_stringbuf, initializing the base class with basic_streambuf() (27.5.2.1), and initializing mode with which. Then calls str(s).
copies the content of str into the basic_stringbuf underlying character sequence. If which & ios_base::out is true, initializes the output sequence such that pbase() points to the first underlying character, epptr() points one past the last underlying character, and pptr() is equal to epptr() if which & ios_base::ate is true, otherwise pptr() is equal to pbase(). If which & ios_base::in is true, initializes the input sequence such that eback() and gptr() point to the first underlying character and egptr() points one past the last underlying character.
Change the Effects clause of the str()
in 27.7.1.2, p2 to
read:
-2- Effects: Copies the contents of s into the basic_stringbuf underlying character sequence and initializes the input and output sequences according to mode.
If mode & ios_base::out is true, initializes the output sequence such that pbase() points to the first underlying character, epptr() points one past the last underlying character, and pptr() is equal to epptr() if mode & ios_base::in is true, otherwise pptr() is equal to pbase(). If mode & ios_base::in is true, initializes the input sequence such that eback() and gptr() point to the first underlying character and egptr() points one past the last underlying character.-3- Postconditions: If
mode & ios_base::out
is true,pbase()
points to the first underlying character and(epptr() >= pbase() + s.size())
holds; in addition, ifmode & ios_base::in
is true,(pptr() == pbase() + s.data())
holds, otherwise(pptr() == pbase())
is true. Ifmode & ios_base::in
is true,eback()
points to the first underlying character, and(gptr() == eback())
and(egptr() == eback() + s.size())
hold.
[ Kona (2007) Moved to Ready. ]
Section: 27.8.2.4 [stringbuf.virtuals] Status: CD1 Submitter: Martin Sebor Opened: 2006-02-23 Last modified: 2015-04-08
View all other issues in [stringbuf.virtuals].
View all issues with CD1 status.
Discussion:
According to Table 92 (unchanged by issue 432), when (way ==
end)
the newoff
value in out mode is computed as
the difference between epptr()
and pbase()
.
This value isn't meaningful unless the value of epptr()
can be precisely controlled by a program. That used to be possible
until we accepted the resolution of issue 432, but since then the
requirements on overflow()
have been relaxed to allow it
to make more than 1 write position available (i.e., by setting
epptr()
to some unspecified value past
pptr()
). So after the first call to
overflow()
positioning the output sequence relative to
end will have unspecified results.
In addition, in in|out
mode, since (egptr() ==
epptr())
need not hold, there are two different possible values
for newoff
: epptr() - pbase()
and
egptr() - eback()
.
Proposed resolution:
Change the newoff
column in the last row of Table 94 to
read:
the
endhigh mark pointer minus the beginning pointer ().
xendhigh_mark - xbeg
[ Kona (2007) Moved to Ready. ]
Section: 27.8.2.4 [stringbuf.virtuals] Status: C++11 Submitter: Martin Sebor Opened: 2006-02-23 Last modified: 2015-04-08
View all other issues in [stringbuf.virtuals].
View all issues with C++11 status.
Discussion:
The effects of the seekpos()
member function of
basic_stringbuf
simply say that the function positions
the input and/or output sequences but fail to spell out exactly
how. This is in contrast to the detail in which seekoff()
is described.
[ 2009-07 Frankfurt ]
Move to Ready.
Proposed resolution:
Change 27.7.1.3, p13 to read:
-13- Effects: Equivalent to seekoff(off_type(sp), ios_base::beg, which).
Alters the stream position within the controlled sequences, if possible, to correspond to the stream position stored in sp (as described below).
If (which & ios_base::in) != 0, positions the input sequence.If (which & ios_base::out) != 0, positions the output sequence.If sp is an invalid stream position, or if the function positions neither sequence, the positioning operation fails. If sp has not been obtained by a previous successful call to one of the positioning functions (seekoff, seekpos, tellg, tellp) the effect is undefined.
[ Kona (2007): A pos_type is a position in a stream by definition, so there is no ambiguity as to what it means. Proposed Disposition: NAD ]
[ Post-Kona Martin adds: I'm afraid I disagree with the Kona '07 rationale for marking it NAD. The only text that describes precisely what it means to position the input or output sequence is in seekoff(). The seekpos() Effects clause is inadequate in comparison and the proposed resolution plugs the hole by specifying seekpos() in terms of seekoff(). ]
Section: 27.6.3.4.5 [streambuf.virt.put] Status: C++11 Submitter: Martin Sebor Opened: 2006-02-23 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
streambuf::xsputn() is specified to have the effect of "writing up to n characters to the output sequence as if by repeated calls to sputc(c)."
Since sputc() is required to call overflow() when (pptr() == epptr()) is true, strictly speaking xsputn() should do the same. However, doing so would be suboptimal in some interesting cases, such as in unbuffered mode or when the buffer is basic_stringbuf.
Assuming calling overflow() is not really intended to be required and the wording is simply meant to describe the general effect of appending to the end of the sequence it would be worthwhile to mention in xsputn() that the function is not actually required to cause a call to overflow().
[ 2009-07 Frankfurt ]
Move to Ready.
Proposed resolution:
Add the following sentence to the xsputn() Effects clause in 27.5.2.4.5, p1 (N1804):
-1- Effects: Writes up to n characters to the output sequence as if by repeated calls to sputc(c). The characters written are obtained from successive elements of the array whose first element is designated by s. Writing stops when either n characters have been written or a call to sputc(c) would return traits::eof(). It is uspecified whether the function calls overflow() when (pptr() == epptr()) becomes true or whether it achieves the same effects by other means.
In addition, I suggest to add a footnote to this function with the same text as Footnote 292 to make it extra clear that derived classes are permitted to override xsputn() for efficiency.
[ Kona (2007): We want to permit a streambuf that streams output directly to a device without making calls to sputc or overflow. We believe that has always been the intention of the committee. We believe that the proposed wording doesn't accomplish that. Proposed Disposition: Open ]
Section: 27.7.2.3 [istream.unformatted] Status: CD1 Submitter: Martin Sebor Opened: 2006-02-23 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with CD1 status.
Discussion:
The array forms of unformatted input functions don't have well-defined semantics for zero-element arrays in a couple of cases. The affected ones (istream::get() and getline()) are supposed to terminate when (n - 1) characters are stored, which obviously can never be true when (n == 0) to start with.
Proposed resolution:
I propose the following changes (references are relative to the Working Draft (document N1804).
Change 27.6.1.3, p8 (istream::get()), bullet 1 as follows:
if (n < 1) is true or (n - 1) characters are stored;
Similarly, change 27.6.1.3, p18 (istream::getline()), bullet 3 as follows:
(n < 1) is true or (n - 1) characters are stored (in which case the function calls setstate(failbit)).
Finally, change p21 as follows:
In any case, provided (n > 0) is true, it then stores a null character (using charT()) into the next successive location of the array.
Section: 27.7 [iostream.format] Status: CD1 Submitter: Martin Sebor Opened: 2006-02-25 Last modified: 2015-04-08
View all other issues in [iostream.format].
View all issues with CD1 status.
Discussion:
Issue 60 explicitly made the extractor and inserter operators that take a basic_streambuf* argument formatted input and output functions, respectively. I believe that's wrong, certainly in the case of the extractor, since formatted functions begin by extracting and discarding whitespace. The extractor should not discard any characters.
Proposed resolution:
I propose to change each operator to behave as unformatted input and output function, respectively. The changes below are relative to the working draft document number N1804.
Specifically, change 27.6.1.2.3, p14 as follows:
Effects: Behaves as an unformatted input function (as described in
27.6.1.2.127.6.1.3, paragraph 1).
And change 27.6.2.5.3, p7 as follows:
Effects: Behaves as an unformatted output function (as described in
27.6.2.5.127.6.2.6, paragraph 1).
[ Kona (2007): Proposed Disposition: Ready ]
Section: 27.4 [iostream.objects] Status: CD1 Submitter: Pete Becker Opened: 2006-04-18 Last modified: 2015-04-08
View all other issues in [iostream.objects].
View all issues with CD1 status.
Discussion:
lib.iostream.objects requires that the standard stream objects are never destroyed, and it requires that they be destroyed.
DR 369 adds words to say that we really mean for ios_base::Init objects to force construction of standard stream objects. It ends, though, with the phrase "these stream objects shall be destroyed after the destruction of dynamically ...". However, the rule for destruction is stated in the standard: "The objects are not destroyed during program execution."
Proposed resolution:
Change 27.4 [iostream.objects]/1:
-2- The objects are constructed and the associations are established at some time prior to or during the first time an object of class ios_base::Init is constructed, and in any case before the body of main begins execution.290) The objects are not destroyed during program execution.291) If a translation unit includes <iostream> or explicitly constructs an ios_base::Init object, these stream objects shall be constructed before dynamic initialization of non-local objects defined later in that translation unit
, and these stream objects shall be destroyed after the destruction of dynamically initialized non-local objects defined later in that translation unit.
[ Kona (2007): From 27.4 [iostream.objects]/2, strike the words "...and these stream objects shall be destroyed after the destruction of dynamically initialized non-local objects defined later in that translation unit." Proposed Disposition: Review ]
Section: 20.8.2.2.2 [util.smartptr.shared.dest], TR1 2.2.3.2 [tr.util.smartptr.shared.dest] Status: CD1 Submitter: Peter Dimov Opened: 2006-04-23 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.dest].
View all issues with CD1 status.
Discussion:
[tr.util.smartptr.shared.dest] says in its second bullet:
"If *this shares ownership with another shared_ptr instance (use_count() > 1), decrements that instance's use count."
The problem with this formulation is that it presupposes the existence of an "use count" variable that can be decremented and that is part of the state of a shared_ptr instance (because of the "that instance's use count".)
This is contrary to the spirit of the rest of the specification that carefully avoids to require an use count variable. Instead, use_count() is specified to return a value, a number of instances.
In multithreaded code, the usual implicit assumption is that a shared variable should not be accessed by more than one thread without explicit synchronization, and by introducing the concept of an "use count" variable, the current wording implies that two shared_ptr instances that share ownership cannot be destroyed simultaneously.
In addition, if we allow the interpretation that an use count variable is part of shared_ptr's state, this would lead to other undesirable consequences WRT multiple threads. For example,
p1 = p2;
would now visibly modify the state of p2, a "write" operation, requiring a lock.
Proposed resolution:
Change the first two bullets of [lib.util.smartptr.shared.dest]/1 to:
- If *this is empty or shares ownership with another shared_ptr instance (use_count() > 1), there are no side effects.
If *this shares ownership with another shared_ptr instance (use_count() > 1), decrements that instance's use count.
Add the following paragraph after [lib.util.smartptr.shared.dest]/1:
[Note: since the destruction of *this decreases the number of instances in *this's ownership group by one, all shared_ptr instances that share ownership with *this will report an use_count() that is one lower than its previous value after *this is destroyed. --end note]
Section: 25.2.7 [alg.find.first.of] Status: CD1 Submitter: Doug Gregor Opened: 2006-04-25 Last modified: 2015-04-08
View all other issues in [alg.find.first.of].
View all issues with CD1 status.
Discussion:
In 25.1.4 Find First [lib.alg.find.first], the two iterator type parameters to find_first_of are specified to require Forward Iterators, as follows:
template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 find_first_of(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 find_first_of(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);
However, ForwardIterator1 need not actually be a Forward Iterator; an Input Iterator suffices, because we do not need the multi-pass property of the Forward Iterator or a true reference.
Proposed resolution:
Change the declarations of find_first_of to:
template<classForwardIterator1InputIterator1, class ForwardIterator2>ForwardIterator1InputIterator1 find_first_of(ForwardIterator1InputIterator1 first1,ForwardIterator1InputIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<classForwardIterator1InputIterator1, class ForwardIterator2, class BinaryPredicate>ForwardIterator1InputIterator1 find_first_of(ForwardIterator1InputIterator1 first1,ForwardIterator1InputIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);
Section: 25.4.3.2 [upper.bound] Status: CD1 Submitter: Seungbeom Kim Opened: 2006-05-03 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
ISO/IEC 14882:2003 says:
25.3.3.2 upper_bound
Returns: The furthermost iterator i in the range [first, last) such that for any iterator j in the range [first, i) the following corresponding conditions hold: !(value < *j) or comp(value, *j) == false.
From the description above, upper_bound cannot return last, since it's not in the interval [first, last). This seems to be a typo, because if value is greater than or equal to any other values in the range, or if the range is empty, returning last seems to be the intended behaviour. The corresponding interval for lower_bound is also [first, last].
Proposed resolution:
Change [lib.upper.bound]:
Returns: The furthermost iterator i in the range [first, last
)] such that for any iterator j in the range [first, i) the following corresponding conditions hold: !(value < *j) or comp(value, *j) == false.
Section: 20.7.9.1 [allocator.members] Status: CD1 Submitter: Martin Sebor Opened: 2006-05-17 Last modified: 2015-04-08
View all other issues in [allocator.members].
View all issues with CD1 status.
Discussion:
The description of the allocator member function
allocate()
requires that the hint argument be
either 0 or a value previously returned from allocate()
.
Footnote 227 further suggests that containers may pass the address of
an adjacent element as this argument.
I believe that either the footnote is wrong or the normative
requirement that the argument be a value previously returned from a
call to allocate()
is wrong. The latter is supported by
the resolution to issue 20-004 proposed in c++std-lib-3736 by Nathan
Myers. In addition, the hint is an ordinary void* and not the
pointer
type returned by allocate()
, with
the two types potentially being incompatible and the requirement
impossible to satisfy.
See also c++std-lib-14323 for some more context on where this came up (again).
Proposed resolution:
Remove the requirement in 20.6.1.1, p4 that the hint be a value
previously returned from allocate()
. Specifically, change
the paragraph as follows:
Requires: hint either 0 or previously obtained from member
[Note: The value hint may be used by an
implementation to help improve performance. -- end note]
allocate
and not yet passed to member deallocate
.
The value hint may be used by an implementation to help improve performance
223).
[Footnote: 223)In a container member function, the address of an adjacent element is often a good choice to pass for this argument.
flush()
not unformatted functionSection: 27.7.3.7 [ostream.unformatted] Status: CD1 Submitter: Martin Sebor Opened: 2006-06-14 Last modified: 2015-04-08
View all other issues in [ostream.unformatted].
View all issues with CD1 status.
Discussion:
The resolution of issue 60 changed basic_ostream::flush()
so as not to require it to behave as an unformatted output function.
That has at least two in my opinion problematic consequences:
First, flush()
now calls rdbuf()->pubsync()
unconditionally, without regard to the state of the stream. I can't
think of any reason why flush()
should behave differently
from the vast majority of stream functions in this respect.
Second, flush()
is not required to catch exceptions from
pubsync()
or set badbit
in response to such
events. That doesn't seem right either, as most other stream functions
do so.
Proposed resolution:
I propose to revert the resolution of issue 60 with respect to
flush()
. Specifically, I propose to change 27.6.2.6, p7
as follows:
Effects: Behaves as an unformatted output function (as described
in 27.6.2.6, paragraph 1). If rdbuf()
is not a null
pointer, constructs a sentry object. If this object returns
true
when converted to a value of type bool the function
calls rdbuf()->pubsync()
. If that function returns
-1 calls setstate(badbit)
(which may throw
ios_base::failure
(27.4.4.3)). Otherwise, if the
sentry object returns false
, does nothing.Does
not behave as an unformatted output function (as described in
27.6.2.6, paragraph 1).
[ Kona (2007): Proposed Disposition: Ready ]
Section: 21.4.8.9 [string.io] Status: CD1 Submitter: Martin Sebor Opened: 2006-06-22 Last modified: 2015-04-08
View all other issues in [string.io].
View all issues with CD1 status.
Discussion:
Section and paragraph numbers in this paper are relative to the working draft document number N2009 from 4/21/2006.
The basic_string
extractor in 21.3.7.9, p1 is clearly
required to behave as a formatted input function, as is the
std::getline()
overload for string described in p7.
However, the basic_string
inserter described in p5 of the
same section has no such requirement. This has implications on how the
operator responds to exceptions thrown from xsputn()
(formatted output functions are required to set badbit
and swallow the exception unless badbit
is also set in
exceptions()
; the string inserter doesn't have any such
requirement).
I don't see anything in the spec for the string inserter that would justify requiring it to treat exceptions differently from all other similar operators. (If it did, I think it should be made this explicit by saying that the operator "does not behave as a formatted output function" as has been made customary by the adoption of the resolution of issue 60).
Proposed resolution:
I propose to change the Effects clause in 21.3.7.9, p5, as follows:
Effects:
Begins by constructing a sentry object k as if k were constructed by typenameBehaves as a formatted output function (27.6.2.5.1). After constructing abasic_ostream<charT, traits>::sentry k (os)
. Ifbool(k)
istrue
,sentry
object, if this object returnstrue
when converted to a value of typebool
, determines padding as described in 22.2.2.2.2, then inserts the resulting sequence of charactersseq
as if by callingos.rdbuf()->sputn(seq , n)
, wheren
is the larger ofos.width()
andstr.size()
; then callsos.width(0)
.If the call to sputn fails, callsos.setstate(ios_base::failbit)
.
This proposed resilution assumes the resolution of issue 394 (i.e.,
that all formatted output functions are required to set
ios_base::badbit
in response to any kind of streambuf
failure), and implicitly assumes that a return value of
sputn(seq, n)
other than n
indicates a failure.
Section: 23.2 [container.requirements] Status: CD1 Submitter: Peter Dimov Opened: 2006-08-02 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with CD1 status.
Duplicate of: 536
Discussion:
There appears to be no requirements on the InputIterators used in sequences in 23.1.1 in terms of their value_type, and the requirements in 23.1.2 appear to be overly strict (requires InputIterator::value_type be the same type as the container's value_type).
Proposed resolution:
Change 23.1.1 p3:
In Tables 82 and 83, X denotes a sequence class, a denotes a value of X, i and j denote iterators satisfying input iterator requirements and refer to elements implicitly convertible to value_type, [i, j) denotes a valid range, n denotes a value of X::size_type, p denotes a valid iterator to a, q denotes a valid dereferenceable iterator to a, [q1, q2) denotes a valid range in a, and t denotes a value of X::value_type.
Change 23.1.2 p7:
In Table 84, X is an associative container class, a is a value of X, a_uniq is a value of X when X supports unique keys, and a_eq is a value of X when X supports multiple keys, i and j satisfy input iterator requirements and refer to elements
ofimplicitly convertible to value_type, [i, j) is a valid range, p is a valid iterator to a, q is a valid dereferenceable iterator to a, [q1, q2) is a valid range in a, t is a value of X::value_type, k is a value of X::key_type and c is a value of type X::key_compare.
Rationale:
Concepts will probably come in and rewrite this section anyway. But just in case it is easy to fix this up as a safety net and as a clear statement of intent.
Section: 18.4 [cstdint], TR1 8.22 [tr.c99.cstdint] Status: CD1 Submitter: Walter Brown Opened: 2006-08-28 Last modified: 2015-04-08
View all other issues in [cstdint].
View all issues with CD1 status.
Discussion:
Clause 18.3 of the current Working Paper (N2009) deals with the new C++ headers <cstdint> and <stdint.h>. These are of course based on the C99 header <stdint.h>, and were part of TR1.
Per 18.3.1/1, these headers define a number of macros and function macros. While the WP does not mention __STDC_CONSTANT_MACROS in this context, C99 footnotes do mention __STDC_CONSTANT_MACROS. Further, 18.3.1/2 states that "The header defines all ... macros the same as C99 subclause 7.18."
Therefore, if I wish to have the above-referenced macros and function macros defined, must I #define __STDC_CONSTANT_MACROS before I #include <cstdint>, or does the C++ header define these macros/function macros unconditionally?
Proposed resolution:
To put this issue to rest for C++0X, I propose the following addition to 18.3.1/2 of the Working Paper N2009:
[Note: The macros defined by <cstdint> are provided unconditionally: in particular, the symbols __STDC_LIMIT_MACROS and __STDC_CONSTANT_MACROS (mentioned in C99 footnotes 219, 220, and 222) play no role in C++. --end note]
Section: 17.6.3.1 [utility.arg.requirements] Status: Resolved Submitter: Niels Dekker Opened: 2006-11-02 Last modified: 2015-04-08
View all other issues in [utility.arg.requirements].
View all issues with Resolved status.
Discussion:
It seems undesirable to define the Swappable requirement in terms of CopyConstructible and Assignable requirements. And likewise, once the MoveConstructible and MoveAssignable requirements (N1860) have made it into the Working Draft, it seems undesirable to define the Swappable requirement in terms of those requirements. Instead, it appears preferable to have the Swappable requirement defined exclusively in terms of the existence of an appropriate swap function.
Section 20.1.4 [lib.swappable] of the current Working Draft (N2009) says:
The Swappable requirement is met by satisfying one or more of the following conditions:
- T is Swappable if T satisfies the CopyConstructible requirements (20.1.3) and the Assignable requirements (23.1);
- T is Swappable if a namespace scope function named swap exists in the same namespace as the definition of T, such that the expression swap(t,u) is valid and has the semantics described in Table 33.
I can think of three disadvantages of this definition:
If a client's type T satisfies the first condition (T is both CopyConstructible and Assignable), the client cannot stop T from satisfying the Swappable requirement without stopping T from satisfying the first condition.
A client might want to stop T from satisfying the Swappable requirement, because swapping by means of copy construction and assignment might throw an exception, and she might find a throwing swap unacceptable for her type. On the other hand, she might not feel the need to fully implement her own swap function for this type. In this case she would want to be able to simply prevent algorithms that would swap objects of type T from being used, e.g., by declaring a swap function for T, and leaving this function purposely undefined. This would trigger a link error, if an attempt would be made to use such an algorithm for this type. For most standard library implementations, this practice would indeed have the effect of stopping T from satisfying the Swappable requirement.
A client's type T that does not satisfy the first condition can not be made Swappable by providing a specialization of std::swap for T.
While I'm aware about the fact that people have mixed feelings about providing a specialization of std::swap, it is well-defined to do so. It sounds rather counter-intuitive to say that T is not Swappable, if it has a valid and semantically correct specialization of std::swap. Also in practice, providing such a specialization will have the same effect as satisfying the Swappable requirement.
For a client's type T that satisfies both conditions of the Swappable requirement, it is not specified which of the two conditions prevails. After reading section 20.1.4 [lib.swappable], one might wonder whether objects of T will be swapped by doing copy construction and assignments, or by calling the swap function of T.
I'm aware that the intention of the Draft is to prefer calling the swap function of T over doing copy construction and assignments. Still in my opinion, it would be better to make this clear in the wording of the definition of Swappable.
I would like to have the Swappable requirement defined in such a way that the following code fragment will correctly swap two objects of a type T, if and only if T is Swappable:
using std::swap; swap(t, u); // t and u are of type T.
This is also the way Scott Meyers recommends calling a swap function, in Effective C++, Third Edition, item 25.
Most aspects of this issue have been dealt with in a discussion on comp.std.c++ about the Swappable requirement, from 13 September to 4 October 2006, including valuable input by David Abrahams, Pete Becker, Greg Herlihy, Howard Hinnant and others.
[ San Francisco: ]
Recommend
NADResolved. Solved by N2774.
[ 2009-07 Frankfurt ]
Moved to Open. Waiting for non-concepts draft.
[ 2009-11-08 Howard adds: ]
This issue is very closely related to 742.
[ 2010-02-03 Sean Hunt adds: ]
While reading N3000, I independently came across Issue 594. Having seen that it's an issue under discussion, I think the proposed wording needs fixing to something more like "...function call swap(t,u) that includes std::swap in its overload set is valid...", because "...is valid within the namespace std..." does not allow other libraries to simply use the Swappable requirement by referring to the standard's definition, since they cannot actually perform any calls within std.
This wording I suggested would also make overloads visible in the same scope as the `using std::swap` valid for Swappable requirements; a more complex wording limiting the non-ADL overload set to std::swap might be required.
[ 2010 Pittsburgh: ]
Moved to NAD Editorial. Rationale added.
Rationale:
Solved by N3048.
Proposed resolution:
Change section 20.1.4 [lib.swappable] as follows:
The Swappable requirement is met by satisfying
one or more of the following conditions:the following condition:
T is Swappable if T satisfies the CopyConstructible requirements (20.1.3) and the Assignable requirements (23.1);T is Swappable if a namespace scope function named swap exists in the same namespace as the definition of T, such that the expression swap(t,u) is valid and has the semantics described in Table 33.T is Swappable if an unqualified function call swap(t,u) is valid within the namespace std, and has the semantics described in Table 33.
Section: 26.4.7 [complex.value.ops] Status: CD1 Submitter: Stefan Große Pawig Opened: 2006-09-24 Last modified: 2015-04-08
View all other issues in [complex.value.ops].
View all issues with CD1 status.
Discussion:
TR1 introduced, in the C compatibility chapter, the function fabs(complex<T>):
----- SNIP ----- 8.1.1 Synopsis [tr.c99.cmplx.syn] namespace std { namespace tr1 { [...] template<class T> complex<T> fabs(const complex<T>& x); } // namespace tr1 } // namespace std [...] 8.1.8 Function fabs [tr.c99.cmplx.fabs] 1 Effects: Behaves the same as C99 function cabs, defined in subclause 7.3.8.1. ----- SNIP -----
The current C++0X draft document (n2009.pdf) adopted this definition in chapter 26.3.1 (under the comment // 26.3.7 values) and 26.3.7/7.
But in C99 (ISO/IEC 9899:1999 as well as the 9899:TC2 draft document n1124), the referenced subclause reads
----- SNIP ----- 7.3.8.1 The cabs functions Synopsis 1 #include <complex.h> double cabs(double complex z); float cabsf(float complex z); long double cabsl(long double z); Description 2 The cabs functions compute the complex absolute value (also called norm, modulus, or magnitude) of z. Returns 3 The cabs functions return the complex absolute value. ----- SNIP -----
Note that the return type of the cabs*() functions is not a complex type. Thus, they are equivalent to the already well established template<class T> T abs(const complex<T>& x); (26.2.7/2 in ISO/IEC 14882:1998, 26.3.7/2 in the current draft document n2009.pdf).
So either the return value of fabs() is specified wrongly, or fabs() does not behave the same as C99's cabs*().
Possible Resolutions
This depends on the intention behind the introduction of fabs().
If the intention was to provide a /complex/ valued function that calculates the magnitude of its argument, this should be explicitly specified. In TR1, the categorization under "C compatibility" is definitely wrong, since C99 does not provide such a complex valued function.
Also, it remains questionable if such a complex valued function is really needed, since complex<T> supports construction and assignment from real valued arguments. There is no difference in observable behaviour between
complex<double> x, y; y = fabs(x); complex<double> z(fabs(x));
and
complex<double> x, y; y = abs(x); complex<double> z(abs(x));
If on the other hand the intention was to provide the intended functionality of C99, fabs() should be either declared deprecated or (for C++0X) removed from the standard, since the functionality is already provided by the corresponding overloads of abs().
[ Bellevue: ]
Bill believes that abs() is a suitable overload. We should remove fabs().
Proposed resolution:
Change the synopsis in 26.4.1 [complex.syn]:
template<class T> complex<T> fabs(const complex<T>&);
Remove 26.4.7 [complex.value.ops], p7:
template<class T> complex<T> fabs(const complex<T>& x);
-7- Effects: Behaves the same as C99 function cabs, defined in subclause 7.3.8.1.
[ Kona (2007): Change the return type of fabs(complex) to T. Proposed Disposition: Ready ]
Section: 27.9.1.4 [filebuf.members] Status: CD1 Submitter: Thomas Plum Opened: 2006-09-26 Last modified: 2015-04-08
View all other issues in [filebuf.members].
View all issues with CD1 status.
Discussion:
In testing 27.9.1.4 [filebuf.members], Table 112 (in the latest N2009 draft), we invoke
ostr.open("somename", ios_base::out | ios_base::in | ios_base::app)
and we expect the open to fail, because out|in|app is not listed in Table 92, and just before the table we see very specific words:
If mode is not some combination of flags shown in the table then the open fails.
But the corresponding table in the C standard, 7.19.5.3, provides two modes "a+" and "a+b", to which the C++ modes out|in|app and out|in|app|binary would presumably apply.
We would like to argue that the intent of Table 112 was to match the semantics of 7.19.5.3 and that the omission of "a+" and "a+b" was unintentional. (Otherwise there would be valid and useful behaviors available in C file I/O which are unavailable using C++, for no valid functional reason.)
We further request that the missing modes be explicitly restored to the WP, for inclusion in C++0x.
[ Martin adds: ]
...besides "a+" and "a+b" the C++ table is also missing a row for a lone app bit which in at least two current implementation as well as in Classic Iostreams corresponds to the C stdio "a" mode and has been traditionally documented as implying ios::out. Which means the table should also have a row for in|app meaning the same thing as "a+" already proposed in the issue.
Proposed resolution:
Add to the table "File open modes" in 27.9.1.4 [filebuf.members]:
File open modes ios_base Flag combination stdio equivalent binary in out trunc app + "w" + + "a" + "a" + + "w" + "r" + + "r+" + + + "w+" + + + "a+" + + "a+" + + "wb" + + + "ab" + + "ab" + + + "wb" + + "rb" + + + "r+b" + + + + "w+b" + + + + "a+b" + + + "a+b"
[ Kona (2007) Added proposed wording and moved to Review. ]
Section: TRDecimal 3.2 [trdec.types.types] Status: TRDec Submitter: Daniel Krugler Opened: 2006-05-28 Last modified: 2015-04-08
View all other issues in [trdec.types.types].
View all issues with TRDec status.
Discussion:
In a private email, Daniel writes:
I would like to ask, what where the reason for the decision to define the semantics of the integral conversion of the decimal types, namely
"operator long long() const; Returns: Returns the result of the conversion of *this to the type long long, as if performed by the expression llrounddXX(*this)."where XX stands for either 32, 64, or 128, corresponding to the proper decimal type. The exact meaning of llrounddXX is not given in that paper, so I compared it to the corresponding definition given in C99, 2nd edition (ISO 9899), which says in 7.12.9.7 p. 2:
"The lround and llround functions round their argument to the nearest integer value, rounding halfway cases away from zero, regardless of the current rounding direction. [..]"
Now considering the fact that integral conversion of the usual floating-point types ("4.9 Floating-integral conversions") has truncation semantic I wonder why this conversion behaviour has not been transferred for the decimal types.
Robert comments:
Also, there is a further error in the Returns: clause for converting decimal::decimal128
to long long
. It currently calls llroundd64
, not llroundd128
.
Proposed resolution:
Change the Returns: clause in 3.2.2.4 to:
Returns: Returns the result of the conversion of
*this
to the typelong long
, as if performed by the expressionllroundd32(*this)
while the decimal rounding direction mode [3.5.2]FE_DEC_TOWARD_ZERO
is in effect.
Change the Returns: clause in 3.2.3.4 to:
Returns: Returns the result of the conversion of
*this
to the typelong long
, as if performed by the expressionllroundd64(*this)
while the decimal rounding direction mode [3.5.2]FE_DEC_TOWARD_ZERO
is in effect.
Change the Returns: clause in 3.2.4.4 to:
Returns: Returns the result of the conversion of
*this
to the typelong long
, as if performed by the expressionllroundd64(*this)
llroundd128(*this)
while the decimal rounding direction mode [3.5.2]FE_DEC_TOWARD_ZERO
is in effect.
Section: TRDecimal 3.1 [trdec.types.encodings] Status: TRDec Submitter: Daniel Krugler Opened: 2006-05-28 Last modified: 2015-04-08
View all issues with TRDec status.
Discussion:
Daniel writes in a private email:
- 3.1 'Decimal type encodings' says in its note:
"this implies that sizeof(std::decimal::decimal32) == 4, sizeof(std::decimal::decimal64) == 8, and sizeof(std::decimal::decimal128) == 16."This is a wrong assertion, because the definition of 'byte' in 1.7 'The C+ + memory model' of ISO 14882 (2nd edition) does not specify that a byte must be necessarily 8 bits large, which would be necessary to compare with the specified bit sizes of the types decimal32, decimal64, and decimal128.
Proposed resolution:
Change 3.1 as follows:
The three decimal encoding formats defined in IEEE-754R correspond to the three decimal floating types as follows:
- decimal32 is a decimal32 number, which is encoded in four consecutive
bytesoctets (32 bits)- decimal64 is a decimal64 number, which is encoded in eight consecutive
bytesoctets (64 bits)- decimal128 is a decimal128 number, which is encoded in 16 consecutive
bytesoctets (128 bits)
[Note: this implies thatsizeof(std::decimal::decimal32) == 4
,sizeof(std::decimal::decimal64) == 8
, andsizeof(std::decimal::decimal128) == 16
. --end note]
Section: TRDecimal 3.9 [trdec.types.cwchar] Status: TRDec Submitter: Daniel Krugler Opened: 2006-05-28 Last modified: 2015-04-08
View all issues with TRDec status.
Discussion:
Daniel writes:
- 3.9.1 'Additions to <cwchar>' provides wrong signatures to the wcstod32, wcstod64, and wcstod128 functions ([the parameters have type pointer-to-] char instead of wchar_t).
Proposed resolution:
Change "3.9.1 Additions to <cwchar>
synopsis" to:
namespace std { namespace decimal { // 3.9.2 wcstod functions: decimal32 wcstod32 (constcharwchar_t * nptr,charwchar_t ** endptr); decimal64 wcstod64 (constcharwchar_t * nptr,charwchar_t ** endptr); decimal128 wcstod128 (constcharwchar_t * nptr,charwchar_t ** endptr); } }
Section: TRDecimal 3.3 [trdec.types.limits] Status: TRDec Submitter: Daniel Krugler Opened: 2006-05-28 Last modified: 2015-04-08
View all issues with TRDec status.
Discussion:
Daniel writes in a private email:
- 3.3 'Additions to header <limits>' contains two errors in the specialisation of numeric_limits<decimal::decimal128>:
- The static member max() returns DEC128_MIN, this should be DEC128_MAX.
- The static member digits is assigned to 384, this should be 34 (Probably mixed up with the max. exponent for decimal::decimal64).
Proposed resolution:
In "3.3 Additions to header <limits>
" change numeric_limits<decimal::decimal128> as follows:
template<> class numeric_limits<decimal::decimal128> { public: static const bool is_specialized = true; static decimal::decimal128 min() throw() { return DEC128_MIN; } static decimal::decimal128 max() throw() { returnDEC128_MIN;DEC128_MAX; } static const int digits =38434; /* ... */
Section: TRDecimal 3 [trdec.types] Status: TRDec Submitter: Daniel Krügler Opened: 2006-05-28 Last modified: 2015-04-08
View all other issues in [trdec.types].
View all issues with TRDec status.
Discussion:
The document uses the term "generic floating types," but defines it nowhere.
Proposed resolution:
Change the first paragraph of "3 Decimal floating-point types" as follows:
This Technical Report introduces three decimal floating-point types, named decimal32, decimal64, and decimal128. The set of values of type decimal32 is a subset of the set of values of type decimal64; the set of values of the type decimal64 is a subset of the set of values of the type decimal128. Support for decimal128 is optional. These types supplement the Standard C++ types
float
,double
, andlong double
, which are collectively described as the basic floating types.
Section: TRDecimal 3 [trdec.types] Status: TRDec Submitter: Martin Sebor Opened: 2006-05-28 Last modified: 2015-04-08
View all other issues in [trdec.types].
View all issues with TRDec status.
Discussion:
In c++std-lib-17198, Martin writes:
Each of the three classes proposed in the paper (decimal32, decimal64, and decimal128) explicitly declares and specifies the semantics of its copy constructor, copy assignment operator, and destructor. Since the semantics of all three functions are identical to the trivial versions implicitly generated by the compiler in the absence of any declarations it is safe to drop them from the spec. This change would make the proposed classes consistent with other similar classes already in the standard (e.g., std::complex).
Proposed resolution:
Change "3.2.2 Class decimal32
" as follows:
namespace std { namespace decimal { class decimal32 { public: // 3.2.2.1 construct/copy/destroy: decimal32();decimal32(const decimal32 & d32);decimal32 & operator=(const decimal32 & d32);~decimal32();/* ... */
Change "3.2.2.1 construct/copy/destroy" as follows:
decimal32(); Effects: Constructs an object of type decimal32 with the value 0;decimal32(const decimal32 & d32);decimal32 & operator=(const decimal32 & d32);Effects: Copies an object of type decimal32.~decimal32();Effects: Destroys an object of type decimal32.
Change "3.2.3 Class decimal64
" as follows:
namespace std { namespace decimal { class decimal64 { public: // 3.2.3.1 construct/copy/destroy: decimal64();decimal64(const decimal64 & d64);decimal64 & operator=(const decimal64 & d64);~decimal64();/* ... */
Change "3.2.3.1 construct/copy/destroy" as follows:
decimal64(); Effects: Constructs an object of type decimal64 with the value 0;decimal64(const decimal64 & d64);decimal64 & operator=(const decimal64 & d64);Effects: Copies an object of type decimal64.~decimal64();Effects: Destroys an object of type decimal64.
Change "3.2.4 Class decimal128
" as follows:
namespace std { namespace decimal { class decimal128 { public: // 3.2.4.1 construct/copy/destroy: decimal128();decimal128(const decimal128 & d128);decimal128 & operator=(const decimal128 & d128);~decimal128();/* ... */
Change "3.2.4.1 construct/copy/destroy" as follows:
decimal128(); Effects: Constructs an object of type decimal128 with the value 0;decimal128(const decimal128 & d128);decimal128 & operator=(const decimal128 & d128);Effects: Copies an object of type decimal128.~decimal128();Effects: Destroys an object of type decimal128.
Section: TRDecimal 3 [trdec.types] Status: TRDec Submitter: Martin Sebor Opened: 2006-05-28 Last modified: 2015-04-08
View all other issues in [trdec.types].
View all issues with TRDec status.
Discussion:
In c++std-lib-17197, Martin writes:
The extended_num_get and extended_num_put facets are designed to store a reference to a num_get or num_put facet which the extended facets delegate the parsing and formatting of types other than decimal. One form of the extended facet's ctor (the default ctor and the size_t overload) obtains the reference from the global C++ locale while the other form takes this reference as an argument.
The problem with storing a reference to a facet in another object (as opposed to storing the locale object in which the facet is installed) is that doing so bypasses the reference counting mechanism designed to prevent a facet that is still being referenced (i.e., one that is still installed in some locale) from being destroyed when another locale that contains it is destroyed. Separating a facet reference from the locale it comes from van make it cumbersome (and in some cases might even make it impossible) for programs to prevent invalidating the reference. (The danger of this design is highlighted in the paper.)
This problem could be easily avoided by having the extended facets store a copy of the locale from which they would extract the base facet either at construction time or when needed. To make it possible, the forms of ctors of the extended facets that take a reference to the base facet would need to be changed to take a locale argument instead.
Proposed resolution:
1. Change the extended_num_get
synopsis in 3.10.2 as follows:
extended_num_get(conststd::num_get<charT, InputIterator>std::locale & b, size_t refs = 0); /* ... */// const std::num_get<charT, InputIterator> & base; exposition only// std::locale baseloc; exposition only
2. Change the description of the above constructor in 3.10.2.1:
extended_num_get(conststd::num_get<charT, InputIterator>std::locale & b, size_t refs = 0);
Effects: Constructs an
extended_num_get
facet as if by:extended_num_get(conststd::num_get<charT, InputIterator>std::locale & b, size_t refs = 0) : facet(refs), baseloc(b) { /* ... */ }
Notes: Care must be taken by the implementation to ensure that the lifetime of the facet referenced by base exceeds that of the resultingextended_num_get
facet.
3. Change the Returns: clause for do_get(iter_type, iter_type, ios_base &, ios_base::iostate &, bool &) const
, et al to
Returns:
.
basestd::use_facet<std::num_get<charT, InputIterator> >(baseloc).get(in, end, str, err, val)
4. Change the extended_num_put
synopsis in 3.10.3 as follows:
extended_num_put(conststd::num_put<charT, OutputIterator>std::locale & b, size_t refs = 0); /* ... */// const std::num_put<charT, OutputIterator> & base; exposition only// std::locale baseloc; exposition only
5. Change the description of the above constructor in 3.10.3.1:
extended_num_put(conststd::num_put<charT, OutputIterator>std::locale & b, size_t refs = 0);
Effects: Constructs an
extended_num_put
facet as if by:extended_num_put(conststd::num_put<charT, OutputIterator>std::locale & b, size_t refs = 0) : facet(refs), baseloc(b) { /* ... */ }
Notes: Care must be taken by the implementation to ensure that the lifetime of the facet referenced by base exceeds that of the resultingextended_num_put
facet.
6. Change the Returns: clause for do_put(iter_type, ios_base &, char_type, bool &) const
, et al to
Returns:
.
basestd::use_facet<std::num_put<charT, OutputIterator> >(baseloc).put(s, f, fill, val)
[ Redmond: We would prefer to rename "extended" to "decimal". ]
Section: TRDecimal 3.4 [trdec.types.cdecfloat] Status: TRDec Submitter: Robert Klarer Opened: 2006-10-17 Last modified: 2015-04-08
View all issues with TRDec status.
Discussion:
In Berlin, WG14 decided to drop the <decfloat.h> header. The contents of that header have been moved into <float.h>. For the sake of C compatibility, we should make corresponding changes.
Proposed resolution:
1. Change the heading of subclause 3.4, "Headers <cdecfloat>
and <decfloat.h>
" to "Additions to headers <cfloat>
and <float.h>
."
2. Change the text of subclause 3.4 as follows:
The standard C++ headers<cfloat>
and<float.h>
define characteristics of the floating-point typesfloat
,double
, andlong double
. Their contents remain unchanged by this Technical Report.
Headers<cdecfloat>
and<decfloat.h>
define characteristics of the decimal floating-point typesdecimal32
,decimal64
, anddecimal128
. As well,<decfloat.h>
defines the convenience typedefs_Decimal32
,_Decimal64
, and_Decimal128
, for compatibilty with the C programming language.The header
<cfloat>
is described in [tr.c99.cfloat]. The header<float.h>
is described in [tr.c99.floath]. These headers are extended by this Technical Report to define characteristics of the decimal floating-point typesdecimal32
,decimal64
, anddecimal128
. As well,<float.h>
is extended to define the convenience typedefs_Decimal32
,_Decimal64
, and_Decimal128
for compatibility with the C programming language.
3. Change the heading of subclause 3.4.1, "Header <cdecfloat>
synopsis" to "Additions to header <cfloat>
synopsis."
4. Change the heading of subclause 3.4.2, "Header <decfloat.h>
synopsis" to "Additions to header <float.h>
synopsis."
5. Change the contents of 3.4.2 as follows:
#include <cdecfloat>// C-compatibility convenience typedefs: typedef std::decimal::decimal32 _Decimal32; typedef std::decimal::decimal64 _Decimal64; typedef std::decimal::decimal128 _Decimal128;
Section: 26.5.7.1 [rand.util.seedseq] Status: CD1 Submitter: Charles Karney Opened: 2006-10-26 Last modified: 2015-04-08
View all other issues in [rand.util.seedseq].
View all issues with CD1 status.
Discussion:
Short seed vectors of 32-bit quantities all result in different states. However this is not true of seed vectors of 16-bit (or smaller) quantities. For example these two seeds
unsigned short seed = {1, 2, 3}; unsigned short seed = {1, 2, 3, 0};
both pack to
unsigned seed = {0x20001, 0x3};
yielding the same state.
See N2391 and N2423 for some further discussion.
Proposed resolution:
Adopt the proposed resolution in N2423.
[ Kona (2007): The LWG adopted the proposed resolution of N2423 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 26.5.7.1 [rand.util.seedseq] Status: CD1 Submitter: Charles Karney Opened: 2006-10-26 Last modified: 2015-04-08
View all other issues in [rand.util.seedseq].
View all issues with CD1 status.
Discussion:
In 26.4.7.1 [rand.util.seedseq] /6, the order of packing the inputs into b and the treatment of signed quantities is unclear. Better to spell it out.
See N2391 and N2423 for some further discussion.
Proposed resolution:
Adopt the proposed resolution in N2423.
[ Kona (2007): The LWG adopted the proposed resolution of N2423 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 26.5.4.3 [rand.adapt.ibits], TR1 5.1 [tr.rand] Status: CD1 Submitter: Walter E. Brown Opened: 2006-11-02 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
In preparing N2111, an error on my part resulted in the omission of the following line from the template synopsis in the cited section:
static const size_t word_size = w;
(This same constant is found, for example, in 26.4.3.3 [rand.eng.sub].)
Proposed resolution:
Add the above declaration as the first line after the comment in [rand.adapt.ibits] p4:
// engine characteristics static const size_t word_size = w;
and accept my apologies for the oversight.
Section: 20.9.12.2.1 [func.wrap.func.con], TR1 3.7.2.1 [tr.func.wrap.func.con] Status: CD1 Submitter: Scott Meyers Opened: 2006-11-02 Last modified: 2015-04-08
View all other issues in [func.wrap.func.con].
View all issues with CD1 status.
Discussion:
My suggestion is that implementers of both tr1::function and its official C++0x successor be explicitly encouraged (but not required) to optimize for the cases mentioned above, i.e., function pointers and small function objects. They could do this by using a small internal buffer akin to the buffer used by implementations of the small string optimization. (That would make this the small functor optimization -- SFO :-}) The form of this encouragement could be a note in the standard akin to footnote 214 of the current standard.
Dave Abrahams notes:
"shall not throw exceptions" should really be "nothing," both to be more grammatical and to be consistent with existing wording in the standard.
Doug Gregor comments: I think this is a good idea. Currently, implementations of tr1::function are required to have non-throwing constructors and assignment operators when the target function object is a function pointer or a reference_wrapper. The common case, however, is for a tr1::function to store either an empty function object or a member pointer + an object pointer.
The function implementation in the upcoming Boost 1.34.0 uses the "SFO", so that the function objects for typical bind expressions like
bind(&X::f, this, _1, _2, _3)
do not require heap allocation when stored in a boost::function. I believe Dinkumware's implementation also performs this optimization.
Proposed resolution:
Revise 20.5.14.2.1 p6 [func.wrap.func.con] to add a note as follows:
Throws: shall not throw exceptions if f's target is a function pointer or a function object passed via reference_wrapper. Otherwise, may throw bad_alloc or any exception thrown by the copy constructor of the stored function object.
Note: Implementations are encouraged to avoid the use of dynamically allocated memory for "small" function objects, e.g., where f's target is an object holding only a pointer or reference to an object and a member function pointer (a "bound member function").
Section: 17.6.4.8 [res.on.functions] Status: CD1 Submitter: Nicola Musatti Opened: 2006-11-13 Last modified: 2015-04-08
View all other issues in [res.on.functions].
View all issues with CD1 status.
Discussion:
In the latest available draft standard (N2134) § 17.4.3.6 [res.on.functions] states:
-1- In certain cases (replacement functions, handler functions, operations on types used to instantiate standard library template components), the C++ Standard Library depends on components supplied by a C++ program. If these components do not meet their requirements, the Standard places no requirements on the implementation.
-2- In particular, the effects are undefined in the following cases:
[...]
- if an incomplete type (3.9) is used as a template argument when instantiating a template component.
This is contradicted by § 20.6.6.2/2 [util.smartptr.shared] which states:
[...]
The template parameter T of shared_ptr may be an incomplete type.
Proposed resolution:
Modify the last bullet of § 17.4.3.6/2 [res.on.functions] to allow for exceptions:
- if an incomplete type (3.9) is used as a template argument when instantiating a template component, unless specifically allowed for the component.
Section: 18.3.2.4 [numeric.limits.members] Status: CD1 Submitter: Chris Jefferson Opened: 2006-11-10 Last modified: 2015-04-08
View all other issues in [numeric.limits.members].
View all issues with CD1 status.
Discussion:
18.2.1.2 55 states that "A type is modulo if it is possible to add two positive numbers together and have a result that wraps around to a third number that is less". This seems insufficient for the following reasons:
[ Batavia: Related to N2144. Pete: is there an ISO definition of modulo? Underflow on signed behavior is undefined. ]
[ Bellevue: accept resolution, move to ready status. Does this mandate that is_modulo be true on platforms for which int happens to b modulo? A: the standard already seems to require that. ]
Proposed resolution:
Suggest 18.3.2.4 [numeric.limits.members], paragraph 57 is amended to:
A type is modulo if,
it is possible to add two positive numbers and have a result that wraps around to a third number that is less.given any operation involving +,- or * on values of that type whose value would fall outside the range [min(), max()], then the value returned differs from the true value by an integer multiple of (max() - min() + 1).
Section: 18.3.2.7 [numeric.special] Status: CD1 Submitter: Bo Persson Opened: 2006-11-20 Last modified: 2015-04-08
View all other issues in [numeric.special].
View all issues with CD1 status.
Discussion:
Section 18.3.2.7 [numeric.special] starts out by saying that "All members shall be provided for all specializations."
Then it goes on to show specializations for float and bool, where one member is missing (max_digits10).
Maarten Kronenburg adds:
I agree, just adding the comment that the exact number of decimal digits is digits * ln(radix) / ln(10), where probably this real number is rounded downward for digits10, and rounded upward for max_digits10 (when radix=10, then digits10=max_digits10). Why not add this exact definition also to the standard, so the user knows what these numbers exactly mean.
Howard adds:
For reference, here are the correct formulas from N1822:
digits10 = floor((digits-1) * log10(2)) max_digits10 = ceil((1 + digits) * log10(2))
We are also missing a statement regarding for what specializations this member has meaning.
Proposed resolution:
Change and add after 18.3.2.4 [numeric.limits.members], p11:
static const int max_digits10;-11- Number of base 10 digits required to ensure that values which differ
by only one epsilonare always differentiated.-12- Meaningful for all floating point types.
Change 18.3.2.7 [numeric.special], p2:
template<> class numeric_limits<float> { public: static const bool is_specialized = true; ... static const int digits10 = 6; static const int max_digits10 = 9; ...
Change 18.3.2.7 [numeric.special], p3:
template<> class numeric_limits<bool> { public: static const bool is_specialized = true; ... static const int digits10 = 0; static const int max_digits10 = 0; ...
Section: 22.4.1.2 [locale.ctype.byname] Status: CD1 Submitter: Bo Persson Opened: 2006-12-16 Last modified: 2015-04-08
View all other issues in [locale.ctype.byname].
View all issues with CD1 status.
Discussion:
Section 22.2.1.2 defines the ctype_byname class template. It contains the line
typedef ctype<charT>::mask mask;
Proposed resolution:
as this is a dependent type, it should obviously be
typedef typename ctype<charT>::mask mask;
Section: 26.6.2.8 [valarray.members] Status: CD1 Submitter: Gabriel Dos Reis Opened: 2007-01-10 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
I would respectfully request an issue be opened with the intention to clarify the wording for size() == 0 for cshift.
Proposed resolution:
Change 26.6.2.8 [valarray.members], paragraph 10:
valarray<T> cshift(int n) const;This function returns an object of class valarray<T>, of length size(),
each of whose elements I is (*this)[(I + n ) % size()]. Thus, if element zero is taken as the leftmost element, a positive value of n shifts the elements circularly left n places.that is a circular shift of *this. If element zero is taken as the leftmost element, a non-negative value of n shifts the elements circularly left n places and a negative value of n shifts the elements circularly right -n places.
Rationale:
We do not believe that there is any real ambiguity about what happens when size() == 0, but we do believe that spelling this out as a C++ expression causes more trouble that it solves. The expression is certainly wrong when n < 0, since the sign of % with negative arguments is implementation defined.
[ Kona (2007) Changed proposed wording, added rationale and set to Review. ]
Section: 18.10 [support.runtime] Status: CD1 Submitter: Lawrence Crowl Opened: 2007-01-12 Last modified: 2015-04-08
View other active issues in [support.runtime].
View all other issues in [support.runtime].
View all issues with CD1 status.
Discussion:
The wording for longjmp is confusing.
18.10 [support.runtime] -4- Other runtime support
The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this International Standard. If any automatic objects would be destroyed by a thrown exception transferring control to another (destination) point in the program, then a call to longjmp(jbuf, val) that the throw point that transfers control to the same (destination) point has undefined behavior.
Someone at Google thinks that should say "then a call to longjmp(jbuf, val) *at* the throw point that transfers control".
Bill Gibbons thinks it should say something like "If any automatic objects would be destroyed by an exception thrown at the point of the longjmp and caught only at the point of the setjmp, the behavior is undefined."
Proposed resolution:
In general, accept Bill Gibbons' recommendation, but add "call" to indicate that the undefined behavior comes from the dynamic call, not from its presence in the code. In 18.10 [support.runtime] paragraph 4, change
The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this International Standard.
If any automatic objects would be destroyed by a thrown exception transferring control to another (destination) point in the program, then a call to longjmp(jbuf, val) that the throw point that transfers control to the same (destination) point has undefined behavior.A setjmp/longjmp call pair has undefined behavior if replacing the setjmp and longjmp by catch and throw would destroy any automatic objects.
Section: 26.6.2.2 [valarray.cons] Status: CD1 Submitter: Martin Sebor Opened: 2007-01-20 Last modified: 2015-04-08
View all other issues in [valarray.cons].
View all issues with CD1 status.
Discussion:
The Effects clause for the default valarray
ctor
suggests that it is possible to increase the size of an empty
valarray
object by calling other non-const member
functions of the class besides resize()
. However, such an
interpretation would be contradicted by the requirement on the copy
assignment operator (and apparently also that on the computed
assignments) that the assigned arrays be the same size. See the
reflector discussion starting with c++std-lib-17871.
In addition, Footnote 280 uses some questionable normative language.
Proposed resolution:
Reword the Effects clause and Footnote 280 as follows (26.6.2.2 [valarray.cons]):
valarray();
Effects: Constructs an object of class
valarray<T>
,279) which has zero lengthuntil it is passed into a library function as a modifiable lvalue or through a non-constant this pointer.280)Postcondition:
size() == 0
.Footnote 280: This default constructor is essential, since arrays of
valarray
are likely to prove useful. There shall also be a way to change the size of an array after initialization; this is supplied by the semanticsmay be useful. The length of an empty array can be increased after initialization by means of theresize()
member function.
Section: 26.6 [numarray] Status: CD1 Submitter: Martin Sebor Opened: 2007-01-20 Last modified: 2015-04-08
View all other issues in [numarray].
View all issues with CD1 status.
Discussion:
The computed and "fill" assignment operators of valarray
helper array class templates (slice_array
,
gslice_array
, mask_array
, and
indirect_array
) are const member functions of each class
template (the latter by the resolution of 123
since they have reference semantics and thus do not affect
the state of the object on which they are called. However, the copy
assignment operators of these class templates, which also have
reference semantics, are non-const. The absence of constness opens
the door to speculation about whether they really are intended to have
reference semantics (existing implementations vary widely).
Pre-Kona, Martin adds:
I realized that adding the const qualifier to the functions as I suggested would break the const correctness of the classes. A few possible solutions come to mind:
Proposed resolution:
Declare the copy assignment operators of all four helper array class templates const.
Specifically, make the following edits:
Change the signature in 26.6.5 [template.slice.array] and 26.6.5.2 [slice.arr.assign] as follows:
const slice_array& operator= (const slice_array&) const;
Change the signature in 26.6.7 [template.gslice.array] and 26.6.7.2 [gslice.array.assign] as follows:
const gslice_array& operator= (const gslice_array&) const;
Change the signature in 26.6.8 [template.mask.array] and 26.6.8.2 [mask.array.assign] as follows:
const mask_array& operator= (const mask_array&) const;
Change the signature in 26.6.9 [template.indirect.array] and 26.6.9.2 [indirect.array.assign] as follows:
const indirect_array& operator= (const indirect_array&) const;
[ Kona (2007) Added const qualification to the return types and set to Ready. ]
filebuf
dtor and close
on errorSection: 27.9.1.17 [fstream.members] Status: CD1 Submitter: Martin Sebor Opened: 2007-01-20 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
basic_filebuf
dtor is specified to have the following
straightforward effects:
Effects: Destroys an object of class
basic_filebuf
. Callsclose()
.
close()
does a lot of potentially complicated processing,
including calling overflow()
to write out the termination
sequence (to bring the output sequence to its initial shift
state). Since any of the functions called during the processing can
throw an exception, what should the effects of an exception be on the
dtor? Should the dtor catch and swallow it or should it propagate it
to the caller? The text doesn't seem to provide any guidance in this
regard other than the general restriction on throwing (but not
propagating) exceptions from destructors of library classes in
17.6.5.12 [res.on.exception.handling].
Further, the last thing close()
is specified to do is
call fclose()
to close the FILE
pointer. The
last sentence of the Effects clause reads:
... If any of the calls to
overflow
orstd::fclose
fails thenclose
fails.
This suggests that close()
might be required to call
fclose()
if and only if none of the calls to
overflow()
fails, and avoid closing the FILE
otherwise. This way, if overflow()
failed to flush out
the data, the caller would have the opportunity to try to flush it
again (perhaps after trying to deal with whatever problem may have
caused the failure), rather than losing it outright.
On the other hand, the function's Postcondition specifies that
is_open() == false
, which suggests that it should call
fclose()
unconditionally. However, since
Postcondition clauses are specified for many functions in the
standard, including constructors where they obviously cannot apply
after an exception, it's not clear whether this Postcondition
clause is intended to apply even after an exception.
It might be worth noting that the traditional behavior (Classic
Iostreams fstream::close()
and C fclose()
)
is to close the FILE
unconditionally, regardless of
errors.
[ See 397 and 418 for related issues. ]
Proposed resolution:
After discussing this on the reflector (see the thread starting with
c++std-lib-17650) we propose that close()
be clarified to
match the traditional behavior, that is to close the FILE
unconditionally, even after errors or exceptions. In addition, we
propose the dtor description be amended so as to explicitly require it
to catch and swallow any exceptions thrown by close()
.
Specifically, we propose to make the following edits in 27.9.1.4 [filebuf.members]:
basic_filebuf<charT,traits>* close();
Effects: If
is_open() == false
, returns a null pointer. If a put area exists, callsoverflow(traits::eof())
to flush characters. If the last virtual member function called on*this
(betweenunderflow
,overflow
,seekoff
, andseekpos
) wasoverflow
then callsa_codecvt.unshift
(possibly several times) to determine a termination sequence, inserts those characters and callsoverflow(traits::eof())
again. Finally, regardless of whether any of the preceding calls fails or throws an exception, the functionitcloses the file ("as if" by callingstd::fclose(file)
).334) If any of the calls made by the functionto, includingoverflow
orstd::fclose
, fails thenclose
fails by returning a null pointer. If one of these calls throws an exception, the exception is caught and rethrown after closing the file.
And to make the following edits in 27.9.1.2 [filebuf.cons].
virtual ~basic_filebuf();
Effects: Destroys an object of class
basic_filebuf<charT,traits>
. Callsclose()
. If an exception occurs during the destruction of the object, including the call toclose()
, the exception is caught but not rethrown (see 17.6.5.12 [res.on.exception.handling]).
pubimbue
forbidden to call imbue
Section: 27.2.1 [iostream.limits.imbue] Status: CD1 Submitter: Martin Sebor Opened: 2007-01-20 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
27.2.1 [iostream.limits.imbue] specifies that "no function described in
clause 27 except for ios_base::imbue
causes any instance
of basic_ios::imbue
or
basic_streambuf::imbue
to be called."
That contradicts the Effects clause for
basic_streambuf::pubimbue()
which requires the function
to do just that: call basic_streambuf::imbue()
.
Proposed resolution:
To fix this, rephrase the sentence above to allow
pubimbue
to do what it was designed to do. Specifically.
change 27.2.1 [iostream.limits.imbue], p1 to read:
No function described in clause 27 except for
ios_base::imbue
andbasic_filebuf::pubimbue
causes any instance ofbasic_ios::imbue
orbasic_streambuf::imbue
to be called. ...
valarray
assignment and arrays of unequal lengthSection: 26.6.2.3 [valarray.assign] Status: CD1 Submitter: Martin Sebor Opened: 2007-01-20 Last modified: 2015-04-08
View all other issues in [valarray.assign].
View all issues with CD1 status.
Discussion:
The behavior of the valarray
copy assignment operator is
defined only when both sides have the same number of elements and the
spec is explicit about assignments of arrays of unequal lengths having
undefined behavior.
However, the generalized subscripting assignment operators overloaded
on slice_array
et al (26.6.2.3 [valarray.assign]) don't have any
such restriction, leading the reader to believe that the behavior of
these overloads is well defined regardless of the lengths of the
arguments.
For example, based on the reading of the spec the behavior of the snippet below can be expected to be well-defined:
const std::slice from_0_to_3 (0, 3, 1); // refers to elements 0, 1, 2 const std::valarray<int> a (1, 3); // a = { 1, 1, 1 } std::valarray<int> b (2, 4); // b = { 2, 2, 2, 2 } b = a [from_0_to_3];
In practice, b
may end up being { 1, 1, 1 }
,
{ 1, 1, 1, 2 }
, or anything else, indicating that
existing implementations vary.
Quoting from Section 3.4, Assignment operators, of Al Vermeulen's Proposal for Standard C++ Array Classes (see c++std-lib-704; N0308):
...if the size of the array on the right hand side of the equal sign differs from the size of the array on the left, a run time error occurs. How this error is handled is implementation dependent; for compilers which support it, throwing an exception would be reasonable.
And see more history in N0280.
It has been argued in discussions on the committee's reflector that
the semantics of all valarray
assignment operators should
be permitted to be undefined unless the length of the arrays being
assigned is the same as the length of the one being assigned from. See
the thread starting at c++std-lib-17786.
In order to reflect such views, the standard must specify that the size of the array referred to by the argument of the assignment must match the size of the array under assignment, for example by adding a Requires clause to 26.6.2.3 [valarray.assign] as follows:
Requires: The length of the array to which the argument refers equals
size()
.
Note that it's far from clear that such leeway is necessary in order
to implement valarray
efficiently.
Proposed resolution:
Insert new paragraph into 26.6.2.3 [valarray.assign]:
valarray<T>& operator=(const slice_array<T>&); valarray<T>& operator=(const gslice_array<T>&); valarray<T>& operator=(const mask_array<T>&); valarray<T>& operator=(const indirect_array<T>&);Requires: The length of the array to which the argument refers equals
size()
.These operators allow the results of a generalized subscripting operation to be assigned directly to a valarray.
Section: 17 [library] Status: Resolved Submitter: Martin Sebor Opened: 2007-01-20 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with Resolved status.
Duplicate of: 895
Discussion:
Many member functions of basic_string
are overloaded,
with some of the overloads taking a string
argument,
others value_type*
, others size_type
, and
others still iterators
. Often, the requirements on one of
the overloads are expressed in the form of Effects,
Throws, and in the Working Paper
(N2134)
also Remark clauses, while those on the rest of the overloads
via a reference to this overload and using a Returns clause.
The difference between the two forms of specification is that per 17.5.1.4 [structure.specifications], p3, an Effects clause specifies "actions performed by the functions," i.e., its observable effects, while a Returns clause is "a description of the return value(s) of a function" that does not impose any requirements on the function's observable effects.
Since only Notes are explicitly defined to be informative and all other paragraphs are explicitly defined to be normative, like Effects and Returns, the new Remark clauses also impose normative requirements.
So by this strict reading of the standard there are some member
functions of basic_string
that are required to throw an
exception under some conditions or use specific traits members while
many other otherwise equivalent overloads, while obliged to return the
same values, aren't required to follow the exact same requirements
with regards to the observable effects.
Here's an example of this problem that was precipitated by the change from informative Notes to normative Remarks (presumably made to address 424):
In the Working Paper, find(string, size_type)
contains a
Remark clause (which is just a Note in the current
standard) requiring it to use traits::eq()
.
find(const charT *s, size_type pos)
is specified to
return find(string(s), pos)
by a Returns clause
and so it is not required to use traits::eq()
. However,
the Working Paper has replaced the original informative Note
about the function using traits::length()
with a
normative requirement in the form of a Remark. Calling
traits::length()
may be suboptimal, for example when the
argument is a very long array whose initial substring doesn't appear
anywhere in *this
.
Here's another similar example, one that existed even prior to the introduction of Remarks:
insert(size_type pos, string, size_type, size_type)
is
required to throw out_of_range
if pos >
size()
.
insert(size_type pos, string str)
is specified to return
insert(pos, str, 0, npos)
by a Returns clause and
so its effects when pos > size()
are strictly speaking
unspecified.
I believe a careful review of the current Effects and Returns clauses is needed in order to identify all such problematic cases. In addition, a review of the Working Paper should be done to make sure that the newly introduced normative Remark clauses do not impose any undesirable normative requirements in place of the original informative Notes.
[ Batavia: Alan and Pete to work. ]
[ Bellevue: Marked as NAD Editorial. ]
[ Post-Sophia Antipolis: Martin indicates there is still work to be done on this issue. Reopened. ]
[ Batavia (2009-05): ]
Tom proposes we say that, unless specified otherwise, it is always the caller's responsibility to verify that supplied arguments meet the called function's requirements. If further semantics are specified (e.g., that the function throws under certain conditions), then it is up to the implementer to check those conditions. Alan feels strongly that our current use of Requires in this context is confusing, especially now that requires is a new keyword.
[ 2009-07 Frankfurt ]
Move to Tentatively NAD.
[ 2009 Santa Cruz: ]
Move to Open. Martin will work on proposed wording.
[ 2010 Pittsburgh: ]
Moved to NAD Editorial, solved by revision to N3021.
Rationale:
Solved by revision to N3021.
Proposed resolution:
Section: 28.8 [re.regex] Status: CD1 Submitter: Bo Persson Opened: 2007-01-23 Last modified: 2015-04-08
View all other issues in [re.regex].
View all issues with CD1 status.
Discussion:
Section 28.8 [re.regex] lists a constructor
template<class InputIterator> basic_regex(InputIterator first, InputIterator last, flag_type f = regex_constants::ECMAScript);
However, in section 28.8.2 [re.regex.construct], this constructor takes a pair of ForwardIterator.
Proposed resolution:
Change 28.8.2 [re.regex.construct]:
template <classForwardIteratorInputIterator> basic_regex(ForwardIteratorInputIterator first,ForwardIteratorInputIterator last, flag_type f = regex_constants::ECMAScript);
Section: 26.4.6 [complex.ops] Status: CD1 Submitter: Gabriel Dos Reis Opened: 2007-01-28 Last modified: 2015-04-08
View all other issues in [complex.ops].
View all issues with CD1 status.
Discussion:
is there an issue opened for (0,3) as complex number with the French local? With the English local, the above parses as an imaginery complex number. With the French locale it parses as a real complex number.
Further notes/ideas from the lib-reflector, messages 17982-17984:
Add additional entries in num_punct to cover the complex separator (French would be ';').
Insert a space before the comma, which should eliminate the ambiguity.
Solve the problem for ordered sequences in general, perhaps with a dedicated facet. Then complex should use that solution.
[ Bellevue: ]
After much discussion, we agreed on the following: Add a footnote:
[In a locale in which comma is being used as a decimal point character, inserting "showbase" into the output stream forces all outputs to show an explicit decimal point character; then all inserted complex sequences will extract unambiguously.]
And move this to READY status.
[ Pre-Sophia Antipolis, Howard adds: ]
Changed "showbase" to "showpoint" and changed from Ready to Review.
[ Post-Sophia Antipolis: ]
I neglected to pull this issue from the formal motions page after the "showbase" to "showpoint" change. In Sophia Antipolis this change was reviewed by the LWG and the issue was set to Ready. We subsequently voted the footnote into the WP with "showbase".
I'm changing from WP back to Ready to pick up the "showbase" to "showpoint" change.
Proposed resolution:
Add a footnote to 26.4.6 [complex.ops] p16:
[In a locale in which comma is being used as a decimal point character, inserting showpoint into the output stream forces all outputs to show an explicit decimal point character; then all inserted complex sequences will extract unambiguously.]
Section: 26.6.2.2 [valarray.cons] Status: C++11 Submitter: Martin Sebor Opened: 2007-01-28 Last modified: 2015-04-08
View all other issues in [valarray.cons].
View all issues with C++11 status.
Discussion:
Section 26.2 [numeric.requirements], p1 suggests that a
valarray
specialization on a type T
that
satisfies the requirements enumerated in the paragraph is itself a
valid type on which valarray
may be instantiated
(Footnote 269 makes this clear). I.e.,
valarray<valarray<T> >
is valid as long as
T
is valid. However, since implementations of
valarray
are permitted to initialize storage allocated by
the class by invoking the default ctor of T
followed by
the copy assignment operator, such implementations of
valarray
wouldn't work with (perhaps user-defined)
specializations of valarray
whose assignment operator had
undefined behavior when the size of its argument didn't match the size
of *this
. By "wouldn't work" I mean that it would
be impossible to resize such an array of arrays by calling the
resize()
member function on it if the function used the
copy assignment operator after constructing all elements using the
default ctor (e.g., by invoking new value_type[N]
) to
obtain default-initialized storage) as it's permitted to do.
Stated more generally, the problem is that
valarray<valarray<T> >::resize(size_t)
isn't
required or guaranteed to have well-defined semantics for every type
T
that satisfies all requirements in
26.2 [numeric.requirements].
I believe this problem was introduced by the adoption of the
resolution outlined in N0857,
Assignment of valarrays, from 1996. The copy assignment
operator of the original numerical array classes proposed in N0280,
as well as the one proposed in N0308
(both from 1993), had well-defined semantics for arrays of unequal
size (the latter explicitly only when *this
was empty;
assignment of non empty arrays of unequal size was a runtime error).
The justification for the change given in N0857 was the "loss of performance [deemed] only significant for very simple operations on small arrays or for architectures with very few registers."
Since tiny arrays on a limited subset of hardware architectures are
likely to be an exceedingly rare case (despite the continued
popularity of x86) I propose to revert the resolution and make the
behavior of all valarray
assignment operators
well-defined even for non-conformal arrays (i.e., arrays of unequal
size). I have implemented this change and measured no significant
degradation in performance in the common case (non-empty arrays of
equal size). I have measured a 50% (and in some cases even greater)
speedup in the case of assignments to empty arrays versus calling
resize()
first followed by an invocation of the copy
assignment operator.
[ Bellevue: ]
If no proposed wording by June meeting, this issue should be closed NAD.
[ 2009-07 Frankfurt ]
Move resolution 1 to Ready.
Howard: second resolution has been commented out (made invisible). Can be brought back on demand.
Proposed resolution:
Change 26.6.2.3 [valarray.assign], p1 as follows:
valarray<T>& operator=(const valarray<T>& x);
-1- Each element of the
*this
array is assigned the value of the corresponding element of the argument array.The resulting behavior is undefined ifWhen the length of the argument array is not equal to the length of the *this array.resizes*this
to make the two arrays the same length, as if by callingresize(x.size())
, before performing the assignment.
And add a new paragraph just below paragraph 1 with the following text:
-2- Postcondition:
size() == x.size()
.
Also add the following paragraph to 26.6.2.3 [valarray.assign], immediately after p4:
-?- When the length,
N
of the array referred to by the argument is not equal to the length of*this
, the operator resizes*this
to make the two arrays the same length, as if by callingresize(N)
, before performing the assignment.
[ pre-Sophia Antipolis, Martin adds the following compromise wording, but prefers the original proposed resolution: ]
[ Kona (2007): Gaby to propose wording for an alternative resolution in which you can assign to a valarray of size 0, but not to any other valarray whose size is unequal to the right hand side of the assignment. ]
Section: 20.7.9.1 [allocator.members] Status: CD1 Submitter: Howard Hinnant Opened: 2007-02-07 Last modified: 2015-04-08
View all other issues in [allocator.members].
View all issues with CD1 status.
Duplicate of: 350
Discussion:
20.7.9.1 [allocator.members] says:
pointer address(reference x) const;-1- Returns: &x.
20.7.9.1 [allocator.members] defines CopyConstructible which currently not only defines the semantics of copy construction, but also restricts what an overloaded operator& may do. I believe proposals are in the works (such as concepts and rvalue reference) to decouple these two requirements. Indeed it is not evident that we should disallow overloading operator& to return something other than the address of *this.
An example of when you want to overload operator& to return something other than the object's address is proxy references such as vector<bool> (or its replacement, currently code-named bit_vector). Taking the address of such a proxy reference should logically yield a proxy pointer, which when dereferenced, yields a copy of the original proxy reference again.
On the other hand, some code truly needs the address of an object, and not a proxy (typically for determining the identity of an object compared to a reference object). boost has long recognized this dilemma and solved it with boost::addressof. It appears to me that this would be useful functionality for the default allocator. Adopting this definition for allocator::address would free the standard of requiring anything special from types which overload operator&. Issue 580 is expected to make use of allocator::address mandatory for containers.
Proposed resolution:
Change 20.7.9.1 [allocator.members]:
pointer address(reference x) const;-1- Returns:
&x.The actual address of object referenced by x, even in the presence of an overloaded operator&.const_pointer address(address(const_reference x) const;-2- Returns:
&x.The actual address of object referenced by x, even in the presence of an overloaded operator&.
[ post Oxford: This would be rendered NAD Editorial by acceptance of N2257. ]
[ Kona (2007): The LWG adopted the proposed resolution of N2387 for this issue which was subsequently split out into a separate paper N2436 for the purposes of voting. The resolution in N2436 addresses this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 17.6.3.5 [allocator.requirements] Status: Resolved Submitter: Howard Hinnant Opened: 2007-02-08 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with Resolved status.
Discussion:
The table of allocator requirements in 17.6.3.5 [allocator.requirements] describes allocator::address as:
a.address(r) a.address(s)
where r and s are described as:
a value of type X::reference obtained by the expression *p.
and p is
a value of type X::pointer, obtained by calling a1.allocate, where a1 == a
This all implies that to get the address of some value of type T that value must have been allocated by this allocator or a copy of it.
However sometimes container code needs to compare the address of an external value of type T with an internal value. For example list::remove(const T& t) may want to compare the address of the external value t with that of a value stored within the list. Similarly vector or deque insert may want to make similar comparisons (to check for self-referencing calls).
Mandating that allocator::address can only be called for values which the allocator allocated seems overly restrictive.
[ post San Francisco: ]
Pablo recommends NAD Editorial, solved by N2768.
[ 2009-04-28 Pablo adds: ]
Tentatively-ready NAD Editorial as fixed by N2768.
[ 2009-07 Frankfurt ]
Fixed by N2768.
[ 2009-07-28 Reopened by Alisdair. No longer solved by concepts. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2982.
Proposed resolution:
Change 17.6.3.5 [allocator.requirements]:
r : a value of type X::reference
obtained by the expression *p.s : a value of type X::const_reference
obtained by the expression *q or by conversion from a value r.
[ post Oxford: This would be rendered NAD Editorial by acceptance of N2257. ]
[ Kona (2007): This issue is section 8 of N2387. There was some discussion of it but no resolution to this issue was recorded. Moved to Open. ]
Section: 23.3.3.4 [deque.modifiers] Status: CD1 Submitter: Steve LoBasso Opened: 2007-02-17 Last modified: 2015-04-08
View all other issues in [deque.modifiers].
View all issues with CD1 status.
Discussion:
The standard states at 23.3.3.4 [deque.modifiers]/4:
deque erase(...)Effects: ... An erase at either end of the deque invalidates only the iterators and the references to the erased elements.
This does not state that iterators to end will be invalidated. It needs to be amended in such a way as to account for end invalidation.
Something like:
Any time the last element is erased, iterators to end are invalidated.
This would handle situations like:
erase(begin(), end()) erase(end() - 1) pop_back() resize(n, ...) where n < size() pop_front() with size() == 1
[ Post Kona, Steve LoBasso notes: ]
My only issue with the proposed resolution is that it might not be clear that pop_front() [where size() == 1] can invalidate past-the-end iterators.
Proposed resolution:
Change 23.3.3.4 [deque.modifiers], p4:
iterator erase(const_iterator position); iterator erase(const_iterator first, const_iterator last);-4- Effects: An erase in the middle of the deque invalidates all the iterators and references to elements of the deque and the past-the-end iterator. An erase at either end of the deque invalidates only the iterators and the references to the erased elements, except that erasing at the end also invalidates the past-the-end iterator.
[ Kona (2007): Proposed wording added and moved to Review. ]
[ Bellevue: ]
Note that there is existing code that relies on iterators not being invalidated, but there are also existing implementations that do invalidate iterators. Thus, such code is not portable in any case. There is a pop_front() note, which should possibly be a separate issue. Mike Spertus to evaluate and, if need be, file an issue.
Section: 27.7.3.6.2 [ostream.inserters.arithmetic] Status: CD1 Submitter: Daniel Krügler Opened: 2007-02-17 Last modified: 2015-04-08
View all other issues in [ostream.inserters.arithmetic].
View all issues with CD1 status.
Discussion:
The arithmetic inserters are described in 27.7.3.6.2 [ostream.inserters.arithmetic]. Although the section starts with a listing of the inserters including the new ones:
operator<<(long long val ); operator<<(unsigned long long val );
the text in paragraph 1, which describes the corresponding effects of the inserters, depending on the actual type of val, does not handle the types long long and unsigned long long.
[ Alisdair: In addition to the (unsigned) long long problem, that whole paragraph misses any reference to extended integral types supplied by the implementation - one of the additions by core a couple of working papers back. ]
Proposed resolution:
In 27.7.3.6.2 [ostream.inserters.arithmetic]/1 change the third sentence
When val is of type bool, long, unsigned long, long long, unsigned long long, double, long double, or const void*, the formatting conversion occurs as if it performed the following code fragment:
Section: 27.9.1.1 [filebuf], 22.4.2.2.2 [facet.num.put.virtuals] Status: CD1 Submitter: Daniel Krügler Opened: 2007-02-20 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The current standard 14882:2003(E) as well as N2134 have the following defects:
27.9.1.1 [filebuf]/5 says:
In order to support file I/O and multibyte/wide character conversion, conversions are performed using members of a facet, referred to as a_codecvt in following sections, obtained "as if" by
codecvt<charT,char,typename traits::state_type> a_codecvt = use_facet<codecvt<charT,char,typename traits::state_type> >(getloc());
use_facet returns a const facet reference and no facet is copyconstructible, so the codecvt construction should fail to compile.
A similar issue arises in 22.4.2.2.2 [facet.num.put.virtuals]/15 for num_punct.
Proposed resolution:
In 27.9.1.1 [filebuf]/5 change the "as if" code
const codecvt<charT,char,typename traits::state_type>& a_codecvt = use_facet<codecvt<charT,char,typename traits::state_type> >(getloc());
In 22.4.2.2.2 [facet.num.put.virtuals]/15 (This is para 5 in N2134) change
A local variable punct is initialized via
const numpunct<charT>& punct = use_facet< numpunct<charT> >(str.getloc() );
(Please note also the additional provided trailing semicolon)
Section: 28.10.5 [re.results.form] Status: CD1 Submitter: Daniel Krügler Opened: 2007-02-26 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
28.10.5 [re.results.form] (root and para 3) in N2134 defines the two function template members format as non-const functions, although they are declared as const in 28.10 [re.results]/3.
Proposed resolution:
Add the missing const specifier to both format overloads described in section 28.10.5 [re.results.form].
Section: 28.12.2 [re.tokiter] Status: CD1 Submitter: Daniel Krügler Opened: 2007-03-05 Last modified: 2015-04-08
View all other issues in [re.tokiter].
View all issues with CD1 status.
Discussion:
Both the class definition of regex_token_iterator (28.12.2 [re.tokiter]/6) and the latter member specifications (28.12.2.2 [re.tokiter.comp]/1+2) declare both comparison operators as non-const functions. Furtheron, both dereference operators are unexpectedly also declared as non-const in 28.12.2 [re.tokiter]/6 as well as in (28.12.2.3 [re.tokiter.deref]/1+2).
Proposed resolution:
1) In (28.12.2 [re.tokiter]/6) change the current declarations
bool operator==(const regex_token_iterator&) const; bool operator!=(const regex_token_iterator&) const; const value_type& operator*() const; const value_type* operator->() const;
2) In 28.12.2.2 [re.tokiter.comp] change the following declarations
bool operator==(const regex_token_iterator& right) const; bool operator!=(const regex_token_iterator& right) const;
3) In 28.12.2.3 [re.tokiter.deref] change the following declarations
const value_type& operator*() const; const value_type* operator->() const;
[ Kona (2007): The LWG adopted the proposed resolution of N2409 for this issue (which is to adopt the proposed wording in this issue). The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 28.12.2.1 [re.tokiter.cnstr] Status: CD1 Submitter: Daniel Krügler Opened: 2007-03-05 Last modified: 2015-04-08
View all other issues in [re.tokiter.cnstr].
View all issues with CD1 status.
Discussion:
The text provided in 28.12.2.1 [re.tokiter.cnstr]/2+3 describes the effects of the three non-default constructors of class template regex_token_iterator but is does not clarify which values are legal values for submatch/submatches. This becomes an issue, if one takes 28.12.2 [re.tokiter]/9 into account, which explains the notion of a "current match" by saying:
The current match is (*position).prefix() if subs[N] == -1, or (*position)[subs[N]] for any other value of subs[N].
It's not clear to me, whether other negative values except -1 are legal arguments or not - it seems they are not.
Proposed resolution:
Add the following precondition paragraph just before the current 28.12.2.1 [re.tokiter.cnstr]/2:
Requires: Each of the initialization values of subs must be >= -1.
[ Kona (2007): The LWG adopted the proposed resolution of N2409 for this issue (which is to adopt the proposed wording in this issue). The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 28.12.1 [re.regiter] Status: CD1 Submitter: Daniel Krügler Opened: 2007-03-05 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
Both the class definition of regex_iterator (28.12.1 [re.regiter]/1) and the latter member specification (28.12.1.2 [re.regiter.comp]/1+2) declare both comparison operators as non-const functions. Furtheron, both dereference operators are unexpectedly also declared as non-const in 28.12.1 [re.regiter]/1 as well as in (28.12.1.3 [re.regiter.deref]/1+2).
Proposed resolution:
1) In (28.12.1 [re.regiter]/1) change the current declarations
bool operator==(const regex_iterator&) const; bool operator!=(const regex_iterator&) const; const value_type& operator*() const; const value_type* operator->() const;
2) In 28.12.1.3 [re.regiter.deref] change the following declarations
const value_type& operator*() const; const value_type* operator->() const;
3) In 28.12.1.2 [re.regiter.comp] change the following declarations
bool operator==(const regex_iterator& right) const; bool operator!=(const regex_iterator& right) const;
[ Kona (2007): The LWG adopted the proposed resolution of N2409 for this issue (which is to adopt the proposed wording in this issue). The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 26.5.1.4 [rand.req.eng] Status: CD1 Submitter: Daniel Krügler Opened: 2007-03-08 Last modified: 2015-04-08
View all other issues in [rand.req.eng].
View all issues with CD1 status.
Discussion:
Table 98 and para 5 in 26.5.1.4 [rand.req.eng] specify the IO insertion and extraction semantic of random number engines. It can be shown, v.i., that the specification of the extractor cannot guarantee to fulfill the requirement from para 5:
If a textual representation written via os << x was subsequently read via is >> v, then x == v provided that there have been no intervening invocations of x or of v.
The problem is, that the extraction process described in table 98 misses to specify that it will initially set the if.fmtflags to ios_base::dec, see table 104:
dec: converts integer input or generates integer output in decimal base
Proof: The following small program demonstrates the violation of requirements (exception safety not fulfilled):
#include <cassert> #include <ostream> #include <iostream> #include <iomanip> #include <sstream> class RanNumEngine { int state; public: RanNumEngine() : state(42) {} bool operator==(RanNumEngine other) const { return state == other.state; } template <typename Ch, typename Tr> friend std::basic_ostream<Ch, Tr>& operator<<(std::basic_ostream<Ch, Tr>& os, RanNumEngine engine) { Ch old = os.fill(os.widen(' ')); // Sets space character std::ios_base::fmtflags f = os.flags(); os << std::dec << std::left << engine.state; // Adds ios_base::dec|ios_base::left os.fill(old); // Undo os.flags(f); return os; } template <typename Ch, typename Tr> friend std::basic_istream<Ch, Tr>& operator>>(std::basic_istream<Ch, Tr>& is, RanNumEngine& engine) { // Uncomment only for the fix. //std::ios_base::fmtflags f = is.flags(); //is >> std::dec; is >> engine.state; //is.flags(f); return is; } }; int main() { std::stringstream s; s << std::setfill('#'); // No problem s << std::oct; // Yikes! // Here starts para 5 requirements: RanNumEngine x; s << x; RanNumEngine v; s >> v; assert(x == v); // Fails: 42 == 34 }
A second, minor issue seems to be, that the insertion description from table 98 unnecessarily requires the addition of ios_base::fixed (which only influences floating-point numbers). Its not entirely clear to me whether the proposed standard does require that the state of random number engines is stored in integral types or not, but I have the impression that this is the indent, see e.g. p. 3
The specification of each random number engine defines the size of its state in multiples of the size of its result_type.
If other types than integrals are supported, then I wonder why no requirements are specified for the precision of the stream.
See N2391 and N2423 for some further discussion.
Proposed resolution:
Adopt the proposed resolution in N2423.
[ Kona (2007): The LWG adopted the proposed resolution of N2423 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 26.5.7.2 [rand.util.canonical] Status: CD1 Submitter: Daniel Krügler Opened: 2007-03-08 Last modified: 2015-04-08
View all other issues in [rand.util.canonical].
View all issues with CD1 status.
Discussion:
In 26.5.2 [rand.synopsis] we have the declaration
template<class RealType, class UniformRandomNumberGenerator, size_t bits> result_type generate_canonical(UniformRandomNumberGenerator& g);
Besides the "result_type" issue (already recognized by Bo Persson at Sun, 11 Feb 2007 05:26:47 GMT in this group) it's clear, that the template parameter order is not reasonably choosen: Obviously one always needs to specify all three parameters, although usually only two are required, namely the result type RealType and the wanted bits, because UniformRandomNumberGenerator can usually be deduced.
See N2391 and N2423 for some further discussion.
Proposed resolution:
Adopt the proposed resolution in N2423.
[ Kona (2007): The LWG adopted the proposed resolution of N2423 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 20.9 [function.objects] Status: Resolved Submitter: Daniel Krügler Opened: 2007-03-19 Last modified: 2015-04-08
View all other issues in [function.objects].
View all issues with Resolved status.
Discussion:
The header <functional> synopsis in 20.9 [function.objects] contains the following two free comparison operator templates for the function class template
template<class Function1, class Function2> void operator==(const function<Function1>&, const function<Function2>&); template<class Function1, class Function2> void operator!=(const function<Function1>&, const function<Function2>&);
which are nowhere described. I assume that they are relicts before the corresponding two private and undefined member templates in the function template (see 20.9.12.2 [func.wrap.func] and [func.wrap.func.undef]) have been introduced. The original free function templates should be removed, because using an undefined entity would lead to an ODR violation of the user.
Proposed resolution:
Remove the above mentioned two function templates from the header <functional> synopsis (20.9 [function.objects])
template<class Function1, class Function2> void operator==(const function<Function1>&, const function<Function2>&); template<class Function1, class Function2> void operator!=(const function<Function1>&, const function<Function2>&);
Rationale:
Fixed by N2292 Standard Library Applications for Deleted Functions.
Section: 24.6.3 [istreambuf.iterator] Status: C++11 Submitter: Niels Dekker Opened: 2007-03-25 Last modified: 2015-04-08
View all other issues in [istreambuf.iterator].
View all issues with C++11 status.
Discussion:
Greg Herlihy has clearly demonstrated that a user defined input iterator should have an operator->(), even if its value type is a built-in type (comp.std.c++, "Re: Should any iterator have an operator->() in C++0x?", March 2007). And as Howard Hinnant remarked in the same thread that the input iterator istreambuf_iterator doesn't have one, this must be a defect!
Based on Greg's example, the following code demonstrates the issue:
#include <iostream> #include <fstream> #include <streambuf> typedef char C; int main () { std::ifstream s("filename", std::ios::in); std::istreambuf_iterator<char> i(s); (*i).~C(); // This is well-formed... i->~C(); // ... so this should be supported! }
Of course, operator-> is also needed when the value_type of istreambuf_iterator is a class.
The operator-> could be implemented in various ways. For instance, by storing the current value inside the iterator, and returning its address. Or by returning a proxy, like operator_arrow_proxy, from http://www.boost.org/boost/iterator/iterator_facade.hpp
I hope that the resolution of this issue will contribute to getting a clear and consistent definition of iterator concepts.
[ Kona (2007): The proposed resolution is inconsistent because the return type of istreambuf_iterator::operator->() is specified to be pointer, but the proposed text also states that "operator-> may return a proxy." ]
[ Niels Dekker (mailed to Howard Hinnant): ]
The proposed resolution does not seem inconsistent to me. istreambuf_iterator::operator->() should have istreambuf_iterator::pointer as return type, and this return type may in fact be a proxy.
AFAIK, the resolution of 445 ("iterator_traits::reference unspecified for some iterator categories") implies that for any iterator class Iter, the return type of operator->() is Iter::pointer, by definition. I don't think Iter::pointer needs to be a raw pointer.
Still I wouldn't mind if the text "operator-> may return a proxy" would be removed from the resolution. I think it's up to the library implementation, how to implement istreambuf_iterator::operator->(). As longs as it behaves as expected: i->m should have the same effect as (*i).m. Even for an explicit destructor call, i->~C(). The main issue is just: istreambuf_iterator should have an operator->()!
[ 2009-04-30 Alisdair adds: ]
Note that operator-> is now a requirement in the InputIterator concept, so this issue cannot be ignored or existing valid programs will break when compiled with an 0x library.
[ 2009-05-29 Alisdair adds: ]
I agree with the observation that in principle the type 'pointer' may be a proxy, and the words highlighting this are redundant.
However, in the current draught pointer is required to be exactly 'charT *' by the derivation from std::iterator. At a minimum, the 4th parameter of this base class template should become unspecified. That permits the introduction of a proxy as a nested class in some further undocumented (not even exposition-only) base.
It also permits the istream_iterator approach where the cached value is stored in the iterator itself, and the iterator serves as its own proxy for post-increment operator++ - removing the need for the existing exposition-only nested class proxy.
Note that the current proxy class also has exactly the right properties to serve as the pointer proxy too. This is likely to be a common case where an InputIterator does not hold internal state but delegates to another class.
Proposed Resolution:
In addition to the current proposal:
24.6.3 [istreambuf.iterator]
template<class charT, class traits = char_traits<charT> > class istreambuf_iterator : public iterator<input_iterator_tag, charT, typename traits::off_type,charT*unspecified, charT> {
[ 2009-07 Frankfurt ]
Move the additional part into the proposed resolution, and wrap the descriptive text in a Note.
[Howard: done.]
Move to Ready.
Proposed resolution:
Add to the synopsis in 24.6.3 [istreambuf.iterator]:
charT operator*() const; pointer operator->() const; istreambuf_iterator<charT,traits>& operator++();
24.6.3 [istreambuf.iterator]
template<class charT, class traits = char_traits<charT> > class istreambuf_iterator : public iterator<input_iterator_tag, charT, typename traits::off_type,charT*unspecified, charT> {
Change 24.6.3 [istreambuf.iterator], p1:
The class template istreambuf_iterator reads successive characters from the streambuf for which it was constructed. operator* provides access to the current input character, if any. [Note: operator-> may return a proxy. — end note] Each time operator++ is evaluated, the iterator advances to the next input character. If the end of stream is reached (streambuf_type::sgetc() returns traits::eof()), the iterator becomes equal to the end of stream iterator value. The default constructor istreambuf_iterator() and the constructor istreambuf_iterator(0) both construct an end of stream iterator object suitable for use as an end-of-range.
Section: 20.9 [function.objects] Status: CD1 Submitter: Beman Dawes Opened: 2007-04-02 Last modified: 2015-04-08
View all other issues in [function.objects].
View all issues with CD1 status.
Discussion:
Section 20.9 [function.objects] provides function objects for some unary and binary operations, but others are missing. In a LWG reflector discussion, beginning with c++std-lib-18078, pros and cons of adding some of the missing operations were discussed. Bjarne Stroustrup commented "Why standardize what isn't used? Yes, I see the chicken and egg problems here, but it would be nice to see a couple of genuine uses before making additions."
A number of libraries, including Rogue Wave, GNU, Adobe ASL, and Boost, have already added these functions, either publicly or for internal use. For example, Doug Gregor commented: "Boost will also add ... (|, &, ^) in 1.35.0, because we need those function objects to represent various parallel collective operations (reductions, prefix reductions, etc.) in the new Message Passing Interface (MPI) library."
Because the bitwise operators have the strongest use cases, the proposed resolution is limited to them.
Proposed resolution:
To 20.9 [function.objects], Function objects, paragraph 2, add to the header <functional> synopsis:
template <class T> struct bit_and; template <class T> struct bit_or; template <class T> struct bit_xor;
At a location in clause 20 to be determined by the Project Editor, add:
The library provides basic function object classes for all of the bitwise operators in the language ([expr.bit.and], [expr.or], [exp.xor]).
template <class T> struct bit_and : binary_function<T,T,T> { T operator()(const T& x , const T& y ) const; };
operator()
returnsx & y
.template <class T> struct bit_or : binary_function<T,T,T> { T operator()(const T& x , const T& y ) const; };
operator()
returnsx | y
.template <class T> struct bit_xor : binary_function<T,T,T> { T operator()(const T& x , const T& y ) const; };
operator()
returnsx ^ y
.
Section: 27.7.2.2.2 [istream.formatted.arithmetic] Status: CD1 Submitter: Daniel Krügler Opened: 2007-04-01 Last modified: 2015-04-08
View all other issues in [istream.formatted.arithmetic].
View all issues with CD1 status.
Discussion:
To the more drastic changes of 27.7.2.2.2 [istream.formatted.arithmetic] in the current draft N2134 belong the explicit description of the extraction of the types short and int in terms of as-if code fragments.
Proposed resolution:
In 27.7.2.2.2 [istream.formatted.arithmetic]/2 change the current as-if code fragment
typedef num_get<charT,istreambuf_iterator<charT,traits> > numget; iostate err = 0; long lval; use_facet<numget>(loc).get(*this, 0, *this, err, lval ); if (err == 0) {&&if (lval < numeric_limits<short>::min() || numeric_limits<short>::max() < lval))err = ios_base::failbit; else val = static_cast<short>(lval); } setstate(err);
Similarily in 27.7.2.2.2 [istream.formatted.arithmetic]/3 change the current as-if fragment
typedef num_get<charT,istreambuf_iterator<charT,traits> > numget; iostate err = 0; long lval; use_facet<numget>(loc).get(*this, 0, *this, err, lval ); if (err == 0) {&&if (lval < numeric_limits<int>::min() || numeric_limits<int>::max() < lval))err = ios_base::failbit; else val = static_cast<int>(lval); } setstate(err);
[ Kona (2007): Note to the editor: the name lval in the call to use_facet is incorrectly italicized in the code fragments corresponding to operator>>(short &) and operator >>(int &). Also, val -- which appears twice on the line with the static_cast in the proposed resolution -- should be italicized. Also, in response to part two of the issue: this is deliberate. ]
Section: 22.4.1.4.2 [locale.codecvt.virtuals] Status: CD1 Submitter: Thomas Plum Opened: 2007-04-16 Last modified: 2015-04-08
View all other issues in [locale.codecvt.virtuals].
View all issues with CD1 status.
Discussion:
22.4.1.4.2 [locale.codecvt.virtuals], para 7 says (regarding do_unshift):
Effects: Places characters starting at to that should be appended to terminate a sequence when the current stateT is given by state.237) Stores no more than (to_limit - to) destination elements, and leaves the to_next pointer pointing one beyond the last element successfully stored. codecvt<char, char, mbstate_t> stores no characters.
The following objection has been raised:
Since the C++ Standard permits a nontrivial conversion for the required instantiations of codecvt, it is overly restrictive to say that do_unshift must store no characters and return noconv.
[Plum ref _222152Y50]
Proposed resolution:
Change 22.4.1.4.2 [locale.codecvt.virtuals], p7:
Effects: Places characters starting at to that should be appended to terminate a sequence when the current stateT is given by state.237) Stores no more than (to_limit -to) destination elements, and leaves the to_next pointer pointing one beyond the last element successfully stored.
codecvt<char, char, mbstate_t> stores no characters.
Section: 22.4.1.4.2 [locale.codecvt.virtuals] Status: CD1 Submitter: Thomas Plum Opened: 2007-04-16 Last modified: 2015-04-08
View all other issues in [locale.codecvt.virtuals].
View all issues with CD1 status.
Discussion:
22.4.1.4.2 [locale.codecvt.virtuals], para 8 says:
codecvt<char,char,mbstate_t>, returns noconv.
The following objection has been raised:
Despite what the C++ Standard says, unshift can't always return noconv for the default facets, since they can be nontrivial. At least one implementation does whatever the C functions do.
[Plum ref _222152Y62]
Proposed resolution:
Change 22.4.1.4.2 [locale.codecvt.virtuals], p8:
Returns: An enumeration value, as summarized in Table 76:
...
codecvt<char,char,mbstate_t>, returns noconv.
Section: 22.4.6.3.2 [locale.moneypunct.virtuals] Status: CD1 Submitter: Thomas Plum Opened: 2007-04-16 Last modified: 2015-04-08
View all other issues in [locale.moneypunct.virtuals].
View all issues with CD1 status.
Discussion:
22.4.6.3.2 [locale.moneypunct.virtuals], para 4 footnote 257 says
257) For international specializations (second template parameter true) this is always four characters long, usually three letters and a space.
The following objection has been raised:
The international currency symbol is whatever the underlying locale says it is, not necessarily four characters long.
[Plum ref _222632Y41]
Proposed resolution:
Change footnote 253 in 22.4.6.3.2 [locale.moneypunct.virtuals]:
253) For international specializations (second template parameter true) this is
alwaystypically four characters long, usually three letters and a space.
Section: 22.4.2.2.2 [facet.num.put.virtuals] Status: C++11 Submitter: John Salmon Opened: 2007-04-20 Last modified: 2015-04-08
View all other issues in [facet.num.put.virtuals].
View all issues with C++11 status.
Discussion:
I am trying to understand how TR1 supports hex float (%a) output.
As far as I can tell, it does so via the following:
8.15 Additions to header <locale> [tr.c99.locale]
In subclause 22.4.2.2.2 [facet.num.put.virtuals], Table 58 Floating-point conversions, after
the line:
floatfield == ios_base::scientific %E
add the two lines:
floatfield == ios_base::fixed | ios_base::scientific && !uppercase %a floatfield == ios_base::fixed | ios_base::scientific %A 2
[Note: The additional requirements on print and scan functions, later in this clause, ensure that the print functions generate hexadecimal floating-point fields with a %a or %A conversion specifier, and that the scan functions match hexadecimal floating-point fields with a %g conversion specifier. end note]
Following the thread, in 22.4.2.2.2 [facet.num.put.virtuals], we find:
For conversion from a floating-point type, if (flags & fixed) != 0 or if str.precision() > 0, then str.precision() is specified in the conversion specification.
This would seem to imply that when floatfield == fixed|scientific, the precision of the conversion specifier is to be taken from str.precision(). Is this really what's intended? I sincerely hope that I'm either missing something or this is an oversight. Please tell me that the committee did not intend to mandate that hex floats (and doubles) should by default be printed as if by %.6a.
[ Howard: I think the fundamental issue we overlooked was that with %f, %e, %g, the default precision was always 6. With %a the default precision is not 6, it is infinity. So for the first time, we need to distinguish between the default value of precision, and the precision value 6. ]
[ 2009-07 Frankfurt ]
Leave this open for Robert and Daniel to work on.
Straw poll: Disposition?
- Default is %.6a (i.e. NAD): 2
- Always %a (no precision): 6
- precision(-1) == %a: 3
Daniel and Robert have direction to write up wording for the "always %a" solution.
[ 2009-07-15 Robert provided wording. ]
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Change 22.4.2.2.2 [facet.num.put.virtuals], Stage 1, under p5 (near the end of Stage 1):
For conversion from a floating-point type, str.precision() is specified as precision in the conversion specification if floatfield != (ios_base::fixed | ios_base::scientific), else no precision is specified.
[ Kona (2007): Robert volunteers to propose wording. ]
Section: 17.6.3.1 [utility.arg.requirements] Status: CD1 Submitter: Howard Hinnant Opened: 2007-05-04 Last modified: 2015-04-08
View all other issues in [utility.arg.requirements].
View all issues with CD1 status.
Discussion:
The current Swappable is:
Table 37: Swappable requirements [swappable] expression return type post-condition swap(s,t) void t has the value originally held by u, and u has the value originally held by t The Swappable requirement is met by satisfying one or more of the following conditions:
- T is Swappable if T satisfies the CopyConstructible requirements (Table 34) and the CopyAssignable requirements (Table 36);
- T is Swappable if a namespace scope function named swap exists in the same namespace as the definition of T, such that the expression swap(t,u) is valid and has the semantics described in this table.
With the passage of rvalue reference into the language, Swappable needs to be updated to require only MoveConstructible and MoveAssignable. This is a minimum.
Additionally we may want to support proxy references such that the following code is acceptable:
namespace Mine { template <class T> struct proxy {...}; template <class T> struct proxied_iterator { typedef T value_type; typedef proxy<T> reference; reference operator*() const; ... }; struct A { // heavy type, has an optimized swap, maybe isn't even copyable or movable, just swappable void swap(A&); ... }; void swap(A&, A&); void swap(proxy<A>, A&); void swap(A&, proxy<A>); void swap(proxy<A>, proxy<A>); } // Mine ... Mine::proxied_iterator<Mine::A> i(...) Mine::A a; swap(*i1, a);
I.e. here is a call to swap which the user enables swapping between a proxy to a class and the class itself. We do not need to anything in terms of implementation except not block their way with overly constrained concepts. That is, the Swappable concept should be expanded to allow swapping between two different types for the case that one is binding to a user-defined swap.
Proposed resolution:
Change 17.6.3.1 [utility.arg.requirements]:
-1- The template definitions in the C++ Standard Library refer to various named requirements whose details are set out in tables 31-38. In these tables, T is a type to be supplied by a C++ program instantiating a template; a, b, and c are values of type const T; s and t are modifiable lvalues of type T; u is a value of type (possibly const) T; and rv is a non-const rvalue of type T.
Table 37: Swappable requirements [swappable] expression return type post-condition swap(s,t) void t has the value originally held by u, and u has the value originally held by t The Swappable requirement is met by satisfying one or more of the following conditions:
- T is Swappable if T satisfies the
CopyConstructibleMoveConstructible requirements (Table3433) and theCopyAssignableMoveAssignable requirements (Table3635);- T is Swappable if a namespace scope function named swap exists in the same namespace as the definition of T, such that the expression swap(t,u) is valid and has the semantics described in this table.
[ Kona (2007): We like the change to the Swappable requirements to use move semantics. The issue relating to the support of proxies is separable from the one relating to move semantics, and it's bigger than just swap. We'd like to address only the move semantics changes under this issue, and open a separated issue (742) to handle proxies. Also, there may be a third issue, in that the current definition of Swappable does not permit rvalues to be operands to a swap operation, and Howard's proposed resolution would allow the right-most operand to be an rvalue, but it would not allow the left-most operand to be an rvalue (some swap functions in the library have been overloaded to permit left operands to swap to be rvalues). ]
Section: 20.8.1 [unique.ptr] Status: CD1 Submitter: Howard Hinnant Opened: 2007-05-04 Last modified: 2015-04-08
View all other issues in [unique.ptr].
View all issues with CD1 status.
Discussion:
Since the publication of N1856 there have been a few small but significant advances which should be included into unique_ptr. There exists a example implementation for all of these changes.
Even though unique_ptr<void> is not a valid use case (unlike for shared_ptr<void>), unexpected cases to crop up which require the instantiation of the interface of unique_ptr<void> even if it is never used. For example see 541 for how this accidently happened to auto_ptr. I believe the most robust way to protect unique_ptr against this type of failure is to augment the return type of unique_ptr<T>:operator*() with add_lvalue_reference<T>::type. This means that given an instantiated unique_ptr<void> the act of dereferencing it will simply return void instead of causing a compile time failure. This is simpler than creating a unique_ptr<void> specialization which isn't robust in the face of cv-qualified void types.
This resolution also supports instantiations such as unique_ptr<void, free_deleter> which could be very useful to the client.
Efforts have been made to better support containers and smart pointers in shared memory contexts. One of the key hurdles in such support is not assuming that a pointer type is actually a T*. This can easily be accomplished for unique_ptr by having the deleter define the pointer type: D::pointer. Furthermore this type can easily be defaulted to T* should the deleter D choose not to define a pointer type (example implementation here). This change has no run time overhead. It has no interface overhead on authors of custom delter types. It simply allows (but not requires) authors of custom deleter types to define a smart pointer for the storage type of unique_ptr if they find such functionality useful. std::default_delete is an example of a deleter which defaults pointer to T* by simply ignoring this issue and not including a pointer typedef.
When the deleter type is a function pointer then it is unsafe to construct a unique_ptr without specifying the function pointer in the constructor. This case is easy to check for with a static_assert assuring that the deleter is not a pointer type in those constructors which do not accept deleters.
unique_ptr<A, void(*)(void*)> p(new A); // error, no function given to delete the pointer!
[ Kona (2007): We don't like the solution given to the first bullet in light of concepts. The second bullet solves the problem of supporting fancy pointers for one library component only. The full LWG needs to decide whether to solve the problem of supporting fancy pointers piecemeal, or whether a paper addressing the whole library is needed. We think that the third bullet is correct. ]
[ Post Kona: Howard adds example user code related to the first bullet: ]
void legacy_code(void*, std::size_t); void foo(std::size_t N) { std::unique_ptr<void, void(*)(void*)> ptr(std::malloc(N), std::free); legacy_code(ptr.get(), N); } // unique_ptr used for exception safety purposes
I.e. unique_ptr<void> is a useful tool that we don't want to disable with concepts. The only part of unique_ptr<void> we want to disable (with concepts or by other means) are the two member functions:
T& operator*() const; T* operator->() const;
Proposed resolution:
[ I am grateful for the generous aid of Peter Dimov and Ion Gaztañaga in helping formulate and review the proposed resolutions below. ]
Change 20.8.1.2 [unique.ptr.single]:
template <class T, class D = default_delete<T>> class unique_ptr { ...T&typename add_lvalue_reference<T>::type operator*() const; ... };
Change 20.8.1.2.4 [unique.ptr.single.observers]:
T&typename add_lvalue_reference<T>::type operator*() const;
Change 20.8.1.2 [unique.ptr.single]:
template <class T, class D = default_delete<T>> class unique_ptr { public: typedef implementation (see description below) pointer; ... explicit unique_ptr(T*pointer p); ... unique_ptr(T*pointer p, implementation defined (see description below) d); unique_ptr(T*pointer p, implementation defined (see description below) d); ...T*pointer operator->() const;T*pointer get() const; ...T*pointer release(); void reset(T*pointer p =0pointer()); };
-3- If the type remove_reference<D>::type::pointer exists, then unique_ptr<T, D>::pointer is a typedef to remove_reference<D>::type::pointer. Otherwise unique_ptr<T, D>::pointer is a typedef to T*. The type unique_ptr<T, D>::pointer shall be CopyConstructible and CopyAssignable.
Change 20.8.1.2.1 [unique.ptr.single.ctor]:
unique_ptr(T*pointer p); ... unique_ptr(T*pointer p, implementation defined d); unique_ptr(T*pointer p, implementation defined d); ... unique_ptr(T*pointer p, const A& d); unique_ptr(T*pointer p, A&& d); ... unique_ptr(T*pointer p, A& d); unique_ptr(T*pointer p, A&& d); ... unique_ptr(T*pointer p, const A& d); unique_ptr(T*pointer p, const A&& d); ...
-23- Requires: If D is not a reference type,
construction of the deleter D from an rvalue of type E
must shall be well formed and not throw an exception. If D is a
reference type, then E must shall be the same type as D
(diagnostic required). U* unique_ptr<U,E>::pointer
must shall be implicitly convertible to T*
pointer.
-25- Postconditions: get() == value u.get() had before
the construction, modulo any required offset adjustments resulting from
the cast from U*
unique_ptr<U,E>::pointer to T*
pointer. get_deleter() returns a reference to the
internally stored deleter which was constructed from
u.get_deleter().
Change 20.8.1.2.3 [unique.ptr.single.asgn]:
-8- Requires: Assignment of the deleter D from an rvalue D
mustshall not throw an exception.U*unique_ptr<U,E>::pointermustshall be implicitly convertible toT*pointer.
Change 20.8.1.2.4 [unique.ptr.single.observers]:
T*pointer operator->() const;...
T*pointer get() const;
Change 20.8.1.2.5 [unique.ptr.single.modifiers]:
T*pointer release();...
void reset(T*pointer p =0pointer());
Change 20.8.1.3 [unique.ptr.runtime]:
template <class T, class D> class unique_ptr<T[], D> { public: typedef implementation pointer; ... explicit unique_ptr(T*pointer p); ... unique_ptr(T*pointer p, implementation defined d); unique_ptr(T*pointer p, implementation defined d); ...T*pointer get() const; ...T*pointer release(); void reset(T*pointer p =0pointer()); };
Change 20.8.1.3.1 [unique.ptr.runtime.ctor]:
unique_ptr(T*pointer p); unique_ptr(T*pointer p, implementation defined d); unique_ptr(T*pointer p, implementation defined d);These constructors behave the same as in the primary template except that they do not accept pointer types which are convertible to
T*pointer. [Note: One implementation technique is to create private templated overloads of these members. -- end note]
Change 20.8.1.3.4 [unique.ptr.runtime.modifiers]:
void reset(T*pointer p =0pointer());-1- Requires: Does not accept pointer types which are convertible to
T*pointer (diagnostic required). [Note: One implementation technique is to create a private templated overload. -- end note]
Change 20.8.1.2.1 [unique.ptr.single.ctor]:
unique_ptr();Requires: D
mustshall be default constructible, and that constructionmustshall not throw an exception. Dmustshall not be a reference type or pointer type (diagnostic required).unique_ptr(T*pointer p);Requires: The expression D()(p)
mustshall be well formed. The default constructor of Dmustshall not throw an exception. Dmustshall not be a reference type or pointer type (diagnostic required).
Section: 20.8.2.2 [util.smartptr.shared] Status: CD1 Submitter: Peter Dimov Opened: 2007-05-05 Last modified: 2015-04-08
View other active issues in [util.smartptr.shared].
View all other issues in [util.smartptr.shared].
View all issues with CD1 status.
Discussion:
N1856 does not propose any changes to shared_ptr. It needs to be updated to use a rvalue reference where appropriate and to interoperate with unique_ptr as it does with auto_ptr.
Proposed resolution:
Change 20.8.2.2 [util.smartptr.shared] as follows:
template<class Y> explicit shared_ptr(auto_ptr<Y>&&& r); template<class Y, class D> explicit shared_ptr(const unique_ptr<Y,D>& r) = delete; template<class Y, class D> explicit shared_ptr(unique_ptr<Y,D>&& r); ... template<class Y> shared_ptr& operator=(auto_ptr<Y>&&& r); template<class Y, class D> shared_ptr& operator=(const unique_ptr<Y,D>& r) = delete; template<class Y, class D> shared_ptr& operator=(unique_ptr<Y,D>&& r);
Change 20.8.2.2.1 [util.smartptr.shared.const] as follows:
template<class Y> shared_ptr(auto_ptr<Y>&&& r);
Add to 20.8.2.2.1 [util.smartptr.shared.const]:
template<class Y, class D> shared_ptr(unique_ptr<Y, D>&& r);Effects: Equivalent to shared_ptr( r.release(), r.get_deleter() ) when D is not a reference type, shared_ptr( r.release(), ref( r.get_deleter() ) ) otherwise.
Exception safety: If an exception is thrown, the constructor has no effect.
Change 20.8.2.2.3 [util.smartptr.shared.assign] as follows:
template<class Y> shared_ptr& operator=(auto_ptr<Y>&&& r);
Add to 20.8.2.2.3 [util.smartptr.shared.assign]:
template<class Y, class D> shared_ptr& operator=(unique_ptr<Y,D>&& r);-4- Effects: Equivalent to shared_ptr(std::move(r)).swap(*this).
-5- Returns: *this.
[ Kona (2007): We may need to open an issue (743) to deal with the question of whether shared_ptr needs an rvalue swap. ]
Section: 23.2 [container.requirements] Status: CD1 Submitter: Howard Hinnant Opened: 2007-05-05 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with CD1 status.
Discussion:
James Hopkin pointed out to me that if vector<T> move assignment is O(1) (just a swap) then containers such as vector<shared_ptr<ostream>> might have the wrong semantics under move assignment when the source is not truly an rvalue, but a moved-from lvalue (destructors could run late).
vector<shared_ptr<ostream>> v1; vector<shared_ptr<ostream>> v2; ... v1 = v2; // #1 v1 = std::move(v2); // #2
Move semantics means not caring what happens to the source (v2 in this example). It doesn't mean not caring what happens to the target (v1). In the above example both assignments should have the same effect on v1. Any non-shared ostream's v1 owns before the assignment should be closed, whether v1 is undergoing copy assignment or move assignment.
This implies that the semantics of move assignment of a generic container should be clear, swap instead of just swap. An alternative which could achieve the same effect would be to move assign each element. In either case, the complexity of move assignment needs to be relaxed to O(v1.size()).
The performance hit of this change is not nearly as drastic as it sounds. In practice, the target of a move assignment has always just been move constructed or move assigned from. Therefore under clear, swap semantics (in this common use case) we are still achieving O(1) complexity.
Proposed resolution:
Change 23.2 [container.requirements]:
Table 89: Container requirements expression return type operational semantics assertion/note pre/post-condition complexity a = rv; X& All existing elements of a are either move assigned or destructed a shall be equal to the value that rv had before this construction (Note C)linearNotes: the algorithms swap(), equal() and lexicographical_compare() are defined in clause 25. Those entries marked "(Note A)" should have constant complexity. Those entries marked "(Note B)" have constant complexity unless allocator_propagate_never<X::allocator_type>::value is true, in which case they have linear complexity.
Those entries marked "(Note C)" have constant complexity if a.get_allocator() == rv.get_allocator() or if either allocator_propagate_on_move_assignment<X::allocator_type>::value is true or allocator_propagate_on_copy_assignment<X::allocator_type>::value is true and linear complexity otherwise.
[ post Bellevue Howard adds: ]
This issue was voted to WP in Bellevue, but accidently got stepped on by N2525 which was voted to WP simulataneously. Moving back to Open for the purpose of getting the wording right. The intent of this issue and N2525 are not in conflict.
[ post Sophia Antipolis Howard updated proposed wording: ]
Section: 23.5 [unord] Status: C++11 Submitter: Howard Hinnant Opened: 2007-05-05 Last modified: 2015-04-08
View all other issues in [unord].
View all issues with C++11 status.
Discussion:
Move semantics are missing from the unordered containers. The proposed resolution below adds move-support consistent with N1858 and the current working draft.
The current proposed resolution simply lists the requirements for each function. These might better be hoisted into the requirements table for unordered associative containers. Futhermore a mild reorganization of the container requirements could well be in order. This defect report is purposefully ignoring these larger issues and just focusing on getting the unordered containers "moved".
[ 2009-07-28 Reopened by Alisdair. No longer solved by concepts. ]
[ 2009-10-17 Removed rvalue-swaps from wording. ]
[ 2009-10 Santa Cruz: ]
Move to Review. Alisdair will review proposed wording.
[ 2009-10-29 Daniel updates wording. ]
[ 2010-01-26 Alisdair updates wording. ]
[ 2010-02-10 Howard updates wording to reference the unordered container requirements table (modified by 704) as much as possible. ]
[ Voted to WP in Bellevue. ]
[ post Bellevue, Pete notes: ]
Please remind people who are reviewing issues to check that the text modifications match the current draft. Issue 676, for example, adds two overloads for unordered_map::insert taking a hint. One takes a const_iterator and returns a const_iterator, and the other takes an iterator and returns an iterator. This was correct at the time the issue was written, but was changed in Toronto so there is only one hint overload, taking a const_iterator and returning an iterator.
This issue is not ready. In addition to the relatively minor signature problem I mentioned earlier, it puts requirements in the wrong places. Instead of duplicating requirements throughout the template specifications, it should put them in the front matter that talks about requirements for unordered containers in general. This presentation problem is editorial, but I'm not willing to do the extensive rewrite that it requires. Please put it back into Open status.
[ 2010-02-11 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-02-24 Pete moved to Open: ]
The descriptions of the semantics of the added insert functions belong in the requirements table. That's where the rest of the insert functions are.
[ 2010 Pittsburgh: ]
Move issue 676 to Ready for Pittsburgh. Nico to send Howard an issue for the broader problem.
Rationale:
[ San Francisco: ]
Solved by N2776.
[ Rationale is obsolete. ]
Proposed resolution:
unordered_map
Change 23.5.4 [unord.map]:
class unordered_map { ... unordered_map(const unordered_map&); unordered_map(unordered_map&&); unordered_map(const Allocator&); unordered_map(const unordered_map&, const Allocator&); unordered_map(unordered_map&&, const Allocator&); ... unordered_map& operator=(const unordered_map&); unordered_map& operator=(unordered_map&&); ... // modifiers ...std::pair<iterator, bool> insert(const value_type& obj); template <class P> pair<iterator, bool> insert(P&& obj); iterator insert(const_iterator hint, const value_type& obj); template <class P> iterator insert(const_iterator hint, P&& obj); ... mapped_type& operator[](const key_type& k); mapped_type& operator[](key_type&& k); ... };
Add to 23.5.4.3 [unord.map.elem]:
mapped_type& operator[](const key_type& k);...
Requires: key_type shall be CopyConstructible and mapped_type shall be DefaultConstructible.
Complexity: Average case O(1), worst case O(size()).
mapped_type& operator[](key_type&& k);Requires: key_type shall be MoveConstructible and mapped_type shall be DefaultConstructible.
Effects: If the unordered_map does not already contain an element whose key is equivalent to k , inserts the value value_type(std::move(k), mapped_type()).
Returns: A reference to x.second, where x is the (unique) element whose key is equivalent to k.
Complexity: Average case O(1), worst case O(size()).
Add new section [unord.map.modifiers]:
template <class P> pair<iterator, bool> insert(P&& x);Requires: value_type is constructible from std::forward<P>(x).
Effects: Inserts x converted to value_type if and only if there is no element in the container with key equivalent to the key of value_type(x).
Returns: The bool component of the returned pair indicates whether the insertion takes place, and the iterator component points to the element with key equivalent to the key of value_type(x).
Complexity: Average case O(1), worst case O(size()).
Remarks: P shall be implicitly convertible to value_type, else this signature shall not participate in overload resolution.
template <class P> iterator insert(const_iterator hint, P&& x);Requires: value_type is constructible from std::forward<P>(x).
Effects: Inserts x converted to value_type if and only if there is no element in the container with key equivalent to the key of value_type(x). The iterator hint is a hint pointing to where the search should start. Implementations are permitted to ignore the hint.
Returns: An iterator pointing to the element with key equivalent to the key of value_type(x).
Complexity: Average case O(1), worst case O(size()).
Remarks: P shall be implicitly convertible to value_type, else this signature shall not participate in overload resolution.
unordered_multimap
Change 23.5.5 [unord.multimap]:
class unordered_multimap { ... unordered_multimap(const unordered_multimap&); unordered_multimap(unordered_multimap&&); unordered_multimap(const Allocator&); unordered_multimap(const unordered_multimap&, const Allocator&); unordered_multimap(unordered_multimap&&, const Allocator&); ... unordered_multimap& operator=(const unordered_multimap&); unordered_multimap& operator=(unordered_multimap&&); ... // modifiers ... iterator insert(const value_type& obj); template <class P> iterator insert(P&& obj); iterator insert(const_iterator hint, const value_type& obj); template <class P> iterator insert(const_iterator hint, P&& obj); ... };
Add new section [unord.multimap.modifiers]:
template <class P> iterator insert(P&& x);Requires: value_type is constructible from std::forward<P>(x).
Effects: Inserts x converted to value_type.
Returns: An iterator pointing to the element with key equivalent to the key of value_type(x).
Complexity: Average case O(1), worst case O(size()).
Remarks: P shall be implicitly convertible to value_type, else this signature shall not participate in overload resolution.
template <class P> iterator insert(const_iterator hint, P&& x);Requires: value_type is constructible from std::forward<P>(x).
Effects: Inserts x converted to value_type if and only if there is no element in the container with key equivalent to the key of value_type(x). The iterator hint is a hint pointing to where the search should start. Implementations are permitted to ignore the hint.
Returns: An iterator pointing to the element with key equivalent to the key of value_type(x).
Complexity: Average case O(1), worst case O(size()).
Remarks: P shall be implicitly convertible to value_type, else this signature shall not participate in overload resolution.
unordered_set
Change 23.5.6 [unord.set]:
class unordered_set { ... unordered_set(const unordered_set&); unordered_set(unordered_set&&); unordered_set(const Allocator&); unordered_set(const unordered_set&, const Allocator&); unordered_set(unordered_set&&, const Allocator&); ... unordered_set& operator=(const unordered_set&); unordered_set& operator=(unordered_set&&); ... // modifiers ...std::pair<iterator, bool> insert(const value_type& obj); pair<iterator, bool> insert(value_type&& obj); iterator insert(const_iterator hint, const value_type& obj); iterator insert(const_iterator hint, value_type&& obj); ... };
unordered_multiset
Change 23.5.7 [unord.multiset]:
class unordered_multiset { ... unordered_multiset(const unordered_multiset&); unordered_multiset(unordered_multiset&&); unordered_multiset(const Allocator&); unordered_multiset(const unordered_multiset&, const Allocator&); unordered_multiset(unordered_multiset&&, const Allocator&); ... unordered_multiset& operator=(const unordered_multiset&); unordered_multiset& operator=(unordered_multiset&&); ... // modifiers ... iterator insert(const value_type& obj); iterator insert(value_type&& obj); iterator insert(const_iterator hint, const value_type& obj); iterator insert(const_iterator hint, value_type&& obj); ... };
Section: 26.5.7.1 [rand.util.seedseq] Status: CD1 Submitter: Charles Karney Opened: 2007-05-15 Last modified: 2015-04-08
View all other issues in [rand.util.seedseq].
View all issues with CD1 status.
Discussion:
seed_seq::randomize provides a mechanism for initializing random number engines which ideally would yield "distant" states when given "close" seeds. The algorithm for seed_seq::randomize given in the current Working Draft for C++, N2284 (2007-05-08), has 3 weaknesses
Collisions in state. Because of the way the state is initialized, seeds of different lengths may result in the same state. The current version of seed_seq has the following properties:
The proposed algorithm (below) has the considerably stronger properties:
Poor mixing of v's entropy into the state. Consider v.size() == n and hold v[n/2] thru v[n-1] fixed while varying v[0] thru v[n/2-1], a total of 2^(16n) possibilities. Because of the simple recursion used in seed_seq, begin[n/2] thru begin[n-1] can take on only 2^64 possible states.
The proposed algorithm uses a more complex recursion which results in much better mixing.
The current algorithm for seed_seq::randomize is adapted by me from the initialization procedure for the Mersenne Twister by Makoto Matsumoto and Takuji Nishimura. The weakness (2) given above was communicated to me by Matsumoto last year.
The proposed replacement for seed_seq::randomize is due to Mutsuo Saito, a student of Matsumoto, and is given in the implementation of the SIMD-oriented Fast Mersenne Twister random number generator SFMT. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/SFMT-src-1.2.tar.gz
See Mutsuo Saito, An Application of Finite Field: Design and Implementation of 128-bit Instruction-Based Fast Pseudorandom Number Generator, Master's Thesis, Dept. of Math., Hiroshima University (Feb. 2007) http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/M062821.pdf
One change has been made here, namely to treat the case of small n (setting t = (n-1)/2 for n < 7).
Since seed_seq was introduced relatively recently there is little cost in making this incompatible improvement to it.
See N2391 and N2423 for some further discussion.
Proposed resolution:
Adopt the proposed resolution in N2423.
[ Kona (2007): The LWG adopted the proposed resolution of N2423 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 26.5.1.4 [rand.req.eng] Status: CD1 Submitter: Charles Karney Opened: 2007-05-15 Last modified: 2015-04-08
View all other issues in [rand.req.eng].
View all issues with CD1 status.
Discussion:
Section 26.5.1.4 [rand.req.eng] Random number engine requirements:
This change follows naturally from the proposed change to seed_seq::randomize in 677.
In table 104 the description of X(q) contains a special treatment of the case q.size() == 0. This is undesirable for 4 reasons:
See N2391 and N2423 for some further discussion.
Proposed resolution:
Adopt the proposed resolution in N2423.
[ Kona (2007): The LWG adopted the proposed resolution of N2423 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 23.3 [sequences] Status: CD1 Submitter: Howard Hinnant Opened: 2007-06-11 Last modified: 2015-04-08
View all other issues in [sequences].
View all issues with CD1 status.
Discussion:
The C++98 standard specifies that one member function alone of the containers passes its parameter (T) by value instead of by const reference:
void resize(size_type sz, T c = T());
This fact has been discussed / debated repeatedly over the years, the first time being even before C++98 was ratified. The rationale for passing this parameter by value has been:
So that self referencing statements are guaranteed to work, for example:
v.resize(v.size() + 1, v[0]);
However this rationale is not convincing as the signature for push_back is:
void push_back(const T& x);
And push_back has similar semantics to resize (append). And push_back must also work in the self referencing case:
v.push_back(v[0]); // must work
The problem with passing T by value is that it can be significantly more expensive than passing by reference. The converse is also true, however when it is true it is usually far less dramatic (e.g. for scalar types).
Even with move semantics available, passing this parameter by value can be expensive. Consider for example vector<vector<int>>:
std::vector<int> x(1000); std::vector<std::vector<int>> v; ... v.resize(v.size()+1, x);
In the pass-by-value case, x is copied once to the parameter of resize. And then internally, since the code can not know at compile time by how much resize is growing the vector, x is usually copied (not moved) a second time from resize's parameter into its proper place within the vector.
With pass-by-const-reference, the x in the above example need be copied only once. In this case, x has an expensive copy constructor and so any copies that can be saved represents a significant savings.
If we can be efficient for push_back, we should be efficient for resize as well. The resize taking a reference parameter has been coded and shipped in the CodeWarrior library with no reports of problems which I am aware of.
Proposed resolution:
Change 23.3.3 [deque], p2:
class deque { ... void resize(size_type sz, const T& c);
Change 23.3.3.3 [deque.capacity], p3:
void resize(size_type sz, const T& c);
Change 23.3.5 [list], p2:
class list { ... void resize(size_type sz, const T& c);
Change 23.3.5.3 [list.capacity], p3:
void resize(size_type sz, const T& c);
Change 23.3.6 [vector], p2:
class vector { ... void resize(size_type sz, const T& c);
Change 23.3.6.3 [vector.capacity], p11:
void resize(size_type sz, const T& c);
Section: 24.5.3.1 [move.iterator] Status: CD1 Submitter: Howard Hinnant Opened: 2007-06-11 Last modified: 2015-04-08
View all other issues in [move.iterator].
View all issues with CD1 status.
Discussion:
move_iterator's operator-> return type pointer does not consistently match the type which is returned in the description in 24.5.3.3.5 [move.iter.op.ref].
template <class Iterator> class move_iterator { public: ... typedef typename iterator_traits<Iterator>::pointer pointer; ... pointer operator->() const {return current;} ... private: Iterator current; // exposition only };
There are two possible fixes.
The first solution is the one chosen by reverse_iterator. A potential disadvantage of this is it may not work well with iterators which return a proxy on dereference and that proxy has overloaded operator&(). Proxy references often need to overloaad operator&() to return a proxy pointer. That proxy pointer may or may not be the same type as the iterator's pointer type.
By simply returning the Iterator and taking advantage of the fact that the language forwards calls to operator-> automatically until it finds a non-class type, the second solution avoids the issue of an overloaded operator&() entirely.
Proposed resolution:
Change the synopsis in 24.5.3.1 [move.iterator]:
typedeftypename iterator_traits<Iterator>::pointerpointer;
Section: 28.9.2 [re.submatch.op] Status: CD1 Submitter: Nozomu Katoo Opened: 2007-05-27 Last modified: 2015-04-08
View all other issues in [re.submatch.op].
View all issues with CD1 status.
Discussion:
In 28.9.2 [re.submatch.op] of N2284, operator functions numbered 31-42 seem impossible to compare. E.g.:
template <class BiIter> bool operator==(typename iterator_traits<BiIter>::value_type const& lhs, const sub_match<BiIter>& rhs);-31- Returns: lhs == rhs.str().
When char* is used as BiIter, iterator_traits<BiIter>::value_type would be char, so that lhs == rhs.str() ends up comparing a char value and an object of std::basic_string<char>. However, the behaviour of comparison between these two types is not defined in 21.4.8 [string.nonmembers] of N2284. This applies when wchar_t* is used as BiIter.
Proposed resolution:
Adopt the proposed resolution in N2409.
[ Kona (2007): The LWG adopted the proposed resolution of N2409 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 28.8.2 [re.regex.construct] Status: CD1 Submitter: Eric Niebler Opened: 2007-06-03 Last modified: 2015-04-08
View all other issues in [re.regex.construct].
View all issues with CD1 status.
Discussion:
Looking at N2284, 28.8 [re.regex], p3 basic_regex class template synopsis shows this constructor:
template <class InputIterator> basic_regex(InputIterator first, InputIterator last, flag_type f = regex_constants::ECMAScript);
In 28.8.2 [re.regex.construct], p15, the constructor appears with this signature:
template <class ForwardIterator> basic_regex(ForwardIterator first, ForwardIterator last, flag_type f = regex_constants::ECMAScript);
ForwardIterator is probably correct, so the synopsis is wrong.
[ John adds: ]
I think either could be implemented? Although an input iterator would probably require an internal copy of the string being made.
I have no strong feelings either way, although I think my original intent was InputIterator.
Proposed resolution:
Adopt the proposed resolution in N2409.
[ Kona (2007): The LWG adopted the proposed resolution of N2409 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 24.5.1.3.19 [reverse.iter.opdiff], 24.5.3.3.14 [move.iter.nonmember] Status: CD1 Submitter: Bo Persson Opened: 2007-06-10 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
In C++03 the difference between two reverse_iterators
ri1 - ri2
is possible to compute only if both iterators have the same base iterator. The result type is the difference_type of the base iterator.
In the current draft, the operator is defined as 24.5.1.3.19 [reverse.iter.opdiff]
template<class Iterator1, class Iterator2> typename reverse_iterator<Iterator>::difference_type operator-(const reverse_iterator<Iterator1>& x, const reverse_iterator<Iterator2>& y);
The return type is the same as the C++03 one, based on the no longer present Iterator template parameter.
Besides being slightly invalid, should this operator work only when Iterator1 and Iterator2 has the same difference_type? Or should the implementation choose one of them? Which one?
The same problem now also appears in operator-() for move_iterator 24.5.3.3.14 [move.iter.nonmember].
Proposed resolution:
Change the synopsis in 24.5.1.1 [reverse.iterator]:
template <class Iterator1, class Iterator2>typename reverse_iterator<Iterator>::difference_typeauto operator-( const reverse_iterator<Iterator1>& x, const reverse_iterator<Iterator2>& y) -> decltype(y.current - x.current);
Change 24.5.1.3.19 [reverse.iter.opdiff]:
template <class Iterator1, class Iterator2>typename reverse_iterator<Iterator>::difference_typeauto operator-( const reverse_iterator<Iterator1>& x, const reverse_iterator<Iterator2>& y) -> decltype(y.current - x.current);Returns: y.current - x.current.
Change the synopsis in 24.5.3.1 [move.iterator]:
template <class Iterator1, class Iterator2>typename move_iterator<Iterator>::difference_typeauto operator-( const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y) -> decltype(x.base() - y.base());
Change 24.5.3.3.14 [move.iter.nonmember]:
template <class Iterator1, class Iterator2>typename move_iterator<Iterator>::difference_typeauto operator-( const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y) -> decltype(x.base() - y.base());Returns: x.base() - y.base().
[ Pre Bellevue: This issue needs to wait until the auto -> return language feature goes in. ]
Section: 20.8.2.2.1 [util.smartptr.shared.const], 20.8.2.3.1 [util.smartptr.weak.const] Status: CD1 Submitter: Peter Dimov Opened: 2007-05-10 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.const].
View all issues with CD1 status.
Discussion:
Since all conversions from shared_ptr<T> to shared_ptr<U> have the same rank regardless of the relationship between T and U, reasonable user code that works with raw pointers fails with shared_ptr:
void f( shared_ptr<void> ); void f( shared_ptr<int> ); int main() { f( shared_ptr<double>() ); // ambiguous }
Now that we officially have enable_if, we can constrain the constructor and the corresponding assignment operator to only participate in the overload resolution when the pointer types are compatible.
Proposed resolution:
In 20.8.2.2.1 [util.smartptr.shared.const], change:
-14- Requires:
For the second constructorThe second constructor shall not participate in the overload resolution unless Y*shall beis implicitly convertible to T*.
In 20.8.2.3.1 [util.smartptr.weak.const], change:
template<class Y> weak_ptr(shared_ptr<Y> const& r);weak_ptr(weak_ptr const& r);template<class Y> weak_ptr(weak_ptr<Y> const& r);weak_ptr(weak_ptr const& r); template<class Y> weak_ptr(weak_ptr<Y> const& r); template<class Y> weak_ptr(shared_ptr<Y> const& r);-4- Requires:
FortThe second and third constructors,shall not participate in the overload resolution unless Y*shall beis implicitly convertible to T*.
Section: 20.9.4.1 [refwrap.const] Status: C++11 Submitter: Peter Dimov Opened: 2007-05-10 Last modified: 2015-04-08
View all other issues in [refwrap.const].
View all issues with C++11 status.
Discussion:
A reference_wrapper can be constructed from an rvalue, either by using the constructor, or via cref (and ref in some corner cases). This leads to a dangling reference being stored into the reference_wrapper object. Now that we have a mechanism to detect an rvalue, we can fix them to disallow this source of undefined behavior.
Also please see the thread starting at c++std-lib-17398 for some good discussion on this subject.
[ 2009-05-09 Alisdair adds: ]
Now that ref/cref are constained that T must be an ObjectType, I do not believe there is any risk of binding ref to a temporary (which would rely on deducing T to be an rvalue reference type)
However, the problem for cref remains, so I recommend retaining that deleted overload.
[ 2009-05-10 Howard adds: ]
Without:
template <class T> void ref(const T&& t) = delete;I believe this program will compile:
#include <functional> struct A {}; const A source() {return A();} int main() { std::reference_wrapper<const A> r = std::ref(source()); }I.e. in:
template <ObjectType T> reference_wrapper<T> ref(T& t);this:
ref(source())deduces T as const A, and so:
ref(const A& t)will bind to a temporary (tested with a pre-concepts rvalue-ref enabled compiler).
Therefore I think we still need the ref-protection. I respectfully disagree with Alisdair's comment and am in favor of the proposed wording as it stands. Also, CWG 606 (noted below) has now been "favorably" resolved.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
In 20.9 [function.objects], add the following two signatures to the synopsis:
template <class T> void ref(const T&& t) = delete; template <class T> void cref(const T&& t) = delete;
[ N2292 addresses the first part of the resolution but not the second. ]
[ Bellevue: Doug noticed problems with the current wording. ]
[ post Bellevue: Howard and Peter provided revised wording. ]
[ This resolution depends on a "favorable" resolution of CWG 606: that is, the "special deduction rule" is disabled with the const T&& pattern. ]
Section: 20.9.4.1 [refwrap.const] Status: CD1 Submitter: Peter Dimov Opened: 2007-05-10 Last modified: 2015-04-08
View all other issues in [refwrap.const].
View all issues with CD1 status.
Discussion:
The constructor of reference_wrapper is currently explicit. The primary motivation behind this is the safety problem with respect to rvalues, which is addressed by the proposed resolution of the previous issue. Therefore we should consider relaxing the requirements on the constructor since requests for the implicit conversion keep resurfacing.
Also please see the thread starting at c++std-lib-17398 for some good discussion on this subject.
Proposed resolution:
Remove the explicit from the constructor of reference_wrapper. If the proposed resolution of the previous issue is accepted, remove the explicit from the T&& constructor as well to keep them in sync.
Section: 23.5 [unord], TR1 6.3 [tr.hash] Status: CD1 Submitter: Joaquín M López Muñoz Opened: 2007-06-14 Last modified: 2015-04-08
View all other issues in [unord].
View all issues with CD1 status.
Discussion:
The last version of TR1 does not include the following member functions for unordered containers:
const_local_iterator cbegin(size_type n) const; const_local_iterator cend(size_type n) const;
which looks like an oversight to me. I've checked th TR1 issues lists and the latest working draft of the C++0x std (N2284) and haven't found any mention to these menfuns or to their absence.
Is this really an oversight, or am I missing something?
Proposed resolution:
Add the following two rows to table 93 (unordered associative container requirements) in section 23.2.5 [unord.req]:
Unordered associative container requirements (in addition to container) expression return type assertion/note pre/post-condition complexity b.cbegin(n) const_local_iterator n shall be in the range [0, bucket_count()). Note: [b.cbegin(n), b.cend(n)) is a valid range containing all of the elements in the nth bucket. Constant b.cend(n) const_local_iterator n shall be in the range [0, bucket_count()). Constant
Add to the synopsis in 23.5.4 [unord.map]:
const_local_iterator cbegin(size_type n) const; const_local_iterator cend(size_type n) const;
Add to the synopsis in 23.5.5 [unord.multimap]:
const_local_iterator cbegin(size_type n) const; const_local_iterator cend(size_type n) const;
Add to the synopsis in 23.5.6 [unord.set]:
const_local_iterator cbegin(size_type n) const; const_local_iterator cend(size_type n) const;
Add to the synopsis in 23.5.7 [unord.multiset]:
const_local_iterator cbegin(size_type n) const; const_local_iterator cend(size_type n) const;
get_money
and put_money
should be formatted I/O functionsSection: 27.7.5 [ext.manip] Status: CD1 Submitter: Martin Sebor Opened: 2007-06-22 Last modified: 2015-04-08
View all other issues in [ext.manip].
View all issues with CD1 status.
Discussion:
In a private email Bill Plauger notes:
I believe that the function that implements
get_money
[from N2072] should behave as a formatted input function, and the function that implementsput_money
should behave as a formatted output function. This has implications regarding the skipping of whitespace and the handling of errors, among other things.The words don't say that right now and I'm far from convinced that such a change is editorial.
Martin's response:
I agree that the manipulators should handle exceptions the same way as formatted I/O functions do. The text in N2072 assumes so but the Returns clause explicitly omits exception handling for the sake of brevity. The spec should be clarified to that effect.
As for dealing with whitespace, I also agree it would make sense for the extractors and inserters involving the new manipulators to treat it the same way as formatted I/O.
Proposed resolution:
Add a new paragraph immediately above p4 of 27.7.5 [ext.manip] with the following text:
Effects: The expression
in >> get_money(mon, intl)
described below behaves as a formatted input function (as described in 27.7.2.2.1 [istream.formatted.reqmts]).
Also change p4 of 27.7.5 [ext.manip] as follows:
Returns: An object
s
of unspecified type such that ifin
is an object of typebasic_istream<charT, traits>
then the expressionin >> get_money(mon, intl)
behaves as a formatted input function that callsf(in, mon, intl)
were called. The functionf
can be defined as...
[ post Bellevue: ]
We recommend moving immediately to Review. We've looked at the issue and have a consensus that the proposed resolution is correct, but want an iostream expert to sign off. Alisdair has taken the action item to putt this up on the reflector for possible movement by Howard to Tenatively Ready.
std::bitset::all()
missingSection: 20.6 [template.bitset] Status: CD1 Submitter: Martin Sebor Opened: 2007-06-22 Last modified: 2015-04-08
View other active issues in [template.bitset].
View all other issues in [template.bitset].
View all issues with CD1 status.
Discussion:
The bitset
class template provides the member function
any()
to determine whether an object of the type has any
bits set, and the member function none()
to determine
whether all of an object's bits are clear. However, the template does
not provide a corresponding function to discover whether a
bitset
object has all its bits set. While it is
possible, even easy, to obtain this information by comparing the
result of count()
with the result of size()
for equality (i.e., via b.count() == b.size()
) the
operation is less efficient than a member function designed
specifically for that purpose could be. (count()
must
count all non-zero bits in a bitset
a word at a time
while all()
could stop counting as soon as it encountered
the first word with a zero bit).
Proposed resolution:
Add a declaration of the new member function all()
to the
defintion of the bitset
template in 20.6 [template.bitset], p1,
right above the declaration of any()
as shown below:
bool operator!=(const bitset<N>& rhs) const; bool test(size_t pos) const; bool all() const; bool any() const; bool none() const;
Add a description of the new member function to the end of 20.6.2 [bitset.members] with the following text:
bool all() const;
Returns:
count() == size()
.
In addition, change the description of any()
and
none()
for consistency with all()
as
follows:
bool any() const;
Returns:
true
if any bit in*this
is onecount() != 0
.
bool none() const;
Returns:
true
if no bit in*this
is onecount() == 0
.
std::bitset
and long long
Section: 20.6 [template.bitset] Status: CD1 Submitter: Martin Sebor Opened: 2007-06-22 Last modified: 2015-04-08
View other active issues in [template.bitset].
View all other issues in [template.bitset].
View all issues with CD1 status.
Discussion:
Objects of the bitset
class template specializations can
be constructed from and explicitly converted to values of the widest
C++ integer type, unsigned long
. With the introduction
of long long
into the language the template should be
enhanced to make it possible to interoperate with values of this type
as well, or perhaps uintmax_t
. See c++std-lib-18274 for
a brief discussion in support of this change.
Proposed resolution:
For simplicity, instead of adding overloads for unsigned long
long
and dealing with possible ambiguities in the spec, replace
the bitset
ctor that takes an unsigned long
argument with one taking unsigned long long
in the
definition of the template as shown below. (The standard permits
implementations to add overloads on other integer types or employ
template tricks to achieve the same effect provided they don't cause
ambiguities or changes in behavior.)
// [bitset.cons] constructors: bitset(); bitset(unsigned long long val); template<class charT, class traits, class Allocator> explicit bitset( const basic_string<charT,traits,Allocator>& str, typename basic_string<charT,traits,Allocator>::size_type pos = 0, typename basic_string<charT,traits,Allocator>::size_type n = basic_string<charT,traits,Allocator>::npos);
Make a corresponding change in 20.6.1 [bitset.cons], p2:
bitset(unsigned long long val);
Effects: Constructs an object of class bitset<N>, initializing the first
M
bit positions to the corresponding bit values inval
.M
is the smaller ofN
and the number of bits in the value representation (section [basic.types]) ofunsigned long long
. IfM < N
istrue
, the remaining bit positions are initialized to zero.
Additionally, introduce a new member function to_ullong()
to make it possible to convert bitset
to values of the
new type. Add the following declaration to the definition of the
template, immediate after the declaration of to_ulong()
in 20.6 [template.bitset], p1, as shown below:
// element access: bool operator[](size_t pos) const; // for b[i]; reference operator[](size_t pos); // for b[i]; unsigned long to_ulong() const; unsigned long long to_ullong() const; template <class charT, class traits, class Allocator> basic_string<charT, traits, Allocator> to_string() const;
And add a description of the new member function to 20.6.2 [bitset.members],
below the description of the existing to_ulong()
(if
possible), with the following text:
unsigned long long to_ullong() const;
Throws:
overflow_error
if the integral valuex
corresponding to the bits in*this
cannot be represented as typeunsigned long long
.Returns:
x
.
Section: 22.4.1.3 [facet.ctype.special] Status: CD1 Submitter: Martin Sebor Opened: 2007-06-22 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The ctype<char>::classic_table()
static member
function returns a pointer to an array of const
ctype_base::mask
objects (enums) that contains
ctype<char>::table_size
elements. The table
describes the properties of the character set in the "C" locale (i.e.,
whether a character at an index given by its value is alpha, digit,
punct, etc.), and is typically used to initialize the
ctype<char>
facet in the classic "C" locale (the
protected ctype<char>
member function
table()
then returns the same value as
classic_table()
).
However, while ctype<char>::table_size
(the size of
the table) is a public static const member of the
ctype<char>
specialization, the
classic_table()
static member function is protected. That
makes getting at the classic data less than convenient (i.e., one has
to create a whole derived class just to get at the masks array). It
makes little sense to expose the size of the table in the public
interface while making the table itself protected, especially when the
table is a constant object.
The same argument can be made for the non-static protected member
function table()
.
Proposed resolution:
Make the ctype<char>::classic_table()
and
ctype<char>::table()
member functions public by
moving their declarations into the public section of the definition of
specialization in 22.4.1.3 [facet.ctype.special] as shown below:
static locale::id id; static const size_t table_size = IMPLEMENTATION_DEFINED;protected:const mask* table() const throw(); static const mask* classic_table() throw(); protected: ~ctype(); // virtual virtual char do_toupper(char c) const;
istream::operator>>(int&)
brokenSection: 27.7.2.2.2 [istream.formatted.arithmetic] Status: C++11 Submitter: Martin Sebor Opened: 2007-06-23 Last modified: 2015-04-08
View all other issues in [istream.formatted.arithmetic].
View all issues with C++11 status.
Discussion:
From message c++std-lib-17897:
The code shown in 27.7.2.2.2 [istream.formatted.arithmetic] as the "as if"
implementation of the two arithmetic extractors that don't have a
corresponding num_get
interface (i.e., the
short
and int
overloads) is subtly buggy in
how it deals with EOF
, overflow, and other similar
conditions (in addition to containing a few typos).
One problem is that if num_get::get()
reaches the EOF
after reading in an otherwise valid value that exceeds the limits of
the narrower type (but not LONG_MIN
or
LONG_MAX
), it will set err
to
eofbit
. Because of the if condition testing for
(err == 0)
, the extractor won't set
failbit
(and presumably, return a bogus value to the
caller).
Another problem with the code is that it never actually sets the
argument to the extracted value. It can't happen after the call to
setstate()
since the function may throw, so we need to
show when and how it's done (we can't just punt as say: "it happens
afterwards"). However, it turns out that showing how it's done isn't
quite so easy since the argument is normally left unchanged by the
facet on error except when the error is due to a misplaced thousands
separator, which causes failbit
to be set but doesn't
prevent the facet from storing the value.
[ Batavia (2009-05): ]
We believe this part of the Standard has been recently adjusted and that this issue was addressed during that rewrite.
Move to NAD.
[ 2009-05-28 Howard adds: ]
I've moved this issue from Tentatively NAD to Open.
The current wording of N2857 in 22.4.2.1.2 [facet.num.get.virtuals] p3, stage 3 appears to indicate that in parsing arithmetic types, the value is always set, but sometimes in addition to setting failbit.
- If there is a range error, the value is set to min or max, else
- if there is a conversion error, the value is set to 0, else
- if there is a grouping error, the value is set to whatever it would be if grouping were ignored, else
- the value is set to its error-free result.
However there is a contradictory sentence in 22.4.2.1.2 [facet.num.get.virtuals] p1.
27.7.2.2.2 [istream.formatted.arithmetic] should mimic the behavior of 22.4.2.1.2 [facet.num.get.virtuals] (whatever we decide that behavior is) for int and short, and currently does not. I believe that the correct code fragment should look like:
typedef num_get<charT,istreambuf_iterator<charT,traits> > numget; iostate err = ios_base::goodbit; long lval; use_facet<numget>(loc).get(*this, 0, *this, err, lval); if (lval < numeric_limits<int>::min()) { err |= ios_base::failbit; val = numeric_limits<int>::min(); } else if (lval > numeric_limits<int>::max()) { err |= ios_base::failbit; val = numeric_limits<int>::max(); } else val = static_cast<int>(lval); setstate(err);
[ 2009-07 Frankfurt ]
Move to Ready.
Proposed resolution:
Change 22.4.2.1.2 [facet.num.get.virtuals], p1:
-1- Effects: Reads characters from in, interpreting them according to str.flags(), use_facet<ctype<charT> >(loc), and use_facet< numpunct<charT> >(loc), where loc is str.getloc().
If an error occurs, val is unchanged; otherwise it is set to the resulting value.
Change 27.7.2.2.2 [istream.formatted.arithmetic], p2 and p3:
operator>>(short& val);-2- The conversion occurs as if performed by the following code fragment (using the same notation as for the preceding code fragment):
typedef num_get<charT,istreambuf_iterator<charT,traits> > numget; iostate err = iostate_base::goodbit; long lval; use_facet<numget>(loc).get(*this, 0, *this, err, lval);if (err != 0) ; else if (lval < numeric_limits<short>::min() || numeric_limits<short>::max() < lval) err = ios_base::failbit;if (lval < numeric_limits<short>::min()) { err |= ios_base::failbit; val = numeric_limits<short>::min(); } else if (lval > numeric_limits<short>::max()) { err |= ios_base::failbit; val = numeric_limits<short>::max(); } else val = static_cast<short>(lval); setstate(err);operator>>(int& val);-3- The conversion occurs as if performed by the following code fragment (using the same notation as for the preceding code fragment):
typedef num_get<charT,istreambuf_iterator<charT,traits> > numget; iostate err = iostate_base::goodbit; long lval; use_facet<numget>(loc).get(*this, 0, *this, err, lval);if (err != 0) ; else if (lval < numeric_limits<int>::min() || numeric_limits<int>::max() < lval) err = ios_base::failbit;if (lval < numeric_limits<int>::min()) { err |= ios_base::failbit; val = numeric_limits<int>::min(); } else if (lval > numeric_limits<int>::max()) { err |= ios_base::failbit; val = numeric_limits<int>::max(); } else val = static_cast<int>(lval); setstate(err);
Section: 19.5 [syserr] Status: Resolved Submitter: Daniel Krügler Opened: 2007-06-24 Last modified: 2015-04-08
View all other issues in [syserr].
View all issues with Resolved status.
Discussion:
The most recent state of N2241 as well as the current draft N2284 (section 19.5 [syserr], p.2) proposes a new enumeration type posix_errno immediatly in the namespace std. One of the enumerators has the name invalid_argument, or fully qualified: std::invalid_argument. This name clashes with the exception type std::invalid_argument, see 19.2 [std.exceptions]/p.3. This clash makes e.g. the following snippet invalid:
#include <system_error> #include <stdexcept> void foo() { throw std::invalid_argument("Don't call us - we call you!"); }
I propose that this enumeration type (and probably the remaining parts of <system_error> as well) should be moved into one additional inner namespace, e.g. sys or system to reduce foreseeable future clashes due to the great number of members that std::posix_errno already contains (Btw.: Why has the already proposed std::sys sub-namespace from N2066 been rejected?). A further clash candidate seems to be std::protocol_error (a reasonable name for an exception related to a std network library, I guess).
Another possible resolution would rely on the proposed strongly typed enums, as described in N2213. But maybe the forbidden implicit conversion to integral types would make these enumerators less attractive in this special case?
Proposed resolution:
Fixed by issue 7 of N2422.
Section: 19.5.6.1 [syserr.syserr.overview] Status: CD1 Submitter: Daniel Krügler Opened: 2007-06-24 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
In 19.5.6.1 [syserr.syserr.overview] we have the class definition of std::system_error. In contrast to all exception classes, which are constructible with a what_arg string (see 19.2 [std.exceptions], or ios_base::failure in 27.5.3.1.1 [ios::failure]), only overloads with with const string& are possible. For consistency with the re-designed remaining exception classes this class should also provide c'tors which accept a const char* what_arg string.
Please note that this proposed addition makes sense even considering the given implementation hint for what(), because what_arg is required to be set as what_arg of the base class runtime_error, which now has the additional c'tor overload accepting a const char*.
Proposed resolution:
This proposed wording assumes issue 832 has been accepted and applied to the working paper.
Change 19.5.6.1 [syserr.syserr.overview] Class system_error overview, as indicated:
public: system_error(error_code ec, const string& what_arg); system_error(error_code ec, const char* what_arg); system_error(error_code ec); system_error(int ev, const error_category* ecat, const string& what_arg); system_error(int ev, const error_category* ecat, const char* what_arg); system_error(int ev, const error_category* ecat);
To 19.5.6.2 [syserr.syserr.members] Class system_error members add:
system_error(error_code ec, const char* what_arg);Effects: Constructs an object of class system_error.
Postconditions: code() == ec and strcmp(runtime_error::what(), what_arg) == 0.
system_error(int ev, const error_category* ecat, const char* what_arg);Effects: Constructs an object of class system_error.
Postconditions: code() == error_code(ev, ecat) and strcmp(runtime_error::what(), what_arg) == 0.
Section: 26.5 [rand] Status: CD1 Submitter: P.J. Plauger Opened: 2007-07-01 Last modified: 2015-04-08
View all other issues in [rand].
View all issues with CD1 status.
Discussion:
N2111 changes min/max in several places in random from member functions to static data members. I believe this introduces a needless backward compatibility problem between C++0X and TR1. I'd like us to find new names for the static data members, or perhaps change min/max to constexprs in C++0X.
See N2391 and N2423 for some further discussion.
Proposed resolution:
Adopt the proposed resolution in N2423.
[ Kona (2007): The LWG adopted the proposed resolution of N2423 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 20.2.4 [forward] Status: CD1 Submitter: P.J. Plauger Opened: 2007-07-01 Last modified: 2015-04-08
View all other issues in [forward].
View all issues with CD1 status.
Discussion:
N1856 defines struct identity in <utility> which clashes with the traditional definition of struct identity in <functional> (not standard, but a common extension from old STL). Be nice if we could avoid this name clash for backward compatibility.
Proposed resolution:
Change 20.2.4 [forward]:
template <class T> struct identity { typedef T type; const T& operator()(const T& x) const; };const T& operator()(const T& x) const;Returns: x.
Section: 23.4.4.3 [map.access] Status: CD1 Submitter: Joe Gottman Opened: 2007-07-03 Last modified: 2015-04-08
View all other issues in [map.access].
View all issues with CD1 status.
Discussion:
map::at() need a complexity specification.
Proposed resolution:
Add the following to the specification of map::at(), 23.4.4.3 [map.access]:
Complexity: logarithmic.
Section: 23.2 [container.requirements] Status: C++11 Submitter: Howard Hinnant Opened: 2007-05-20 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with C++11 status.
Discussion:
The move-related changes inadvertently overwrote the intent of 276. Issue 276 removed the requirement of CopyAssignable from most of the member functions of node-based containers. But the move-related changes unnecessarily introduced the MoveAssignable requirement for those members which used to require CopyAssignable.
We also discussed (c++std-lib-18722) the possibility of dropping MoveAssignable from some of the sequence requirements. Additionally the in-place construction work may further reduce requirements. For purposes of an easy reference, here are the minimum sequence requirements as I currently understand them. Those items in requirements table in the working draft which do not appear below have been purposefully omitted for brevity as they do not have any requirements of this nature. Some items which do not have any requirements of this nature are included below just to confirm that they were not omitted by mistake.
X u(a) | value_type must be CopyConstructible |
X u(rv) | array requires value_type to be CopyConstructible |
a = u | Sequences require value_type to be CopyConstructible and CopyAssignable. Associative containers require value_type to be CopyConstructible. |
a = rv | array requires value_type to be CopyAssignable. Sequences containers with propagate_on_container_move_assignment == false allocators require value_type to be MoveConstructible and MoveAssignable. Associative containers with propagate_on_container_move_assignment == false allocators require value_type to be MoveConstructible. |
swap(a,u) | array requires value_type to be Swappable. |
X(n) | value_type must be DefaultConstructible |
X(n, t) | value_type must be CopyConstructible |
X(i, j) | Sequences require value_type to be constructible from *i. Additionally if input_iterators are used, vector and deque require MoveContructible and MoveAssignable. |
a.insert(p, t) | The value_type must be CopyConstructible. The sequences vector and deque also require the value_type to be CopyAssignable. |
a.insert(p, rv) | The value_type must be MoveConstructible. The sequences vector and deque also require the value_type to be MoveAssignable. |
a.insert(p, n, t) | The value_type must be CopyConstructible. The sequences vector and deque also require the value_type to be CopyAssignable. |
a.insert(p, i, j) | If the iterators return an lvalue the value_type must be CopyConstructible. The sequences vector and deque also require the value_type to be CopyAssignable when the iterators return an lvalue. If the iterators return an rvalue the value_type must be MoveConstructible. The sequences vector and deque also require the value_type to be MoveAssignable when the iterators return an rvalue. |
a.erase(p) | The sequences vector and deque require the value_type to be MoveAssignable. |
a.erase(q1, q2) | The sequences vector and deque require the value_type to be MoveAssignable. |
a.clear() | |
a.assign(i, j) | If the iterators return an lvalue the value_type must be CopyConstructible and CopyAssignable. If the iterators return an rvalue the value_type must be MoveConstructible and MoveAssignable. |
a.assign(n, t) | The value_type must be CopyConstructible and CopyAssignable. |
a.resize(n) | The value_type must be DefaultConstructible. The sequence vector also requires the value_type to be MoveConstructible. |
a.resize(n, t) | The value_type must be CopyConstructible. |
a.front() | |
a.back() | |
a.push_front(t) | The value_type must be CopyConstructible. |
a.push_front(rv) | The value_type must be MoveConstructible. |
a.push_back(t) | The value_type must be CopyConstructible. |
a.push_back(rv) | The value_type must be MoveConstructible. |
a.pop_front() | |
a.pop_back() | |
a[n] | |
a.at[n] |
X(i, j) | If the iterators return an lvalue the value_type must be CopyConstructible. If the iterators return an rvalue the value_type must be MoveConstructible. |
a_uniq.insert(t) | The value_type must be CopyConstructible. |
a_uniq.insert(rv) | The key_type and the mapped_type (if it exists) must be MoveConstructible. |
a_eq.insert(t) | The value_type must be CopyConstructible. |
a_eq.insert(rv) | The key_type and the mapped_type (if it exists) must be MoveConstructible. |
a.insert(p, t) | The value_type must be CopyConstructible. |
a.insert(p, rv) | The key_type and the mapped_type (if it exists) must be MoveConstructible. |
a.insert(i, j) | If the iterators return an lvalue the value_type must be CopyConstructible. If the iterators return an rvalue the key_type and the mapped_type (if it exists) must be MoveConstructible.. |
X(i, j, n, hf, eq) | If the iterators return an lvalue the value_type must be CopyConstructible. If the iterators return an rvalue the value_type must be MoveConstructible. |
a_uniq.insert(t) | The value_type must be CopyConstructible. |
a_uniq.insert(rv) | The key_type and the mapped_type (if it exists) must be MoveConstructible. |
a_eq.insert(t) | The value_type must be CopyConstructible. |
a_eq.insert(rv) | The key_type and the mapped_type (if it exists) must be MoveConstructible. |
a.insert(p, t) | The value_type must be CopyConstructible. |
a.insert(p, rv) | The key_type and the mapped_type (if it exists) must be MoveConstructible. |
a.insert(i, j) | If the iterators return an lvalue the value_type must be CopyConstructible. If the iterators return an rvalue the key_type and the mapped_type (if it exists) must be MoveConstructible.. |
map[lvalue-key] | The key_type must be CopyConstructible. The mapped_type must be DefaultConstructible and MoveConstructible. |
map[rvalue-key] | The key_type must be MoveConstructible. The mapped_type must be DefaultConstructible and MoveConstructible. |
[ Kona (2007): Howard and Alan to update requirements table in issue with emplace signatures. ]
[ Bellevue: This should be handled as part of the concepts work. ]
[ 2009-07-20 Reopened by Howard: ]
This is one of the issues that was "solved by concepts" and is now no longer solved.
In a nutshell, concepts adopted the "minimum requirements" philosophy outlined in the discussion of this issue, and enforced it. My strong suggestion is that we translate the concepts specification into documentation for the containers.
What this means for vendors is that they will have to implement container members being careful to only use those characteristics of a type that the concepts specification formally allowed. Note that I am not talking about enable_if'ing everything. I am simply suggesting that (for example) we tell the vendor he can't call T's copy constructor or move constructor within the emplace member function, etc.
What this means for customers is that they will be able to use types within C++03 containers which are sometimes not CopyConstructible, and sometimes not even MoveConstructible, etc.
[ 2009-10 Santa Cruz: ]
Leave open. Howard to provide wording.
[ 2010-02-06 Howard provides wording. ]
[ 2010-02-08 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-02-10 Howard opened. I neglected to reduce the requirements on value_type for the insert function of the ordered and unordered associative containers when the argument is an rvalue. Fixed it. ]
[ 2010-02-11 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-03-08 Nico opens: ]
I took the task to see whether 868 is covered by 704 already. However, by doing that I have the impression that 704 is a big mistake.
Take e.g. the second change of 868:
Change 23.3.3.2 [deque.cons] para 5:
Effects: Constructs a deque with n default constructed elements.
where "default constructed" should be replaced by "value-initialized". This is the constructor out of a number of elements:
ContType c(num)704 says:
Remove the entire section 23.3.3.2 [deque.cons].
[ This section is already specified by the requirements tables. ]
BUT, there is no requirement table that lists this constructor at all, which means that we would lose the entire specification of this function !!!
In fact, I found with further investigation, if we follow 704 to remove 23.3.2.1 we
- have no semantics for ContType c(num)
- have no complexity and no allocator specification for ContType c(num,val)
- have no semantics for ContType c(num,val,alloc)
- - have no complexity and no allocator specification for ContType c(beg,end)
- - have no semantics for ContType c(beg,end,alloc)
- - have different wording (which might or might not give the same guarantees) for the assign functions
because all these guarantees are given in the removed section but nowhere else (as far as I saw).
Looks to me that 704 need a significant review before we take that change, because chances are high that there are similar flaws in other proposed changes there (provided I am not missing anything).
[ 2010 Pittsburgh: ]
Removed the parts from the proposed wording that removed existing sections, and set to Ready for Pittsburgh.
Rationale:
[ post San Francisco: ]
Solved by N2776.
This rationale is obsolete.
Proposed resolution:
Change 23.2.1 [container.requirements.general]/4:
4 In Tables 91 and 92, X denotes a container class containing objects of type T, a and b denote values of type X, u denotes an identifier, r denotes
an lvalue or a const rvaluea non-const value of type X, and rv denotes a non-const rvalue of type X.
Change the following rows in Table 91 — Container requirements 23.2.1 [container.requirements.general]:
Table 91 — Container requirements Expression Return type Assertion/note
pre-/post-conditionComplexity X::value_type T Requires: T is Destructible. compile time
Change 23.2.1 [container.requirements.general]/10:
Unless otherwise specified (see 23.2.4.1, 23.2.5.1, 23.3.2.3, and 23.3.6.4) all container types defined in this Clause meet the following additional requirements:
…
no erase(), clear(), pop_back() or pop_front() function throws an exception.
…
Insert a new paragraph prior to 23.2.1 [container.requirements.general]/14:
The descriptions of the requirements of the type T in this section use the terms CopyConstructible, MoveConstructible, constructible from *i, and constructible from args. These terms are equivalent to the following expression using the appropriate arguments:
allocator_traits<allocator_type>::construct(x.get_allocator(), q, args...);where x is a non-const lvalue of some container type X and q has type X::value_type*.
[Example: The container is going to move construct a T, so will call:
allocator_traits<allocator_type>::construct(get_allocator(), q, std::move(t));The default implementation of construct will call:
::new (q) T(std::forward<T>(t)); // where forward is the same as move here, cast to rvalueBut the allocator author may override the above definition of construct and do the construction of T by some other means. — end example]
14 ...
Add to 23.2.1 [container.requirements.general]/14:
14 In Table 93, X denotes an allocator-aware container class with a value_type of T using allocator of type A, u denotes a variable, a and b denote non-const lvalues of type X, t denotes an lvalue or a const rvalue of type X, rv denotes a non-const rvalue of type X, m is a value of type A, and Q is an allocator type.
Change or add the following rows in Table 93 — Allocator-aware container requirements in 23.2.1 [container.requirements.general]:
Table 93 — Allocator-aware container requirements Expression Return type Assertion/note
pre-/post-conditionComplexity X(t, m)
X u(t, m);Requires: T is CopyConstructible.
post: u == t,
get_allocator() == mlinear X(rv, m)
X u(rv, m);Requires: T is MoveConstructible.
post: u shall have the same elements, or copies of the elements, that rv had before this construction,
get_allocator() == mconstant if m == rv.get_allocator(), otherwise linear a = t X& Requires: T is CopyConstructible and CopyAssignable
post: a == t.linear a = rv X& Requires: If allocator_traits< allocator_type > ::propagate_on_container_move_assignment ::value is false, T is MoveConstructible and MoveAssignable.
All existing elements of a are either move assigned to or destroyed.
a shall be equal to the value that rv had before this assignmentlinear a.swap(b); void exchanges the contents of a and b constant
Change the following rows in Table 94 — Sequence container requirements (in addition to container) in 23.2.3 [sequence.reqmts]:
Table 94 — Sequence container requirements (in addition to container) Expression Return type Assertion/note
pre-/post-conditionX(i, j)
X a(i, j)Requires: If the iterator's dereference operation returns an lvalue or a const rvalue, T shall be CopyConstructible.T shall be constructible from *i.
If the iterator does not meet the forward iterator requirements (24.2.5 [forward.iterators]), then vector also requires T to be MoveConstructible.
Each iterator in the range [i,j) shall be dereferenced exactly once.
post: size() == distance between i and j
Constructs a sequence container equal to the range [i, j)a = il; X& Requires: T is CopyConstructible and CopyAssignable.
a = X(il);
Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either assigned or destroyed.
rReturns *this;a.emplace(p, args); iterator Requires: ConstructibleAsElement<A, T, Args>.T is constructible from args. vector and deque also require T to be MoveConstructible and MoveAssignable. Inserts an object of type T constructed with std::forward<Args>(args)... before p.a.insert(p, t); iterator Requires: ConstructibleAsElement<A, T, Args> and T shall be CopyAssignable.T shall be CopyConstructible. vector and deque also require T to be CopyAssignable. Inserts a copy t before p.a.insert(p, rv); iterator Requires: ConstructibleAsElement<A, T, T&&> and T shall be MoveAssignable.T shall be MoveConstructible. vector and deque also require T to be MoveAssignable. Inserts a copy rv before p.a.insert(p, i, j) iterator Requires: If the iterator's dereference operation returns an lvalue or a const rvalue, T shall be CopyConstructible.T shall be constructible from *i.
If the iterator does not meet the forward iterator requirements (24.2.5 [forward.iterators]), then vector also requires T to be MoveConstructible and MoveAssignable.
Each iterator in the range [i,j) shall be dereferenced exactly once.
pre: i and j are not iterators into a.
Inserts copies of elements in [i, j) before pa.erase(q); iterator Requires: T and T shall be MoveAssignable.vector and deque require T to be MoveAssignable. Erases the element pointed to by q.a.erase(q1, q2); iterator Requires: T and T shall be MoveAssignable.vector and deque require T to be MoveAssignable. Erases the elements in the range [q1, q2).a.clear(); void erase(begin(), end())
Destroys all elements in a. Invalidates all references, pointers, and iterators referring to the elements of a and may invalidate the past-the-end iterator.
post:size() == 0a.empty() == truea.assign(i, j) void Requires: If the iterator's dereference operation returns an lvalue or a const rvalue, T shall be CopyConstructible and CopyAssignable.T shall be constructible and assignable from *i. If the iterator does not meet the forward iterator requirements (24.2.5 [forward.iterators]), then vector also requires T to be MoveConstructible.
Each iterator in the range [i,j) shall be dereferenced exactly once.
pre: i, j are not iterators into a.
Replaces elements in a with a copy of [i, j).
Change the following rows in Table 95 — Optional sequence container operations in 23.2.3 [sequence.reqmts]:
Table 95 — Optional sequence container operations Expression Return type Operational semantics Container a.emplace_front(args) void a.emplace(a.begin(), std::forward<Args>(args)...)
Prepends an object of type T constructed with std::forward<Args>(args)....
Requires:ConstructibleAsElement<A, T, Args>T shall be constructible from args.list, deque, forward_list a.emplace_back(args) void a.emplace(a.end(), std::forward<Args>(args)...)
Appends an object of type T constructed with std::forward<Args>(args)....
Requires:ConstructibleAsElement<A, T, Args>T shall be constructible from args. vector also requires T to be MoveConstructible.list, deque, vector a.push_front(t) void a.insert(a.begin(), t)
Prepends a copy of t.
Requires:ConstructibleAsElement<A, T, T> and T shall be CopyAssignable.T shall be CopyConstructible.list, deque, forward_list a.push_front(rv) void a.insert(a.begin(), t)
Prepends a copy of rv.
Requires:ConstructibleAsElement<A, T, T&&> and T shall be MoveAssignable.T shall be MoveConstructible.list, deque, forward_list a.push_back(t) void a.insert(a.end(), t)
Appends a copy of t.
Requires:ConstructibleAsElement<A, T, T> and T shall be CopyAssignable.T shall be CopyConstructible.vector, list, deque, basic_string a.push_back(rv) void a.insert(a.end(), t)
Appends a copy of rv.
Requires:ConstructibleAsElement<A, T, T&&> and T shall be MoveAssignable.T shall be MoveConstructible.vector, list, deque, basic_string a.pop_front() void a.erase(a.begin())
Destroys the first element.
Requires: a.empty() shall be false.list, deque, forward_list a.pop_back() void { iterator tmp = a.end();
--tmp;
a.erase(tmp); }
Destroys the last element.
Requires: a.empty() shall be false.vector, list, deque, basic_string
Insert a new paragraph prior to 23.2.4 [associative.reqmts]/7, and edit paragraph 7:
The associative containers meet all of the requirements of Allocator-aware containers (23.2.1 [container.requirements.general]), except for the containers map and multimap, the requirements placed on value_type in Table 93 apply instead directly to key_type and mapped_type. [Note: For example key_type and mapped_type are sometimes required to be CopyAssignable even though the value_type (pair<const key_type, mapped_type>) is not CopyAssignable. — end note]
7 In Table 96, X denotes an associative container class, a denotes a value of X, a_uniq denotes a value of X when X supports unique keys, a_eq denotes a value of X when X supports multiple keys, u denotes an identifier,
r denotes an lvalue or a const rvalue of type X, rv denotes a non-const rvalue of type X,i and j satisfy input iterator requirements and refer to elements implicitly convertible to value_type, [i,j) denotes a valid range, p denotes a valid const iterator to a, q denotes a valid dereferenceable const iterator to a, [q1, q2) denotes a valid range of const iterators in a, il designates an object of type initializer_list<value_type>, t denotes a value of X::value_type, k denotes a value of X::key_type and c denotes a value of type X::key_compare. A denotes the storage allocator used by X, if any, or std::allocator<X::value_type> otherwise, and m denotes an allocator of a type convertible to A.
Change or add the following rows in Table 96 — Associative container requirements (in addition to container) in 23.2.4 [associative.reqmts]:
Table 96 — Associative container requirements (in addition to container) Expression Return type Assertion/note
pre-/post-conditionComplexity X::key_type Key Requires: Key is CopyConstructible and CopyAssignableDestructiblecompile time X::mapped_type (map and multimap only) T Requires: T is Destructible compile time X(c)
X a(c);Requires: ConstructibleAsElement<A, key_compare, key_compare>.
key_compare is CopyConstructible.
Constructs an empty container.
Uses a copy of c as a comparison object.constant X()
X a;Requires: ConstructibleAsElement<A, key_compare, key_compare>.
key_compare is DefaultConstructible.
Constructs an empty container.
Uses Compare() as a comparison object.constant X(i, j, c)
X a(i, j, c);Requires: ConstructibleAsElement<A, key_compare, key_compare>.
key_compare is CopyConstructible. value_type shall be constructible from *i.
Constructs an empty container ans inserts elements from the range [i, j) into it; uses c as a comparison object.N log N in general (N is the distance from i to j); linear if [i, j) is sorted with value_comp() X(i, j)
X a(i, j);Requires: ConstructibleAsElement<A, key_compare, key_compare>.
value_type shall be constructible from *i. key_compare is DefaultConstructible.
Same as above, but uses Compare() as a comparison object.same as above a = il X& a = X(il);
return *this;
Requires: T is CopyConstructible and CopyAssignable.
Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either assigned or destroyed.Same as a = X(il).N log N in general (N is il.size() added to the existing size of a); linear if [il.begin(), il.end()) is sorted with value_comp()a_uniq.emplace(args) pair<iterator, bool> Requires: T shall be constructible from args
inserts a T object t constructed with std::forward<Args>(args)... if and only if there is no element in the container with key equivalent to the key of t. The bool component of the returned pair is true if and only if the insertion takes place, and the iterator component of the pair points to the element with key equivalent to the key of t.logarithmic a_eq.emplace(args) iterator Requires: T shall be constructible from args
inserts a T object t constructed with std::forward<Args>(args)... and returns the iterator pointing to the newly inserted element.logarithmic a_uniq.insert(t) pair<iterator, bool> Requires: T shall be MoveConstructible if t is a non-const rvalue expression, else T shall be CopyConstructible.
inserts t if and only if there is no element in the container with key equivalent to the key of t. The bool component of the returned pair is true if and only if the insertion takes place, and the iterator component of the pair points to the element with key equivalent to the key of t.logarithmic a_eq.insert(t) iterator Requires: T shall be MoveConstructible if t is a non-const rvalue expression, else T shall be CopyConstructible.
inserts t and returns the iterator pointing to the newly inserted element. If a range containing elements equivalent to t exists in a_eq, t is inserted at the end of that range.logarithmic a.insert(p, t) iterator Requires: T shall be MoveConstructible if t is a non-const rvalue expression, else T shall be CopyConstructible.
inserts t if and only if there is no element with key equivalent to the key of t in containers with unique keys; always inserts t in containers with equivalent keys; always returns the iterator pointing to the element with key equivalent to the key of t. t is inserted as close as possible to the position just prior to p.logarithmic in general, but amortized constant if t is inserted right before p. a.insert(i, j) void Requires: T shall be constructible from *i.
pre: i, j are not iterators into a. inserts each element from the range [i,j) if and only if there is no element with key equivalent to the key of that element in containers with unique keys; always inserts that element in containers with equivalent keys.N log(size() + N ) (N is the distance from i to j)
Insert a new paragraph prior to 23.2.5 [unord.req]/9:
The unordered associative containers meet all of the requirements of Allocator-aware containers (23.2.1 [container.requirements.general]), except for the containers unordered_map and unordered_multimap, the requirements placed on value_type in Table 93 apply instead directly to key_type and mapped_type. [Note: For example key_type and mapped_type are sometimes required to be CopyAssignable even though the value_type (pair<const key_type, mapped_type>) is not CopyAssignable. — end note]
9 ...
Change or add the following rows in Table 98 — Unordered associative container requirements (in addition to container) in 23.2.5 [unord.req]:
Table 98 — Unordered associative container requirements (in addition to container) Expression Return type Assertion/note
pre-/post-conditionComplexity X::key_type Key Requires: Key shall be CopyAssignable and CopyConstructibleDestructiblecompile time X::mapped_type (unordered_map and unordered_multimap only) T Requires:T is Destructible compile time X(n, hf, eq)
X a(n, hf, eq)X Requires: hasher and key_equal are CopyConstructible. Constructs an empty container with at least n buckets, using hf as the hash function and eq as the key equality predicate. O(N) X(n, hf)
X a(n, hf)X Requires: hasher is CopyConstructible and key_equal is DefaultConstructible. Constructs an empty container with at least n buckets, using hf as the hash function and key_equal() as the key equality predicate. O(N) X(n)
X a(n)X Requires: hasher and key_equal are DefaultConstructible. Constructs an empty container with at least n buckets, using hasher() as the hash function and key_equal() as the key equality predicate. O(N) X()
X aX Requires: hasher and key_equal are DefaultConstructible. Constructs an empty container an unspecified number of buckets, using hasher() as the hash function and key_equal() as the key equality predicate. constant X(i, j, n, hf, eq)
X a(i, j, n, hf, eq)X Requires: value_type is constructible from *i. hasher and key_equal are CopyConstructible.
Constructs an empty container with at least n buckets, using hf as the hash function and eq as the key equality predicate, and inserts elements from [i, j) into it.Average case O(N) (N is distance(i, j)), worst case O(N2) X(i, j, n, hf)
X a(i, j, n, hf)X Requires: value_type is constructible from *i. hasher is CopyConstructible and key_equal is DefaultConstructible.
Constructs an empty container with at least n buckets, using hf as the hash function and key_equal() as the key equality predicate, and inserts elements from [i, j) into it.Average case O(N) (N is distance(i, j)), worst case O(N2) X(i, j, n)
X a(i, j, n)X Requires: value_type is constructible from *i. hasher and key_equal are DefaultConstructible.
Constructs an empty container with at least n buckets, using hasher() as the hash function and key_equal() as the key equality predicate, and inserts elements from [i, j) into it.Average case O(N) (N is distance(i, j)), worst case O(N2) X(i, j)
X a(i, j)X Requires: value_type is constructible from *i. hasher and key_equal are DefaultConstructible.
Constructs an empty container with an unspecified number of buckets, using hasher() as the hash function and key_equal() as the key equality predicate, and inserts elements from [i, j) into it.Average case O(N) (N is distance(i, j)), worst case O(N2) X(b)
X a(b)X Copy constructor. In addition to the contained elementsrequirements of Table 93 (23.2.1 [container.requirements.general]), copies the hash function, predicate, and maximum load factor.Average case linear in b.size(), worst case quadratic. a = b X& Copy assignment operator. In addition to the contained elementsrequirements of Table 93 (23.2.1 [container.requirements.general]), copies the hash function, predicate, and maximum load factor.Average case linear in b.size(), worst case quadratic. a = il X& a = X(il); return *this;
Requires: T is CopyConstructible and CopyAssignable.
Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either assigned or destroyed.Average case linear in il.size(), worst case quadratic. a_uniq.emplace(args) pair<iterator, bool> Requires: T shall be constructible from args
inserts a T object t constructed with std::forward<Args>(args)... if and only if there is no element in the container with key equivalent to the key of t. The bool component of the returned pair is true if and only if the insertion takes place, and the iterator component of the pair points to the element with key equivalent to the key of t.Average case O(1), worst case O(a_uniq.size()). a_eq.emplace(args) iterator Requires: T shall be constructible from args
inserts a T object t constructed with std::forward<Args>(args)... and returns the iterator pointing to the newly inserted element.Average case O(1), worst case O(a_eq.size()). a.emplace_hint(p, args) iterator Requires: T shall be constructible from args
equivalent to a.emplace( std::forward<Args>(args)...). Return value is an iterator pointing to the element with the key equivalent to the newly inserted element. The const_iterator p is a hint pointing to where the search should start. Implementations are permitted to ignore the hint.Average case O(1), worst case O(a.size()). a_uniq.insert(t) pair<iterator, bool> Requires: T shall be MoveConstructible if t is a non-const rvalue expression, else T shall be CopyConstructible.
Inserts t if and only if there is no element in the container with key equivalent to the key of t. The bool component of the returned pair indicates whether the insertion takes place, and the iterator component points to the element with key equivalent to the key of t.Average case O(1), worst case O(a_uniq.size()). a_eq.insert(t) iterator Requires: T shall be MoveConstructible if t is a non-const rvalue expression, else T shall be CopyConstructible.
Inserts t, and returns an iterator pointing to the newly inserted element.Average case O(1), worst case O(a_uniq.size()). a.insert(q, t) iterator Requires: T shall be MoveConstructible if t is a non-const rvalue expression, else T shall be CopyConstructible.
Equivalent to a.insert(t). Return value is an iterator pointing to the element with the key equivalent to that of t. The iterator q is a hint pointing to where the search should start. Implementations are permitted to ignore the hint.Average case O(1), worst case O(a_uniq.size()). a.insert(i, j) void Requires: T shall be constructible from *i.
Pre: i and j are not iterators in a. Equivalent to a.insert(t) for each element in [i,j).Average case O(N), where N is distance(i, j). Worst case O(N * a.size()).
Change 23.3.4 [forwardlist]/2:
2 A forward_list satisfies all of the requirements of a container (table 91), except that the size() member function is not provided. A forward_list also satisfies all of the requirements of an allocator-aware container (table 93). And forward_list provides the assign member functions as specified in Table 94, Sequence container requirements, and several of the optional sequence container requirements (Table 95). Descriptions are provided here only for operations on forward_list that are not described in that table or for operations where there is additional semantic information.
Add a new paragraph after 23.3.4.5 [forwardlist.modifiers]/23:
void clear();23 Effects: Erases all elements in the range [begin(),end()).
Remarks: Does not invalidate past-the-end iterators.
Change 23.3.6.3 [vector.capacity]/13:
void resize(size_type sz, const T& c);13 Requires: T shall be CopyConstructible. If value_type has a move constructor, that constructor shall not throw any exceptions.
In 23.5.6 [unord.set] and 23.5.7 [unord.multiset] substitute "Key" for "Value".
[ The above substitution is normative as it ties into the requirements table. ]
Section: 20.10.7.6 [meta.trans.other] Status: CD1 Submitter: Thorsten Ottosen Opened: 2007-07-08 Last modified: 2015-04-08
View other active issues in [meta.trans.other].
View all other issues in [meta.trans.other].
View all issues with CD1 status.
Discussion:
The current working draft has a type-trait decay in 20.10.7.6 [meta.trans.other].
Its use is to turn C++03 pass-by-value parameters into efficient C++0x pass-by-rvalue-reference parameters. However, the current definition introduces an incompatible change where the cv-qualification of the parameter type is retained. The deduced type should loose such cv-qualification, as pass-by-value does.
Proposed resolution:
In 20.10.7.6 [meta.trans.other] change the last sentence:
Otherwise the member typedef type equals remove_cv<U>::type.
In 20.4.2.4 [tuple.creation]/1 change:
where each Vi in VTypes is X& if, for the corresponding type Ti in Types, remove_cv<remove_reference<Ti>::type>::type equals reference_wrapper<X>, otherwise Vi is decay<Ti>::type.Let Ui be decay<Ti>::type for each Ti in Types. Then each Vi in VTypes is X& if Ui equals reference_wrapper<X>, otherwise Vi is Ui.
Section: 20.3 [pairs] Status: CD1 Submitter: Thorsten Ottosen Opened: 2007-07-08 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with CD1 status.
Discussion:
The current draft has make_pair() in 20.3 [pairs]/16 and make_tuple() in 20.4.2.4 [tuple.creation]. make_tuple() detects the presence of reference_wrapper<X> arguments and "unwraps" the reference in such cases. make_pair() would OTOH create a reference_wrapper<X> member. I suggest that the two functions are made to behave similar in this respect to minimize confusion.
Proposed resolution:
In 20.2 [utility] change the synopsis for make_pair() to read
template <class T1, class T2> pair<typename decay<T1>::typeV1,typename decay<T2>::typeV2> make_pair(T1&&, T2&&);
In 20.3 [pairs]/16 change the declaration to match the above synopsis. Then change the 20.3 [pairs]/17 to:
Returns: pair<
typename decay<T1>::typeV1,typename decay<T2>::typeV2>(forward<T1>(x),forward<T2>(y)) where V1 and V2 are determined as follows: Let Ui be decay<Ti>::type for each Ti. Then each Vi is X& if Ui equals reference_wrapper<X>, otherwise Vi is Ui.
Section: 21.2.3 [char.traits.specializations] Status: CD1 Submitter: Bo Persson Opened: 2007-08-13 Last modified: 2015-04-08
View all other issues in [char.traits.specializations].
View all issues with CD1 status.
Discussion:
The changes made for constexpr in 21.2.3 [char.traits.specializations] have not only changed the not_eof function from pass by const reference to pass by value, it has also changed the parameter type from int_type to char_type.
This doesn't work for type char, and is inconsistent with the requirements in Table 56, Traits requirements, 21.2.1 [char.traits.require].
Pete adds:
For what it's worth, that may not have been an intentional change. N2349, which detailed the changes for adding constant expressions to the library, has strikeout bars through the const and the & that surround the char_type argument, but none through char_type itself. So the intention may have been just to change to pass by value, with text incorrectly copied from the standard.
Proposed resolution:
Change the signature in 21.2.3.1 [char.traits.specializations.char], 21.2.3.2 [char.traits.specializations.char16_t], 21.2.3.3 [char.traits.specializations.char32_t], and 21.2.3.4 [char.traits.specializations.wchar.t] to
static constexpr int_type not_eof(char_typeint_type c);
[ Bellevue: ]
Resolution: NAD editorial - up to Pete's judgment
[ Post Sophia Antipolis ]
Moved from Pending NAD Editorial to Review. The proposed wording appears to be correct but non-editorial.
Section: 20.8.2.2 [util.smartptr.shared] Status: CD1 Submitter: Peter Dimov Opened: 2007-08-24 Last modified: 2015-04-08
View other active issues in [util.smartptr.shared].
View all other issues in [util.smartptr.shared].
View all issues with CD1 status.
Discussion:
A discussion on comp.std.c++ has identified a contradiction in the shared_ptr specification. The shared_ptr move constructor and the cast functions are missing postconditions for the get() accessor.
[ Bellevue: ]
Move to "ready", adopting the first (Peter's) proposed resolution.
Note to the project editor: there is an editorial issue here. The wording for the postconditions of the casts is slightly awkward, and the editor should consider rewording "If w is the return value...", e. g. as "For a return value w...".
Proposed resolution:
Add to 20.8.2.2.1 [util.smartptr.shared.const]:
shared_ptr(shared_ptr&& r); template<class Y> shared_ptr(shared_ptr<Y>&& r);Postconditions: *this shall contain the old value of r. r shall be empty. r.get() == 0.
Add to 20.8.2.2.9 [util.smartptr.shared.cast]:
template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U> const& r);Postconditions: If w is the return value, w.get() == static_cast<T*>(r.get()) && w.use_count() == r.use_count().
template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const& r);Postconditions: If w is the return value, w.get() == dynamic_cast<T*>(r.get()).
template<class T, class U> shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r);Postconditions: If w is the return value, w.get() == const_cast<T*>(r.get()) && w.use_count() == r.use_count().
Alberto Ganesh Barbati has written an alternative proposal where he suggests (among other things) that the casts be respecified in terms of the aliasing constructor as follows:
Change 20.8.2.2.9 [util.smartptr.shared.cast]:
-2- Returns:
If r is empty, an empty shared_ptr<T>; otherwise, a shared_ptr<T> object that stores static_cast<T*>(r.get()) and shares ownership with r.shared_ptr<T>(r, static_cast<T*>(r.get()).
-6- Returns:
When dynamic_cast<T*>(r.get()) returns a nonzero value, a shared_ptr<T> object that stores a copy of it and shares ownership with r;Otherwise, an empty shared_ptr<T> object.- If p = dynamic_cast<T*>(r.get()) is a non-null pointer, shared_ptr<T>(r, p);
- Otherwise, shared_ptr<T>().
-10- Returns:
If r is empty, an empty shared_ptr<T>; otherwise, a shared_ptr<T> object that stores const_cast<T*>(r.get()) and shares ownership with r.shared_ptr<T>(r, const_cast<T*>(r.get()).
This takes care of the missing postconditions for the casts by bringing in the aliasing constructor postcondition "by reference".
Section: 20.8.2.2.5 [util.smartptr.shared.obs] Status: C++11 Submitter: Peter Dimov Opened: 2007-08-24 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.obs].
View all issues with C++11 status.
Discussion:
A discussion on comp.std.c++ has identified a contradiction in the shared_ptr specification. The note:
[ Note: this constructor allows creation of an empty shared_ptr instance with a non-NULL stored pointer. -end note ]
after the aliasing constructor
template<class Y> shared_ptr(shared_ptr<Y> const& r, T *p);
reflects the intent of N2351 to, well, allow the creation of an empty shared_ptr with a non-NULL stored pointer.
This is contradicted by the second sentence in the Returns clause of 20.8.2.2.5 [util.smartptr.shared.obs]:
T* get() const;Returns: the stored pointer. Returns a null pointer if *this is empty.
[ Bellevue: ]
Adopt option 1 and move to review, not ready.
There was a lot of confusion about what an empty shared_ptr is (the term isn't defined anywhere), and whether we have a good mental model for how one behaves. We think it might be possible to deduce what the definition should be, but the words just aren't there. We need to open an issue on the use of this undefined term. (The resolution of that issue might affect the resolution of issue 711.)
The LWG is getting more uncomfortable with the aliasing proposal (N2351) now that we realize some of its implications, and we need to keep an eye on it, but there isn't support for removing this feature at this time.
[ Sophia Antipolis: ]
We heard from Peter Dimov, who explained his reason for preferring solution 1.
Because it doesn't seem to add anything. It simply makes the behavior for p = 0 undefined. For programmers who don't create empty pointers with p = 0, there is no difference. Those who do insist on creating them presumably have a good reason, and it costs nothing for us to define the behavior in this case.
The aliasing constructor is sharp enough as it is, so "protecting" users doesn't make much sense in this particular case.
> Do you have a use case for r being empty and r being non-null?
I have received a few requests for it from "performance-conscious" people (you should be familiar with this mindset) who don't like the overhead of allocating and maintaining a control block when a null deleter is used to approximate a raw pointer. It is obviously an "at your own risk", low-level feature; essentially a raw pointer behind a shared_ptr facade.
We could not agree upon a resolution to the issue; some of us thought that Peter's description above is supporting an undesirable behavior.
[ 2009-07 Frankfurt: ]
We favor option 1, move to Ready.
[ Howard: Option 2 commented out for clarity, and can be brought back. ]
Proposed resolution:
In keeping the N2351 spirit and obviously my preference, change 20.8.2.2.5 [util.smartptr.shared.obs]:
T* get() const;Returns: the stored pointer.
Returns a null pointer if *this is empty.
Section: 26.5.7.1 [rand.util.seedseq] Status: CD1 Submitter: Marc Paterno Opened: 2007-08-25 Last modified: 2015-04-08
View all other issues in [rand.util.seedseq].
View all issues with CD1 status.
Discussion:
One of the motivations for incorporating seed_seq::size() was to simplify the wording in other parts of 26.5 [rand]. As a side effect of resolving related issues, all such references to seed_seq::size() will have been excised. More importantly, the present specification is contradictory, as "The number of 32-bit units the object can deliver" is not the same as "the result of v.size()."
See N2391 and N2423 for some further discussion.
Proposed resolution:
Adopt the proposed resolution in N2423.
[ Kona (2007): The LWG adopted the proposed resolution of N2423 for this issue. The LWG voted to accelerate this issue to Ready status to be voted into the WP at Kona. ]
Section: 25.4.1.1 [sort] Status: CD1 Submitter: Matt Austern Opened: 2007-08-30 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The complexity of sort() is specified as "Approximately N log(N) (where N == last - first ) comparisons on the average", with no worst case complicity specified. The intention was to allow a median-of-three quicksort implementation, which is usually O(N log N) but can be quadratic for pathological inputs. However, there is no longer any reason to allow implementers the freedom to have a worst-cast-quadratic sort algorithm. Implementers who want to use quicksort can use a variant like David Musser's "Introsort" (Software Practice and Experience 27:983-993, 1997), which is guaranteed to be O(N log N) in the worst case without incurring additional overhead in the average case. Most C++ library implementers already do this, and there is no reason not to guarantee it in the standard.
Proposed resolution:
In 25.4.1.1 [sort], change the complexity to "O(N log N)", and remove footnote 266:
Complexity:
ApproximatelyO(N log(N)) (where N == last - first ) comparisonson the average.266)
266) If the worst case behavior is important stable_sort() (25.3.1.2) or partial_sort() (25.3.1.3) should be used.
Section: 25.2.13 [alg.search] Status: CD1 Submitter: Matt Austern Opened: 2007-08-30 Last modified: 2015-04-08
View all other issues in [alg.search].
View all issues with CD1 status.
Discussion:
The complexity for search_n (25.2.13 [alg.search] par 7) is specified as "At most (last - first ) * count applications of the corresponding predicate if count is positive, or 0 otherwise." This is unnecessarily pessimistic. Regardless of the value of count, there is no reason to examine any element in the range more than once.
Proposed resolution:
Change the complexity to "At most (last - first) applications of the corresponding predicate".
template<class ForwardIterator, class Size, class T> ForwardIterator search_n(ForwardIterator first , ForwardIterator last , Size count , const T& value ); template<class ForwardIterator, class Size, class T, class BinaryPredicate> ForwardIterator search_n(ForwardIterator first , ForwardIterator last , Size count , const T& value , BinaryPredicate pred );Complexity: At most (last - first )
* countapplications of the corresponding predicateif count is positive, or 0 otherwise.
Section: 25.4.7 [alg.min.max] Status: CD1 Submitter: Matt Austern Opened: 2007-08-30 Last modified: 2015-04-08
View all other issues in [alg.min.max].
View all issues with CD1 status.
Discussion:
The complexity for minmax_element (25.4.7 [alg.min.max] par 16) says "At most max(2 * (last - first ) - 2, 0) applications of the corresponding comparisons", i.e. the worst case complexity is no better than calling min_element and max_element separately. This is gratuitously inefficient. There is a well known technique that does better: see section 9.1 of CLRS (Introduction to Algorithms, by Cormen, Leiserson, Rivest, and Stein).
Proposed resolution:
Change 25.4.7 [alg.min.max] to:
template<class ForwardIterator> pair<ForwardIterator, ForwardIterator> minmax_element(ForwardIterator first , ForwardIterator last); template<class ForwardIterator, class Compare> pair<ForwardIterator, ForwardIterator> minmax_element(ForwardIterator first , ForwardIterator last , Compare comp);Returns: make_pair(m, M), where m is
min_element(first, last) or min_element(first, last, comp)the first iterator in [first, last) such that no iterator in the range refers to a smaller element, and where M ismax_element(first, last) or max_element(first, last, comp)the last iterator in [first, last) such that no iterator in the range refers to a larger element.Complexity: At most
max(2 * (last - first ) - 2, 0)max(⌊(3/2) (N-1)⌋, 0) applications of the correspondingcomparisonspredicate, where N is distance(first, last).
Section: 28.13 [re.grammar] Status: C++11 Submitter: Stephan T. Lavavej Opened: 2007-08-31 Last modified: 2015-04-08
View all other issues in [re.grammar].
View all issues with C++11 status.
Discussion:
TR1 7.13 [tr.re.grammar]/3 and C++0x WP 28.13 [re.grammar]/3 say:
The following productions within the ECMAScript grammar are modified as follows:
CharacterClass :: [ [lookahead ∉ {^}] ClassRanges ] [ ^ ClassRanges ]
This definition for CharacterClass appears to be exactly identical to that in ECMA-262.
Was an actual modification intended here and accidentally omitted, or was this production accidentally included?
[ Batavia (2009-05): ]
We agree that what is specified is identical to what ECMA-262 specifies. Pete would like to take a bit of time to assess whether we had intended, but failed, to make a change. It would also be useful to hear from John Maddock on the issue.
Move to Open.
[ 2009-07 Frankfurt: ]
Move to Ready.
Proposed resolution:
Remove this mention of the CharacterClass production.
CharacterClass :: [ [lookahead ∉ {^}] ClassRanges ] [ ^ ClassRanges ]
Section: 20.10 [meta] Status: Resolved Submitter: Daniel Krügler Opened: 2007-08-25 Last modified: 2015-04-08
View other active issues in [meta].
View all other issues in [meta].
View all issues with Resolved status.
Duplicate of: 750
Discussion:
Since the inclusion of constexpr in the standard draft N2369 we have a new type category "literal", which is defined in 3.9 [basic.types]/p.11:
-11- A type is a literal type if it is:
- a scalar type; or
a class type (clause 9) with
- a trivial copy constructor,
- a trivial destructor,
- at least one constexpr constructor other than the copy constructor,
- no virtual base classes, and
- all non-static data members and base classes of literal types; or
- an array of literal type.
I strongly suggest that the standard provides a type traits for literal types in 20.10.4.3 [meta.unary.prop] for several reasons:
The special problem of reason (c) is that I don't see currently a way to portably test the condition for literal class types:
- at least one constexpr constructor other than the copy constructor,
[ Alisdair is considering preparing a paper listing a number of missing type traits, and feels that it might be useful to handle them all together rather than piecemeal. This would affect issue 719 and 750. These two issues should move to OPEN pending AM paper on type traits. ]
[ 2009-07 Frankfurt: ]
Beman, Daniel, and Alisdair will work on a paper proposing new type traits.
[ Addressed in N2947. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2984.
Proposed resolution:
In 20.10.2 [meta.type.synop] in the group "type properties", just below the line
template <class T> struct is_pod;
add a new one:
template <class T> struct is_literal;
In 20.10.4.3 [meta.unary.prop], table Type Property Predicates, just below the line for the is_pod property add a new line:
Template | Condition | Preconditions |
---|---|---|
template <class T> struct is_literal; | T is a literal type (3.9) | T shall be a complete type, an array of unknown bound, or (possibly cv-qualified) void. |
Section: 23.3.2 [array], 20.6 [template.bitset] Status: CD1 Submitter: Daniel Krügler Opened: 2007-08-25 Last modified: 2015-04-08
View other active issues in [array].
View all other issues in [array].
View all issues with CD1 status.
Discussion:
[ Sophia Antipolis: ]
We handle this as two parts
- The proposed resolution is correct; move to ready.
- The issue points out a real problem, but the issue is larger than just this solution. We believe a paper is needed, applying the full new features of C++ (including extensible literals) to update std::bitset. We note that we do not consider this new work, and that is should be handled by the Library Working Group.
In order to have a consistent working paper, Alisdair and Daniel produced a new wording for the resolution.
Proposed resolution:
In the class template definition of 23.3.2 [array]/p. 3 change
constexpr bool empty() const;
In the class template definition of 20.6 [template.bitset]/p. 1 change
constexpr bool test(size_t pos ) const;
and in 20.6.2 [bitset.members] change
constexpr bool test(size_t pos ) const;
Section: 26.8 [c.math] Status: CD1 Submitter: Daniel Krügler Opened: 2007-08-27 Last modified: 2015-04-08
View other active issues in [c.math].
View all other issues in [c.math].
View all issues with CD1 status.
Discussion:
In the listing of 26.8 [c.math], table 108: Header <cmath> synopsis I miss the following C99 functions (from 7.12.11.2):
float nanf(const char *tagp); long double nanl(const char *tagp);
(Note: These functions cannot be overloaded and they are also not listed anywhere else)
Proposed resolution:
In 26.8 [c.math], table 108, section "Functions", add nanf and nanl just after the existing entry nan.
Section: 28.8 [re.regex] Status: C++11 Submitter: Daniel Krügler Opened: 2007-08-29 Last modified: 2015-04-08
View all other issues in [re.regex].
View all issues with C++11 status.
Discussion:
Addresses UK 316
According to the current state of the standard draft, the class template basic_regex, as described in 28.8 [re.regex]/3, is neither MoveConstructible nor MoveAssignable. IMO it should be, because typical regex state machines tend to have a rather large data quantum and I have seen several use cases, where a factory function returns regex values, which would take advantage of moveabilities.
[ Sophia Antipolis: ]
Needs wording for the semantics, the idea is agreed upon.
[ Post Summit Daniel updated wording to reflect new "swap rules". ]
[ 2009-07 Frankfurt: ]
Move to Ready.
Proposed resolution:
In the class definition of basic_regex, just below 28.8 [re.regex]/3, perform the following changes:
Just after basic_regex(const basic_regex&); insert:
basic_regex(basic_regex&&);
Just after basic_regex& operator=(const basic_regex&); insert:
basic_regex& operator=(basic_regex&&);
Just after basic_regex& assign(const basic_regex& that); insert:
basic_regex& assign(basic_regex&& that);
In 28.8.2 [re.regex.construct], just after p.11 add the following new member definition:
basic_regex(basic_regex&& e);Effects: Move-constructs a basic_regex instance from e.
Postconditions: flags() and mark_count() return e.flags() and e.mark_count(), respectively, that e had before construction, leaving e in a valid state with an unspecified value.
Throws: nothing.
Also in 28.8.2 [re.regex.construct], just after p.18 add the following new member definition:
basic_regex& operator=(basic_regex&& e);Effects: Returns the result of assign(std::move(e)).
In 28.8.3 [re.regex.assign], just after p. 2 add the following new member definition:
basic_regex& assign(basic_regex&& rhs);Effects: Move-assigns a basic_regex instance from rhs and returns *this.
Postconditions: flags() and mark_count() return rhs.flags() and rhs.mark_count(), respectively, that rhs had before assignment, leaving rhs in a valid state with an unspecified value.
Throws: nothing.
Section: 17.6.3.1 [utility.arg.requirements] Status: C++11 Submitter: Pablo Halpern Opened: 2007-09-12 Last modified: 2015-04-08
View all other issues in [utility.arg.requirements].
View all issues with C++11 status.
Discussion:
The DefaultConstructible requirement is referenced in several places in the August 2007 working draft N2369, but is not defined anywhere.
[ Bellevue: ]
Walking into the default/value-initialization mess...
Why two lines? Because we need both expressions to be valid.
AJM not sure what the phrase "default constructed" means. This is unfortunate, as the phrase is already used 24 times in the library!
Example: const int would not accept first line, but will accept the second.
This is an issue that must be solved by concepts, but we might need to solve it independantly first.
It seems that the requirements are the syntax in the proposed first column is valid, but not clear what semantics we need.
A table where there is no post-condition seems odd, but appears to sum up our position best.
At a minimum an object is declared and is destructible.
Move to open, as no-one happy to produce wording on the fly.
[ 2009-07-28 Reopened by Alisdair. No longer solved by concepts. ]
[ 2009-08-17 Daniel adds "[defaultconstructible]" to table title. 408 depends upon this issue. ]
[ 2009-08-18 Alisdair adds: ]
Looking at the proposed table in this issue, it really needs two rows:
Table 33: DefaultConstructible requirements [defaultconstructible] expression post-condition T t; t is default-initialized. T{} Object of type T is value-initialized. Note I am using the new brace-initialization syntax that is unambiguous in all use cases (no most vexing parse.)
[ 2009-10-03 Daniel adds: ]
The suggested definition T{} describing it as value-initialization is wrong, because it belongs to list-initialization which would - as the current rules are - always prefer a initializer-list constructor over a default-constructor. I don't consider this as an appropriate definition of DefaultConstructible. My primary suggestion is to ask core, whether the special case T{} (which also easily leads to ambiguity situations for more than one initializer-list in a class) would always prefer a default-constructor - if any - before considering an initializer-list constructor or to provide another syntax form to prefer value-initialization over list-initialization. If that fails I would fall back to suggest to use the expression T() instead of T{} with all it's disadvantages for the meaning of the expression
T t();
[ 2009-10 Santa Cruz: ]
Leave Open. Core is looking to make Alisdair's proposed resolution correct.
[ 2010-01-24 At Alisdair's request, moved his proposal into the proposed wording section. The old wording is preserved here: ]
In section 17.6.3.1 [utility.arg.requirements], before table 33, add the following table:
Table 33: DefaultConstructible requirements [defaultconstructible]
expression
post-condition
T t;
T()T is default constructed.
[ 2010-02-04: Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Rationale:
[ San Francisco: ]
We believe concepts will solve this problem (N2774).
[ Rationale is obsolete. ]
Proposed resolution:
In section 17.6.3.1 [utility.arg.requirements], before table 33, add the following table:
Table 33: DefaultConstructible requirements [defaultconstructible] expression post-condition T t; Object t is default-initialized. T u{}; Object u is value-initialized. T()
T{}A temporary object of type T is value-initialized.
Section: 28.11.4 [re.alg.replace] Status: C++11 Submitter: Stephan T. Lavavej Opened: 2007-09-22 Last modified: 2015-04-08
View all other issues in [re.alg.replace].
View all issues with C++11 status.
Discussion:
regex_match() and regex_search() take const basic_string<charT, ST, SA>&. regex_replace() takes const basic_string<charT>&. This prevents regex_replace() from accepting basic_strings with custom traits and allocators.
Overloads of regex_replace() taking basic_string should be additionally templated on class ST, class SA and take const basic_string<charT, ST, SA>&. Consistency with regex_match() and regex_search() would place class ST, class SA as the first template arguments; compatibility with existing code using TR1 and giving explicit template arguments to regex_replace() would place class ST, class SA as the last template arguments.
[ Batavia (2009-05): ]
Bill comments, "We need to look at the depth of this change."
Pete remarks that we are here dealing with a convenience function that saves a user from calling the iterato-based overload.
Move to Open.
[ 2009-07 Frankfurt: ]
Howard to ask Stephan Lavavej to provide wording.
[ 2009-07-17 Stephan provided wording. ]
[ 2009-07-25 Daniel tweaks both this issue and 726. ]
One relevant part of the proposed resolution below suggests to add a new overload of the format member function in the match_results class template that accepts two character pointers defining the begin and end of a format range. A more general approach could have proposed a pair of iterators instead, but the used pair of char pointers reflects existing practice. If the committee strongly favors an iterator-based signature, this could be simply changed. I think that the minimum requirement should be a BidirectionalIterator, but current implementations take advantage (at least partially) of the RandomAccessIterator sub interface of the char pointers.
Suggested Resolution:
[Moved into the proposed resloution]
[ 2009-07-30 Stephan agrees with Daniel's wording. Howard places Daniel's wording in the Proposed Resolution. ]
[ 2009-10 Santa Cruz: ]
Move to Review. Chair is anxious to move this to Ready in Pittsburgh.
[ 2010-01-27 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 28.4 [re.syn] as indicated:
// 28.11.4, function template regex_replace: template <class OutputIterator, class BidirectionalIterator, class traits, class charT, class ST, class SA> OutputIterator regex_replace(OutputIterator out, BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, const basic_string<charT, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template <class OutputIterator, class BidirectionalIterator, class traits, class charT> OutputIterator regex_replace(OutputIterator out, BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, const charT* fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template <class traits, class charT, class ST, class SA, class FST, class FSA> basic_string<charT, ST, SA> regex_replace(const basic_string<charT, ST, SA>& s, const basic_regex<charT, traits>& e, const basic_string<charT, FST, FSA>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template <class traits, class charT, class ST, class SA> basic_string<charT, ST, SA> regex_replace(const basic_string<charT, ST, SA>& s, const basic_regex<charT, traits>& e, const charT* fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template <class traits, class charT, class ST, class SA> basic_string<charT> regex_replace(const charT* s, const basic_regex<charT, traits>& e, const basic_string<charT, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template <class traits, class charT> basic_string<charT> regex_replace(const charT* s, const basic_regex<charT, traits>& e, const charT* fmt, regex_constants::match_flag_type flags = regex_constants::match_default);
Change 28.10 [re.results]/3, class template match_results as indicated:
template <class OutputIter> OutputIter format(OutputIter out, const char_type* fmt_first, const char_type* fmt_last, regex_constants::match_flag_type flags = regex_constants::format_default) const; template <class OutputIter, class ST, class SA> OutputIter format(OutputIter out, conststring_typebasic_string<char_type, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::format_default) const; template <class ST, class SA>string_typebasic_string<char_type, ST, SA> format(conststring_typebasic_string<char_type, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::format_default) const; string_type format(const char_type* fmt, regex_constants::match_flag_type flags = regex_constants::format_default) const;
Insert at the very beginning of 28.10.5 [re.results.form] the following:
template <class OutputIter> OutputIter format(OutputIter out, const char_type* fmt_first, const char_type* fmt_last, regex_constants::match_flag_type flags = regex_constants::format_default) const;1 Requires: The type OutputIter shall satisfy the requirements for an Output Iterator (24.2.4 [output.iterators]).
2 Effects: Copies the character sequence [fmt_first,fmt_last) to OutputIter out. Replaces each format specifier or escape sequence in the copied range with either the character(s) it represents or the sequence of characters within *this to which it refers. The bitmasks specified in flags determine which format specifiers and escape sequences are recognized.
3 Returns: out.
Change 28.10.5 [re.results.form], before p. 1 until p. 3 as indicated:
template <class OutputIter, class ST, class SA> OutputIter format(OutputIter out, conststring_typebasic_string<char_type, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::format_default) const;
1 Requires: The type OutputIter shall satisfy the requirements for an Output Iterator (24.2.3).2 Effects:
Copies the character sequence [fmt.begin(),fmt.end()) to OutputIter out. Replaces each format specifier or escape sequence in fmt with either the character(s) it represents or the sequence of characters within *this to which it refers. The bitmasks specified in flags determines what format specifiers and escape sequences are recognizedEquivalent to return format(out, fmt.data(), fmt.data() + fmt.size(), flags).
3 Returns: out.
Change 28.10.5 [re.results.form], before p. 4 until p. 4 as indicated:
template <class ST, class SA>string_typebasic_string<char_type, ST, SA> format(conststring_typebasic_string<char_type, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::format_default) const;Effects:
Returns a copy of the string fmt. Replaces each format specifier or escape sequence in fmt with either the character(s) it represents or the sequence of characters within *this to which it refers. The bitmasks specified in flags determines what format specifiers and escape sequences are recognized.Constructs an empty string result of type basic_string<char_type, ST, SA>, and calls format(back_inserter(result), fmt, flags).Returns: result
At the end of 28.10.5 [re.results.form] insert as indicated:
string_type format(const char_type* fmt, regex_constants::match_flag_type flags = regex_constants::format_default) const;Effects: Constructs an empty string result of type string_type, and calls format(back_inserter(result), fmt, fmt + char_traits<char_type>::length(fmt), flags).
Returns: result
Change 28.11.4 [re.alg.replace] before p. 1 as indicated:
template <class OutputIterator, class BidirectionalIterator, class traits, class charT, class ST, class SA> OutputIterator regex_replace(OutputIterator out, BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, const basic_string<charT, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template <class OutputIterator, class BidirectionalIterator, class traits, class charT> OutputIterator regex_replace(OutputIterator out, BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, const charT* fmt, regex_constants::match_flag_type flags = regex_constants::match_default);Effects: [..]. If any matches are found then, for each such match, if !(flags & regex_constants::format_no_copy) calls std::copy(m.prefix().first, m.prefix().second, out), and then calls m.format(out, fmt, flags) for the first form of the function and m.format(out, fmt, fmt + char_traits<charT>::length(fmt), flags) for the second form. [..].
Change 28.11.4 [re.alg.replace] before p. 3 as indicated:
template <class traits, class charT, class ST, class SA, class FST, class FSA> basic_string<charT, ST, SA> regex_replace(const basic_string<charT, ST, SA>& s, const basic_regex<charT, traits>& e, const basic_string<charT, FST, FSA>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template <class traits, class charT, class ST, class SA> basic_string<charT, ST, SA> regex_replace(const basic_string<charT, ST, SA>& s, const basic_regex<charT, traits>& e, const charT* fmt, regex_constants::match_flag_type flags = regex_constants::match_default);Effects: Constructs an empty string result of type basic_string<charT, ST, SA>, calls regex_replace(back_inserter(result), s.begin(), s.end(), e, fmt, flags), and then returns result.
At the end of 28.11.4 [re.alg.replace] add the following new prototype description:
template <class traits, class charT, class ST, class SA> basic_string<charT> regex_replace(const charT* s, const basic_regex<charT, traits>& e, const basic_string<charT, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template <class traits, class charT> basic_string<charT> regex_replace(const charT* s, const basic_regex<charT, traits>& e, const charT* fmt, regex_constants::match_flag_type flags = regex_constants::match_default);Effects: Constructs an empty string result of type basic_string<charT>, calls regex_replace(back_inserter(result), s, s + char_traits<charT>::length(s), e, fmt, flags), and then returns result.
Section: 26.5.3.2 [rand.eng.mers] Status: CD1 Submitter: Stephan Tolksdorf Opened: 2007-09-21 Last modified: 2015-04-08
View all other issues in [rand.eng.mers].
View all issues with CD1 status.
Discussion:
The mersenne_twister_engine is required to use a seeding method that is given as an algorithm parameterized over the number of bits W. I doubt whether the given generalization of an algorithm that was originally developed only for unsigned 32-bit integers is appropriate for other bit widths. For instance, W could be theoretically 16 and UIntType a 16-bit integer, in which case the given multiplier would not fit into the UIntType. Moreover, T. Nishimura and M. Matsumoto have chosen a dif ferent multiplier for their 64 bit Mersenne Twister [reference].
I see two possible resolutions:
See N2424 for further discussion.
[ Bellevue: ]
Stephan Tolksdorf has additional comments on N2424. He comments: "there is a typo in the required behaviour for mt19937_64: It should be the 10000th (not 100000th) invocation whose value is given, and the value should be 9981545732273789042 (not 14002232017267485025)." These values need checking.
Take the proposed recommendation in N2424 and move to REVIEW.
Proposed resolution:
See N2424 for the proposed resolution.
[ Stephan Tolksdorf adds pre-Bellevue: ]
I support the proposed resolution in N2424, but there is a typo in the required behaviour for mt19937_64: It should be the 10000th (not 100000th) invocation whose value is given, and the value should be 9981545732273789042 (not 14002232017267485025). The change to para. 8 proposed by Charles Karney should also be included in the proposed wording.
[ Sophia Antipolis: ]
Note the main part of the issue is resolved by N2424.
Section: X [rand.dist.samp.genpdf] Status: Resolved Submitter: Stephan Tolksdorf Opened: 2007-09-21 Last modified: 2015-04-08
View all other issues in [rand.dist.samp.genpdf].
View all issues with Resolved status.
Duplicate of: 795
Discussion:
X [rand.dist.samp.genpdf] describes the interface for a distribution template that is meant to simulate random numbers from any general distribution given only the density and the support of the distribution. I'm not aware of any general purpose algorithm that would be capable of correctly and efficiently implementing the described functionality. From what I know, this is essentially an unsolved research problem. Existing algorithms either require more knowledge about the distribution and the problem domain or work only under very limited circumstances. Even the state of the art special purpose library UNU.RAN does not solve the problem in full generality, and in any case, testing and customer support for such a library feature would be a nightmare.
Possible resolution: For these reasons, I propose to delete section X [rand.dist.samp.genpdf].
[ Bellevue: ]
Disagreement persists.
Objection to this issue is that this function takes a general functor. The general approach would be to normalize this function, integrate it, and take the inverse of the integral, which is not possible in general. An example function is sin(1+n*x) — for any spatial frequency that the implementor chooses, there is a value of n that renders that choice arbitrarily erroneous.
Correction: The formula above should instead read 1+sin(n*x).
Objector proposes the following possible compromise positions:
- rand.dist.samp.genpdf takes an number of points so that implementor need not guess.
- replace rand.disk.samp.genpdf with an extension to either or both of the discrete functions to take arguments that take a functor and number of points in place of the list of probabilities. Reference issues 793 and 794.
Proposed resolution:
See N2813 for the proposed resolution.
Rationale:
Addressed by N2836 "Wording Tweaks for Concept-enabled Random Number Generation in C++0X".
Section: 26.5.8.5.3 [rand.dist.norm.chisq] Status: CD1 Submitter: Stephan Tolksdorf Opened: 2007-09-21 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
chi_squared_distribution, fisher_f_distribution and student_t_distribution have parameters for the "degrees of freedom" n and m that are specified as integers. For the following two reasons this is an unnecessary restriction: First, in many applications such as Bayesian inference or Monte Carlo simulations it is more convenient to treat the respective param- eters as continuous variables. Second, the standard non-naive algorithms (i.e. O(1) algorithms) for simulating from these distributions work with floating-point parameters anyway (all three distributions could be easily implemented using the Gamma distribution, for instance).
Similar arguments could in principle be made for the parameters t and k of the discrete binomial_distribution and negative_binomial_distribution, though in both cases continuous parameters are less frequently used in practice and in case of the binomial_distribution the implementation would be significantly complicated by a non-discrete parameter (in most implementations one would need an approximation of the log-gamma function instead of just the log-factorial function).
Possible resolution: For these reasons, I propose to change the type of the respective parameters to double.
[ Bellevue: ]
In N2424. Not wildly enthusiastic, not really felt necessary. Less frequently used in practice. Not terribly bad either. Move to OPEN.
[ Sophia Antipolis: ]
Marc Paterno: The generalizations were explicitly left out when designing the facility. It's harder to test.
Marc Paterno: Ask implementers whether floating-point is a significant burden.
Alisdair: It's neater to do it now, do ask Bill Plauger.
Disposition: move to review with the option for "NAD" if it's not straightforward to implement; unanimous consent.
Proposed resolution:
See N2424 for the proposed resolution.
[ Stephan Tolksdorf adds pre-Bellevue: ]
In 26.5.8.5.3 [rand.dist.norm.chisq]:
Delete ", where n is a positive integer" in the first paragraph.
Replace both occurrences of "explicit chi_squared_distribution(int n = 1);" with "explicit chi_squared_distribution(RealType n = 1);".
Replace both occurrences of "int n() const;" with "RealType n() const;".
In 26.5.8.5.5 [rand.dist.norm.f]:
Delete ", where m and n are positive integers" in the first paragraph.
Replace both occurrences of
explicit fisher_f_distribution(int m = 1, int n = 1);with
explicit fisher_f_distribution(RealType m = 1, RealType n = 1);Replace both occurrences of "int m() const;" with "RealType m() const;".
Replace both occurrences of "int n() const;" with "RealType n() const;".
In 26.5.8.5.6 [rand.dist.norm.t]:
Delete ", where n is a positive integer" in the first paragraph.
Replace both occurrences of "explicit student_t_distribution(int n = 1);" with "explicit student_t_distribution(RealType n = 1);".
Replace both occurrences of "int n() const;" with "RealType n() const;".
Section: 20.8.1 [unique.ptr] Status: CD1 Submitter: Herb Sutter Opened: 2007-10-04 Last modified: 2015-04-08
View all other issues in [unique.ptr].
View all issues with CD1 status.
Discussion:
Please don't provide *_ptr<T[N]>. It doesn't enable any useful bounds-checking (e.g., you could imagine that doing op++ on a shared_ptr<T[N]> yields a shared_ptr<T[N-1]>, but that promising path immediately falters on op-- which can't reliably dereference because we don't know the lower bound). Also, most buffers you'd want to point to don't have a compile-time known size.
To enable any bounds-checking would require run-time information, with the usual triplet: base (lower bound), current offset, and max offset (upper bound). And I can sympathize with the point of view that you wouldn't want to require this on *_ptr itself. But please let's not follow the <T[N]> path, especially not with additional functions to query the bounds etc., because this sets wrong user expectations by embarking on a path that doesn't go all the way to bounds checking as it seems to imply.
If bounds checking is desired, consider a checked_*_ptr instead (e.g., checked_shared_ptr). And make the interfaces otherwise identical so that user code could easily #define/typedef between prepending checked_ on debug builds and not doing so on release builds (for example).
Note that some may object that checked_*_ptr may seem to make the smart pointer more like vector, and we don't want two ways to spell vector. I don't agree, but if that were true that would be another reason to remove *_ptr<T[N]> which equally makes the smart pointer more like std::array. :-)
[ Bellevue: ]
Suggestion that fixed-size array instantiations are going to fail at compile time anyway (if we remove specialization) due to pointer decay, at least that appears to be result from available compilers.
So concerns about about requiring static_assert seem unfounded.
After a little more experimentation with compiler, it appears that fixed size arrays would only work at all if we supply these explicit specialization. So removing them appears less breaking than originally thought.
straw poll unanimous move to Ready.
Proposed resolution:
Change the synopsis under 20.8.1 [unique.ptr] p2:
... template<class T> struct default_delete; template<class T> struct default_delete<T[]>;template<class T, size_t N> struct default_delete<T[N]>;template<class T, class D = default_delete<T>> class unique_ptr; template<class T, class D> class unique_ptr<T[], D>;template<class T, class D, size_t N> class unique_ptr<T[N], D>;...
Remove the entire section [unique.ptr.dltr.dflt2] default_delete<T[N]>.
Remove the entire section [unique.ptr.compiletime] unique_ptr for array objects with a compile time length and its subsections: [unique.ptr.compiletime.dtor], [unique.ptr.compiletime.observers], [unique.ptr.compiletime.modifiers].
Section: 17.6.3.1 [utility.arg.requirements] Status: Resolved Submitter: Howard Hinnant Opened: 2007-10-10 Last modified: 2015-04-08
View all other issues in [utility.arg.requirements].
View all issues with Resolved status.
Discussion:
This issue was split from 672. 672 now just deals with changing the requirements of T in the Swappable requirement from CopyConstructible and CopyAssignable to MoveConstructible and MoveAssignable.
This issue seeks to widen the Swappable requirement to support proxy iterators. Here is example code:
namespace Mine { template <class T> struct proxy {...}; template <class T> struct proxied_iterator { typedef T value_type; typedef proxy<T> reference; reference operator*() const; ... }; struct A { // heavy type, has an optimized swap, maybe isn't even copyable or movable, just swappable void swap(A&); ... }; void swap(A&, A&); void swap(proxy<A>, A&); void swap(A&, proxy<A>); void swap(proxy<A>, proxy<A>); } // Mine ... Mine::proxied_iterator<Mine::A> i(...) Mine::A a; swap(*i1, a);
The key point to note in the above code is that in the call to swap, *i1 and a are different types (currently types can only be Swappable with the same type). A secondary point is that to support proxies, one must be able to pass rvalues to swap. But note that I am not stating that the general purpose std::swap should accept rvalues! Only that overloaded swaps, as in the example above, be allowed to take rvalues.
That is, no standard library code needs to change. We simply need to have a more flexible definition of Swappable.
[ Bellevue: ]
While we believe Concepts work will define a swappable concept, we should still resolve this issue if possible to give guidance to the Concepts work.
Would an ambiguous swap function in two namespaces found by ADL break this wording? Suggest that the phrase "valid expression" means such a pair of types would still not be swappable.
Motivation is proxy-iterators, but facility is considerably more general. Are we happy going so far?
We think this wording is probably correct and probably an improvement on what's there in the WP. On the other hand, what's already there in the WP is awfully complicated. Why do we need the two bullet points? They're too implementation-centric. They don't add anything to the semantics of what swap() means, which is there in the post-condition. What's wrong with saying that types are swappable if you can call swap() and it satisfies the semantics of swapping?
[ 2009-07-28 Reopened by Alisdair. No longer solved by concepts. ]
[ 2009-10 Santa Cruz: ]
Leave as Open. Dave to provide wording.
[ 2009-11-08 Howard adds: ]
Updated wording to sync with N3000. Also this issue is very closely related to 594.
[ 2010 Pittsburgh: ]
Moved to
NAD EditorialResolved. Rationale added.
Rationale:
Solved by N3048.
Proposed resolution:
Change 17.6.3.1 [utility.arg.requirements]:
-1- The template definitions in the C++ Standard Library refer to various named requirements whose details are set out in tables 31-38. In these tables, T and V are
is atypes to be supplied by a C++ program instantiating a template; a, b, and c are values of type const T; s and t are modifiable lvalues of type T; u is a value of type (possibly const) T;andrv is a non-const rvalue of type T; w is a value of type T; and v is a value of type V.
Table 37: Swappable requirements [swappable] expression Return type Post-condition swap( sw,tv)void tw has the value originally held byuv, anduv has the value originally held bytwThe Swappable requirement is met by satisfying one or more of the following conditions:
- T is Swappable if T and V are the same type and T satisfies the MoveConstructible requirements (Table 33) and the MoveAssignable requirements (Table 35);
- T is Swappable with V if a namespace scope function named swap exists in the same namespace as the definition of T or V, such that the expression swap(
sw,tv) is valid and has the semantics described in this table.- T is Swappable if T is an array type whose element type is Swappable.
Rationale:
[ post San Francisco: ]
Solved by N2758.
Section: 20.8.2.2.8 [util.smartptr.shared.spec] Status: CD1 Submitter: Howard Hinnant Opened: 2007-10-10 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
When the LWG looked at 674 in Kona the following note was made:
We may need to open an issue to deal with the question of whether shared_ptr needs an rvalue swap.
This issue was opened in response to that note.
I believe allowing rvalue shared_ptrs to swap is both appropriate, and consistent with how other library components are currently specified.
[ Bellevue: ]
Concern that the three signatures for swap is needlessly complicated, but this issue merely brings shared_ptr into equal complexity with the rest of the library. Will open a new issue for concern about triplicate signatures.
Adopt issue as written.
Proposed resolution:
Change the synopsis in 20.8.2.2 [util.smartptr.shared]:
void swap(shared_ptr&& r); ... template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b); template<class T> void swap(shared_ptr<T>&& a, shared_ptr<T>& b); template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>&& b);
Change 20.8.2.2.4 [util.smartptr.shared.mod]:
void swap(shared_ptr&& r);
Change 20.8.2.2.8 [util.smartptr.shared.spec]:
template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b); template<class T> void swap(shared_ptr<T>&& a, shared_ptr<T>& b); template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>&& b);
Section: 18.8.5 [propagation] Status: CD1 Submitter: Alisdair Meredith Opened: 2007-10-10 Last modified: 2015-04-08
View all other issues in [propagation].
View all issues with CD1 status.
Discussion:
Without some lifetime guarantee, it is hard to know how this type can be used. Very specifically, I don't see how the current wording would guarantee and exception_ptr caught at the end of one thread could be safely stored and rethrown in another thread - the original motivation for this API.
(Peter Dimov agreed it should be clearer, maybe a non-normative note to explain?)
[ Bellevue: ]
Agree the issue is real.
Intent is lifetime is similar to a shared_ptr (and we might even want to consider explicitly saying that it is a shared_ptr< unspecified type >).
We expect that most implementations will use shared_ptr, and the standard should be clear that the exception_ptr type is intended to be something whose semantics are smart-pointer-like so that the user does not need to worry about lifetime management. We still need someone to draught those words - suggest emailing Peter Dimov.
Move to Open.
Proposed resolution:
Change 18.8.5 [propagation]/7:
-7- Returns: An exception_ptr object that refers to the currently handled exception or a copy of the currently handled exception, or a null exception_ptr object if no exception is being handled. The referenced object remains valid at least as long as there is an exception_ptr that refers to it. If the function needs to allocate memory and the attempt fails, it returns an exception_ptr object that refers to an instance of bad_alloc. It is unspecified whether the return values of two successive calls to current_exception refer to the same exception object. [Note: that is, it is unspecified whether current_exception creates a new copy each time it is called. --end note]
Section: 18.8.5 [propagation] Status: CD1 Submitter: Alisdair Meredith Opened: 2007-10-10 Last modified: 2015-04-08
View all other issues in [propagation].
View all issues with CD1 status.
Discussion:
I understand that the attempt to copy an exception may run out of memory, but I believe this is the only part of the standard that mandates failure with specifically bad_alloc, as opposed to allowing an implementation-defined type derived from bad_alloc. For instance, the Core language for a failed new expression is:
Any other allocation function that fails to allocate storage shall indicate failure only by throwing an exception of a type that would match a handler (15.3) of type std::bad_alloc (18.5.2.1).
I think we should allow similar freedom here (or add a blanket compatible-exception freedom paragraph in 17)
I prefer the clause 17 approach myself, and maybe clean up any outstanding wording that could also rely on it.
Although filed against a specific case, this issue is a problem throughout the library.
[ Bellevue: ]
Is issue bigger than library?
No - Core are already very clear about their wording, which is inspiration for the issue.
While not sold on the original 18.7.5 use case, the generalised 17.4.4.8 wording is the real issue.
Accept the broad view and move to ready
Proposed resolution:
Add the following exemption clause to 17.6.5.12 [res.on.exception.handling]:
A function may throw a type not listed in its Throws clause so long as it is derived from a class named in the Throws clause, and would be caught by an exception handler for the base type.
Section: 20.10.4.3 [meta.unary.prop] Status: CD1 Submitter: Alisdair Meredith Opened: 2007-10-10 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with CD1 status.
Discussion:
Unfortunately a class can have multiple copy constructors, and I believe to be useful this trait should only return true is ALL copy constructors are no-throw.
For instance:
struct awkward { awkward( const awkward & ) throw() {} awkward( awkward & ) { throw "oops"; } };
Proposed resolution:
Change 20.10.4.3 [meta.unary.prop]:
has_trivial_copy_constructorT is a trivial type (3.9) or a reference type or a class type
with a trivial copy constructorwhere all copy constructors are trivial (12.8).
has_trivial_assignT is neither const nor a reference type, and T is a trivial type (3.9) or a class type
with a trivial copy assignment operatorwhere all copy assignment operators are trivial (12.8).
has_nothrow_copy_constructorhas_trivial_copy_constructor<T>::value is true or T is a class type
with awhere all copy constructorsthat isare known not to throw any exceptions or T is an array of such a class type
has_nothrow_assignT is neither const nor a reference type, and has_trivial_assign<T>::value is true or T is a class type
with awhere all copy assignment operators takeingan lvalue of type T that is known not to throw any exceptions or T is an array of such a class type.
Section: 17.6.3.5 [allocator.requirements] Status: C++11 Submitter: Hans Boehm Opened: 2007-10-11 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with C++11 status.
Discussion:
Did LWG recently discuss 17.6.3.5 [allocator.requirements]-2, which states that "All the operations on the allocators are expected to be amortized constant time."?
As I think I pointed out earlier, this is currently fiction for allocate() if it has to obtain memory from the OS, and it's unclear to me how to interpret this for construct() and destroy() if they deal with large objects. Would it be controversial to officially let these take time linear in the size of the object, as they already do in real life?
Allocate() more blatantly takes time proportional to the size of the object if you mix in GC. But it's not really a new problem, and I think we'd be confusing things by leaving the bogus requirements there. The current requirement on allocate() is generally not important anyway, since it takes O(size) to construct objects in the resulting space. There are real performance issues here, but they're all concerned with the constants, not the asymptotic complexity.
Proposed resolution:
Change 17.6.3.5 [allocator.requirements]/2:
-2- Table 39 describes the requirements on types manipulated through allocators.
All the operations on the allocators are expected to be amortized constant time.Table 40 describes the requirements on allocator types.
Section: 17.6.3.1 [utility.arg.requirements] Status: C++11 Submitter: Yechezkel Mett Opened: 2007-10-14 Last modified: 2015-04-08
View all other issues in [utility.arg.requirements].
View all issues with C++11 status.
Discussion:
The draft standard n2369 uses the term move constructor in a few places, but doesn't seem to define it.
MoveConstructible requirements are defined in Table 33 in 17.6.3.1 [utility.arg.requirements] as follows:
MoveConstructible requirements expression post-condition T t = rv t is equivalent to the value of rv before the construction [Note: There is no requirement on the value of rv after the construction. -- end note]
(where rv is a non-const rvalue of type T).
So I assume the move constructor is the constructor that would be used in filling the above requirement.
For vector::reserve, vector::resize and the vector modifiers given in 23.3.6.5 [vector.modifiers] we have
Requires: If value_type has a move constructor, that constructor shall not throw any exceptions.
Firstly "If value_type has a move constructor" is superfluous; every type which can be put into a vector has a move constructor (a copy constructor is also a move constructor). Secondly it means that for any value_type which has a throwing copy constructor and no other move constructor these functions cannot be used -- which I think will come as a shock to people who have been using such types in vector until now!
I can see two ways to correct this. The simpler, which is presumably what was intended, is to say "If value_type has a move constructor and no copy constructor, the move constructor shall not throw any exceptions" or "If value_type has a move constructor which changes the value of its parameter,".
The other alternative is add to MoveConstructible the requirement that the expression does not throw. This would mean that not every type that satisfies the CopyConstructible requirements also satisfies the MoveConstructible requirements. It would mean changing requirements in various places in the draft to allow either MoveConstructible or CopyConstructible, but I think the result would be clearer and possibly more concise too.
Proposed resolution:
Add new defintions to 17.3 [definitions]:
move constructor
a constructor which accepts only rvalue arguments of that type, and modifies the rvalue as a side effect during the construction.
move assignment operator
an assignment operator which accepts only rvalue arguments of that type, and modifies the rvalue as a side effect during the assignment.
move assignment
use of the move assignment operator.
[ Howard adds post-Bellevue: ]
Unfortunately I believe the wording recommended by the LWG in Bellevue is incorrect. reserve et. al. will use a move constructor if one is available, else it will use a copy constructor. A type may have both. If the move constructor is used, it must not throw. If the copy constructor is used, it can throw. The sentence in the proposed wording is correct without the recommended insertion. The Bellevue LWG recommended moving this issue to Ready. I am unfortunately pulling it back to Open. But I'm drafting wording to atone for this egregious action. :-)
Section: 23.3.6.3 [vector.capacity], 21.4.4 [string.capacity] Status: CD1 Submitter: Beman Dawes Opened: 2007-10-31 Last modified: 2015-04-08
View other active issues in [vector.capacity].
View all other issues in [vector.capacity].
View all issues with CD1 status.
Discussion:
A std::vector can be shrunk-to-fit via the swap idiom:
vector<int> v; ... v.swap(vector<int>(v)); // shrink to fitor:
vector<int>(v).swap(v); // shrink to fitor:
swap(v, vector<int>(v)); // shrink to fit
A non-binding request for shrink-to-fit can be made to a std::string via:
string s; ... s.reserve(0);
Neither of these is at all obvious to beginners, and even some experienced C++ programmers are not aware that shrink-to-fit is trivially available.
Lack of explicit functions to perform these commonly requested operations makes vector and string less usable for non-experts. Because the idioms are somewhat obscure, code readability is impaired. It is also unfortunate that two similar vector-like containers use different syntax for the same operation.
The proposed resolution addresses these concerns. The proposed function takes no arguments to keep the solution simple and focused.
Proposed resolution:
To Class template basic_string 21.4 [basic.string] synopsis, Class template vector 23.3.6 [vector] synopsis, and Class vector<bool> 23.3.7 [vector.bool] synopsis, add:
void shrink_to_fit();
To basic_string capacity 21.4.4 [string.capacity] and vector capacity 23.3.6.3 [vector.capacity], add:
void shrink_to_fit();Remarks: shrink_to_fit is a non-binding request to reduce capacity() to size(). [Note: The request is non-binding to allow latitude for implementation-specific optimizations. — end note]
[ 850 has been added to deal with this issue with respect to deque. ]
Section: 23.6 [container.adaptors] Status: Resolved Submitter: Paolo Carlini Opened: 2007-10-31 Last modified: 2015-04-08
View all other issues in [container.adaptors].
View all issues with Resolved status.
Discussion:
After n2369 we have a single push_back overload in the sequence containers, of the "emplace" type. At variance with that, still in n2461, we have two separate overloads, the C++03 one + one taking an rvalue reference in the container adaptors. Therefore, simply from a consistency point of view, I was wondering whether the container adaptors should be aligned with the specifications of the sequence container themselves: thus have a single push along the lines:
template<typename... _Args> void push(_Args&&... __args) { c.push_back(std::forward<_Args>(__args)...); }
[ Related to 767 ]
Proposed resolution:
Change 23.6.3.1 [queue.defn]:
void push(const value_type& x) { c.push_back(x); }void push(value_type&& x) { c.push_back(std::move(x)); }template<class... Args> void push(Args&&... args) { c.push_back(std::forward<Args>(args)...); }
Change 23.6.4 [priority.queue]:
void push(const value_type& x) { c.push_back(x); }void push(value_type&& x) { c.push_back(std::move(x)); }template<class... Args> void push(Args&&... args) { c.push_back(std::forward<Args>(args)...); }
Change 23.6.4.3 [priqueue.members]:
void push(const value_type& x);
Effects:c.push_back(x);push_heap(c.begin(), c.end(), comp);template<class... Args> void push(value_typeArgs&&...xargs);Effects:
c.push_back(std::moveforward<Args>(xargs)...); push_heap(c.begin(), c.end(), comp);
Change 23.6.5.2 [stack.defn]:
void push(const value_type& x) { c.push_back(x); }void push(value_type&& x) { c.push_back(std::move(x)); }template<class... Args> void push(Args&&... args) { c.push_back(std::forward<Args>(args)...); }
Rationale:
Addressed by N2680 Proposed Wording for Placement Insert (Revision 1).
Section: 20.8.2.2 [util.smartptr.shared] Status: C++11 Submitter: Joe Gottman Opened: 2007-10-31 Last modified: 2015-04-08
View other active issues in [util.smartptr.shared].
View all other issues in [util.smartptr.shared].
View all issues with C++11 status.
Discussion:
Consider the following program:
int main() { shared_ptr<int> p(nullptr); return 0; }
This program will fail to compile because shared_ptr uses the following template constructor to construct itself from pointers:
template <class Y> shared_ptr(Y *);
According to N2431, the conversion from nullptr_t to Y * is not deducible, so the above constructor will not be found. There are similar problems with the constructors that take a pointer and a deleter or a pointer, a deleter and an allocator, as well as the corresponding forms of reset(). Note that N2435 will solve this problem for constructing from just nullptr, but not for constructors that use deleters or allocators or for reset().
In the case of the functions that take deleters, there is the additional question of what argument should be passed to the deleter when it is eventually called. There are two reasonable possibilities: nullptr or static_cast<T *>(0), where T is the template argument of the shared_ptr. It is not immediately clear which of these is better. If D::operator() is a template function similar to shared_ptr's constructor, then d(static_cast<T*>(0)) will compile and d(nullptr) will not. On the other hand, if D::operator()() takes a parameter that is a pointer to some type other that T (for instance U* where U derives from T) then d(nullptr) will compile and d(static_cast<T *>(0)) may not.
[ Bellevue: ]
The general idea is right, we need to be able to pass a nullptr to a shared_ptr, but there are a few borderline editorial issues here. (For example, the single-argument nullptr_t constructor in the class synopsis isn't marked explicit, but it is marked explicit in the proposed wording for 20.6.6.2.1. There is a missing empty parenthesis in the form that takes a nullptr_t, a deleter, and an allocator.)
More seriously: this issue says that a shared_ptr constructed from a nullptr is empty. Since "empty" is undefined, it's hard to know whether that's right. This issue is pending on handling that term better.
Peter suggests definition of empty should be "does not own anything"
Is there an editorial issue that post-conditions should refer to get() = nullptr, rather than get() = 0?
No strong feeling towards accept or NAD, but prefer to make a decision than leave it open.
Seems there are no technical merits between NAD and Ready, comes down to "Do we intentially want to allow/disallow null pointers with these functions". Staw Poll - support null pointers 5 - No null pointers 0
Move to Ready, modulo editorial comments
[ post Bellevue Peter adds: ]
The following wording changes are less intrusive:
In 20.8.2.2.1 [util.smartptr.shared.const], add:
shared_ptr(nullptr_t);after:
shared_ptr();(Absence of explicit intentional.)
px.reset( nullptr ) seems a somewhat contrived way to write px.reset(), so I'm not convinced of its utility.
It's similarly not clear to me whether the deleter constructors need to be extended to take nullptr, but if they need to:
Add
template<class D> shared_ptr(nullptr_t p, D d); template<class D, class A> shared_ptr(nullptr_t p, D d, A a);after
template<class Y, class D> shared_ptr(Y* p, D d); template<class Y, class D, class A> shared_ptr(Y* p, D d, A a);Note that this changes the semantics of the new constructors such that they consistently call d(p) instead of d((T*)0) when p is nullptr.
The ability to be able to pass 0/NULL to a function that takes a shared_ptr has repeatedly been requested by users, but the other additions that the proposed resolution makes are not supported by real world demand or motivating examples.
It might be useful to split the obvious and non-controversial nullptr_t constructor into a separate issue. Waiting for "empty" to be clarified is unnecessary; this is effectively an alias for the default constructor.
[ Sophia Antipolis: ]
We want to remove the reset functions from the proposed resolution.
The remaining proposed resolution text (addressing the constructors) are wanted.
Disposition: move to review. The review should check the wording in the then-current working draft.
Proposed resolution:
In 20.8.2.2 [util.smartptr.shared] p4, add to the definition/synopsis of shared_ptr:
template<class D> shared_ptr(nullptr_t p, D d); template<class D, class A> shared_ptr(nullptr_t p, D d, A a);
after
template<class Y, class D> shared_ptr(Y* p, D d); template<class Y, class D, class A> shared_ptr(Y* p, D d, A a);
In 20.8.2.2.1 [util.smartptr.shared.const] add:
template<class D> shared_ptr(nullptr_t p, D d); template<class D, class A> shared_ptr(nullptr_t p, D d, A a);
after
template<class Y, class D> shared_ptr(Y* p, D d); template<class Y, class D, class A> shared_ptr(Y* p, D d, A a);
(reusing the following paragraphs 20.8.2.2.1 [util.smartptr.shared.const]/9-13 that speak of p.)
In 20.8.2.2.1 [util.smartptr.shared.const]/10, change
Effects: Constructs a shared_ptr object that owns the
pointerobject p and the deleter d. The second constructor shall use a copy of a to allocate memory for internal use.
Rationale:
[ San Francisco: ]
"pointer" is changed to "object" to handle the fact that nullptr_t isn't a pointer.
Section: 23.2 [container.requirements] Status: CD1 Submitter: Jens Maurer Opened: 2007-11-06 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with CD1 status.
Discussion:
23.2 [container.requirements] says:
-12- Objects passed to member functions of a container as rvalue references shall not be elements of that container. No diagnostic required.
A reference is not an object, but this sentence appears to claim so.
What is probably meant here:
An object bound to an rvalue reference parameter of a member function of a container shall not be an element of that container; no diagnostic required.
Proposed resolution:
Change 23.2 [container.requirements]:
-12-
Objects passed to member functions of a container as rvalue references shall not be elementsAn object bound to an rvalue reference parameter of a member function of a container shall not be an element of that container.;Nno diagnostic required.
Section: 23.5.4.3 [unord.map.elem] Status: CD1 Submitter: Joe Gottman Opened: 2007-11-15 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The new member function at() was recently added to std::map(). It acts like operator[](), except it throws an exception when the input key is not found. It is useful when the map is const, the value_type of the key doesn't have a default constructor, it is an error if the key is not found, or the user wants to avoid accidentally adding an element to the map. For exactly these same reasons, at() would be equally useful in std::unordered_map.
Proposed resolution:
Add the following functions to the definition of unordered_map under "lookup" (23.5.4 [unord.map]):
mapped_type& at(const key_type& k); const mapped_type &at(const key_type &k) const;
Add the following definitions to 23.5.4.3 [unord.map.elem]:
mapped_type& at(const key_type& k); const mapped_type &at(const key_type &k) const;Returns: A reference to x.second, where x is the (unique) element whose key is equivalent to k.
Throws: An exception object of type out_of_range if no such element is present.
[ Bellevue: Editorial note: the "(unique)" differs from map. ]
Section: 20.8.1 [unique.ptr] Status: CD1 Submitter: Daniel Krügler Opened: 2007-11-30 Last modified: 2015-04-08
View all other issues in [unique.ptr].
View all issues with CD1 status.
Discussion:
In contrast to the proposed std::shared_ptr, std::unique_ptr does currently not support incomplete types, because it gives no explicit grant - thus instantiating unique_ptr with an incomplete pointee type T automatically belongs to undefined behaviour according to 17.6.4.8 [res.on.functions]/2, last bullet. This is an unnecessary restriction and prevents many well-established patterns - like the bridge pattern - for std::unique_ptr.
[ Bellevue: ]
Move to open. The LWG is comfortable with the intent of allowing incomplete types and making unique_ptr more like shared_ptr, but we are not comfortable with the wording. The specification for unique_ptr should be more like that of shared_ptr. We need to know, for individual member functions, which ones require their types to be complete. The shared_ptr specification is careful to say that for each function, and we need the same level of care here. We also aren't comfortable with the "part of the operational semantic" language; it's not used elsewhere in the standard, and it's not clear what it means. We need a volunteer to produce new wording.
Proposed resolution:
The proposed changes in the following revision refers to the current state of N2521 including the assumption that [unique.ptr.compiletime] will be removed according to the current state of 740.
The specialization unique_ptr<T[]> has some more restrictive constraints on type-completeness on T than unique_ptr<T>. The following proposed wordings try to cope with that. If the committee sees less usefulness on relaxed constraints on unique_ptr<T[]>, the alternative would be to stop this relaxation e.g. by adding one further bullet to 20.8.1.3 [unique.ptr.runtime]/1: "T shall be a complete type, if used as template argument of unique_ptr<T[], D>
This issue has some overlap with 673, but it seems not to cause any problems with this one, because 673 adds only optional requirements on D that do not conflict with the here discussed ones, provided that D::pointer's operations (including default construction, copy construction/assignment, and pointer conversion) are specified not to throw, otherwise this would have impact on the current specification of unique_ptr.
In 20.8.1 [unique.ptr]/2 add as the last sentence to the existing para:
The unique_ptr provides a semantics of strict ownership. A unique_ptr owns the object it holds a pointer to. A unique_ptr is not CopyConstructible, nor CopyAssignable, however it is MoveConstructible and MoveAssignable. The template parameter T of unique_ptr may be an incomplete type. [ Note: The uses of unique_ptr include providing exception safety for dynamically allcoated memory, passing ownership of dynamically allocated memory to a function, and returning dynamically allocated memory from a function. -- end note ]
20.8.1.2.1 [unique.ptr.single.ctor]/1: No changes necessary.
[ N.B.: We only need the requirement that D is DefaultConstructible. The current wording says just this. ]
In 20.8.1.2.1 [unique.ptr.single.ctor]/5 change the requires clause to say:
Requires:
The expression D()(p) shall be well formed. The default constructor of D shall not throw an exception.D must not be a reference type.D shall be default constructible, and that construction shall not throw an exception.[ N.B.: There is no need that the expression D()(p) is well-formed at this point. I assume that the current wording is based on the corresponding shared_ptr wording. In case of shared_ptr this requirement is necessary, because the corresponding c'tor *can* fail and must invoke delete p/d(p) in this case. Unique_ptr is simpler in this regard. The *only* functions that must insist on well-formedness and well-definedness of the expression get_deleter()(get()) are (1) the destructor and (2) reset. The reasoning for the wording change to explicitly require DefaultConstructible of D is to guarantee that invocation of D's default c'tor is both well-formed and well-defined. Note also that we do *not* need the requirement that T must be complete, also in contrast to shared_ptr. Shared_ptr needs this, because it's c'tor is a template c'tor which potentially requires Convertible<Y*, X*>, which again requires Completeness of Y, if !SameType<X, Y> ]
Merge 20.8.1.2.1 [unique.ptr.single.ctor]/12+13 thereby removing the sentence of 12, but transferring the "requires" to 13:
Requires: If D is not an lvalue-reference type then[..]
[ N.B.: For the same reasons as for (3), there is no need that d(p) is well-formed/well-defined at this point. The current wording guarantees all what we need, namely that the initialization of both the T* pointer and the D deleter are well-formed and well-defined. ]
20.8.1.2.1 [unique.ptr.single.ctor]/21:
Requires: If D is not a reference type, construction of the deleter D from an rvalue of type E shall be well formed and shall not throw an exception. If D is a reference type, then E shall be the same type as D (diagnostic required). U* shall be implicitly convertible to T*. [Note: These requirements imply that T and U be complete types. -- end note]
[ N.B.: The current wording of 21 already implicitly guarantees that U is completely defined, because it requires that Convertible<U*, T*> is true. If the committee wishes this explicit requirement can be added, e.g. "U shall be a complete type." ]
20.8.1.2.2 [unique.ptr.single.dtor]: Just before p1 add a new paragraph:
Requires: The expression get_deleter()(get()) shall be well-formed, shall have well-defined behavior, and shall not throw exceptions. [Note: The use of default_delete requires T to be a complete type. -- end note]
[ N.B.: This requirement ensures that the whole responsibility on type-completeness of T is delegated to this expression. ]
20.8.1.2.3 [unique.ptr.single.asgn]/1: No changes necessary, except the current editorial issue, that "must shall" has to be changed to "shall", but this change is not a special part of this resolution.
[ N.B. The current wording is sufficient, because we can delegate all further requirements on the requirements of the effects clause ]
20.8.1.2.3 [unique.ptr.single.asgn]/6:
Requires: Assignment of the deleter D from an rvalue D shall not throw an exception. U* shall be implicitly convertible to T*. [Note: These requirements imply that T and U be complete types. -- end note]
[ N.B.: The current wording of p. 6 already implicitly guarantees that U is completely defined, because it requires that Convertible<U*, T*> is true, see (6)+(8). ]
20.8.1.2.3 [unique.ptr.single.asgn]/11: No changes necessary.
[ N.B.: Delegation to requirements of effects clause is sufficient. ]
20.8.1.2.4 [unique.ptr.single.observers]/1+4+7+9+11:
T* operator->() const;Note: Use typically requires T shall be complete. — end note]
20.8.1.2.5 [unique.ptr.single.modifiers]/4: Just before p. 4 add a new paragraph:
Requires: The expression get_deleter()(get()) shall be well-formed, shall have well-defined behavior, and shall not throw exceptions.
20.8.1.3 [unique.ptr.runtime]: Add one additional bullet on paragraph 1:
A specialization for array types is provided with a slightly altered interface.
- ...
- T shall be a complete type.
[ post Bellevue: Daniel provided revised wording. ]
Section: X [iterator.concepts] Status: C++11 Submitter: Martin Sebor Opened: 2007-12-14 Last modified: 2015-04-08
View all other issues in [iterator.concepts].
View all issues with C++11 status.
Discussion:
Issue 278 defines the meaning of the term "invalid iterator" as one that may be singular.
Consider the following code:
std::deque<int> x, y; std::deque<int>::iterator i = x.end(), j = y.end(); x.swap(y);
Given that swap()
is required not to invalidate iterators
and using the definition above, what should be the expected result of
comparing i
and j
to x.end()
and y.end()
, respectively, after the swap()
?
I.e., is the expression below required to evaluate
to true
?
i == y.end() && j == x.end()
(There are at least two implementations where the expression
returns false
.)
More generally, is the definition introduced in issue 278 meant to make any guarantees about whether iterators actually point to the same elements or be associated with the same containers after a non-invalidating operation as they did before?
Here's a motivating example intended to demonstrate the importance of the question:
Container x, y ({ 1, 2}); // pseudocode to initialize y with { 1, 2 } Container::iterator i = y.begin() + 1; Container::iterator j = y.end(); std::swap(x, y); std::find(i, j, 3);
swap()
guarantees that i
and j
continue to be valid. Unless the spec says that even though they are
valid they may no longer denote a valid range the code above must be
well-defined. Expert opinions on this differ as does the behavior of
popular implementations for some standard Containers
.
[ San Francisco: ]
Pablo: add a note to the last bullet of paragraph 11 of 23.1.1 clarifying that the end() iterator doesn't refer to an element and that it can therefore be invalidated.
Proposed wording:
[Note: The end() iterator does not refer to any element and can therefore be invalidated. -- end note]
Howard will add this proposed wording to the issue and then move it to Review.
[ Post Summit: ]
Lawrence: suggestion: "Note: The end() iterator does not refer to any element"
Walter: "Note: The end() iterator can nevertheless be invalidated, because it does not refer to any element."
Nick: "The end() iterator does not refer to any element. It is therefore subject to being invalidated."
Consensus: go with Nick
With that update, Recommend Tentatively Ready.
Proposed resolution:
Add to 23.2.1 [container.requirements.general], p11:
Unless otherwise specified (see 23.1.4.1, 23.1.5.1, 23.2.2.3, and 23.2.6.4) all container types defined in this Clause meet the following additional requirements:
- ...
- no swap() function invalidates any references, pointers, or iterators referring to the elements of the containers being swapped. [Note: The end() iterator does not refer to any element. It is therefore subject to being invalidated. — end note]
Section: 23.2 [container.requirements], 23.2.5.1 [unord.req.except] Status: CD1 Submitter: Ion Gaztañaga Opened: 2007-12-22 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with CD1 status.
Discussion:
23.2 [container.requirements]p10 states:
Unless otherwise specified (see 23.2.2.3 and 23.2.5.4) all container types defined in this clause meet the following additional requirements:
- [...]
- no erase(), pop_back() or pop_front() function throws an exception.
23.3.3.4 [deque.modifiers] and 23.3.6.5 [vector.modifiers] offer additional guarantees for deque/vector insert() and erase() members. However, 23.2 [container.requirements] p10 does not mention 23.2.5.1 [unord.req.except] that specifies exception safety guarantees for unordered containers. In addition, 23.2.5.1 [unord.req.except] p1 offers the following guaratee for erase():
No erase() function throws an exception unless that exception is thrown by the container's Hash or Pred object (if any).
Summary:
According to 23.2 [container.requirements] p10 no erase() function should throw an exception unless otherwise specified. Although does not explicitly mention 23.2.5.1 [unord.req.except], this section offers additional guarantees for unordered containers, allowing erase() to throw if predicate or hash function throws.
In contrast, associative containers have no exception safety guarantees section so no erase() function should throw, including erase(k) that needs to use the predicate function to perform its work. This means that the predicate of an associative container is not allowed to throw.
So:
Proposed resolution:
Create a new sub-section of 23.2.4 [associative.reqmts] (perhaps [associative.req.except]) titled "Exception safety guarantees".
1 For associative containers, no clear() function throws an exception. erase(k) does not throw an exception unless that exception is thrown by the container's Pred object (if any).
2 For associative containers, if an exception is thrown by any operation from within an insert() function inserting a single element, the insert() function has no effect.
3 For associative containers, no swap function throws an exception unless that exception is thrown by the copy constructor or copy assignment operator of the container's Pred object (if any).
Change 23.2.5.1 [unord.req.except]p1:
For unordered associative containers, no clear() function throws an exception.
Noerase(k)functiondoes not throwsan exception unless that exception is thrown by the container's Hash or Pred object (if any).
Change 23.2 [container.requirements] p10 to add references to new sections:
Unless otherwise specified (see [deque.modifiers],
and[vector.modifiers], [associative.req.except], [unord.req.except]) all container types defined in this clause meet the following additional requirements:
Change 23.2 [container.requirements] p10 referring to swap:
- no swap() function throws an exception
unless that exception is thrown by the copy constructor or assignment operator of the container's Compare object (if any; see [associative.reqmts]).
Section: 23 [containers] Status: Resolved Submitter: Sylvain Pion Opened: 2007-12-28 Last modified: 2015-04-08
View other active issues in [containers].
View all other issues in [containers].
View all issues with Resolved status.
Discussion:
Playing with g++'s C++0X mode, I noticed that the following code, which used to compile:
#include <vector> int main() { std::vector<char *> v; v.push_back(0); }
now fails with the following error message:
.../include/c++/4.3.0/ext/new_allocator.h: In member function 'void __gnu_cxx::new_allocator<_Tp>::construct(_Tp*, _Args&& ...) [with _Args = int, _Tp = char*]': .../include/c++/4.3.0/bits/stl_vector.h:707: instantiated from 'void std::vector<_Tp, _Alloc>::push_back(_Args&& ...) [with _Args = int, _Tp = char*, _Alloc = std::allocator<char*>]' test.cpp:6: instantiated from here .../include/c++/4.3.0/ext/new_allocator.h:114: error: invalid conversion from 'int' to 'char*'
As far as I know, g++ follows the current draft here.
Does the committee really intend to break compatibility for such cases?
[ Sylvain adds: ]
I just noticed that std::pair has the same issue. The following now fails with GCC's -std=c++0x mode:
#include <utility> int main() { std::pair<char *, char *> p (0,0); }I have not made any general audit for such problems elsewhere.
[ Related to 756 ]
[ Bellevue: ]
Motivation is to handle the old-style int-zero-valued NULL pointers. Problem: this solution requires concepts in some cases, which some users will be slow to adopt. Some discussion of alternatives involving prohibiting variadic forms and additional library-implementation complexity.
Discussion of "perfect world" solutions, the only such solution put forward being to retroactively prohibit use of the integer zero for a NULL pointer. This approach was deemed unacceptable given the large bodies of pre-existing code that do use integer zero for a NULL pointer.
Another approach is to change the member names. Yet another approach is to forbid the extension in absence of concepts.
Resolution: These issues (756, 767, 760, 763) will be subsumed into a paper to be produced by Alan Talbot in time for review at the 2008 meeting in France. Once this paper is produced, these issues will be moved to
NADResolved.
Proposed resolution:
Add the following rows to Table 90 "Optional sequence container operations", 23.2.3 [sequence.reqmts]:
expression return type assertion/note
pre-/post-conditioncontainer a.push_front(t) void a.insert(a.begin(), t)
Requires: T shall be CopyConstructible.list, deque a.push_front(rv) void a.insert(a.begin(), rv)
Requires: T shall be MoveConstructible.list, deque a.push_back(t) void a.insert(a.end(), t)
Requires: T shall be CopyConstructible.list, deque, vector, basic_string a.push_back(rv) void a.insert(a.end(), rv)
Requires: T shall be MoveConstructible.list, deque, vector, basic_string
Change the synopsis in 23.3.3 [deque]:
void push_front(const T& x); void push_front(T&& x); void push_back(const T& x); void push_back(T&& x); template <class... Args> requires Constructible<T, Args&&...> void push_front(Args&&... args); template <class... Args> requires Constructible<T, Args&&...> void push_back(Args&&... args);
Change 23.3.3.4 [deque.modifiers]:
void push_front(const T& x); void push_front(T&& x); void push_back(const T& x); void push_back(T&& x); template <class... Args> requires Constructible<T, Args&&...> void push_front(Args&&... args); template <class... Args> requires Constructible<T, Args&&...> void push_back(Args&&... args);
Change the synopsis in 23.3.5 [list]:
void push_front(const T& x); void push_front(T&& x); void push_back(const T& x); void push_back(T&& x); template <class... Args> requires Constructible<T, Args&&...> void push_front(Args&&... args); template <class... Args> requires Constructible<T, Args&&...> void push_back(Args&&... args);
Change 23.3.5.4 [list.modifiers]:
void push_front(const T& x); void push_front(T&& x); void push_back(const T& x); void push_back(T&& x); template <class... Args> requires Constructible<T, Args&&...> void push_front(Args&&... args); template <class... Args> requires Constructible<T, Args&&...> void push_back(Args&&... args);
Change the synopsis in 23.3.6 [vector]:
void push_back(const T& x); void push_back(T&& x); template <class... Args> requires Constructible<T, Args&&...> void push_back(Args&&... args);
Change 23.3.6.5 [vector.modifiers]:
void push_back(const T& x); void push_back(T&& x); template <class... Args> requires Constructible<T, Args&&...> void push_back(Args&&... args);
Rationale:
Addressed by N2680 Proposed Wording for Placement Insert (Revision 1).
If there is still an issue with pair, Howard should submit another issue.
Section: 29.5 [atomics.types.generic] Status: CD1 Submitter: Alberto Ganesh Barbati Opened: 2007-12-28 Last modified: 2015-04-08
View other active issues in [atomics.types.generic].
View all other issues in [atomics.types.generic].
View all issues with CD1 status.
Discussion:
in the latest publicly available draft, paper N2641, in section 29.5 [atomics.types.generic], the following specialization of the template atomic<> is provided for pointers:
template <class T> struct atomic<T*> : atomic_address { T* fetch_add(ptrdiff_t, memory_order = memory_order_seq_cst) volatile; T* fetch_sub(ptrdiff_t, memory_order = memory_order_seq_cst) volatile; atomic() = default; constexpr explicit atomic(T); atomic(const atomic&) = delete; atomic& operator=(const atomic&) = delete; T* operator=(T*) volatile; T* operator++(int) volatile; T* operator--(int) volatile; T* operator++() volatile; T* operator--() volatile; T* operator+=(ptrdiff_t) volatile; T* operator-=(ptrdiff_t) volatile; };
First of all, there is a typo in the non-default constructor which should take a T* rather than a T.
As you can see, the specialization redefine and therefore hide a few methods from the base class atomic_address, namely fetch_add, fetch_sub, operator=, operator+= and operator-=. That's good, but... what happened to the other methods, in particular these ones:
void store(T*, memory_order = memory_order_seq_cst) volatile; T* load( memory_order = memory_order_seq_cst ) volatile; T* swap( T*, memory_order = memory_order_seq_cst ) volatile; bool compare_swap( T*&, T*, memory_order, memory_order ) volatile; bool compare_swap( T*&, T*, memory_order = memory_order_seq_cst ) volatile;
By reading paper N2427 "C++ Atomic Types and Operations", I see that the definition of the specialization atomic<T*> matches the one in the draft, but in the example implementation the methods load(), swap() and compare_swap() are indeed present.
Strangely, the example implementation does not redefine the method store(). It's true that a T* is always convertible to void*, but not hiding the void* signature from the base class makes the class error-prone to say the least: it lets you assign pointers of any type to a T*, without any hint from the compiler.
Is there a true intent to remove them from the specialization or are they just missing from the definition because of a mistake?
[ Bellevue: ]
The proposed revisions are accepted.
Further discussion: why is the ctor labeled "constexpr"? Lawrence said this permits the object to be statically initialized, and that's important because otherwise there would be a race condition on initialization.
Proposed resolution:
Change the synopsis in 29.5 [atomics.types.generic]:
template <class T> struct atomic<T*> : atomic_address { void store(T*, memory_order = memory_order_seq_cst) volatile; T* load( memory_order = memory_order_seq_cst ) volatile; T* swap( T*, memory_order = memory_order_seq_cst ) volatile; bool compare_swap( T*&, T*, memory_order, memory_order ) volatile; bool compare_swap( T*&, T*, memory_order = memory_order_seq_cst ) volatile; T* fetch_add(ptrdiff_t, memory_order = memory_order_seq_cst) volatile; T* fetch_sub(ptrdiff_t, memory_order = memory_order_seq_cst) volatile; atomic() = default; constexpr explicit atomic(T*); atomic(const atomic&) = delete; atomic& operator=(const atomic&) = delete; T* operator=(T*) volatile; T* operator++(int) volatile; T* operator--(int) volatile; T* operator++() volatile; T* operator--() volatile; T* operator+=(ptrdiff_t) volatile; T* operator-=(ptrdiff_t) volatile; };
Section: 20.9.12.2 [func.wrap.func] Status: CD1 Submitter: Daniel Krügler Opened: 2008-01-10 Last modified: 2015-04-08
View other active issues in [func.wrap.func].
View all other issues in [func.wrap.func].
View all issues with CD1 status.
Discussion:
N2461 already replaced in 20.9.12.2 [func.wrap.func] it's originally proposed (implicit) conversion operator to "unspecified-bool-type" by the new explicit bool conversion, but the inverse conversion should also use the new std::nullptr_t type instead of "unspecified-null-pointer- type".
Proposed resolution:
In 20.9 [function.objects], header <functional> synopsis replace:
template<class R, class... ArgTypes> bool operator==(const function<R(ArgTypes...)>&,unspecified-null-pointer-typenullptr_t); template<class R, class... ArgTypes> bool operator==(unspecified-null-pointer-typenullptr_t , const function<R(ArgTypes...)>&); template<class R, class... ArgTypes> bool operator!=(const function<R(ArgTypes...)>&,unspecified-null-pointer-typenullptr_t); template<class R, class... ArgTypes> bool operator!=(unspecified-null-pointer-typenullptr_t , const function<R(ArgTypes...)>&);
In the class function synopsis of 20.9.12.2 [func.wrap.func] replace
function(unspecified-null-pointer-typenullptr_t); ... function& operator=(unspecified-null-pointer-typenullptr_t);
In 20.9.12.2 [func.wrap.func], "Null pointer comparisons" replace:
template <class R, class... ArgTypes> bool operator==(const function<R(ArgTypes...)>&,unspecified-null-pointer-typenullptr_t); template <class R, class... ArgTypes> bool operator==(unspecified-null-pointer-typenullptr_t , const function<R(ArgTypes...)>&); template <class R, class... ArgTypes> bool operator!=(const function<R(ArgTypes...)>&,unspecified-null-pointer-typenullptr_t); template <class R, class... ArgTypes> bool operator!=(unspecified-null-pointer-typenullptr_t , const function<R(ArgTypes...)>&);
In 20.9.12.2.1 [func.wrap.func.con], replace
function(unspecified-null-pointer-typenullptr_t); ... function& operator=(unspecified-null-pointer-typenullptr_t);
In 20.9.12.2.6 [func.wrap.func.nullptr], replace
template <class R, class... ArgTypes> bool operator==(const function<R(ArgTypes...)>& f,unspecified-null-pointer-typenullptr_t); template <class R, class... ArgTypes> bool operator==(unspecified-null-pointer-typenullptr_t , const function<R(ArgTypes...)>& f);
and replace
template <class R, class... ArgTypes> bool operator!=(const function<R(ArgTypes...)>& f,unspecified-null-pointer-typenullptr_t); template <class R, class... ArgTypes> bool operator!=(unspecified-null-pointer-typenullptr_t , const function<R(ArgTypes...)>& f);
Section: 20.9.12 [func.wrap] Status: CD1 Submitter: Daniel Krügler Opened: 2008-01-10 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
It is expected that typical implementations of std::function will use dynamic memory allocations at least under given conditions, so it seems appropriate to change the current lvalue swappabilty of this class to rvalue swappability.
Proposed resolution:
In 20.9 [function.objects], header <functional> synopsis, just below of
template<class R, class... ArgTypes> void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&); template<class R, class... ArgTypes> void swap(function<R(ArgTypes...)>&&, function<R(ArgTypes...)>&); template<class R, class... ArgTypes> void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&&);
In 20.9.12.2 [func.wrap.func] class function definition, change
void swap(function&&);
In 20.9.12.2 [func.wrap.func], just below of
template <class R, class... ArgTypes> void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&); template <class R, class... ArgTypes> void swap(function<R(ArgTypes...)>&&, function<R(ArgTypes...)>&); template <class R, class... ArgTypes> void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&&);
In 20.9.12.2.2 [func.wrap.func.mod] change
void swap(function&& other);
In 20.9.12.2.7 [func.wrap.func.alg] add the two overloads
template<class R, class... ArgTypes> void swap(function<R(ArgTypes...)>&& f1, function<R(ArgTypes...)>& f2); template<class R, class... ArgTypes> void swap(function<R(ArgTypes...)>& f1, function<R(ArgTypes...)>&& f2);
Section: 21.5 [string.conversions] Status: CD1 Submitter: Daniel Krügler Opened: 2008-01-13 Last modified: 2015-04-08
View all other issues in [string.conversions].
View all issues with CD1 status.
Discussion:
The new to_string and to_wstring functions described in 21.5 [string.conversions] have throws clauses (paragraphs 8 and 16) which say:
Throws: nothing
Since all overloads return either a std::string or a std::wstring by value this throws clause is impossible to realize in general, since the basic_string constructors can fail due to out-of-memory conditions. Either these throws clauses should be removed or should be more detailled like:
Throws: Nothing if the string construction throws nothing
Further there is an editorial issue in p. 14: All three to_wstring overloads return a string, which should be wstring instead (The header <string> synopsis of 21.3 [string.classes] is correct in this regard).
Proposed resolution:
In 21.5 [string.conversions], remove the paragraphs 8 and 16.
string to_string(long long val); string to_string(unsigned long long val); string to_string(long double val);
Throws: nothing
wstring to_wstring(long long val); wstring to_wstring(unsigned long long val); wstring to_wstring(long double val);
Throws: nothing
Section: 21.5 [string.conversions] Status: CD1 Submitter: Daniel Krügler Opened: 2008-01-13 Last modified: 2015-04-08
View all other issues in [string.conversions].
View all issues with CD1 status.
Discussion:
The return clause 21.5 [string.conversions] paragraph 15 of the new to_wstring overloads says:
Returns: each function returns a wstring object holding the character representation of the value of its argument that would be generated by calling wsprintf(buf, fmt, val) with a format specifier of L"%lld", L"%ulld", or L"%f", respectively.
Problem is: There does not exist any wsprintf function in C99 (I checked the 2nd edition of ISO 9899, and the first and the second corrigenda from 2001-09-01 and 2004-11-15). What probably meant here is the function swprintf from <wchar.h>/<cwchar>, but this has the non-equivalent declaration:
int swprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict format, ...);
therefore the paragraph needs to mention the size_t parameter n.
Proposed resolution:
Change the current wording of 21.5 [string.conversions] p. 15 to:
Returns:
eEach function returns a wstring object holding the character representation of the value of its argument that would be generated by callingwsswprintf(buf, bufsz, fmt, val) with a format specifier fmt of L"%lld", L"%ulld", or L"%f", respectively, where buf designates an internal character buffer of sufficient size bufsz.
[Hint to the editor: The resolution also adds to mention the name of the format specifier "fmt"]
I also would like to remark that the current wording of it's equivalent paragraph 7 should also mention the meaning of buf and fmt.
Change the current wording of 21.5 [string.conversions] p. 7 to:
Returns:
eEach function returns a string object holding the character representation of the value of its argument that would be generated by calling sprintf(buf, fmt, val) with a format specifier fmt of "%lld", "%ulld", or "%f", respectively, where buf designates an internal character buffer of sufficient size.
Section: 23 [containers] Status: C++11 Submitter: Alisdair Meredith Opened: 2008-01-14 Last modified: 2015-04-08
View other active issues in [containers].
View all other issues in [containers].
View all issues with C++11 status.
Discussion:
It appears most containers declare but do not define a member-swap function.
This is unfortunate, as all overload the swap algorithm to call the member-swap function! (required for swappable guarantees [Table 37] and Container Requirements [Table 87])
Note in particular that Table 87 gives semantics of a.swap(b) as swap(a,b), yet for all containers we define swap(a,b) to call a.swap(b) - a circular definition.
A quick survey of clause 23 shows that the following containers provide a definition for member-swap:
array queue stack vector
Whereas the following declare it, but do not define the semantics:
deque list map multimap multiset priority_queue set unordered_map unordered_multi_map unordered_multi_set unordered_set
Suggested resolution:
Provide a definition for each of the affected containers...
[ Bellevue: ]
Move to Open and ask Alisdair to provide wording.
[ 2009-07 Frankfurt: ]
Daniel to provide wording. N2590 is no longer applicable.
[ 2009-07-28 Daniel provided wording. ]
- It assumes that the proposed resolution for 883 is applied, which breaks the circularity of definition between member swap and free swap.
- It uses the notation of the pre-concept allocator trait allocator_propagation_map, which might be renamed after the next refactoring phase of generalized allocators.
- It requires that compare objects, key equal functions and hash functions in containers are swapped via unqualified free swap according to 594.
[ 2009-09-30 Daniel adds: ]
The outcome of this issue should be considered with the outcome of 1198 both in style and in content (e.g. bullet 9 suggests to define the semantic of void priority_queue::swap(priority_queue&) in terms of the member swap of the container).
[ 2009-10 Santa Cruz: ]
Looked at, but took no action on as it overlaps too much with N2982. Waiting for a new draft WP.
[ 2009-10 Santa Cruz: ]
Leave as open. Pablo to provide wording.
[ 2009-10-26 Pablo updated wording. Here is the wording he replaced: ]
Add a new Throws clause just after X [allocator.propagation.map]/5:
static void swap(Alloc& a, Alloc& b);Effects: [..]
Throws: Nothing.
[ This exception requirement is added, such that it's combination with the general container requirements of N2723 [container.requirements.general]/9 make it unambiguously clear that the following descriptions of "swaps the allocators" have the following meaning: (a) This swap is done by calling allocator_propagation_map<allocator_type>::swap and (b) This allocator swap does never propagate an exception ]
Change 23.2.4.1 [associative.reqmts.except]/3 as indicated:
For associative containers, no swap function throws an exception unless that exception is thrown by the
copy constructor or copy assignment operatorswap of the container's Pred objects(if any).Change 23.2.5.1 [unord.req.except]/3 as indicated:
For unordered associative containers, no swap function throws an exception unless that exception is thrown by the
copy constructor or copy assignment operatorswap of the container's Hash or Pred objects, respectively(if any).Insert a new paragraph just after 23.3 [sequences]/1:
In addition to being available via inclusion of the <algorithm> header, the swap function templates in 25.3.3 [alg.swap] are also available when the header <queue> is included.
[ There is a new issue in process that will suggest a minimum header for swap and move. If this one is provided, this text can be removed and the header dependency should be added to <queue> ]
Add one further clause at the end of 23.3.2.3 [array.special]:
[This part is added, because otherwise array::swap would otherwise contradict the general contract of 23.2.1 [container.requirements.general] p. 10 b. 5]
Throws: Nothing, unless one of the element-wise swap calls throws an exception.
In 23.3.3 [deque], class template deque synopsis change as indicated:
void swap(deque<T,Alloc>&);At the end of 23.3.3.4 [deque.modifiers] add as indicated:
void swap(deque& x);Effects: Exchanges the contents and swaps the allocators of *this with that of x.
Complexity: Constant time.
In 23.3.4 [forwardlist], class template forward_list synopsis change as indicated:
void swap(forward_list<T,Allocator>&);At the end of 23.3.4.5 [forwardlist.modifiers] add as indicated:
void swap(forward_list& x);Effects: Exchanges the contents and swaps the allocators of *this with that of x.
Complexity: Constant time.
In 23.3.5 [list], class template list synopsis change as indicated:
void swap(list<T,Allocator>&);At the end of 23.3.5.4 [list.modifiers] add as indicated:
void swap(list& x);Effects: Exchanges the contents and swaps the allocators of *this with that of x.
Complexity: Constant time.
At the end of 23.6.4.3 [priqueue.members] add a new prototype description:
void swap(priority_queue& q);Requires: Compare shall satisfy the Swappable requirements ( [swappable]).
[ This requirement is added to ensure that even a user defined swap which is found by ADL for Compare satisfies the Swappable requirements ]
Effects: this->c.swap(q.c); swap(this->comp, q.comp);
Throws: What and if c.swap(q.c) and swap(comp, q.comp) throws.
[ This part is added, because otherwise priority_queue::swap would otherwise contradict the general contract of 23.2.1 [container.requirements.general] p. 10 b. 5 ]
In 23.3.6 [vector], class template vector synopsis change as indicated:
void swap(vector<T,Allocator>&);Change 23.3.6.3 [vector.capacity] p. 8 as indicated:
void swap(vector<T,Allocator>& x);Effects: Exchanges the contents and capacity() and swaps the allocators of *this with that of x.
Insert a new paragraph just before 23.4 [associative]/1:
In addition to being available via inclusion of the <algorithm> header, the swap function templates in 25.3.3 [alg.swap] are also available when any of the headers <map> or <set> are included.
In 23.4.4 [map], class template map synopsis change as indicated:
void swap(map<Key,T,Compare,Allocator>&);At the end of 23.4.4.4 [map.modifiers] add as indicated:
void swap(map& x);Requires: Compare shall satisfy the Swappable requirements ( [swappable]).
[ This requirement is added to ensure that even a user defined swap which is found by ADL for Compare satisfies the Swappable requirements ]
Effects: Exchanges the contents and swaps the allocators of *this with that of x, followed by an unqualified swap of the comparison objects of *this and x.
Complexity: Constant time
In 23.4.5 [multimap], class template multimap synopsis change as indicated:
void swap(multimap<Key,T,Compare,Allocator>&);At the end of 23.4.5.3 [multimap.modifiers] add as indicated:
void swap(multimap& x);Requires: Compare shall satisfy the Swappable requirements ( [swappable]).
Effects: Exchanges the contents and swaps the allocators of *this with that of x, followed by an unqualified swap of the comparison objects of *this and x.
Complexity: Constant time
In 23.4.6 [set], class template set synopsis change as indicated:
void swap(set<Key,Compare,Allocator>&);After section 23.4.6.2 [set.cons] add a new section set modifiers [set.modifiers] and add the following paragraphs:
void swap(set& x);Requires: Compare shall satisfy the Swappable requirements ( [swappable]).
Effects: Exchanges the contents and swaps the allocators of *this with that of x, followed by an unqualified swap of the comparison objects of *this and x.
Complexity: Constant time
In 23.4.7 [multiset], class template multiset synosis, change as indicated:
void swap(multiset<Key,Compare,Allocator>&);After section 23.4.7.2 [multiset.cons] add a new section multiset modifiers [multiset.modifiers] and add the following paragraphs:
void swap(multiset& x);Requires: Compare shall satisfy the Swappable requirements ( [swappable]).
Effects: Exchanges the contents and swaps the allocators of *this with that of x, followed by an unqualified swap of the comparison objects of *this and x.
Complexity: Constant time
Insert a new paragraph just before 23.5 [unord] p. 1:
In addition to being available via inclusion of the <algorithm> header, the swap function templates in 25.3.3 [alg.swap] are also available when any of the headers <unordered_map> or <unordered_set> are included.
After section 23.5.4.3 [unord.map.elem] add a new section unordered_map modifiers 23.5.4.4 [unord.map.modifiers] and add the following paragraphs:
void swap(unordered_map& x);Requires: Hash and Pred shall satisfy the Swappable requirements ( [swappable]).
[ This requirement is added to ensure that even a user defined swap which is found by ADL for Hash and Pred satisfies the Swappable requirements ]
Effects: Exchanges the contents and hash policy and swaps the allocators of *this with that of x, followed by an unqualified swap of the Pred objects and an unqualified swap of the Hash objects of *this and x.
Complexity: Constant time
After section 23.5.5.2 [unord.multimap.cnstr] add a new section unordered_multimap modifiers 23.5.5.3 [unord.multimap.modifiers] and add the following paragraphs:
void swap(unordered_multimap& x);Requires: Hash and Pred shall satisfy the Swappable requirements ( [swappable]).
Effects: Exchanges the contents and hash policy and swaps the allocators of *this with that of x, followed by an unqualified swap of the Pred objects and an unqualified swap of the Hash objects of *this and x
Complexity: Constant time
After section 23.5.6.2 [unord.set.cnstr] add a new section unordered_set modifiers [unord.set.modifiers] and add the following paragraphs:
void swap(unordered_set& x);Requires: Hash and Pred shall satisfy the Swappable requirements ( [swappable]).
Effects: Exchanges the contents and hash policy and swaps the allocators of *this with that of x, followed by an unqualified swap of the Pred objects and an unqualified swap of the Hash objects of *this and x
Complexity: Constant time
After section 23.5.7.2 [unord.multiset.cnstr] add a new section unordered_multiset modifiers [unord.multiset.modifiers] and add the following paragraphs:
void swap(unordered_multiset& x);Requires: Hash and Pred shall satisfy the Swappable requirements ( [swappable]).
Effects: Exchanges the contents and hash policy and swaps the allocators of *this with that of x, followed by an unqualified swap of the Pred objects and an unqualified swap of the Hash objects of *this and x
Complexity: Constant time
[ 2009-10-30 Pablo and Daniel updated wording. ]
[ 2010 Pittsburgh: Ready for Pittsburgh. ]
Proposed resolution:
[ This resolution is based on the September 2009 WP, N2960, except that it assumes that N2982 and issues 883 and 1232 have already been applied. Note in particular that Table 91 in N2960 is refered to as Table 90 because N2982 removed the old Table 90. This resolution also addresses issue 431. ]
In 23.2.1 [container.requirements.general], replace the a.swap(b) row in table 90, "container requirements" (was table 91 before the application of N2982 to the WP):
a.swap(b)
void
swap(a,b)Exchange the contents of a and b.(Note A) swap(a,b)
void
a.swap(b)
(Note A)
Modify the notes immediately following Table 90 in 23.2.1 [container.requirements.general] as follows (The wording below is after the application of N2982 to N2960. The editor might also want to combine Notes A and B into one.):
Notes: the algorithms
swap(),equal() and lexicographical_compare() are defined in Clause 25. Those entries marked "(Note A)" or "(Note B)"shouldhave linear complexity for array and constant complexity for all other standard containers.
In 23.2.1 [container.requirements.general], before paragraph 8, add:
The expression
a.swap(b)
, for containersa
andb
of a standard container type other thanarray
, exchanges the values ofa
andb
without invoking any move, copy, or swap operations on the individual container elements. AnyCompare
,Pred
, orHash
function objects belonging toa
andb
shall beswappable
and are exchanged by unqualified calls to non-memberswap
. Ifallocator_traits<allocator_type>::propagate_on_container_swap::value == true
, then the allocators ofa
andb
are also exchanged using an unqualified call to non-memberswap
. Otherwise, the behavior is undefined unlessa.get_allocator() == b.get_allocator()
. Each iterator refering to an element in one container before the swap shall refer to the same element in the other container after the swap. It is unspecified whether an iterator with valuea.end()
before the swap will have valueb.end()
after the swap. In addition to being available via inclusion of the<utility>
header, theswap
function template in 25.3.3 [alg.swap] is also available within the definition of every standard container'sswap
function.
[ Note to the editor: Paragraph 2 starts with a sentence fragment, clearly from an editing or source-control error. ]
Modify 23.2.4.1 [associative.reqmts.except] as follows:
23.2.4.1 Exception safety guarantees 23.2.4.1 [associative.reqmts.except]
For associative containers, no
clear()
function throws an exception.erase(k)
does not throw an exception unless that exception is thrown by the container'sobject (if any).
PredCompareFor associative containers, if an exception is thrown by any operation from within an
insert()
function inserting a single element, theinsert()
function has no effect.For associative containers, no
swap
function throws an exception unless that exception is thrown by thecopy constructor or copy assignment operatorswap of the container'sobject (if any).
PredCompare
Modify 23.2.5.1 [unord.req.except], paragraph 3 as follows:
For unordered associative containers, no
swap
function throws an exception unless that exception is thrown by thecopy constructor or copy assignment operatorswap of the container'sHash
orPred
object (if any).
Modify section 23.3.2.3 [array.special]:
array specialized algorithms 23.3.2.3 [array.special]
template <class T, size_t N> void swap(array<T,N>& x,array<T,N>& y);
Effects:
swap_ranges(x.begin(), x.end(), y.begin() );x.swap(y);
Add a new section after 23.3.2.6 [array.fill] (Note to the editor: array::fill make use of a concept requirement that must be removed or changed to text.):
array::swap [array.swap]
void swap(array& y);
Effects:
swap_ranges(this->begin(), this->end(), y.begin() );
Throws: Nothing unless one of the element-wise swap calls throws an exception.
[Note: Unlike other containers'
swap
functions,array::swap
takes linear, not constant, time, may exit via an exception, and does not cause iterators to become associated with the other container. — end note]
Insert a new paragraph just after 23.6 [container.adaptors]/1:
For container adaptors, no
swap
function throws an exception unless that exception is thrown by the swap of the adaptor'sContainer
orCompare
object (if any).
Section: 20.4.2.5 [tuple.helper] Status: CD1 Submitter: Alisdair Meredith Opened: 2008-01-16 Last modified: 2015-04-08
View all other issues in [tuple.helper].
View all issues with CD1 status.
Discussion:
The tuple element access API identifies the element in the sequence using signed integers, and then goes on to enforce the requirement that I be >= 0. There is a much easier way to do this - declare I as unsigned.
In fact the proposal is to use std::size_t
, matching the
type used in the tuple_size API.
A second suggestion is that it is hard to imagine an API that deduces and index at compile time and returns a reference throwing an exception. Add a specific Throws: Nothing paragraph to each element access API.
In addition to tuple
, update the API applies to
pair
and array
, and should be updated
accordingly.
A third observation is that the return type of the get
functions for std::pair
is pseudo-code, but it is not
clearly marked as such. There is actually no need for pseudo-code as
the return type can be specified precisely with a call to
tuple_element
. This is already done for
std::tuple
, and std::array
does not have a
problem as all elements are of type T
.
Proposed resolution:
Update header <utility> synopsis in 20.2 [utility]
// 20.2.3, tuple-like access to pair: template <class T> class tuple_size; template <intsize_t I, class T> class tuple_element; template <class T1, class T2> struct tuple_size<std::pair<T1, T2> >; template <class T1, class T2> struct tuple_element<0, std::pair<T1, T2> >; template <class T1, class T2> struct tuple_element<1, std::pair<T1, T2> >; template<intsize_t I, class T1, class T2>Ptypename tuple_element<I, std::pair<T1, T2> >::type & get(std::pair<T1, T2>&); template<intsize_t I, class T1, class T2> constPtypename tuple_element<I, std::pair<T1, T2> >::type & get(const std::pair<T1, T2>&);
Update 20.3 [pairs] Pairs
template<intsize_t I, class T1, class T2>Ptypename tuple_element<I, std::pair<T1, T2> >::type & get(pair<T1, T2>&); template<intsize_t I, class T1, class T2> constPtypename tuple_element<I, std::pair<T1, T2> >::type & get(const pair<T1, T2>&);
24 Return type: If
I == 0
then P
is T1
, if I == 1
then P
is T2
, and otherwise the program is ill-formed.
25 Returns: If I == 0
returns p.first
, otherwise if I == 1
returns p.second
, and otherwise the program is ill-formed.
Throws: Nothing.
Update header <tuple> synopsis in 20.4 [tuple] with a APIs as below:
template <intsize_t I, class T> class tuple_element; // undefined template <intsize_t I, class... Types> class tuple_element<I, tuple<Types...> >; // 20.3.1.4, element access: template <intsize_t I, class... Types> typename tuple_element<I, tuple<Types...> >::type& get(tuple<Types...>&); template <intsize_t I, class ... types> typename tuple_element<I, tuple<Types...> >::type const& get(const tuple<Types...>&);
Update 20.4.2.5 [tuple.helper] Tuple helper classes
template <intsize_t I, class... Types> class tuple_element<I, tuple<Types...> > { public: typedef TI type; };
1 Requires:
. The program is ill-formed if 0 <= I and I < sizeof...(Types)I
is out of bounds.
2 Type: TI
is the type of the I
th element of Types
, where indexing is zero-based.
Update 20.4.2.6 [tuple.elem] Element access
template <intsize_t I, class... types > typename tuple_element<I, tuple<Types...> >::type& get(tuple<Types...>& t);
1 Requires:
. The program is ill-formed if 0 <= I and I < sizeof...(Types)I
is out of bounds.
I
th element of t
, where indexing is zero-based.
Throws: Nothing.
template <intsize_t I, class... types> typename tuple_element<I, tuple<Types...> >::type const& get(const tuple<Types...>& t);
3 Requires:
. The program is ill-formed if 0 <= I and I < sizeof...(Types)I
is out of bounds.
4 Returns: A const reference to the I
th element of t
, where indexing is zero-based.
Throws: Nothing.
Update header <array> synopsis in 20.2 [utility]
template <class T> class tuple_size; // forward declaration template <intsize_t I, class T> class tuple_element; // forward declaration template <class T, size_t N> struct tuple_size<array<T, N> >; template <intsize_t I, class T, size_t N> struct tuple_element<I, array<T, N> >; template <intsize_t I, class T, size_t N> T& get(array<T, N>&); template <intsize_t I, class T, size_t N> const T& get(const array<T, N>&);
Update 23.3.2.9 [array.tuple] Tuple interface to class template array
tuple_element<size_t I, array<T, N> >::type
3 Requires:
The program is ill-formed if 0 <= I < N.I
is out of bounds.
4 Value: The type T
.
template <intsize_t I, class T, size_t N> T& get(array<T, N>& a);
5 Requires:
. The program is ill-formed if 0 <= I < NI
is out of bounds.
Returns: A reference to the I
th element of a
, where indexing is zero-based.
Throws: Nothing.
template <intsize_t I, class T, size_t N> const T& get(const array<T, N>& a);
6 Requires:
. The program is ill-formed if 0 <= I < NI
is out of bounds.
7 Returns: A const reference to the I
th element of a
, where indexing is zero-based.
Throws: Nothing.
[ Bellevue: Note also that the phrase "The program is ill-formed if I is out of bounds" in the requires clauses are probably unnecessary, and could be removed at the editor's discretion. Also std:: qualification for pair is also unnecessary. ]
Section: 23.3.2 [array] Status: CD1 Submitter: Daniel Krügler Opened: 2008-01-20 Last modified: 2015-04-08
View other active issues in [array].
View all other issues in [array].
View all issues with CD1 status.
Discussion:
The class template array synopsis in 23.3.2 [array] p. 3 declares a member function
void assign(const T& u);
which's semantic is no-where described. Since this signature is not part of the container requirements, such a semantic cannot be derived by those.
I found only one reference to this function in the issue list, 588 where the question is raised:
what's the effect of calling assign(T&) on a zero-sized array?
which does not answer the basic question of this issue.
If this function shall be part of the std::array, it's probable semantic should correspond to that of boost::array, but of course such wording must be added.
Proposed resolution:
Just after the section 23.3.2.5 [array.data] add the following new section:
23.2.1.5 array::fill [array.fill]
void fill(const T& u);1: Effects: fill_n(begin(), N, u)
[N.B: I wonder, why class array does not have a "modifiers" section. If it had, then assign would naturally belong to it]
Change the synopsis in 23.3.2 [array]/3:
template <class T, size_t N> struct array { ... voidassignfill(const T& u); ...
[ Bellevue: ]
Suggest substituting "fill" instead of "assign".
Set state to Review given substitution of "fill" for "assign".
Section: 29.6 [atomics.types.operations] Status: CD1 Submitter: Lawrence Crowl Opened: 2008-01-21 Last modified: 2015-04-08
View all other issues in [atomics.types.operations].
View all issues with CD1 status.
Discussion:
The load functions are defined as
C atomic_load(volatile A* object); C atomic_load_explicit(volatile A* object, memory_order); C A::load(memory_order order = memory_order_seq_cst) volatile;
which prevents their use in const contexts.
[ post Bellevue Peter adds: ]
Issue 777 suggests making atomic_load operate on const objects. There is a subtle point here. Atomic loads do not generally write to the object, except potentially for the memory_order_seq_cst constraint. Depending on the architecture, a dummy write with the same value may be required to be issued by the atomic load to maintain sequential consistency. This, in turn, may make the following code:
const atomic_int x{}; int main() { x.load(); }dump core under a straightforward implementation that puts const objects in a read-only section.
There are ways to sidestep the problem, but it needs to be considered.
The tradeoff is between making the data member of the atomic types mutable and requiring the user to explicitly mark atomic members as mutable, as is already the case with mutexes.
Proposed resolution:
Add the const qualifier to *object and *this.
C atomic_load(const volatile A* object); C atomic_load_explicit(const volatile A* object, memory_order); C A::load(memory_order order = memory_order_seq_cst) const volatile;
Section: 20.6.1 [bitset.cons] Status: CD1 Submitter: Thorsten Ottosen Opened: 2008-01-24 Last modified: 2015-04-08
View all other issues in [bitset.cons].
View all issues with CD1 status.
Duplicate of: 116
Discussion:
A small issue with std::bitset: it does not have any constructor taking a string literal, which is clumsy and looks like an oversigt when we tried to enable uniform use of string and const char* in the library.
Suggestion: Add
explicit bitset( const char* str );
to std::bitset.
Proposed resolution:
Add to synopsis in 20.6 [template.bitset]
explicit bitset( const char* str );
Add to synopsis in 20.6.1 [bitset.cons]
explicit bitset( const char* str );Effects: Constructs a bitset as if bitset(string(str)).
Section: 25.3.8 [alg.remove] Status: CD1 Submitter: Daniel Krügler Opened: 2008-01-25 Last modified: 2015-04-08
View all other issues in [alg.remove].
View all issues with CD1 status.
Discussion:
The resolution of 283 did not resolve similar necessary changes for algorithm remove_copy[_if], which seems to be an oversight.
Proposed resolution:
In 25.3.8 [alg.remove] p.6, replace the N2461 requires clause with:
Requires:
Type T is EqualityComparable (31).The ranges [first,last) and [result,result + (last - first)) shall not overlap. The expression *result = *first shall be valid.
Section: 25.4.4 [alg.merge] Status: C++11 Submitter: Daniel Krügler Opened: 2008-01-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Though issue 283 has fixed many open issues, it seems that some are still open:
Both 25.3.4 [lib.alg.merge] in 14882:2003 and 25.4.4 [alg.merge] in N2461 have no Requires element and the Effects element contains some requirements, which is probably editorial. Worse is that:
[ Post Summit Alisdair adds: ]
Suggest:
(where last is equal to next(result, distance(first1, last1) + distance(first2, last2)), such that resulting range will be sorted in non-decreasing order; that is, for every iterator i in [result,last) other than result, the condition *i < *prev(i) or, respectively, comp(*i, *prev(i)) will be false.
Note that this might still not be technically accurate in the case of InputIterators, depending on other resolutions working their way through the system (1011).
[ Post Summit Daniel adds: ]
If we want to use prev and next here (Note: merge is sufficiently satisfied with InputIterator) we should instead add more to 25 [algorithms] p. 6, but I can currently not propose any good wording for this.
[ Batavia (2009-05): ]
Pete points out the existing wording in [algorithms] p. 4 that permits the use of + in algorithm specifications.
Alisdair points out that that wording may not apply to input iterators.
Move to Review.
[ 2009-07 Frankfurt: ]
Move to Ready.
[ 2009-08-23 Daniel reopens: ]
The proposed wording must be rephrased, because the part
for every iterator i in [result,last) other than result, the condition *i < *(i - 1) or, respectively, comp(*i, *(i - 1)) will be false"
isn't meaningful, because the range [result,last) is that of a pure OutputIterator, which is not readable in general.
[Howard: Proposed wording updated by Daniel, status moved from Ready to Review.]
[ 2009-10 Santa Cruz: ]
Matt has some different words to propose. Those words have been moved into the proposed wording section, and the original proposed wording now appears here:
In 25.4.4 [alg.merge] replace p.1+ 2:
Effects:
MergesCopies all the elements of the two sorted ranges [first1,last1) and [first2,last2) into the range [result,result + (last1 - first1) + (last2 - first2)) , such that resulting range will be sorted in non-decreasing order; that is for every pair of iterators i and j of either input ranges, where *i was copied to the output range before *j was copied to the output range, the condition *j < *i or, respectively, comp(*j, *i) will be false.Requires:The resulting range shall not overlap with either of the original ranges.
The list will be sorted in non-decreasing order according to the ordering defined by comp; that is, for every iterator i in [first,last) other than first, the condition *i < *(i - 1) or comp(*i, *(i - 1)) will be false.
[ 2010-02-10 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 25.4.4 [alg.merge] 1 and 2:
1
Effects: Merges two sorted ranges [first1,last1) and [first2,last2) into the range [result, result + (last1 - first1) + (last2 - first2)).Effects: Copies all the elements of the two ranges [first1,last1) and [first2,last2) into the range [result, result_last), where result_last is result + (last1 - first1) + (last2 - first2), such that the resulting range satisfies is_sorted(result, result_last) or is_sorted(result, result_last, comp), respectively.
2 Requires: The ranges [first1,last1) and [first2,last2) shall be sorted with respect to operator< or comp. The resulting range shall not overlap with either of the original ranges.
The list will be sorted in non-decreasing order according to the ordering defined by comp; that is, for every iterator i in [first,last) other than first, the condition *i < *(i - 1) or comp(*i, *(i - 1)) will be false.
Change 25.4.4 [alg.merge] p. 6+7 as indicated [This ensures harmonization between inplace_merge and merge]
6 Effects: Merges two
sortedconsecutive ranges [first,middle) and [middle,last), putting the result of the merge into the range [first,last). The resulting range will be in non-decreasing order; that is, for every iterator i in [first,last) other than first, the condition *i < *(i - 1) or, respectively, comp(*i, *(i - 1)) will be false.7 Requires: The ranges [first,middle) and [middle,last) shall be sorted with respect to operator< or comp. The type of *first shall satisfy the Swappable requirements (37), the MoveConstructible requirements (Table 33), and the the MoveAssignable requirements (Table 35).
Section: 26.4.7 [complex.value.ops] Status: CD1 Submitter: Daniel Krügler Opened: 2008-01-26 Last modified: 2015-04-08
View all other issues in [complex.value.ops].
View all issues with CD1 status.
Discussion:
A comparision of the N2461 header <complex> synopsis ([complex.syn]) with the C99 standard (ISO 9899, 2nd edition and the two corrigenda) show some complex functions that are missing in C++. These are:
cerf cerfc cexp2 cexpm1 clog10 clog1p clog2 clgamma ctgamma
I propose that at least the required cproj overloads are provided as equivalent C++ functions. This addition is easy to do in one sentence (delegation to C99 function).
Please note also that the current entry polar in 26.4.9 [cmplx.over] p. 1 should be removed from the mentioned overload list. It does not make sense to require that a function already expecting scalar arguments should cast these arguments into corresponding complex<T> arguments, which are not accepted by this function.
Proposed resolution:
In 26.4.1 [complex.syn] add just between the declaration of conj and fabs:
template<class T> complex<T> conj(const complex<T>&); template<class T> complex<T> proj(const complex<T>&); template<class T> complex<T> fabs(const complex<T>&);
In 26.4.7 [complex.value.ops] just after p.6 (return clause of conj) add:
template<class T> complex<T> proj(const complex<T>& x);Effects: Behaves the same as C99 function cproj, defined in subclause 7.3.9.4."
In 26.4.9 [cmplx.over] p. 1, add one further entry proj to the overload list.
The following function templates shall have additional overloads:
arg norm conjpolarproj imag real
Section: 26.5.7.1 [rand.util.seedseq] Status: CD1 Submitter: Daniel Krügler Opened: 2008-01-27 Last modified: 2015-04-08
View all other issues in [rand.util.seedseq].
View all issues with CD1 status.
Discussion:
Part of the resolution of n2423, issue 8 was the proposal to extend the seed_seq constructor accepting an input range as follows (which is now part of N2461):
template<class InputIterator, size_t u = numeric_limits<iterator_traits<InputIterator>::value_type>::digits> seed_seq(InputIterator begin, InputIterator end);
First, the expression iterator_traits<InputIterator>::value_type is invalid due to missing typename keyword, which is easy to fix.
Second (and worse), while the language now supports default template arguments of function templates, this customization point via the second size_t template parameter is of no advantage, because u can never be deduced, and worse - because it is a constructor function template - it can also never be explicitly provided (14.8.1 [temp.arg.explicit]/7).
The question arises, which advantages result from a compile-time knowledge of u versus a run time knowledge? If run time knowledge suffices, this parameter should be provided as normal function default argument [Resolution marked (A)], if compile-time knowledge is important, this could be done via a tagging template or more user-friendly via a standardized helper generator function (make_seed_seq), which allows this [Resolution marked (B)].
[ Bellevue: ]
Fermilab does not have a strong opinion. Would prefer to go with solution A. Bill agrees that solution A is a lot simpler and does the job.
Proposed Resolution: Accept Solution A.
Issue 803 claims to make this issue moot.
Proposed resolution:
In 26.5.7.1 [rand.util.seedseq]/2, class seed_seq synopsis replace:
class seed_seq { public: ... template<class InputIterator, size_t u = numeric_limits<iterator_traits<InputIterator>::value_type>::digits> seed_seq(InputIterator begin, InputIterator end, size_t u = numeric_limits<typename iterator_traits<InputIterator>::value_type>::digits); ... };
and do a similar replacement in the member description between p.3 and p.4.
In 26.5.7.1 [rand.util.seedseq]/2, class seed_seq synopsis and in the member description between p.3 and p.4 replace:
template<class InputIterator, size_t u = numeric_limits<iterator_traits<InputIterator>::value_type>::digits> seed_seq(InputIterator begin, InputIterator end); template<class InputIterator, size_t u> seed_seq(InputIterator begin, InputIterator end, implementation-defined s);
In 26.5.2 [rand.synopsis], header <random> synopsis, immediately after the class seed_seq declaration and in 26.5.7.1 [rand.util.seedseq]/2, immediately after the class seed_seq definition add:
template<size_t u, class InputIterator> seed_seq make_seed_seq(InputIterator begin, InputIterator end);
In 26.5.7.1 [rand.util.seedseq], just before p.5 insert two paragraphs:
The first constructor behaves as if it would provide an integral constant expression u of type size_t of value numeric_limits<typename iterator_traits<InputIterator>::value_type>::digits.
The second constructor uses an implementation-defined mechanism to provide an integral constant expression u of type size_t and is called by the function make_seed_seq.
In 26.5.7.1 [rand.util.seedseq], just after the last paragraph add:
template<size_t u, class InputIterator> seed_seq make_seed_seq(InputIterator begin, InputIterator end);where u is used to construct an object s of implementation-defined type.
Returns: seed_seq(begin, end, s);
Section: 30.3.1.1 [thread.thread.id] Status: CD1 Submitter: Hans Boehm Opened: 2008-02-01 Last modified: 2015-04-08
View all other issues in [thread.thread.id].
View all issues with CD1 status.
Discussion:
The current working paper (N2497, integrated just before Bellevue) is not completely clear whether a given thread::id value may be reused once a thread has exited and has been joined or detached. Posix allows thread ids (pthread_t values) to be reused in this case. Although it is not completely clear whether this originally was the right decision, it is clearly the established practice, and we believe it was always the intent of the C++ threads API to follow Posix and allow this. Howard Hinnant's example implementation implicitly relies on allowing reuse of ids, since it uses Posix thread ids directly.
It is important to be clear on this point, since it the reuse of thread ids often requires extra care in client code, which would not be necessary if thread ids were unique across all time. For example, a hash table indexed by thread id may have to be careful not to associate data values from an old thread with a new one that happens to reuse the id. Simply removing the old entry after joining a thread may not be sufficient, if it creates a visible window between the join and removal during which a new thread with the same id could have been created and added to the table.
[ post Bellevue Peter adds: ]
There is a real issue with thread::id reuse, but I urge the LWG to reconsider fixing this by disallowing reuse, rather than explicitly allowing it. Dealing with thread id reuse is an incredibly painful exercise that would just force the world to reimplement a non-conflicting thread::id over and over.
In addition, it would be nice if a thread::id could be manipulated atomically in a lock-free manner, as motivated by the recursive lock example:
http://www.decadent.org.uk/pipermail/cpp-threads/2006-August/001091.html
Proposed resolution:
Add a sentence to 30.3.1.1 [thread.thread.id]/p1:
An object of type
thread::id
provides a unique identifier for each thread of execution and a single distinct value for all thread objects that do not represent a thread of execution ([thread.threads.class]). Each thread of execution has athread::id
that is not equal to thethread::id
of other threads of execution and that is not equal to thethread::id
ofstd::thread
objects that do not represent threads of execution. The library may reuse the value of athread::id
of a terminated thread that can no longer be joined.
Section: 20.12 [time] Status: Resolved Submitter: Christopher Kohlhoff, Jeff Garland Opened: 2008-02-03 Last modified: 2015-04-08
View all other issues in [time].
View all issues with Resolved status.
Discussion:
The draft C++0x thread library requires that the time points of type system_time and returned by get_system_time() represent Coordinated Universal Time (UTC) (section [datetime.system]). This can lead to surprising behavior when a library user performs a duration-based wait, such as condition_variable::timed_wait(). A complete explanation of the problem may be found in the Rationale for the Monotonic Clock section in POSIX, but in summary:
POSIX solves the problem by introducing a new monotonic clock, which is unaffected by changes to the system time. When a condition variable is initialized, the user may specify whether the monotonic clock is to be used. (It is worth noting that on POSIX systems it is not possible to use condition_variable::native_handle() to access this facility, since the desired clock type must be specified during construction of the condition variable object.)
In the context of the C++0x thread library, there are added dimensions to the problem due to the need to support platforms other than POSIX:
One possible minimal solution:
Proposed resolution:
Rationale:
Addressed by N2661: A Foundation to Sleep On.
Section: 25.4.3.4 [binary.search] Status: CD1 Submitter: Daniel Krügler Opened: 2007-09-08 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
In 25.4.3.4 [binary.search] p. 3 the complexity of binary_search is described as
At most log(last - first) + 2 comparisons.
This should be precised and brought in line with the nomenclature used for lower_bound, upper_bound, and equal_range.
All existing libraries I'm aware of, delegate to lower_bound (+ one further comparison). Since issue 384 has now WP status, the resolution of #787 should be brought in-line with 384 by changing the + 2 to + O(1).
[ Sophia Antipolis: ]
Alisdair prefers to apply an upper bound instead of O(1), but that would require fixing for lower_bound, upper_bound etc. as well. If he really cares about it, he'll send an issue to Howard.
Proposed resolution:
Change 25.4.3.4 [binary.search]/3
Complexity: At most log2(last - first) +
2O(1) comparisons.
Section: 24.6.1 [istream.iterator] Status: C++11 Submitter: Martin Sebor Opened: 2008-02-06 Last modified: 2015-04-08
View all other issues in [istream.iterator].
View all issues with C++11 status.
Discussion:
Addresses UK 287
It is not clear what the initial state of an istream_iterator should be. Is _value_ initialized by reading the stream, or default/value initialized? If it is initialized by reading the stream, what happens if the initialization is deferred until first dereference, when ideally the iterator value should have been that of an end-of-stream iterator which is not safely dereferencable?
Recommendation: Specify _value_ is initialized by reading the stream, or the iterator takes on the end-of-stream value if the stream is empty.
The description of how an istream_iterator object becomes an end-of-stream iterator is a) ambiguous and b) out of date WRT issue 468:
istream_iterator reads (using operator>>) successive elements from the input stream for which it was constructed. After it is constructed, and every time ++ is used, the iterator reads and stores a value of T. If the end of stream is reached (operator void*() on the stream returns false), the iterator becomes equal to the end-of-stream iterator value. The constructor with no arguments istream_iterator() always constructs an end of stream input iterator object, which is the only legitimate iterator to be used for the end condition. The result of operator* on an end of stream is not defined. For any other iterator value a const T& is returned. The result of operator-> on an end of stream is not defined. For any other iterator value a const T* is returned. It is impossible to store things into istream iterators. The main peculiarity of the istream iterators is the fact that ++ operators are not equality preserving, that is, i == j does not guarantee at all that ++i == ++j. Every time ++ is used a new value is read.
istream::operator void*() returns null if istream::fail() is true, otherwise non-null. istream::fail() returns true if failbit or badbit is set in rdstate(). Reaching the end of stream doesn't necessarily imply that failbit or badbit is set (e.g., after extracting an int from stringstream("123") the stream object will have reached the end of stream but fail() is false and operator void*() will return a non-null value).
Also I would prefer to be explicit about calling fail() here (there is no operator void*() anymore.)
[ Summit: ]
Moved from Ready to Open for the purposes of using this issue to address NB UK 287. Martin to handle.
[ 2009-07 Frankfurt: ]
This improves the wording.
Move to Ready.
Proposed resolution:
Change 24.6.1 [istream.iterator]/1:
istream_iterator reads (using operator>>) successive elements from the input stream for which it was constructed. After it is constructed, and every time ++ is used, the iterator reads and stores a value of T. If
the end of stream is reachedthe iterator fails to read and store a value of T (operator void*()fail() on the stream returnsfalsetrue), the iterator becomes equal to the end-of-stream iterator value. The constructor with no arguments istream_iterator() always constructs an end of stream input iterator object, which is the only legitimate iterator to be used for the end condition. The result of operator* on an end of stream is not defined. For any other iterator value a const T& is returned. The result of operator-> on an end of stream is not defined. For any other iterator value a const T* is returned. It is impossible to store things into istream iterators. The main peculiarity of the istream iterators is the fact that ++ operators are not equality preserving, that is, i == j does not guarantee at all that ++i == ++j. Every time ++ is used a new value is read.
Section: X [rand.adapt.xor] Status: CD1 Submitter: P.J. Plauger Opened: 2008-02-09 Last modified: 2015-04-08
View all other issues in [rand.adapt.xor].
View all issues with CD1 status.
Discussion:
xor_combine_engine(result_type) should be explicit. (Obvious oversight.)
[ Bellevue: ]
Non-controversial. Bill is right, but Fermilab believes that this is easy to use badly and hard to use right, and so it should be removed entirely. Got into TR1 by well defined route, do we have permission to remove stuff? Should probably check with Jens, as it is believed he is the originator. Broad consensus that this is not a robust engine adapter.
Proposed resolution:
Remove xor_combine_engine from synopsis of 26.5.2 [rand.synopsis].
Remove X [rand.adapt.xor] xor_combine_engine.
Section: 26.5.8.6.2 [rand.dist.samp.pconst] Status: CD1 Submitter: P.J. Plauger Opened: 2008-02-09 Last modified: 2015-04-08
View all other issues in [rand.dist.samp.pconst].
View all issues with CD1 status.
Discussion:
piecewise_constant_distribution is undefined for a range with just one endpoint. (Probably should be the same as an empty range.)
Proposed resolution:
Change 26.5.8.6.2 [rand.dist.samp.pconst] paragraph 3b:
b) If firstB == lastB or the sequence w has the length zero,
Section: 26.5.8.6.1 [rand.dist.samp.discrete] Status: Resolved Submitter: P.J. Plauger Opened: 2008-02-09 Last modified: 2015-04-08
View all other issues in [rand.dist.samp.discrete].
View all issues with Resolved status.
Discussion:
discrete_distribution should have a constructor like:
template<class _Fn> discrete_distribution(result_type _Count, double _Low, double _High, _Fn& _Func);
(Makes it easier to fill a histogram with function values over a range.)
[ Bellevue: ]
How do you specify the function so that it does not return negative values? If you do it is a bad construction. This requirement is already there. Where in each bin does one evaluate the function? In the middle. Need to revisit tomorrow.
[ Sophia Antipolis: ]
Bill is not requesting this.
Marc Paterno: _Fn cannot return negative values at the points where the function is sampled. It is sampled in the middle of each bin. _Fn cannot return 0 everywhere it is sampled.
Jens: lambda expressions are rvalues
Add a library issue to provide an initializer_list<double> constructor for discrete_distribution.
Marc Paterno: dislikes reference for _Fn parameter. Make it pass-by-value (to use lambda), use std::ref to wrap giant-state function objects.
Daniel: See random_shuffle, pass-by-rvalue-reference.
Daniel to draft wording.
[ Pre San Francisco, Daniel provided wording: ]
The here proposed changes of the WP refer to the current state of N2691. During the Sophia Antipolis meeting two different proposals came up regarding the functor argument type, either by value or by rvalue-reference. For consistence with existing conventions (state-free algorithms and the general_pdf_distribution c'tor signature) the author decided to propose a function argument that is provided by value. If severe concerns exists that stateful functions would be of dominant relevance, it should be possible to replace the two occurrences of Func by Func&& in this proposal as part of an editorial process.
Proposed resolution:
Non-concept version of the proposed resolution
In 26.5.8.6.1 [rand.dist.samp.discrete]/1, class discrete_distribution, just before the member declaration
explicit discrete_distribution(const param_type& parm);
insert:
template<typename Func> discrete_distribution(result_type nf, double xmin, double xmax, Func fw);
Between p.4 and p.5 insert a series of new paragraphs as part of the new member description::
template<typename Func> discrete_distribution(result_type nf, double xmin, double xmax, Func fw);Complexity: Exactly nf invocations of fw.
Requires:
- fw shall be callable with one argument of type double, and shall return values of a type convertible to double;
- If nf > 0, the relation xmin < xmax shall hold, and for all sample values xk, fw(xk) shall return a weight value wk that is non-negative, non-NaN, and non-infinity;
- The following relations shall hold: nf ≥ 0, and 0 < S = w0+. . .+wn-1.
Effects:
- If nf == 0, sets n = 1 and lets the sequence w have length n = 1 and consist of the single value w0 = 1.
Otherwise, sets n = nf, deltax = (xmax - xmin)/n and xcent = xmin + 0.5 * deltax.
For each k = 0, . . . ,n-1, calculates:
xk = xcent + k * deltax wk = fw(xk)
Constructs a discrete_distribution object with probabilities:
pk = wk/S for k = 0, . . . , n-1.
Concept version of the proposed resolution
In 26.5.8.6.1 [rand.dist.samp.discrete]/1, class discrete_distribution, just before the member declaration
explicit discrete_distribution(const param_type& parm);
insert:
template<Callable<auto, double> Func> requires Convertible<Func::result_type, double> discrete_distribution(result_type nf, double xmin, double xmax, Func fw);
Between p.4 and p.5 insert a series of new paragraphs as part of the new member description::
template<Callable<auto, double> Func> requires Convertible<Func::result_type, double> discrete_distribution(result_type nf, double xmin, double xmax, Func fw);Complexity: Exactly nf invocations of fw.
Requires:
- If nf > 0, the relation xmin < xmax shall hold, and for all sample values xk, fw(xk) shall return a weight value wk that is non-negative, non-NaN, and non-infinity;
- The following relations shall hold: nf ≥ 0, and 0 < S = w0+. . .+wn-1.
Effects:
- If nf == 0, sets n = 1 and lets the sequence w have length n = 1 and consist of the single value w0 = 1.
Otherwise, sets n = nf, deltax = (xmax - xmin)/n and xcent = xmin + 0.5 * deltax.
For each k = 0, . . . ,n-1, calculates: xk = xcent + k * deltax wk = fw(xk)Constructs a discrete_distribution object with probabilities:
pk = wk/S for k = 0, . . . , n-1.
Rationale:
Addressed by N2836 "Wording Tweaks for Concept-enabled Random Number Generation in C++0X".
Section: 26.5.8.6.2 [rand.dist.samp.pconst] Status: Resolved Submitter: P.J. Plauger Opened: 2008-02-09 Last modified: 2015-04-08
View all other issues in [rand.dist.samp.pconst].
View all issues with Resolved status.
Discussion:
piecewise_constant_distribution should have a constructor like:
template<class _Fn> piecewise_constant_distribution(size_t _Count, _Ty _Low, _Ty _High, _Fn& _Func);
(Makes it easier to fill a histogram with function values over a range. The two (reference 793) make a sensible replacement for general_pdf_distribution.)
[ Sophia Antipolis: ]
Marc: uses variable width of bins and weight for each bin. This is not giving enough flexibility to control both variables.
Add a library issue to provide an constructor taking an initializer_list<double> and _Fn for piecewise_constant_distribution.
Daniel to draft wording.
[ Pre San Francisco, Daniel provided wording. ]
The here proposed changes of the WP refer to the current state of N2691. For reasons explained in 793, the author decided to propose a function argument that is provided by value. The issue proposes a c'tor signature, that does not take advantage of the full flexibility of piecewise_constant_distribution, because it restricts on a constant bin width, but the use-case seems to be popular enough to justify it's introduction.
Proposed resolution:
Non-concept version of the proposed resolution
In 26.5.8.6.2 [rand.dist.samp.pconst]/1, class piecewise_constant_distribution, just before the member declaration
explicit piecewise_constant_distribution(const param_type& parm);
insert:
template<typename Func> piecewise_constant_distribution(size_t nf, RealType xmin, RealType xmax, Func fw);
Between p.4 and p.5 insert a new sequence of paragraphs nominated below as [p5_1], [p5_2], [p5_3], and [p5_4] as part of the new member description:
template<typename Func> piecewise_constant_distribution(size_t nf, RealType xmin, RealType xmax, Func fw);[p5_1] Complexity: Exactly nf invocations of fw.
[p5_2] Requires:
- fw shall be callable with one argument of type RealType, and shall return values of a type convertible to double;
- For all sample values xk defined below, fw(xk) shall return a weight value wk that is non-negative, non-NaN, and non-infinity;
- The following relations shall hold: xmin < xmax, and 0 < S = w0+. . .+wn-1.
[p5_3] Effects:
If nf == 0,
- sets deltax = xmax - xmin, and
- lets the sequence w have length n = 1 and consist of the single value w0 = 1, and
- lets the sequence b have length n+1 with b0 = xmin and b1 = xmax
Otherwise,
- sets n = nf, deltax = (xmax - xmin)/n, xcent = xmin + 0.5 * deltax, and
lets the sequences w and b have length n and n+1, resp. and
for each k = 0, . . . ,n-1, calculates: dxk = k * deltax bk = xmin + dxk xk = xcent + dxk wk = fw(xk),and
- sets bn = xmax
Constructs a piecewise_constant_distribution object with the above computed sequence b as the interval boundaries and with the probability densities:
ρk = wk/(S * deltax) for k = 0, . . . , n-1.
[p5_4] [Note: In this context, the subintervals [bk, bk+1) are commonly known as the bins of a histogram. -- end note]
Concept version of the proposed resolution
In 26.5.8.6.2 [rand.dist.samp.pconst]/1, class piecewise_constant_distribution, just before the member declaration
explicit piecewise_constant_distribution(const param_type& parm);
insert:
template<Callable<auto, RealType> Func> requires Convertible<Func::result_type, double> piecewise_constant_distribution(size_t nf, RealType xmin, RealType xmax, Func fw);
Between p.4 and p.5 insert a new sequence of paragraphs nominated below as [p5_1], [p5_2], [p5_3], and [p5_4] as part of the new member description:
template<Callable<auto, RealType> Func> requires Convertible<Func::result_type, double> piecewise_constant_distribution(size_t nf, RealType xmin, RealType xmax, Func fw);[p5_1] Complexity: Exactly nf invocations of fw.
[p5_2] Requires:
- For all sample values xk defined below, fw(xk) shall return a weight value wk that is non-negative, non-NaN, and non-infinity;
- The following relations shall hold: xmin < xmax, and 0 < S = w0+. . .+wn-1.
[p5_3] Effects:
If nf == 0,
- sets deltax = xmax - xmin, and
- lets the sequence w have length n = 1 and consist of the single value w0 = 1, and
- lets the sequence b have length n+1 with b0 = xmin and b1 = xmax
Otherwise,
- sets n = nf, deltax = (xmax - xmin)/n, xcent = xmin + 0.5 * deltax, and
lets the sequences w and b have length n and n+1, resp. and
for each k = 0, . . . ,n-1, calculates: dxk = k * deltax bk = xmin + dxk xk = xcent + dxk wk = fw(xk),and
- sets bn = xmax
Constructs a piecewise_constant_distribution object with the above computed sequence b as the interval boundaries and with the probability densities:
ρk = wk/(S * deltax) for k = 0, . . . , n-1.
[p5_4] [Note: In this context, the subintervals [bk, bk+1) are commonly known as the bins of a histogram. -- end note]
Rationale:
Addressed by N2836 "Wording Tweaks for Concept-enabled Random Number Generation in C++0X".
Section: X [depr.lib.binders] Status: CD1 Submitter: Daniel Krügler Opened: 2008-02-14 Last modified: 2015-04-08
View all other issues in [depr.lib.binders].
View all issues with CD1 status.
Discussion:
N2521 and its earlier predecessors have moved the old binders from [lib.binders] to X [depr.lib.binders] thereby introducing some renaming of the template parameter names (Operation -> Fn). During this renaming process the protected data member op was also renamed to fn, which seems as an unnecessary interface breakage to me - even if this user access point is probably rarely used.
Proposed resolution:
Change [depr.lib.binder.1st]:
template <class Fn> class binder1st : public unary_function<typename Fn::second_argument_type, typename Fn::result_type> { protected: Fnfnop; typename Fn::first_argument_type value; public: binder1st(const Fn& x, const typename Fn::first_argument_type& y); typename Fn::result_type operator()(const typename Fn::second_argument_type& x) const; typename Fn::result_type operator()(typename Fn::second_argument_type& x) const; };-1- The constructor initializes
fnop with x and value with y.-2- operator() returns
fnop(value,x).
Change [depr.lib.binder.2nd]:
template <class Fn> class binder2nd : public unary_function<typename Fn::first_argument_type, typename Fn::result_type> { protected: Fnfnop; typename Fn::second_argument_type value; public: binder2nd(const Fn& x, const typename Fn::second_argument_type& y); typename Fn::result_type operator()(const typename Fn::first_argument_type& x) const; typename Fn::result_type operator()(typename Fn::first_argument_type& x) const; };-1- The constructor initializes
fnop with x and value with y.-2- operator() returns
fnop(value,x).
Section: 26.5.7.1 [rand.util.seedseq] Status: Resolved Submitter: Stephan Tolksdorf Opened: 2008-02-18 Last modified: 2015-04-08
View all other issues in [rand.util.seedseq].
View all issues with Resolved status.
Discussion:
The for-loop in the algorithm specification has n iterations, where n is defined to be end - begin, i.e. the number of supplied w-bit quantities. Previous versions of this algorithm and the general logic behind it suggest that this is an oversight and that in the context of the for-loop n should be the number of full 32-bit quantities in b (rounded upwards). If w is 64, the current algorithm throws away half of all bits in b. If w is 16, the current algorithm sets half of all elements in v to 0.
There are two more minor issues:
[ Bellevue: ]
Move to Open: Bill will try to propose a resolution by the next meeting.
[ post Bellevue: Bill provided wording. ]
This issue is made moot if 803 is accepted.
Proposed resolution:
Replace 26.5.7.1 [rand.util.seedseq] paragraph 6 with:
Effects: Constructs a seed_seq object by effectively concatenating the low-order u bits of each of the elements of the supplied sequence [begin, end) in ascending order of significance to make a (possibly very large) unsigned binary number b having a total of n bits, and then carrying out the following algorithm:
for( v.clear(); n > 0; n -= 32 ) v.push_back(b mod 232), b /= 232;
Rationale:
Addressed by N2836 "Wording Tweaks for Concept-enabled Random Number Generation in C++0X".
Section: 20.4 [tuple] Status: Resolved Submitter: Lawrence Crowl Opened: 2008-02-18 Last modified: 2015-04-08
View all other issues in [tuple].
View all issues with Resolved status.
Discussion:
Classes with trivial special member functions are inherently more efficient than classes without such functions. This efficiency is particularly pronounced on modern ABIs that can pass small classes in registers. Examples include value classes such as complex numbers and floating-point intervals. Perhaps more important, though, are classes that are simple collections, like pair and tuple. When the parameter types of these classes are trivial, the pairs and tuples themselves can be trivial, leading to substantial performance wins.
The current working draft make specification of trivial functions (where possible) much easer through defaulted and deleted functions. As long as the semantics of defaulted and deleted functions match the intended semantics, specification of defaulted and deleted functions will yield more efficient programs.
There are at least two cases where specification of an explicitly defaulted function may be desirable.
First, the std::pair template has a non-trivial default constructor, which prevents static initialization of the pair even when the types are statically initializable. Changing the definition to
pair() = default;
would enable such initialization. Unfortunately, the change is not semantically neutral in that the current definition effectively forces value initialization whereas the change would not value initialize in some contexts.
** Does the committee confirm that forced value initialization was the intent? If not, does the committee wish to change the behavior of std::pair in C++0x?
Second, the same default constructor issue applies to std::tuple. Furthermore, the tuple copy constructor is current non-trivial, which effectively prevents passing it in registers. To enable passing tuples in registers, the copy constructor should be make explicitly defaulted. The new declarations are:
tuple() = default; tuple(const tuple&) = default;
This changes is not implementation neutral. In particular, it prevents implementations based on pointers to the parameter types. It does however, permit implementations using the parameter types as bases.
** How does the committee wish to trade implementation efficiency versus implementation flexibility?
[ Bellevue: ]
General agreement; the first half of the issue is NAD.
Before voting on the second half, it was agreed that a "Strongly Favor" vote meant support for trivial tuples (assuming usual requirements met), even at the expense of other desired qualities. A "Weakly Favor" vote meant support only if not at the expense of other desired qualities.
Concensus: Go forward, but not at expense of other desired qualities.
It was agreed to Alisdair should fold this work in with his other pair/tuple action items, above, and that issue 801 should be "open", but tabled until Alisdair's proposals are disposed of.
[ 2009-05-27 Daniel adds: ]
This is partly solved by 1117.
[ 2009-07 Frankfurt: ]
Wait for dust to settle from fixing exception safety problem with rvalue refs.
[ 2009-07-20 Alisdair adds: ]
Basically, this issue is what should we do with the default constructor for pairs and tuples of trivial types. The motivation of the issue was to force static initialization rather than dynamic initialization, and was rejected in the case of pair as it would change the meaning of existing programs. The advice was "do the best we can" for tuple without changing existing meaning.
Frankfurt seems to simply wait and see the resolution on no-throw move constructors, which (I believe) is only tangentially related to this issue, but as good as any to defer until Santa Cruz.
Looking again now, I think constant (static) initialization for pair can be salvaged by making the default construct constexpr. I have a clarification from Core that this is intended to work, even if the constructor is not trivial/constexpr, so long as no temporaries are implied in the process (even if elided).
[ 2009-10 Santa Cruz: ]
Leave as open. Alisdair to provide wording.
[ 2010 Pittsburgh: ]
We believe this may be NAD Editorial since both pair and tuple now have constexpr default constructors, but we're not sure.
[ 2010 Rapperswil: ]
Daniel believes his pair/tuple paper will resolve this issue. constexpr will allow static initialization, and he is already changing the move and copy constructors to be defaulted.
[ 2010-10-24 Daniel adds: ]
The proposed resolution of n3140 should resolve this issue.
Proposed resolution:
See n3140.
Section: 26.5.7.1 [rand.util.seedseq] Status: Resolved Submitter: Charles Karney Opened: 2008-02-22 Last modified: 2015-04-08
View all other issues in [rand.util.seedseq].
View all issues with Resolved status.
Discussion:
seed_seq(InputIterator begin, InputIterator end); constructs a seed_seq object repacking the bits of supplied sequence [begin, end) into a 32-bit vector.
This repacking triggers several problems:
I propose simplifying this seed_seq constructor to be "32-bit only". Despite it's being simpler, there is NO loss of functionality (see below).
Here's how the description would read
26.5.7.1 [rand.util.seedseq] Class seed_seq
template<class InputIterator> seed_seq(InputIterator begin, InputIterator end);5 Requires: NO CHANGE
6 Effects: Constructs a seed_seq object by
for (InputIterator s = begin; s != end; ++s) v.push_back((*s) mod 232);
Discussion:
The chief virtues here are simplicity, portability, and generality.
Arguments (and counter-arguments) against making this change (and retaining the n2461 behavior) are:
The user can pass an array of unsigned char and seed_seq will nicely repack it.
Response: So what? Consider the seed string "ABC". The n2461 proposal results in
v = { 0x3, 0x434241 };
while the simplified proposal yields
v = { 0x41, 0x42, 0x43 };
The results produced by seed_seq::generate with the two inputs are different but nevertheless equivalently "mixed up" and this remains true even if the seed string is long.
With long strings (e.g., with bit-length comparable to the number of bits in the state), v is longer (by a factor of 4) with the simplified proposal and seed_seq::generate will be slower.
Response: It's unlikely that the efficiency of seed_seq::generate will be a big issue. If it is, the user is free to repack the seed vector before constructing seed_seq.
A user can pass an array of 64-bit integers and all the bits will be used.
Response: Indeed. However, there are many instances in the n2461 where integers are silently coerced to a narrower width and this should just be a case of the user needing to read the documentation. The user can of course get equivalent behavior by repacking his seed into 32-bit pieces. Furthermore, the unportability of the n2461 proposal with
unsigned long s[] = {1, 2, 3, 4}; seed_seq q(s, s+4);
which typically results in v = {1, 2, 3, 4} on 32-bit machines and in v = {1, 0, 2, 0, 3, 0, 4, 0} on 64-bit machines is a major pitfall for unsuspecting users.
Note: this proposal renders moot issues 782 and 800.
[ Bellevue: ]
Walter needs to ask Fermilab for guidance. Defer till tomorrow. Bill likes the proposed resolution.
[ Sophia Antipolis: ]
Marc Paterno wants portable behavior between 32bit and 64bit machines; we've gone to significant trouble to support portability of engines and their values.
Jens: the new algorithm looks perfectly portable
Marc Paterno to review off-line.
Modify the proposed resolution to read "Constructs a seed_seq object by the following algorithm ..."
Disposition: move to review; unanimous consent.
Proposed resolution:
Change 26.5.7.1 [rand.util.seedseq]:
template<class InputIterator, size_t u = numeric_limits<iterator_traits<InputIterator>::value_type>::digits> seed_seq(InputIterator begin, InputIterator end);-5- Requires: InputIterator shall satisfy the requirements of an input iterator (24.1.1) such that iterator_traits<InputIterator>::value_type shall denote an integral type.
-6- Constructs a seed_seq object by the following algorithm
rearranging some or all of the bits of the supplied sequence [begin,end) of w-bit quantities into 32-bit units, as if by the following:
First extract the rightmost u bits from each of the n = end - begin elements of the supplied sequence and concatenate all the extracted bits to initialize a single (possibly very large) unsigned binary number, b = ∑n-1i=0 (begin[i] mod 2u) · 2w·i (in which the bits of each begin[i] are treated as denoting an unsigned quantity). Then carry out the following algorithm:
v.clear(); if ($w$ < 32) v.push_back($n$); for( ; $n$ > 0; --$n$) v.push_back(b mod 232), b /= 232;for (InputIterator s = begin; s != end; ++s) v.push_back((*s) mod 232);
Rationale:
Addressed by N2836 "Wording Tweaks for Concept-enabled Random Number Generation in C++0X".
Section: 19.5 [syserr] Status: CD1 Submitter: Daniel Krügler Opened: 2008-02-24 Last modified: 2015-04-08
View all other issues in [syserr].
View all issues with CD1 status.
Discussion:
19.5.2.1 [syserr.errcode.overview]/1, class error_code and 19.5.3.1 [syserr.errcondition.overview]/, class error_condition synopses declare an expository data member cat_:
const error_category& cat_; // exposition only
which is used to define the semantics of several members. The decision to use a member of reference type lead to several problems:
The simple fix would be to replace the reference by a pointer member.
[ Sophia Antipolis: ]
Part A: NAD (editorial), cleared by the resolution of issue 832.
Part B: Technically correct, save for typo. Rendered moot by the concept proposal (N2620) NAD (editorial).
Part C: We agree; this is consistent with the resolution of issue 721.
Howard: please ping Beman, asking him to clear away parts A and B from the wording in the proposed resolution, so it is clear to the editor what needs to be applied to the working paper.
Beman provided updated wording. Since issue 832 is not going forward, the provided wording includes resolution of part A.
Proposed resolution:
Resolution of part A:
Change 19.5.2.1 [syserr.errcode.overview] Class error_code overview synopsis as indicated:
private: int val_; // exposition only const error_category&* cat_; // exposition onlyChange 19.5.2.2 [syserr.errcode.constructors] Class error_code constructors as indicated:
error_code();Effects: Constructs an object of type error_code.
Postconditions: val_ == 0 and cat_ == &system_category.
Throws: Nothing.
error_code(int val, const error_category& cat);Effects: Constructs an object of type error_code.
Postconditions: val_ == val and cat_ == &cat.
Throws: Nothing.
Change 19.5.2.3 [syserr.errcode.modifiers] Class error_code modifiers as indicated:
void assign(int val, const error_category& cat);Postconditions: val_ == val and cat_ == &cat.
Throws: Nothing.
Change 19.5.2.4 [syserr.errcode.observers] Class error_code observers as indicated:
const error_category& category() const;Returns: *cat_.
Throws: Nothing.
Change 19.5.3.1 [syserr.errcondition.overview] Class error_condition overview synopsis as indicated:
private: int val_; // exposition only const error_category&* cat_; // exposition onlyChange 19.5.3.2 [syserr.errcondition.constructors] Class error_condition constructors as indicated:
[ (If the proposed resolution of issue 805 has already been applied, the name posix_category will have been changed to generic_category. That has no effect on this resolution.) ]
error_condition();Effects: Constructs an object of type error_condition.
Postconditions: val_ == 0 and cat_ == &posix_category.
Throws: Nothing.
error_condition(int val, const error_category& cat);Effects: Constructs an object of type error_condition.
Postconditions: val_ == val and cat_ == &cat.
Throws: Nothing.
Change 19.5.3.3 [syserr.errcondition.modifiers] Class error_condition modifiers as indicated:
void assign(int val, const error_category& cat);Postconditions: val_ == val and cat_ == &cat.
Throws: Nothing.
Change 19.5.3.4 [syserr.errcondition.observers] Class error_condition observers as indicated:
const error_category& category() const;Returns: *cat_.
Throws: Nothing.
Resolution of part C:
In 19.5.1.2 [syserr.errcat.virtuals], remove the throws clause p. 10.
virtual string message(int ev) const = 0;Returns: A string that describes the error condition denoted by ev.
Throws: Nothing.In 19.5.2.4 [syserr.errcode.observers], remove the throws clause p. 8.
string message() const;Returns: category().message(value()).
Throws: Nothing.In 19.5.3.4 [syserr.errcondition.observers], remove the throws clause p. 6.
string message() const;Returns: category().message(value()).
Throws: Nothing.
Section: 19.5 [syserr] Status: CD1 Submitter: Jens Maurer Opened: 2008-02-24 Last modified: 2015-04-08
View all other issues in [syserr].
View all issues with CD1 status.
Discussion:
19.5 [syserr]
namespace posix_error { enum posix_errno { address_family_not_supported, // EAFNOSUPPORT ...
should rather use the new scoped-enum facility (7.2 [dcl.enum]), which would avoid the necessity for a new posix_error namespace, if I understand correctly.
[ Further discussion: ]
See N2347, Strongly Typed Enums, since renamed Scoped Enums.
Alberto Ganesh Barbati also raised this issue in private email, and also proposed the scoped-enum solution.
Nick Stoughton asked in Bellevue that posix_error and posix_errno not be used as names. The LWG agreed.
The wording for the Proposed resolution was provided by Beman Dawes.
Proposed resolution:
Change System error support 19.5 [syserr] as indicated:
namespace posix_error {enumposix_errnoclass errc { address_family_not_supported, // EAFNOSUPPORT ... wrong_protocol_type, // EPROTOTYPE };} // namespace posix_errortemplate <> struct is_error_condition_enum<posix_error::posix_errnoerrc> : public true_type {}namespace posix_error {error_code make_error_code(posix_errnoerrc e); error_condition make_error_condition(posix_errnoerrc e);} // namespace posix_error
Change System error support 19.5 [syserr] :
The is_error_code_enum and is_error_condition_enum templates may be specialized for user-defined types to indicate that such a type is eligible for class error_code and class error_condition automatic conversions, respectively.
Change System error support 19.5 [syserr] and its subsections:
- remove all occurrences of posix_error::
- change all instances of posix_errno to errc
- change all instances of posix_category to generic_category
- change all instances of get_posix_category to get_generic_category
Change Error category objects 19.5.1.5 [syserr.errcat.objects], paragraph 2:
Remarks: The object's default_error_condition and equivalent virtual functions shall behave as specified for the class error_category. The object's name virtual function shall return a pointer to the string
"POSIX""generic".
Change 19.5.2.5 [syserr.errcode.nonmembers] Class error_code non-member functions as indicated:
error_code make_error_code(posix_errnoerrc e);Returns: error_code(static_cast<int>(e),
posixgeneric_category).
Change 19.5.3.5 [syserr.errcondition.nonmembers] Class error_condition non-member functions as indicated:
error_condition make_error_condition(posix_errnoerrc e);Returns: error_condition(static_cast<int>(e),
posixgeneric_category).
Rationale:
Names Considered | |
---|---|
portable | Too non-specific. Did not wish to reserve such a common word in namespace std. Not quite the right meaning, either. |
portable_error | Too long. Explicit qualification is always required for scoped enums, so a short name is desirable. Not quite the right meaning, either. May be misleading because *_error in the std lib is usually an exception class name. |
std_error | Fairly short, yet explicit. But in fully qualified names like std::std_error::not_enough_memory, the std_ would be unfortunate. Not quite the right meaning, either. May be misleading because *_error in the std lib is usually an exception class name. |
generic | Short enough. The category could be generic_category. Fully qualified names like std::generic::not_enough_memory read well. Reserving in namespace std seems dicey. |
generic_error | Longish. The category could be generic_category. Fully qualified names like std::generic_error::not_enough_memory read well. Misleading because *_error in the std lib is usually an exception class name. |
generic_err | A bit less longish. The category could be generic_category. Fully qualified names like std::generic_err::not_enough_memory read well. |
gen_err | Shorter still. The category could be generic_category. Fully qualified names like std::gen_err::not_enough_memory read well. |
generr | Shorter still. The category could be generic_category. Fully qualified names like std::generr::not_enough_memory read well. |
error | Shorter still. The category could be generic_category. Fully qualified names like std::error::not_enough_memory read well. Do we want to use this general a name? |
err | Shorter still. The category could be generic_category. Fully qualified names like std::err::not_enough_memory read well. Although alone it looks odd as a name, given the existing errno and namespace std names, it seems fairly intuitive. Problem: err is used throughout the standard library as an argument name and in examples as a variable name; it seems too confusing to add yet another use of the name. |
errc | Short enough. The "c" stands for "constant". The category could be generic_category. Fully qualified names like std::errc::not_enough_memory read well. Although alone it looks odd as a name, given the existing errno and namespace std names, it seems fairly intuitive. There are no uses of errc in the current C++ standard. |
Section: 20.8.1.2.5 [unique.ptr.single.modifiers] Status: CD1 Submitter: Peter Dimov Opened: 2008-03-13 Last modified: 2015-04-08
View all other issues in [unique.ptr.single.modifiers].
View all issues with CD1 status.
Discussion:
void unique_ptr::reset(T* p = 0) is currently specified as:
Effects: If p == get() there are no effects. Otherwise get_deleter()(get()).
There are two problems with this. One, if get() == 0 and p != 0, the deleter is called with a NULL pointer, and this is probably not what's intended (the destructor avoids calling the deleter with 0.)
Two, the special check for get() == p is generally not needed and such a situation usually indicates an error in the client code, which is being masked. As a data point, boost::shared_ptr was changed to assert on such self-resets in 2001 and there were no complaints.
One might think that self-resets are necessary for operator= to work; it's specified to perform
reset( u.release() );
and the self-assignment
p = move(p);
might appear to result in a self-reset. But it doesn't; the release() is performed first, zeroing the stored pointer. In other words, p.reset( q.release() ) works even when p and q are the same unique_ptr, and there is no need to special-case p.reset( q.get() ) to work in a similar scenario, as it definitely doesn't when p and q are separate.
Proposed resolution:
Change 20.8.1.2.5 [unique.ptr.single.modifiers]:
void reset(T* p = 0);-4- Effects: If
p ==get() == 0 there are no effects. Otherwise get_deleter()(get()).
Change 20.8.1.3.4 [unique.ptr.runtime.modifiers]:
void reset(T* p = 0);...
-2- Effects: If
p ==get() == 0 there are no effects. Otherwise get_deleter()(get()).
Section: 20.4.2.1 [tuple.cnstr] Status: CD1 Submitter: Howard Hinnant Opened: 2008-03-13 Last modified: 2015-04-08
View other active issues in [tuple.cnstr].
View all other issues in [tuple.cnstr].
View all issues with CD1 status.
Discussion:
527 Added a throws clause to bind constructors. I believe the same throws clause should be added to tuple except it ought to take into account move constructors as well.
Proposed resolution:
Add to 20.4.2.1 [tuple.cnstr]:
For each tuple constructor and assignment operator, an exception is thrown only if the construction or assignment of one of the types in Types throws an exception.
Section: 20.2.4 [forward] Status: CD1 Submitter: Jens Maurer Opened: 2008-03-13 Last modified: 2015-04-08
View all other issues in [forward].
View all issues with CD1 status.
Discussion:
p4 (forward) says:
Return type: If T is an lvalue-reference type, an lvalue; otherwise, an rvalue.
First of all, lvalue-ness and rvalue-ness are properties of an expression, not of a type (see 3.10 [basic.lval]). Thus, the phrasing "Return type" is wrong. Second, the phrase says exactly what the core language wording says for folding references in 14.3.1 [temp.arg.type]/p4 and for function return values in 5.2.2 [expr.call]/p10. (If we feel the wording should be retained, it should at most be a note with cross-references to those sections.)
The prose after the example talks about "forwarding as an int& (an lvalue)" etc. In my opinion, this is a category error: "int&" is a type, "lvalue" is a property of an expression, orthogonal to its type. (Btw, expressions cannot have reference type, ever.)
Similar with move:
Return type: an rvalue.
is just wrong and also redundant.
Proposed resolution:
Change 20.2.4 [forward] as indicated:
template <class T> T&& forward(typename identity<T>::type&& t);...
Return type: If T is an lvalue-reference type, an lvalue; otherwise, an rvalue....
-7- In the first call to factory, A1 is deduced as int, so 2 is forwarded to A's constructor as
an int&& (an rvalue). In the second call to factory, A1 is deduced as int&, so i is forwarded to A's constructor asan int& (an lvalue). In both cases, A2 is deduced as double, so 1.414 is forwarded to A's constructor asdouble&& (an rvalue).template <class T> typename remove_reference<T>::type&& move(T&& t);...
Return type: an rvalue.
Section: 25.3.3 [alg.swap] Status: CD1 Submitter: Niels Dekker Opened: 2008-02-28 Last modified: 2015-04-08
View all other issues in [alg.swap].
View all issues with CD1 status.
Discussion:
For the sake of generic programming, the header <algorithm>
should provide an
overload of std::swap
for array types:
template<class T, size_t N> void swap(T (&a)[N], T (&b)[N]);
It became apparent to me that this overload is missing, when I considered how to write a swap
function for a generic wrapper class template.
(Actually I was thinking of Boost's value_initialized.)
Please look at the following template, W
, and suppose that is intended to be a very
generic wrapper:
template<class T> class W { public: T data; };
Clearly W<T>
is CopyConstructible and CopyAssignable, and therefore
Swappable, whenever T
is CopyConstructible and CopyAssignable.
Moreover, W<T>
is also Swappable when T
is an array type
whose element type is CopyConstructible and CopyAssignable.
Still it is recommended to add a custom swap function template to such a class template,
for the sake of efficiency and exception safety.
(E.g., Scott Meyers, Effective C++, Third Edition, item 25: Consider support for a non-throwing
swap.)
This function template is typically written as follows:
template<class T> void swap(W<T>& x, W<T>& y) { using std::swap; swap(x.data, y.data); }
Unfortunately, this will introduce an undesirable inconsistency, when T
is an array.
For instance, W<std::string[8]>
is Swappable, but the current Standard does not
allow calling the custom swap function that was especially written for W
!
W<std::string[8]> w1, w2; // Two objects of a Swappable type. std::swap(w1, w2); // Well-defined, but inefficient. using std::swap; swap(w1, w2); // Ill-formed, just because ADL finds W's swap function!!!
W
's swap
function would try to call std::swap
for an array,
std::string[8]
, which is not supported by the Standard Library.
This issue is easily solved by providing an overload of std::swap
for array types.
This swap function should be implemented in terms of swapping the elements of the arrays, so that
it would be non-throwing for arrays whose element types have a non-throwing swap.
Note that such an overload of std::swap
should also support multi-dimensional
arrays. Fortunately that isn't really an issue, because it would do so automatically, by
means of recursion.
For your information, there was a discussion on this issue at comp.lang.c++.moderated: [Standard Library] Shouldn't std::swap be overloaded for C-style arrays?
Proposed resolution:
Add an extra condition to the definition of Swappable requirements [swappable] in 17.6.3.1 [utility.arg.requirements]:
- T is Swappable if T is an array type whose element type is Swappable.
Add the following to 25.3.3 [alg.swap]:
template<class T, size_t N> void swap(T (&a)[N], T (&b)[N]);Requires: Type
T
shall be Swappable.Effects:
swap_ranges(a, a + N, b);
Section: 27.7.5 [ext.manip] Status: C++11 Submitter: Daniel Krügler Opened: 2008-03-01 Last modified: 2015-04-08
View all other issues in [ext.manip].
View all issues with C++11 status.
Discussion:
The recent draft (as well as the original proposal n2072) uses an operational semantic for get_money ([ext.manip]/4) and put_money ([ext.manip]/6), which uses
istreambuf_iterator<charT>
and
ostreambuf_iterator<charT>
resp, instead of the iterator instances, with explicitly provided traits argument (The operational semantic defined by f is also traits dependent). This is an obvious oversight because both *stream_buf c'tors expect a basic_streambuf<charT,traits> as argument.
The same problem occurs within the get_time and put_time semantic where additional to the problem we have an editorial issue in get_time (streambuf_iterator instead of istreambuf_iterator).
[ Batavia (2009-05): ]
This appears to be an issue of presentation.
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
In 27.7.5 [ext.manip]/4 within function f replace the first line
template <class charT, class traits, class moneyT> void f(basic_ios<charT, traits>& str, moneyT& mon, bool intl) { typedef istreambuf_iterator<charT, traits> Iter; ...
In 27.7.5 [ext.manip]/5 remove the first template charT parameter:
template <class charT,class moneyT> unspecified put_money(const moneyT& mon, bool intl = false);
In 27.7.5 [ext.manip]/6 within function f replace the first line
template <class charT, class traits, class moneyT> void f(basic_ios<charT, traits>& str, const moneyT& mon, bool intl) { typedef ostreambuf_iterator<charT, traits> Iter; ...
In 27.7.5 [ext.manip]/8 within function f replace the first line
template <class charT, class traits> void f(basic_ios<charT, traits>& str, struct tm *tmb, const charT *fmt) { typedef istreambuf_iterator<charT, traits> Iter; ...
In 27.7.5 [ext.manip]/10 within function f replace the first line
template <class charT, class traits> void f(basic_ios<charT, traits>& str, const struct tm *tmb, const charT *fmt) { typedef ostreambuf_iterator<charT, traits> Iter; ...
In 27.7 [iostream.format], Header <iomanip> synopsis change:
template <class charT,class moneyT> T8 put_money(const moneyT& mon, bool intl = false);
Section: 20.3 [pairs] Status: C++11 Submitter: Doug Gregor Opened: 2008-03-14 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with C++11 status.
Discussion:
#include <utility> int main() { std::pair<char *, char *> p (0,0); }
I just got a bug report about that, because it's valid C++03, but not C++0x. The important realization, for me, is that the emplace proposal---which made push_back variadic, causing the push_back(0) issue---didn't cause this break in backward compatibility. The break actually happened when we added this pair constructor as part of adding rvalue references into the language, long before variadic templates or emplace came along:
template<class U, class V> pair(U&& x, V&& y);
Now, concepts will address this issue by constraining that pair constructor to only U's and V's that can properly construct "first" and "second", e.g. (from N2322):
template<class U , class V > requires Constructible<T1, U&&> && Constructible<T2, V&&> pair(U&& x , V&& y );
[ San Francisco: ]
Suggested to resolve using pass-by-value for that case.
Side question: Should pair interoperate with tuples? Can construct a tuple of a pair, but not a pair from a two-element tuple.
Related to 885.
[ 2009-07-28 Reopened by Alisdair. No longer solved by concepts. ]
[ 2009-10 Santa Cruz: ]
Leave as open. Howard to provide wording.
[ 2010-02-06 Howard provided wording. ]
[ 2010-02-09 Moved to Tentatively Ready after 6 positive votes on c++std-lib. ]
Rationale:
[ San Francisco: ]
Solved by N2770.
[ The rationale is obsolete. ]
Proposed resolution:
Add a paragraph to 20.3 [pairs]:
template<class U, class V> pair(U&& x, V&& y);6 Effects: The constructor initializes first with std::forward<U>(x) and second with std::forward<V>(y).
Remarks: U shall be implicitly convertible to first_type and V shall be implicitly convertible to second_type, else this constructor shall not participate in overload resolution.
Section: 20.8.2.2 [util.smartptr.shared] Status: CD1 Submitter: Matt Austern Opened: 2008-02-26 Last modified: 2015-04-08
View other active issues in [util.smartptr.shared].
View all other issues in [util.smartptr.shared].
View all issues with CD1 status.
Discussion:
Several places in 20.8.2.2 [util.smartptr.shared] refer to an "empty" shared_ptr. However, that term is nowhere defined. The closest thing we have to a definition is that the default constructor creates an empty shared_ptr and that a copy of a default-constructed shared_ptr is empty. Are any other shared_ptrs empty? For example, is shared_ptr((T*) 0) empty? What are the properties of an empty shared_ptr? We should either clarify this term or stop using it.
One reason it's not good enough to leave this term up to the reader's intuition is that, in light of N2351 and issue 711, most readers' intuitive understanding is likely to be wrong. Intuitively one might expect that an empty shared_ptr is one that doesn't store a pointer, but, whatever the definition is, that isn't it.
[ Peter adds: ]
Or, what is an "empty" shared_ptr?
Are any other shared_ptrs empty?
Yes. Whether a given shared_ptr instance is empty or not is (*) completely specified by the last mutating operation on that instance. Give me an example and I'll tell you whether the shared_ptr is empty or not.
(*) If it isn't, this is a legitimate defect.
For example, is shared_ptr((T*) 0) empty?
No. If it were empty, it would have a use_count() of 0, whereas it is specified to have an use_count() of 1.
What are the properties of an empty shared_ptr?
The properties of an empty shared_ptr can be derived from the specification. One example is that its destructor is a no-op. Another is that its use_count() returns 0. I can enumerate the full list if you really like.
We should either clarify this term or stop using it.
I don't agree with the imperative tone
A clarification would be either a no-op - if it doesn't contradict the existing wording - or a big mistake if it does.
I agree that a clarification that is formally a no-op may add value.
However, that term is nowhere defined.
Terms can be useful without a definition. Consider the following simplistic example. We have a type X with the following operations defined:
X x; X x2(x); X f(X x); X g(X x1, X x2);A default-constructed value is green.
A copy has the same color as the original.
f(x) returns a red value if the argument is green, a green value otherwise.
g(x1,x2) returns a green value if the arguments are of the same color, a red value otherwise.Given these definitions, you can determine the color of every instance of type X, even if you have absolutely no idea what green and red mean.
Green and red are "nowhere defined" and completely defined at the same time.
Alisdair's wording is fine.
Proposed resolution:
Append the following sentance to 20.8.2.2 [util.smartptr.shared]
The
shared_ptr
class template stores a pointer, usually obtained vianew
.shared_ptr
implements semantics of shared ownership; the last remaining owner of the pointer is responsible for destroying the object, or otherwise releasing the resources associated with the stored pointer. Ashared_ptr
object that does not own a pointer is said to be empty.
Section: 23.3.7 [vector.bool] Status: C++11 Submitter: Alisdair Meredith Opened: 2008-03-17 Last modified: 2015-04-08
View all other issues in [vector.bool].
View all issues with C++11 status.
Discussion:
vector<bool>::swap(reference, reference) has no definition.
[ San Francisco: ]
Move to Open. Alisdair to provide a resolution.
[ Post Summit Daniel provided wording. ]
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Just after 23.3.7 [vector.bool]/5 add the following prototype and description:
static void swap(reference x, reference y);
-6- Effects: Exchanges the contents of x and y as-if by:
bool b = x; x = y; y = b;
Section: 20.9.12.2.4 [func.wrap.func.inv] Status: Resolved Submitter: Alisdair Meredith Opened: 2008-03-16 Last modified: 2015-04-08
View all other issues in [func.wrap.func.inv].
View all issues with Resolved status.
Discussion:
std::function and reference_closure should use "perfect forwarding" as described in the rvalue core proposal.
[ Sophia Antipolis: ]
According to Doug Gregor, as far as std::function is concerned, perfect forwarding can not be obtained because of type erasure. Not everyone agreed with this diagnosis of forwarding.
[ 2009-05-01 Howard adds: ]
Sebastian Gesemann brought to my attention that the CopyConstructible requirement on function's ArgTypes... is an unnecessary restriction.
template<Returnable R, CopyConstructible... ArgTypes> class function<R(ArgTypes...)> ...On further investigation, this complaint seemed to be the same issue as this one. I believe the reason CopyConstructible was put on ArgTypes in the first place was because of the nature of the invoke member:
template<class R, class ...ArgTypes> R function<R(ArgTypes...)>::operator()(ArgTypes... arg) const { if (f_ == 0) throw bad_function_call(); return (*f_)(arg...); }However now with rvalue-refs, "by value" no longer implies CopyConstructible (as Sebastian correctly points out). If rvalue arguments are supplied, MoveConstructible is sufficient. Furthermore, the constraint need not be applied in function if I understand correctly. Rather the client must apply the proper constraints at the call site. Therefore, at the very least, I recommend that CopyConstructible be removed from the template class function.
Furthermore we need to mandate that the invoker is coded as:
template<class R, class ...ArgTypes> R function<R(ArgTypes...)>::operator()(ArgTypes... arg) const { if (f_ == 0) throw bad_function_call(); return (*f_)(std::forward<ArgTypes>(arg)...); }Note that ArgTypes&& (the "perfect forwarding signature") is not appropriate here as this is not a deduced context for ArgTypes. Instead the client's arguments must implicitly convert to the non-deduced ArgType type. Catching these arguments by value makes sense to enable decay.
Next forward is used to move the ArgTypes as efficiently as possible, and also with minimum requirements (not CopyConstructible) to the type-erased functor. For object types, this will be a move. For reference type ArgTypes, this will be a copy. The end result must be that the following is a valid program:
#include <functional> #include <memory> #include <cassert> std::unique_ptr<int> f(std::unique_ptr<int> p, int& i) { ++i; return std::move(p); } int main() { int i = 2; std::function<std::unique_ptr<int>(std::unique_ptr<int>, int&> g(f); std::unique_ptr<int> p = g(std::unique_ptr<int>(new int(1)), i); assert(*p == 1); assert(i == 3); }[ Tested in pre-concepts rvalue-ref-enabled compiler. ]
In the example above, the first ArgType is unique_ptr<int> and the second ArgType is int&. Both must work!
[ 2009-05-27 Daniel adds: ]
in the 2009-05-01 comment of above mentioned issue Howard
- Recommends to replace the CopyConstructible requirement by a MoveConstructible requirement
- Says: "Furthermore, the constraint need not be applied in function if I understand correctly. Rather the client must apply the proper constraints at the call site"
I'm fine with (a), but I think comment (b) is incorrect, at least in the sense I read these sentences. Let's look at Howard's example code:
function<R(ArgTypes...)>::operator()(ArgTypes... arg) const { if (f_ == 0) throw bad_function_call(); return (*f_)(std::forward<ArgTypes>(arg)...); }In the constrained scope of this operator() overload the expression "(*f_)(std::forward<ArgTypes>(arg)...)" must be valid. How can it do so, if ArgTypes aren't at least MoveConstructible?
[ 2009-07 Frankfurt: ]
Leave this open and wait until concepts are removed from the Working Draft so that we know how to write the proposed resolution in terms of diffs to otherwise stable text.
[ 2009-10 Santa Cruz: ]
Leave as open. Howard to provide wording. Howard welcomes any help.
[ 2009-12-12 Jonathan Wakely adds: ]
20.9.12.2 [func.wrap.func] says
2 A function object f of type F is Callable for argument types T1, T2, ..., TN in ArgTypes and a return type R, if, given lvalues t1, t2, ..., tN of types T1, T2, ..., TN, respectively, INVOKE (f, t1, t2, ..., tN) is well formed (20.7.2) and, if R is not void, convertible to R.
N.B. lvalues, which means you can't use function<R(T&&)> or function<R(unique_ptr<T>)>
I recently implemented rvalue arguments in GCC's std::function, all that was needed was to use std::forward<ArgTypes> in a few places. The example in issue 815 works.
I think 815 could be resolved by removing the requirement that the target function be callable with lvalues. Saying ArgTypes need to be CopyConstructible is wrong, and IMHO saying MoveConstructible is unnecessary, since the by-value signature implies that already, but if it is needed it should only be on operator(), not the whole class (you could in theory instantiate std::function<R(noncopyable)> as long as you don't invoke the call operator.)
I think defining invocation in terms of INVOKE already implies perfect forwarding, so we don't need to say explicitly that std::forward should be used (N.B. the types that are forwarded are those in ArgTypes, which can differ from the actual parameter types of the target function. The actual parameter types have gone via type erasure, but that's not a problem - IMHO forwarding the arguments as ArgTypes is the right thing to do anyway.)
Is it sufficient to simply replace "lvalues" with "values"? or do we need to say something like "lvalues when Ti is an lvalue-reference and rvalues otherwise"? I prefer the former, so I propose the following resolution for 815:
Edit 20.9.12.2 [func.wrap.func] paragraph 2:
2 A function object f of type F is Callable for argument types T1, T2, ..., TN in ArgTypes and a return type R, if, given
lvalues t1, t2, ..., tN of types T1, T2, ..., TN, respectively, INVOKE (f, t1, t2, ..., tN) is well formed (20.7.2) and, if R is not void, convertible to R.
[ 2009-12-12 Daniel adds: ]
I don't like the reduction to "values" and prefer the alternative solution suggested using "lvalues when Ti is an lvalue-reference and rvalues otherwise". The reason why I dislike the shorter version is based on different usages of "values" as part of defining the semantics of requirement tables via expressions. E.g. 17.6.3.1 [utility.arg.requirements]/1 says "a, b, and c are values of type const T;" or similar in 23.2.1 [container.requirements.general]/4 or /14 etc. My current reading of all these parts is that both rvalues and lvalues are required to be supported, but this interpretation would violate the intention of the suggested fix of #815, if I correctly understand Jonathan's rationale.
[ 2009-12-12 Howard adds: ]
"lvalues when Ti is an lvalue-reference and rvalues otherwise"
doesn't quite work here because the Ti aren't deduced. They are specified by the function type. Ti might be const int& (an lvalue reference) and a valid ti might be 2 (a non-const rvalue). I've taken another stab at the wording using "expressions" and "bindable to".
[ 2010-02-09 Wording updated by Jonathan, Ganesh and Daniel. ]
[ 2010-02-09 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-02-10 Daniel opens to improve wording. ]
[ 2010-02-11 This issue is now addressed by 870. ]
[ 2010-02-12 Moved to Tentatively NAD Editorial after 5 positive votes on c++std-lib. Rationale added below. ]
Rationale:
Addressed by 870.
Proposed resolution:
Edit 20.9.12.2 [func.wrap.func] paragraph 2:
2 A function object f of type F is Callable for argument types
T1, T2, ..., TN inArgTypes andareturn type R,if, given lvalues t1, t2, ..., tN of types T1, T2, ..., TN, respectively,the expression INVOKE(f, declval<ArgTypes>()..., Rt1, t2, ..., tN), considered as an unevaluated operand (5 [expr]), is well formed (20.7.2)and, if R is not void, convertible to R.
Section: 20.9.10.3 [func.bind.bind] Status: Resolved Submitter: Stephan T. Lavavej Opened: 2008-02-08 Last modified: 2015-04-08
View all other issues in [func.bind.bind].
View all issues with Resolved status.
Discussion:
Library Issue 527 notes that bind(f, t1, ..., tN) should be nofail when f, t1, ..., tN have nofail copy ctors.
However, no guarantees are provided for the copy ctor of the functor returned by bind(). (It's guaranteed to have a copy ctor, which can throw implementation-defined exceptions: bind() returns a forwarding call wrapper, TR1 3.6.3/2. A forwarding call wrapper is a call wrapper, TR1 3.3/4. Every call wrapper shall be CopyConstructible, TR1 3.3/4. Everything without an exception-specification may throw implementation-defined exceptions unless otherwise specified, C++03 17.4.4.8/3.)
Should the nofail guarantee requested by Library Issue 527 be extended to cover both calling bind() and copying the returned functor?
[ Howard adds: ]
tuple construction should probably have a similar guarantee.
[ San Francisco: ]
Howard to provide wording.
[ Post Summit, Anthony provided wording. ]
[ Batavia (2009-05): ]
Part of all of this issue appears to be rendered moot by the proposed resolution to issue 817 (q.v.). We recommend the issues be considered simultaneously (or possibly even merged) to ensure there is no overlap. Move to Open, and likewise for issue 817.
[ 2009-07 Frankfurt: ]
Related to 817 (see below). Leave Open.
[ 2009-10 Santa Cruz: ]
Move to Ready. Decoupling from issue 817.
[ 2010-02-11 Moved from Ready to Tentatively NAD Editorial, rationale added below. ]
Rationale:
This issue is solved as proposed by 817.
Proposed resolution:
Add a new sentence to the end of paragraphs 2 and 4 of 20.9.10.3 [func.bind.bind]:
-2- Returns: A forwarding call wrapper g with a weak result type (20.6.2). The effect of g(u1, u2, ..., uM) shall be INVOKE(f, v1, v2, ..., vN, Callable<F cv,V1, V2, ..., VN>::result_type), where cv represents the cv-qualifiers of g and the values and types of the bound arguments v1, v2, ..., vN are determined as specified below. The copy constructor and move constructor of the forwarding call wrapper shall throw an exception if and only if the corresponding constructor of F or any of the types in BoundArgs... throw an exception.
...
-5- Returns: A forwarding call wrapper g with a nested type result_type defined as a synonym for R. The effect of g(u1, u2, ..., uM) shall be INVOKE(f, v1, v2, ..., vN, R), where the values and types of the bound arguments v1, v2, ..., vN are determined as specified below. The copy constructor and move constructor of the forwarding call wrapper shall throw an exception if and only if the corresponding constructor of F or any of the types in BoundArgs... throw an exception.
Section: 20.9.10.3 [func.bind.bind] Status: C++11 Submitter: Howard Hinnant Opened: 2008-03-17 Last modified: 2015-04-08
View all other issues in [func.bind.bind].
View all issues with C++11 status.
Discussion:
Addresses US 72, JP 38 and DE 21
The functor returned by bind() should have a move constructor that requires only move construction of its contained functor and bound arguments. That way move-only functors can be passed to objects such as thread.
This issue is related to issue 816.
US 72:
bind should support move-only functors and bound arguments.
JP 38:
add the move requirement for bind's return type.
For example, assume following th1 and th2,
void f(vector<int> v) { } vector<int> v{ ... }; thread th1([v]{ f(v); }); thread th2(bind(f, v));When function object are set to thread, v is moved to th1's lambda expression in a Move Constructor of lambda expression because th1's lambda expression has a Move Constructor. But bind of th2's return type doesn't have the requirement of Move, so it may not moved but copied.
Add the requirement of move to get rid of this useless copy.
And also, add the MoveConstructible as well as CopyConstructible.
DE 21
The specification for bind claims twice that "the values and types for the bound arguments v1, v2, ..., vN are determined as specified below". No such specification appears to exist.
[ San Francisco: ]
Howard to provide wording.
[ Post Summit Alisdair and Howard provided wording. ]
Several issues are being combined in this resolution. They are all touching the same words so this is an attempt to keep one issue from stepping on another, and a place to see the complete solution in one place.
- bind needs to be "moved".
- 20.9.10.3 [func.bind.bind]/p3, p6 and p7 were accidently removed from N2798.
- Issue 929 argues for a way to pass by && for efficiency but retain the decaying behavior of pass by value for the thread constructor. That same solution is applicable here.
[ Batavia (2009-05): ]
We were going to recommend moving this issue to Tentatively Ready until we noticed potential overlap with issue 816 (q.v.).
Move to Open, and recommend both issues be considered together (and possibly merged).
[ 2009-07 Frankfurt: ]
The proposed resolution uses concepts. Leave Open.
[ 2009-10 Santa Cruz: ]
Leave as Open. Howard to provide deconceptified wording.
[ 2009-11-07 Howard updates wording. ]
[ 2009-11-15 Further updates by Peter, Chris and Daniel. ]
[ Moved to Tentatively Ready after 6 positive votes on c++std-lib. ]
Proposed resolution:
Change 20.9 [function.objects] p2:
template<class Fn, class...TypesBoundArgs> unspecified bind(Fn&&,TypesBoundArgs&&...); template<class R, class Fn, class...TypesBoundArgs> unspecified bind(Fn&&,TypesBoundArgs&&...);
Change 20.9.2 [func.require]:
4 Every call wrapper (20.9.1 [func.def]) shall be
CopyMoveConstructible. A simple call wrapper is a call wrapper that is CopyConstructible and CopyAssignable and whose copy constructor, move constructor and assignment operator do not throw exceptions. A forwarding call wrapper is a call wrapper that can be called with an argument list. [Note: in a typical implementation forwarding call wrappers have an overloaded function call operator of the formtemplate<class...ArgTypesUnBoundsArgs> R operator()(ArgTypesUnBoundsArgs&&... unbound_args) cv-qual;— end note]
Change 20.9.10.3 [func.bind.bind]:
Within this clause:
- Let FD be a synonym for the type decay<F>::type.
- Let fd be an lvalue of type FD constructed from std::forward<F>(f).
- Let Ti be a synonym for the ith type in the template parameter pack BoundArgs.
- Let TiD be a synonym for the type decay<Ti>::type.
- Let ti be the ith argument in the function parameter pack bound_args.
- Let tid be an lvalue of type TiD constructed from std::forward<Ti>(ti).
- Let Uj be the jth deduced type of the UnBoundArgs&&... parameter of the operator() of the forwarding call wrapper.
- Let uj be the jth argument associated with Uj.
template<class F, class... BoundArgs> unspecified bind(F&& f, BoundArgs&&... bound_args);-1- Requires: is_constructible<FD, F>::value shall be true. For each Ti in BoundArgs, is_constructible<TiD, Ti>::value shall be true.
F and each Ti in BoundArgs shall be CopyConstructible.INVOKE(fd, w1, w2, ..., wN) (20.9.2 [func.require]) shall be a valid expression for some values w1, w2, ..., wN, where N == sizeof...(bound_args).-2- Returns: A forwarding call wrapper g with a weak result type (20.9.2 [func.require]). The effect of g(u1, u2, ..., uM) shall be INVOKE(fd, v1, v2, ..., vN, result_of<FD cv (V1, V2, ..., VN)>::type), where cv represents the cv-qualifiers of g and the values and types of the bound arguments v1, v2, ..., vN are determined as specified below. The copy constructor and move constructor of the forwarding call wrapper shall throw an exception if and only if the corresponding constructor of FD or of any of the types TiD throws an exception.
-3- Throws: Nothing unless the
copyconstructionorofFfd or of one of the values tidtypes in the BoundArgs... pack expansionthrows an exception.Remarks: The unspecified return type shall satisfy the requirements of MoveConstructible. If all of FD and TiD satisfy the requirements of CopyConstructible then the unspecified return type shall satisfy the requirements of CopyConstructible. [Note: This implies that all of FD and TiD shall be MoveConstructible — end note]
template<class R, class F, class... BoundArgs> unspecified bind(F&& f, BoundArgs&&... bound_args);-4- Requires: is_constructible<FD, F>::value shall be true. For each Ti in BoundArgs, is_constructible<TiD, Ti>::value shall be true.
F and each Ti in BoundArgs shall be CopyConstructible.INVOKE(fd, w1, w2, ..., wN) shall be a valid expression for some values w1, w2, ..., wN, where N == sizeof...(bound_args).-5- Returns: A forwarding call wrapper g with a nested type result_type defined as a synonym for R. The effect of g(u1, u2, ..., uM) shall be INVOKE(fd, v1, v2, ..., vN, R), where the values and types of the bound arguments v1, v2, ..., vN are determined as specified below. The copy constructor and move constructor of the forwarding call wrapper shall throw an exception if and only if the corresponding constructor of FD or of any of the types TiD throws an exception.
-6- Throws: Nothing unless the
copyconstructionorofFfd or of one of the values tidtypes in the BoundArgs... pack expansionthrows an exception.Remarks: The unspecified return type shall satisfy the requirements of MoveConstructible. If all of FD and TiD satisfy the requirements of CopyConstructible then the unspecified return type shall satisfy the requirements of CopyConstructible. [Note: This implies that all of FD and TiD shall be MoveConstructible — end note]
-7- The values of the bound arguments v1, v2, ..., vN and their corresponding types V1, V2, ..., VN depend on the types TiD derived from
of the corresponding argument ti in bound_args of type Ti in BoundArgs inthe call to bind and the cv-qualifiers cv of the call wrapper g as follows:
- if
tiTiD isof typereference_wrapper<T> the argument is tid.get() and its type Vi is T&;- if the value of
std::is_bind_expression<TiD>::value is true the argument is tid(std::forward<Uj>(uj)...u1, u2, ..., uM) and its type Vi is result_of<TiD cv (Uj...U1&, U2&, ..., UM&)>::type;- if the value j of
std::is_placeholder<TiD>::value is not zero the argument is std::forward<Uj>(uj) and its type Vi is Uj&&;- otherwise the value is tid and its type Vi is TiD cv &.
Section: 29.3 [atomics.order] Status: CD1 Submitter: Jens Maurer Opened: 2008-03-22 Last modified: 2015-04-08
View other active issues in [atomics.order].
View all other issues in [atomics.order].
View all issues with CD1 status.
Discussion:
29.3 [atomics.order] p1 says in the table that
Element Meaning memory_order_acq_rel the operation has both acquire and release semantics
To my naked eye, that seems to imply that even an atomic read has both acquire and release semantics.
Then, p1 says in the table:
Element Meaning memory_order_seq_cst the operation has both acquire and release semantics, and, in addition, has sequentially-consistent operation ordering
So that seems to be "the same thing" as memory_order_acq_rel, with additional constraints.
I'm then reading p2, where it says:
The memory_order_seq_cst operations that load a value are acquire operations on the affected locations. The memory_order_seq_cst operations that store a value are release operations on the affected locations.
That seems to imply that atomic reads only have acquire semantics. If that is intended, does this also apply to memory_order_acq_rel and the individual load/store operations as well?
Also, the table in p1 contains phrases with "thus" that seem to indicate consequences of normative wording in 1.10 [intro.multithread]. That shouldn't be in normative text, for the fear of redundant or inconsistent specification with the other normative text.
Double-check 29.6 [atomics.types.operations] that each operation clearly says whether it's a load or a store operation, or both. (It could be clearer, IMO. Solution not in current proposed resolution.)
29.3 [atomics.order] p2: What's a "consistent execution"? It's not defined in 1.10 [intro.multithread], it's just used in notes there.
And why does 29.6 [atomics.types.operations] p9 for "load" say:
Requires: The order argument shall not be memory_order_acquire nor memory_order_acq_rel.
(Since this is exactly the same restriction as for "store", it seems to be a typo.)
And then: 29.6 [atomics.types.operations] p12:
These operations are read-modify-write operations in the sense of the "synchronizes with" definition (1.10 [intro.multithread]), so both such an operation and the evaluation that produced the input value synchronize with any evaluation that reads the updated value.
This is redundant with 1.10 [intro.multithread], see above for the reasoning.
[ San Francisco: ]
Boehm: "I don't think that this changes anything terribly substantive, but it improves the text."
Note that "Rephrase the table in as [sic] follows..." should read "Replace the table in [atomics.order] with the following...."
The proposed resolution needs more work. Crowl volunteered to address all of the atomics issues in one paper.
This issue is addressed in N2783.
Proposed resolution:
edit 29.3 [atomics.order], paragraph 1 as follows.
The enumeration
memory_order
specifies the detailed regular (non-atomic) memory synchronization order as defined inClause 1.7section 1.10 and may provide for operation ordering. Its enumerated values and their meanings are as follows:
- For
memory_order_relaxed
,- no operation orders memory.
- For
memory_order_release
,memory_order_acq_rel
, andmemory_order_seq_cst
,- a store operation performs a release operation on the affected memory location.
- For
memory_order_consume
,- a load operation performs a consume operation on the affected memory location.
- For
memory_order_acquire
,memory_order_acq_rel
, andmemory_order_seq_cst
,- a load operation performs an acquire operation on the affected memory location.
remove table 136 in 29.3 [atomics.order].
Table 136 — memory_order effectsElementMeaningmemory_order_relaxed
the operation does not order memorymemory_order_release
the operation performs a release operation on the affected memory location, thus making regular memory writes visible to other threads through the atomic variable to which it is appliedmemory_order_acquire
the operation performs an acquire operation on the affected memory location, thus making regular memory writes in other threads released through the atomic variable to which it is applied visible to the current threadmemory_order_consume
the operation performs a consume operation on the affected memory location, thus making regular memory writes in other threads released through the atomic variable to which it is applied visible to the regular memory reads that are dependencies of this consume operation.memory_order_acq_rel
the operation has both acquire and release semanticsmemory_order_seq_cst
the operation has both acquire and release semantics, and, in addition, has sequentially-consistent operation ordering
edit 29.3 [atomics.order], paragraph 2 as follows.
TheTherememory_order_seq_cst
operations that load a value are acquire operations on the affected locations. Thememory_order_seq_cst
operations that store a value are release operations on the affected locations. In addition, in a consistent execution, theremust beis a single total order S on allmemory_order_seq_cst
operations, consistent with the happens before order and modification orders for all affected locations, such that eachmemory_order_seq_cst
operation observes either the last preceding modification according to this order S, or the result of an operation that is notmemory_order_seq_cst
. [Note: Although it is not explicitly required that S include locks, it can always be extended to an order that does include lock and unlock operations, since the ordering between those is already included in the happens before ordering. —end note]
Section: 18.8.6 [except.nested] Status: C++11 Submitter: Alisdair Meredith Opened: 2008-03-25 Last modified: 2015-04-08
View other active issues in [except.nested].
View all other issues in [except.nested].
View all issues with C++11 status.
Discussion:
Looking at the wording I submitted for rethrow_if_nested, I don't think I got it quite right.
The current wording says:
template <class E> void rethrow_if_nested(const E& e);Effects: Calls e.rethrow_nested() only if e is publicly derived from nested_exception.
This is trying to be a bit subtle, by requiring e (not E) to be publicly derived from nested_exception the idea is that a dynamic_cast would be required to be sure. Unfortunately, if e is dynamically but not statically derived from nested_exception, e.rethrow_nested() is ill-formed.
[ San Francisco: ]
Alisdair was volunteered to provide wording.
[ 2009-10 Santa Cruz: ]
Leave as Open. Alisdair to provide wording.
[ 2009-11-09 Alisdair provided wording. ]
[ 2010-03-10 Dietmar updated wording. ]
[ 2010 Pittsburgh: ]
Moved to Ready for Pittsburgh.
Proposed resolution:
Change 18.8.6 [except.nested], p8:
template <class E> void rethrow_if_nested(const E& e);-8- Effects:
Calls e.rethrow_nested() oOnly if the dynamic type of e is publicly and unambiguously derived from nested_exception this calls dynamic_cast<const nested_exception&>(e).rethrow_nested().
Section: 18.8.5 [propagation] Status: CD1 Submitter: Stephan T. Lavavej Opened: 2008-03-26 Last modified: 2015-04-08
View all other issues in [propagation].
View all issues with CD1 status.
Discussion:
As of N2521, the Working Paper appears to be silent about what current_exception() should do if it tries to copy the currently handled exception and its copy constructor throws. 18.8.5 [propagation]/7 says "If the function needs to allocate memory and the attempt fails, it returns an exception_ptr object that refers to an instance of bad_alloc.", but doesn't say anything about what should happen if memory allocation succeeds but the actual copying fails.
I see three alternatives: (1) return an exception_ptr object that refers to an instance of some fixed exception type, (2) return an exception_ptr object that refers to an instance of the copy ctor's thrown exception (but if that has a throwing copy ctor, an infinite loop can occur), or (3) call terminate().
I believe that terminate() is the most reasonable course of action, but before we go implement that, I wanted to raise this issue.
[ Peter's summary: ]
The current practice is to not have throwing copy constructors in exception classes, because this can lead to terminate() as described in 15.5.1 [except.terminate]. Thus calling terminate() in this situation seems consistent and does not introduce any new problems.
However, the resolution of core issue 475 may relax this requirement:
The CWG agreed with the position that std::uncaught_exception() should return false during the copy to the exception object and that std::terminate() should not be called if that constructor exits with an exception.
Since throwing copy constructors will no longer call terminate(), option (3) doesn't seem reasonable as it is deemed too drastic a response in a recoverable situation.
Option (2) cannot be adopted by itself, because a potential infinite recursion will need to be terminated by one of the other options.
Proposed resolution:
Add the following paragraph after 18.8.5 [propagation]/7:
Returns (continued): If the attempt to copy the current exception object throws an exception, the function returns an exception_ptr that refers to the thrown exception or, if this is not possible, to an instance of bad_exception.
[Note: The copy constructor of the thrown exception may also fail, so the implementation is allowed to substitute a bad_exception to avoid infinite recursion. -- end note.]
Rationale:
[ San Francisco: ]
Pete: there may be an implied assumption in the proposed wording that current_exception() copies the existing exception object; the implementation may not actually do that.
Pete will make the required editorial tweaks to rectify this.
Section: 20.8.1.3.4 [unique.ptr.runtime.modifiers] Status: C++11 Submitter: Alisdair Meredith Opened: 2008-03-30 Last modified: 2015-04-08
View all other issues in [unique.ptr.runtime.modifiers].
View all issues with C++11 status.
Discussion:
Reading resolution of LWG issue 673 I noticed the following:
void reset(T*pointer p =0pointer());-1- Requires: Does not accept pointer types which are convertible to
T*pointer (diagnostic required). [Note: One implementation technique is to create a private templated overload. -- end note]
This could be cleaned up by mandating the overload as a public deleted function. In addition, we should probably overload reset on nullptr_t to be a stronger match than the deleted overload. Words...
Proposed resolution:
Add to class template definition in 20.8.1.3 [unique.ptr.runtime]
// modifiers pointer release(); void reset(pointer p = pointer()); void reset( nullptr_t ); template< typename U > void reset( U ) = delete; void swap(unique_ptr&& u);
Update 20.8.1.3.4 [unique.ptr.runtime.modifiers]
void reset(pointer p = pointer()); void reset(nullptr_t);
-1- Requires: Does not accept pointer types which are convertible to pointer (diagnostic required). [Note: One implementation technique is to create a private templated overload. -- end note]Effects: If get() == nullptr there are no effects. Otherwise get_deleter()(get()).
...
[ Note this wording incorporates resolutions for 806 (New) and 673 (Ready). ]
Section: 20.2.4 [forward] Status: Resolved Submitter: Walter Brown Opened: 2008-04-09 Last modified: 2015-04-08
View all other issues in [forward].
View all issues with Resolved status.
Discussion:
N2588 seems to have added an operator() member function to the identity<> helper in 20.2.4 [forward]. I believe this change makes it no longer possible to instantiate identity<void>, as it would require forming a reference-to-void type as this operator()'s parameter type.
Suggested resolution: Specialize identity<void> so as not to require the member function's presence.
[ Sophia Antipolis: ]
Jens: suggests to add a requires clause to avoid specializing on void.
Alisdair: also consider cv-qualified void.
Alberto provided proposed wording.
[ 2009-07-30 Daniel reopens: ]
This issue became closed, because the ReferentType requirement fixed the problem - this is no longer the case. In retrospective it seems to be that the root of current issues around std::identity (823, 700, 939) is that it was standardized as something very different (an unconditional type mapper) than traditional usage indicated (a function object that should derive from std::unary_function), as the SGI definition does. This issue could be solved, if std::identity is removed (one proposal of 939), but until this has been decided, this issue should remain open. An alternative for removing it, would be, to do the following:
Let identity stay as a real function object, which would now properly derive from unary_function:
template <class T> struct identity : unary_function<T, T> { const T& operator()(const T&) const; };Invent (if needed) a generic type wrapper (corresponding to concept IdentityOf), e.g. identity_of, and move it's prototype description back to 20.2.4 [forward]:
template <class T> struct identity_of { typedef T type; };and adapt the std::forward signature to use identity_of instead of identity.
[ 2009-10 Santa Cruz: ]
Mark as
NAD EditorialResolved, fixed by 939.
Proposed resolution:
Change definition of identity in 20.2.4 [forward], paragraph 2, to:
template <class T> struct identity { typedef T type; requires ReferentType<T> const T& operator()(const T& x) const; };
...
requires ReferentType<T> const T& operator()(const T& x) const;
Rationale:
The point here is to able to write T& given T and ReferentType is precisely the concept that guarantees so, according to N2677 (Foundational concepts). Because of this, it seems preferable than an explicit check for cv void using SameType/remove_cv as it was suggested in Sophia. In particular, Daniel remarked that there may be types other than cv void which aren't referent types (int[], perhaps?).
Section: 21.4.8.9 [string.io] Status: CD1 Submitter: Alisdair Meredith Opened: 2008-04-10 Last modified: 2015-04-08
View all other issues in [string.io].
View all issues with CD1 status.
Discussion:
In the current working paper, the <string> header synopsis at the end of 21.3 [string.classes] lists a single operator<< overload for basic_string.
template<class charT, class traits, class Allocator> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&& os, const basic_string<charT,traits,Allocator>& str);
The definition in 21.4.8.9 [string.io] lists two:
template<class charT, class traits, class Allocator> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& os, const basic_string<charT,traits,Allocator>& str); template<class charT, class traits, class Allocator> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&& os, const basic_string<charT,traits,Allocator>& str);
I believe the synopsis in 21.3 [string.classes] is correct, and the first of the two signatures in 21.4.8.9 [string.io] should be deleted.
Proposed resolution:
Delete the first of the two signatures in 21.4.8.9 [string.io]:
template<class charT, class traits, class Allocator> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& os, const basic_string<charT,traits,Allocator>& str);template<class charT, class traits, class Allocator> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&& os, const basic_string<charT,traits,Allocator>& str);
Section: 19.5.2.1 [syserr.errcode.overview], 20.8.2.2.11 [util.smartptr.shared.io], 22.4.8 [facets.examples], 20.6.4 [bitset.operators], 26.4.6 [complex.ops], 27.6 [stream.buffers], 28.9 [re.submatch] Status: Resolved Submitter: Alisdair Meredith Opened: 2008-04-10 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses UK 220
Should the following use rvalues references to stream in insert/extract operators?
[ Sophia Antipolis ]
Agree with the idea in the issue, Alisdair to provide wording.
[ Daniel adds 2009-02-14: ]
The proposal given in the paper N2831 apparently resolves this issue.
[ Batavia (2009-05): ]
The cited paper is an earlier version of N2844, which changed the rvalue reference binding rules. That paper includes generic templates operator<< and operator>> that adapt rvalue streams.
We therefore agree with Daniel's observation. Move to
NAD EditorialResolved.
Proposed resolution:
Section: 20.8.2.2.1 [util.smartptr.shared.const] Status: Resolved Submitter: Peter Dimov Opened: 2008-04-11 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.const].
View all issues with Resolved status.
Discussion:
Would anyone object to making the default constructor of shared_ptr (and weak_ptr and enable_shared_from_this) constexpr? This would enable static initialization for shared_ptr variables, eliminating another unfair advantage of raw pointers.
[ San Francisco: ]
It's not clear to us that you can initialize a pointer with the literal 0 in a constant expression. We need to ask CWG to make sure this works. Bjarne has been appointed to do this.
Core got back to us and assured as that nullptr would do the job nicely here.
[ 2009-05-01 Alisdair adds: ]
I don't believe that constexpr will buy anything in this case. shared_ptr/weak_ptr/enable_shared_from_this cannot be literal types as they have a non-trivial copy constructor. As they do not produce literal types, then the constexpr default constructor will not guarantee constant initialization, and so not buy the hoped for optimization.
I recommend referring this back to Core to see if we can get static initialization for types with constexpr constructors, even if they are not literal types. Otherwise this should be closed as NAD.
[ 2009-05-26 Daniel adds: ]
If Alisdair's 2009-05-01 comment is correct, wouldn't that also make constexpr mutex() useless, because this class has a non-trivial destructor? (828)
[ 2009-07-21 Alisdair adds: ]
The feedback from core is that this and similar uses of constexpr constructors to force static initialization should be supported. If there are any problems with this in the working draught, we should file core issues.
Recommend we declare the default constructor constexpr as the issue suggests (proposed wording added).
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2994.
Proposed resolution:
Change 20.8.2.2 [util.smartptr.shared] and 20.8.2.2.1 [util.smartptr.shared.const]:
constexpr shared_ptr();
Change 20.8.2.3 [util.smartptr.weak] and 20.8.2.3.1 [util.smartptr.weak.const]:
constexpr weak_ptr();
Change 20.8.2.5 [util.smartptr.enab] (2 places):
constexpr enable_shared_from_this();
Section: 30.4.1.2.1 [thread.mutex.class] Status: Resolved Submitter: Peter Dimov Opened: 2008-04-18 Last modified: 2015-04-08
View all other issues in [thread.mutex.class].
View all issues with Resolved status.
Discussion:
[Note: I'm assuming here that 3.6.2 [basic.start.init]/1 will be fixed.]
Currently std::mutex doesn't support static initialization. This is a regression with respect to pthread_mutex_t, which does. I believe that we should strive to eliminate such regressions in expressive power where possible, both to ease migration and to not provide incentives to (or force) people to forego the C++ primitives in favor of pthreads.
[ Sophia Antipolis: ]
We believe this is implementable on POSIX, because the initializer-list feature and the constexpr feature make this work. Double-check core language about static initialization for this case. Ask core for a core issue about order of destruction of statically-initialized objects wrt. dynamically-initialized objects (should come afterwards). Check non-POSIX systems for implementability.
If ubiquitous implementability cannot be assured, plan B is to introduce another constructor, make this constexpr, which is conditionally-supported. To avoid ambiguities, this new constructor needs to have an additional parameter.
[ Post Summit: ]
Jens: constant initialization seems to be ok core-language wise
Consensus: Defer to threading experts, in particular a Microsoft platform expert.
Lawrence to send e-mail to Herb Sutter, Jonathan Caves, Anthony Wiliams, Paul McKenney, Martin Tasker, Hans Boehm, Bill Plauger, Pete Becker, Peter Dimov to alert them of this issue.
Lawrence: What about header file shared with C? The initialization syntax is different in C and C++.
Recommend Keep in Review
[ Batavia (2009-05): ]
Keep in Review status pending feedback from members of the Concurrency subgroup.
[ See related comments from Alisdair and Daniel in 827. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2994.
Proposed resolution:
Change 30.4.1.2.1 [thread.mutex.class]:
class mutex { public: constexpr mutex(); ...
Section: 18.8.5 [propagation] Status: CD1 Submitter: Beman Dawes Opened: 2008-04-20 Last modified: 2015-04-08
View all other issues in [propagation].
View all issues with CD1 status.
Discussion:
Consider this code:
exception_ptr xp;try {do_something(); } catch (const runtime_error& ) {xp = current_exception();} ... rethrow_exception(xp);
Say do_something()
throws an exception object of type
range_error
. What is the type of the exception object thrown by
rethrow_exception(xp)
above? It must have a type of range_error
;
if it were of type runtime_error
it still isn't possible to
propagate an exception and the exception_ptr/current_exception/rethrow_exception
machinery serves no useful purpose.
Unfortunately, the current wording does not explicitly say that. Different people read the current wording and come to different conclusions. While it may be possible to deduce the correct type from the current wording, it would be much clearer to come right out and explicitly say what the type of the referred to exception is.
[ Peter adds: ]
I don't like the proposed resolution of 829. The normative text is unambiguous that the exception_ptr refers to the currently handled exception. This term has a standard meaning, see 15.3 [except.handle]/8; this is the exception that throw; would rethrow, see 15.1 [except.throw]/7.
A better way to address this is to simply add the non-normative example in question as a clarification. The term currently handled exception should be italicized and cross-referenced. A [Note: the currently handled exception is the exception that a throw expression without an operand (15.1 [except.throw]/7) would rethrow. --end note] is also an option.
Proposed resolution:
After 18.8.5 [propagation] , paragraph 7, add the indicated text:
exception_ptr current_exception();Returns:
exception_ptr
object that refers to the currently handled exception (15.3 [except.handle]) or a copy of the currently handled exception, or a nullexception_ptr
object if no exception is being handled. If the function needs to allocate memory and the attempt fails, it returns anexception_ptr
object that refers to an instance ofbad_alloc
. It is unspecified whether the return values of two successive calls tocurrent_exception
refer to the same exception object. [Note: that is, it is unspecified whethercurrent_exception
creates a new copy each time it is called. -- end note]Throws: nothing.
Section: 20.8.1.2 [unique.ptr.single] Status: Resolved Submitter: Daniel Krügler Opened: 2008-05-14 Last modified: 2015-04-08
View all other issues in [unique.ptr.single].
View all issues with Resolved status.
Discussion:
Issue 673 (including recent updates by 821) proposes a useful extension point for unique_ptr by granting support for an optional deleter_type::pointer to act as pointer-like replacement for element_type* (In the following: pointer).
Unfortunately no requirements are specified for the type pointer which has impact on at least two key features of unique_ptr:
The unique_ptr specification makes great efforts to require that essentially all operations cannot throw and therefore adds proper wording to the affected operations of the deleter as well. If user-provided pointer-emulating types ("smart pointers") will be allowed, either all throw-nothing clauses have to be replaced by weaker "An exception is thrown only if pointer's {op} throws an exception"-clauses or it has to be said explicitly that all used operations of pointer are required not to throw. I understand the main focus of unique_ptr to be as near as possible to the advantages of native pointers which cannot fail and thus strongly favor the second choice. Also, the alternative position would make it much harder to write safe and simple template code for unique_ptr. Additionally, I assume that a general statement need to be given that all of the expressions of pointer used to define semantics are required to be well-formed and well-defined (also as back-end for 762).
[ Sophia Antipolis: ]
Howard: We maybe need a core concept PointerLike, but we don't need the arithmetic (see shared_ptr vs. vector<T>::iterator.
Howard will go through and enumerate the individual requirements wrt. pointer for each member function.
[ 2009-07 Frankfurt: ]
Move to Ready.
[ 2009-10-15 Alisdair pulls from Ready: ]
I hate to pull an issue out of Ready status, but I don't think 834 is fully baked yet.
For reference the proposed resolution is to add the following words:
unique_ptr<T, D>::pointer's operations shall be well-formed, shall have well defined behavior, and shall not throw exceptions.
This leaves me with a big question : which operations?
Are all pointer operations required to be nothrow, including operations that have nothing to do with interactions with unique_ptr? This was much simpler with concepts where we could point to operations within a certain concept, and so nail down the interactions.
[ 2009-10-15 Daniel adds: ]
I volunteer to prepare a more fine-grained solution, but I would like to ask for feedback that helps me doing so. If this question is asked early in the meeting I might be able to fix it within the week, but I cannot promise that now.
[ 2009-10 Santa Cruz: ]
Leave in open. Daniel to provide wording as already suggested.
[ 2009-12-22 Daniel provided wording and rationale. ]
[ 2010 Pittsburgh: Moved to NAD Editorial. Rationale added below. ]
Rationale:
The here proposed resolution has considerable overlap with the requirements that are used in the allocator requirements.
This might be a convincing argument to isolate the common subset into one requirement. The reason I did not do that is basically because we might find out that they are either over-constraining or under-constraining at this late point of specification. Note also that as a result of the idea of a general requirement set I added the requirement:
A default-initialized object may have a singular value
even though this does not play a relevant role for unique_ptr.
One further characteristics of the resolution is that availability of relational operators of unique_ptr<T, D>::pointer is not part of the basic requirements, which is in sync with the allocator requirements on pointer-like (this means that unique_ptr can hold a void_pointer or const_void_pointer).
Solved by N3073.
Proposed resolution:
Change 20.8.1.2 [unique.ptr.single] p. 1 as indicated: [The intent is to replace the coupling between T* and the deleter's operator() by a coupling between unique_ptr<T, D>::pointer and this operator()]
1 - The default type for the template parameter D is default_delete. A client-supplied template argument D shall be a function pointer or functor for which, given a value d of type D and a
pointervalue ptr of typeT*unique_ptr<T, D>::pointer, the expression d(ptr) is valid and has the effect of deallocating the pointer as appropriate for that deleter. D may also be an lvalue-reference to a deleter.
Change 20.8.1.2 [unique.ptr.single] p. 3 as indicated:
3 - If the type remove_reference<D>::type::pointer exists, then unique_ptr<T, D>::pointer shall be a synonym for remove_reference<D>::type::pointer. Otherwise unique_ptr<T, D>::pointer shall be a synonym for T*. The type unique_ptr<T, D>::pointer shall
besatisfy the requirements of EqualityComparable, DefaultConstructible, CopyConstructible(Table 34) and, CopyAssignable(Table 36), Swappable, and Destructible (17.6.3.1 [utility.arg.requirements]). A default-initialized object may have a singular value. A value-initialized object produces the null value of the type. The null value shall be equivalent only to itself. An object of this type can be copy-initialized with a value of type nullptr_t, compared for equality with a value of type nullptr_t, and assigned a value of type nullptr_t. The effect shall be as if a value-initialized object had been used in place of the null pointer constant. An object p of this type can be contextually converted to bool. The effect shall be as if p != nullptr had been evaluated in place of p. No operation on this type which is part of the above mentioned requirements shall exit via an exception.[Note: Given an allocator type X (17.6.3.5 [allocator.requirements]), the types X::pointer, X::const_pointer, X::void_pointer, and X::const_void_pointer may be used as unique_ptr<T, D>::pointer — end note]
In addition to being available via inclusion of the <utility> header, the swap function template in 20.2.2 [utility.swap] is also available within the definition of unique_ptr's swap function.
Change 20.8.1.2.1 [unique.ptr.single.ctor] p. 2+3 as indicated: [The first change ensures that we explicitly say, how the stored pointer is initialized. This is important for a constexpr function, because this may make a difference for user-defined pointer-like types]
constexpr unique_ptr();...
2 - Effects: Constructs a unique_ptr which owns nothing, value-initializing the stored pointer.
3 - Postconditions: get() ==
0nullptr.
Change 20.8.1.2.1 [unique.ptr.single.ctor] p. 6+7 as indicated: [This is a step-by-fix to ensure consistency to the changes of N2976]
unique_ptr(pointer p);...
6 - Effects: Constructs a unique_ptr which owns p, initializing the stored pointer with p.
7 - Postconditions: get() == p. get_deleter() returns a reference to a
default constructedvalue-initialized deleter D.
Insert a new effects clause in 20.8.1.2.1 [unique.ptr.single.ctor] just before p. 14: [The intent is to fix the current lack of specification in which way the stored pointer is initialized]
unique_ptr(pointer p,implementation-definedsee below d1); unique_ptr(pointer p,implementation-definedsee below d2);...
Effects: Constructs a unique_ptr which owns p, initializing the stored pointer with p and the initializing the deleter as described above.
14 - Postconditions: get() == p. get_deleter() returns a reference to the internally stored deleter. If D is a reference type then get_deleter() returns a reference to the lvalue d.
Change 20.8.1.2.1 [unique.ptr.single.ctor] p. 18+22 as indicated: [The intent is to clarify that the moved-from source must contain a null pointer, there is no other choice left]
unique_ptr(unique_ptr&& u);[..]
18 - Postconditions: get() == value u.get() had before the construction and u.get() == nullptr. get_deleter() returns a reference to the internally stored deleter which was constructed from u.get_deleter(). If D is a reference type then get_deleter() and u.get_deleter() both reference the same lvalue deleter.
template <class U, class E> unique_ptr(unique_ptr<U, E>&& u);[..]
22 - Postconditions: get() == value u.get() had before the construction, modulo any required offset adjustments resulting from the cast from unique_ptr<U, E>::pointer to pointer and u.get() == nullptr. get_deleter() returns a reference to the internally stored deleter which was constructed from u.get_deleter().
Change 20.8.1.2.1 [unique.ptr.single.ctor] p. 20 as indicated: [With the possibility of user-defined pointer-like types the implication does only exist, if those are built-in pointers. Note that this change should also be applied with the acceptance of 950]
template <class U, class E> unique_ptr(unique_ptr<U, E>&& u);20 - Requires: If D is not a reference type, construction of the deleter D from an rvalue of type E shall be well formed and shall not throw an exception. If D is a reference type, then E shall be the same type as D (diagnostic required). unique_ptr<U, E>::pointer shall be implicitly convertible to pointer.
[Note: These requirements imply that T and U are complete types. — end note]
Change 20.8.1.2.2 [unique.ptr.single.dtor] p. 2 as indicated:
~unique_ptr();...
2 - Effects: If get() ==
0nullptr there are no effects. Otherwise get_deleter()(get()).
Change 20.8.1.2.3 [unique.ptr.single.asgn] p. 3+8 as indicated: [The intent is to clarify that the moved-from source must contain a null pointer, there is no other choice left]
unique_ptr& operator=(unique_ptr&& u);[..]
3 - Postconditions: This unique_ptr now owns the pointer which u owned, and u no longer owns it, u.get() == nullptr. [Note: If D is a reference type, then the referenced lvalue deleters are move assigned. — end note]
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u);[..]
8 - Postconditions: This unique_ptr now owns the pointer which u owned, and u no longer owns it, u.get() == nullptr.
Change 20.8.1.2.3 [unique.ptr.single.asgn] p. 6 as indicated: [With the possibility of user-defined pointer-like types the implication does only exist, if those are built-in pointers. Note that this change should also be applied with the acceptance of 950]
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u);[..]
6 - Requires: Assignment of the deleter D from an rvalue D shall not throw an exception. unique_ptr<U, E>::pointer shall be implicitly convertible to pointer.
[Note: These requirements imply that T and U are complete types. — end note]
Change 20.8.1.2.3 [unique.ptr.single.asgn] before p. 11 and p. 12 as indicated: [The first change is a simple typo fix]
unique_ptr& operator=(nullptr_t});11 - Effects: reset().
12 - Postcondition: get() ==
0nullptr
Change 20.8.1.2.4 [unique.ptr.single.observers] p. 1+4+12 as indicated:
typename add_lvalue_reference<T>::type operator*() const;1 - Requires: get() !=
0nullptr. The variable definition add_lvalue_reference<T>::type t = *get() shall be well formed, shall have well-defined behavior, and shall not exit via an exception.[..]
pointer operator->() const;4 - Requires: get() !=
0nullptr.[..]
explicit operator bool() const;12 - Returns: get() !=
0nullptr.
Change 20.8.1.2.5 [unique.ptr.single.modifiers] p. 1 as indicated:
pointer release();1 - Postcondition: get() ==
0nullptr.
Change 20.8.1.2.5 [unique.ptr.single.modifiers] p. 9 as indicated: [The intent is to ensure that potentially user-defined swaps are used. A side-step fix and harmonization with the specification of the the deleter is realized. Please note the additional requirement in bullet 2 of this proposed resolution regarding the availability of the generic swap templates within the member swap function.]
void swap(unique_ptr& u);8 - Requires: The deleter D shall be Swappable and shall not throw an exception under swap.
9 - Effects: The stored pointers of *this and u are exchanged by an unqualified call to non-member swap. The stored deleters are
swap'd (unqualified)exchanged by an unqualified call to non-member swap.
Change 20.8.1.3.3 [unique.ptr.runtime.observers] p. 1 as indicated:
T& operator[](size_t i) const;Requires: i < the size of the array to which the stored pointer points. The variable definition T& t = get()[i] shall be well formed, shall have well-defined behavior, and shall not exit via an exception.
Change 20.8.1.3.4 [unique.ptr.runtime.modifiers] p. 1 as indicated:
void reset(pointer p = pointer()); void reset(nullptr_t p);1 - Effects: If get() ==
0nullptr there are no effects. Otherwise get_deleter()(get()).
Change 20.8.1.5 [unique.ptr.special] as indicated: [We don't add the relational operators to the basic requirement set, therefore we need special handling here]
template <class T1, class D1, class T2, class D2> bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);Requires: The variable definition bool b = x.get() == y.get(); shall be well formed, shall have well-defined behavior, and shall not exit via an exception.
2 - Returns: x.get() == y.get().
Throws: nothing.
template <class T1, class D1, class T2, class D2> bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);Requires: The variable definition bool b = x.get() != y.get(); shall be well formed, shall have well-defined behavior, and shall not exit via an exception.
3 - Returns: x.get() != y.get().
Throws: nothing.
template <class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);Requires: The variable definition bool b = x.get() < y.get(); shall be well formed, shall have well-defined behavior, and shall not exit via an exception.
4 - Returns: x.get() < y.get().
Throws: nothing.
template <class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);Requires: The variable definition bool b = x.get() <= y.get(); shall be well formed, shall have well-defined behavior, and shall not exit via an exception.
5 - Returns: x.get() <= y.get().
Throws: nothing.
template <class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);Requires: The variable definition bool b = x.get() > y.get(); shall be well formed, shall have well-defined behavior, and shall not exit via an exception.
6 - Returns: x.get() > y.get().
Throws: nothing.
template <class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);Requires: The variable definition bool b = x.get() >= y.get(); shall be well formed, shall have well-defined behavior, and shall not exit via an exception.
7 - Returns: x.get() >= y.get().
Throws: nothing.
Section: 27.5.5.3 [basic.ios.members] Status: C++11 Submitter: Martin Sebor Opened: 2008-05-17 Last modified: 2015-04-08
View all other issues in [basic.ios.members].
View all issues with C++11 status.
Discussion:
The fix for issue 581, now integrated into the working paper, overlooks a couple of minor problems.
First, being an unformatted function once again, flush()
is required to create a sentry object whose constructor must, among
other things, flush the tied stream. When two streams are tied
together, either directly or through another intermediate stream
object, flushing one will also cause a call to flush()
on
the other tied stream(s) and vice versa, ad infinitum. The program
below demonstrates the problem.
Second, as Bo Persson notes in his
comp.lang.c++.moderated post,
for streams with the unitbuf
flag set such
as std::stderr
, the destructor of the sentry object will
again call flush()
. This seems to create an infinite
recursion for std::cerr << std::flush;
#include <iostream> int main () { std::cout.tie (&std::cerr); std::cerr.tie (&std::cout); std::cout << "cout\n"; std::cerr << "cerr\n"; }
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Review.
[ 2009-05-26 Daniel adds: ]
I think that the most recently suggested change in 27.7.3.4 [ostream::sentry] need some further word-smithing. As written, it would make the behavior undefined, if under conditions when pubsync() should be called, but when in this scenario os.rdbuf() returns 0.
This case is explicitly handled in flush() and needs to be taken care of. My suggested fix is:
If ((os.flags() & ios_base::unitbuf) && !uncaught_exception() && os.rdbuf() != 0) is true, calls
os.flush()os.rdbuf()->pubsync().Two secondary questions are:
- Should pubsync() be invoked in any case or shouldn't a base requirement for this trial be that os.good() == true as required in the original flush() case?
- Since uncaught_exception() is explicitly tested, shouldn't a return value of -1 of pubsync() produce setstate(badbit) (which may throw ios_base::failure)?
[ 2009-07 Frankfurt: ]
Daniel volunteered to modify the proposed resolution to address his two questions.
Move back to Open.
[ 2009-07-26 Daniel provided wording. Moved to Review. ]
[ 2009-10-13 Daniel adds: ]
This proposed wording is written to match the outcome of 397.
[ 2009 Santa Cruz: ]
Move to Open. Martin to propose updated wording that will also resolve issue 397 consistently.
[ 2010-02-15 Martin provided wording. ]
[ 2010 Pittsburgh: ]
Moved to Ready for Pittsburgh.
Proposed resolution:
Just before 27.5.5.3 [basic.ios.members] p. 2 insert a new paragraph:
Requires: If (tiestr != 0) is true, tiestr must not be reachable by traversing the linked list of tied stream objects starting from tiestr->tie().
Change 27.7.3.4 [ostream::sentry] p. 4 as indicated:
If ((os.flags() & ios_base::unitbuf) && !uncaught_exception() && os.good()) is true, calls
os.flush()os.rdbuf()->pubsync(). If that function returns -1 sets badbit in os.rdstate() without propagating an exception.
Add after 27.7.3.4 [ostream::sentry] p17, the following paragraph:
Throws: Nothing.
money_base::space
and
money_base::none
on money_get
Section: 22.4.6.1.2 [locale.money.get.virtuals] Status: C++11 Submitter: Martin Sebor Opened: 2008-05-17 Last modified: 2015-04-08
View all other issues in [locale.money.get.virtuals].
View all issues with C++11 status.
Duplicate of: 670
Discussion:
In paragraph 2, 22.4.6.1.2 [locale.money.get.virtuals] specifies the following:
Where
space
ornone
appears in the format pattern, except at the end, optional white space (as recognized byct.is
) is consumed after any required space.
This requirement can be (and has been) interpreted two mutually exclusive ways by different readers. One possible interpretation is that:
- where
money_base::space
appears in the format, at least one space is required, and- where
money_base::none
appears in the format, space is allowed but not required.
The other is that:
where either
money_base::space
ormoney_base::none
appears in the format, white space is optional.
[ San Francisco: ]
Martin will revise the proposed resolution.
[ 2009-07 Frankfurt: ]
There is a noun missing from the proposed resolution. It's not clear that the last sentence would be helpful, even if the word were not missing:
In either case, any required MISSINGWORD followed by all optional whitespace (as recognized by ct.is()) is consumed.
Strike this sentence and move to Review.
[ Howard: done. ]
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
I propose to change the text to make it clear that the first interpretation is intended, that is, to make following change to 22.4.6.1.2 [locale.money.get.virtuals], p. 2:
When
money_base::space
ormoney_base::none
appears as the last element in the format pattern,except at the end, optional white space (as recognized byno white space is consumed. Otherwise, wherect.is
) is consumed after any required space.money_base::space
appears in any of the initial elements of the format pattern, at least one white space character is required. Wheremoney_base::none
appears in any of the initial elements of the format pattern, white space is allowed but not required. If(str.flags() & str.showbase)
isfalse
, ...
Section: 24.6.1 [istream.iterator] Status: C++11 Submitter: Martin Sebor Opened: 2008-05-17 Last modified: 2015-04-08
View all other issues in [istream.iterator].
View all issues with C++11 status.
Discussion:
From message c++std-lib-20003...
The description of istream_iterator
in
24.6.1 [istream.iterator], p. 1 specifies that objects of the
class become the end-of-stream (EOS) iterators under the
following condition (see also issue 788 another problem
with this paragraph):
If the end of stream is reached (
operator void*()
on the stream returnsfalse
), the iterator becomes equal to the end-of-stream iterator value.
One possible implementation approach that has been used in practice is
for the iterator to set its in_stream
pointer to 0 when
it reaches the end of the stream, just like the default ctor does on
initialization. The problem with this approach is that
the Effects clause for operator++()
says the
iterator unconditionally extracts the next value from the stream by
evaluating *in_stream >> value
, without checking
for (in_stream == 0)
.
Conformance to the requirement outlined in the Effects clause
can easily be verified in programs by setting eofbit
or failbit
in exceptions()
of the associated
stream and attempting to iterate past the end of the stream: each
past-the-end access should trigger an exception. This suggests that
some other, more elaborate technique might be intended.
Another approach, one that allows operator++()
to attempt
to extract the value even for EOS iterators (just as long
as in_stream
is non-0) is for the iterator to maintain a
flag indicating whether it has reached the end of the stream. This
technique would satisfy the presumed requirement implied by
the Effects clause mentioned above, but it isn't supported by
the exposition-only members of the class (no such flag is shown). This
approach is also found in existing practice.
The inconsistency between existing implementations raises the question
of whether the intent of the specification is that a non-EOS iterator
that has reached the EOS become a non-EOS one again after the
stream's eofbit
flag has been cleared? That is, are the
assertions in the program below expected to pass?
sstream strm ("1 "); istream_iterator eos; istream_iterator it (strm); int i; i = *it++ assert (it == eos); strm.clear (); strm << "2 3 "; assert (it != eos); i = *++it; assert (3 == i);
Or is it intended that once an iterator becomes EOS it stays EOS until the end of its lifetime?
[ San Francisco: ]
We like the direction of the proposed resolution. We're not sure about the wording, and we need more time to reflect on it,
Move to Open. Detlef to rewrite the proposed resolution in such a way that no reference is made to exposition only members of istream_iterator.
[ 2009-07 Frankfurt: ]
Move to Ready.
Proposed resolution:
The discussion of this issue on the reflector suggests that the intent
of the standard is for an istreambuf_iterator
that has
reached the EOS to remain in the EOS state until the end of its
lifetime. Implementations that permit EOS iterators to return to a
non-EOS state may only do so as an extension, and only as a result of
calling istream_iterator
member functions on EOS
iterators whose behavior is in this case undefined.
To this end we propose to change 24.6.1 [istream.iterator], p1, as follows:
The result of operator-> on an end-of-stream is not defined. For any other iterator value a
const T*
is returned. Invokingoperator++()
on an end-of-stream iterator is undefined. It is impossible to store things into istream iterators...
Add pre/postconditions to the member function descriptions of istream_iterator
like so:
istream_iterator();Effects: Constructs the end-of-stream iterator.
Postcondition:in_stream == 0
.istream_iterator(istream_type &s);Effects: Initializes
in_stream
with &s. value may be initialized during construction or the first time it is referenced.
Postcondition:in_stream == &s
.istream_iterator(const istream_iterator &x);Effects: Constructs a copy of
x
.
Postcondition:in_stream == x.in_stream
.istream_iterator& operator++();Requires:
in_stream != 0
.
Effects:*in_stream >> value
.istream_iterator& operator++(int);Requires:
in_stream != 0
.
Effects:istream_iterator tmp (*this); *in_stream >> value; return tmp;
Section: 23.2 [container.requirements], 23.3.7 [vector.bool], 20.6 [template.bitset] Status: CD1 Submitter: Howard Hinnant Opened: 2008-06-03 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with CD1 status.
Discussion:
23.2 [container.requirements] p. 3 says:
Objects stored in these components shall be constructed using construct_element (20.6.9). For each operation that inserts an element of type T into a container (insert, push_back, push_front, emplace, etc.) with arguments args... T shall be ConstructibleAsElement, as described in table 88. [Note: If the component is instantiated with a scoped allocator of type A (i.e., an allocator for which is_scoped_allocator<A>::value is true), then construct_element may pass an inner allocator argument to T's constructor. -- end note]
However vector<bool, A> (23.3.7 [vector.bool]) and bitset<N> (20.6 [template.bitset]) store bits, not bools, and bitset<N> does not even have an allocator. But these containers are governed by this clause. Clearly this is not implementable.
Proposed resolution:
Change 23.2 [container.requirements] p. 3:
Objects stored in these components shall be constructed using construct_element (20.6.9), unless otherwise specified. For each operation that inserts an element of type T into a container (insert, push_back, push_front, emplace, etc.) with arguments args... T shall be ConstructibleAsElement, as described in table 88. [Note: If the component is instantiated with a scoped allocator of type A (i.e., an allocator for which is_scoped_allocator<A>::value is true), then construct_element may pass an inner allocator argument to T's constructor. -- end note]
Change 23.3.7 [vector.bool]/p2:
Unless described below, all operations have the same requirements and semantics as the primary vector template, except that operations dealing with the bool value type map to bit values in the container storage, and construct_element (23.2 [container.requirements]) is not used to construct these values.
Move 20.6 [template.bitset] to clause 20.
Section: X [func.referenceclosure.cons] Status: CD1 Submitter: Lawrence Crowl Opened: 2008-06-02 Last modified: 2015-04-08
View all issues with CD1 status.
Discussion:
The std::reference_closure type has a deleted copy assignment operator under the theory that references cannot be assigned, and hence the assignment of its reference member must necessarily be ill-formed.
However, other types, notably std::reference_wrapper and std::function provide for the "copying of references", and thus the current definition of std::reference_closure seems unnecessarily restrictive. In particular, it should be possible to write generic functions using both std::function and std::reference_closure, but this generality is much harder when one such type does not support assignment.
The definition of reference_closure does not necessarily imply direct implementation via reference types. Indeed, the reference_closure is best implemented via a frame pointer, for which there is no standard type.
The semantics of assignment are effectively obtained by use of the default destructor and default copy assignment operator via
x.~reference_closure(); new (x) reference_closure(y);
So the copy assignment operator generates no significant real burden to the implementation.
Proposed resolution:
In [func.referenceclosure] Class template reference_closure, replace the =delete in the copy assignment operator in the synopsis with =default.
template<class R , class... ArgTypes > class reference_closure<R (ArgTypes...)> { public: ... reference_closure& operator=(const reference_closure&) =deletedefault; ...
In X [func.referenceclosure.cons] Construct, copy, destroy, add the member function description
reference_closure& operator=(const reference_closure& f)Postcondition: *this is a copy of f.
Returns: *this.
Section: 26.4.9 [cmplx.over] Status: CD1 Submitter: Howard Hinnant Opened: 2008-06-03 Last modified: 2015-04-08
View all other issues in [cmplx.over].
View all issues with CD1 status.
Discussion:
The current working draft is in an inconsistent state.
26.4.8 [complex.transcendentals] says that:
pow(complex<float>(), int()) returns a complex<float>.
26.4.9 [cmplx.over] says that:
pow(complex<float>(), int()) returns a complex<double>.
[ Sophia Antipolis: ]
Since int promotes to double, and C99 doesn't have an int-based overload for pow, the C99 result is complex<double>, see also C99 7.22, see also library issue 550.
Special note: ask P.J. Plauger.
Looks fine.
Proposed resolution:
Strike this pow overload in 26.4.1 [complex.syn] and in 26.4.8 [complex.transcendentals]:
template<class T> complex<T> pow(const complex<T>& x, int y);
Section: 29.5 [atomics.types.generic] Status: CD1 Submitter: Alisdair Meredith Opened: 2008-06-03 Last modified: 2015-04-08
View other active issues in [atomics.types.generic].
View all other issues in [atomics.types.generic].
View all issues with CD1 status.
Discussion:
The atomic classes (and class templates) are required to support aggregate initialization (X [atomics.types.integral] p. 2 / X [atomics.types.address] p. 1) yet also have user declared constructors, so cannot be aggregates.
This problem might be solved with the introduction of the proposed initialization syntax at Antipolis, but the wording above should be altered. Either strike the sentence as redundant with new syntax, or refer to 'brace initialization'.
[ Jens adds: ]
Note that
atomic_itype a1 = { 5 };would be aggregate-initialization syntax (now coming under the disguise of brace initialization), but would be ill-formed, because the corresponding constructor for atomic_itype is explicit. This works, though:
atomic_itype a2 { 6 };
[ San Francisco: ]
The preferred approach to resolving this is to remove the explicit specifiers from the atomic integral type constructors.
Lawrence will provide wording.
This issue is addressed in N2783.
Proposed resolution:
within the synopsis in X [atomics.types.integral] edit as follows.
.... typedef struct atomic_bool { .... constexpr
explicitatomic_bool(bool); .... typedef struct atomic_itype { .... constexprexplicitatomic_itype(integral); ....
edit X [atomics.types.integral] paragraph 2 as follows.
The atomic integral types shall have standard layout. They shall each have a trivial default constructor, a constexpr
explicitvalue constructor, a deleted copy constructor, a deleted copy assignment operator, and a trivial destructor. They shall each support aggregate initialization syntax.
within the synopsis of X [atomics.types.address] edit as follows.
.... typedef struct atomic_address { .... constexpr
explicitatomic_address(void*); ....
edit X [atomics.types.address] paragraph 1 as follows.
The type
atomic_address
shall have standard layout. It shall have a trivial default constructor, a constexprexplicitvalue constructor, a deleted copy constructor, a deleted copy assignment operator, and a trivial destructor. It shall support aggregate initialization syntax.
within the synopsis of 29.5 [atomics.types.generic] edit as follows.
.... template <class T> struct atomic { .... constexpr
explicitatomic(T); .... template <> struct atomic<integral> : atomic_itype { .... constexprexplicitatomic(integral); .... template <> struct atomic<T*> : atomic_address { .... constexprexplicitatomic(T*); ....
edit 29.5 [atomics.types.generic] paragraph 2 as follows.
Specializations of the
atomic
template shall have a deleted copy constructor, a deleted copy assignment operator, and a constexprexplicitvalue constructor.
Section: 29.6 [atomics.types.operations] Status: CD1 Submitter: Alisdair Meredith Opened: 2008-06-03 Last modified: 2015-04-08
View all other issues in [atomics.types.operations].
View all issues with CD1 status.
Discussion:
The atomic classes and class templates (X [atomics.types.integral] / X [atomics.types.address]) have a constexpr constructor taking a value of the appropriate type for that atomic. However, neither clause provides semantics or a definition for this constructor. I'm not sure if the initialization is implied by use of constexpr keyword (which restricts the form of a constructor) but even if that is the case, I think it is worth spelling out explicitly as the inference would be far too subtle in that case.
[ San Francisco: ]
Lawrence will provide wording.
This issue is addressed in N2783.
Proposed resolution:
before the description of ...is_lock_free
,
that is before 29.6 [atomics.types.operations] paragraph 4,
add the following description.
constexpr A::A(C desired);
- Effects:
- Initializes the object with the value
desired
. [Note: Construction is not atomic. —end note]
Section: 21.4.1 [string.require] Status: C++11 Submitter: Hervé Brönnimann Opened: 2008-06-05 Last modified: 2015-04-08
View all other issues in [string.require].
View all issues with C++11 status.
Discussion:
In March, on comp.lang.c++.moderated, I asked what were the string exception safety guarantees are, because I cannot see *any* in the working paper, and any implementation I know offers the strong exception safety guarantee (string unchanged if a member throws exception). The closest the current draft comes to offering any guarantees is 21.4 [basic.string], para 3:
The class template basic_string conforms to the requirements for a Sequence Container (23.1.1), for a Reversible Container (23.1), and for an Allocator-aware container (91). The iterators supported by basic_string are random access iterators (24.1.5).
However, the chapter 23 only says, on the topic of exceptions: 23.2 [container.requirements], para 10:
Unless otherwise specified (see 23.2.2.3 and 23.2.6.4) all container types defined in this clause meet the following additional requirements:
- if an exception is thrown by...
I take it as saying that this paragraph has *no* implication on std::basic_string, as basic_string isn't defined in Clause 23 and this paragraph does not define a *requirement* of Sequence nor Reversible Container, just of the models defined in Clause 23. In addition, LWG Issue 718 proposes to remove 23.2 [container.requirements], para 3.
Finally, the fact that no operation on Traits should throw exceptions has no bearing, except to suggest (since the only other throws should be allocation, out_of_range, or length_error) that the strong exception guarantee can be achieved.
The reaction in that group by Niels Dekker, Martin Sebor, and Bo Persson, was all that this would be worth an LWG issue.
A related issue is that erase() does not throw. This should be stated somewhere (and again, I don't think that the 23.2 [container.requirements], para 1 applies here).
[ San Francisco: ]
Implementors will study this to confirm that it is actually possible.
[ Daniel adds 2009-02-14: ]
The proposed resolution of paper N2815 interacts with this issue (the paper does not refer to this issue).
[ 2009-07 Frankfurt: ]
Move to Ready.
Proposed resolution:
Add a blanket statement in 21.4.1 [string.require]:
- if any member function or operator of basic_string<charT, traits, Allocator> throws, that function or operator has no effect.
- no erase() or pop_back() function throws.
As far as I can tell, this is achieved by any implementation. If I made a mistake and it is not possible to offer this guarantee, then either state all the functions for which this is possible (certainly at least operator+=, append, assign, and insert), or add paragraphs to Effects clauses wherever appropriate.
Section: 20.9.13 [unord.hash] Status: CD1 Submitter: Thorsten Ottosen Opened: 2008-06-05 Last modified: 2015-04-08
View other active issues in [unord.hash].
View all other issues in [unord.hash].
View all issues with CD1 status.
Discussion:
In the current working draft, std::hash<T> is specialized for builtin types and a few other types. Bitsets seems like one that is missing from the list, not because it cannot not be done by the user, but because it is hard or impossible to write an efficient implementation that works on 32bit/64bit chunks at a time. For example, std::bitset is too much encapsulated in this respect.
Proposed resolution:
Add the following to the synopsis in 20.9 [function.objects]/2:
template<class Allocator> struct hash<std::vector<bool,Allocator>>; template<size_t N> struct hash<std::bitset<N>>;
Modify the last sentence of 20.9.13 [unord.hash]/1 to end with:
... and std::string, std::u16string, std::u32string, std::wstring, std::error_code, std::thread::id, std::bitset, and std::vector<bool>.
Section: 23.3.3.3 [deque.capacity] Status: CD1 Submitter: Niels Dekker Opened: 2008-06-05 Last modified: 2015-04-08
View all other issues in [deque.capacity].
View all issues with CD1 status.
Discussion:
Issue 755 added a shrink_to_fit function to std::vector and std::string. It did not yet deal with std::deque, because of the fundamental difference between std::deque and the other two container types. The need for std::deque may seem less evident, because one might think that for this container, the overhead is a small map, and some number of blocks that's bounded by a small constant.
The container overhead can in fact be arbitrarily large (i.e. is not necessarily O(N) where N is the number of elements currently held by the deque). As Bill Plauger noted in a reflector message, unless the map of block pointers is shrunk, it must hold at least maxN⁄B pointers where maxN is the maximum of N over the lifetime of the deque since its creation. This is independent of how the map is implemented (vector-like circular buffer and all), and maxN bears no relation to N, the number of elements it currently holds.
Hervé Brönnimann reports a situation where a deque of requests grew very large due to some temporary backup (the front request hanging), and the map of the deque grew quite large before getting back to normal. Just to put some color on it, assuming a deque with 1K pointer elements in steady regime, that held, at some point in its lifetime, maxN=10M pointers, with one block holding 128 elements, the spine must be at least (maxN ⁄ 128), in that case 100K. In that case, shrink-to-fit would allow to reuse about 100K which would otherwise never be reclaimed in the lifetime of the deque.
An added bonus would be that it allows implementations to hang on to empty blocks at the end (but does not care if they do or not). A shrink_to_fit would take care of both shrinks, and guarantee that at most O(B) space is used in addition to the storage to hold the N elements and the N⁄B block pointers.
Proposed resolution:
To class template deque 23.3.3 [deque] synopsis, add:
void shrink_to_fit();
To deque capacity 23.3.3.3 [deque.capacity], add:
void shrink_to_fit();Remarks: shrink_to_fit is a non-binding request to reduce memory use. [Note: The request is non-binding to allow latitude for implementation-specific optimizations. — end note]
Section: 23.5 [unord] Status: CD1 Submitter: Robert Klarer Opened: 2008-06-12 Last modified: 2015-04-08
View all other issues in [unord].
View all issues with CD1 status.
Discussion:
In 3 of the four unordered containers the local begin member is mistakenly declared const:
local_iterator begin(size_type n) const;
Proposed resolution:
Change the synopsis in 23.5.4 [unord.map], 23.5.5 [unord.multimap], and 23.5.7 [unord.multiset]:
local_iterator begin(size_type n)const;
Section: 20.6 [template.bitset] Status: C++11 Submitter: Howard Hinnant Opened: 2008-06-18 Last modified: 2015-04-08
View other active issues in [template.bitset].
View all other issues in [template.bitset].
View all issues with C++11 status.
Discussion:
Issue 396 adds defaulted arguments to the to_string member, but neglects to update the three newer to_string overloads.
[ post San Francisco: ]
Daniel found problems with the wording and provided fixes. Moved from Ready to Review.
[ Post Summit: ]
Alisdair: suggest to not repeat the default arguments in B, C, D (definition of to_string members)
Walter: This is not really a definition.
Consensus: Add note to the editor: Please apply editor's judgement whether default arguments should be repeated for B, C, D changes.
Recommend Tentatively Ready.
[ 2009-05-09: See alternative solution in issue 1113. ]
Proposed resolution:
replace in 20.6 [template.bitset]/1 (class bitset)
template <class charT, class traits> basic_string<charT, traits, allocator<charT> > to_string(charT zero = charT('0'), charT one = charT('1')) const; template <class charT> basic_string<charT, char_traits<charT>, allocator<charT> > to_string(charT zero = charT('0'), charT one = charT('1')) const; basic_string<char, char_traits<char>, allocator<char> > to_string(char zero = '0', char one = '1') const;
replace in 20.6.2 [bitset.members]/37
template <class charT, class traits> basic_string<charT, traits, allocator<charT> > to_string(charT zero = charT('0'), charT one = charT('1')) const;37 Returns: to_string<charT, traits, allocator<charT> >(zero, one).
replace in 20.6.2 [bitset.members]/38
template <class charT> basic_string<charT, char_traits<charT>, allocator<charT> > to_string(charT zero = charT('0'), charT one = charT('1')) const;38 Returns: to_string<charT, char_traits<charT>, allocator<charT> >(zero, one).
replace in 20.6.2 [bitset.members]/39
basic_string<char, char_traits<char>, allocator<char> > to_string(char zero = '0', char one = '1') const;39 Returns: to_string<char, char_traits<char>, allocator<char> >(zero, one).
Section: 20.8.1.1.2 [unique.ptr.dltr.dflt] Status: C++11 Submitter: Howard Hinnant Opened: 2008-06-18 Last modified: 2015-04-08
View all other issues in [unique.ptr.dltr.dflt].
View all issues with C++11 status.
Discussion:
No relationship between U and T in the converting constructor for default_delete template.
Requirements: U* is convertible to T* and has_virtual_destructor<T>; the latter should also become a concept.
Rules out cross-casting.
The requirements for unique_ptr conversions should be the same as those on the deleter.
[ Howard adds 2008-11-26: ]
I believe we need to be careful to not outlaw the following use case, and I believe the current proposed wording (requires Convertible<U*, T*> && HasVirtualDestructor<T>) does so:
#include <memory> int main() { std::unique_ptr<int> p1(new int(1)); std::unique_ptr<const int> p2(move(p1)); int i = *p2; // *p2 = i; // should not compile }
I've removed "&& HasVirtualDestructor<T>" from the requires clause in the proposed wording.
[ Post Summit: ]
Alisdair: This issue has to stay in review pending a paper constraining unique_ptr.
Consensus: We agree with the resolution, but unique_ptr needs to be constrained, too.
Recommend Keep in Review.
[ Batavia (2009-05): ]
Keep in Review status for the reasons cited.
[ 2009-07 Frankfurt: ]
The proposed resolution uses concepts. Howard needs to rewrite the proposed resolution.
Move back to Open.
[ 2009-07-26 Howard provided rewritten proposed wording and moved to Review. ]
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Add after 20.8.1.1.2 [unique.ptr.dltr.dflt], p1:
template <class U> default_delete(const default_delete<U>& other);-1- Effects: ...
Remarks: This constructor shall participate in overload resolution if and only if U* is implicitly convertible to T*.
Section: 20.10.7.6 [meta.trans.other] Status: CD1 Submitter: Jens Maurer Opened: 2008-06-12 Last modified: 2015-04-08
View other active issues in [meta.trans.other].
View all other issues in [meta.trans.other].
View all issues with CD1 status.
Discussion:
With the arrival of extended unions (N2544), there is no known use of aligned_union that couldn't be handled by the "extended unions" core-language facility.
Proposed resolution:
Remove the following signature from 20.10.2 [meta.type.synop]:
template <std::size_t Len, class... Types> struct aligned_union;
Remove the second row from table 51 in 20.10.7.6 [meta.trans.other], starting with:
template <std::size_t Len, class... Types> struct aligned_union;
Section: 30.5.1 [thread.condition.condvar] Status: C++11 Submitter: Beman Dawes Opened: 2008-06-13 Last modified: 2015-04-08
View all other issues in [thread.condition.condvar].
View all issues with C++11 status.
Discussion:
The meaning of the bool returned by condition_variable::timed_wait is so obscure that even the class' designer can't deduce it correctly. Several people have independently stumbled on this issue.
It might be simpler to change the return type to a scoped enum:
enum class timeout { not_reached, reached };
That's the same cost as returning a bool, but not subject to mistakes. Your example below would be:
if (cv.wait_until(lk, time_limit) == timeout::reached ) throw time_out();
[ Beman to supply exact wording. ]
[ San Francisco: ]
There is concern that the enumeration names are just as confusing, if not more so, as the bool. You might have awoken because of a signal or a spurious wakeup, for example.
Group feels that this is a defect that needs fixing.
Group prefers returning an enum over a void return.
Howard to provide wording.
[ 2009-06-14 Beman provided wording. ]
[ 2009-07 Frankfurt: ]
Move to Ready.
Proposed resolution:
Change Condition variables 30.5 [thread.condition], Header condition_variable synopsis, as indicated:
namespace std { class condition_variable; class condition_variable_any; enum class cv_status { no_timeout, timeout }; }
Change class condition_variable 30.5.1 [thread.condition.condvar] as indicated:
class condition_variable { public: ... template <class Clock, class Duration>boolcv_status wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time); template <class Clock, class Duration, class Predicate> bool wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred); template <class Rep, class Period>boolcv_status wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time); template <class Rep, class Period, class Predicate> bool wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred); ... }; ... template <class Clock, class Duration>boolcv_status wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time);-15- Precondition: lock is locked by the calling thread, and either
- no other thread is waiting on this condition_variable object or
- lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting threads (via wait, wait_for or wait_until.).
-16- Effects:
- Atomically calls lock.unlock() and blocks on *this.
- When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.
- The function will unblock when signaled by a call to notify_one(), a call to notify_all(),
by the current time exceeding abs_timeif Clock::now() >= abs_time, or spuriously.- If the function exits via an exception, lock.unlock() shall be called prior to exiting the function scope.
-17- Postcondition: lock is locked by the calling thread.
-18- Returns:
Clock::now() < abs_timecv_status::timeout if the function unblocked because abs_time was reached, otherwise cv_status::no_timeout.-19- Throws: std::system_error when the effects or postcondition cannot be achieved.
-20- Error conditions:
- operation_not_permitted — if the thread does not own the lock.
- equivalent error condition from lock.lock() or lock.unlock().
template <class Rep, class Period>boolcv_status wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time);-21-
EffectsReturns:wait_until(lock, chrono::monotonic_clock::now() + rel_time)
-22- Returns: false if the call is returning because the time duration specified by rel_time has elapsed, otherwise true.[ This part of the wording may conflict with 859 in detail, but does not do so in spirit. If both issues are accepted, there is a logical merge. ]
template <class Clock, class Duration, class Predicate> bool wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);-23- Effects:
while (!pred()) if (!wait_until(lock, abs_time) == cv_status::timeout) return pred(); return true;-24- Returns: pred().
-25- [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the timeout was triggered. — end note].
Change Class condition_variable_any 30.5.2 [thread.condition.condvarany] as indicated:
class condition_variable_any { public: ... template <class Lock, class Clock, class Duration>boolcv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time); template <class Lock, class Clock, class Duration, class Predicate> bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred); template <class Lock, class Rep, class Period>boolcv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time); template <class Lock, class Rep, class Period, class Predicate> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred); ... }; ... template <class Lock, class Clock, class Duration>boolcv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);-13- Effects:
- Atomically calls lock.unlock() and blocks on *this.
- When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.
- The function will unblock when signaled by a call to notify_one(), a call to notify_all(),
by the current time exceeding abs_timeif Clock::now() >= abs_time, or spuriously.- If the function exits via an exception, lock.unlock() shall be called prior to exiting the function scope.
-14- Postcondition: lock is locked by the calling thread.
-15- Returns:
Clock::now() < abs_timecv_status::timeout if the function unblocked because abs_time was reached, otherwise cv_status::no_timeout.-16- Throws: std::system_error when the effects or postcondition cannot be achieved.
-17- Error conditions:
- equivalent error condition from lock.lock() or lock.unlock().
template <class Lock, class Rep, class Period>boolcv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);-18-
EffectsReturns:wait_until(lock, chrono::monotonic_clock::now() + rel_time)
-19- Returns: false if the call is returning because the time duration specified by rel_time has elapsed, otherwise true.[ This part of the wording may conflict with 859 in detail, but does not do so in spirit. If both issues are accepted, there is a logical merge. ]
template <class Lock, class Clock, class Duration, class Predicate> bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>&rel_timeabs_time, Predicate pred);-20- Effects:
while (!pred()) if (!wait_until(lock, abs_time) == cv_status::timeout) return pred(); return true;-21- Returns: pred().
-22- [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the timeout was triggered. — end note].
Section: 20.7.4 [util.dynamic.safety] Status: CD1 Submitter: Pete Becker Opened: 2008-06-21 Last modified: 2015-04-08
View all other issues in [util.dynamic.safety].
View all issues with CD1 status.
Discussion:
The first sentence of the Effects clause for undeclare_reachable seems to be missing some words. I can't parse
... for all non-null p referencing the argument is no longer declared reachable...
I take it the intent is that undeclare_reachable should be called only when there has been a corresponding call to declare_reachable. In particular, although the wording seems to allow it, I assume that code shouldn't call declare_reachable once then call undeclare_reachable twice.
I don't know what "shall be live" in the Requires clause means.
In the final Note for undeclare_reachable, what does "cannot be deallocated" mean? Is this different from "will not be able to collect"?
For the wording on nesting of declare_reachable and undeclare_reachable, the words for locking and unlocking recursive mutexes probably are a good model.
[ San Francisco: ]
Nick: what does "shall be live" mean?
Hans: I can provide an appropriate cross-reference to the Project Editor to clarify the intent.
Proposed resolution:
In 20.7.4 [util.dynamic.safety] (N2670, Minimal Support for Garbage Collection)
Add at the beginning, before paragraph 39
A complete object is declared reachable while the number of calls to declare_reachable with an argument referencing the object exceeds the number of undeclare_reachable calls with pointers to the same complete object.
Change paragraph 42 (Requires clause for undeclare_reachable)
If p is not null,
declare_reachable(p) was previously calledthe complete object referenced by p shall have been previously declared reachable, and shall be live (3.8 [basic.life]) from the time of the call until the last undeclare_reachable(p) call on the object.
Change the first sentence in paragraph 44 (Effects clause for undeclare_reachable):
Effects:
Once the number of calls to undeclare_reachable(p) equals the number of calls to declare_reachable(p) for all non-null p referencing the argument is no longer declared reachable. When this happens, pointers to the object referenced by p may not be subsequently dereferenced.After a call to undeclare_reachable(p), if p is not null and the object q referenced by p is no longer declared reachable, then dereferencing any pointer to q that is not safely derived results in undefined behavior. ...
Change the final note:
[Note: It is expected that calls to declare_reachable(p)
will consume a small amount of memory, in addition to that occupied
by the referenced object, until the matching call to
undeclare_reachable(p) is encountered. In addition, the
referenced object cannot be deallocated during this period, and garbage
collecting implementations will not be able to collect the object while
it is declared reachable. Long running programs should arrange
that calls for short-lived objects are matched. --end
note]
Section: 30.5 [thread.condition] Status: C++11 Submitter: Pete Becker Opened: 2008-06-23 Last modified: 2015-04-08
View all other issues in [thread.condition].
View all issues with C++11 status.
Discussion:
N2661 says that there is a class named monotonic_clock. It also says that this name may be a synonym for system_clock, and that it's conditionally supported. So the actual requirement is that it can be monotonic or not, and you can tell by looking at is_monotonic, or it might not exist at all (since it's conditionally supported). Okay, maybe too much flexibility, but so be it.
A problem comes up in the threading specification, where several variants of wait_for explicitly use monotonic_clock::now(). What is the meaning of an effects clause that says
wait_until(lock, chrono::monotonic_clock::now() + rel_time)
when monotonic_clock is not required to exist?
[ San Francisco: ]
Nick: maybe instead of saying that chrono::monotonic_clock is conditionally supported, we could say that it's always there, but not necessarily supported..
Beman: I'd prefer a typedef that identifies the best clock to use for wait_for locks.
Tom: combine the two concepts; create a duration clock type, but keep the is_monotonic test.
Howard: if we create a duration_clock type, is it a typedef or an entirely true type?
There was broad preference for a typedef.
Move to Open. Howard to provide wording to add a typedef for duration_clock and to replace all uses of monotonic_clock in function calls and signatures with duration_clock.
[ Howard notes post-San Francisco: ]
After further thought I do not believe that creating a duration_clock typedef is the best way to proceed. An implementation may not need to use a time_point to implement the wait_for functions.
For example, on POSIX systems sleep_for can be implemented in terms of nanosleep which takes only a duration in terms of nanoseconds. The current working paper does not describe sleep_for in terms of sleep_until. And paragraph 2 of 30.2.4 [thread.req.timing] has the words strongly encouraging implementations to use monotonic clocks for sleep_for:
2 The member functions whose names end in _for take an argument that specifies a relative time. Implementations should use a monotonic clock to measure time for these functions.
I believe the approach taken in describing the effects of sleep_for and try_lock_for is also appropriate for wait_for. I.e. these are not described in terms of their _until variants.
[ 2009-07 Frankfurt: ]
Beman will send some suggested wording changes to Howard.
Move to Ready.
[ 2009-07-21 Beman added the requested wording changes to 962. ]
Proposed resolution:
Change 30.5.1 [thread.condition.condvar], p21-22:
template <class Rep, class Period> bool wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time);Precondition: lock is locked by the calling thread, and either
- no other thread is waiting on this condition_variable object or
- lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting threads (via wait, wait_for or wait_until).
21 Effects:
wait_until(lock, chrono::monotonic_clock::now() + rel_time)
- Atomically calls lock.unlock() and blocks on *this.
- When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.
- The function will unblock when signaled by a call to notify_one(), a call to notify_all(), by the elapsed time rel_time passing (30.2.4 [thread.req.timing]), or spuriously.
- If the function exits via an exception, lock.unlock() shall be called prior to exiting the function scope.
Postcondition: lock is locked by the calling thread.
22 Returns: false if the call is returning because the time duration specified by rel_time has elapsed, otherwise true.
[ This part of the wording may conflict with 857 in detail, but does not do so in spirit. If both issues are accepted, there is a logical merge. ]
Throws: std::system_error when the effects or postcondition cannot be achieved.
Error conditions:
- operation_not_permitted -- if the thread does not own the lock.
- equivalent error condition from lock.lock() or lock.unlock().
Change 30.5.1 [thread.condition.condvar], p26-p29:
template <class Rep, class Period, class Predicate> bool wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);Precondition: lock is locked by the calling thread, and either
- no other thread is waiting on this condition_variable object or
- lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting threads (via wait, wait_for or wait_until).
26 Effects:
wait_until(lock, chrono::monotonic_clock::now() + rel_time, std::move(pred))
- Executes a loop: Within the loop the function first evaluates pred() and exits the loop if the result of pred() is true.
- Atomically calls lock.unlock() and blocks on *this.
- When unblocked, calls lock.lock() (possibly blocking on the lock).
- The function will unblock when signaled by a call to notify_one(), a call to notify_all(), by the elapsed time rel_time passing (30.1.4 [thread.req.timing]), or spuriously.
- If the function exits via an exception, lock.unlock() shall be called prior to exiting the function scope.
- The loop terminates when pred() returns true or when the time duration specified by rel_time has elapsed.
27 [Note: There is no blocking if pred() is initially true, even if the timeout has already expired. -- end note]
Postcondition: lock is locked by the calling thread.
28 Returns: pred()
29 [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the timeout was triggered. -- end note]
Throws: std::system_error when the effects or postcondition cannot be achieved.
Error conditions:
- operation_not_permitted -- if the thread does not own the lock.
- equivalent error condition from lock.lock() or lock.unlock().
Change 30.5.2 [thread.condition.condvarany], p18-19:
template <class Lock, class Rep, class Period> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);18 Effects:
wait_until(lock, chrono::monotonic_clock::now() + rel_time)
- Atomically calls lock.unlock() and blocks on *this.
- When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.
- The function will unblock when signaled by a call to notify_one(), a call to notify_all(), by the elapsed time rel_time passing (30.2.4 [thread.req.timing]), or spuriously.
- If the function exits via an exception, lock.unlock() shall be called prior to exiting the function scope.
Postcondition: lock is locked by the calling thread.
19 Returns: false if the call is returning because the time duration specified by rel_time has elapsed, otherwise true.
Throws: std::system_error when the returned value, effects, or postcondition cannot be achieved.
Error conditions:
- equivalent error condition from lock.lock() or lock.unlock().
Change 30.5.2 [thread.condition.condvarany], p23-p26:
template <class Lock, class Rep, class Period, class Predicate> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);Precondition: lock is locked by the calling thread, and either
- no other thread is waiting on this condition_variable object or
- lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting threads (via wait, wait_for or wait_until).
23 Effects:
wait_until(lock, chrono::monotonic_clock::now() + rel_time, std::move(pred))
- Executes a loop: Within the loop the function first evaluates pred() and exits the loop if the result of pred() is true.
- Atomically calls lock.unlock() and blocks on *this.
- When unblocked, calls lock.lock() (possibly blocking on the lock).
- The function will unblock when signaled by a call to notify_one(), a call to notify_all(), by the elapsed time rel_time passing (30.1.4 [thread.req.timing]), or spuriously.
- If the function exits via an exception, lock.unlock() shall be called prior to exiting the function scope.
- The loop terminates when pred() returns true or when the time duration specified by rel_time has elapsed.
24 [Note: There is no blocking if pred() is initially true, even if the timeout has already expired. -- end note]
Postcondition: lock is locked by the calling thread.
25 Returns: pred()
26 [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the timeout was triggered. -- end note]
Throws: std::system_error when the effects or postcondition cannot be achieved.
Error conditions:
- operation_not_permitted -- if the thread does not own the lock.
- equivalent error condition from lock.lock() or lock.unlock().
Section: 26 [numerics] Status: C++11 Submitter: Lawrence Crowl Opened: 2008-06-23 Last modified: 2015-04-08
View all other issues in [numerics].
View all issues with C++11 status.
Discussion:
There are a number of functions that affect the floating point state. These function need to be thread-safe, but I'm unsure of the right approach in the standard, as we inherit them from C.
[ San Francisco: ]
Nick: I think we already say that these functions do not introduce data races; see 17.6.5.6/20
Pete: there's more to it than not introducing data races; are these states maintained per thread?
Howard: 21.5/14 says that strtok and strerror are not required to avoid data races, and 20.9/2 says the same about asctime, gmtime, ctime, and gmtime.
Nick: POSIX has a list of not-safe functions. All other functions are implicitly thread safe.
Lawrence is to form a group between meetings to attack this issue. Nick and Tom volunteered to work with Lawrence.
Move to Open.
[ Post Summit: ]
Hans: Sane oses seem ok. Sensible thing is implementable and makes sense.
Nick: Default wording seems to cover this? Hole in POSIX, these functions need to be added to list of thread-unsafe functions.
Lawrence: Not sufficient, not "thread-safe" per our definition, but think of state as a thread-local variable. Need something like "these functions only affect state in the current thread."
Hans: Suggest the following wording: "The floating point environment is maintained per-thread."
Walter: Any other examples of state being thread safe that are not already covered elsewhere?
Have thread unsafe functions paper which needs to be updated. Should just fold in 26.3 [cfenv] functions.
Recommend Open. Lawrence instead suggests leaving it open until we have suitable wording that may or may not include the thread local commentary.
[ 2009-09-23 Hans provided wording. ]
If I understand the history correctly, Nick, as the Posix liaison, should probably get a veto on this, since I think it came from Posix (?) via WG14 and should probably really be addressed there (?). But I think we are basically in agreement that there is no other sane way to do this, and hence we don't have to worry too much about stepping on toes. As far as I can tell, this same issue also exists in the latest Posix standard (?).
[ 2009-10 Santa Cruz: ]
Moved to Ready.
Proposed resolution:
Add at the end of 26.3.1 [cfenv.syn]:
2 The header defines all functions, types, and macros the same as C99 7.6.
A separate floating point environment shall be maintained for each thread. Each function accesses the environment corresponding to its calling thread.
Section: 23.2 [container.requirements] Status: C++11 Submitter: Daniel Krügler Opened: 2008-06-24 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with C++11 status.
Discussion:
Table 89, Container requirements, defines operator== in terms of the container member function size() and the algorithm std::equal:
== is an equivalence relation. a.size() == b.size() && equal(a.begin(), a.end(), b.begin()
The new container forward_list does not provide a size member function by design but does provide operator== and operator!= without specifying it's semantic.
Other parts of the (sequence) container requirements do also depend on size(), e.g. empty() or clear(), but this issue explicitly attempts to solve the missing EqualityComparable specification, because of the special design choices of forward_list.
I propose to apply one of the following resolutions, which are described as:
Both proposal choices are discussed, the preferred choice of the author is to apply (A).
[ San Francisco: ]
There's an Option C: change the requirements table to use distance().
LWG found Option C acceptable.
Martin will draft the wording for Option C.
[ post San Francisco: ]
Martin provided wording for Option C.
[ 2009-07 Frankfurt ]
Other operational semantics (see, for example, Tables 82 and 83) are written in terms of a container's size() member. Daniel to update proposed resolution C.
[ Howard: Commented out options A and B. ]
[ 2009-07-26 Daniel updated proposed resolution C. ]
[ 2009-10 Santa Cruz: ]
Mark NAD Editorial. Addressed by N2986.
[ 2009-10 Santa Cruz: ]
Reopened. N2986 was rejected in full committee on procedural grounds.
[ 2010-01-30 Howard updated Table numbers. ]
[ 2010 Pittsburgh: ]
Moved to Ready for Pittsburgh.
Proposed resolution:
Option (C):
In 23.2.1 [container.requirements.general] change Table 90 -- Container requirements as indicated:
Change the text in the Assertion/note column in the row for "X u;" as follows:
post: u.
size() == 0empty() == trueChange the text in the Assertion/note column in the row for "X();" as follows:
X().
size() == 0empty() == trueChange the text in the Operational Semantics column in the row for "a == b" as follows:
== is an equivalence relation.
a.size()distance(a.begin(), a.end()) ==b.size()distance(b.begin(), b.end()) && equal(a.begin(), a.end(), b.begin())Add text in the Ass./Note/pre-/post-condition column in the row for "a == b" as follows:
Requires: T is EqualityComparable
Change the text in the Operational Semantics column in the row for "a.size()" as follows:
a.end() - a.begin()distance(a.begin(), a.end())Change the text in the Operational Semantics column in the row for "a.max_size()" as follows:
size()distance(begin(), end()) of the largest possible containerChange the text in the Operational Semantics column in the row for "a.empty()" as follows:
a.size() == 0a.begin() == a.end()In 23.2.1 [container.requirements.general] change Table 93 — Allocator-aware container requirements as indicated:
Change the text in the Assertion/note column in the row for "X() / X u;" as follows:
Requires: A is DefaultConstructible post:
u.size() == 0u.empty() == true, get_allocator() == A()Change the text in the Assertion/note column in the row for "X(m) / X u(m);" as follows:
post:
u.size() == 0u.empty() == true, get_allocator() == mIn 23.2.3 [sequence.reqmts] change Table 94 — Sequence container requirements as indicated:
Change the text in the Assertion/note column in the row for "X(n, t) / X a(n, t)" as follows:
post:
size()distance(begin(), end()) == n [..]Change the text in the Assertion/note column in the row for "X(i, j) / X a(i, j)" as follows:
[..] post:
size() == distance between i and jdistance(begin(), end()) == distance(i, j) [..]Change the text in the Assertion/note column in the row for "a.clear()" as follows:
a.erase(a.begin(), a.end()) post:
size() == 0a.empty() == trueIn 23.2.4 [associative.reqmts] change Table 96 — Associative container requirements as indicated:
[ Not every occurrence of size() was replaced, because all current associative containers have a size. The following changes ensure consistency regarding the semantics of "erase" for all tables and adds some missing objects ]
Change the text in the Complexity column in the row for X(i,j,c)/Xa(i,j,c); as follows:
N log N in general (N == distance(i, j)
is the distance from i to j); ...Change the text in the Complexity column in the row for "a.insert(i, j)" as follows:
N log(a.size() + N)
(N is the distance from i to j)where N == distance(i, j)Change the text in the Complexity column in the row for "a.erase(k)" as follows:
log(a.size()) + a.count(k)
Change the text in the Complexity column in the row for "a.erase(q1, q2)" as follows:
log(a.size()) + N where N
is the distance from q1 to q2== distance(q1, q2).Change the text in the Assertion/note column in the row for "a.clear()" as follows:
a.erase(a.begin(),a.end()) post:
size() == 0a.empty() == trueChange the text in the Complexity column in the row for "a.clear()" as follows:
linear in a.size()
Change the text in the Complexity column in the row for "a.count(k)" as follows:
log(a.size()) + a.count(k)
In 23.2.5 [unord.req] change Table 98 — Unordered associative container requirements as indicated:
[ The same rational as for Table 96 applies here ]
Change the text in the Assertion/note column in the row for "a.clear()" as follows:
[..] Post: a.
size() == 0empty() == true
Section: 25.3.6 [alg.fill], 25.3.7 [alg.generate] Status: C++11 Submitter: Daniel Krügler Opened: 2008-07-13 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
In regard to library defect 488 I found some more algorithms which unnecessarily throw away information. These are typically algorithms, which sequentially write into an OutputIterator, but do not return the final value of this output iterator. These cases are:
template<class OutputIterator, class Size, class T> void fill_n(OutputIterator first, Size n, const T& value);
template<class OutputIterator, class Size, class Generator> void generate_n(OutputIterator first, Size n, Generator gen);
In both cases the minimum requirements on the iterator are OutputIterator, which means according to the requirements of 24.2.4 [output.iterators] p. 2 that only single-pass iterations are guaranteed. So, if users of fill_n and generate_n have only an OutputIterator available, they have no chance to continue pushing further values into it, which seems to be a severe limitation to me.
[ Post Summit Daniel "conceptualized" the wording. ]
[ Batavia (2009-05): ]
Alisdair likes the idea, but has concerns about the specific wording about the returns clauses.
Alan notes this is a feature request.
Bill notes we have made similar changes to other algorithms.
Move to Open.
[ 2009-07 Frankfurt ]
We have a consensus for moving forward on this issue, but Daniel needs to deconceptify it.
[ 2009-07-25 Daniel provided non-concepts wording. ]
[ 2009-10 Santa Cruz: ]
Moved to Ready.
Proposed resolution:
Replace the current declaration of fill_n in 25 [algorithms]/2, header <algorithm> synopsis and in 25.3.6 [alg.fill] by
template<class OutputIterator, class Size, class T>voidOutputIterator fill_n(OutputIterator first, Size n, const T& value);
Just after the effects clause add a new returns clause saying:
Returns: For fill_n and positive n, returns first + n. Otherwise returns first for fill_n.
Replace the current declaration of generate_n in 25 [algorithms]/2, header <algorithm> synopsis and in 25.3.7 [alg.generate] by
template<class OutputIterator, class Size, class Generator>voidOutputIterator generate_n(OutputIterator first, Size n, Generator gen);
Just after the effects clause add a new returns clause saying:
For generate_n and positive n, returns first + n. Otherwise returns first for generate_n.
Section: 20.7.12 [specialized.algorithms], 20.8.2.2.6 [util.smartptr.shared.create] Status: C++11 Submitter: Alberto Ganesh Barbati Opened: 2008-07-14 Last modified: 2015-04-08
View all other issues in [specialized.algorithms].
View all issues with C++11 status.
Discussion:
LWG issue 402 replaced "new" with "::new" in the placement new-expression in 20.7.9.1 [allocator.members]. I believe the rationale given in 402 applies also to the following other contexts:
in 20.7.12 [specialized.algorithms], all four algorithms unitialized_copy, unitialized_copy_n, unitialized_fill and unitialized_fill_n use the unqualified placement new-expression in some variation of the form:
new (static_cast<void*>(&*result)) typename iterator_traits<ForwardIterator>::value_type(*first);
in 20.8.2.2.6 [util.smartptr.shared.create] there is a reference to the unqualified placement new-expression:
new (pv) T(std::forward<Args>(args)...),
I suggest to add qualification in all those places. As far as I know, these are all the remaining places in the whole library that explicitly use a placement new-expression. Should other uses come out, they should be qualified as well.
As an aside, a qualified placement new-expression does not need additional requirements to be compiled in a constrained context. By adding qualification, the HasPlacementNew concept introduced recently in N2677 (Foundational Concepts) would no longer be needed by library and should therefore be removed.
[ San Francisco: ]
Detlef: If we move this to Ready, it's likely that we'll forget about the side comment about the HasPlacementNew concept.
[ post San Francisco: ]
Daniel: HasPlacementNew has been removed from N2774 (Foundational Concepts).
Proposed resolution:
Replace "new" with "::new" in:
Section: 23 [containers] Status: C++11 Submitter: Alberto Ganesh Barbati Opened: 2008-07-22 Last modified: 2015-04-08
View other active issues in [containers].
View all other issues in [containers].
View all issues with C++11 status.
Discussion:
The term "default constructed" is often used in wording that predates the introduction of the concept of value-initialization. In a few such places the concept of value-initialization is more correct than the current wording (for example when the type involved can be a built-in) so a replacement is in order. Two of such places are already covered by issue 867. This issue deliberately addresses the hopefully non-controversial changes in the attempt of being approved more quickly. A few other occurrences (for example in std::tuple, std::reverse_iterator and std::move_iterator) are left to separate issues. For std::reverse_iterator, see also issue 408. This issue is related with issue 724.
[ San Francisco: ]
The list provided in the proposed resolution is not complete. James Dennett will review the library and provide a complete list and will double-check the vocabulary.
This issue relates to Issue 886 tuple construction
[ 2009-07 Frankfurt ]
The proposed resolution is incomplete.
Move to Tentatively NAD Future. Howard will contact Ganesh for wording. If wording is forthcoming, Howard will move it back to Review.
[ 2009-07-18 Ganesh updated the proposed wording. ]
Howard: Moved back to Review. Note that 17.6.3.1 [utility.arg.requirements] refers to a section that is not in the current working paper, but does refer to a section that we expect to reappear after the de-concepts merge. This was a point of confusion we did not recognize when we reviewed this issue in Frankfurt.
Howard: Ganesh also includes a survey of places in the WP surveyed for changes of this nature and purposefully not treated:
Places where changes are not being proposed
In the following paragraphs, we are not proposing changes because it's not clear whether we actually prefer value-initialization over default-initialization (now partially covered by 1012):
20.8.1.2.1 [unique.ptr.single.ctor] para 3 e 7
24.5.1.3.1 [reverse.iter.cons] para 1
24.5.3.3.1 [move.iter.op.const] para 1
In the following paragraphs, the expression "default constructed" need not be changed, because the relevant type does not depend on a template parameter and has a user-provided constructor:
[func.referenceclosure.invoke] para 12, type: reference_closure
30.3.1.2 [thread.thread.constr] para 30, type: thread
30.3.1.5 [thread.thread.member] para 52, type: thread_id
30.3.2 [thread.thread.this], para 1, type: thread_id
[ 2009-08-18 Daniel adds: ]
I have no objections against the currently suggested changes, but I also cross-checked with the list regarding intentionally excluded changes, and from this I miss the discussion of
21.4.1 [string.require] p. 2:
"[..] The Allocator object used shall be a copy of the Allocator> object passed to the basic_string object's constructor or, if the constructor does not take an Allocator argument, a copy of a default-constructed Allocator object."
N2723, 26.5.1.4 [rand.req.eng], Table 109, expression "T()":
Pre-/post-condition: "Creates an engine with the same initial state as all other default-constructed engines of type X."
as well as in 26.5.5 [rand.predef]/1-9 (N2914), 26.5.7.1 [rand.util.seedseq]/3, 27.7.2.1.1 [istream.cons]/3, 27.7.3.2 [ostream.cons]/9 (N2914), 28.13 [re.grammar]/2, 30.3.1.4 [thread.thread.assign]/1 (N2914),
[ Candidates for the "the expression "default constructed" need not be changed" list ]
I'm fine, if these would be added to the intentionally exclusion list, but mentioning them makes it easier for other potential reviewers to decide on the relevance or not-relevance of them for this issue.
I suggest to remove the reference of [func.referenceclosure.invoke] in the "it's not clear" list, because this component does no longer exist.
I also suggest to add a short comment that all paragraphs in the resolution whether they refer to N2723 or to N2914 numbering, because e.g. "Change 23.3.3.2 [deque.cons] para 5" is an N2723 coordinate, while "Change 23.3.3.3 [deque.capacity] para 1" is an N2914 coordinate. Even better would be to use one default document for the numbering (probably N2914) and mention special cases (e.g. "Change 17.6.3.1 [utility.arg.requirements] para 2" as referring to N2723 numbering).
[ 2009-08-18 Alisdair adds: ]
I strongly believe the term "default constructed" should not appear in the library clauses unless we very clearly define a meaning for it, and I am not sure what that would be.
In those cases where we do not want to replace "default constructed" with "vale initialized" we should be using "default initialized". If we have a term that could mean either, we reduce portability of programs.
I have not done an exhaustive review to clarify if that is a vendor freedom we have reason to support (e.g. value-init in debug, default-init in release) so I may yet be convinced that LWG has reason to define this new term of art, but generally C++ initialization is confusing enough without supporting further ill-defined terms.
[ 2009-10 Santa Cruz: ]
Move to Ready.
[ 2010 Pittsburgh: ]
Moved to review in order to enable conflict resolution with 704.
[ 2010-03-26 Daniel harmonized the wording with the upcoming FCD. ]
[ 2010 Rapperswil: ]
Move to Ready.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 17.6.3.1 [utility.arg.requirements] para 2:
2 In general, a default constructor is not required. Certain container class member function signatures specify
the default constructorT() as a default argument. T() shall be a well-defined expression (8.5) if one of those signatures is called using the default argument (8.3.6).
Change 23.3.3.2 [deque.cons] para 3:
3 Effects: Constructs a deque with n
default constructedvalue-initialized elements.
Change 23.3.3.3 [deque.capacity] para 1:
1 Effects: If sz < size(), equivalent to erase(begin() + sz, end());. If size() < sz, appends sz - size()
default constructedvalue-initialized elements to the sequence.
Change 23.3.4.2 [forwardlist.cons] para 3:
3 Effects: Constructs a forward_list object with n
default constructedvalue-initialized elements.
Change 23.3.4.5 [forwardlist.modifiers] para 22:
22 Effects: [...] For the first signature the inserted elements are
default constructedvalue-initialized, and for the second signature they are copies of c.
Change 23.3.5.2 [list.cons] para 3:
3 Effects: Constructs a list with n
default constructedvalue-initialized elements.
Change 23.3.5.3 [list.capacity] para 1:
1 Effects: If sz < size(), equivalent to list<T>::iterator it = begin(); advance(it, sz); erase(it, end());. If size() < sz, appends sz - size()
default constructedvalue-initialized elements to the sequence.
Change 23.3.6.2 [vector.cons] para 3:
3 Effects: Constructs a vector with n
default constructedvalue-initialized elements.
Change 23.3.6.3 [vector.capacity] para 9:
9 Effects: If sz < size(), equivalent to erase(begin() + sz, end());. If size() < sz, appends sz - size()
default constructedvalue-initialized elements to the sequence.
Section: 23.2.5 [unord.req] Status: C++11 Submitter: Sohail Somani Opened: 2008-07-22 Last modified: 2015-04-08
View other active issues in [unord.req].
View all other issues in [unord.req].
View all issues with C++11 status.
Discussion:
Is there any language in the current draft specifying the behaviour of the following snippet?
unordered_set<int> s; unordered_set<int>::local_iterator it = s.end(0); // Iterate past end - the unspecified part it++;
I don't think there is anything about s.end(n) being considered an iterator for the past-the-end value though (I think) it should be.
[ San Francisco: ]
We believe that this is not a substantive change, but the proposed change to the wording is clearer than what we have now.
[ Post Summit: ]
Recommend Tentatively Ready.
Proposed resolution:
Change Table 97 "Unordered associative container requirements" in 23.2.5 [unord.req]:
Table 97: Unordered associative container requirements expression return type assertion/note pre/post-condition complexity b.begin(n) local_iterator
const_local_iterator for const b.Pre: n shall be in the range [0,b.bucket_count()). Note: [b.begin(n), b.end(n)) is a valid range containing all of the elements in the nth bucket.b.begin(n) returns an iterator referring to the first element in the bucket. If the bucket is empty, then b.begin(n) == b.end(n).Constant b.end(n) local_iterator
const_local_iterator for const b.Pre: n shall be in the range [0, b.bucket_count()). b.end(n) returns an iterator which is the past-the-end value for the bucket. Constant
Section: 23.2.5 [unord.req] Status: C++11 Submitter: Daniel Krügler Opened: 2008-08-17 Last modified: 2015-04-08
View other active issues in [unord.req].
View all other issues in [unord.req].
View all issues with C++11 status.
Discussion:
Good ol' associative containers allow both function pointers and function objects as feasible comparators, as described in 23.2.4 [associative.reqmts]/2:
Each associative container is parameterized on Key and an ordering relation Compare that induces a strict weak ordering (25.3) on elements of Key. [..]. The object of type Compare is called the comparison object of a container. This comparison object may be a pointer to function or an object of a type with an appropriate function call operator.[..]
The corresponding wording for unordered containers is not so clear, but I read it to disallow function pointers for the hasher and I miss a clear statement for the equality predicate, see 23.2.5 [unord.req]/3+4+5:
Each unordered associative container is parameterized by Key, by a function object Hash that acts as a hash function for values of type Key, and by a binary predicate Pred that induces an equivalence relation on values of type Key.[..]
A hash function is a function object that takes a single argument of type Key and returns a value of type std::size_t.
Two values k1 and k2 of type Key are considered equal if the container's equality function object returns true when passed those values.[..]
and table 97 says in the column "assertion...post-condition" for the expression X::hasher:
Hash shall be a unary function object type such that the expression hf(k) has type std::size_t.
Note that 20.9 [function.objects]/1 defines as "Function objects are objects with an operator() defined.[..]"
Does this restriction exist by design or is it an oversight? If an oversight, I suggest that to apply the following
[ 2009-07-28 Reopened by Alisdair. No longer solved by concepts. ]
[ 2009-10 Santa Cruz: ]
Ask Daniel to provide proposed wording that: makes it explicit that function pointers are function objects at the beginning of 20.9 [function.objects]; fixes the "requirements" for typedefs in 20.9.4 [refwrap] to instead state that the function objects defined in that clause have these typedefs, but not that these typedefs are requirements on function objects; remove the wording that explicitly calls out that associative container comparators may be function pointers.
[ 2009-12-19 Daniel updates wording and rationale. ]
[ 2010-02-11 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Rationale:
The below provided wording also affects some part of the library which is involved with callable types (20.9.1 [func.def]/3). Reason for this is that callable objects do have a lot in common with function objects. A simple formula seems to be:
callable objects = function objects + pointers to member
The latter group is excluded from function objects because of the expression-based usage of function objects in the algorithm clause, which is incompatible with the notation to dereference pointers to member without a concept map available in the language.
This analysis showed some currently existing normative definition differences between the above subset of callable objects and function objects which seem to be unintended: Backed by the Santa Cruz outcome function objects should include both function pointers and "object[s] with an operator() defined". This clearly excludes class types with a conversion function to a function pointer or all similar conversion function situations described in 13.3 [over.match]/2 b. 2. In contrast to this, the wording for callable types seems to be less constrained (20.9.1 [func.def]/3):
A callable type is a [..] class type whose objects can appear immediately to the left of a function call operator.
The rationale given in N1673 and a recent private communication with Peter Dimov revealed that the intention of this wording was to cover the above mentioned class types with conversion functions as well. To me the current wording of callable types can be read either way and I suggest to make the intention more explicit by replacing
[..] class type whose objects can appear immediately to the left of a function call operator
by
[..] class type whose objects can appear as the leftmost subexpression of a function call expression 5.2.2 [expr.call].
and to use the same definition for the class type part of function objects, because there is no reason to exclude class types with a conversion function to e.g. pointer to function from being used in algorithms.
Now this last term "function objects" itself brings us to a third unsatisfactory state: The term is used both for objects (e.g. "Function objects are objects[..]" in 20.9 [function.objects]/1) and for types (e.g. "Each unordered associative container is parameterized [..] by a function object Hash that acts as a hash function [..]" in 23.2.5 [unord.req]/3). This impreciseness should be fixed and I suggest to introduce the term function object type as the counter part to callable type. This word seems to be a quite natural choice, because the library already uses it here and there (e.g. "Hash shall be a unary function object type such that the expression hf(k) has type std::size_t." in Table 98, "X::hasher" or "Requires: T shall be a function object type [..]" in 20.9.12.2.5 [func.wrap.func.targ]/3).
Finally I would like to add that part of the issue 870 discussion related to the requirements for typedefs in 20.9.4 [refwrap] during the Santa Cruz meeting is now handled by the new issue 1290.
Obsolete rationale:
[ San Francisco: ]
This is fixed by N2776.
Proposed resolution:
Change 20.9 [function.objects]/1 as indicated:
1
Function objects are objects with an operator() defined.An object type (3.9 [basic.types]) that can be the type of the postfix-expression in a function call (5.2.2 [expr.call], 13.3.1.1 [over.match.call]) is called a function object type*. A function object is an object of a function object type. In the places where one would expect to pass a pointer to a function to an algorithmic template (Clause 25 [algorithms]), the interface is specified to acceptan object with an operator() defineda function object. This not only makes algorithmic templates work with pointers to functions, but also enables them to work with arbitrary function objects.* Such a type is either a function pointer or a class type which often has a member operator(), but in some cases it can omit that member and provide a conversion to a pointer to function.
Change 20.9.1 [func.def]/3 as indicated: [The intent is to make the commonality of callable types and function object types more explicit and to get rid of wording redundancies]
3 A callable type is
a pointer to function,a pointer to memberfunction, a pointer to member data,or aclass type whose objects can appear immediately to the left of a function call operatorfunction object type (20.9 [function.objects]).
Change [bind]/1 as indicated:
1 The function template bind returns an object that binds a
functioncallable object passed as an argument to additional arguments.
Change 20.9.10 [func.bind]/1 as indicated:
1 This subclause describes a uniform mechanism for binding arguments of
functioncallable objects.
Change 20.9.12 [func.wrap]/1 as indicated:
1 This subclause describes a polymorphic wrapper class that encapsulates arbitrary
functioncallable objects.
Change 20.9.12.2 [func.wrap.func]/2 as indicated [The reason for this change is that 20.9.12.2 [func.wrap.func]/1 clearly says that all callable types may be wrapped by std::function and current implementations indeed do provide support for pointer to members as well. One further suggested improvement is to set the below definition of Callable in italics]:
2 A
functioncallable object f of type F isCallableCallable for argument typesT1, T2, ..., TN inArgTypes andareturn type R,if, given lvalues t1, t2, ..., tN of types T1, T2, ..., TN, respectively,the expression INVOKE(f, declval<ArgTypes>()..., Rt1, t2, ..., tN), considered as an unevaluated operand (5 [expr]), is well formed (20.7.2)and, if R is not void, convertible to R.
Change 20.9.12.2.1 [func.wrap.func.con]/7 as indicated:
function(const function& f); template <class A> function(allocator_arg_t, const A& a, const function& f);...
7 Throws: shall not throw exceptions if f's target is a function pointer or a
functioncallable object passed via reference_wrapper. Otherwise, may throw bad_alloc or any exception thrown by the copy constructor of the storedfunctioncallable object. [Note: Implementations are encouraged to avoid the use of dynamically allocated memory for smallfunctioncallable objects, e.g., where f's target is an object holding only a pointer or reference to an object and a member function pointer. — end note]
Change 20.9.12.2.1 [func.wrap.func.con]/11 as indicated:
template<class F> function(F f); template <class F, class A> function(allocator_arg_t, const A& a, F f);...
11 [..] [Note: implementations are encouraged to avoid the use of dynamically allocated memory for small
functioncallable objects, for example, where f's target is an object holding only a pointer or reference to an object and a member function pointer. — end note]
Change 20.9.12.2.4 [func.wrap.func.inv]/3 as indicated:
R operator()(ArgTypes... args) const...
3 Throws: bad_function_call if !*this; otherwise, any exception thrown by the wrapped
functioncallable object.
Change 20.9.12.2.5 [func.wrap.func.targ]/3 as indicated:
template<typename T> T* target(); template<typename T> const T* target() const;...
3 Requires: T shall be a
function objecttype that is Callable (20.9.12.2 [func.wrap.func]) for parameter types ArgTypes and return type R.
Change 23.2.4 [associative.reqmts]/2 as indicated: [The suggested removal seems harmless, because 25.4 [alg.sorting]1 already clarifies that Compare is a function object type. Nevertheless it is recommended, because the explicit naming of "pointer to function" is misleading]
2 Each associative container is parameterized on Key and an ordering relation Compare that induces a strict weak ordering (25.4 [alg.sorting]) on elements of Key. In addition, map and multimap associate an arbitrary type T with the Key. The object of type Compare is called the comparison object of a container.
This comparison object may be a pointer to function or an object of a type with an appropriate function call operator.
Change 23.2.5 [unord.req]/3 as indicated:
3 Each unordered associative container is parameterized by Key, by a function object type Hash that acts as a hash function for values of type Key, and by a binary predicate Pred that induces an equivalence relation on values of type Key. [..]
Change 25.1 [algorithms.general]/7 as indicated: [The intent is to bring this part in sync with 20.9 [function.objects]]
7 The Predicate parameter is used whenever an algorithm expects a function object (20.9 [function.objects]) that when applied to the result of dereferencing the corresponding iterator returns a value testable as true. In other words, if an algorithm takes Predicate pred as its argument and first as its iterator argument, it should work correctly in the construct if (pred(*first)){...}. The function object pred shall not apply any nonconstant function through the dereferenced iterator.
This function object may be a pointer to function, or an object of a type with an appropriate function call operator.
Change 20.8.1.2 [unique.ptr.single]/1 as indicated:
1 The default type for the template parameter D is default_delete. A client-supplied template argument D shall be a function
pointer or functorobject type for which, given a value d of type D and a pointer ptr of type T*, the expression d(ptr) is valid and has the effect of deallocating the pointer as appropriate for that deleter. D may also be an lvalue-reference to a deleter.
Section: 26.7.6 [numeric.iota] Status: C++11 Submitter: Daniel Krügler Opened: 2008-08-20 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
According to the recent WP N2691, 26.7.6 [numeric.iota]/1, the requires clause of std::iota says:
T shall meet the requirements of CopyConstructible and Assignable types, and shall be convertible to ForwardIterator's value type.[..]
Neither CopyConstructible nor Assignable is needed, instead MoveConstructible seems to be the correct choice. I guess the current wording resulted as an artifact from comparing it with similar numerical algorithms like accumulate.
Note: If this function will be conceptualized, the here proposed MoveConstructible requirement can be removed, because this is an implied requirement of function arguments, see N2710/[temp.req.impl]/3, last bullet.
[ post San Francisco: ]
Issue pulled by author prior to review.
[ 2009-07-30 Daniel reopened: ]
with the absence of concepts, this issue (closed) is valid again and I suggest to reopen it. I also revised by proposed resolution based on N2723 wording:
[ 2009-10 Santa Cruz: ]
Change 'convertible' to 'assignable', Move To Ready.
Proposed resolution:
Change the first sentence of 26.7.6 [numeric.iota]/1:
Requires: T shall
meet the requirements of CopyConstructible and Assignable types, and shallbe assignable to ForwardIterator's value type. [..]
Section: 24.5.3.3.12 [move.iter.op.index] Status: C++11 Submitter: Doug Gregor Opened: 2008-08-21 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
move_iterator's operator[] is declared as:
reference operator[](difference_type n) const;
This has the same problem that reverse_iterator's operator[] used to have: if the underlying iterator's operator[] returns a proxy, the implicit conversion to value_type&& could end up referencing a temporary that has already been destroyed. This is essentially the same issue that we dealt with for reverse_iterator in DR 386.
[ 2009-07-28 Reopened by Alisdair. No longer solved by concepts. ]
[ 2009-08-15 Howard adds: ]
I recommend closing this as a duplicate of 1051 which addresses this issue for both move_iterator and reverse_iterator.
[ 2009-10 Santa Cruz: ]
Move to Ready. Note that if 1051 is reopened, it may yield a better resolution, but 1051 is currently marked NAD.
Proposed resolution:
In 24.5.3.1 [move.iterator] and 24.5.3.3.12 [move.iter.op.index], change the declaration of move_iterator's operator[] to:
referenceunspecified operator[](difference_type n) const;
Rationale:
[ San Francisco: ]
NAD Editorial, see N2777.
Section: 26.5.8.6.1 [rand.dist.samp.discrete] Status: Resolved Submitter: Daniel Krügler Opened: 2008-08-22 Last modified: 2015-04-08
View all other issues in [rand.dist.samp.discrete].
View all issues with Resolved status.
Discussion:
During the Sophia Antipolis meeting it was decided to separate from 793 a subrequest that adds initializer list support to discrete_distribution, specifically, the issue proposed to add a c'tor taking a initializer_list<double>.
Proposed resolution:
In 26.5.8.6.1 [rand.dist.samp.discrete] p. 1, class discrete_distribution, just before the member declaration
explicit discrete_distribution(const param_type& parm);
insert
discrete_distribution(initializer_list<double> wl);
Between p.4 and p.5 of the same section insert a new paragraph as part of the new member description:
discrete_distribution(initializer_list<double> wl);Effects: Same as discrete_distribution(wl.begin(), wl.end()).
Rationale:
Addressed by N2836 "Wording Tweaks for Concept-enabled Random Number Generation in C++0X".
Section: 26.5.8.6.2 [rand.dist.samp.pconst] Status: Resolved Submitter: Daniel Krügler Opened: 2008-08-22 Last modified: 2015-04-08
View all other issues in [rand.dist.samp.pconst].
View all issues with Resolved status.
Discussion:
During the Sophia Antipolis meeting it was decided to separate from 794 a subrequest that adds initializer list support to piecewise_constant_distribution, specifically, the issue proposed to add a c'tor taking a initializer_list<double> and a Callable to evaluate weight values. For consistency with the remainder of this class and the remainder of the initializer_list-aware library the author decided to change the list argument type to the template parameter RealType instead. For the reasoning to use Func instead of Func&& as c'tor function argument see issue 793.
Proposed resolution:
Non-concept version of the proposed resolution
In 26.5.8.6.2 [rand.dist.samp.pconst]/1, class piecewise_constant_distribution, just before the member declaration
explicit piecewise_constant_distribution(const param_type& parm);
insert
template<typename Func> piecewise_constant_distribution(initializer_list<RealType> bl, Func fw);
Between p.4 and p.5 of the same section insert a series of new paragraphs nominated below as [p5_1], [p5_2], and [p5_3] as part of the new member description:
template<typename Func> piecewise_constant_distribution(initializer_list<RealType> bl, Func fw);[p5_1] Complexity: Exactly nf = max(bl.size(), 1) - 1 invocations of fw.
[p5_2] Requires:
- fw shall be callable with one argument of type RealType, and shall return values of a type convertible to double;
- The relation 0 < S = w0+. . .+wn-1 shall hold. For all sampled values xk defined below, fw(xk) shall return a weight value wk that is non-negative, non-NaN, and non-infinity;
- If nf > 0 let bk = *(bl.begin() + k), k = 0, . . . , bl.size()-1 and the following relations shall hold for k = 0, . . . , nf-1: bk < bk+1.
[p5_3] Effects:
If nf == 0,
- lets the sequence w have length n = 1 and consist of the single value w0 = 1, and
- lets the sequence b have length n+1 with b0 = 0 and b1 = 1.
Otherwise,
- sets n = nf, and [bl.begin(), bl.end()) shall form the sequence b of length n+1, and
lets the sequences w have length n and for each k = 0, . . . ,n-1, calculates:
xk = 0.5*(bk+1 + bk) wk = fw(xk)
Constructs a piecewise_constant_distribution object with the above computed sequence b as the interval boundaries and with the probability densities:
ρk = wk/(S * (bk+1 - bk)) for k = 0, . . . , n-1.
Concept version of the proposed resolution
In 26.5.8.6.2 [rand.dist.samp.pconst]/1, class piecewise_constant_distribution, just before the member declaration
explicit piecewise_constant_distribution(const param_type& parm);
insert
template<Callable<auto, RealType> Func> requires Convertible<Func::result_type, double> piecewise_constant_distribution(initializer_list<RealType> bl, Func fw);
Between p.4 and p.5 of the same section insert a series of new paragraphs nominated below as [p5_1], [p5_2], and [p5_3] as part of the new member description:
template<Callable<auto, RealType> Func> requires Convertible<Func::result_type, double> piecewise_constant_distribution(initializer_list<RealType> bl, Func fw);[p5_1] Complexity: Exactly nf = max(bl.size(), 1) - 1 invocations of fw.
[p5_2] Requires:
- The relation 0 < S = w0+. . .+wn-1 shall hold. For all sampled values xk defined below, fw(xk) shall return a weight value wk that is non-negative, non-NaN, and non-infinity;
- If nf > 0 let bk = *(bl.begin() + k), k = 0, . . . , bl.size()-1 and the following relations shall hold for k = 0, . . . , nf-1: bk < bk+1.
[p5_3] Effects:
If nf == 0,
- lets the sequence w have length n = 1 and consist of the single value w0 = 1, and
- lets the sequence b have length n+1 with b0 = 0 and b1 = 1.
Otherwise,
- sets n = nf, and [bl.begin(), bl.end()) shall form the sequence b of length n+1, and
lets the sequences w have length n and for each k = 0, . . . ,n-1, calculates:
xk = 0.5*(bk+1 + bk) wk = fw(xk)
Constructs a piecewise_constant_distribution object with the above computed sequence b as the interval boundaries and with the probability densities:
ρk = wk/(S * (bk+1 - bk)) for k = 0, . . . , n-1.
Rationale:
Addressed by N2836 "Wording Tweaks for Concept-enabled Random Number Generation in C++0X".
Section: 21.4 [basic.string] Status: C++11 Submitter: Daniel Krügler Opened: 2008-08-22 Last modified: 2015-04-08
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with C++11 status.
Discussion:
During the Sophia Antipolis meeting it was decided to split-off some parts of the n2647 ("Concurrency modifications for basic_string") proposal into a separate issue, because these weren't actually concurrency-related. The here proposed changes refer to the recent update document n2668 and attempt to take advantage of the stricter structural requirements.
Indeed there exists some leeway for more guarantees that would be very useful for programmers, especially if interaction with transactionary or exception-unaware C API code is important. This would also allow compilers to take advantage of more performance optimizations, because more functions can have throw() specifications. This proposal uses the form of "Throws: Nothing" clauses to reach the same effect, because there already exists a different issue in progress to clean-up the current existing "schizophrenia" of the standard in this regard.
Due to earlier support for copy-on-write, we find the following unnecessary limitations for C++0x:
The proposed resolution is split into a main part (A) and a secondary part (B) (earlier called "Adjunct Adjunct Proposal"). (B) extends (A) by also making access to index position size() of the at() overloads a no-throw operation. This was separated, because this part is theoretically observable in specifically designed test programs.
[ San Francisco: ]
We oppose part 1 of the issue but hope to address size() in issue 877.
We do not support part B. 4 of the issue because of the breaking API change.
We support part A. 2 of the issue.
On support part A. 3 of the issue:
Pete's broader comment: now that we know that basic_string will be a block of contiguous memory, we should just rewrite its specification with that in mind. The expression of the specification will be simpler and probably more correct as a result.
[ 2009-07 Frankfurt ]
Move proposed resolution A to Ready.
[ Howard: Commented out part B. ]
Proposed resolution:
In 21.4.4 [string.capacity], just after p. 1 add a new paragraph:
Throws: Nothing.
In 21.4.5 [string.access] replace p. 1 by the following 4 paragraghs:
Requires: pos ≤ size().
Returns: If pos < size(), returns *(begin() + pos). Otherwise, returns a reference to a charT() that shall not be modified.
Throws: Nothing.
Complexity: Constant time.
In 21.4.7.1 [string.accessors] replace the now common returns clause of c_str() and data() by the following three paragraphs:
Returns: A pointer p such that p+i == &operator[](i) for each i in [0, size()].
Throws: Nothing.
Complexity: Constant time.
Section: 23.3.4 [forwardlist] Status: C++11 Submitter: Martin Sebor Opened: 2008-08-23 Last modified: 2015-04-08
View all other issues in [forwardlist].
View all issues with C++11 status.
Discussion:
forward_list member functions that take a forward_list::iterator (denoted position in the function signatures) argument have the following precondition:
Requires: position is dereferenceable or equal to before_begin().
I believe what's actually intended is this:
Requires: position is in the range [before_begin(), end()).
That is, when it's dereferenceable, position must point into *this, not just any forward_list object.
[ San Francisco: ]
Robert suggested alternate proposed wording which had large support.
[ Post Summit: ]
Walter: "position is before_begin() or a dereferenceable": add "is" after the "or"
With that minor update, Recommend Tentatively Ready.
Proposed resolution:
Change the Requires clauses [forwardlist] , p21, p24, p26, p29, and, 23.3.4.6 [forwardlist.ops], p39, p43, p47 as follows:
Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(), end())
or equal to before_begin(). ...
Section: 29 [atomics] Status: Resolved Submitter: Lawrence Crowl Opened: 2008-08-24 Last modified: 2015-04-08
View all other issues in [atomics].
View all issues with Resolved status.
Duplicate of: 942
Discussion:
The atomic_exchange and atomic_exchange_explicit functions seem to be inconsistently missing parameters.
[ Post Summit: ]
Lawrence: Need to write up a list for Pete with details.
Detlef: Should not be New, we already talked about in Concurrency group.
Recommend Open.
[ 2009-07 Frankfurt ]
Lawrence will handle all issues relating to atomics in a single paper.
LWG will defer discussion on atomics until that paper appears.
Move to Open.
[ 2009-08-17 Handled by N2925. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2992.
Proposed resolution:
Add the appropriate parameters. For example,
bool atomic_exchange(volatile atomic_bool*, bool); bool atomic_exchange_explicit(volatile atomic_bool*, bool, memory_order);
Section: 20.8.2.2.1 [util.smartptr.shared.const] Status: C++11 Submitter: Peter Dimov Opened: 2008-08-30 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.const].
View all issues with C++11 status.
Discussion:
We've changed shared_ptr<Y> to not convert to shared_ptr<T> when Y* doesn't convert to T* by resolving issue 687. This only fixed the converting copy constructor though. N2351 later added move support, and the converting move constructor is not constrained.
[ San Francisco: ]
We might be able to move this to NAD, Editorial once shared_ptr is conceptualized, but we want to revisit this issue to make sure.
[ 2009-07 Frankfurt ]
Moved to Ready.
This issue now represents the favored format for specifying constrained templates.
Proposed resolution:
We need to change the Requires clause of the move constructor:
shared_ptr(shared_ptr&& r); template<class Y> shared_ptr(shared_ptr<Y>&& r);
RequiresRemarks:For the second constructor Y* shall be convertible to T*.The second constructor shall not participate in overload resolution unless Y* is convertible to T*.
in order to actually make the example in 687 compile (it now resolves to the move constructor).
Section: 20.12.5.5 [time.duration.nonmember] Status: CD1 Submitter: Howard Hinnant Opened: 2008-09-08 Last modified: 2015-04-08
View all other issues in [time.duration.nonmember].
View all issues with CD1 status.
Discussion:
N2661 specified the following requirements for the non-member duration arithmetic:
template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator*(const duration<Rep1, Period>& d, const Rep2& s);Requires: Let CR represent the common_type of Rep1 and Rep2. Both Rep1 and Rep2 shall be implicitly convertible to CR, diagnostic required.
template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator*(const Rep1& s, const duration<Rep2, Period>& d);Requires: Let CR represent the common_type of Rep1 and Rep2. Both Rep1 and Rep2 shall be implicitly convertible to CR, diagnostic required.
template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator/(const duration<Rep1, Period>& d, const Rep2& s);Requires: Let CR represent the common_type of Rep1 and Rep2. Both Rep1 and Rep2 shall be implicitly convertible to CR, and Rep2 shall not be an instantiation of duration, diagnostic required.
During transcription into the working paper, the requirements clauses on these three functions was changed to:
Requires: CR(Rep1, Rep2) shall exist. Diagnostic required.
This is a non editorial change with respect to N2661 as user written representations which are used in duration need not be implicitly convertible to or from arithmetic types in order to interoperate with durations based on arithmetic types. An explicit conversion will do fine for most expressions as long as there exists a common_type specialization relating the user written representation and the arithmetic type. For example:
class saturate { public: explicit saturate(long long i); ... }; namespace std { template <> struct common_type<saturate, long long> { typedef saturate type; }; template <> struct common_type<long long, saturate> { typedef saturate type; }; } // std millisecond ms(3); // integral-based duration duration<saturate, milli> my_ms = ms; // ok, even with explicit conversions my_ms = my_ms + ms; // ok, even with explicit conversions
However, when dealing with multiplication of a duration and its representation, implicit convertibility is required between the rhs and the lhs's representation for the member *= operator:
template <class Rep, class Period = ratio<1>> class duration { public: ... duration& operator*=(const rep& rhs); ... }; ... ms *= 2; // ok, 2 is implicitly convertible to long long my_ms *= saturate(2); // ok, rhs is lhs's representation my_ms *= 2; // error, 2 is not implicitly convertible to saturate
The last line does not (and should not) compile. And we want non-member multiplication to have the same behavior as member arithmetic:
my_ms = my_ms * saturate(2); // ok, rhs is lhs's representation my_ms = my_ms * 2; // should be error, 2 is not implicitly convertible to saturate
The requirements clauses of N2661 make the last line an error as expected. However the latest working draft at this time (N2723) allows the last line to compile.
All that being said, there does appear to be an error in these requirements clauses as specified by N2661.
Requires: ... Both Rep1 and Rep2 shall be implicitly convertible to CR, diagnostic required.
It is not necessary for both Reps to be implicitly convertible to the CR. It is only necessary for the rhs Rep to be implicitly convertible to the CR. The Rep within the duration should be allowed to only be explicitly convertible to the CR. The explicit-conversion-requirement is covered under 20.12.5.7 [time.duration.cast].
Proposed resolution:
Change the requirements clauses under 20.12.5.5 [time.duration.nonmember]:
template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator*(const duration<Rep1, Period>& d, const Rep2& s);Requires:
CR(Rep1, Rep2) shall exist.Rep2 shall be implicitly convertible to CR(Rep1, Rep2). Diagnostic required.template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator*(const Rep1& s, const duration<Rep2, Period>& d);Requires
d behavior:CR(Rep1, Rep2) shall exist.Rep1 shall be implicitly convertible to CR(Rep1, Rep2). Diagnostic required.template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator/(const duration<Rep1, Period>& d, const Rep2& s);Requires:
CR(Rep1, Rep2) shall existRep2 shall be implicitly convertible to CR(Rep1, Rep2) and Rep2 shall not be an instantiation of duration. Diagnostic required.
Section: 23 [containers] Status: C++11 Submitter: Alisdair Meredith Opened: 2008-09-10 Last modified: 2015-04-08
View other active issues in [containers].
View all other issues in [containers].
View all issues with C++11 status.
Discussion:
Note in particular that Table 90 "Container Requirements" gives semantics of a.swap(b) as swap(a,b), yet for all containers we define swap(a,b) to call a.swap(b) - a circular definition.
[ San Francisco: ]
Robert to propose a resolution along the lines of "Postcondition: "a = b, b = a" This will be a little tricky for the hash containers, since they don't have operator==.
[ Post Summit Anthony Williams provided proposed wording. ]
[ 2009-07 Frankfurt ]
Moved to Ready with minor edits (which have been made).
Proposed resolution:
In table 80 in section 23.2.1 [container.requirements.general], replace the postcondition of a.swap(b) with the following:
Table 80 -- Container requirements Expression Return type Operational semantics Assertion/note pre-/post-conidtion Complexity ... ... ... ... ... a.swap(b); void swap(a,b)Exchange the contents of a and b.(Note A)
Remove the reference to swap from the paragraph following the table.
Notes: the algorithms
swap(),equal() and lexicographical_compare() are defined in Clause 25. ...
Section: 20.8.2.2.4 [util.smartptr.shared.mod] Status: Resolved Submitter: Jonathan Wakely Opened: 2008-09-15 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
#include <memory> #include <cassert> struct A { }; struct B : A { }; int main() { std::shared_ptr<A> pa(new A); std::shared_ptr<B> pb(new B); std::swap<A>(pa, pb); // N.B. no argument deduction assert( pa.get() == pb.get() ); return 0; }
Is this behaviour correct (I believe it is) and if so, is it unavoidable, or not worth worrying about?
This calls the lvalue/rvalue swap overload for shared_ptr:
template<class T> void swap( shared_ptr<T> & a, shared_ptr<T> && b );
silently converting the second argument from shared_ptr<B> to shared_ptr<A> and binding the rvalue ref to the produced temporary.
This is not, in my opinion, a shared_ptr problem; it is a general issue with the rvalue swap overloads. Do we want to prevent this code from compiling? If so, how?
Perhaps we should limit rvalue args to swap to those types that would benefit from the "swap trick". Or, since we now have shrink_to_fit(), just eliminate the rvalue swap overloads altogether. The original motivation was:
vector<A> v = ...; ... swap(v, vector<A>(v));
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to
NAD EditorialResolved.
Proposed resolution:
Recommend NAD EditorialResolved, fixed by
N2844.
Section: 20.3 [pairs] Status: C++11 Submitter: Alisdair Meredith Opened: 2008-09-15 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with C++11 status.
Discussion:
20.2.3 pairs Missing assignemnt operator: template<class U , class V> requires CopyAssignable<T1, U> && CopyAssignable<T2, V> pair& operator=(pair<U , V> const & p );
Well, that's interesting. This assignment operator isn't in the current working paper, either. Perhaps we deemed it acceptable to build a temporary of type pair from pair<U, V>, then move-assign from that temporary?
It sounds more like an issue waiting to be opened, unless you want to plug it now. As written we risk moving from lvalues.
[ San Francisco: ]
Would be NAD if better ctors fixed it.
Related to 811.
[ post San Francisco: ]
Possibly NAD Editorial, solved by N2770.
[ 2009-05-25 Alisdair adds: ]
Issue 885 was something I reported while reviewing the library concepts documents ahead of San Francisco. The missing operator was added as part of the paper adopted at that meeting (N2770) and I can confirm this operator is present in the current working paper. I recommend NAD.
[ 2009-07 Frankfurt ]
We agree with the intent, but we need to wait for the dust to settle on concepts.
[ 2010-03-11 Stefanus provided wording. ]
[ 2010 Pittsburgh: Moved to Ready for Pittsburgh. ]
Proposed resolution:
Add the following declaration 20.3.2 [pairs.pair], before the declaration of pair& operator=(pair&& p);:
template<class U, class V> pair& operator=(const pair<U, V>& p);
Add the following description to 20.3.2 [pairs.pair] after paragraph 11 (before the description of pair& operator=(pair&& p);):
template<class U, class V> pair& operator=(const pair<U, V>& p);Requires: T1 shall satisfy the requirements of CopyAssignable from U. T2 shall satisfy the requirements of CopyAssignable from V.
Effects: Assigns p.first to first and p.second to second.
Returns: *this.
Section: 20.4.2.1 [tuple.cnstr] Status: C++11 Submitter: Alisdair Meredith Opened: 2008-09-15 Last modified: 2015-04-08
View other active issues in [tuple.cnstr].
View all other issues in [tuple.cnstr].
View all issues with C++11 status.
Discussion:
20.4.2.1 [tuple.cnstr]:
Effects: Default initializes each element.
Could be clarified to state each "non-trivial" element. Otherwise we have a conflict with Core deinfition of default initialization - trivial types do not get initialized (rather than initialization having no effect)
I'm going to punt on this one, because it's not an issue that's related to concepts. I suggest bringing it to Howard's attention on the reflector.
[ San Francisco: ]
Text in draft doesn't mean anything, changing to "non-trivial" makes it meaningful.
We prefer "value initializes". Present implementations use value-initialization. Users who don't want value initialization have alternatives.
Request resolution text from Alisdair.
This issue relates to Issue 868 default construction and value-initialization.
[ 2009-05-04 Alisdair provided wording and adds: ]
Note: This IS a change of semantic from TR1, although one the room agreed with during the discussion. To preserve TR1 semantics, this would have been worded:
requires DefaultConstructible<Types>... tuple();-2- Effects: Default-initializes each non-trivial element.
[ 2009-07 Frankfurt ]
Move to Ready.
Proposed resolution:
Change p2 in Construction 20.4.2.1 [tuple.cnstr]:
requires DefaultConstructible<Types>... tuple();-2- Effects:
DefaultValue-initializes each element.
Section: 30.3.2 [thread.thread.this] Status: C++11 Submitter: Lawrence Crowl Opened: 2008-09-15 Last modified: 2015-04-08
View all other issues in [thread.thread.this].
View all issues with C++11 status.
Discussion:
I never thought I'd say this, but this_thread::yield seems to be too strong in specification. The issue is that some systems distinguish between yielding to another thread in the same process and yielding to another process. Given that the C++ standard only talks about a single program, one can infer that the specification allows yielding only to another thread within the same program. Posix has no facility for that behavior. Can you please file an issue to weaken the wording. Perhaps "Offers the operating system the opportunity to reschedule."
[ Post Summit: ]
Recommend move to Tentatively Ready.
Proposed resolution:
Change 30.3.2 [thread.thread.this]/3:
void this_thread::yield();Effects: Offers the
operating systemimplementation the opportunity to reschedule.another thread.
Section: 30.3.1.1 [thread.thread.id] Status: Resolved Submitter: Lawrence Crowl Opened: 2008-09-15 Last modified: 2015-04-08
View all other issues in [thread.thread.id].
View all issues with Resolved status.
Discussion:
Addresses UK 324
The thread::id type supports the full set of comparison operators. This is substantially more than is required for the associative containers that justified them. Please place an issue against the threads library.
[ San Francisco: ]
Would depend on proposed extension to POSIX, or non-standard extension. What about hash? POSIX discussing op. POSIX not known to be considering support needed for hash, op.
Group expresses support for putting ids in both unordered and ordered containers.
[ post San Francisco: ]
Howard: It turns out the current working paper N2723 already has hash<thread::id> (20.9 [function.objects], 20.9.13 [unord.hash]). We simply overlooked it in the meeting. It is a good thing we voted in favor of it (again). :-)
Recommend NAD.
[ Post Summit: ]
Recommend to close as NAD. For POSIX, see if we need to add a function to convert pthread_t to integer.
[ Post Summit, Alisdair adds: ]
The recommendation for LWG-889/UK-324 is NAD, already specified.
It is not clear to me that the specification is complete.
In particular, the synopsis of <functional> in 20.9 [function.objects] does not mention hash< thread::id> nor hash< error_code >, although their existence is implied by 20.9.13 [unord.hash], p1.
I am fairly uncomfortable putting the declaration for the thread_id specialization into <functional> as id is a nested class inside std::thread, so it implies that <functional> would require the definition of the thread class template in order to forward declared thread::id and form this specialization.
It seems better to me that the dependency goes the other way around (<thread> will more typically make use of <functional> than vice-versa) and the hash<thread::id> specialization be declared in the <thread> header.
I think hash<error_code> could go into either <system_error> or <functional> and have no immediate preference either way. However, it should clearly appear in the synopsis of one of these two.
Recommend moving 889 back to open, and tying in a reference to UK-324.
[ Batavia (2009-05): ]
Howard observes that thread::id need not be a nested class; it could be a typedef for a more visible type.
[ 2009-05-24 Alisdair adds: ]
I do not believe this is correct. thread::id is explicitly documents as a nested class, rather than as an unspecified typedef analogous to an iterator. If the intent is that this is not implemented as a nested class (under the as-if freedoms) then this is a novel form of standardese.
[ 2009-07 Frankfurt ]
Decided we want to move hash specialization for thread_id to the thread header. Alisdair to provide wording.
[ 2009-07-28 Alisdair provided wording, moved to Review. ]
[ 2009-10 Santa Cruz: ]
Add a strike for hash<thread::id>. Move to Ready
[ 2009-11-13 The proposed wording of 1182 is a superset of the wording in this issue. ]
[ 2010-02-09 Moved from Ready to Open: ]
Issue 1182 is not quite a superset of this issue and it is controversial whether or not the note:
hash template specialization allows thread::id objects to be used as keys in unordered containers.
should be added to the WP.
[
2010-02-09 Objections to moving this to NAD EditorialResolved, addressed by 1182 have been removed. Set to Tentatively NAD EditorialResolved.
]
Rationale:
Solved by 1182.
Proposed resolution:
Remove the following prototype from the synopsis in 20.9 [function.objects]:
template <> struct hash<std::thread::id>;
Add to 30.3 [thread.threads], p1 Header <thread> synopsis:
template <class T> struct hash; template <> struct hash<thread::id>;
Add template specialization below class definition in 30.3.1.1 [thread.thread.id]
template <> struct hash<thread::id> : public unary_function<thread::id, size_t> { size_t operator()(thread::id val) const; };
Extend note in p2 30.3.1.1 [thread.thread.id] with second sentence:
[Note: Relational operators allow thread::id objects to be used as keys in associative containers. hash template specialization allows thread::id objects to be used as keys in unordered containers. — end note]
Add new paragraph to end of 30.3.1.1 [thread.thread.id]
template <> struct hash<thread::id>;An explicit specialization of the class template hash (20.9.13 [unord.hash]) shall be provided for the type thread::id.
Section: 19.5.1 [syserr.errcat] Status: C++11 Submitter: Beman Dawes Opened: 2008-09-14 Last modified: 2015-04-08
View all other issues in [syserr.errcat].
View all issues with C++11 status.
Discussion:
The static const error_category objects generic_category and system_category in header <system_error> are currently declared:
const error_category& get_generic_category(); const error_category& get_system_category(); static const error_category& generic_category = get_generic_category(); static const error_category& system_category = get_system_category();
This formulation has several problems:
IO streams uses a somewhat different formulation for iostream_category, but still suffer much the same problems.
The original plan was to eliminate these problems by applying the C++0x constexpr feature. See LWG issue 832. However, that approach turned out to be unimplementable, since it would require a constexpr object of a class with virtual functions, and that is not allowed by the core language.
The proposed resolution was developed as an alternative. It mitigates the above problems by removing initialization from the visible interface, allowing implementations flexibility.
Implementation experience:
Prototype implementations of the current WP interface and proposed resolution interface were tested with recent Codegear, GCC, Intel, and Microsoft compilers on Windows. The code generated by the Microsoft compiler was studied at length; the WP and proposal versions generated very similar code. For both versions the compiler did make use of static initialization; apparently the compiler applied an implicit constexpr where useful, even in cases where constexpr would not be permitted by the language!
Acknowledgements:
Martin Sebor, Chris Kohlhoff, and John Lakos provided useful ideas and comments on initialization issues.
[ San Francisco: ]
Martin: prefers not to create more file-scope static objects, and would like to see get_* functions instead.
[Pre-Summit:]
Beman: The proposed resolution has been reworked to remove the file-scope static objects, per Martin's suggestions. The get_ prefix has been eliminated from the function names as no longer necessary and to conform with standard library naming practice.
[ Post Summit: ]
Agreement that this is wise and essential, text provided works and has been implemented. Seems to be widespread consensus. Move to Tentative Ready.
Proposed resolution:
Change 17.6.5.14 [value.error.codes] Value of error codes as indicated:
Certain functions in the C++ standard library report errors via a std::error_code (19.4.2.2) object. That object's category() member shall return
a reference tostd::system_category
()
for errors originating from the operating system, or a reference to an implementation-defined error_category object for errors originating elsewhere. The implementation shall define the possible values of value() for each of these error categories. [Example: For operating systems that are based on POSIX, implementations are encouraged to define thestd::system_category
()
values as identical to the POSIX errno values, with additional values as defined by the operating system's documentation. Implementations for operating systems that are not based on POSIX are encouraged to define values identical to the operating system's values. For errors that do not originate from the operating system, the implementation may provide enums for the associated values --end example]
Change 19.5.1.1 [syserr.errcat.overview] Class error_category overview error_category synopsis as indicated:
const error_category&get_generic_category(); const error_category&get_system_category();static storage-class-specifier const error_category& generic_category = get_generic_category(); static storage-class-specifier const error_category& system_category = get_system_category();
Change 19.5.1.5 [syserr.errcat.objects] Error category objects as indicated:
const error_category&get_generic_category();Returns: A reference to an object of a type derived from class error_category.
Remarks: The object's default_error_condition and equivalent virtual functions shall behave as specified for the class error_category. The object's name virtual function shall return a pointer to the string "GENERIC".
const error_category&get_system_category();Returns: A reference to an object of a type derived from class error_category.
Remarks: The object's equivalent virtual functions shall behave as specified for class error_category. The object's name virtual function shall return a pointer to the string "system". The object's default_error_condition virtual function shall behave as follows:
If the argument ev corresponds to a POSIX errno value posv, the function shall return error_condition(posv, generic_category()). Otherwise, the function shall return error_condition(ev, system_category()). What constitutes correspondence for any given operating system is unspecified. [Note: The number of potential system error codes is large and unbounded, and some may not correspond to any POSIX errno value. Thus implementations are given latitude in determining correspondence. — end note]
Change 19.5.2.2 [syserr.errcode.constructors] Class error_code constructors as indicated:
error_code();Effects: Constructs an object of type error_code.
Postconditions:
val_ == 0
andcat_ == &system_category
().
Change 19.5.2.3 [syserr.errcode.modifiers] Class error_code modifiers as indicated:
void clear();Postconditions:
value() == 0
andcategory() == system_category
().
Change 19.5.2.5 [syserr.errcode.nonmembers] Class error_code non-member functions as indicated:
error_code make_error_code(errc e);Returns:
error_code(static_cast<int>(e), generic_category
())
.
Change 19.5.3.2 [syserr.errcondition.constructors] Class error_condition constructors as indicated:
error_condition();Effects: Constructs an object of type
error_condition
.Postconditions:
val_ == 0
andcat_ == &generic_category
().
Change 19.5.3.3 [syserr.errcondition.modifiers] Class error_condition modifiers as indicated:
void clear();Postconditions:
value() == 0
andcategory() == generic_category
().
Change 19.5.3.5 [syserr.errcondition.nonmembers] Class error_condition non-member functions as indicated:
error_condition make_error_condition(errc e);Returns: error_condition(static_cast<int>(e), generic_category()).
Change 27.5 [iostreams.base] Iostreams base classes, Header <ios> synopsis as indicated:
concept_map ErrorCodeEnum<io_errc> { }; error_code make_error_code(io_errc e); error_condition make_error_condition(io_errc e);storage-class-specifierconst error_category& iostream_category();
Change 27.5.3.1.1 [ios::failure] Class ios_base::failure, paragraph 2 as indicated:
When throwing ios_base::failure exceptions, implementations should provide values of ec that identify the specific reason for the failure. [ Note: Errors arising from the operating system would typically be reported as system_category() errors with an error value of the error number reported by the operating system. Errors arising from within the stream library would typically be reported as error_code(io_errc::stream, iostream_category()). — end note ]
Change 27.5.6.5 [error.reporting] Error reporting as indicated:
error_code make_error_code(io_errc e);Returns:
error_code(static_cast<int>(e), iostream_category
())
.error_condition make_error_condition(io_errc e);Returns:
error_condition(static_cast<int>(e), iostream_category
())
.storage-class-specifierconst error_category& iostream_category();The implementation shall initialize iostream_category. Its storage-class-specifier may be static or extern. It is unspecified whether initialization is static or dynamic (3.6.2). If initialization is dynamic, it shall occur before completion of the dynamic initialization of the first translation unit dynamically initialized that includes header <system_error>.
Returns: A reference to an object of a type derived from class error_category.
Remarks: The object's default_error_condition and equivalent virtual functions shall behave as specified for the class error_category. The object's name virtual function shall return a pointer to the string "iostream".
Section: 30.3.1.2 [thread.thread.constr], 30.4.4.2 [thread.once.callonce] Status: C++11 Submitter: Peter Dimov Opened: 2008-09-15 Last modified: 2015-04-08
View all other issues in [thread.thread.constr].
View all issues with C++11 status.
Discussion:
I notice that the vararg overloads of std::thread and std::call_once (N2723 30.3.1.2 [thread.thread.constr] and 30.4.4.2 [thread.once.callonce]) are no longer specified in terms of std::bind; instead, some of the std::bind wording has been inlined into the specification.
There are two problems with this.
First, the specification (and implementation) in terms of std::bind allows, for example:
std::thread th( f, 1, std::bind( g ) );
which executes f( 1, g() ) in a thread. This can be useful. The "inlined" formulation changes it to execute f( 1, bind(g) ) in a thread.
Second, assuming that we don't want the above, the specification has copied the wording
INVOKE(func, w1, w2, ..., wN) (20.6.2) shall be a valid expression for some values w1, w2, ..., wN
but this is not needed since we know that our argument list is args; it should simply be
INVOKE(func, args...) (20.6.2) shall be a valid expression
[ Summit: ]
Move to open.
[ Post Summit Anthony provided proposed wording. ]
[ 2009-07 Frankfurt ]
Leave Open. Await decision for thread variadic constructor.
[ 2009-10 Santa Cruz: ]
See proposed wording for 929 for this, for the formulation on how to solve this. 929 modifies the thread constructor to have "pass by value" behavior with pass by reference efficiency through the use of the decay trait. This same formula would be useful for call_once.
[ 2010-02-11 Anthony updates wording. ]
[ 2010-02-12 Moved to Tentatively Ready after 5 postive votes on c++std-lib. ]
Proposed resolution:
Modify 30.4.4.2 [thread.once.callonce] p1-p2 with the following:
template<class Callable, class ...Args> void call_once(once_flag& flag, Callable&& func, Args&&... args);Given a function as follows:
template<typename T> typename decay<T>::type decay_copy(T&& v) { return std::forward<T>(v); }1 Requires:
The template parametersCallable and each Ti in Args shallbe CopyConstructible if an lvalue and otherwisesatisfy the MoveConstructible requirements. INVOKE(decay_copy(std::forward<Callable>(func),w1, w2, ..., wNdecay_copy(std::forward<Args>(args))...) (20.9.2 [func.require]) shall be a valid expressionfor some values w1, w2, ..., wN, where N == sizeof...(Args).2 Effects: Calls to call_once on the same once_flag object are serialized. If there has been a prior effective call to call_once on the same once_flag object, the call to call_once returns without invoking func. If there has been no prior effective call to call_once on the same once_flag object,
the argument func (or a copy thereof) is called as if by invoking func(args)INVOKE(decay_copy(std::forward<Callable>(func)), decay_copy(std::forward<Args>(args))...) is executed. The call to call_once is effective if and only iffunc(args)INVOKE(decay_copy(std::forward<Callable>(func)), decay_copy(std::forward<Args>(args))...) returns without throwing an exception. If an exception is thrown it is propagated to the caller.
Section: 30.4.1.2.1 [thread.mutex.class] Status: C++11 Submitter: Peter Dimov Opened: 2008-09-15 Last modified: 2015-04-08
View all other issues in [thread.mutex.class].
View all issues with C++11 status.
Duplicate of: 905
Discussion:
30.4.1.2.1 [thread.mutex.class]/27 (in N2723) says that the behavior is undefined if:
I don't believe that this is right. Calling lock() or try_lock() on a locked mutex is well defined in the general case. try_lock() is required to fail and return false. lock() is required to either throw an exception (and is allowed to do so if it detects deadlock) or to block until the mutex is free. These general requirements apply regardless of the current owner of the mutex; they should apply even if it's owned by the current thread.
Making double lock() undefined behavior probably can be justified (even though I'd still disagree with the justification), but try_lock() on a locked mutex must fail.
[ Summit: ]
Move to open. Proposed resolution:
- In 30.4.1 [thread.mutex.requirements] paragraph 12, change the error condition for resource_deadlock_would_occur to: "if the implementation detects that a deadlock would occur"
- Strike 30.4.1.2.1 [thread.mutex.class] paragraph 3 bullet 2 "a thread that owns a mutex object calls lock() or try_lock() on that object, or"
[ 2009-07 Frankfurt ]
Move to Review. Alisdair to provide note.
[ 2009-07-31 Alisdair provided note. ]
[ 2009-10 Santa Cruz: ]
Moved to Ready.
[ 2009-11-18 Peter Opens: ]
I don't believe that the proposed note:
[Note: a program may deadlock if the thread that owns a mutex object calls lock() or try_lock() on that object. If the program can detect the deadlock, a resource_deadlock_would_occur error condition may be observed. — end note]
is entirely correct. "or try_lock()" should be removed, because try_lock is non-blocking and doesn't deadlock; it just returns false when it fails to lock the mutex.
[ Howard: I've set to Open and updated the wording per Peter's suggestion. ]
[ 2009-11-18 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
In 30.4.1 [thread.mutex.requirements] paragraph 12 change:
- ...
- resource_deadlock_would_occur -- if the
current thread already owns the mutex and is able to detect itimplementation detects that a deadlock would occur.- ...
Strike 30.4.1.2.1 [thread.mutex.class] paragraph 3 bullet 2:
-3- The behavior of a program is undefined if:
- ...
a thread that owns a mutex object calls lock() or try_lock() on that object, or- ...
Add the following note after p3 30.4.1.2.1 [thread.mutex.class]
[Note: a program may deadlock if the thread that owns a mutex object calls lock() on that object. If the implementation can detect the deadlock, a resource_deadlock_would_occur error condition may be observed. — end note]
Section: 18.10 [support.runtime] Status: C++11 Submitter: Lawrence Crowl, Alisdair Meredith Opened: 2008-09-17 Last modified: 2015-04-08
View other active issues in [support.runtime].
View all other issues in [support.runtime].
View all issues with C++11 status.
Discussion:
The interaction between longjmp and exceptions seems unnecessarily restrictive and not in keeping with existing practice.
Proposed resolution:
Edit paragraph 4 of 18.10 [support.runtime] as follows:
The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this International Standard. A setjmp/longjmp call pair has undefined behavior if replacing the setjmp and longjmp by catch and throw would
destroyinvoke any non-trivial destructors for any automatic objects.
Section: 20.8.2.2 [util.smartptr.shared] Status: C++11 Submitter: Hans Boehm Opened: 2008-09-16 Last modified: 2015-04-08
View other active issues in [util.smartptr.shared].
View all other issues in [util.smartptr.shared].
View all issues with C++11 status.
Discussion:
It is unclear whether shared_ptr is thread-safe in the sense that multiple threads may simultaneously copy a shared_ptr. However this is a critical piece of information for the client, and it has significant impact on usability for many applications. (Detlef Vollman thinks it is currently clear that it is not thread-safe. Hans Boehm thinks it currently requires thread safety, since the use_count is not an explicit field, and constructors and assignment take a const reference to an existing shared_ptr.)
Pro thread-safety:
Many multi-threaded usages are impossible. A thread-safe version can be used to destroy an object when the last thread drops it, something that is often required, and for which we have no other easy mechanism.
Against thread-safety:
The thread-safe version is well-known to be far more expensive, even if used by a single thread. Many applications, including all single-threaded ones, do not care.
[ San Francisco: ]
Beman: this is a complicated issue, and would like to move this to Open and await comment from Peter Dimov; we need very careful and complete rationale for any decision we make; let's go slow
Detlef: I think that shared_ptr should not be thread-safe.
Hans: When you create a thread with a lambda, it in some cases makes it very difficult for the lambda to reference anything in the heap. It's currently ambiguous as to whether you can use a shared_ptr to get at an object.
Leave in Open. Detlef will submit an alternative proposed resolution that makes shared_ptr explicitly unsafe.
A third option is to support both threadsafe and non-safe share_ptrs, and to let the programmer decide which behavior they want.
Beman: Peter, do you support the PR?
Peter:
Yes, I support the proposed resolution, and I certainly oppose any attempts to make shared_ptr thread-unsafe.
I'd mildly prefer if
[Note: This is true in spite of that fact that such functions often modify use_count() --end note]
is changed to
[Note: This is true in spite of that fact that such functions often cause a change in use_count() --end note]
(or something along these lines) to emphasise that use_count() is not, conceptually, a variable, but a return value.
[ 2009-07 Frankfurt ]
Vote: Do we want one thread-safe shared pointer or two? If two, one would allow concurrent construction and destruction of shared pointers, and one would not be thread-safe. If one, then it would be thread-safe.
No concensus on that vote.
Hans to improve wording in consultation with Pete. Leave Open.
[ 2009-10 Santa Cruz: ]
Move to Ready. Ask Editor to clear up wording a little when integrating to make it clear that the portion after the first comma only applies for the presence of data races.
[ 2009-10-24 Hans adds: ]
I think we need to pull 896 back from ready, unfortunately. My wording doesn't say the right thing.
I suspect we really want to say something along the lines of:
For purposes of determining the presence of a data race, member functions access and modify only the shared_ptr and weak_ptr objects themselves and not objects they refer to. Changes in use_count() do not reflect modifications that can introduce data races.
But I think this needs further discussion by experts to make sure this is right.
Detlef and I agree continue to disagree on the resolution, but I think we agree that it would be good to try to expedite this so that it can be in CD2, since it's likely to generate NB comments no matter what we do. And lack of clarity of intent is probably the worst option. I think it would be good to look at this between meetings.
[ 2010-01-20 Howard: ]
I've moved Hans' suggested wording above into the proposed resolution section and preserved the previous wording here:
Make it explicitly thread-safe, in this weak sense, as I believe was intended:
Insert in 20.8.2.2 [util.smartptr.shared], before p5:
For purposes of determining the presence of a data race, member functions do not modify const shared_ptr and const weak_ptr arguments, nor any objects they refer to. [Note: This is true in spite of that fact that such functions often cause a change in use_count() --end note]
On looking at the text, I'm not sure we need a similar disclaimer anywhere else, since nothing else has the problem with the modified use_count(). I think Howard arrived at a similar conclusion.
[ 2010 Pittsburgh: Moved to Ready for Pittsburgh ]
Proposed resolution:
Insert a new paragraph at the end of 20.8.2.2 [util.smartptr.shared]:
For purposes of determining the presence of a data race, member functions access and modify only the shared_ptr and weak_ptr objects themselves and not objects they refer to. Changes in use_count() do not reflect modifications that can introduce data races.
Section: 23.3.4.5 [forwardlist.modifiers] Status: Resolved Submitter: Howard Hinnant Opened: 2008-09-22 Last modified: 2015-04-08
View all other issues in [forwardlist.modifiers].
View all issues with Resolved status.
Discussion:
This issue was split off from 892 at the request of the LWG.
[ San Francisco: ]
This issue is more complicated than it looks.
paragraph 47: replace each (first, last) with (first, last]
add a statement after paragraph 48 that complexity is O(1)
remove the complexity statement from the first overload of splice_after
We may have the same problems with other modifiers, like erase_after. Should it require that all iterators in the range (position, last] be dereferenceable?
There are actually 3 issues here:
What value should erase_after return? With list, code often looks like:
for (auto i = l.begin(); i != l.end();) { // inspect *i and decide if you want to erase it // ... if (I want to erase *i) i = l.erase(i); else ++i; }
I.e. the iterator returned from erase is useful for setting up the logic for operating on the next element. For forward_list this might look something like:
auto i = fl.before_begin(); auto ip1 = i; for (++ip1; ip1 != fl.end(); ++ip1) { // inspect *(i+1) and decide if you want to erase it // ... if (I want to erase *(i+1)) i = fl.erase_after(i); else ++i; ip1 = i; }
In the above example code, it is convenient if erase_after returns the element prior to the erased element (range) instead of the element after the erase element (range).
Existing practice:
There is not a strong technical argument for either solution over the other.
With all other containers, operations always work on the range [first, last) and/or prior to the given position.
With forward_list, operations sometimes work on the range (first, last] and/or after the given position.
This is simply due to the fact that in order to operate on *first (with forward_list) one needs access to *(first-1). And that's not practical with forward_list. So the operating range needs to start with (first, not [first (as the current working paper says).
Additionally, if one is interested in splicing the range (first, last), then (with forward_list), one needs practical (constant time) access to *(last-1) so that one can set the next field in this node to the proper value. As this is not possible with forward_list, one must specify the last element of interest instead of one past the last element of interest. The syntax for doing this is to pass (first, last] instead of (first, last).
With erase_after we have a choice of either erasing the range (first, last] or (first, last). Choosing the latter enables:
x.erase_after(pos, x.end());
With the former, the above statement is inconvenient or expensive due to the lack of constant time access to x.end()-1. However we could introduce:
iterator erase_to_end(const_iterator position);
to compensate.
The advantage of the former ((first, last]) for erase_after is a consistency with splice_after which uses (first, last] as the specified range. But this either requires the addition of erase_to_end or giving up such functionality.
[ Batavia (2009-05): ]
We agree with the proposed resolution.
Move to Review.
[ 2009-07 Frankfurt ]
We may need a new issue to correct splice_after, because it may no longer be correct to accept an rvalues as an argument. Merge may be affected, too. This might be issue 1133. (Howard: confirmed)
Move this to Ready, but the Requires clause of the second form of splice_after should say "(first, last)," not "(first, last]" (there are three occurrences). There was considerable discussion on this. (Howard: fixed)
Alan suggested removing the "foward_last<T. Alloc>&& x" parameter from the second form of splice_after, because it is redundant. PJP wanted to keep it, because it allows him to check for bad ranges (i.e. "Granny knots").
We prefer to keep x.
Beman. Whenever we deviate from the customary half-open range in the specification, we should add a non-normative comment to the standard explaining the deviation. This clarifies the intention and spares the committee much confusion in the future.
Alan to write a non-normative comment to explain the use of fully-closed ranges.
Move to Ready, with the changes described above. (Howard: awaiting note from Alan)
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved, addressed by N2988.
Proposed resolution:
Wording below assumes issue 878 is accepted, but this issue is independent of that issue.
Change 23.3.4.5 [forwardlist.modifiers]:
iterator erase_after(const_iterator position);Requires: The iterator following position is dereferenceable.
Effects: Erases the element pointed to by the iterator following position.
Returns:
An iterator pointing to the element following the one that was erased, or end() if no such element existsAn iterator equal to position.iterator erase_after(const_iterator position, const_iterator last);Requires: All iterators in the range
[(position,last) are dereferenceable.Effects: Erases the elements in the range
[(position,last).Returns: An iterator equal to position
last
Change 23.3.4.6 [forwardlist.ops]:
void splice_after(const_iterator position, forward_list<T,Allocator>&& x);Requires: position is before_begin() or a dereferenceable iterator in the range [begin(), end)). &x != this.
Effects: Inserts the contents of x after position, and x becomes empty. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
Throws: Nothing.
Complexity:
Ο(1)Ο(distance(x.begin(), x.end()))...
void splice_after(const_iterator position, forward_list<T,Allocator>&& x, const_iterator first, const_iterator last);Requires: position is before_begin() or a dereferenceable iterator in the range [begin(), end)). (first,last) is a valid range in x, and all iterators in the range (first,last) are dereferenceable. position is not an iterator in the range (first,last).
Effects: Inserts elements in the range (first,last) after position and removes the elements from x. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
Complexity: Ο(1).
Section: 23.3.4.6 [forwardlist.ops] Status: C++11 Submitter: Arch Robison Opened: 2008-09-08 Last modified: 2015-04-08
View all other issues in [forwardlist.ops].
View all issues with C++11 status.
Discussion:
I ran across a small contradiction in working draft n2723.
23.3.4 [forwardlist]p2: A forward_list satisfies all of the requirements of a container (table 90), except that the size() member function is not provided.
23.3.4.6 [forwardlist.ops]p57: Complexity: At most size() + x.size() - 1 comparisons.
Presumably 23.3.4.6 [forwardlist.ops]p57 needs to be rephrased to not use size(), or note that it is used there only for sake of notational convenience.
[ 2009-03-29 Beman provided proposed wording. ]
[ Batavia (2009-05): ]
We agree with the proposed resolution.
Move to Tentatively Ready.
Proposed resolution:
Change 23.3.4.6 [forwardlist.ops], forward_list operations, paragraph 19, merge complexity as indicated:
Complexity: At most
size() + x.size()distance(begin(), end()) + distance(x.begin(), x.end()) - 1 comparisons.
Section: 20.8.2.2.2 [util.smartptr.shared.dest] Status: C++11 Submitter: Peter Dimov Opened: 2008-09-18 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.dest].
View all issues with C++11 status.
Discussion:
James Dennett, message c++std-lib-22442:
The wording below addresses one case of this, but opening an issue to address the need to sanity check uses of the term "pointer" in 20.8.2.2 [util.smartptr.shared] would be a good thing.
There's one more reference, in ~shared_ptr; we can apply your suggested change to it, too. That is:
Change 20.8.2.2.2 [util.smartptr.shared.dest]/1 second bullet from:
Otherwise, if *this owns a pointer p and a deleter d, d(p) is called.
to:
Otherwise, if *this owns an object p and a deleter d, d(p) is called.
[ Post Summit: ]
Recommend Review.
[ Batavia (2009-05): ]
Peter Dimov notes the analogous change has already been made to "the new nullptr_t taking constructors in 20.8.2.2.1 [util.smartptr.shared.const] p9-13."
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change 20.8.2.2.2 [util.smartptr.shared.dest] p1 second bullet:
- ...
- Otherwise, if *this owns
a pointeran object p and a deleter d, d(p) is called.
Section: 27.9.1.8 [ifstream.assign] Status: C++11 Submitter: Niels Dekker Opened: 2008-09-20 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
It appears that we have an issue similar to issue 675 regarding the move-assignment of stream types. For example, when assigning to an std::ifstream, ifstream1, it seems preferable to close the file originally held by ifstream1:
ifstream1 = std::move(ifstream2);
The current Draft (N2723) specifies that the move-assignment of stream types like ifstream has the same effect as a swap:
Assign and swap 27.9.1.8 [ifstream.assign]
basic_ifstream& operator=(basic_ifstream&& rhs);Effects: swap(rhs).
[ Batavia (2009-05): ]
Howard agrees with the analysis and the direction proposed.
Move to Open pending specific wording to be supplied by Howard.
[ 2009-07 Frankfurt: ]
Howard is going to write wording.
[ 2009-07-26 Howard provided wording. ]
[ 2009-09-13 Niels adds: ]
Note: The proposed change of 27.9.1.3 [filebuf.assign] p1 depends on the resolution of LWG 1204, which allows implementations to assume that *this and rhs refer to different objects.
[ 2009 Santa Cruz: ]
Leave as Open. Too closely related to 911 to move on at this time.
[ 2010 Pittsburgh: ]
Moved to Ready for Pittsburgh.
Proposed resolution:
Change 27.8.2.2 [stringbuf.assign]/1:
basic_stringbuf& operator=(basic_stringbuf&& rhs);-1- Effects:
swap(rhs).After the move assignment *this reflects the same observable state it would have if it had been move constructed from rhs (27.8.2.1 [stringbuf.cons]).
Change 27.8.3.2 [istringstream.assign]/1:
basic_istringstream& operator=(basic_istringstream&& rhs);-1- Effects:
swap(rhs).Move assigns the base and members of *this with the respective base and members of rhs.
Change 27.8.4.2 [ostringstream.assign]/1:
basic_ostringstream& operator=(basic_ostringstream&& rhs);-1- Effects:
swap(rhs).Move assigns the base and members of *this with the respective base and members of rhs.
Change 27.8.5.2 [stringstream.assign]/1:
basic_stringstream& operator=(basic_stringstream&& rhs);-1- Effects:
swap(rhs).Move assigns the base and members of *this with the respective base and members of rhs.
Change 27.9.1.3 [filebuf.assign]/1:
basic_filebuf& operator=(basic_filebuf&& rhs);-1- Effects:
swap(rhs).Begins by calling this->close(). After the move assignment *this reflects the same observable state it would have if it had been move constructed from rhs (27.9.1.2 [filebuf.cons]).
Change 27.9.1.8 [ifstream.assign]/1:
basic_ifstream& operator=(basic_ifstream&& rhs);-1- Effects:
swap(rhs).Move assigns the base and members of *this with the respective base and members of rhs.
Change 27.9.1.12 [ofstream.assign]/1:
basic_ofstream& operator=(basic_ofstream&& rhs);-1- Effects:
swap(rhs).Move assigns the base and members of *this with the respective base and members of rhs.
Change 27.9.1.16 [fstream.assign]/1:
basic_fstream& operator=(basic_fstream&& rhs);-1- Effects:
swap(rhs).Move assigns the base and members of *this with the respective base and members of rhs.
Section: X [func.ret] Status: C++11 Submitter: Jonathan Wakely Opened: 2008-09-10 Last modified: 2015-04-08
View all other issues in [func.ret].
View all issues with C++11 status.
Discussion:
The WP and TR1 have the same text regarding the argument types of a result_of expression:
The values ti are lvalues when the corresponding type Ti is a reference type, and rvalues otherwise.
I read this to mean that this compiles:
typedef int (*func)(int&); result_of<func(int&&)>::type i = 0;
even though this doesn't:
int f(int&); f( std::move(0) );
Should the text be updated to say "when Ti is an lvalue-reference type" or am I missing something?
I later came up with this self-contained example which won't compile, but I think it should:
struct X { void operator()(int&); int operator()(int&&); } x; std::result_of< X(int&&) >::type i = x(std::move(0));
[ Post Summit: ]
Recommend Tentatively Ready.
Proposed resolution:
Change X [func.ret], p1:
... The values ti are lvalues when the corresponding type Ti is an lvalue-reference type, and rvalues otherwise.
Section: 20.6.2 [bitset.members] Status: C++11 Submitter: Daniel Krügler Opened: 2008-09-26 Last modified: 2015-04-08
View all other issues in [bitset.members].
View all issues with C++11 status.
Discussion:
The current standard 14882::2003(E) as well as the current draft N2723 have in common a contradiction of the operational semantics of member function test 20.6.2 [bitset.members] p.56-58 and the immutable member operator[] overload 20.6.2 [bitset.members] p.64-66 (all references are defined in terms of N2723):
bool test(size_t pos) const;
Requires: pos is valid
Throws: out_of_range if pos does not correspond to a valid bit position.
Returns: true if the bit at position pos in *this has the value one.
constexpr bool operator[](size_t pos) const;
Requires: pos shall be valid.
Throws: nothing.
Returns: test(pos).
Three interpretations:
The problem became worse, because issue 720 recently voted into WP argued that member test logically must be a constexpr function, because it was used to define the semantics of another constexpr function (the operator[] overload).
Three alternatives are proposed, corresponding to the three bullets (A), (B), and (C), the author suggests to follow proposal (C).
Proposed alternatives:
Remove the constexpr specifier in front of operator[] overload and undo that of member test (assuming 720 is accepted) in both the class declaration 20.6 [template.bitset]/1 and in the member description before 20.6.2 [bitset.members]/56 and before /64 to read:
constexprbool test(size_t pos) const; ..constexprbool operator[](size_t pos) const;
Change the throws clause of p. 65 to read:
Throws:
nothingout_of_range if pos does not correspond to a valid bit position.
Replace the throws clause p. 57 to read:
Throws:
out_of_range if pos does not correspond to a valid bit positionnothing.
Undo the addition of the constexpr specifier to the test member function in both class declaration 20.6 [template.bitset]/1 and in the member description before 20.6.2 [bitset.members]/56, assuming that 720 was applied.
constexprbool test(size_t pos) const;
Change the returns clause p. 66 to read:
Returns:
test(pos)true if the bit at position pos in *this has the value one, otherwise false.
[ Post Summit: ]
Lawrence: proposed resolutions A, B, C are mutually exclusive.
Recommend Review with option C.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Undo the addition of the constexpr specifier to the test member function in both class declaration 20.6 [template.bitset] p.1 and in the member description before 20.6.2 [bitset.members] p.56, assuming that 720 was applied.
constexprbool test(size_t pos) const;
Change the returns clause p. 66 to read:
Returns:
test(pos)true if the bit at position pos in *this has the value one, otherwise false.
Section: X [atomics.types] Status: Resolved Submitter: Anthony Williams Opened: 2008-09-26 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses US 90
The deleted copy-assignment operators for the atomic types are not marked as volatile in N2723, whereas the assignment operators from the associated non-atomic types are. e.g.
atomic_bool& operator=(atomic_bool const&) = delete; atomic_bool& operator=(bool) volatile;
This leads to ambiguity when assigning a non-atomic value to a non-volatile instance of an atomic type:
atomic_bool b; b=false;
Both assignment operators require a standard conversions: the copy-assignment operator can use the implicit atomic_bool(bool) conversion constructor to convert false to an instance of atomic_bool, or b can undergo a qualification conversion in order to use the assignment from a plain bool.
This is only a problem once issue 845 is applied.
[ Summit: ]
Move to open. Assign to Lawrence. Related to US 90 comment.
[ 2009-08-17 Handled by N2925. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2992.
Proposed resolution:
Add volatile qualification to the deleted copy-assignment operator of all the atomic types:
atomic_bool& operator=(atomic_bool const&) volatile = delete; atomic_itype& operator=(atomic_itype const&) volatile = delete;
etc.
This will mean that the deleted copy-assignment operator will require two conversions in the above example, and thus be a worse match than the assignment from plain bool.
Section: 28.12.2 [re.tokiter] Status: C++11 Submitter: Daniel Krügler Opened: 2008-09-26 Last modified: 2015-04-08
View all other issues in [re.tokiter].
View all issues with C++11 status.
Discussion:
Addresses UK 319
Construction of a regex_token_iterator (28.12.2 [re.tokiter]/6+) usually requires the provision of a sequence of integer values, which can currently be done via a std::vector<int> or a C array of int. Since the introduction of initializer_list in the standard it seems much more reasonable to provide a corresponding constructor that accepts an initializer_list<int> instead. This could be done as a pure addition or one could even consider replacement. The author suggests the replacement strategy (A), but provides an alternative additive proposal (B) as a fall-back, because of the handiness of this range type:
[ Batavia (2009-05): ]
We strongly recommend alternative B of the proposed resolution in order that existing code not be broken. With that understanding, move to Tentatively Ready.
Original proposed wording:
In 28.12.2 [re.tokiter]/6 and the list 28.12.2.1 [re.tokiter.cnstr]/10-11 change the constructor declaration:
template <std::size_t N>regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re,const int (&submatches)[N]initializer_list<int> submatches, regex_constants::match_flag_type m = regex_constants::match_default);
In 28.12.2.1 [re.tokiter.cnstr]/12 change the last sentence
The third constructor initializes the member subs to hold a copy of the sequence of integer values pointed to by the iterator range [
&submatches.begin(),&submatches.end()+ N).
In 28.12.2 [re.tokiter]/6 and the list 28.12.2.1 [re.tokiter.cnstr]/10-11 insert the following constructor declaration between the already existing ones accepting a std::vector and a C array of int, resp.:
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, initializer_list<int> submatches, regex_constants::match_flag_type m = regex_constants::match_default);
In 28.12.2.1 [re.tokiter.cnstr]/12 change the last sentence
The third and fourth constructor initialize
sthe member subs to hold a copy of the sequence of integer values pointed to by the iterator range [&submatches,&submatches + N) and [submatches.begin(),submatches.end()), respectively.
Proposed resolution:
In 28.12.2 [re.tokiter]/6 and the list 28.12.2.1 [re.tokiter.cnstr]/10-11 insert the following constructor declaration between the already existing ones accepting a std::vector and a C array of int, resp.:
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, initializer_list<int> submatches, regex_constants::match_flag_type m = regex_constants::match_default);
In 28.12.2.1 [re.tokiter.cnstr]/12 change the last sentence
The third and fourth constructor initialize
sthe member subs to hold a copy of the sequence of integer values pointed to by the iterator range [&submatches,&submatches + N) and [submatches.begin(),submatches.end()), respectively.
Section: 27.7.2 [input.streams], 27.7.3 [output.streams] Status: C++11 Submitter: Alberto Ganesh Barbati Opened: 2008-09-29 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Class template basic_istream, basic_ostream and basic_iostream implements public move constructors, move assignment operators and swap method and free functions. This might induce both the user and the compiler to think that those types are MoveConstructible, MoveAssignable and Swappable. However, those class templates fail to fulfill the user expectations. For example:
std::ostream os(std::ofstream("file.txt")); assert(os.rdbuf() == 0); // buffer object is not moved to os, file.txt has been closed std::vector<std::ostream> v; v.push_back(std::ofstream("file.txt")); v.reserve(100); // causes reallocation assert(v[0].rdbuf() == 0); // file.txt has been closed! std::ostream&& os1 = std::ofstream("file1.txt"); os1 = std::ofstream("file2.txt"); os1 << "hello, world"; // still writes to file1.txt, not to file2.txt! std::ostream&& os1 = std::ofstream("file1.txt"); std::ostream&& os2 = std::ofstream("file2.txt"); std::swap(os1, os2); os1 << "hello, world"; // writes to file1.txt, not to file2.txt!
This is because the move constructor, the move assignment operator and swap are all implemented through calls to std::basic_ios member functions move() and swap() that do not move nor swap the controlled stream buffers. That can't happen because the stream buffers may have different types.
Notice that for basic_streambuf, the member function swap() is protected. I believe that is correct and all of basic_istream, basic_ostream, basic_iostream should do the same as the move ctor, move assignment operator and swap member function are needed by the derived fstreams and stringstreams template. The free swap functions for basic_(i|o|io)stream templates should be removed for the same reason.
[ Batavia (2009-05): ]
We note that the rvalue swap functions have already been removed.
Bill is unsure about making the affected functions protected; he believes they may need to be public.
We are also unsure about removing the lvalue swap functions as proposed.
Move to Open.
[ 2009-07 Frankfurt: ]
It's not clear that the use case is compelling.
Howard: This needs to be implemented and tested.
[ 2009-07-26 Howard adds: ]
I started out thinking I would recommend NAD for this one. I've turned around to agree with the proposed resolution (which I've updated to the current draft). I did not fully understand Ganesh's rationale, and attempt to describe my improved understanding below.
The move constructor, move assignment operator, and swap function are different for basic_istream, basic_ostream and basic_iostream than other classes. A timely conversation with Daniel reminded me of this long forgotten fact. These members are sufficiently different that they would be extremely confusing to use in general, but they are very much needed for derived clients.
- The move constructor moves everything but the rdbuf pointer.
- The move assignment operator moves everything but the rdbuf pointer.
- The swap function swaps everything but the rdbuf pointer.
The reason for this behavior is that for the std-derived classes (stringstreams, filestreams), the rdbuf pointer points back into the class itself (self referencing). It can't be swapped or moved. But this fact isn't born out at the stream level. Rather it is born out at the fstream/sstream level. And the lower levels just need to deal with that fact by not messing around with the rdbuf pointer which is stored down at the lower levels.
In a nutshell, it is very confusing for all of those who are not so intimately related with streams that they've implemented them. And it is even fairly confusing for some of those who have (including myself). I do not think it is safe to swap or move istreams or ostreams because this will (by necessary design) separate stream state from streambuffer state. Derived classes (such as fstream and stringstream must be used to keep the stream state and stream buffer consistently packaged as one unit during a move or swap.
I've implemented this proposal and am living with it day to day.
[ 2009 Santa Cruz: ]
Leave Open. Pablo expected to propose alternative wording which would rename move construction, move assignment and swap, and may or may not make them protected. This will impact issue 900.
[ 2010 Pittsburgh: ]
Moved to Ready for Pittsburgh.
Proposed resolution:
27.7.2.1 [istream]: make the following member functions protected:
basic_istream(basic_istream&& rhs); basic_istream& operator=(basic_istream&& rhs); void swap(basic_istream& rhs);
Ditto: remove the swap free function signature
// swap: template <class charT, class traits> void swap(basic_istream<charT, traits>& x, basic_istream<charT, traits>& y);
27.7.2.1.2 [istream.assign]: remove paragraph 4
template <class charT, class traits> void swap(basic_istream<charT, traits>& x, basic_istream<charT, traits>& y);
Effects: x.swap(y).
27.7.2.5 [iostreamclass]: make the following member function protected:
basic_iostream(basic_iostream&& rhs); basic_iostream& operator=(basic_iostream&& rhs); void swap(basic_iostream& rhs);
Ditto: remove the swap free function signature
template <class charT, class traits> void swap(basic_iostream<charT, traits>& x, basic_iostream<charT, traits>& y);
27.7.2.5.3 [iostream.assign]: remove paragraph 3
template <class charT, class traits> void swap(basic_iostream<charT, traits>& x, basic_iostream<charT, traits>& y);
Effects: x.swap(y).
27.7.3.1 [ostream]: make the following member function protected:
basic_ostream(basic_ostream&& rhs); basic_ostream& operator=(basic_ostream&& rhs); void swap(basic_ostream& rhs);
Ditto: remove the swap free function signature
// swap: template <class charT, class traits> void swap(basic_ostream<charT, traits>& x, basic_ostream<charT, traits>& y);
27.7.3.3 [ostream.assign]: remove paragraph 4
template <class charT, class traits> void swap(basic_ostream<charT, traits>& x, basic_ostream<charT, traits>& y);
Effects: x.swap(y).
Section: 20.9.11 [func.memfn] Status: C++11 Submitter: Bronek Kozicki Opened: 2008-10-06 Last modified: 2015-04-08
View all other issues in [func.memfn].
View all issues with C++11 status.
Duplicate of: 1230
Discussion:
Daniel Krügler wrote:
Shouldn't above list be completed for &- and &&-qualified member functions This would cause to add:
template<Returnable R, class T, CopyConstructible... Args> unspecified mem_fn(R (T::* pm)(Args...) &); template<Returnable R, class T, CopyConstructible... Args> unspecified mem_fn(R (T::* pm)(Args...) const &); template<Returnable R, class T, CopyConstructible... Args> unspecified mem_fn(R (T::* pm)(Args...) volatile &); template<Returnable R, class T, CopyConstructible... Args> unspecified mem_fn(R (T::* pm)(Args...) const volatile &); template<Returnable R, class T, CopyConstructible... Args> unspecified mem_fn(R (T::* pm)(Args...) &&); template<Returnable R, class T, CopyConstructible... Args> unspecified mem_fn(R (T::* pm)(Args...) const &&); template<Returnable R, class T, CopyConstructible... Args> unspecified mem_fn(R (T::* pm)(Args...) volatile &&); template<Returnable R, class T, CopyConstructible... Args> unspecified mem_fn(R (T::* pm)(Args...) const volatile &&);
yes, absolutely. Thanks for spotting this. Without this change mem_fn cannot be initialized from pointer to ref-qualified member function. I believe semantics of such function pointer is well defined.
[ Post Summit Daniel provided wording. ]
[ Batavia (2009-05): ]
We need to think about whether we really want to go down the proposed path of combinatorial explosion. Perhaps a Note would suffice.
We would really like to have an implementation before proceeding.
Move to Open, and recommend this be deferred until after the next Committee Draft has been issued.
[ 2009-10-10 Daniel updated wording to post-concepts. ]
1230 has a similar proposed resolution
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Change 20.9 [function.objects]/2, header <functional> synopsis as follows:
// 20.7.14, member function adaptors: template<class R, class T> unspecified mem_fn(R T::*); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...)); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) const); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) volatile); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) const volatile); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) &); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) const &); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) volatile &); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) const volatile &); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) &&); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) const &&); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) volatile &&); template<class R, class T, class ...Args> unspecified mem_fn(R (T::*)(Args...) const volatile &&);
Change the prototype list of 20.9.11 [func.memfn] as follows [NB: The following text, most notably p.2 and p.3 which discuss influence of the cv-qualification on the definition of the base class's first template parameter remains unchanged. ]:
template<class R, class T> unspecified mem_fn(R T::* pm); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...)); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) const); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) volatile); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) const volatile); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) &); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) const &); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) volatile &); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) const volatile &); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) &&); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) const &&); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) volatile &&); template<class R, class T, class ...Args> unspecified mem_fn(R (T::* pm)(Args...) const volatile &&);
Remove 20.9.11 [func.memfn]/5:
Remarks: Implementations may implement mem_fn as a set of overloaded function templates.
Section: 20.11.3 [ratio.ratio] Status: C++11 Submitter: Pablo Halpern Opened: 2008-10-07 Last modified: 2015-04-08
View all other issues in [ratio.ratio].
View all issues with C++11 status.
Discussion:
The compile-time functions that operate on ratio<N,D> require the cumbersome and error-prone "evaluation" of a type member using a meta-programming style that predates the invention of template aliases. Thus, multiplying three ratios a, b, and c requires the expression:
ratio_multiply<a, ratio_multiply<b, c>::type>::type
The simpler expression:
ratio_multiply<a, ratio_multiply<b, c>>
Could be used by if template aliases were employed in the definitions.
[ Post Summit: ]
Jens: not a complete proposed resolution: "would need to make similar change"
Consensus: We agree with the direction of the issue.
Recommend Open.
[ 2009-05-11 Daniel adds: ]
Personally I'm not in favor for the addition of:
typedef ratio type;For a reader of the standard it's usage or purpose is unclear. I haven't seen similar examples of attempts to satisfy non-feature complete compilers.
[ 2009-05-11 Pablo adds: ]
The addition of type to the ratio template allows the previous style (i.e., in the prototype implementations) to remain valid and permits the use of transitional library implementations for C++03 compilers. I do not feel strongly about its inclusion, however, and leave it up to the reviewers to decide.
[ Batavia (2009-05): ]
Bill asks for additional discussion in the issue that spells out more details of the implementation. Howard points us to issue 948 which has at least most of the requested details. Tom is strongly in favor of overflow-checking at compile time. Pete points out that there is no change of functionality implied. We agree with the proposed resolution, but recommend moving the issue to Review to allow time to improve the discussion if needed.
[ 2009-07-21 Alisdair adds: ]
See 1121 for a potentially incompatible proposal.
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
In 20.11 [ratio] p.3 change as indicated:
// ratio arithmetic template <class R1, class R2>structusing ratio_add = see below; template <class R1, class R2>structusing ratio_subtract = see below; template <class R1, class R2>structusing ratio_multiply = see below; template <class R1, class R2>structusing ratio_divide = see below;
In 20.11.3 [ratio.ratio], change as indicated:
namespace std { template <intmax_t N, intmax_t D = 1> class ratio { public: typedef ratio type; static const intmax_t num; static const intmax_t den; }; }
In 20.11.4 [ratio.arithmetic] change as indicated:
template <class R1, class R2>structusing ratio_add = see below{ typedef see below type; };1 The
nested typedeftype ratio_add<R1, R2> shall be a synonym for ratio<T1, T2> where T1 has the value R1::num * R2::den + R2::num * R1::den and T2 has the value R1::den * R2::den.
template <class R1, class R2>structusing ratio_subtract = see below{ typedef see below type; };2 The
nested typedeftype ratio_subtract<R1, R2> shall be a synonym for ratio<T1, T2> where T1 has the value R1::num * R2::den - R2::num * R1::den and T2 has the value R1::den * R2::den.
template <class R1, class R2>structusing ratio_multiply = see below{ typedef see below type; };3 The
nested typedeftype ratio_multiply<R1, R2> shall be a synonym for ratio<T1, T2> where T1 has the value R1::num * R2::num and T2 has the value R1::den * R2::den.
template <class R1, class R2>structusing ratio_divide = see below{ typedef see below type; };4 The
nested typedeftype ratio_divide<R1, R2> shall be a synonym for ratio<T1, T2> where T1 has the value R1::num * R2::den and T2 has the value R1::den * R2::num.
In 20.12.5.1 [time.duration.cons] p.4 change as indicated:
Requires: treat_as_floating_point<rep>::value shall be true or ratio_divide<Period2, period>::
type::den shall be 1.[..]
In 20.12.5.7 [time.duration.cast] p.2 change as indicated:
Returns: Let CF be ratio_divide<Period, typename ToDuration::period>
::type, and [..]
Section: B [implimits] Status: C++11 Submitter: Sohail Somani Opened: 2008-10-11 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses DE 24
With respect to the section 20.9.10.4 [func.bind.place]:
TR1 dropped some suggested implementation quantities for the number of placeholders. The purpose of this defect is to put these back for C++0x.
[ Post Summit: ]
see DE 24
Recommend applying the proposed resolution from DE 24, with that Tentatively Ready.
Original proposed resolution:
Add 20.9.10.4 [func.bind.place] p.2:
While the exact number of placeholders (_M) is implementation defined, this number shall be at least 10.
Proposed resolution:
Add to B [implimits]:
Section: 29 [atomics] Status: Resolved Submitter: Herb Sutter Opened: 2008-10-17 Last modified: 2015-04-08
View all other issues in [atomics].
View all issues with Resolved status.
Discussion:
Right now, C++0x doesn't have atomic<float>. We're thinking of adding the words to support it for TR2 (note: that would be slightly post-C++0x). If we need it, we could probably add the words.
Proposed resolutions: Using atomic<FP>::compare_exchange (weak or strong) should be either:
I propose Option 1 for C++0x for expediency. If someone wants to argue for Option 2, they need to say what exactly they want compare_exchange to mean in this case (IIRC, C++0x doesn't even assume IEEE 754).
[ Summit: ]
Move to open. Blocked until concepts for atomics are addressed.
[ Post Summit Anthony adds: ]
Recommend NAD. C++0x does have std::atomic<float>, and both compare_exchange_weak and compare_exchange_strong are well-defined in this case. Maybe change the note in 29.6 [atomics.types.operations] paragraph 20 to:
[Note: The effect of the compare-and-exchange operations is
if (!memcmp(object,expected,sizeof(*object))) *object = desired; else *expected = *object;This may result in failed comparisons for values that compare equal if the underlying type has padding bits or alternate representations of the same value. -- end note]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2992.
Proposed resolution:
Change the note in 29.6 [atomics.types.operations] paragraph 20 to:
[Note: The effect of the compare-and-exchange operations is
if (*object == *expected!memcmp(object,expected,sizeof(*object))) *object = desired; else *expected = *object;This may result in failed comparisons for values that compare equal if the underlying type has padding bits or alternate representations of the same value. -- end note]
Section: 29 [atomics] Status: Resolved Submitter: Herb Sutter Opened: 2008-10-17 Last modified: 2015-04-08
View all other issues in [atomics].
View all issues with Resolved status.
Discussion:
Right now, the compare_exchange_weak loop should rapidly converge on the padding contents. But compare_exchange_strong will require a bit more compiler work to ignore padding for comparison purposes.
Note that this isn't a problem for structs with no padding, and we do already have one portable way to ensure that there is no padding that covers the key use cases: Have elements be the same type. I suspect that the greatest need is for a structure of two pointers, which has no padding problem. I suspect the second need is a structure of a pointer and some form of an integer. If that integer is intptr_t, there will be no padding.
Related but separable issue: For unused bitfields, or other unused fields for that matter, we should probably say it's the programmer's responsibility to set them to zero or otherwise ensure they'll be ignored by memcmp.
Proposed resolution: Using atomic<struct-with-padding>::compare_exchange_strong should be either:
I propose Option 1 for C++0x for expediency, though I'm not sure how to say it. I would be happy with Option 2, which I believe would mean that compare_exchange_strong would be implemented to avoid comparing padding bytes, or something equivalent such as always zeroing out padding when loading/storing/comparing. (Either implementation might require compiler support.)
[ Summit: ]
Move to open. Blocked until concepts for atomics are addressed.
[ Post Summit Anthony adds: ]
The resolution of LWG 923 should resolve this issue as well.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2992.
Proposed resolution:
Section: 20.8.2.2.1 [util.smartptr.shared.const] Status: C++11 Submitter: Rodolfo Lima Opened: 2008-10-12 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.const].
View all issues with C++11 status.
Discussion:
The current working draft (N2798), section 20.8.2.2.1 [util.smartptr.shared.const] declares shared_ptr's constructor that takes a rvalue reference to unique_ptr and auto_ptr as being explicit, affecting several valid smart pointer use cases that would take advantage of this conversion being implicit, for example:
class A; std::unique_ptr<A> create(); void process(std::shared_ptr<A> obj); int main() { process(create()); // use case #1 std::unique_ptr<A> uobj = create(); process(std::move(uobj)); // use case #2 return 0; }
If unique_ptr to shared_ptr conversions are explicit, the above lines should be written:
process(std::shared_ptr<A>(create())); // use case #1 process(std::shared_ptr<A>(std::move(uobj))); // use case #2
The extra cast required doesn't seems to give any benefits to the user, nor protects him of any unintended conversions, this being the raison d'etre of explicit constructors.
It seems that this constructor was made explicit to mimic the conversion from auto_ptr in pre-rvalue reference days, which accepts both lvalue and rvalue references. Although this decision was valid back then, C++0x allows the user to express in a clear and non verbose manner when he wants move semantics to be employed, be it implicitly (use case 1) or explicitly (use case 2).
[ Batavia (2009-05): ]
Howard and Alisdair like the motivating use cases and the proposed resolution.
Move to Tentatively Ready.
Proposed resolution:
In both 20.8.2.2 [util.smartptr.shared] paragraph 1 and 20.8.2.2.1 [util.smartptr.shared.const] change:
template <class Y>explicitshared_ptr(auto_ptr<Y> &&r); template <class Y, class D>explicitshared_ptr(unique_ptr<Y, D> &&r);
Section: 30.3.1.2 [thread.thread.constr] Status: C++11 Submitter: Anthony Williams Opened: 2008-10-23 Last modified: 2015-04-08
View all other issues in [thread.thread.constr].
View all issues with C++11 status.
Discussion:
Addresses UK 323
The thread constructor for starting a new thread with a function and arguments is overly constrained by the signature requiring rvalue references for func and args and the CopyConstructible requirements for the elements of args. The use of an rvalue reference for the function restricts the potential use of a plain function name, since the type of the bound parameter will be deduced to be a function reference and decay to pointer-to-function will not happen. This therefore complicates the implementation in order to handle a simple case. Furthermore, the use of rvalue references for args prevents the array to pointer decay. Since arrays are not CopyConstructible or even MoveConstructible, this essentially prevents the passing of arrays as parameters. In particular it prevents the passing of string literals. Consequently a simple case such as
void f(const char*); std::thread t(f,"hello");
is ill-formed since the type of the string literal is const char[6].
By changing the signature to take all parameters by value we can eliminate the CopyConstructible requirement and permit the use of arrays, as the parameter passing semantics will cause the necessary array-to-pointer decay. They will also cause the function name to decay to a pointer to function and allow the implementation to handle functions and function objects identically.
The new signature of the thread constructor for a function and arguments is thus:
template<typename F,typename... Args> thread(F,Args... args);
Since the parameter pack Args can be empty, the single-parameter constructor that takes just a function by value is now redundant.
[ Howard adds: ]
I agree with everything Anthony says in this issue. However I believe we can optimize in such a way as to get the pass-by-value behavior with the pass-by-rvalue-ref performance. The performance difference is that the latter removes a move when passing in an lvalue.
This circumstance is very analogous to make_pair (20.3 [pairs]) where we started with passing by const reference, changed to pass by value to get pointer decay, and then changed to pass by rvalue reference, but modified with decay<T> to retain the pass-by-value behavior. If we were to apply the same solution here it would look like:
template <class F> explicit thread(F f);template <class F, class ...Args> thread(F&& f, Args&&... args);-4- Requires: F and each Ti in Args shall be
CopyConstructible if an lvalue and otherwiseMoveConstructible. INVOKE(f, w1, w2, ..., wN) (20.9.2 [func.require]) shall be a valid expression for some values w1, w2, ... , wN, where N == sizeof...(Args).-5- Effects: Constructs an object of type thread
and executes INVOKE(f, t1, t2, ..., tN) in a new thread of execution, where t1, t2, ..., tN are the values in args.... Constructs the following objects in memory which is accessible to a new thread of execution as if:typename decay<F>::type g(std::forward<F>(f)); tuple<typename decay<Args>::type...> w(std::forward<Args>(args)...);The new thread of execution executes INVOKE(g, wi...) where the wi... refers to the elements stored in the tuple w. Any return value from g is ignored.
If f terminates with an uncaught exception, std::terminate() shall be called.If the evaluation of INVOKE(g, wi...) terminates with an uncaught exception, std::terminate() shall be called [Note: std::terminate() could be called before entering g. -- end note]. Any exception thrown before the evaluation of INVOKE has started shall be catchable in the calling thread.Text referring to when terminate() is called was contributed by Ganesh.
[ Batavia (2009-05): ]
We agree with the proposed resolution, but would like the final sentence to be reworded since "catchable" is not a term of art (and is used nowhere else).
[ 2009-07 Frankfurt: ]
This is linked to N2901.
Howard to open a separate issue to remove (1176).
In Frankfurt there is no consensus for removing the variadic constructor.
[ 2009-10 Santa Cruz: ]
We want to move forward with this issue. If we later take it out via 1176 then that's ok too. Needs small group to improve wording.
[ 2009-10 Santa Cruz: ]
Stefanus provided revised wording. Moved to Review Here is the original wording:
Modify the class definition of std::thread in 30.3.1 [thread.thread.class] to remove the following signature:
template<class F> explicit thread(F f);template<class F, class ... Args> explicit thread(F&& f, Args&& ... args);Modify 30.3.1.2 [thread.thread.constr] to replace the constructors prior to paragraph 4 with the single constructor as above. Replace paragraph 4 - 6 with the following:
-4- Requires: F and each Ti in Args shall be
CopyConstructible if an lvalue and otherwiseMoveConstructible. INVOKE(f, w1, w2, ..., wN) (20.9.2 [func.require]) shall be a valid expression for some values w1, w2, ... , wN, where N == sizeof...(Args).-5- Effects: Constructs an object of type thread
and executes INVOKE(f, t1, t2, ..., tN) in a new thread of execution, where t1, t2, ..., tN are the values in args.... Constructs the following objects:typename decay<F>::type g(std::forward<F>(f)); tuple<typename decay<Args>::type...> w(std::forward<Args>(args)...);and executes INVOKE(g, wi...) in a new thread of execution. These objects shall be destroyed when the new thread of execution completes. Any return value from g is ignored.
If f terminates with an uncaught exception, std::terminate() shall be called.If the evaluation of INVOKE(g, wi...) terminates with an uncaught exception, std::terminate() shall be called [Note: std::terminate() could be called before entering g. -- end note]. Any exception thrown before the evaluation of INVOKE has started shall be catchable in the calling thread.-6- Synchronization: The invocation of the constructor happens before the invocation of
fg.
[ 2010-01-19 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Modify the class definition of std::thread in 30.3.1 [thread.thread.class] to remove the following signature:
template<class F> explicit thread(F f);template<class F, class ... Args> explicit thread(F&& f, Args&& ... args);
Modify 30.3.1.2 [thread.thread.constr] to replace the constructors prior to paragraph 4 with the single constructor as above. Replace paragraph 4 - 6 with the following:
Given a function as follows:
template<typename T> typename decay<T>::type decay_copy(T&& v) { return std::forward<T>(v); }-4- Requires: F and each Ti in Args shall
be CopyConstructible if an lvalue and otherwisesatisfy the MoveConstructible requirements.INVOKE(f, w1, w2, ..., wN) (20.9.2 [func.require]) shall be a valid expression for some values w1, w2, ... , wN, where N == sizeof...(Args).INVOKE(decay_copy(std::forward<F>(f)), decay_copy(std::forward<Args>(args))...) (20.9.2 [func.require]) shall be a valid expression.-5- Effects: Constructs an object of type thread
and executes INVOKE(f, t1, t2, ..., tN) in a new thread of execution, where t1, t2, ..., tN are the values in args.... Any return value from f is ignored. If f terminates with an uncaught exception, std::terminate() shall be called.The new thread of execution executes INVOKE(decay_copy(std::forward<F>(f)), decay_copy(std::forward<Args>(args))...) with the calls to decay_copy() being evaluated in the constructing thread. Any return value from this invocation is ignored. [Note: this implies any exceptions not thrown from the invocation of the copy of f will be thrown in the constructing thread, not the new thread. — end note]. If the invocation of INVOKE(decay_copy(std::forward<F>(f)), decay_copy(std::forward<Args>(args))...) terminates with an uncaught exception, std::terminate shall be called.-6- Synchronization: The invocation of the constructor happens before the invocation of the copy of f.
Section: 20.10.4.3 [meta.unary.prop] Status: C++11 Submitter: Yechezkel Mett Opened: 2008-11-04 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with C++11 status.
Discussion:
The draft (N2798) says in 20.10.4.3 [meta.unary.prop] Table 44:
Table 44 -- Type property queries Template Value template <class T, unsigned I = 0> struct extent; If T is not an array type (8.3.4), or if it has rank less than I, or if I is 0 and T has type "array of unknown bound of U", then 0; otherwise, the size of the I'th dimension of T
Firstly it isn't clear from the wording if I is 0-based or 1-based ("the I'th dimension" sort of implies 1-based). From the following example it is clear that the intent is 0-based, in which case it should say "or if it has rank less than or equal to I".
Sanity check:
The example says assert((extent<int[2], 1>::value) == 0);
Here the rank is 1 and I is 1, but the desired result is 0.
[ Post Summit: ]
Do not use "size" or "value", use "bound". Also, move the cross-reference to 8.3.4 to just after "bound".
Recommend Tentatively Ready.
Proposed resolution:
In Table 44 of 20.10.4.3 [meta.unary.prop], third row, column "Value", change the cell content:
Table 44 -- Type property queries Template Value template <class T, unsigned I = 0> struct extent; If T is not an array type (8.3.4), or if it has rank less than or equal to I, or if I is 0 and T has type "array of unknown bound of U", then 0; otherwise, thesizebound (8.3.4) of the I'th dimension of T, where indexing of I is zero-based.
[ Wording supplied by Daniel. ]
Section: 20.8.1.2.1 [unique.ptr.single.ctor] Status: Resolved Submitter: Howard Hinnant Opened: 2008-11-26 Last modified: 2015-04-08
View all other issues in [unique.ptr.single.ctor].
View all issues with Resolved status.
Discussion:
Addresses US 79
20.8.1.2.1 [unique.ptr.single.ctor]/5 no longer requires for D not to be a pointer type. I believe this restriction was accidently removed when we relaxed the completeness reuqirements on T. The restriction needs to be put back in. Otherwise we have a run time failure that could have been caught at compile time:
{ unique_ptr<int, void(*)(void*)> p1(malloc(sizeof(int))); // should not compile } // p1.~unique_ptr() dereferences a null function pointer unique_ptr<int, void(*)(void*)> p2(malloc(sizeof(int)), free); // ok
[ Post Summit: ]
Recommend Tentatively Ready.
[ 2009-07 Frankfurt ]
Moved from Tentatively Ready to Open only because the wording needs to be improved for enable_if type constraining, possibly following Robert's formula.
[ 2009-07 Frankfurt: ]
We need to consider whether some requirements in the Requires paragraphs of [unique.ptr] should instead be Remarks.
Leave Open. Howard to provide wording, and possibly demonstrate how this can be implemented using enable_if.
[ 2009-07-27 Howard adds: ]
The two constructors to which this issue applies are not easily constrained with enable_if as they are not templated:
unique_ptr(); explicit unique_ptr(pointer p);To "SFINAE" these constructors away would take heroic effort such as specializing the entire unique_ptr class template on pointer deleter types. There is insufficient motivation for such heroics. Here is the expected and reasonable implementation for these constructors:
unique_ptr() : ptr_(pointer()) { static_assert(!is_pointer<deleter_type>::value, "unique_ptr constructed with null function pointer deleter"); } explicit unique_ptr(pointer p) : ptr_(p) { static_assert(!is_pointer<deleter_type>::value, "unique_ptr constructed with null function pointer deleter"); }I.e. just use static_assert to verify that the constructor is not instantiated with a function pointer for a deleter. The compiler will automatically take care of issuing a diagnostic if the deleter is a reference type (uninitialized reference error).
In keeping with our discussions in Frankfurt, I'm moving this requirement on the implementation from the Requires paragraph to a Remarks paragraph.
[ 2009-08-17 Daniel adds: ]
It is insufficient to require a diagnostic. This doesn't imply an ill-formed program as of 1.3 [defns.diagnostic] (a typical alternative would be a compiler warning), but exactly that seems to be the intend. I suggest to use the following remark instead:
Remarks: The program shall be ill-formed if this constructor is instantiated when D is a pointer type or reference type.
Via the general standard rules of 1.4 [intro.compliance] the "diagnostic required" is implied.
[ 2009-10 Santa Cruz: ]
Moved to Ready.
[ 2010-03-14 Howard adds: ]
We moved N3073 to the formal motions page in Pittsburgh which should obsolete this issue. I've moved this issue to NAD Editorial, solved by N3073.
Rationale:
Solved by N3073.
Proposed resolution:
Change the description of the default constructor in 20.8.1.2.1 [unique.ptr.single.ctor]:
unique_ptr();-1- Requires: D shall be default constructible, and that construction shall not throw an exception.
D shall not be a reference type or pointer type (diagnostic required)....
Remarks: The program shall be ill-formed if this constructor is instantiated when D is a pointer type or reference type.
Add after 20.8.1.2.1 [unique.ptr.single.ctor]/8:
unique_ptr(pointer p);...
Remarks: The program shall be ill-formed if this constructor is instantiated when D is a pointer type or reference type.
Section: 20.12.5 [time.duration] Status: C++11 Submitter: Terry Golubiewski Opened: 2008-11-30 Last modified: 2015-04-08
View all other issues in [time.duration].
View all issues with C++11 status.
Discussion:
Addresses US 81
duration is missing operator%. This operator is convenient for computing where in a time frame a given duration lies. A motivating example is converting a duration into a "broken-down" time duration such as hours::minutes::seconds:
class ClockTime { typedef std::chrono::hours hours; typedef std::chrono::minutes minutes; typedef std::chrono::seconds seconds; public: hours hours_; minutes minutes_; seconds seconds_; template <class Rep, class Period> explicit ClockTime(const std::chrono::duration<Rep, Period>& d) : hours_ (std::chrono::duration_cast<hours> (d)), minutes_(std::chrono::duration_cast<minutes>(d % hours(1))), seconds_(std::chrono::duration_cast<seconds>(d % minutes(1))) {} };
[ Summit: ]
Agree except that there is a typo in the proposed resolution. The member operators should be operator%=.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
[ 2009-07 Frankfurt ]
Moved from Tentatively Ready to Open only because the wording needs to be improved for enable_if type constraining, possibly following Robert's formula.
[ 2009-07 Frankfurt: ]
Howard to open a separate issue (1177) to handle the removal of member functions from overload sets, provide wording, and possibly demonstrate how this can be implemented using enable_if (see 947).
Move to Ready.
Proposed resolution:
Add to the synopsis in 20.12 [time]:
template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator%(const duration<Rep1, Period>& d, const Rep2& s); template <class Rep1, class Period1, class Rep2, class Period2> typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>>::type operator%(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
Add to the synopsis of duration in 20.12.5 [time.duration]:
template <class Rep, class Period = ratio<1>> class duration { public: ... duration& operator%=(const rep& rhs); duration& operator%=(const duration& d); ... };
Add to 20.12.5.3 [time.duration.arithmetic]:
duration& operator%=(const rep& rhs);Effects: rep_ %= rhs.
Returns: *this.
duration& operator%=(const duration& d);Effects: rep_ %= d.count().
Returns: *this.
Add to 20.12.5.5 [time.duration.nonmember]:
template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator%(const duration<Rep1, Period>& d, const Rep2& s);Requires: Rep2 shall be implicitly convertible to CR(Rep1, Rep2) and Rep2 shall not be an instantiation of duration. Diagnostic required.
Returns: duration<CR, Period>(d) %= s.
template <class Rep1, class Period1, class Rep2, class Period2> typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>>::type operator%(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);Returns: common_type<duration<Rep1, Period1>, duration<Rep2, Period2>>::type(lhs) %= rhs.
Section: 20.8.1.1.3 [unique.ptr.dltr.dflt1] Status: C++11 Submitter: Howard Hinnant Opened: 2008-12-07 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Consider:
derived* p = new derived[3];
std::default_delete<base[]> d;
d(p); // should fail
Currently the marked line is a run time failure. We can make it a compile time failure by "poisoning" op(U*).
[ Post Summit: ]
Recommend Review.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Add to 20.8.1.1.3 [unique.ptr.dltr.dflt1]:
namespace std { template <class T> struct default_delete<T[]> { void operator()(T*) const; template <class U> void operator()(U*) const = delete; }; }
Section: 20.2.4 [forward] Status: C++11 Submitter: Alisdair Meredith Opened: 2008-12-11 Last modified: 2015-04-08
View all other issues in [forward].
View all issues with C++11 status.
Discussion:
std::identity takes an argument of type T const & and returns a result of T const &.
Unfortunately, this signature will accept a value of type other than T that is convertible-to-T, and then return a reference to the dead temporary. The constraint in the concepts version simply protects against returning reference-to-void.
Solutions:
i/ Return-by-value, potentially slicing bases and rejecting non-copyable types
ii/ Provide an additional overload:
template< typename T > template operator( U & ) = delete;This seems closer on intent, but moves beyond the original motivation for the operator, which is compatibility with existing (non-standard) implementations.
iii/ Remove the operator() overload. This restores the original definition of the identity, although now effectively a type_trait rather than part of the perfect forwarding protocol.
iv/ Remove std::identity completely; its original reason to exist is replaced with the IdentityOf concept.
My own preference is somewhere between (ii) and (iii) - although I stumbled over the issue with a specific application hoping for resolution (i)!
[ Batavia (2009-05): ]
We dislike options i and iii, and option ii seems like overkill. If we remove it (option iv), implementers can still provide it under a different name.
Move to Open pending wording (from Alisdair) for option iv.
[ 2009-05-23 Alisdair provided wording for option iv. ]
[ 2009-07-20 Alisdair adds: ]
I'm not sure why this issue was not discussed at Frankfurt (or I missed the discussion) but the rationale is now fundamentally flawed. With the removal of concepts, std::identity again becomes an important library type so we cannot simply remove it.
At that point, we need to pick one of the other suggested resolutions, but have no guidance at the moment.
[ 2009-07-20 Howard adds: ]
I believe the rationale for not addressing this issue in Frankfurt was that it did not address a national body comment.
I also believe that removal of identity is still a practical option as my latest reformulation of forward, which is due to comments suggested at Summit, no longer uses identity. :-)
template <class T, class U, class = typename enable_if < !is_lvalue_reference<T>::value || is_lvalue_reference<T>::value && is_lvalue_reference<U>::value >::type, class = typename enable_if < is_same<typename remove_all<T>::type, typename remove_all<U>::type>::value >::type> inline T&& forward(U&& t) { return static_cast<T&&>(t); }[ The above code assumes acceptance of 1120 for the definition of remove_all. This is just to make the syntax a little more palatable. Without this trait the above is still very implementable. ]
Paper with rationale is on the way ... really, I promise this time! ;-)
[ 2009-07-30 Daniel adds: See 823 for an alternative resolution. ]
[ 2009-10 Santa Cruz: ]
Move to Ready. Howard will update proposed wording to reflect current draft.
Proposed resolution:
Strike from 20.2 [utility]:
template <class T> struct identity;
Remove from 20.2.4 [forward]:
template <class T> struct identity { typedef T type; const T& operator()(const T& x) const; };const T& operator()(const T& x) const;
-2- Returns: x
Section: 24.4.4 [iterator.operations] Status: Resolved Submitter: Thomas Opened: 2008-12-14 Last modified: 2015-04-08
View all other issues in [iterator.operations].
View all issues with Resolved status.
Discussion:
Addresses UK 270
Regarding the std::distance - function, 24.4.4 [iterator.operations] p.4 says:
Returns the number of increments or decrements needed to get from first to last.
This sentence is completely silent about the sign of the return value. 24.4.4 [iterator.operations] p.1 gives more information about the underlying operations, but again no inferences about the sign can be made. Strictly speaking, that is taking that sentence literally, I think this sentence even implies a positive return value in all cases, as the number of increments or decrements is clearly a ratio scale variable, with a natural zero bound.
Practically speaking, my implementations did what common sense and knowledge based on pointer arithmetic forecasts, namely a positive sign for increments (that is, going from first to last by operator++), and a negative sign for decrements (going from first to last by operator--).
Here are my two questions:
First, is that paragraph supposed to be interpreted in the way what I called 'common sense', that is negative sign for decrements ? I am fairly sure that's the supposed behavior, but a double-check here in this group can't hurt.
Second, is the present wording (2003 standard version - no idea about the draft for the upcoming standard) worth an edit to make it a bit more sensible, to mention the sign of the return value explicitly ?
[ Daniel adds: ]
My first thought was that resolution 204 would already cover the issue report, but it seems that current normative wording is in contradiction to that resolution:
Referring to N2798, 24.4.4 [iterator.operations]/ p.4 says:
Effects: Returns the number of increments or decrements needed to get from first to last.
IMO the part " or decrements" is in contradiction to p. 5 which says
Requires: last shall be reachable from first.
because "reachable" is defined in X [iterator.concepts]/7 as
An iterator j is called reachable from an iterator i if and only if there is a finite sequence of applications of the expression ++i that makes i == j.[..]
Here is wording that would be consistent with this definition of "reachable":
Change 24.4.4 [iterator.operations] p4 as follows:
Effects: Returns the number of increments
or decrementsneeded to get from first to last.
Thomas adds more discussion and an alternative view point here.
[ Summit: ]
The proposed wording below was verbally agreed to. Howard provided.
[ Batavia (2009-05): ]
Pete reports that a recent similar change has been made for the advance() function.
We agree with the proposed resolution. Move to Tentatively Ready.
[ 2009-07 Frankfurt ]
Moved from Tentatively Ready to Open only because the wording needs to be tweaked for concepts removal.
[ 2009-07 Frankfurt: ]
Leave Open pending arrival of a post-Concepts WD.
[ 2009-10-14 Daniel provided de-conceptified wording. ]
[ 2009-10 Santa Cruz: ]
Move to Ready, replacing the Effects clause in the proposed wording with "If InputIterator meets the requirements of random access iterator then returns (last - first), otherwise returns the number of increments needed to get from first to list.".
[ 2010 Pittsburgh: ]
Moved to
NAD EditorialResolved. Rationale added below.
Rationale:
Solved by N3066.
Proposed resolution:
Change 24.2.7 [random.access.iterators], Table 105 as indicated [This change is not essential but it simplifies the specification] for the row with expression "b - a" and the column Operational semantics:
(a < b) ?distance(a,b): -distance(b,a)
Change 24.4.4 [iterator.operations]/4+5 as indicated:
template<class InputIterator> typename iterator_traits<InputIterator>::difference_type distance(InputIterator first, InputIterator last);4 Effects: If InputIterator meets the requirements of random access iterator then returns (last - first), otherwise
Rreturns the number of incrementsor decrementsneeded to get from first to last.5 Requires: If InputIterator meets the requirements of random access iterator then last shall be reachable from first or first shall be reachable from last, otherwise last shall be reachable from first.
Section: X [atomics.types.address] Status: C++11 Submitter: Holger Grund Opened: 2008-12-19 Last modified: 2015-04-08
View all other issues in [atomics.types.address].
View all issues with C++11 status.
Discussion:
There is a row in "Table 122 - Atomics for standard typedef types" in X [atomics.types.integral] with atomic_ssize_t and ssize_t. Unless, I'm missing something ssize_t is not defined by the standard.
[ Summit: ]
Move to review. Proposed resolution: Remove the typedef. Note: ssize_t is a POSIX type.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Remove the row containing ssize_t from Table 119 "Atomics for standard typedef types" in X [atomics.types.address].
Section: 29.5 [atomics.types.generic] Status: Resolved Submitter: Holger Grund Opened: 2008-12-19 Last modified: 2015-04-08
View other active issues in [atomics.types.generic].
View all other issues in [atomics.types.generic].
View all issues with Resolved status.
Discussion:
I think it's fairly obvious that atomic<bool> is supposed to be derived from atomic_bool (and otherwise follow the atomic<integral> interface), though I think the current wording doesn't support this. I raised this point along with atomic<floating-point> privately with Herb and I seem to recall it came up in the resulting discussion on this list. However, I don't see anything on the current libs issue list mentioning this problem.
29.5 [atomics.types.generic]/3 reads
There are full specializations over the integral types on the atomic class template. For each integral type integral in the second column of table 121 or table 122, the specialization atomic<integral> shall be publicly derived from the corresponding atomic integral type in the first column of the table. These specializations shall have trivial default constructors and trivial destructors.
Table 121 does not include (atomic_bool, bool), so that this should probably be mentioned explicitly in the quoted paragraph.
[ Summit: ]
Move to open. Lawrence will draft a proposed resolution. Also, ask Howard to fix the title.
[ Post Summit Anthony provided proposed wording. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2992.
Proposed resolution:
Replace paragraph 3 in 29.5 [atomics.types.generic] with
-3- There are full specializations over the integral types on the atomic class template. For each integral type integral in the second column of table 121 or table 122, the specialization atomic<integral> shall be publicly derived from the corresponding atomic integral type in the first column of the table. In addition, the specialization atomic<bool> shall be publicly derived from atomic_bool. These specializations shall have trivial default constructors and trivial destructors.
Section: 20.12.5.5 [time.duration.nonmember] Status: Resolved Submitter: Pete Becker Opened: 2008-12-20 Last modified: 2015-04-08
View all other issues in [time.duration.nonmember].
View all issues with Resolved status.
Discussion:
In 20.12.5.5 [time.duration.nonmember], paragraph 8 says that calling dur / rep when rep is an instantiation of duration requires a diagnostic. That's followed by an operator/ that takes two durations. So dur1 / dur2 is legal under the second version, but requires a diagnostic under the first.
[ Howard adds: ]
Please see the thread starting with c++std-lib-22980 for more information.
[ Batavia (2009-05): ]
Move to Open, pending proposed wording (and preferably an implementation).
[ 2009-07-27 Howard adds: ]
I've addressed this issue under the proposed wording for 1177 which cleans up several places under 20.12.5 [time.duration] which used the phrase "diagnostic required".
For clarity's sake, here is an example implementation of the constrained operator/:
template <class _Duration, class _Rep, bool = __is_duration<_Rep>::value> struct __duration_divide_result { }; template <class _Duration, class _Rep2, bool = is_convertible<_Rep2, typename common_type<typename _Duration::rep, _Rep2>::type>::value> struct __duration_divide_imp { }; template <class _Rep1, class _Period, class _Rep2> struct __duration_divide_imp<duration<_Rep1, _Period>, _Rep2, true> { typedef duration<typename common_type<_Rep1, _Rep2>::type, _Period> type; }; template <class _Rep1, class _Period, class _Rep2> struct __duration_divide_result<duration<_Rep1, _Period>, _Rep2, false> : __duration_divide_imp<duration<_Rep1, _Period>, _Rep2> { }; template <class _Rep1, class _Period, class _Rep2> inline typename __duration_divide_result<duration<_Rep1, _Period>, _Rep2>::type operator/(const duration<_Rep1, _Period>& __d, const _Rep2& __s) { typedef typename common_type<_Rep1, _Rep2>::type _Cr; duration<_Cr, _Period> __r = __d; __r /= static_cast<_Cr>(__s); return __r; }__duration_divide_result is basically a custom-built enable_if that will contain type only if Rep2 is not a duration and if Rep2 is implicitly convertible to common_type<typename Duration::rep, Rep2>::type. __is_duration is simply a private trait that answers false, but is specialized for duration to answer true.
The constrained operator% works identically.
[ 2009-10 Santa Cruz: ]
Mark
NAD EditorialResolved, fixed by 1177.
Proposed resolution:
Section: 20.11.4 [ratio.arithmetic] Status: C++11 Submitter: Howard Hinnant Opened: 2008-12-26 Last modified: 2015-04-08
View all other issues in [ratio.arithmetic].
View all issues with C++11 status.
Discussion:
N2800, 20.11.4 [ratio.arithmetic] lacks a paragraph from the proposal N2661:
ratio arithmetic [ratio.arithmetic]
... If the implementation is unable to form the indicated ratio due to overflow, a diagnostic shall be issued.
The lack of a diagnostic on compile-time overflow is a significant lack of functionality. This paragraph could be put back into the WP simply editorially. However in forming this issue I realized that we can do better than that. This paragraph should also allow alternative formulations which go to extra lengths to avoid overflow when possible. I.e. we should not mandate overflow when the implementation can avoid it.
For example:
template <class R1, class R2> struct ratio_multiply { typedef see below} type;The nested typedef type shall be a synonym for ratio<T1, T2> where T1 has the value R1::num * R2::num and T2 has the value R1::den * R2::den.
Consider the case where intmax_t is a 64 bit 2's complement signed integer, and we have:
typedef std::ratio<0x7FFFFFFFFFFFFFFF, 0x7FFFFFFFFFFFFFF0> R1; typedef std::ratio<8, 7> R2; typedef std::ratio_multiply<R1, R2>::type RT;
According to the present formulation the implementaiton will multiply 0x7FFFFFFFFFFFFFFF * 8 which will result in an overflow and subsequently require a diagnostic.
However if the implementation is first allowed to divde 0x7FFFFFFFFFFFFFFF by 7 obtaining 0x1249249249249249 / 1 and divide 8 by 0x7FFFFFFFFFFFFFF0 obtaining 1 / 0x0FFFFFFFFFFFFFFE, then the exact result can then be computed without overflow:
[0x7FFFFFFFFFFFFFFF/0x7FFFFFFFFFFFFFF0] * [8/7] = [0x1249249249249249/0x0FFFFFFFFFFFFFFE]
Example implmentation which accomplishes this:
template <class R1, class R2> struct ratio_multiply { private: typedef ratio<R1::num, R2::den> _R3; typedef ratio<R2::num, R1::den> _R4; public: typedef ratio<__ll_mul<_R3::num, _R4::num>::value, __ll_mul<_R3::den, _R4::den>::value> type; };
[ Post Summit: ]
Recommend Tentatively Ready.
Proposed resolution:
Add a paragraph prior to p1 in 20.11.4 [ratio.arithmetic]:
Implementations may use other algorithms to compute the indicated ratios to avoid overflow. If overflow occurs, a diagnostic shall be issued.
Section: 20.8.2.4 [util.smartptr.ownerless] Status: C++11 Submitter: Thomas Plum Opened: 2008-12-30 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
20.8.2.4 [util.smartptr.ownerless] (class template owner_less) says that operator()(x,y) shall return x.before(y).
However, shared_ptr and weak_ptr have an owner_before() but not a before(), and there's no base class to provide a missing before().
Being that the class is named owner_less , I'm guessing that "before()" should be "owner_before()", right?
[ Herve adds: ]
Agreed with the typo, it should be "shall return x.owner_before(y)".
[ Post Summit: ]
Recommend Tentatively Ready.
Proposed resolution:
Change 20.8.2.4 [util.smartptr.ownerless] p2:
-2- operator()(x,y) shall return x.owner_before(y). [Note: ...
Section: 20.8.1.2.1 [unique.ptr.single.ctor] Status: Resolved Submitter: Howard Hinnant Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [unique.ptr.single.ctor].
View all issues with Resolved status.
Discussion:
unique_ptr's of array type should not convert to unique_ptr's which do not have an array type.
struct Deleter
{
void operator()(void*) {}
};
int main()
{
unique_ptr<int[], Deleter> s;
unique_ptr<int, Deleter> s2(std::move(s)); // should not compile
}
[ Post Summit: ]
Walter: Does the "diagnostic required" apply to both arms of the "and"?
Tom Plum: suggest to break into several sentences
Walter: suggest "comma" before the "and" in both places
Recommend Review.
[ Batavia (2009-05): ]
The post-Summit comments have been applied to the proposed resolution. We now agree with the proposed resolution. Move to Tentatively Ready.
[ 2009-07 Frankfurt ]
Moved from Tentatively Ready to Open only because the wording needs to be improved for enable_if type constraining, possibly following Robert's formula.
[ 2009-08-01 Howard updates wording and sets to Review. ]
[ 2009-10 Santa Cruz: ]
Move to Ready.
[ 2010-02-27 Pete Opens: ]
The proposed replacement text doesn't make sense.
If D is a reference type, then E shall be the same type as D, else this constructor shall not participate in overload resolution.
This imposes two requirements. 1. If D is a reference type, E has to be D. 2. If D is not a reference type, the constructor shall not participate in overload resolution. If the latter apples, the language in the preceding paragraph that this constructor shall not throw an exception if D is not a reference type is superfluous. I suspect that's not the intention, but I can't parse this text any other way.
U shall not be an array type, else this constructor shall not participate in overload resolution.
I don't know what this means.
[ 2010-02-27 Peter adds: ]
I think that the intent is (proposed text):
Remarks: this constructor shall only participate in overload resolution if:
- unique_ptr<U, E>::pointer is implicitly convertible to pointer,
- U is not an array type, and
- if D is a reference type, E is the same type as D.
[ 2010-02-28 Howard adds: ]
I like Peter's proposal. Here is a tweak of it made after looking at my implementation. I believe this fixes a further defect not addressed by the current proposed wording:
Remarks: this constructor shall only participate in overload resolution if:
- unique_ptr<U, E>::pointer is implicitly convertible to pointer, and
- U is not an array type, and
- if D is a reference type, E is the same type as D, else E shall be implicitly convertible to D.
[ 2010 Pittsburgh: Moved to NAD Editorial. Rationale added below. ]
Rationale:
Solved by N3073.
Proposed resolution:
Change 20.8.1.2.1 [unique.ptr.single.ctor]:
template <class U, class E> unique_ptr(unique_ptr<U, E>&& u);-20- Requires: If D is not a reference type, construction of the deleter D from an rvalue of type E shall be well formed and shall not throw an exception.
If D is a reference type, then E shall be the same type as D (diagnostic required). unique_ptr<U, E>::pointer shall be implicitly convertible to pointer. [Note: These requirements imply that T and U are complete types. — end note]Remarks: If D is a reference type, then E shall be the same type as D, else this constructor shall not participate in overload resolution. unique_ptr<U, E>::pointer shall be implicitly convertible to pointer, else this constructor shall not participate in overload resolution. U shall not be an array type, else this constructor shall not participate in overload resolution. [Note: These requirements imply that T and U are complete types. — end note]
Change 20.8.1.2.3 [unique.ptr.single.asgn]:
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u);-6- Requires: Assignment of the deleter D from an rvalue D shall not throw an exception.
unique_ptr<U, E>::pointer shall be implicitly convertible to pointer. [Note: These requirements imply that T and U are complete types. — end note]Remarks: unique_ptr<U, E>::pointer shall be implicitly convertible to pointer, else this operator shall not participate in overload resolution. U shall not be an array type, else this operator shall not participate in overload resolution. [Note: These requirements imply that T and U are complete types. — end note]
Section: 20.12.4.1 [time.traits.is_fp] Status: C++11 Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Related to 953.
20.12.4.1 [time.traits.is_fp] says that the type Rep "is assumed to be ... a class emulating an integral type." What are the requirements for such a type?
[ 2009-05-10 Howard adds: ]
IntegralLike.
[ Batavia (2009-05): ]
As with issue 953, we recommend this issue be addressed in the context of providing concepts for the entire thread header.
We look forward to proposed wording.
Move to Open.
[ 2009-08-01 Howard adds: ]
I have surveyed all clauses of 20.12.4.2 [time.traits.duration_values], 20.12.4.3 [time.traits.specializations] and 20.12.5 [time.duration]. I can not find any clause which involves the use of a duration::rep type where the requirements on the rep type are not clearly spelled out. These requirements were carefully crafted to allow any arithmetic type, or any user-defined type emulating an arithmetic type.
Indeed, treat_as_floating_point becomes completely superfluous if duration::rep can never be a class type.
There will be some Rep types which will not meet the requirements of every duration operation. This is no different than the fact that vector<T> can easily be used for types T which are not DefaultConstructible, even though some members of vector<T> require T to be DefaultConstructible. This is why the requirements on Rep are specified for each operation individually.
In 20.12.4.1 [time.traits.is_fp] p1:
template <class Rep> struct treat_as_floating_point : is_floating_point<Rep> { };The duration template uses the treat_as_floating_point trait to help determine if a duration object can be converted to another duration with a different tick period. If treat_as_floating_point<Rep>::value is true, then Rep is a floating-point type and implicit conversions are allowed among durations. Otherwise, the implicit convertibility depends on the tick periods of the durations. If Rep is a class type which emulates a floating-point type, the author of Rep can specialize treat_as_floating_point so that duration will treat this Rep as if it were a floating-point type. Otherwise Rep is assumed to be an integral type or a class emulating an integral type.
The phrases "a class type which emulates a floating-point type" and "a class emulating an integral type" are clarifying phrases which refer to the summation of all the requirements on the Rep type specified in detail elsewhere (and should not be repeated here).
This specification has been implemented, now multiple times, and the experience has been favorable. The current specification clearly specifies the requirements at each point of use (though I'd be happy to fix any place I may have missed, but none has been pointed out).
I am amenable to improved wording of this paragraph (and any others), but do not have any suggestions for improved wording at this time. I am strongly opposed to changes which would significantly alter the semantics of the specification under 20.12 [time] without firmly grounded and documented rationale, example implementation, testing, and user experience which relates a positive experience.
I recommend NAD unless someone wants to produce some clarifying wording.
[ 2009-10 Santa Cruz: ]
Stefanus to provide wording to turn this into a note.
[ 2010-02-11 Stefanus provided wording. ]
[ 2010 Rapperswil: ]
Move to Ready.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 20.12.4.1 [time.traits.is_fp]/1:
1 The duration template uses the treat_as_floating_point trait to help determine if a duration object can be converted to another duration with a different tick period. If treat_as_floating_point<Rep>::value is true, then
Rep is a floating-point type andimplicit conversions are allowed among durations. Otherwise, the implicit convertibility depends on the tick periods of the durations.If Rep is a class type which emulates a floating-point type, the author of Rep can specialize treat_as_floating_point so that duration will treat this Rep as if it were a floating-point type. Otherwise Rep is assumed to be an integral type or a class emulating an integral type.[Note: The intention of this trait is to indicate whether a given class behaves like a floating point type, and thus allows division of one value by another with acceptable loss of precision. If treat_as_floating_point<Rep>::value is false, Rep will be treated as if it behaved like an integral type for the purpose of these conversions. — end note]
Section: 20.12.3 [time.clock.req] Status: Resolved Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [time.clock.req].
View all issues with Resolved status.
Discussion:
Related to 951.
20.12.3 [time.clock.req] says that a clock's rep member is "an arithmetic type or a class emulating an arithmetic type." What are the requirements for such a type?
[ 2009-05-10 Howard adds: ]
This wording was aimed directly at the ArithmeticLike concept.
[ Batavia (2009-05): ]
We recommend this issue be addressed in the context of providing concepts for the entire thread header.
May resolve for now by specifying arithmetic types, and in future change to ArithmeticLike. However, Alisdair believes this is not feasible.
Bill disagrees.
We look forward to proposed wording. Move to Open.
[ 2009-08-01 Howard adds: ]
See commented dated 2009-08-01 in 951.
[ 2009-10 Santa Cruz: ]
Stefanus to provide wording to turn this into a note.
[ 2010-02-11 Stephanus provided wording for 951 which addresses this issue as well. ]
[ 2010 Rapperswil: ]
Move to
NAD EditorialResolved, resolved by 951.
Proposed resolution:
Section: 20.12.3 [time.clock.req] Status: C++11 Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [time.clock.req].
View all issues with C++11 status.
Discussion:
Table 55 — Clock Requirements (in 20.12.3 [time.clock.req])
[ 2009-05-10 Howard adds: ]
"epoch" is purposefully not defined beyond the common English definition. The C standard also chose not to define epoch, though POSIX did. I believe it is a strength of the C standard that epoch is not defined. When it is known that two time_points refer to the same epoch, then a definition of the epoch is not needed to compare the two time_points, or subtract them.
A time_point and a Clock implicitly refer to an (unspecified) epoch. The time_point represents an offset (duration) from an epoch.
The sentence:
Different clocks may share a time_point definition if it is valid to compare their time_points by comparing their respective durations.
is redundant and could be removed. I believe the sentence which follows the above:
C1 and C2 shall refer to the same epoch.
is sufficient. If two clocks share the same epoch, then by definition, comparing their time_points is valid.
This should probably instead be worded:
An instantiation of ratio.
[ Batavia (2009-05): ]
Re (a): It is not clear to us whether "epoch" is a term of art.
Re (b), (c), and (d): We agree with Howard's comments, and would consider adding to (c) a static constexpr requirement.
Move to Open pending proposed wording.
[ 2009-05-25 Daniel adds: ]
In regards to (d) I suggest to say "a specialization of ratio" instead of "An instantiation of ratio". This seems to be the better matching standard core language term for this kind of entity.
[ 2009-05-25 Ganesh adds: ]
Regarding (a), I found this paper on the ISO website using the term "epoch" consistently with the current wording:
which is part of ISO/IEC 18026 "Information technology -- Spatial Reference Model (SRM)".
[ 2009-08-01 Howard: Moved to Reivew as the wording requested in Batavia has been provided. ]
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Change 20.12.3 [time.clock.req] p1:
-1- A clock is a bundle consisting of a native duration, a native time_point, and a function now() to get the current time_point. The origin of the clock's time_point is referred to as the clock's epoch as defined in section 6.3 of ISO/IEC 18026. A clock shall meet the requirements in Table 45.
Remove the sentence from the time_point row of the table "Clock Requirements":
C1::time_point | chrono::time_point<C1> or chrono::time_point<C2, C1::duration> |
The native time_point type of the clock.
|
Change the row starting with C1::period of the table "Clock Requirements":
C1::period | a specialization of ratio | The tick period of the clock in seconds. |
Section: 20.12.3 [time.clock.req] Status: C++11 Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [time.clock.req].
View all issues with C++11 status.
Discussion:
20.12.3 [time.clock.req] uses the word "native" in several places, but doesn't define it. What is a "native duration"?
[ 2009-05-10 Howard adds: ]
The standard uses "native" in several places without defining it (e.g. 2.13.3 [lex.ccon]). It is meant to mean "that which is defined by the facility", or something along those lines. In this case it refers to the nested time_point and duration types of the clock. Better wording is welcome.
[ Batavia (2009-05): ]
Move to Open pending proposed wording from Pete.
[ 2009-10-23 Pete provides wording: ]
[ 2009-11-18 Daniel adds: ]
I see that 30.4.1.3 [thread.timedmutex.requirements]/3 says:
Precondition: If the tick period of rel_time is not exactly convertible to the native tick period, the duration shall be rounded up to the nearest native tick period.
I would prefer to see that adapted as well. Following the same style as the proposed resolution I come up with
Precondition: If the tick period of rel_time is not exactly convertible to the
nativetick period of the execution environment, the duration shall be rounded up to the nearestnativetick period of the execution environment.
[ 2010-03-28 Daniel synced wording with N3092 ]
[ Post-Rapperswil, Howard provides wording: ]
Moved to Tentatively Ready with revised wording from Howard Hinnant after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 20.12.3 [time.clock.req]:
1 A clock is a bundle consisting of a
nativeduration, anativetime_point, and a function now() to get the current time_point. The origin of the clock's time_point is referred to as the clock's epoch. A clock shall meet the requirements in Table 56.2 ...
Table 56 — Clock requirements Expression Return type Operational semantics C1::rep An arithmetic type or a class emulating an arithmetic type The representation type of the nativeC1::duration.and time_point.C1::period ... ... C1::duration chrono::duration<C1::rep, C1::period> The nativeduration type of the clock.C1::time_point chrono::time_point<C1> or chrono::time_point<C2, C1::duration> The nativetime_point type of the clock. C1 and C2 shall refer to the same epoch....
Section: 20.12.7.1 [time.clock.system] Status: C++11 Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [time.clock.system].
View all issues with C++11 status.
Discussion:
20.12.7.1 [time.clock.system]: to_time_t is overspecified. It requires truncation, but should allow rounding. For example, suppose a system has a clock that gives times in milliseconds, but time() rounds those times to the nearest second. Then system_clock can't use any resolution finer than one second, because if it did, truncating times between half a second and a full second would produce the wrong time_t value.
[ Post Summit Anthony Williams provided proposed wording. ]
[ Batavia (2009-05): ]
Move to Review pending input from Howard. and other stakeholders.
[ 2009-05-23 Howard adds: ]
I am in favor of the wording provided by Anthony.
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
In 20.12.7.1 [time.clock.system] replace paragraphs 3 and 4 with:
time_t to_time_t(const time_point& t);-3- Returns: A time_t object that represents the same point in time as t when both values are
truncatedrestricted to the coarser of the precisions of time_t and time_point. It is implementation defined whether values are rounded or truncated to the required precision.time_point from_time_t(time_t t);-4- Returns: A time_point object that represents the same point in time as t when both values are
truncatedrestricted to the coarser of the precisions of time_t and time_point. It is implementation defined whether values are rounded or truncated to the required precision.
Section: 30.5.1 [thread.condition.condvar] Status: Resolved Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [thread.condition.condvar].
View all issues with Resolved status.
Discussion:
30.5.1 [thread.condition.condvar]: the specification for wait_for with no predicate has an effects clause that says it calls wait_until, and a returns clause that sets out in words how to determine the return value. Is this description of the return value subtly different from the description of the value returned by wait_until? Or should the effects clause and the returns clause be merged?
[ Summit: ]
Move to open. Associate with LWG 859 and any other monotonic-clock related issues.
[ 2009-08-01 Howard adds: ]
I believe that 859 (currently Ready) addresses this issue, and that this issue should be marked NAD, solved by 859 (assuming it moves to WP).
[ 2009-10 Santa Cruz: ]
Mark as
NAD EditorialResolved, addressed by resolution of Issue 859.
Proposed resolution:
Section: 30.4.1 [thread.mutex.requirements] Status: C++11 Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View other active issues in [thread.mutex.requirements].
View all other issues in [thread.mutex.requirements].
View all issues with C++11 status.
Discussion:
30.4.1 [thread.mutex.requirements]: paragraph 4 is entitled "Error conditions", but according to 17.5.1.4 [structure.specifications], "Error conditions:" specifies "the error conditions for error codes reported by the function." It's not clear what this should mean when there is no function in sight.
[ Summit: ]
Move to open.
[ Beman provided proposed wording. ]
[ 2009-10 Santa Cruz: ]
Move to Ready. Fix the proposed wording with "functions of type Mutex" -> "functions of Mutex type"
Proposed resolution:
Change 30.4.1 [thread.mutex.requirements] Mutex requirements, paragraph 4 as indicated:
-4-
Error conditions:The error conditions for error codes, if any, reported by member functions of Mutex type shall be:
- not_enough_memory — if there is not enough memory to construct the mutex object.
- resource_unavailable_try_again — if any native handle type manipulated is not available.
- operation_not_permitted — if the thread does not have the necessary permission to change the state of the mutex object.
- device_or_resource_busy — if any native handle type manipulated is already locked.
- invalid_argument — if any native handle type manipulated as part of mutex construction is incorrect.
Section: 30.4.2.2.2 [thread.lock.unique.locking] Status: C++11 Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [thread.lock.unique.locking].
View all issues with C++11 status.
Discussion:
30.4.2.2.2 [thread.lock.unique.locking]: unique_lock::lock is required to throw an object of type std::system_error "when the postcondition cannot be achieved." The postcondition is owns == true, and this is trivial to achieve. Presumably, the requirement is intended to mean something more than that.
[ Summit: ]
Move to open.
[ Beman has volunteered to provide proposed wording. ]
[ 2009-07-21 Beman added wording to address 30.2.2 [thread.req.exception] in response to the Frankfurt notes in 859. ]
[ 2009-09-25 Beman: minor update to wording. ]
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Change Exceptions 30.2.2 [thread.req.exception] as indicated:
Some functions described in this Clause are specified to throw exceptions of type
system_error
(19.5.5). Such exceptions shall be thrown if any of the Error conditions are detected or a call to an operating system or other underlying API results in an error that prevents the library function fromsatisfying its postconditions or from returning a meaningful valuemeeting its specifications. Failure to allocate storage shall be reported as described in 17.6.5.12 [res.on.exception.handling].
Change thread assignment 30.3.1.5 [thread.thread.member], join(), paragraph 8 as indicated:
Throws:
std::system_error
whenthe postconditions cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change thread assignment 30.3.1.5 [thread.thread.member], detach(), paragraph 13 as indicated:
Throws:
std::system_error
whenthe effects or postconditions cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change Mutex requirements 30.4.1 [thread.mutex.requirements], paragraph 11, as indicated:
Throws:
std::system_error
whenthe effects or postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change unique_lock locking 30.4.2.2.2 [thread.lock.unique.locking], paragraph 3, as indicated:
Throws:
std::system_error
whenthe postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change unique_lock locking 30.4.2.2.2 [thread.lock.unique.locking], paragraph 8, as indicated:
Throws:
std::system_error
whenthe postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change unique_lock locking 30.4.2.2.2 [thread.lock.unique.locking], paragraph 13, as indicated:
Throws:
std::system_error
whenthe postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change unique_lock locking 30.4.2.2.2 [thread.lock.unique.locking], paragraph 18, as indicated:
Throws:
std::system_error
whenthe postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change unique_lock locking 30.4.2.2.2 [thread.lock.unique.locking], paragraph 22, as indicated:
Throws:
std::system_error
whenthe postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change Function call_once 30.4.4.2 [thread.once.callonce], paragraph 4, as indicated
Throws:
std::system_error
whenthe effects cannot be achievedan exception is required (30.2.2 [thread.req.exception]), or any exception thrown byfunc
.
Change Class condition_variable 30.5.1 [thread.condition.condvar], paragraph 12, as indicated:
Throws:
std::system_error
whenthe effects or postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change Class condition_variable 30.5.1 [thread.condition.condvar], paragraph 19, as indicated:
Throws:
std::system_error
whenthe effects or postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change Class condition_variable_any 30.5.2 [thread.condition.condvarany], paragraph 10, as indicated:
Throws:
std::system_error
whenthe effects or postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Change Class condition_variable_any 30.5.2 [thread.condition.condvarany], paragraph 16, as indicated:
Throws:
std::system_error
whenthe returned value, effects, or postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Assuming issue 859, Monotonic Clock is Conditionally Supported?, has been applied to the working paper, change Change 30.5.1 [thread.condition.condvar] as indicated:
template <class Rep, class Period> bool wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time);...Throws:
std::system_error
whenthe effects or postcondition cannot be achievedan exception is required ([thread.req.exception]).
Assuming issue 859, Monotonic Clock is Conditionally Supported?, has been applied to the working paper, change Change 30.5.1 [thread.condition.condvar] as indicated:
template <class Rep, class Period, class Predicate> bool wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);...Throws:
std::system_error
whenthe effects or postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Assuming issue 859, Monotonic Clock is Conditionally Supported?, has been applied to the working paper, change 30.5.2 [thread.condition.condvarany] as indicated:
template <class Lock, class Rep, class Period> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);...Throws:
std::system_error
whenthe returned value, effects or postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Assuming issue 859, Monotonic Clock is Conditionally Supported?, has been applied to the working paper, change 30.5.2 [thread.condition.condvarany] as indicated:
template <class Lock, class Rep, class Period, class Predicate> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);...Throws:
std::system_error
whenthe returned value, effects or postcondition cannot be achievedan exception is required (30.2.2 [thread.req.exception]).
Section: 30.3.1.5 [thread.thread.member] Status: C++11 Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [thread.thread.member].
View all issues with C++11 status.
Discussion:
30.3.1.5 [thread.thread.member]: thread::detach is required to throw an exception if the thread is "not a detachable thread". "Detachable" is never defined.
[ Howard adds: ]
Due to a mistake on my part, 3 proposed resolutions appeared at approximately the same time. They are all three noted below in the discussion.
[ Summit, proposed resolution: ]
In 30.3.1.5 [thread.thread.member] change:
void detach();...
-14- Error conditions:
- no_such_process -- if the thread is not
avalidthread.- invalid_argument -- if the thread is not
a detachablejoinablethread.
[ Post Summit, Jonathan Wakely adds: ]
A thread is detachable if it is joinable. As we've defined joinable, we can just use that.
This corresponds to the pthreads specification, where pthread_detach fails if the thread is not joinable:
EINVAL: The implementation has detected that the value specified by thread does not refer to a joinable thread.
Jonathan recommends this proposed wording:
In 30.3.1.5 [thread.thread.member] change:
void detach();...
-14- Error conditions:
- ...
- invalid_argument -- not a
detachablejoinable thread.
[ Post Summit, Anthony Williams adds: ]
This is covered by the precondition that joinable() be true.
Anthony recommends this proposed wording:
In 30.3.1.5 [thread.thread.member] change:
void detach();...
-14- Error conditions:
- ...
invalid_argument -- not a detachable thread.
[ 2009-10 Santa Cruz: ]
Mark as Ready with proposed resolution from Summit.
Proposed resolution:
In 30.3.1.5 [thread.thread.member] change:
void detach();...
-14- Error conditions:
- no_such_process -- if the thread is not
avalidthread.- invalid_argument -- if the thread is not
a detachablejoinablethread.
Section: 30.5.2 [thread.condition.condvarany] Status: Resolved Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [thread.condition.condvarany].
View all issues with Resolved status.
Discussion:
The requirements for the constructor for condition_variable has several error conditions, but the requirements for the constructor for condition_variable_any has none. Is this difference intentional?
[ Summit: ]
Move to open, pass to Howard. If this is intentional, a note may be helpful. If the error conditions are to be copied from condition_variable, this depends on LWG 965.
[ Post Summit Howard adds: ]
The original intention (N2447) was to let the OS return whatever errors it was going to return, and for those to be translated into exceptions, for both condition_variable and condition_variable_any. I have not received any complaints about specific error conditions from vendors on non-POSIX platforms, but such complaints would not surprise me if they surfaced.
[ 2009-10 Santa Cruz: ]
Leave open. Benjamin to provide wording.
[ 2010 Pittsburgh: ]
We don't have throw clauses for condition variables.
This issue may be dependent on LWG 1268.
Leave open. Detlef will coordinate with Benjamin.
Consider merging LWG 964, 966, and 1268 into a single paper.
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: 30.5.1 [thread.condition.condvar] Status: C++11 Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [thread.condition.condvar].
View all issues with C++11 status.
Discussion:
30.5.1 [thread.condition.condvar]: the constructor for condition_variable throws an exception with error code device_or_resource_busy "if attempting to initialize a previously-initialized but as of yet undestroyed condition_variable." How can this occur?
[ Summit: ]
Move to review. Proposed resolution: strike the device_or_resource_busy error condition from the constructor of condition_variable.
- This is a POSIX error that cannot occur in this interface because the C++ interface does not separate declaration from initialization.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change 30.5.1 [thread.condition.condvar] p3:
- ...
device_or_resource_busy -- if attempting to initialize a previously-initialized but as of yet undestroyed condition_variable.
Section: 30.5.1 [thread.condition.condvar] Status: Resolved Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [thread.condition.condvar].
View all issues with Resolved status.
Discussion:
30.5.1 [thread.condition.condvar]: condition_variable::wait and condition_variable::wait_until both have a postcondition that lock is locked by the calling thread, and a throws clause that requires throwing an exception if this postcondition cannot be achieved. How can the implementation detect that this lock can never be obtained?
[ Summit: ]
Move to open. Requires wording. Agreed this is an issue, and the specification should not require detecting deadlocks.
[ 2009-08-01 Howard provides wording. ]
The proposed wording is inspired by the POSIX spec which says:
- [EINVAL]
- The value specified by cond or mutex is invalid.
- [EPERM]
- The mutex was not owned by the current thread at the time of the call.
I do not believe [EINVAL] is possible without memory corruption (which we don't specify). [EPERM] is possible if this thread doesn't own the mutex, which is listed as a precondition. "May" is used instead of "Shall" because not all OS's are POSIX.
[ 2009-10 Santa Cruz: ]
Leave open, Detlef to provide improved wording.
[ 2009-10-23 Detlef Provided wording. ]
Detlef's wording put in Proposed resolution. Original wording here:
Change 30.5.1 [thread.condition.condvar] p12, p19 and 30.5.2 [thread.condition.condvarany] p10, p16:
Throws: May throw std::system_error if a precondition is not met.
when the effects or postcondition cannot be achieved.
[ 2009-10 Santa Cruz: ]
Leave open, Detlef to provide improved wording.
[ 2009-11-18 Anthony adds: ]
condition_variable::wait takes a unique_lock<mutex>. We know whether or not a unique_lock owns a lock, through use of its owns_lock() member.
I would like to propose the following resolution:
Modify the first sentence of 30.5.1 [thread.condition.condvar] p9:
void wait(unique_lock<mutex>& lock);9 Precondition:
lock is locked by the calling threadlock.owns_lock() is true, and either...
Replace 30.5.1 [thread.condition.condvar] p11-13 with:
void wait(unique_lock<mutex>& lock);...
11 Postcondition:
lock is locked by the calling threadlock.owns_lock() is true.12 Throws: std::system_error
when the effects or postcondition cannot be achievedif the implementation detects that the preconditions are not met or the effects cannot be achieved. Any exception thrown by lock.lock() or lock.unlock().13 Error Conditions: The error conditions are implementation defined.
equivalent error condition from lock.lock() or lock.unlock().
[ 2010 Pittsburgh: ]
There are heavy conflicts with adopted papers.
This issue is dependent on LWG 1268.
Leave open pending outstanding edits to the working draft. Detlef will provide wording.
Possibly related to 964.
[2011-03-24 Madrid]
Rationale:
This has been resolved since filing, with the introduction of system_error to the thread specification.
Proposed resolution:
Replace 30.5.1 [thread.condition.condvar] p12, p19 and 30.5.2 [thread.condition.condvarany] p10, p16:
Throws: std::system_error when the effects or postcondition cannot be achieved.
Error conditions:
equivalent error condition from lock.lock() or lock.unlock().Throws: It is implementation-defined whether a std::system_error with implementation-defined error condition is thrown if the precondition is not met.
Section: 30.3.1.2 [thread.thread.constr] Status: C++11 Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View all other issues in [thread.thread.constr].
View all issues with C++11 status.
Discussion:
the error handling for the constructor for condition_variable distinguishes lack of memory from lack of other resources, but the error handling for the thread constructor does not. Is this difference intentional?
[ Beman has volunteered to provide proposed wording. ]
[ 2009-09-25 Beman provided proposed wording. ]
The proposed resolution assumes 962 has been accepted and its proposed resolution applied to the working paper.
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Change Mutex requirements 30.4.1 [thread.mutex.requirements], paragraph 4, as indicated:
Error conditions:
not_enough_memory
— if there is not enough memory to construct the mutex object.resource_unavailable_try_again
— if any native handle type manipulated is not available.operation_not_permitted
— if the thread does not have the necessary permission to change the state of the mutex object.device_or_resource_busy
— if any native handle type manipulated is already locked.invalid_argument
— if any native handle type manipulated as part of mutex construction is incorrect.
Change Class condition_variable 30.5.1 [thread.condition.condvar], default constructor, as indicated:
condition_variable();
Effects: Constructs an object of type
condition_variable
.Throws:
std::system_error
when an exception is required (30.2.2 [thread.req.exception]).Error conditions:
not_enough_memory
— if a memory limitation prevents initialization.resource_unavailable_try_again
— if some non-memory resource limitation prevents initialization.device_or_resource_busy
— if attempting to initialize a previously-initialized but as of yet undestroyedcondition_variable
.
Section: 30.4.1 [thread.mutex.requirements] Status: C++11 Submitter: Pete Becker Opened: 2009-01-07 Last modified: 2015-04-08
View other active issues in [thread.mutex.requirements].
View all other issues in [thread.mutex.requirements].
View all issues with C++11 status.
Discussion:
30.4.1 [thread.mutex.requirements]: several functions are required to throw exceptions "if the thread does not have the necessary permission ...". "The necessary permission" is not defined.
[ Summit: ]
Move to open.
[ Beman has volunteered to provide proposed wording. ]
[ 2009-10 Santa Cruz: ]
Moved to Ready with minor word-smithing in the example.
Proposed resolution:
Change Exceptions 30.2.2 [thread.req.exception] as indicated:
Some functions described in this Clause are specified to throw exceptions of type
system_error
(19.5.5). Such exceptions shall be thrown if any of the Error conditions are detected or a call to an operating system or other underlying API results in an error that prevents the library function from meeting its specifications. [Note: See 17.6.5.12 [res.on.exception.handling] for exceptions thrown to report storage allocation failures. —end note][Example:
Consider a function in this clause that is specified to throw exceptions of type
system_error
and specifies Error conditions that includeoperation_not_permitted
for a thread that does not have the privilege to perform the operation. Assume that, during the execution of this function, anerrno
ofEPERM
is reported by a POSIX API call used by the implementation. Since POSIX specifies anerrno
ofEPERM
when "the caller does not have the privilege to perform the operation", the implementation mapsEPERM
to anerror_condition
ofoperation_not_permitted
(19.5 [syserr]) and an exception of typesystem_error
is thrown.—end example]
Editorial note: For the sake of exposition, the existing text above is shown with the changes proposed in issues 962 and 967. The proposed additional example is independent of whether or not the 962 and 967 proposed resolutions are accepted.
Change Mutex requirements 30.4.1 [thread.mutex.requirements], paragraph 4, as indicated:
—
operation_not_permitted
— if the thread does not have thenecessary permission to change the state of the mutex objectprivilege to perform the operation.
Change Mutex requirements 30.4.1 [thread.mutex.requirements], paragraph 12, as indicated:
—
operation_not_permitted
— if the thread does not have thenecessary permission to change the state of the mutexprivilege to perform the operation.
Section: 20.7.12.1 [specialized.addressof] Status: C++11 Submitter: Howard Hinnant Opened: 2009-01-16 Last modified: 2015-04-08
View all other issues in [specialized.addressof].
View all issues with C++11 status.
Discussion:
20.7.12.1 [specialized.addressof] specifies:
template <ObjectType T> T* addressof(T& r); template <ObjectType T> T* addressof(T&& r);
The two signatures are ambiguous when the argument is an lvalue. The second signature seems not useful: what does it mean to take the address of an rvalue?
[ Post Summit: ]
Recommend Review.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
[ 2009-11-18 Moved from Pending WP to WP. Confirmed in N3000. ]
Proposed resolution:
Change 20.7.12.1 [specialized.addressof]:
template <ObjectType T> T* addressof(T& r);template <ObjectType T> T* addressof(T&& r);
Section: 20.12.5.1 [time.duration.cons] Status: C++11 Submitter: Howard Hinnant Opened: 2009-01-21 Last modified: 2015-04-08
View all other issues in [time.duration.cons].
View all issues with C++11 status.
Discussion:
The following code should not compile because it involves implicit truncation errors (against the design philosophy of the duration library).
duration<double> d(3.5);
duration<int> i = d; // implicit truncation, should not compile
This intent was codified in the example implementation which drove this proposal but I failed to accurately translate the code into the specification in this regard.
[ Batavia (2009-05): ]
We agree with the proposed resolution.
Move to Tentatively Ready.
[ 2009-07 Frankfurt ]
Moved from Tentatively Ready to Open only because the wording needs to be improved for enable_if type constraining, possibly following Robert's formula.
[ 2009-08-01 Howard adds: ]
Addressed by 1177.
[ 2009-10 Santa Cruz: ]
Not completely addressed by 1177. Move to Ready.
Proposed resolution:
Change 20.12.5.1 [time.duration.cons], p4:
template <class Rep2, class Period2> duration(const duration<Rep2, Period2>& d);-4- Requires: treat_as_floating_point<rep>::value shall be true or both ratio_divide<Period2, period>::type::den shall be 1 and treat_as_floating_point<Rep2>::value shall be false. Diagnostic required. [Note: This requirement prevents implicit truncation error when converting between integral-based duration types. Such a construction could easily lead to confusion about the value of the duration. — end note]
Section: 20.10.6 [meta.rel] Status: C++11 Submitter: Daniel Krügler Opened: 2009-01-25 Last modified: 2015-04-08
View all other issues in [meta.rel].
View all issues with C++11 status.
Discussion:
Addresses UK 206
Related to 1114.
The current specification of std::is_convertible (reference is draft N2798) is basically defined by 20.10.6 [meta.rel] p.4:
In order to instantiate the template is_convertible<From, To>, the following code shall be well formed:
template <class T> typename add_rvalue_reference<T>::type create(); To test() { return create<From>(); }[Note: This requirement gives well defined results for reference types, void types, array types, and function types. — end note]
The first sentence can be interpreted, that e.g. the expression
std::is_convertible<double, int*>::value
is ill-formed because std::is_convertible<double, int*> could not be instantiated, or in more general terms: The wording requires that std::is_convertible<X, Y> cannot be instantiated for otherwise valid argument types X and Y if X is not convertible to Y.
This semantic is both unpractical and in contradiction to what the last type traits paper N2255 proposed:
If the following test function is well formed code b is true, else it is false.
template <class T> typename add_rvalue_reference<T>::type create(); To test() { return create<From>(); }[Note: This definition gives well defined results for reference types, void types, array types, and function types. — end note]
[ Post Summit: ]
Jens: Checking that code is well-formed and then returning true/false sounds like speculative compilation. John Spicer would really dislike this. Please find another wording suggesting speculative compilation.
Recommend Open.
[ Post Summit, Howard adds: ]
John finds the following wording clearer:
Template Condition Comments template <class From, class To>
struct is_convertible;see below From and To shall be complete types, arrays of unknown bound, or (possibly cv-qualified) void types. Given the following function prototype:
template <class T> typename add_rvalue_reference<T>::type create();is_convertible<From, To>::value shall be true if the return expression in the following code would be well-formed, including any implicit conversions to the return type of the function, else is_convertible<From, To>::value shall be false.
To test() { return create<From>(); }
Original proposed wording:
In 20.10.6 [meta.rel]/4 change:
In order to instantiate the template is_convertible<From, To>, the following code shall be well formedIf the following code is well formed is_convertible<From, To>::value is true, otherwise false:[..]
Revision 2
In 20.10.6 [meta.rel] change:
Template Condition Comments ... ... ... template <class From, class To>
struct is_convertible;The code set out below shall be well formed.see belowFrom and To shall be complete types, arrays of unknown bound, or (possibly cv-qualified) void types. -4-
In order to instantiate the template is_convertible<From, To>, the following code shall be well formed:Given the following function prototype:template <class T> typename add_rvalue_reference<T>::type create();is_convertible<From, To>::value inherits either directly or indirectly from true_type if the return expression in the following code would be well-formed, including any implicit conversions to the return type of the function, else is_convertible<From, To>::value inherits either directly or indirectly from false_type.
To test() { return create<From>(); }[Note: This requirement gives well defined results for reference types, void types, array types, and function types. -- end note]
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
In 20.10.6 [meta.rel] change:
Template Condition Comments ... ... ... template <class From, class To>
struct is_convertible;The code set out below shall be well formed.see belowFrom and To shall be complete types, arrays of unknown bound, or (possibly cv-qualified) void types. -4-
In order to instantiate the template is_convertible<From, To>, the following code shall be well formed:Given the following function prototype:template <class T> typename add_rvalue_reference<T>::type create();the predicate condition for a template specialization is_convertible<From, To> shall be satisfied, if and only if the return expression in the following code would be well-formed, including any implicit conversions to the return type of the function.
To test() { return create<From>(); }[Note: This requirement gives well defined results for reference types, void types, array types, and function types. — end note]
Section: 23.6.5.2 [stack.defn] Status: Resolved Submitter: Daniel Krügler Opened: 2009-02-01 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
The synopsis given in 23.6.5.2 [stack.defn] does not show up
requires MoveConstructible<Cont> stack(stack&&); requires MoveAssignable<Cont> stack& operator=(stack&&);
although the other container adaptors do provide corresponding members.
[ Batavia (2009-05): ]
We agree with the proposed resolution.
Move to Tentatively Ready.
[ 2009-07 Frankfurt ]
Moved from Tentatively Ready to Open only because the wording needs to be tweaked for concepts removal.
[ 2009-08-18 Daniel updates the wording and Howard sets to Review. ]
[ 2009-08-23 Howard adds: ]
1194 also adds these move members using an editorially different style.
[ 2009-10 Santa Cruz: ]
Mark
NAD EditorialResolved, addressed by issue 1194.
Proposed resolution:
In the class stack synopsis of 23.6.5.2 [stack.defn] insert:
template <class T, class Container = deque<T> > class stack { [..] explicit stack(const Container&); explicit stack(Container&& = Container()); stack(stack&& s) : c(std::move(s.c)) {} stack& operator=(stack&& s) { c = std::move(s.c); return *this; } [..] };
Section: 20.9.13 [unord.hash] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-02-02 Last modified: 2015-04-08
View other active issues in [unord.hash].
View all other issues in [unord.hash].
View all issues with C++11 status.
Discussion:
Addresses UK 208
I don't see an open issue on supporting std::hash for smart pointers (unique_ptr and shared_ptr at least).
It seems reasonable to at least expect support for the smart pointers, especially as they support comparison for use in ordered associative containers.
[ Batavia (2009-05): ]
Howard points out that the client can always supply a custom hash function.
Alisdair replies that the smart pointer classes are highly likely to be frequently used as hash keys.
Bill would prefer to be conservative.
Alisdair mentions that this issue may also be viewed as a subissue or duplicate of issue 1025.
Move to Open, and recommend the issue be deferred until after the next Committee Draft is issued.
[ 2009-05-31 Peter adds: ]
Howard points out that the client can always supply a custom hash function.
Not entirely true. The client cannot supply the function that hashes the address of the control block (the equivalent of the old operator<, now proudly carrying the awkward name of 'owner_before'). Only the implementation can do that, not necessarily via specializing hash<>, of course.
This hash function makes sense in certain situations for shared_ptr (when one needs to switch from set/map using ownership ordering to unordered_set/map) and is the only hash function that makes sense for weak_ptr.
[ 2009-07-28 Alisdair provides wording. ]
[ 2009-10 Santa Cruz: ]
Move to Ready.
[ 2009-11-16 Moved from Ready to Open: ]
Pete writes:
As far as I can see, "...suitable for using this type as key in unordered associative containers..." doesn't define any semantics. It's advice to the reader, and if it's present at all it should be in a note. But we have far too much of this sort of editorial commentary as it is.
And in the resolution of 978 it's clearly wrong: it says that if there is no hash specialization available for D::pointer, the implementation may provide hash<unique_ptr<T,D>> if the result is not suitable for use in unordered containers.
Howard writes:
Is this a request to pull 978 from Ready?
Barry writes:
I read this as more than a request. The PE says it's wrong, so it can't be Ready.
[ 2010-01-31 Alisdair: related to 1245 and 1182. ]
[ 2010-02-08 Beman updates wording. ]
[ 2010-02-09 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Add the following declarations to the synopsis of <memory> in 20.7 [memory]
// [util.smartptr.hash] hash support template <class T> struct hash; template <class T, class D> struct hash<unique_ptr<T,D>>; template <class T> struct hash<shared_ptr<T>>;
Add a new subclause under 20.8.2 [util.smartptr] called hash support
hash support [util.smartptr.hash]
template <class T, class D> struct hash<unique_ptr<T,D>>;Specialization meeting the requirements of class template hash (20.9.13 [unord.hash]). For an object p of type UP, where UP is a type unique_ptr<T,D>, hash<UP>()(p) shall evaluate to the same value as hash<typename UP::pointer>()(p.get()). The specialization hash<typename UP::pointer> is required to be well-formed.
template <class T> struct hash<shared_ptr<T>>;Specialization meeting the requirements of class template hash (20.9.13 [unord.hash]). For an object p of type shared_ptr<T>, hash<shared_ptr<T>>()(p) shall evaluate to the same value as hash<T*>()(p.get()).
Section: 23.2.5 [unord.req] Status: C++11 Submitter: Daniel Krügler Opened: 2009-02-08 Last modified: 2015-04-08
View other active issues in [unord.req].
View all other issues in [unord.req].
View all issues with C++11 status.
Discussion:
Refering to N2800 all container requirements tables (including those for associative containers) provide useful member function overloads accepting std::initializer_list as argument, the only exception is Table 87. There seems to be no reason for not providing them, because 23.5 [unord] is already initializer_list-aware. For the sake of library interface consistency and user-expectations corresponding overloads should be added to the table requirements of unordered containers as well.
[ Batavia (2009-05): ]
We agree with the proposed resolution.
Move to Tentatively Ready.
Proposed resolution:
In 23.2.5 [unord.req]/9 insert:
... [q1, q2) is a valid range in a, il designates an object of type initializer_list<value_type>, t is a value of type X::value_type, ...
In 23.2.5 [unord.req], Table 87 insert:
Table 87 - Unordered associative container requirements (in addition to container) Expression Return type Assertion/note
pre-/post-conditionComplexity X(i, j)
X a(i, j)X ... ... X(il) X Same as X(il.begin(), il.end()). Same as X(il.begin(), il.end()). ... ... ... ... a = b X ... ... a = il X& a = X(il); return *this; Same as a = X(il). ... ... ... ... a.insert(i, j) void ... ... a.insert(il) void Same as a.insert(il.begin(), il.end()). Same as a.insert(il.begin(), il.end()).
Section: 23.2.4 [associative.reqmts] Status: C++11 Submitter: Daniel Krügler Opened: 2009-02-08 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with C++11 status.
Discussion:
According to N2800, the associative container requirements table 85 says that assigning an initializer_list to such a container is of constant complexity, which is obviously wrong.
[ Batavia (2009-05): ]
We agree with the proposed resolution.
Move to Tentatively Ready.
Proposed resolution:
In 23.2.4 [associative.reqmts], Table 85 change:
Table 85 - Associative container requirements (in addition to container) Expression Return type Assertion/note
pre-/post-conditionComplexity a = il X& a = X(il);
return *this;constantSame as a = X(il).
Section: 20.8.1.2 [unique.ptr.single] Status: Resolved Submitter: Howard Hinnant Opened: 2009-02-10 Last modified: 2015-04-08
View all other issues in [unique.ptr.single].
View all issues with Resolved status.
Discussion:
Dave brought to my attention that when a unique_ptr has a non-const reference type deleter, move constructing from it, even when the unique_ptr containing the reference is an rvalue, could have surprising results:
D d(some-state);
unique_ptr<A, D&> p(new A, d);
unique_ptr<A, D> p2 = std::move(p);
// has d's state changed here?
I agree with him. It is the unique_ptr that is the rvalue, not the deleter. When the deleter is a reference type, the unique_ptr should respect the "lvalueness" of the deleter.
Thanks Dave.
[ Batavia (2009-05): ]
Seems correct, but complicated enough that we recommend moving to Review.
[ 2009-10 Santa Cruz: ]
Move to Ready.
[ 2010-03-14 Howard adds: ]
We moved N3073 to the formal motions page in Pittsburgh which should obsolete this issue. I've moved this issue to NAD Editorial, solved by N3073.
Rationale:
Solved by N3073.
Proposed resolution:
Change 20.8.1.2.1 [unique.ptr.single.ctor], p20-21
template <class U, class E> unique_ptr(unique_ptr<U, E>&& u);-20- Requires: If
DE is not a reference type, construction of the deleter D from an rvalue of type E shall be well formed and shall not throw an exception. Otherwise E is a reference type and construction of the deleter D from an lvalue of type E shall be well formed and shall not throw an exception. If D is a reference type, then E shall be the same type as D (diagnostic required). unique_ptr<U, E>::pointer shall be implicitly convertible to pointer. [Note: These requirements imply that T and U are complete types. — end note]-21- Effects: Constructs a unique_ptr which owns the pointer which u owns (if any). If the deleter E is not a reference type,
itthis deleter is move constructed from u's deleter, otherwisethe referencethis deleter is copy constructed from u.'s deleter. After the construction, u no longer owns a pointer. [Note: The deleter constructor can be implemented with std::forward<DE>. — end note]
Change 20.8.1.2.3 [unique.ptr.single.asgn], p1-3
unique_ptr& operator=(unique_ptr&& u);-1- Requires: If the deleter D is not a reference type,
Aassignment of the deleter D from an rvalue D shall not throw an exception. Otherwise the deleter D is a reference type, and assignment of the deleter D from an lvalue D shall not throw an exception.-2- Effects: reset(u.release()) followed by an
moveassignment fromu's deleter to this deleterstd::forward<D>(u.get_deleter()).-3- Postconditions: This unique_ptr now owns the pointer which u owned, and u no longer owns it.
[Note: If D is a reference type, then the referenced lvalue deleters are move assigned. — end note]
Change 20.8.1.2.3 [unique.ptr.single.asgn], p6-7
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u);Requires: If the deleter E is not a reference type,
Aassignment of the deleter D from an rvalueDE shall not throw an exception. Otherwise the deleter E is a reference type, and assignment of the deleter D from an lvalue E shall not throw an exception. unique_ptr<U, E>::pointer shall be implicitly convertible to pointer. [Note: These requirements imply that T and U> are complete types. — end note]Effects: reset(u.release()) followed by an
moveassignment fromu's deleter to this deleterstd::forward<E>(u.get_deleter()).If either D or E is a reference type, then the referenced lvalue deleter participates in the move assignment.
Section: 27.9.2 [c.files] Status: C++11 Submitter: Howard Hinnant Opened: 2009-02-12 Last modified: 2015-04-08
View all other issues in [c.files].
View all issues with C++11 status.
Discussion:
The C standard says about <inttypes.h>:
C++ implementations should define these macros only when __STDC_FORMAT_MACROSis defined before <inttypes.h> is included.
The C standard has a similar note about <stdint.h>. For <cstdint> we adopted a "thanks but no thanks" policy and documented that fact in 18.4.1 [cstdint.syn]:
... [Note: The macros defined by <stdint> are provided unconditionally. In particular, the symbols __STDC_LIMIT_MACROS and __STDC_CONSTANT_MACROS (mentioned in C99 footnotes 219, 220, and 222) play no role in C++. — end note]
I recommend we put a similar note in 27.9.2 [c.files] regarding <cinttypes>.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Add to 27.9.2 [c.files]:
Table 112 describes header <cinttypes>. [Note: The macros defined by <cintypes> are provided unconditionally. In particular, the symbol __STDC_FORMAT_MACROS (mentioned in C99 footnote 182) plays no role in C++. — end note]
Section: 23.2.1 [container.requirements.general] Status: Resolved Submitter: Rani Sharoni Opened: 2009-02-12 Last modified: 2015-04-08
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with Resolved status.
Discussion:
Introduction
This proposal is meant to resolve potential regression of the N2800 draft, see next section, and to relax the requirements for containers of types with throwing move constructors.
The basic problem is that some containers operations, like push_back, have a strong exception safety guarantee (i.e. no side effects upon exception) that are not achievable when throwing move constructors are used since there is no way to guarantee revert after partial move. For such operations the implementation can at most provide the basic guarantee (i.e. valid but unpredictable) as it does with multi copying operations (e.g. range insert).
For example, vector<T>::push_back() (where T has a move constructor) might resize the vector and move the objects to the new underlying buffer. If move constructor throws it might not be possible to recover the throwing object or to move the old objects back to the original buffer.
The current draft is explicit by disallowing throwing move for some operations (e.g. vector<>::reserve) and not clear about other operations mentioned in 23.2.1 [container.requirements.general]/10 (e.g. single element insert): it guarantees strong exception safety without explicitly disallowing a throwing move constructor.
Regression
This section only refers to cases in which the contained object is by itself a standard container.
Move constructors of standard containers are allowed to throw and therefore existing operations are broken, compared with C++03, due to move optimization. (In fact existing implementations like Dinkumware are actually throwing).
For example, vector< list<int> >::reserve yields undefined behavior since list<int>'s move constructor is allowed to throw. On the other hand, the same operation has strong exception safety guarantee in C++03.
There are few options to solve this regression:
Option 1 is suggested by proposal N2815 but it might not be applicable for existing implementations for which containers default constructors are throwing.
Option 2 limits the usage significantly and it's error prone by allowing zombie objects that are nothing but destructible (e.g. no clear() is allowed after move). It also potentially complicates the implementation by introducing special state.
Option 3 is possible, for example, using default construction and swap instead of move for standard containers case. The implementation is also free to provide special hidden operation for non throwing move without forcing the user the cope with the limitation of option-2 when using the public move.
Option 4 impact the efficiency in all use cases due to rare throwing move.
The proposed wording will imply option 1 or 3 though option 2 is also achievable using more wording. I personally oppose to option 2 that has impact on usability.
Relaxation for user types
Disallowing throwing move constructors in general seems very restrictive since, for example, common implementation of move will be default construction + swap so move will throw if the default constructor will throw. This is currently the case with the Dinkumware implementation of node based containers (e.g. std::list) though this section doesn't refer to standard types.
For throwing move constructors it seem that the implementation should have no problems to provide the basic guarantee instead of the strong one. It's better to allow throwing move constructors with basic guarantee than to disallow it silently (compile and run), via undefined behavior.
There might still be cases in which the relaxation will break existing generic code that assumes the strong guarantee but it's broken either way given a throwing move constructor since this is not a preserving optimization.
[ Batavia (2009-05): ]
Bjarne comments (referring to his draft paper): "I believe that my suggestion simply solves that. Thus, we don't need a throwing move."
Move to Open and recommend it be deferred until after the next Committee Draft is issued.
[ 2009-10 Santa Cruz: ]
Should wait to get direction from Dave/Rani (N2983).
[ 2010-03-28 Daniel updated wording to sync with N3092. ]
The suggested change of 23.3.3.4 [deque.modifiers]/2 should be removed, because the current wording does say more general things:
2 Remarks: If an exception is thrown other than by the copy constructor, move constructor, assignment operator, or move assignment operator of T there are no effects. If an exception is thrown by the move constructor of a non-CopyConstructible T, the effects are unspecified.
The suggested change of 23.3.6.3 [vector.capacity]/2 should be removed, because the current wording does say more general things:
2 Effects: A directive that informs a vector of a planned change in size, so that it can manage the storage allocation accordingly. After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens; and equal to the previous value of capacity() otherwise. Reallocation happens at this point if and only if the current capacity is less than the argument of reserve(). If an exception is thrown other than by the move constructor of a non-CopyConstructible type, there are no effects.
[2011-03-15: Daniel updates wording to sync with N3242 and comments]
The issue has nearly been resolved by previous changes to the working paper, in particular all suggested changes for deque and vector are no longer necessary. The still remaining parts involve the unordered associative containers.
[2011-03-24 Madrid meeting]
It looks like this issue has been resolved already by noexcept paper N3050
Rationale:
Resolved by N3050
Proposed resolution:
23.2.1 [container.requirements.general] paragraph 10 add footnote:
-10- Unless otherwise specified (see 23.2.4.1 [associative.reqmts.except], 23.2.5.1 [unord.req.except], 23.3.3.4 [deque.modifiers], and 23.3.6.5 [vector.modifiers]) all container types defined in this Clause meet the following additional requirements:
- …
[Note: for compatibility with C++ 2003, when "no effect" is required, standard containers should not use the value_type's throwing move constructor when the contained object is by itself a standard container. — end note]
23.2.5.1 [unord.req.except] change paragraph 2+4 to say:
-2- For unordered associative containers, if an exception is thrown by any operation other than the container's hash function from within an insert() function inserting a single element, the insert() function has no effect unless the exception is thrown by the contained object move constructor.
[…] -4- For unordered associative containers, if an exception is thrown from within a rehash() function other than by the container's hash function or comparison function, the rehash() function has no effect unless the exception is thrown by the contained object move constructor.
Keep 23.3.3.4 [deque.modifiers] paragraph 2 unchanged [Drafting note: The originally proposed wording did suggest to add a last sentence as follows:
If an exception is thrown by push_back() or emplace_back() function, that function has no effects unless the exception is thrown by the move constructor of T.
— end drafting note ]
-2- Remarks: If an exception is thrown other than by the copy constructor, move constructor, assignment operator, or move assignment operator of T there are no effects. If an exception is thrown by the move constructor of a non-CopyInsertable T, the effects are unspecified.
Keep 23.3.6.3 [vector.capacity] paragraph 2 unchanged [Drafting note: The originally proposed wording did suggest to change the last sentence as follows:
If an exception is thrown, there are no effects unless the exception is thrown by the contained object move constructor.
— end drafting note ]
-2- Effects: A directive that informs a vector of a planned change in size, so that it can manage the storage allocation accordingly. After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens; and equal to the previous value of capacity() otherwise. Reallocation happens at this point if and only if the current capacity is less than the argument of reserve(). If an exception is thrown other than by the move constructor of a non-CopyInsertable type, there are no effects.
Keep 23.3.6.3 [vector.capacity] paragraph 12 unchanged [Drafting note: The originally proposed wording did suggest to change the old paragraph as follows:
-12- Requires:
If value_type has a move constructor, that constructor shall not throw any exceptions.If an exception is thrown, there are no effects unless the exception is thrown by the contained object move constructor.
— end drafting note ]
-12- Requires: If an exception is thrown other than by the move constructor of a non-CopyInsertable T there are no effects.
Keep 23.3.6.5 [vector.modifiers] paragraph 1 unchanged [Drafting note: The originally proposed wording did suggest to change the old paragraph as follows:
-1-
Requires: If value_type has a move constructor, that constructor shall not throw any exceptions.Remarks: If an exception is thrown by push_back() or emplace_back() function, that function has no effect unless the exception is thrown by the move constructor of T.
— end drafting note ]
-1- Remarks: Causes reallocation if the new size is greater than the old capacity. If no reallocation happens, all the iterators and references before the insertion point remain valid. If an exception is thrown other than by the copy constructor, move constructor, assignment operator, or move assignment operator of T or by any InputIterator operation there are no effects. If an exception is thrown by the move constructor of a non-CopyInsertable T, the effects are unspecified.
Section: 30.4.3 [thread.lock.algorithm] Status: C++11 Submitter: Chris Fairles Opened: 2009-02-14 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
In 30.4.3 [thread.lock.algorithm], the generic try_lock effects (p2) say that a failed try_lock is when it either returns false or throws an exception. In the event a call to try_lock does fail, by either returning false or throwing an exception, it states that unlock shall be called for all prior arguments. Then the returns clause (p3) goes on to state in a note that after returning, either all locks are locked or none will be. So what happens if multiple locks fail on try_lock?
Example:
#include <mutex> int main() { std::mutex m0, m1, m2; std::unique_lock<std::mutex> l0(m0, std::defer_lock); std::unique_lock<std::mutex> l1(m1); //throws on try_lock std::unique_lock<std::mutex> l2(m2); //throws on try_lock int result = std::try_lock(l0, l1, l2); assert( !l0.owns_lock() ); assert( l1.owns_lock() ); //?? assert( l2.owns_lock() ); //?? }
The first lock's try_lock succeeded but, being a prior argument to a lock whose try_lock failed, it gets unlocked as per the effects clause of 30.4.3 [thread.lock.algorithm]. However, 2 locks remain locked in this case but the return clause states that either all arguments shall be locked or none will be. This seems to be a contradiction unless the intent is for implementations to make an effort to unlock not only prior arguments, but the one that failed and those that come after as well. Shouldn't the note only apply to the arguments that were successfully locked?
Further discussion and possible resolutions in c++std-lib-23049.
[ Summit: ]
Move to review. Agree with proposed resolution.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change 30.4.3 [thread.lock.algorithm], p2:
-2- Effects: Calls try_lock() for each argument in order beginning with the first until all arguments have been processed or a call to try_lock() fails, either by returning false or by throwing an exception. If a call to try_lock() fails, unlock() shall be called for all prior arguments and there shall be no further calls to try_lock().
Delete the note from 30.4.3 [thread.lock.algorithm], p3
-3- Returns: -1 if all calls to try_lock() returned true, otherwise a 0-based index value that indicates the argument for which try_lock() returned false.
[Note: On return, either all arguments will be locked or none will be locked. -- end note]
Section: 20.9.4 [refwrap] Status: C++11 Submitter: Howard Hinnant Opened: 2009-02-18 Last modified: 2015-04-08
View all other issues in [refwrap].
View all issues with C++11 status.
Discussion:
The synopsis in 20.9.4 [refwrap] says:
template <ObjectType T> class reference_wrapper ...
And then paragraph 3 says:
The template instantiation reference_wrapper<T> shall be derived from std::unary_function<T1, R> only if the type T is any of the following:
- a function type or a pointer to function type taking one argument of type T1 and returning R
But function types are not ObjectTypes.
Paragraph 4 contains the same contradiction.
[ Post Summit: ]
Jens: restricted reference to ObjectType
Recommend Review.
[ Post Summit, Peter adds: ]
In https://svn.boost.org/trac/boost/ticket/1846 however Eric Niebler makes the very reasonable point that reference_wrapper<F>, where F is a function type, represents a reference to a function, a legitimate entity. So boost::ref was changed to allow it.
http://svn.boost.org/svn/boost/trunk/libs/bind/test/ref_fn_test.cpp
Therefore, I believe an alternative proposed resolution for issue 987 could simply allow reference_wrapper to be used with function types.
[ Post Summit, Howard adds: ]
I agree with Peter (and Eric). I got this one wrong on my first try. Here is code that demonstrates how easy (and useful) it is to instantiate reference_wrapper with a function type:
#include <functional> template <class F> void test(F f); void f() {} int main() { test(std::ref(f)); }Output (link time error shows type of reference_wrapper instantiated with function type):
Undefined symbols: "void test<std::reference_wrapper<void ()()> >(std::reference_wrapper<void ()()>)",...I've taken the liberty of changing the proposed wording to allow function types and set to Open. I'll also freely admit that I'm not positive ReferentType is the correct concept.
[ Batavia (2009-05): ]
Howard observed that FunctionType, a concept not (yet?) in the Working Paper, is likely the correct constraint to be applied. However, the proposed resolution provides an adequate approximation.
Move to Review.
[ 2009-05-23 Alisdair adds: ]
By constraining to PointeeType we rule out the ability for T to be a reference, and call in reference-collapsing. I'm not sure if this is correct and intended, but would like to be sure the case was considered.
Is dis-allowing reference types and the implied reference collapsing the intended result?
[ 2009-07 Frankfurt ]
Moved from Review to Open only because the wording needs to be tweaked for concepts removal.
[ 2009-10-14 Daniel provided de-conceptified wording. ]
[ 2009-10 post-Santa Cruz: ]
Move to Tentatively Ready.
Proposed resolution:
Change 20.9.4 [refwrap]/1 as indicated:
reference_wrapper<T> is a CopyConstructible and CopyAssignable wrapper around a reference to an object or function of type T.
Section: X [time.clock.monotonic] Status: C++11 Submitter: Howard Hinnant Opened: 2009-03-09 Last modified: 2015-04-08
View all other issues in [time.clock.monotonic].
View all issues with C++11 status.
Discussion:
There is some confusion over what the value of monotonic_clock::is_monotonic when monotonic_clock is a synonym for system_clock. The intent is that if monotonic_clock exists, then monotonic_clock::is_monotonic is true.
[ Batavia (2009-05): ]
We agree with the proposed resolution.
Move to Tentatively Ready.
Proposed resolution:
Change X [time.clock.monotonic], p1:
-1- Objects of class monotonic_clock represent clocks for which values of time_point never decrease as physical time advances. monotonic_clock may be a synonym for system_clock if and only if system_clock::is_monotonic is true.
Section: 22.3.3.2.2 [conversions.string] Status: C++11 Submitter: P.J. Plauger Opened: 2009-03-03 Last modified: 2015-04-08
View other active issues in [conversions.string].
View all other issues in [conversions.string].
View all issues with C++11 status.
Discussion:
Addresses JP-50 [CD1]
Add custom allocator parameter to wstring_convert, since we cannot allocate memory for strings from a custom allocator.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change 22.3.3.2.2 [conversions.string]:
template<class Codecvt, class Elem = wchar_t, class Wide_alloc = std::allocator<Elem>, class Byte_alloc = std::allocator<char> > class wstring_convert { public: typedef std::basic_string<char, char_traits<char>, Byte_alloc> byte_string; typedef std::basic_string<Elem, char_traits<Elem>, Wide_alloc> wide_string; ...
Change 22.3.3.2.2 [conversions.string], p3:
-3- The class template describes an ob ject that controls conversions between wide string ob jects of class std::basic_string<Elem, char_traits<Elem>, Wide_alloc> and byte string objects of class std::basic_string<char, char_traits<char>, Byte_alloc>
(also known as std::string).
Section: 18.5 [support.start.term] Status: C++11 Submitter: P.J. Plauger Opened: 2009-03-03 Last modified: 2015-04-08
View all other issues in [support.start.term].
View all issues with C++11 status.
Discussion:
Addresses UK-188 [CD1]
The function _Exit does not appear to be defined in this standard. Should it be added to the table of functions included-by-reference to the C standard?
[ 2009-05-09 Alisdair fixed some minor issues in the wording. ]
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Add to 18.5 [support.start.term] Table 20 (Header <cstdlib> synopsis) Functions:
_Exit
Add before the description of abort(void):
void _Exit [[noreturn]] (int status)The function _Exit(int status) has additional behavior in this International Standard:
- The program is terminated without executing destructors for objects of automatic, thread, or static storage duration and without calling the functions passed to atexit() (3.6.3 [basic.start.term]).
Section: 18.6.2.3 [new.handler] Status: C++11 Submitter: P.J. Plauger Opened: 2009-03-03 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses UK-193 [CD1]
quick_exit has been added as a new valid way to terminate a program in a well defined way.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change 18.6.2.3 [new.handler], p2:
-2- Required behavior: ...
- ...
call either abort() or exit();terminate execution of the program without returning to the caller
Section: 17.5.1.4 [structure.specifications] Status: C++11 Submitter: Thomas Plum Opened: 2009-03-03 Last modified: 2015-04-08
View all other issues in [structure.specifications].
View all issues with C++11 status.
Discussion:
Addresses UK-163 [CD1]
Many functions are defined as "Effects: Equivalent to a...", which seems to also define the preconditions, effects, etc. But this is not made clear.
After studying the occurrences of "Effects: Equivalent to", I agree with the diagnosis but disagree with the solution. In 21.4.2 [string.cons] we find
14 Effects: If InputIterator is an integral type, equivalent to basic_string(static_cast<size_type>(begin), static_cast<value_type>(end), a)
15 Otherwise constructs a string from the values in the range [begin, end), as indicated in the Sequence Requirements table (see 23.1.3).
This would be devishly difficult to re-write with an explicit "Equivalent to:" clause. Instead, I propose the following, which will result in much less editorial re-work.
[ 2009-05-09 Alisdair adds: ]
This issue is related to 492.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Add a new paragraph after 17.5.1.4 [structure.specifications], p3:
-3- Descriptions of function semantics contain the following elements (as appropriate):154
- Requires: the preconditions for calling the function
- Effects: the actions performed by the function
- Postconditions: the observable results established by the function
- Returns: a description of the value(s) returned by the function
- Throws: any exceptions thrown by the function, and the conditions that would cause the exception
- Complexity: the time and/or space complexity of the function
- Remarks: additional semantic constraints on the function
- Error conditions: the error conditions for error codes reported by the function.
- Notes: non-normative comments about the function
Whenever the Effects element specifies that the semantics of some function F are Equivalent to some code-sequence, then the various elements are interpreted as follows. If F's semantics specifies a Requires element, then that requirement is logically imposed prior to the equivalent-to semantics. Then, the semantics of the code-sequence are determined by the Requires, Effects, Postconditions, Returns, Throws, Complexity, Remarks, Error Conditions and Notes specified for the (one or more) function invocations contained in the code-sequence. The value returned from F is specified by F's Returns element, or if F has no Returns element, a non-void return from F is specified by the Returns elements in code-sequence. If F's semantics contains a Throws (or Postconditions, or Complexity) element, then that supersedes any occurrences of that element in the code-sequence.
Section: 20.8.1.2.5 [unique.ptr.single.modifiers] Status: C++11 Submitter: Pavel Minaev Opened: 2009-02-26 Last modified: 2015-04-08
View all other issues in [unique.ptr.single.modifiers].
View all issues with C++11 status.
Discussion:
Consider the following (simplified) implementation of std::auto_ptr<T>::reset():
void reset(T* newptr = 0) { if (this->ptr && this->ptr != newptr) { delete this->ptr; } this->ptr = newptr; }
Now consider the following code which uses the above implementation:
struct foo { std::auto_ptr<foo> ap; foo() : ap(this) {} void reset() { ap.reset(); } }; int main() { (new foo)->reset(); }
With the above implementation of auto_ptr, this results in U.B. at the point of auto_ptr::reset(). If this isn't obvious yet, let me explain how this goes step by step:
[ Thanks to Peter Dimov who recognized the connection to unique_ptr and brought this to the attention of the LWG, and helped with the solution. ]
[ Howard adds: ]
To fix this behavior reset must be specified such that deleting the pointer is the last action to be taken within reset.
[ Alisdair adds: ]
The example providing the rationale for LWG 998 is poor, as it relies on broken semantics of having two object believing they are unique owners of a single resource. It should not be surprising that UB results from such code, and I feel no need to go out of our way to support such behaviour.
If an example is presented that does not imply multiple ownership of a unique resource, I would be much more ready to accept the proposed resolution.
[ Batavia (2009-05): ]
Howard summarizes:
This issue has to do with circular ownership, and affects auto_ptr, too (but we don't really care about that). It is intended to spell out the order in which operations must be performed so as to avoid the possibility of undefined behavior in the self-referential case.
Howard points to message c++std-lib-23175 for another example, requested by Alisdair.
We agree with the issue and with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change 20.8.1.2.5 [unique.ptr.single.modifiers], p5 (Effects clause for reset), and p6:
-5- Effects:
If get() == nullptr there are no effects. Otherwise get_deleter()(get()).Assigns p to the stored pointer, and then if the old value of the pointer is not equal to nullptr, calls get_deleter()(the old value of the pointer). [Note: The order of these operations is significant because the call to get_deleter() may destroy *this. -- end note]-6- Postconditions: get() == p. [Note: The postcondition does not hold if the call to get_deleter() destroys *this since this->get() is no longer a valid expression. -- end note]
Section: 20.7.12 [specialized.algorithms] Status: C++11 Submitter: Peter Dimov Opened: 2009-03-09 Last modified: 2015-04-08
View all other issues in [specialized.algorithms].
View all issues with C++11 status.
Discussion:
The same fix (reference 987) may be applied to addressof, which is also constrained to ObjectType. (That was why boost::ref didn't work with functions - it tried to apply boost::addressof and the reinterpret_cast<char&> implementation of addressof failed.)
[ Batavia (2009-05): ]
We agree.
Move to Tentatively Ready.
[ 2009-07 Frankfurt ]
Moved from Tentatively Ready to Open only because the wording needs to be tweaked for concepts removal.
[ 2009-10-10 Daniel updates wording to concept-free. ]
[ 2009-10 post-Santa Cruz: ]
Move to Tentatively Ready.
Proposed resolution:
[ The resolution assumes that addressof is reintroduced as described in n2946 ]
In 20.7.12 [specialized.algorithms] change as described:
template <class T> T* addressof(T& r);Returns: The actual address of the object or function referenced by r, even in the presence of an overloaded operator&.
Section: 17.6.4.8 [res.on.functions] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-11 Last modified: 2015-04-08
View all other issues in [res.on.functions].
View all issues with C++11 status.
Discussion:
Addresses UK 179
According to the 4th bullet there is a problem if "if any replacement function or handler function or destructor operation throws an exception". There should be no problem throwing exceptions so long as they are caught within the function.
[ Batavia (2009-05): ]
The phrasing "throws an exception" is commonly used elsewhere to mean "throws or propagates an exception." Move to Open pending a possible more general resolution.
[ 2009-07 Frankfurt: ]
Replace "propagates" in the proposed resolution with the phrase "exits via" and move to Ready.
Proposed resolution:
Change the 4th bullet of 17.6.4.8 [res.on.functions], p2:
- if any replacement function or handler function or destructor operation
throwsexits via an exception, unless specifically allowed in the applicable Required behavior: paragraph.
Section: 18.6.1 [new.delete] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-11 Last modified: 2015-04-08
View all other issues in [new.delete].
View all issues with C++11 status.
Discussion:
Addresses UK 190
It is not entirely clear how the current specification acts in the presence of a garbage collected implementation.
[ Summit: ]
Agreed.
[ 2009-05-09 Alisdair adds: ]
Proposed wording is too strict for implementations that do not support garbage collection. Updated wording supplied.
[ Batavia (2009-05): ]
We recommend advancing this to Tentatively Ready with the understanding that it will not be moved for adoption unless and until the proposed resolution to Core issue #853 is adopted.
Proposed resolution:
(Editorial note: This wording ties into the proposed resolution for Core #853)
Add paragraphs to 18.6.1.1 [new.delete.single]:
void operator delete(void* ptr) throw();void operator delete(void* ptr, const std::nothrow_t&) throw();[ The second signature deletion above is editorial. ]
Requires: If an implementation has strict pointer safety (3.7.4.3 [basic.stc.dynamic.safety]) then ptr shall be a safely-derived pointer.
-10- ...
void operator delete(void* ptr, const std::nothrow_t&) throw();Requires: If an implementation has strict pointer safety (3.7.4.3 [basic.stc.dynamic.safety]) then ptr shall be a safely-derived pointer.
-15- ...
Add paragraphs to 18.6.1.2 [new.delete.array]:
void operator delete[](void* ptr) throw();void operator delete[](void* ptr, const std::nothrow_t&) throw();[ The second signature deletion above is editorial. ]
Requires: If an implementation has strict pointer safety (3.7.4.3 [basic.stc.dynamic.safety]) then ptr shall be a safely-derived pointer.
-9- ...
void operator delete[](void* ptr, const std::nothrow_t&) throw();Requires: If an implementation has strict pointer safety (3.7.4.3 [basic.stc.dynamic.safety]) then ptr shall be a safely-derived pointer.
-13- ...
Add paragraphs to 18.6.1.3 [new.delete.placement]:
void operator delete(void* ptr, void*) throw();Requires: If an implementation has strict pointer safety (3.7.4.3 [basic.stc.dynamic.safety]) then ptr shall be a safely-derived pointer.
-7- ...
void operator delete[](void* ptr, void*) throw();Requires: If an implementation has strict pointer safety (3.7.4.3 [basic.stc.dynamic.safety]) then ptr shall be a safely-derived pointer.
-9- ...
Section: 24.4.4 [iterator.operations] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-11 Last modified: 2015-04-08
View all other issues in [iterator.operations].
View all issues with C++11 status.
Discussion:
Addresses UK 271
next/prev return an incremented iterator without changing the value of the original iterator. However, even this may invalidate an InputIterator. A ForwardIterator is required to guarantee the 'multipass' property.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
[ 2009-07 Frankfurt ]
Moved from Tentatively Ready to Open only because the wording needs to be tweaked for concepts removal.
[ 2009-10-14 Daniel provided de-conceptified wording. ]
[ 2009-10 Santa Cruz: ]
Moved to Ready.
Proposed resolution:
Change header <iterator> synopsis 24.3 [iterator.synopsis] as indicated:
// 24.4.4, iterator operations: ... template <classInputForwardIterator>InputForwardIterator next(InputForwardIterator x, typename std::iterator_traits<InputForwardIterator>::difference_type n = 1);
Change 24.4.4 [iterator.operations] before p.6 as indicated:
template <classInputForwardIterator>InputForwardIterator next(InputForwardIterator x, typename std::iterator_traits<InputForwardIterator>::difference_type n = 1);
Section: 24.5.1.3.1 [reverse.iter.cons] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-11 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses UK 277
The default constructor default-initializes current, rather than value-initializes. This means that when Iterator corresponds to a trivial type, the current member is left un-initialized, even when the user explictly requests value intialization! At this point, it is not safe to perform any operations on the reverse_iterator other than assign it a new value or destroy it. Note that this does correspond to the basic definition of a singular iterator.
[ Summit: ]
Agree with option i.
Related issue: 408
[ Batavia (2009-05): ]
We believe this should be revisited in conjunction with issue 408, which nearly duplicates this issue. Move to Open.
[ 2009-07 post-Frankfurt: ]
Change "constructed" to "initialized" in two places in the proposed resolution.
Move to Tentatively Ready.
[ 2009 Santa Cruz: ]
Moved to Ready for this meeting.
Proposed resolution:
Change [reverse.iter.con]:
reverse_iterator();-1- Effects:
DefaultValue initializes current. Iterator operations applied to the resulting iterator have defined behavior if and only if the corresponding operations are defined on adefault constructedvalue initialized iterator of type Iterator.
Change 24.5.3.3.1 [move.iter.op.const]:
move_iterator();-1- Effects: Constructs a move_iterator,
defaultvalue initializing current. Iterator operations applied to the resulting iterator have defined behavior if and only if the corresponding operations are defined on a value initialized iterator of type Iterator.
Section: 28.8.2 [re.regex.construct] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-11 Last modified: 2015-04-08
View all other issues in [re.regex.construct].
View all issues with C++11 status.
Discussion:
Addresses UK 317 and JP 74
UK 317:
basic_string has both a constructor and an assignment operator that accepts an initializer list, basic_regex should have the same.
JP 74:
basic_regex & operator= (initializer_list<T>); is not defined.
[ Batavia (2009-05): ]
UK 317 asks for both assignment and constructor, but the requested constructor is already present in the current Working Paper. We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change 28.8 [re.regex]:
template <class charT, class traits = regex_traits<charT> > class basic_regex { ... basic_regex& operator=(const charT* ptr); basic_regex& operator=(initializer_list<charT> il); template <class ST, class SA> basic_regex& operator=(const basic_string<charT, ST, SA>& p); ... };
Add in 28.8.2 [re.regex.construct]:
-20- ...
basic_regex& operator=(initializer_list<charT> il);-21- Effects: returns assign(il.begin(), il.end());
Section: 20.10.3 [meta.help] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-11 Last modified: 2015-04-08
View all other issues in [meta.help].
View all issues with C++11 status.
Discussion:
Addresses UK 205 [CD1]
integral_constant objects should be usable in integral-constant-expressions. The addition to the language of literal types and the enhanced rules for constant expressions make this possible.
[ Batavia (2009-05): ]
We agree that the static data member ought be declared constexpr, but do not see a need for the proposed operator value_type(). (A use case would be helpful.) Move to Open.
[ 2009-05-23 Alisdair adds: ]
The motivating case in my mind is that we can then use true_type and false_type as integral Boolean expressions, for example inside a static_assert declaration. In that sense it is purely a matter of style.
Note that Boost has applied the non-explicit conversion operator for many years as it has valuable properties for extension into other metaprogramming libraries, such as MPL. If additional rationale is desired I will poll the Boost lists for why this extension was originally applied. I would argue that explicit conversion is more appropriate for 0x though.
[ 2009-07-04 Howard adds: ]
Here's a use case which demonstrates the syntactic niceness which Alisdair describes:
#define requires(...) class = typename std::enable_if<(__VA_ARGS__)>::type template <class T, class U, requires(!is_lvalue_reference<T>() || is_lvalue_reference<T>() && is_lvalue_reference<U>()), requires(is_same<typename base_type<T>::type, typename base_type<U>::type>)> inline T&& forward(U&& t) { return static_cast<T&&>(t); }
[ 2009-07 post-Frankfurt: ]
Move to Tentatively Ready.
[ 2009 Santa Cruz: ]
Moved to Ready for this meeting.
Proposed resolution:
Add to the integral_constant struct definition in 20.10.3 [meta.help]:
template <class T, T v> struct integral_constant { static constexpr T value = v; typedef T value_type; typedef integral_constant<T,v> type; constexpr operator value_type() { return value; } };
Section: 20.8.1.2.3 [unique.ptr.single.asgn] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-11 Last modified: 2015-04-08
View all other issues in [unique.ptr.single.asgn].
View all issues with C++11 status.
Discussion:
Addresses UK 211 [CD1]
The nullptr_t type was introduced to resolve the null pointer literal problem. It should be used for the assignment operator, as with the constructor and elsewhere through the library.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change the synopsis in 20.8.1.2 [unique.ptr.single]:
unique_ptr& operator=(unspecified-pointer-typenullptr_t);
Change 20.8.1.2.3 [unique.ptr.single.asgn]:
unique_ptr& operator=(unspecified-pointer-typenullptr_t);
Assigns from the literal 0 or NULL. [Note: The unspecified-pointer-type is often implemented as a pointer to a private data member, avoiding many of the implicit conversion pitfalls. — end note]
Section: 20.8.2.6 [util.smartptr.shared.atomic] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-11 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.atomic].
View all issues with C++11 status.
Discussion:
Addresses JP 44 [CD1]
The 1st parameter p and 2nd parameter v is now shared_ptr<T>*.
It should be shared_ptr<T>&, or if these are shared_ptr<T>* then add the "p shall not be a null pointer" at the requires.
[ Summit: ]
Agree. All of the functions need a requirement that p (or v) is a pointer to a valid object.
[ 2009-07 post-Frankfurt: ]
Lawrence explained that these signatures match the regular atomics. The regular atomics must not use references because these signatures are shared with C. The decision to pass shared_ptrs by pointer rather than by reference was deliberate and was motivated by the principle of least surprise.
Lawrence to write wording that requires that the pointers not be null.
[ 2009-09-20 Lawrence provided wording: ]
The parameter types for atomic shared pointer access were deliberately chosen to be pointers to match the corresponding parameters of the atomics chapter. Those in turn were deliberately chosen to match C functions, which do not have reference parameters.
We adopt the second suggestion, to require that such pointers not be null.
[ 2009-10 Santa Cruz: ]
Moved to Ready.
Proposed resolution:
In section "shared_ptr
atomic access"
20.8.2.6 [util.smartptr.shared.atomic], add to each function the
following clause.
Requires:
p
shall not be null.
Section: 30.3.1.5 [thread.thread.member] Status: C++11 Submitter: Alberto Ganesh Barbati Opened: 2009-03-12 Last modified: 2015-04-08
View all other issues in [thread.thread.member].
View all issues with C++11 status.
Discussion:
While looking at thread::join() I think I spotted a couple of possible defects in the specifications. I could not find a previous issue or NB comment about that, but I might have missed it.
The postconditions clause for thread::join() is:
Postconditions: If join() throws an exception, the value returned by get_id() is unchanged. Otherwise, get_id() == id().
and the throws clause is:
Throws: std::system_error when the postconditions cannot be achieved.
Now... how could the postconditions not be achieved? It's just a matter of resetting the value of get_id() or leave it unchanged! I bet we can always do that. Moreover, it's a chicken-and-egg problem: in order to decide whether to throw or not I depend on the postconditions, but the postconditions are different in the two cases.
I believe the throws clause should be:
Throws: std::system_error when the effects or postconditions cannot be achieved.
as it is in detach(), or, even better, as the postcondition is trivially satisfiable and to remove the circular dependency:
Throws: std::system_error if the effects cannot be achieved.
Problem is that... ehm... join() has no "Effects" clause. Is that intentional?
[ See the thread starting at c++std-lib-23204 for more discussion. ]
[ Batavia (2009-05): ]
Pete believes there may be some more general language (in frontmatter) that can address this and related issues such as 962.
Move to Open.
[ 2009-11-18 Anthony provides wording. ]
[ 2010-02-12 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Edit 30.3.1.5 [thread.thread.member] as indicated:
void join();5 Precondition: joinable() is true.
Effects: Blocks until the thread represented by *this has completed.
6 Synchronization: The completion of the thread represented by *this happens before (1.10 [intro.multithread]) join() returns. [Note: Operations on *this are not synchronized. — end note]
7 Postconditions:
If join() throws an exception, the value returned by get_id() is unchanged. Otherwise,The thread represented by *this has completed. get_id() == id().8 ...
Section: 23.2.1 [container.requirements.general] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with C++11 status.
Discussion:
Addresses UK 222 [CD1]
It is not clear what purpose the Requirement tables serve in the Containers clause. Are they the definition of a library Container? Or simply a conventient shorthand to factor common semantics into a single place, simplifying the description of each subsequent container? This becomes an issue for 'containers' like array, which does not meet the default-construct-to-empty requirement, or forward_list which does not support the size operation. Are these components no longer containers? Does that mean the remaining requirements don't apply? Or are these contradictions that need fixing, despite being a clear design decision?
Recommend:
Clarify all the tables in 23.2 [container.requirements] are there as a convenience for documentation, rather than a strict set of requirements. Containers should be allowed to relax specific requirements if they call attention to them in their documentation. The introductory text for array should be expanded to mention a default constructed array is not empty, and forward_list introduction should mention it does not provide the required size operation as it cannot be implemented efficiently.
[ Summit: ]
Agree in principle.
[ 2009-07 post-Frankfurt: ]
We agree in principle, but we have a timetable. This group feels that the issue should be closed as NAD unless a proposed resolution is submitted prior to the March 2010 meeting.
[ 2009-10 Santa Cruz: ]
Looked at this and still intend to close as NAD in March 2010 unless there is proposed wording that we like.
[ 2010-02-02 Nicolai M. Josuttis updates proposed wording and adds: ]
I just came across issue #1034 (response to UK 222), which covers the role of container requirements. The reason I found this issue was that I am wondering why array<> is specified to be a sequence container. For me, currently, this follows from Sequence containers 23.2.3 [sequence.reqmts] saying:
The library provides five basic kinds of sequence containers: array, vector, forward_list, list, and deque. while later on in Table 94 "Sequence container requirements" are defined.
IMO, you can hardly argue that this is NAD. We MUST say somewhere that either array is not a sequence container or does not provide all operations of a sequence container (even not all requirements of a container in general).
Here is the number of requirements array<> does not meet (AFAIK):
general container requirements:
- a default constructed array is not empty
- swap has no constant complexity
Note also that swap not only has linear complexity it also invalidates iterators (or to be more precise, assigns other values to the elements), which is different from the effect swap has for other containers. For this reason, I must say that i tend to propose to remove swap() for arrays.
sequence container requirements:
- There is no constructor and assignment for a range
- There is no constructor and assignment for n copies of t
- There are no emplace, insert, erase, clear, assign operations
In fact, out of all sequence container requirements array<> only provides the following operations: from sequence requirements (Table 94):
X(il); a = il;and from optional requirements (Table 95):
[], at(), front(), back()This is almost nothing!
Note in addition, that due to the fact that array is an aggregate and not a container with initializer_lists a construction or assignment with an initializer list is valid for all sequence containers but not valid for array:
vector<int> v({1,2,3}); // OK v = {4,5,6}; // OK array<int,3> a({1,2,3}); // Error array<int,3> a = {1,2,3}; // OK a = {4,5,6}; // ErrorBTW, for this reason, I am wondering, why <array> includes <initializer_list>.
IMO, we can't really say that array is a sequence container. array is special. As the solution to this issue seemed to miss some proposed wording where all could live with, let me try to suggest some.
[ 2010-02-12 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010 Pittsburgh: Ok with move to Ready except for "OPEN:" part. ]
Proposed resolution:
In Sequence containers 23.2.3 [sequence.reqmts] modify paragraph 1 as indicated:
1 A sequence container organizes a finite set of objects, all of the same type, into a strictly linear arrangement. The library provides
fivefour basic kinds of sequence containers:array,vector, forward_list, list, and deque. In addition, array is provided as a sequence container that only provides limited sequence operations because it has a fixed number of elements.ItThe library also provides container adaptors that make it easy to construct abstract data types, such as stacks or queues, out of the basic sequence container kinds (or out of other kinds of sequence containers that the user might define).
Modify paragraph 2 as follows (just editorial):
2 The
five basicsequence containers offer the programmer different complexity trade-offs and should be used accordingly. vector or array is the type of sequence container that should be used by default. list or forward_list should be used when there are frequent insertions and deletions from the middle of the sequence. deque is the data structure of choice when most insertions and deletions take place at the beginning or at the end of the sequence.
In Class template array 23.3.2 [array] modify paragraph 3 as indicated:
3
Unless otherwise specified, all array operations are as described in 23.2.An array satisfies all of the requirements of a container and of a reversible container (given in two tables in 23.2 [container.requirements]) except that a default constructed array is not empty, swap does not have constant complexity, and swap may throw exceptions. An array satisfies some of the requirements of a sequence container (given in 23.2.3 [sequence.reqmts]). Descriptions are provided here only for operations on array that are not describedin that Clausein one of these tables or for operations where there is additional semantic information.
In array specialized algorithms 23.3.2.3 [array.special] add to the specification of swap():
template <class T, size_t N> void swap(array<T,N>& x, array<T,N>& y);1 Effects: ...
Complexity: Linear in N.
Section: 23.2.3 [sequence.reqmts] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with C++11 status.
Discussion:
Addresses UK 232 [CD1]
match_results may follow the requirements but is not listed a general purpose library container.
Remove reference to match_results against a[n] operation.
[ Summit: ]
Agree. operator[] is defined elsewhere.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
In 23.2.3 [sequence.reqmts] Table 84, remove reference to match_results in the row describing the a[n] operation.
Section: 23.2.3 [sequence.reqmts] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with C++11 status.
Discussion:
Addresses UK 233 [CD1]
Table 84 is missing references to several new container types.
[ Summit: ]
Agree.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
In 23.2.3 [sequence.reqmts] Table 84, Add reference to listed containers to the following rows:
Table 84 -- Optional sequence container operations Expression Return type Operational semantics Container a.front() ... ... vector, list, deque, basic_string, array, forward_list a.back() ... ... vector, list, deque, basic_string, array a.emplace_front(args) ... ... list, deque, forward_list a.push_front(t) ... ... list, deque, forward_list a.push_front(rv) ... ... list, deque, forward_list a.pop_front() ... ... list, deque, forward_list a[n] ... ... vector, deque, basic_string, array a.at(n) ... ... vector, deque, basic_string, array
Section: 23.2.3 [sequence.reqmts] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with C++11 status.
Discussion:
Addresses UK 234 [CD1]
The reference to iterator in semantics for back should also allow for const_iterator when called on a const-qualified container. This would be ugly to specify in the 03 standard, but is quite easy with the addition of auto in this new standard.
[ Summit: ]
Agree.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
In 23.2.3 [sequence.reqmts] Table 84, replace iterator with auto in semantics for back:
Table 84 — Optional sequence container operations Expression Return type Operational semantics Container a.back() reference; const_reference for constant a { iteratorauto tmp = a.end();
--tmp;
return *tmp; }vector, list, deque, basic_string
Section: 23.2.4 [associative.reqmts] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with C++11 status.
Discussion:
Addresses UK 238 [CD1]
Leaving it unspecified whether or not iterator and const_iterator are the same type is dangerous, as user code may or may not violate the One Definition Rule by providing overloads for both types. It is probably too late to specify a single behaviour, but implementors should document what to expect. Observing that problems can be avoided by users restricting themselves to using const_iterator, add a note to that effect.
Suggest Change 'unspecified' to 'implementation defined'.
[ Summit: ]
Agree with issue. Agree with adding the note but not with changing the normative text. We believe the note provides sufficient guidance.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
In 23.2.4 [associative.reqmts] p6, add:
-6- iterator of an associative container meets the requirements of the BidirectionalIterator concept. For associative containers where the value type is the same as the key type, both iterator and const_iterator are constant iterators. It is unspecified whether or not iterator and const_iterator are the same type. [Note: iterator and const_iterator have identical semantics in this case, and iterator is convertible to const_iterator. Users can avoid violating the One Definition Rule by always using const_iterator in their function parameter lists -- end note]
Section: 29.6 [atomics.types.operations] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View all other issues in [atomics.types.operations].
View all issues with Resolved status.
Discussion:
Addresses US 91 [CD1]
It is unclear whether or not a failed compare_exchange is a RMW operation (as used in 1.10 [intro.multithread]).
Suggested solution:
Make failing compare_exchange operations not be RMW.
[ Anthony Williams adds: ]
In 29.6 [atomics.types.operations] p18 it says that "These operations are atomic read-modify-write operations" (final sentence). This is overly restrictive on the implementations of compare_exchange_weak and compare_exchange_strong on platforms without a native CAS instruction.
[ Summit: ]
Group agrees with the resolution as proposed by Anthony Williams in the attached note.
[ Batavia (2009-05): ]
We recommend the proposed resolution be reviewed by members of the Concurrency Subgroup.
[ 2009-07 post-Frankfurt: ]
This is likely to be addressed by Lawrence's upcoming paper. He will adopt the proposed resolution.
[ 2009-08-17 Handled by N2925. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2992.
Proposed resolution:
Change 29.6 [atomics.types.operations] p18:
-18- Effects: Atomically, compares the value pointed to by object or by this for equality with that in expected, and if true, replaces the value pointed to by object or by this with desired, and if false, updates the value in expected with the value pointed to by object or by this. Further, if the comparison is true, memory is affected according to the value of success, and if the comparison is false, memory is affected according to the value of failure. When only one memory_order argument is supplied, the value of success is order, and the value of failure is order except that a value of memory_order_acq_rel shall be replaced by the value memory_order_acquire and a value of memory_order_release shall be replaced by the value memory_order_relaxed. If the comparison is true,
Tthese operations are atomic read-modify-write operations (1.10). If the comparison is false, these operations are atomic load operations.
Section: 30.4 [thread.mutex] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View all other issues in [thread.mutex].
View all issues with C++11 status.
Discussion:
Addresses UK 325 [CD1]
We believe constexpr literal values should be a more natural expression of empty tag types than extern objects as it should improve the compiler's ability to optimize the empty object away completely.
[ Summit: ]
Move to review. The current specification is a "hack", and the proposed specification is a better "hack".
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change the synopsis in 30.4 [thread.mutex]:
struct defer_lock_t {}; struct try_to_lock_t {}; struct adopt_lock_t {};externconstexpr defer_lock_t defer_lock {};externconstexpr try_to_lock_t try_to_lock {};externconstexpr adopt_lock_t adopt_lock {};
Section: 30.4.2.2.1 [thread.lock.unique.cons] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses UK 326 [CD1]
The precondition that the mutex is not owned by this thread offers introduces the risk of unnecessary undefined behaviour into the program. The only time it matters whether the current thread owns the mutex is in the lock operation, and that will happen subsequent to construction in this case. The lock operation has the identical pre-condition, so there is nothing gained by asserting that precondition earlier and denying the program the right to get into a valid state before calling lock.
[ Summit: ]
Agree, move to review.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Strike 30.4.2.2.1 [thread.lock.unique.cons] p7:
unique_lock(mutex_type& m, defer_lock_t);
-7- Precondition: If mutex_type is not a recursive mutex the calling thread does not own the mutex.
Section: 30.6 [futures] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View all other issues in [futures].
View all issues with Resolved status.
Discussion:
Addresses UK 329 [CD1]
future, promise and packaged_task provide a framework for creating future values, but a simple function to tie all three components together is missing. Note that we only need a simple facility for C++0x. Advanced thread pools are to be left for TR2.
Simple Proposal:
Provide a simple function along the lines of:
template< typename F, typename ... Args > requires Callable< F, Args... > future< Callable::result_type > async( F&& f, Args && ... );
Semantics are similar to creating a thread object with a packaged_task invoking f with forward<Args>(args...) but details are left unspecified to allow different scheduling and thread spawning implementations.
It is unspecified whether a task submitted to async is run on its own thread or a thread previously used for another async task. If a call to async succeeds, it shall be safe to wait for it from any thread.
The state of thread_local variables shall be preserved during async calls.
No two incomplete async tasks shall see the same value of this_thread::get_id().
[Note: this effectively forces new tasks to be run on a new thread, or a fixed-size pool with no queue. If the library is unable to spawn a new thread or there are no free worker threads then the async call should fail. --end note]
[ Summit: ]
The concurrency subgroup has revisited this issue and decided that it could be considered a defect according to the Kona compromise. A task group was formed lead by Lawrence Crowl and Bjarne Stroustrup to write a paper for Frankfort proposing a simple asynchronous launch facility returning a future. It was agreed that the callable must be run on a separate thread from the caller, but not necessarily a brand-new thread. The proposal might or might not allow for an implementation that uses fixed-size or unlimited thread pools.
Bjarne in c++std-lib-23121: I think that what we agreed was that to avoid deadlock async() would almost certainly be specified to launch in a different thread from the thread that executed async(), but I don't think it was a specific design constraint.
[ 2009-10 Santa Cruz: ]
Proposed resolution: see N2996 (Herb's and Lawrence's paper on Async). Move state to
NAD editorialResolved.
Proposed resolution:
Section: 30.6.6 [futures.unique_future] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View all other issues in [futures.unique_future].
View all issues with Resolved status.
Discussion:
Addresses UK 334 [CD1]
Behaviour of get() is undefined if calling get() while not is_ready(). The intent is that get() is a blocking call, and will wait for the future to become ready.
[ Summit: ]
Agree, move to Review.
[ 2009-04-03 Thomas J. Gritzan adds: ]
This issue also applies to shared_future::get().
Suggested wording:
Add a paragraph to 30.6.7 [futures.shared_future]:
void shared_future<void>::get() const;Effects: If is_ready() would return false, block on the asynchronous result associated with *this.
[ Batavia (2009-05): ]
It is not clear to us that this is an issue, because the proposed resolution's Effects clause seems to duplicate information already present in the Synchronization clause. Keep in Review status.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2997.
Proposed resolution:
Add a paragraph to 30.6.6 [futures.unique_future]:
R&& unique_future::get(); R& unique_future<R&>::get(); void unique_future<void>::get();Note:...
Effects: If is_ready() would return false, block on the asynchronous result associated with *this.
Synchronization: if *this is associated with a promise object, the completion of set_value() or set_exception() to that promise happens before (1.10) get() returns.
Section: 30.6.6 [futures.unique_future] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View all other issues in [futures.unique_future].
View all issues with Resolved status.
Discussion:
Addresses UK 335 [CD1]
std::unique_future is MoveConstructible, so you can transfer the association with an asynchronous result from one instance to another. However, there is no way to determine whether or not an instance has been moved from, and therefore whether or not it is safe to wait for it.
std::promise<int> p;
std::unique_future<int> uf(p.get_future());
std::unique_future<int> uf2(std::move(uf));
uf.wait(); // oops, uf has no result to wait for.
Suggest we add a waitable() function to unique_future (and shared_future) akin to std::thread::joinable(), which returns true if there is an associated result to wait for (whether or not it is ready).
Then we can say:
if(uf.waitable()) uf.wait();
[ Summit: ]
Create an issue. Requires input from Howard. Probably NAD.
[ Post Summit, Howard throws in his two cents: ]
Here is a copy/paste of my last prototype of unique_future which was several years ago. At that time I was calling unique_future future:
template <class R> class future { public: typedef R result_type; private: future(const future&);// = delete; future& operator=(const future&);// = delete; template <class R1, class F1> friend class prommise; public: future(); ~future(); future(future&& f); future& operator=(future&& f); void swap(future&& f); bool joinable() const; bool is_normal() const; bool is_exceptional() const; bool is_ready() const; R get(); void join(); template <class ElapsedTime> bool timed_join(const ElapsedTime&); };shared_future had a similar interface. I intentionally reused the thread interface where possible to lessen the learning curve std::lib clients will be faced with.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2997.
Proposed resolution:
Section: 30.6.5 [futures.promise] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with Resolved status.
Discussion:
Addresses UK 339 [CD1]
Move assignment is going in the wrong direction, assigning from *this to the passed rvalue, and then returning a reference to an unusable *this.
[ Summit: ]
Agree, move to Review.
[ Batavia (2009-05): ]
We recommend deferring this issue until after Detlef's paper (on futures) has been issued.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2997.
Proposed resolution:
Strike 30.6.5 [futures.promise] p6 and change p7:
promise& operator=(promise&& rhs);
-6- Effects: move assigns its associated state to rhs.-7- Postcondition:
*this has no associated state.associated state of *this is the same as the associated state of rhs before the call. rhs has no associated state.
Section: 30.6.5 [futures.promise] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with Resolved status.
Discussion:
Addresses UK 340 [CD1]
There is an implied postcondition for get_future() that the state of the promise is transferred into the future leaving the promise with no associated state. It should be spelled out.
[ Summit: ]
Agree, move to Review.
[ 2009-04-03 Thomas J. Gritzan adds: ]
promise::get_future() must not invalidate the state of the promise object.
A promise is used like this:
promise<int> p; unique_future<int> f = p.get_future(); // post 'p' to a thread that calculates a value // use 'f' to retrieve the value.So get_future() must return an object that shares the same associated state with *this.
But still, this function should throw an future_already_retrieved error when it is called twice.
packaged_task::get_future() throws std::bad_function_call if its future was already retrieved. It should throw future_error(future_already_retrieved), too.
Suggested resolution:
Replace p12/p13 30.6.5 [futures.promise]:
-12- Throws: future_error if
*this has no associated statethe future has already been retrieved.-13- Error conditions: future_already_retrieved if
*this has no associated statethe future associated with the associated state has already been retrieved.Postcondition: The returned object and *this share the associated state.
Replace p14 30.6.9 [futures.task]:
-14- Throws:
std::bad_function_callfuture_error if the futureassociated with the taskhas already been retrieved.Error conditions: future_already_retrieved if the future associated with the task has already been retrieved.
Postcondition: The returned object and *this share the associated task.
[ Batavia (2009-05): ]
Keep in Review status pending Detlef's forthcoming paper on futures.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2997.
Proposed resolution:
Add after p13 30.6.5 [futures.promise]:
unique_future<R> get_future();-13- ...
Postcondition: *this has no associated state.
Section: 20.2.4 [forward] Status: Resolved Submitter: Howard Hinnant Opened: 2009-03-13 Last modified: 2015-04-08
View all other issues in [forward].
View all issues with Resolved status.
Discussion:
This is a placeholder issue to track the fact that we (well I) put the standard into an inconsistent state by requesting that we accept N2844 except for the proposed changes to [forward].
There will exist in the post meeting mailing N2835 which in its current state reflects the state of affairs prior to the Summit meeting. I hope to update it in time for the post Summit mailing, but as I write this issue I have not done so yet.
[ Batavia (2009-05): ]
Move to Open, awaiting the promised paper.
[ 2009-08-02 Howard adds: ]
My current preferred solution is:
template <class T> struct __base_type { typedef typename remove_cv<typename remove_reference<T>::type>::type type; }; template <class T, class U, class = typename enable_if< !is_lvalue_reference<T>::value || is_lvalue_reference<T>::value && is_lvalue_reference<U>::value>::type, class = typename enable_if< is_same<typename __base_type<T>::type, typename __base_type<U>::type>::value>::type> inline T&& forward(U&& t) { return static_cast<T&&>(t); }This has been tested by Bill, Jason and myself.
It allows the following lvalue/rvalue casts:
- Cast an lvalue t to an lvalue T (identity).
- Cast an lvalue t to an rvalue T.
- Cast an rvalue t to an rvalue T (identity).
It disallows:
- Cast an rvalue t to an lvalue T.
- Cast one type t to another type T (such as int to double).
"a." is disallowed as it can easily lead to dangling references. "b." is disallowed as this function is meant to only change the lvalue/rvalue characteristic of an expression.
Jason has expressed concern that "b." is not dangerous and is useful in contexts where you want to "forward" a derived type as a base type. I find this use case neither dangerous, nor compelling. I.e. I could live with or without the "b." constraint. Without it, forward would look like:
template <class T, class U, class = typename enable_if< !is_lvalue_reference<T>::value || is_lvalue_reference<T>::value && is_lvalue_reference<U>::value>::type> inline T&& forward(U&& t) { return static_cast<T&&>(t); }Or possibly:
template <class T, class U, class = typename enable_if< !is_lvalue_reference<T>::value || is_lvalue_reference<T>::value && is_lvalue_reference<U>::value>::type, class = typename enable_if< is_base_of<typename __base_type<U>::type, typename __base_type<T>::type>::value>::type> inline T&& forward(U&& t) { return static_cast<T&&>(t); }The "promised paper" is not in the post-Frankfurt mailing only because I'm waiting for the non-concepts draft. But I'm hoping that by adding this information here I can keep people up to date.
[ 2009-08-02 David adds: ]
forward was originally designed to do one thing: perfect forwarding. That is, inside a function template whose actual argument can be a const or non-const lvalue or rvalue, restore the original "rvalue-ness" of the actual argument:
template <class T> void f(T&& x) { // x is an lvalue here. If the actual argument to f was an // rvalue, pass static_cast<T&&>(x) to g; otherwise, pass x. g( forward<T>(x) ); }Attempting to engineer forward to accomodate uses other than perfect forwarding dilutes its idiomatic meaning. The solution proposed here declares that forward<T>(x) means nothing more than static_cast<T&&>(x), with a patchwork of restrictions on what T and x can be that can't be expressed in simple English.
I would be happy with either of two approaches, whose code I hope (but can't guarantee) I got right.
Use a simple definition of forward that accomplishes its original purpose without complications to accomodate other uses:
template <class T, class U> T&& forward(U& x) { return static_cast<T&&>(x); }Use a definition of forward that protects the user from as many potential mistakes as possible, by actively preventing all other uses:
template <class T, class U> boost::enable_if_c< // in forward<T>(x), x is a parameter of the caller, thus an lvalue is_lvalue_reference<U>::value // in caller's deduced T&& argument, T can only be non-ref or lvalue ref && !is_rvalue_reference<T>::value // Must not cast cv-qualifications or do any type conversions && is_same<T&,U&>::value , T&&>::type forward(U&& a) { return static_cast<T&&>(a); }
[ 2009-09-27 Howard adds: ]
A paper, N2951, is available which compares several implementations (including David's) with respect to several use cases (including Jason's) and provides wording for one implementation.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2951.
Proposed resolution:
Section: 20.10.7.6 [meta.trans.other] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-03-12 Last modified: 2015-04-08
View other active issues in [meta.trans.other].
View all other issues in [meta.trans.other].
View all issues with Resolved status.
Discussion:
Addresses UK 98 [CD1]
It would be useful to be able to determine the underlying type of an arbitrary enumeration type. This would allow safe casting to an integral type (especially needed for scoped enums, which do not promote), and would allow use of numeric_limits. In general it makes generic programming with enumerations easier.
[ Batavia (2009-05): ]
Pete observes (and Tom concurs) that the proposed resolution seems to require compiler support for its implementation, as it seems necessary to look at the range of values of the enumerated type. To a first approximation, a library solution could give an answer based on the size of the type. If the user has specialized numeric_limits for the enumerated type, then the library might be able to do better, but there is no such requirement. Keep status as Open and solicit input from CWG.
[ 2009-05-23 Alisdair adds: ]
Just to confirm that the BSI originator of this comment assumed it did indeed imply a compiler intrinsic. Rather than request a Core extension, it seemed in keeping with that the type traits interface provides a library API to unspecified compiler features - where we require several other traits (e.g. has_trivial_*) to get the 'right' answer now, unlike in TR1.
[ Addressed in N2947. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2984.
Proposed resolution:
Add a new row to the table in 20.10.7.6 [meta.trans.other]:
Table 41 -- Other transformations Template Condition Comments template< class T > struct enum_base; T shall be an enumeration type (7.2 [dcl.enum]) The member typedef type shall name the underlying type of the enum T.
Section: 17.6.1.1 [contents] Status: C++11 Submitter: Howard Hinnant Opened: 2009-03-15 Last modified: 2015-04-08
View all other issues in [contents].
View all issues with C++11 status.
Discussion:
Addresses UK 168 [CD1]
We should make it clear (either by note or normatively) that namespace std may contain inline namespaces, and that entities specified to be defined in std may in fact be defined in one of these inline namespaces. (If we're going to use them for versioning, eg when TR2 comes along, we're going to need that.)
Replace "namespace std or namespaces nested within namespace std" with "namespace std or namespaces nested within namespace std or inline namespaces nested directly or indirectly within namespace std"
[ Summit: ]
adopt UK words (some have reservations whether it is correct)
[ 2009-05-09 Alisdair improves the wording. ]
[ Batavia (2009-05): ]
Bill believes there is strictly speaking no need to say that because no portable test can detect the difference. However he agrees that it doesn't hurt to say this.
Move to Tentatively Ready.
Proposed resolution:
Change 17.6.1.1 [contents] p2:
All library entities except macros, operator new and operator delete are defined within the namespace std or namespaces nested within namespace std. It is unspecified whether names declared in a specific namespace are declared directly in that namespace, or in an inline namespace inside that namespace. [Footnote: This gives implementers freedom to support multiple configurations of the library.]
Section: 18 [language.support] Status: C++11 Submitter: Howard Hinnant Opened: 2009-03-15 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses UK 189 and JP 27 [CD1]
The addition of the [[noreturn]] attribute to the language will be an important aid for static analysis tools.
The following functions should be declared in C++ with the [[noreturn]] attribute: abort exit quick_exit terminate unexpected rethrow_exception throw_with_nested.
[ Summit: ]
Agreed.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change 18.5 [support.start.term] p3:
-2- ...
void abort [[noreturn]] (void)-3- ...
-6- ...
void exit [[noreturn]] (int status)-7- ...
-11- ...
void quick_exit [[noreturn]] (int status)-12- ...
Change the <exception> synopsis in 18.8 [support.exception]:
void unexpected [[noreturn]] (); ... void terminate [[noreturn]] (); ... void rethrow_exception [[noreturn]] (exception_ptr p); ... template <class T> void throw_with_nested [[noreturn]] (T&& t);// [[noreturn]]
Change D.8.4 [unexpected]:
void unexpected [[noreturn]] ();
Change 18.8.3.4 [terminate]:
void terminate [[noreturn]] ();
Change 18.8.5 [propagation]:
void rethrow_exception [[noreturn]] (exception_ptr p);
In the synopsis of 18.8.6 [except.nested] and the definition area change:
template <class T> void throw_with_nested [[noreturn]] (T&& t);// [[noreturn]]
Section: 20.9.12.2 [func.wrap.func] Status: C++11 Submitter: Howard Hinnant Opened: 2009-03-19 Last modified: 2015-04-08
View other active issues in [func.wrap.func].
View all other issues in [func.wrap.func].
View all issues with C++11 status.
Discussion:
The synopsis in 20.9.12.2 [func.wrap.func] says:
template<Returnable R, CopyConstructible... ArgTypes> class function<R(ArgTypes...)> { ... template<class F> requires CopyConstructible<F> && Callable<F, ArgTypes...> && Convertible<Callable<F, ArgTypes...>::result_type, R> function(F); template<class F> requires CopyConstructible<F> && Callable<F, ArgTypes...> && Convertible<Callable<F, ArgTypes...>::result_type, R> function(F&&); ... template<class F, Allocator Alloc> function(allocator_arg_t, const Alloc&, F); template<class F, Allocator Alloc> function(allocator_arg_t, const Alloc&, F&&); ... template<class F> requires CopyConstructible<F> && Callable<F, ArgTypes..> && Convertible<Callable<F, ArgTypes...>::result_type function& operator=(F); template<class F> requires CopyConstructible<F> && Callable<F, ArgTypes...> && Convertible<Callable<F, ArgTypes...>::result_type, R> function& operator=(F&&); ... };
Each of the 3 pairs above are ambiguous. We need only one of each pair, and we could do it with either one. If we choose the F&& version we need to bring decay into the definition to get the pass-by-value behavior. In the proposed wording I've gotten lazy and just used the pass-by-value signature.
[ 2009-05-01 Daniel adds: ]
1024 modifies the second removed constructor.
[ Batavia (2009-05): ]
We briefly discussed whether we ought support moveable function objects, but decided that should be a separate issue if someone cares to propose it.
Move to Tentatively Ready.
Proposed resolution:
Change the synopsis of 20.9.12.2 [func.wrap.func], and remove the associated definitions in 20.9.12.2.1 [func.wrap.func.con]:
template<Returnable R, CopyConstructible... ArgTypes> class function<R(ArgTypes...)> { ... template<class F> requires CopyConstructible<F> && Callable<F, ArgTypes...> && Convertible<Callable<F, ArgTypes...>::result_type, R> function(F);template<class F> requires CopyConstructible<F> && Callable<F, ArgTypes...> && Convertible<Callable<F, ArgTypes...>::result_type, R> function(F&&);... template<class F, Allocator Alloc> function(allocator_arg_t, const Alloc&, F);template<class F, Allocator Alloc> function(allocator_arg_t, const Alloc&, F&&);... template<class F> requires CopyConstructible<F> && Callable<F, ArgTypes..> && Convertible<Callable<F, ArgTypes...>::result_type function& operator=(F);template<class F> requires CopyConstructible<F> && Callable<F, ArgTypes...> && Convertible<Callable<F, ArgTypes...>::result_type, R> function& operator=(F&&);... };
Section: 20.9.10.1 [func.bind.isbind] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-19 Last modified: 2015-04-08
View all other issues in [func.bind.isbind].
View all issues with C++11 status.
Discussion:
Class template is_bind_expression 20.9.10.1 [func.bind.isbind]:
namespace std { template<class T> struct is_bind_expression { static const bool value = see below; }; }
is_bind_expression should derive from std::integral_constant<bool> like other similar trait types.
[ Daniel adds: ]
We need the same thing for the trait is_placeholder as well.
[ 2009-03-22 Daniel provided wording. ]
[ Batavia (2009-05): ]
We recommend this be deferred until after the next Committee Draft is issued.
Move to Open.
[ 2009-05-31 Peter adds: ]
I am opposed to the proposed resolution and to the premise of the issue in general. The traits's default definitions should NOT derive from integral_constant, because this is harmful, as it misleads people into thinking that is_bind_expression<E> always derives from integral_constant, whereas it may not.
is_bind_expression and is_placeholder allow user specializations, and in fact, this is their primary purpose. Such user specializations may not derive from integral_constant, and the places where is_bind_expression and is_placeholder are used intentionally do not require such derivation.
The long-term approach here is to switch to BindExpression<E> and Placeholder<P> explicit concepts, of course, but until that happens, I say leave them alone.
[ 2009-10 post-Santa Cruz: ]
Move to Tentatively Ready. We are comfortable with requiring user specializations to derive from integral_constant.
Proposed resolution:
In 20.9.10.1 [func.bind.isbind] change as indicated:
namespace std { template<class T> struct is_bind_expression : integral_constant<bool, see below> { };{ static const bool value = see below; };}
In 20.9.10.1 [func.bind.isbind]/2 change as indicated:
static const bool value;-2-
true if T is a type returned from bind, false otherwise.If T is a type returned from bind, is_bind_expression<T> shall be publicly derived from integral_constant<bool, true>, otherwise it shall be publicly derived from integral_constant<bool, false>.
In 20.9.10.2 [func.bind.isplace] change as indicated:
namespace std { template<class T> struct is_placeholder : integral_constant<int, see below> { };{ static const int value = see below; };}
In 20.9.10.2 [func.bind.isplace]/2 change as indicated:
static const int value;-2-
value is J if T is the type of std::placeholders::_J, 0 otherwise.If T is the type of std::placeholders::_J, is_placeholder<T> shall be publicly derived from integral_constant<int, J> otherwise it shall be publicly derived from integral_constant<int, 0>.
Section: 20.7 [memory] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-03-19 Last modified: 2015-04-08
View all other issues in [memory].
View all issues with C++11 status.
Discussion:
Declaration of allocator_arg should be constexpr to ensure constant initialization.
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Tentatively Ready.
Proposed resolution:
Change 20.7 [memory] p2:
// 20.8.1, allocator argument tag struct allocator_arg_t { }; constexpr allocator_arg_t allocator_arg = allocator_arg_t();
Section: 20 [utilities], 23 [containers] Status: Resolved Submitter: Alan Talbot Opened: 2009-03-20 Last modified: 2015-04-08
View all other issues in [utilities].
View all issues with Resolved status.
Discussion:
Addresses US 65 and US 74.1 [CD1]
US 65:
Scoped allocators and allocator propagation traits add a small amount of utility at the cost of a great deal of machinery. The machinery is user visible, and it extends to library components that don't have any obvious connection to allocators, including basic concepts and simple components like pair and tuple.
Suggested resolution:
Sketch of proposed resolution: Eliminate scoped allocators, replace allocator propagation traits with a simple uniform rule (e.g. always propagate on copy and move), remove all mention of allocators from components that don't explicitly allocate memory (e.g. pair), and adjust container interfaces to reflect this simplification.
Components that I propose eliminating include HasAllocatorType, is_scoped_allocator, allocator_propagation_map, scoped_allocator_adaptor, and ConstructibleAsElement.
US 74.1:
Scoped allocators represent a poor trade-off for standardization, since (1) scoped-allocator--aware containers can be implemented outside the C++ standard library but used with its algorithms, (2) scoped allocators only benefit a tiny proportion of the C++ community (since few C++ programmers even use today's allocators), and (3) all C++ users, especially the vast majority of the C++ community that won't ever use scoped allocators are forced to cope with the interface complexity introduced by scoped allocators.
In essence, the larger community will suffer to support a very small subset of the community who can already implement their own data structures outside of the standard library. Therefore, scoped allocators should be removed from the working paper.
Some evidence of the complexity introduced by scoped allocators:
20.3 [pairs], 20.4 [tuple]: Large increase in the number of pair and tuple constructors.
23 [containers]: Confusing "AllocatableElement" requirements throughout.
Suggested resolution:
Remove support for scoped allocators from the working paper. This includes at least the following changes:
Remove X [allocator.element.concepts]
Remove 20.13 [allocator.adaptor]
Remove [construct.element]
In Clause 23 [containers]: replace requirements naming the AllocatableElement concept with requirements naming CopyConstructible, MoveConstructible, DefaultConstructible, or Constructible, as appropriate.
[ Post Summit Alan moved from NAD to Open. ]
[ 2009-05-15 Ganesh adds: ]
The requirement AllocatableElement should not be replaced with Constructible on the emplace_xxx() functions as suggested. In the one-parameter case the Constructible requirement is not satisfied when the constructor is explicit (as per [concept.map.fct], twelfth bullet) but we do want to allow explicit constructors in emplace, as the following example shows:
vector<shared_ptr<int>> v; v.emplace_back(new int); // should be allowed
If the issue is accepted and scoped allocators are removed, I suggest to add a new pair of concepts to [concept.construct], namely:
auto concept HasExplicitConstructor<typename T, typename... Args> { explicit T::T(Args...); } auto concept ExplicitConstructible<typename T, typename... Args> : HasExplicitConstructor<T, Args...>, NothrowDestructible<T> { }We should then use ExplicitConstructible as the requirement for all emplace_xxx() member functions.
For coherence and consistency with the similar concepts Convertible/ExplicitlyConvertible, we might also consider changing Constructible to:
auto concept Constructible<typename T, typename... Args> : HasConstructor<T, Args...>, ExplicitConstructible<T, Args...> { }Moreover, all emplace-related concepts in [container.concepts] should also use ExplicitConstructible instead of Constructible in the definitions of their axioms. In fact the concepts in [container.concepts] should be corrected even if the issue is not accepted.
On the other hand, if the issue is not accepted, the scoped allocator adaptors should be fixed because the following code:
template <typename T> using scoped_allocator = scoped_allocator_adaptor<allocator<T>>; vector<shared_ptr<int>, scoped_allocator<shared_ptr<int>>> v; v.emplace_back(new int); // ops! doesn't compile
doesn't compile, as the member function construct() of the scoped allocator requires non-explicit constructors through concept ConstructibleWithAllocator. Fixing that is not difficult but probably more work than it's worth and is therefore, IMHO, one more reason in support of the complete removal of scoped allocators.
[ 2009-06-09 Alan adds: ]
I reopened this issue because I did not think that these National Body comments were adequately addressed by marking them NAD. My understanding is that something can be marked NAD if it is clearly a misunderstanding or trivial, but a substantive issue that has any technical merit requires a disposition that addresses the concerns.
The notes in the NB comment list (US 65 & US 74.1) say that:
- this issue has not introduced any new arguments not previously discussed,
- the vote (4-9-3) was not a consensus for removing scoped allocators,
- the issue is resolved by N2840.
My opinion is:
- there are new arguments in both comments regarding concepts (which were not present in the library when the scoped allocator proposal was voted in),
- the vote was clearly not a consensus for removal, but just saying there was a vote does not provide a rationale,
- I do not believe that N2840 addresses these comments (although it does many other things and was voted in with strong approval).
My motivation to open the issue was to ensure that the NB comments were adequately addressed in a way that would not risk a "no" vote on our FCD. If there are responses to the technical concerns raised, then perhaps they should be recorded. If the members of the NB who authored the comments are satisfied with N2840 and the other disposition remarks in the comment list, then I am sure they will say so. In either case, this issue can be closed very quickly in Frankfurt, and hopefully will have helped make us more confident of approval with little effort. If in fact there is controversy, my thought is that it is better to know now rather than later so there is more time to deal with it.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2982.
Proposed resolution:
Rationale:
Scoped allocators have been revised significantly.
RandomAccessIterator
's operator-
has nonsensical effects clauseSection: 24.2.7 [random.access.iterators] Status: C++11 Submitter: Doug Gregor Opened: 2009-03-20 Last modified: 2015-04-08
View all other issues in [random.access.iterators].
View all issues with C++11 status.
Discussion:
Addresses UK 265
UK-265:
This effects clause is nonesense. It looks more like an axiom stating equivalence, and certainly an effects clause cannot change the state of two arguments passed by const reference
[ 2009-09-18 Alisdair adds: ]
For random access iterators, the definitions of (b-a) and (a<b) are circular:
From table Table 104 -- Random access iterator requirements:
b - a :==> (a < b) ? distance(a,b) : -distance(b,a) a < b :==> b - a > 0
[ 2009-10 Santa Cruz: ]
Moved to Ready.
[ 2010-02-13 Alisdair opens. ]
Looking again at LWG 1079, the wording in the issue no longer exists, and appears to be entirely an artefact of the concepts wording.
This issue is currently on our Ready list (not even Tentative!) but I think it has to be pulled as there is no way to apply the resolution.
Looking at the current paper, I think this issue is now "NAD, solved by the removal of concepts". Unfortunately it is too late to poll again, so we will have to perform that review in Pittsburgh.
[ 2010-02-13 Daniel updates the wording to address the circularity problem. ]
[ The previous wording is preserved here: ]
Modify 24.2.7 [random.access.iterators]p7-9 as follows:
difference_type operator-(const X& a, const X& b);-7- Precondition: there exists a value
-8-n
ofdifference_type
such thata == b + n
.Effects:-9- Returns:b == a + (b - a)
(a < b) ? distance(a,b) : -distance(b,a)
n
[ 2010 Pittsburgh: ]
Moved to Ready for Pittsburgh.
Proposed resolution:
Modify Table 105 in 24.2.7 [random.access.iterators]:
Table 105 — Random access iterator requirements (in addition to bidirectional iterator) Expression Return type Operational semantics Assertion/note
pre-/post-conditionb - a Distance distance(a,b)return npre: there exists a value n of Distance such that a + n == b. b == a + (b - a).
Section: 30.6.5 [futures.promise] Status: Resolved Submitter: Howard Hinnant Opened: 2009-03-22 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with Resolved status.
Discussion:
Addresses UK 342 [CD1]
std::promise is missing a non-member overload of swap. This is inconsistent with other types that provide a swap member function.
Add a non-member overload void swap(promise&& x,promise&& y){ x.swap(y); }
[ Summit: ]
Create an issue. Move to review, attention: Howard. Detlef will also look into it.
[ Post Summit Daniel provided wording. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2997.
Proposed resolution:
In 30.6.5 [futures.promise], before p.1, immediately after class template promise add:
template <class R> void swap(promise<R>& x, promise<R>& y);
Change 30.6.5 [futures.promise]/10 as indicated (to fix a circular definition):
-10- Effects:
swap(*this, other)Swaps the associated state of *this and otherThrows: Nothing.
After the last paragraph in 30.6.5 [futures.promise] add the following prototype description:
template <class R> void swap(promise<R>& x, promise<R>& y);Effects: x.swap(y)
Throws: Nothing.
Section: 30 [thread] Status: C++11 Submitter: Howard Hinnant Opened: 2009-03-22 Last modified: 2015-04-08
View all other issues in [thread].
View all issues with C++11 status.
Discussion:
Addresses JP 76 [CD1]
A description for "Throws: Nothing." are not unified.
At the part without throw, "Throws: Nothing." should be described.
Add "Throws: Nothing." to the following.
[ Summit: ]
Pass on to editor.
[ Post Summit: Editor declares this non-editorial. ]
[ 2009-08-01 Howard provided wording: ]
The definition of "Throws: Nothing." that I added is probably going to be controversial, but I beg you to consider it seriously.
In C++ there are three "flow control" options for a function:
- It can return, either with a value, or with void.
- It can call a function which never returns, such as std::exit or std::terminate.
- It can throw an exception.
The above list can be abbreviated with:
- Returns.
- Ends program.
- Throws exception.
In general a function can have the behavior of any of these 3, or any combination of any of these three, depending upon run time data.
- R
- E
- T
- RE
- RT
- ET
- RET
A function with no throw spec, and no documentation, is in general a RET function. It may return, it may end the program, or it may throw. When we specify a function with an empty throw spec:
void f() throw();We are saying that f() is an RE function: It may return or end the program, but it will not throw.
I posit that there are very few places in the library half of the standard where we intend for functions to be able to end the program (call terminate). And none of those places where we do say terminate could be called, do we currently say "Throws: Nothing.".
I believe that if we define "Throws: Nothing." to mean R, we will both clarify many, many places in the standard, and give us a good rationale for choosing between "Throws: Nothing." (R) and throw() (RE) in the future. Indeed, this may give us motivation to change several throw()s to "Throws: Nothing.".
I did not add the following changes as JP 76 requested as I believe we want to allow these functions to throw:
Add a paragraph under 30.4.2.1 [thread.lock.guard] p4:
explicit lock_guard(mutex_type& m);Throws: Nothing.
Add a paragraph under 30.4.2.2.1 [thread.lock.unique.cons] p6:
explicit unique_lock(mutex_type& m);Throws: Nothing.
Add a paragraph under 30.5.2 [thread.condition.condvarany] p19, p21 and p25:
template <class Lock, class Rep, class Period> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);Throws: Nothing.
template <class Lock, class Duration, class Predicate> bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& rel_time, Predicate pred);Throws: Nothing.
template <class Lock, class Rep, class Period, class Predicate> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);Throws: Nothing.
[ 2009-10 Santa Cruz: ]
Defer pending further developments with exception restriction annotations.
[ 2010-02-11 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-02-24 Pete moved to Open: ]
A "Throws: Nothing" specification is not the place to say that a function is not allowed to call exit(). While I agree with the thrust of the proposed resolution, "doesn't throw exceptions" is a subset of "always returns normally". If it's important to say that most library functions don't call exit(), say so.
[ 2010 Pittsburgh: ]
Move to Ready except for the added paragraph to 17.5.1.4 [structure.specifications].
Proposed resolution:
Add a paragraph under 30.3.1.6 [thread.thread.static] p1:
unsigned hardware_concurrency();-1- Returns: ...
Throws: Nothing.
Add a paragraph under 30.5.1 [thread.condition.condvar] p7 and p8:
[Informational, not to be incluced in the WP: The POSIX spec allows only:
- [EINVAL]
- The value cond does not refer to an initialized condition variable. — end informational]
void notify_one();-7- Effects: ...
Throws: Nothing.
void notify_all();-8- Effects: ...
Throws: Nothing.
Add a paragraph under 30.5.2 [thread.condition.condvarany] p6 and p7:
void notify_one();-6- Effects: ...
Throws: Nothing.
void notify_all();-7- Effects: ...
Throws: Nothing.
Section: 30.6.9 [futures.task] Status: Resolved Submitter: Daniel Krügler Opened: 2009-03-22 Last modified: 2015-04-08
View all other issues in [futures.task].
View all issues with Resolved status.
Discussion:
Class template packaged_task in 30.6.9 [futures.task] shows a member swap declaration, but misses to document it's effects (No prototype provided). Further on this class misses to provide a non-member swap.
[ Batavia (2009-05): ]
Alisdair notes that paragraph 2 of the proposed resolution has already been applied in the current Working Draft.
We note a pending future-related paper by Detlef; we would like to wait for this paper before proceeding.
Move to Open.
[ 2009-05-24 Daniel removed part 2 of the proposed resolution. ]
[ 2009-10 post-Santa Cruz: ]
Move to Tentatively Ready, removing bullet 3 from the proposed resolution but keeping the other two bullets.
[ 2010 Pittsburgh: ]
Moved to
NAD EditorialResolved. Rationale added below.
Rationale:
Solved by N3058.
Proposed resolution:
In 30.6.9 [futures.task], immediately after the definition of class template packaged_task add:
template<class R, class... Argtypes> void swap(packaged_task<R(ArgTypes...)>&, packaged_task<R(ArgTypes...)>&);
At the end of 30.6.9 [futures.task] (after p. 20), add the following prototype description:
template<class R, class... Argtypes> void swap(packaged_task<R(ArgTypes...)>& x, packaged_task<R(ArgTypes...)>& y);Effects: x.swap(y)
Throws: Nothing.
Section: 25.3.12 [alg.random.shuffle] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-03-22 Last modified: 2015-04-08
View all other issues in [alg.random.shuffle].
View all issues with Resolved status.
Discussion:
There are a couple of issues with the declaration of the random_shuffle algorithm accepting a random number engine.
[ 2009-05-02 Daniel adds: ]
this issue completes adding necessary requirement to the third new random_shuffle overload. The current suggestion is:
template<RandomAccessIterator Iter, UniformRandomNumberGenerator Rand> requires ShuffleIterator<Iter> void random_shuffle(Iter first, Iter last, Rand&& g);IMO this is still insufficient and I suggest to add the requirement
Convertible<Rand::result_type, Iter::difference_type>to the list (as the two other overloads already have).
Rationale:
Its true that this third overload is somewhat different from the remaining two. Nevertheless we know from UniformRandomNumberGenerator, that it's result_type is an integral type and that it satisfies UnsignedIntegralLike<result_type>.
To realize it's designated task, the algorithm has to invoke the Callable aspect of g and needs to perform some algebra involving it's min()/max() limits to compute another index value that at this point is converted into Iter::difference_type. This is so, because 24.2.7 [random.access.iterators] uses this type as argument of it's algebraic operators. Alternatively consider the equivalent iterator algorithms in 24.4.4 [iterator.operations] with the same result.
This argument leads us to the conclusion that we also need Convertible<Rand::result_type, Iter::difference_type> here.
[ Batavia (2009-05): ]
Alisdair notes that point (ii) has already been addressed.
We agree with the proposed resolution to point (i) with Daniel's added requirement.
Move to Review.
[ 2009-06-05 Daniel updated proposed wording as recommended in Batavia. ]
[ 2009-07-28 Alisdair adds: ]
Revert to Open, with a note there is consensus on direction but the wording needs updating to reflect removal of concepts.
[ 2009-10 post-Santa Cruz: ]
Leave Open, Walter to work on it.
[
2010 Pittsburgh: Moved to NAD EditorialResolved, addressed by
N3056.
]
Rationale:
Solved by N3056.
Proposed resolution:
Change in [algorithms.syn] and 25.3.12 [alg.random.shuffle]:
concept UniformRandomNumberGenerator<typename Rand> { }template<RandomAccessIterator Iter, UniformRandomNumberGenerator Rand> requires ShuffleIterator<Iter> && Convertible<Rand::result_type, Iter::difference_type> void random_shuffle(Iter first, Iter last, Rand&& g);
Section: 27.5.5.4 [iostate.flags] Status: C++11 Submitter: P.J. Plauger Opened: 2009-03-24 Last modified: 2015-04-08
View all other issues in [iostate.flags].
View all issues with C++11 status.
Discussion:
Addresses JP 65 and JP 66 [CD1]
Switch from "unspecified-bool-type" to "explicit operator bool() const".
Replace operator unspecified-bool-type() const;" with explicit operator bool() const;
[ Batavia (2009-05): ]
We agree with the proposed resolution. Move to Review.
[ 2009 Santa Cruz: ]
Moved to Ready.
Proposed resolution:
Change the synopis in 27.5.5 [ios]:
explicit operatorunspecified-bool-typebool() const;
Change 27.5.5.4 [iostate.flags]:
explicit operatorunspecified-bool-typebool() const;-1- Returns: !fail()
If fail() then a value that will evaluate false in a boolean context; otherwise a value that will evaluate true in a boolean context. The value type returned shall not be convertible to int.
[Note: This conversion can be used in contexts where a bool is expected (e.g., an if condition); however, implicit conversions (e.g., to int) that can occur with bool are not allowed, eliminating some sources of user error. One possible implementation choice for this type is pointer-to-member. -- end note]
Section: 17.6.4.10 [res.on.objects] Status: C++11 Submitter: Beman Dawes Opened: 2009-03-27 Last modified: 2015-04-08
View all other issues in [res.on.objects].
View all issues with C++11 status.
Discussion:
N2775, Small library thread-safety revisions, among other changes, removed a note from 17.6.4.10 [res.on.objects] that read:
[Note: This prohibition against concurrent non-const access means that modifying an object of a standard library type shared between threads without using a locking mechanism may result in a data race. --end note.]
That resulted in wording which is technically correct but can only be understood by reading the lengthy and complex 17.6.5.9 [res.on.data.races] Data race avoidance. This has the effect of making 17.6.4.10 [res.on.objects] unclear, and has already resulted in a query to the LWG reflector. See c++std-lib-23194.
[ Batavia (2009-05): ]
The proposed wording seems to need a bit of tweaking ("really bad idea" isn't quite up to standardese). We would like feedback as to whether the original Note's removal was intentional.
Change the phrase "is a really bad idea" to "risks undefined behavior" and move to Review status.
[ 2009-10 Santa Cruz: ]
Note: Change to read: "Modifying...", Delete 'thus', move to Ready
Proposed resolution:
Change 17.6.4.10 [res.on.objects] as indicated:
The behavior of a program is undefined if calls to standard library functions from different threads may introduce a data race. The conditions under which this may occur are specified in 17.6.4.7.
[Note: Modifying an object of a standard library type shared between threads risks undefined behavior unless objects of the type are explicitly specified as being sharable without data races or the user supplies a locking mechanism. --end note]
Section: 18.2 [support.types] Status: C++11 Submitter: Jens Maurer Opened: 2009-04-03 Last modified: 2015-04-08
View all other issues in [support.types].
View all issues with C++11 status.
Discussion:
Addresses DE 18
Freestanding implementations do not (necessarily) have support for multiple threads (see 1.10 [intro.multithread]). Applications and libraries may want to optimize for the absence of threads. I therefore propose a preprocessor macro to indicate whether multiple threads can occur.
There is ample prior implementation experience for this feature with various spellings of the macro name. For example, gcc implicitly defines _REENTRANT if multi-threading support is selected on the compiler command-line.
While this is submitted as a library issue, it may be more appropriate to add the macro in 16.8 cpp.predefined in the core language.
See also N2693.
[ Batavia (2009-05): ]
We agree with the issue, and believe it is properly a library issue.
We prefer that the macro be conditionally defined as part of the <thread> header.
Move to Review.
[ 2009-10 Santa Cruz: ]
Move to Ready.
[ 2010-02-25 Pete moved to Open: ]
The proposed resolution adds a feature-test macro named __STDCPP_THREADS, described after the following new text:
The standard library defines the following macros; no explicit prior inclusion of any header file is necessary.
The correct term here is "header", not "header file". But that's minor. The real problem is that library entities are always defined in headers. If __STDCPP_THREADS is defined without including any header it's part of the language and belongs with the other predefined macros in the Preprocessor clause.
Oddly enough, the comments from Batavia say "We prefer that the macro be conditionally defined as part of the <thread> header." There's no mention of a decision to change this.
[ 2010-02-26 Ganesh updates wording. ]
[ 2010 Pittsburgh: Adopt Ganesh's wording and move to Review. ]
[ 2010-03-08 Pete adds: ]
Most macros we have begin and end with with double underbars, this one only begins with double underbars.
[ 2010 Pittsburgh: Ganesh's wording adopted and moved to Ready for Pittsburgh. ]
Proposed resolution:
Change 17.6.1.3 [compliance]/3:
3 The supplied version of the header <cstdlib> shall declare at least the functions abort(), atexit(), and exit() (18.5). The supplied version of the header <thread> either shall meet the same requirements as for a hosted implementation or including it shall have no effect. The other headers listed in this table shall meet the same requirements as for a hosted implementation.
Add the following line to table 15:
Table 15 — C++ headers for freestanding implementations Subclause Header(s) ... 30.3 [thread.threads] Threads <thread>
Add to the <thread> synopsis in 30.3 [thread.threads]/1 the line:
namespace std { #define __STDCPP_THREADS __cplusplus class thread; ...
Section: 20.7.4 [util.dynamic.safety] Status: C++11 Submitter: Jens Maurer Opened: 2009-04-03 Last modified: 2015-04-08
View all other issues in [util.dynamic.safety].
View all issues with C++11 status.
Discussion:
Addresses DE 18
In 20.7.4 [util.dynamic.safety], get_pointer_safety() purports to define behavior for non-safely derived pointers (3.7.4.3 [basic.stc.dynamic.safety]). However, the cited core-language section in paragraph 4 specifies undefined behavior for the use of such pointer values. This seems an unfortunate near-contradiction. I suggest to specify the term relaxed pointer safety in the core language section and refer to it from the library description. This issue deals with the library part, the corresponding core issue (c++std-core-13940) deals with the core modifications.
See also N2693.
[ Batavia (2009-05): ]
We recommend if this issue is to be moved, the issue be moved concurrently with the cited Core issue.
We agree with the intent of the proposed resolution. We would like input from garbage collection specialists.
Move to Open.
[ 2009-10 Santa Cruz: ]
The core issue is 853 and is in Ready status.
Proposed resolution:
In 20.7.4 [util.dynamic.safety] p16, replace the description of get_pointer_safety() with:
pointer_safety get_pointer_safety();
Returns: an enumeration value indicating the implementation's treatment of pointers that are not safely derived (3.7.4.3). Returns pointer_safety::relaxed if pointers that are not safely derived will be treated the same as pointers that are safely derived for the duration of the program. Returns pointer_safety::preferred if pointers that are not safely derived will be treated the same as pointers that are safely derived for the duration of the program but allows the implementation to hint that it could be desirable to avoid dereferencing pointers that are not safely derived as described. [Example: pointer_safety::preferred might be returned to detect if a leak detector is running to avoid spurious leak reports. -- end note] Returns pointer_safety::strict if pointers that are not safely derived might be treated differently than pointers that are safely derived.Returns: Returns pointer_safety::strict if the implementation has strict pointer safety (3.7.4.3 [basic.stc.dynamic.safety]). It is implementation-defined whether get_pointer_safety returns pointer_safety::relaxed or pointer_safety::preferred if the implementation has relaxed pointer safety (3.7.4.3 [basic.stc.dynamic.safety]).Footnote
Throws: nothing
Footnote) pointer_safety::preferred might be returned to indicate to the program that a leak detector is running so that the program can avoid spurious leak reports.
Section: 20.8.1.2.1 [unique.ptr.single.ctor] Status: Resolved Submitter: Howard Hinnant Opened: 2009-04-25 Last modified: 2015-04-08
View all other issues in [unique.ptr.single.ctor].
View all issues with Resolved status.
Discussion:
Message c++std-lib-23182 led to a discussion in which several people expressed interest in being able to convert an auto_ptr to a unique_ptr without the need to call release. Below is wording to accomplish this.
[ Batavia (2009-05): ]
Pete believes it not a good idea to separate parts of a class's definition. Therefore, if we do this, it should be part of unique-ptr's specification.
Alisdair believes the lvalue overload may be not necessary.
Marc believes it is more than just sugar, as it does ease the transition to unique-ptr.
We agree with the resolution as presented. Move to Tentatively Ready.
[ 2009-07 Frankfurt ]
Moved from Tentatively Ready to Open only because the wording needs to be tweaked for concepts removal.
[ 2009-08-01 Howard deconceptifies wording: ]
I also moved the change from X [depr.auto.ptr] to 20.8.1.2 [unique.ptr.single] per the Editor's request in Batavia (as long as I was making changes anyway). Set back to Review.
[ 2009-10 Santa Cruz: ]
Move to Ready.
[ 2010-03-14 Howard adds: ]
We moved N3073 to the formal motions page in Pittsburgh which should obsolete this issue. I've moved this issue to NAD Editorial, solved by N3073.
Rationale:
Solved by N3073.
Proposed resolution:
Add to 20.8.1.2 [unique.ptr.single]:
template <class T, class D> class unique_ptr { public: template <class U> unique_ptr(auto_ptr<U>& u); template <class U> unique_ptr(auto_ptr<U>&& u); };
Add to 20.8.1.2.1 [unique.ptr.single.ctor]:
template <class U> unique_ptr(auto_ptr<U>& u); template <class U> unique_ptr(auto_ptr<U>&& u);Effects: Constructs a unique_ptr with u.release().
Postconditions: get() == the value u.get() had before the construciton, modulo any required offset adjustments resulting from the cast from U* to T*. u.get() == nullptr.
Throws: nothing.
Remarks: U* shall be implicitly convertible to T* and D shall be the same type as default_delete<T>, else these constructors shall not participate in overload resolution.
Section: 19.5.6.2 [syserr.syserr.members] Status: C++11 Submitter: Howard Hinnant Opened: 2009-04-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
19.5.6.2 [syserr.syserr.members] says:
system_error(error_code ec, const string& what_arg);Effects: Constructs an object of class system_error.
Postconditions: code() == ec and strcmp(runtime_error::what(), what_arg.c_str()) == 0.
However the intent is for:
std::system_error se(std::errc::not_a_directory, "In FooBar"); ... se.what(); // returns something along the lines of: // "In FooBar: Not a directory"
The way the constructor postconditions are set up now, to achieve both conformance, and the desired intent in the what() string, the system_error constructor must store "In FooBar" in the base class, and then form the desired output each time what() is called. Or alternatively, store "In FooBar" in the base class, and store the desired what() string in the derived system_error, and override what() to return the string in the derived part.
Both of the above implementations seem suboptimal to me. In one I'm computing a new string every time what() is called. And since what() can't propagate exceptions, the client may get a different string on different calls.
The second solution requires storing two strings instead of one.
What I would like to be able to do is form the desired what() string once in the system_error constructor, and store that in the base class. Now I'm:
This is smaller code, smaller data, and faster.
ios_base::failure has the same issue.
[ Comments about this change received favorable comments from the system_error designers. ]
[ Batavia (2009-05): ]
We agree with the proposed resolution.
Move to Tentatively Ready.
Proposed resolution:
In 19.5.6.2 [syserr.syserr.members], change the following constructor postconditions:
system_error(error_code ec, const string& what_arg);-2- Postconditions: code() == ec and
strcmp(runtime_error::what(), what_arg.c_str()) == 0string(what()).find(what_arg) != string::npos.system_error(error_code ec, const char* what_arg);-4- Postconditions: code() == ec and
strcmp(runtime_error::what(), what_arg) == 0string(what()).find(what_arg) != string::npos.system_error(error_code ec);-6- Postconditions: code() == ec
and strcmp(runtime_error::what(), "".system_error(int ev, const error_category& ecat, const string& what_arg);-8- Postconditions: code() == error_code(ev, ecat) and
strcmp(runtime_error::what(), what_arg.c_str()) == 0string(what()).find(what_arg) != string::npos.system_error(int ev, const error_category& ecat, const char* what_arg);-10- Postconditions: code() == error_code(ev, ecat) and
strcmp(runtime_error::what(), what_arg) == 0string(what()).find(what_arg) != string::npos.system_error(int ev, const error_category& ecat);-12- Postconditions: code() == error_code(ev, ecat)
and strcmp(runtime_error::what(), "") == 0.
In 19.5.6.2 [syserr.syserr.members], change the description of what():
const char *what() const throw();-14- Returns: An NTBS incorporating
runtime_error::what() and code().message()the arguments supplied in the constructor.[Note:
One possible implementation would be:The return NTBS might take the form: what_arg + ": " + code().message()if (msg.empty()) { try { string tmp = runtime_error::what(); if (code()) { if (!tmp.empty()) tmp += ": "; tmp += code().message(); } swap(msg, tmp); } catch(...) { return runtime_error::what(); } return msg.c_str();— end note]
In 27.5.3.1.1 [ios::failure], change the synopsis:
namespace std { class ios_base::failure : public system_error { public: explicit failure(const string& msg, const error_code& ec = io_errc::stream); explicit failure(const char* msg, const error_code& ec = io_errc::stream);virtual const char* what() const throw();}; }
In 27.5.3.1.1 [ios::failure], change the description of the constructors:
explicit failure(const string& msg, , const error_code& ec = io_errc::stream);-3- Effects: Constructs an object of class failure by constructing the base class with msg and ec.
-4- Postcondition: code() == ec and strcmp(what(), msg.c_str()) == 0explicit failure(const char* msg, const error_code& ec = io_errc::stream);-5- Effects: Constructs an object of class failure by constructing the base class with msg and ec.
-6- Postcondition: code() == ec and strcmp(what(), msg) == 0
In 27.5.3.1.1 [ios::failure], remove what (the base class definition need not be repeated here).
const char* what() const;
-7- Returns: The message msg with which the exception was created.
Section: 27.5.5.3 [basic.ios.members] Status: C++11 Submitter: Howard Hinnant Opened: 2009-04-25 Last modified: 2015-04-08
View all other issues in [basic.ios.members].
View all issues with C++11 status.
Discussion:
With the rvalue reference changes in N2844 basic_ios::move no longer has the most convenient signature:
void move(basic_ios&& rhs);
This signature should be changed to accept lvalues. It does not need to be overloaded to accept rvalues. This is a special case that only derived clients will see. The generic move still needs to accept rvalues.
[ Batavia (2009-05): ]
Tom prefers, on general principles, to provide both overloads. Alisdair agrees.
Howard points out that there is no backward compatibility issue as this is new to C++0X.
We agree that both overloads should be provided, and Howard will provide the additional wording. Move to Open.
[ 2009-05-23 Howard adds: ]
Added overload, moved to Review.
[ 2009 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Add a signature to the existing prototype in the synopsis of 27.5.5 [ios] and in 27.5.5.3 [basic.ios.members]:
void move(basic_ios& rhs); void move(basic_ios&& rhs);
Section: 30.6.7 [futures.shared_future] Status: Resolved Submitter: Thomas J. Gritzan Opened: 2009-04-03 Last modified: 2015-04-08
View all other issues in [futures.shared_future].
View all issues with Resolved status.
Discussion:
It is not clear, if multiple threads are waiting in a shared_future::get() call, if each will rethrow the stored exception.
Paragraph 9 reads:
Throws: the stored exception, if an exception was stored and not retrieved before.
The "not retrieved before" suggests that only one exception is thrown, but one exception for each call to get() is needed, and multiple calls to get() even on the same shared_future object seem to be allowed.
I suggest removing "and not retrieved before" from the Throws paragraph. I recommend adding a note that explains that multiple calls on get() are allowed, and each call would result in an exception if an exception was stored.
[ Batavia (2009-05): ]
We note there is a pending paper by Detlef on such future-related issues; we would like to wait for his paper before proceeding.
Alisdair suggests we may want language to clarify that this get() function can be called from several threads with no need for explicit locking.
Move to Open.
[ 2010-01-23 Moved to Tentatively NAD Editorial after 5 positive votes on c++std-lib. ]
Rationale:
Resolved by paper N2997.
Proposed resolution:
Change 30.6.7 [futures.shared_future]:
const R& shared_future::get() const; R& shared_future<R&>::get() const; void shared_future<void>::get() const;...
-9- Throws: the stored exception, if an exception was stored
and not retrieved before. [Note: Multiple calls on get() are allowed, and each call would result in an exception if an exception was stored. — end note]
Section: 30.2.2 [thread.req.exception] Status: C++11 Submitter: Christopher Kohlhoff Opened: 2009-04-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
The current formulation of 30.2.2 [thread.req.exception]/2 reads:
The error_category of the error_code reported by such an exception's code() member function is as specified in the error condition Clause.
This constraint on the code's associated error_categor means an implementation must perform a mapping from the system-generated error to a generic_category() error code. The problems with this include:
The original error produced by the operating system is lost.
The latter was one of Peter Dimov's main objections (in a private email discussion) to the original error_code-only design, and led to the creation of error_condition in the first place. Specifically, error_code and error_condition are intended to perform the following roles:
Any mapping determining correspondence of the returned error code to the conditions listed in the error condition clause falls under the "latitude" granted to implementors in 19.5.1.5 [syserr.errcat.objects]. (Although obviously their latitude is restricted a little by the need to match the right error condition when returning an error code from a library function.)
It is important that this error_code/error_condition usage is done correctly for the thread library since it is likely to set the pattern for future TR libraries that interact with the operating system.
[ Batavia (2009-05): ]
Move to Open, and recommend the issue be deferred until after the next Committee Draft is issued.
[ 2009-10 post-Santa Cruz: ]
Move to Tentatively Ready.
Proposed resolution:
Change 30.2.2 [thread.req.exception] p.2:
-2-
The error_category (19.5.1.1) of the error_code reported by such an exception's code() member function is as specified in the error condition Clause.The error_code reported by such an exception's code() member function shall compare equal to one of the conditions specified in the function's error condition Clause. [Example: When the thread constructor fails:ec.category() == implementation-defined // probably system_category ec == errc::resource_unavailable_try_again // holds true— end example]
Section: 25.2.4 [alg.foreach] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-04-29 Last modified: 2015-04-08
View all other issues in [alg.foreach].
View all issues with C++11 status.
Discussion:
Quoting working paper for reference (25.2.4 [alg.foreach]):
template<InputIterator Iter, Callable<auto, Iter::reference> Function> requires CopyConstructible<Function> Function for_each(Iter first, Iter last, Function f);1 Effects: Applies f to the result of dereferencing every iterator in the range [first,last), starting from first and proceeding to last - 1.
2 Returns: f.
3 Complexity: Applies f exactly last - first times.
P2 implies the passed object f should be invoked at each stage, rather than some copy of f. This is important if the return value is to usefully accumulate changes. So the requirements are an object of type Function can be passed-by-value, invoked multiple times, and then return by value. In this case, MoveConstructible is sufficient. This would open support for move-only functors, which might become important in concurrent code as you can assume there are no other references (copies) of a move-only type and so freely use them concurrently without additional locks.
[ See further discussion starting with c++std-lib-23686. ]
[ Batavia (2009-05): ]
Pete suggests we may want to look at this in a broader context involving other algorithms. We should also consider the implications of parallelism.
Move to Open, and recommend the issue be deferred until after the next Committee Draft is issued.
[ 2009-10-14 Daniel de-conceptified the proposed resolution. ]
The note in 25.1 [algorithms.general]/9 already says the right thing:
Unless otherwise specified, algorithms that take function objects as arguments are permitted to copy those function objects freely.
So we only need to ensure that the wording for for_each is sufficiently clear, which is the intend of the following rewording.
[ 2009-10-15 Daniel proposes: ]
Add a new Requires clause just after the prototype declaration (25.2.4 [alg.foreach]):
Requires: Function shall be MoveConstructible ( [moveconstructible]), CopyConstructible is not required.
Change 25.2.4 [alg.foreach]/2 as indicated:
Returns: std::move(f).
[ 2009-10 post-Santa Cruz: ]
Move to Tentatively Ready, using Daniel's wording without the portion saying "CopyConstructible is not required".
[ 2009-10-27 Daniel adds: ]
I see that during the Santa Cruz meeting the originally proposed addition
, CopyConstructible is not required.
was removed. I don't think that this removal was a good idea. The combination of 25.1 [algorithms.general] p.9
[Note: Unless otherwise specified, algorithms that take function objects as arguments are permitted to copy those function objects freely.[..]
with the fact that CopyConstructible is a refinement MoveConstructible makes it necessary that such an explicit statement is given. Even the existence of the usage of std::move in the Returns clause doesn't help much, because this would still be well-formed for a CopyConstructible without move constructor. Let me add that the originally proposed addition reflects current practice in the standard, e.g. 25.3.9 [alg.unique] p.5 usages a similar terminology.
For similar wording need in case for auto_ptr see 973.
[ Howard: Moved from Tentatively Ready to Open. ]
[ 2009-11-20 Howard restores "not CopyConstructible" to the spec. ]
[ 2009-11-22 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Add a new Requires clause just after the prototype declaration (25.2.4 [alg.foreach]):
Requires: Function shall meet the requirements of MoveConstructible ( [moveconstructible]). Function need not meet the requirements of CopyConstructible ( [copyconstructible]).
Change 25.2.4 [alg.foreach]/2 as indicated:
Returns: std::move(f).
Section: 20.6 [template.bitset] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-05-09 Last modified: 2015-04-08
View other active issues in [template.bitset].
View all other issues in [template.bitset].
View all issues with C++11 status.
Discussion:
In 853 our resolution is changing the signature by adding two defaulting arguments to 3 calls. In principle, this means that ABI breakage is not an issue, while API is preserved.
With that observation, it would be very nice to use the new ability to supply default template parameters to function templates to collapse all 3 signatures into 1. In that spirit, this issue offers an alternative resolution than that of 853.
[ Batavia (2009-05): ]
Move to Open, and look at the issue again after 853 has been accepted. We further recommend this be deferred until after the next Committee Draft.
[ 2009-10 post-Santa Cruz: ]
Move to Tentatively Ready.
Proposed resolution:
In 20.6 [template.bitset]/1 (class bitset) ammend:
template <class charT = char, class traits = char_traits<charT>, class Allocator = allocator<charT>> basic_string<charT, traits, Allocator> to_string(charT zero = charT('0'), charT one = charT('1')) const;template <class charT, class traits> basic_string<charT, traits, allocator<charT> > to_string() const; template <class charT> basic_string<charT, char_traits<charT>, allocator<charT> > to_string() const; basic_string<char, char_traits<char>, allocator<char> > to_string() const;
In 20.6.2 [bitset.members] prior to p35 ammend:
template <class charT = char, class traits = char_traits<charT>, class Allocator = allocator<charT>> basic_string<charT, traits, Allocator> to_string(charT zero = charT('0'), charT one = charT('1')) const;
Section: 20.10 [meta] Status: C++11 Submitter: Daniel Krügler Opened: 2009-05-12 Last modified: 2015-04-08
View other active issues in [meta].
View all other issues in [meta].
View all issues with C++11 status.
Discussion:
The current wording in 20.10.1 [meta.rqmts] is still unclear concerning it's requirements on the type traits classes regarding ambiguities. Specifically it's unclear
[ Batavia (2009-05): ]
Alisdair would prefer to factor some of the repeated text, but modulo a corner case or two, he believes the proposed wording is otherwise substantially correct.
Move to Open.
[ 2009-10 post-Santa Cruz: ]
Move to Tentatively Ready.
Proposed resolution:
[ The usage of the notion of a BaseCharacteristic below might be useful in other places - e.g. to define the base class relation in 20.9.4 [refwrap], 20.9.11 [func.memfn], or 20.9.12.2 [func.wrap.func]. In this case it's definition should probably be moved to Clause 17 ]
Change 20.10.1 [meta.rqmts] p.1 as indicated:
[..] It shall be DefaultConstructible, CopyConstructible, and publicly and unambiguously derived, directly or indirectly, from its BaseCharacteristic, which is a specialization of the template integral_constant (20.6.3), with the arguments to the template integral_constant determined by the requirements for the particular property being described. The member names of the BaseCharacteristic shall be unhidden and unambiguously available in the UnaryTypeTrait.
Change 20.10.1 [meta.rqmts] p.2 as indicated:
[..] It shall be DefaultConstructible, CopyConstructible, and publicly and unambiguously derived, directly or indirectly, from
an instanceits BaseCharacteristic, which is a specialization of the template integral_constant (20.6.3), with the arguments to the template integral_constant determined by the requirements for the particular relationship being described. The member names of the BaseCharacteristic shall be unhidden and unambiguously available in the BinaryTypeTrait.
Change 20.10.4 [meta.unary] p.2 as indicated:
Each of these templates shall be a UnaryTypeTrait (20.6.1),
publicly derived directly or indirectly from true_type if the corresponding condition is true, otherwise from false_typewhere its BaseCharacteristic shall be true_type if the corresponding condition is true, otherwise false_type.
Change 20.10.6 [meta.rel] p.2 as indicated:
Each of these templates shall be a BinaryTypeTrait (20.6.1),
publicly derived directly or indirectly from true_type if the corresponding condition is true, otherwise from false_typewhere its BaseCharacteristic shall be true_type if the corresponding condition is true, otherwise false_type.
Section: 20.4.2 [tuple.tuple] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-05-23 Last modified: 2015-04-08
View all other issues in [tuple.tuple].
View all issues with Resolved status.
Discussion:
It is not currently possible to construct tuple literal values, even if the elements are all literal types. This is because parameters are passed to constructor by reference.
An alternative would be to pass all constructor arguments by value, where it is known that *all* elements are literal types. This can be determined with concepts, although note that the negative constraint really requires factoring out a separate concept, as there is no way to provide an 'any of these fails' constraint inline.
Note that we will have similar issues with pair (and tuple constructors from pair) although I am steering clear of that class while other constructor-related issues settle.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2994.
Proposed resolution:
Ammend the tuple class template declaration in 20.4.2 [tuple.tuple] as follows
Add the following concept:
auto concept AllLiteral< typename ... Types > { requires LiteralType<Types>...; }ammend the constructor
template <class... UTypes> requires AllLiteral<Types...> && Constructible<Types, UTypes>... explicit tuple(UTypes...); template <class... UTypes> requires !AllLiteral<Types...> && Constructible<Types, UTypes&&>... explicit tuple(UTypes&&...);ammend the constructor
template <class... UTypes> requires AllLiteral<Types...> && Constructible<Types, UTypes>... tuple(tuple<UTypes...>); template <class... UTypes> requires !AllLiteral<Types...> && Constructible<Types, const UTypes&>... tuple(const tuple<UTypes...>&);
Update the same signatures in 20.4.2.1 [tuple.cnstr], paras 3 and 5.
Section: 20.4.2.1 [tuple.cnstr] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-05-23 Last modified: 2015-04-08
View other active issues in [tuple.cnstr].
View all other issues in [tuple.cnstr].
View all issues with Resolved status.
Discussion:
The copy constructor for the tuple template is constrained. This seems an unusual strategy, as the copy constructor will be implicitly deleted if the constraints are not met. This is exactly the same effect as requesting an =default; constructor. The advantage of the latter is that it retains triviality, and provides support for tuples as literal types if issue 1116 is also accepted.
Actually, it might be worth checking with core if a constrained copy constructor is treated as a constructor template, and as such does not suppress the implicit generation of the copy constructor which would hide the template in this case.
[ 2009-05-27 Daniel adds: ]
This would solve one half of the suggested changes in 801.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2994.
Proposed resolution:
Change 20.4.2 [tuple.tuple] and 20.4.2.1 [tuple.cnstr] p4:
requires CopyConstructible<Types>...tuple(const tuple&) = default;
Section: 20.4.2.5 [tuple.helper] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-05-23 Last modified: 2015-04-08
View all other issues in [tuple.helper].
View all issues with C++11 status.
Discussion:
The APIs tuple_size and tuple_element do not support cv-qualified tuples, pairs or arrays.
The most generic solution would be to supply partial specializations once for each cv-type in the tuple header. However, requiring this header for cv-qualified pairs/arrays seems unhelpful. The BSI editorial suggestion (UK-198/US-69, N2533) to merge tuple into <utility> would help with pair, but not array. That might be resolved by making a dependency between the <array> header and <utility>, or simply recognising the dependency be fulfilled in a Remark.
[ 2009-05-24 Daniel adds: ]
All tuple_size templates with a base class need to derive publicly, e.g.
template <IdentityOf T> class tuple_size< const T > : public tuple_size<T> {};The same applies to the tuple_element class hierarchies.
What is actually meant with the comment
this solution relies on 'metafunction forwarding' to inherit the nested typename type
?
I ask, because all base classes are currently unconstrained and their instantiation is invalid in the constrained context of the tuple_element partial template specializations.
[ 2009-05-24 Alisdair adds: ]
I think a better solution might be to ask Pete editorially to change all declarations of tupling APIs to use the struct specifier instead of class.
"metafunction forwarding" refers to the MPL metafunction protocol, where a metafunction result is declared as a nested typedef with the name "type", allowing metafunctions to be chained by means of inheritance. It is a neater syntax than repeatedly declaring a typedef, and inheritance syntax is slightly nicer when it comes to additional typename keywords.
The constrained template with an unconstrained base is a good observation though.
[ 2009-10 post-Santa Cruz: ]
Move to Open, Alisdair to provide wording. Once wording is provided, Howard will move to Review.
[ 2010-03-28 Daniel deconceptified wording. ]
[ Post-Rapperswil - Daniel provides wording: ]
The below given P/R reflects the discussion from the Rapperswil meeting that the wording should not constrain implementation freedom to realize the actual issue target. Thus the original code form was replaced by normative words.
While preparing this wording it turned out that several tuple_size specializations as that of pair and array are underspecified, because the underlying type of the member value is not specified except that it is an integral type. For the specializations we could introduce a canonical one - like size_t - or we could use the same type as the specialization of the unqualified type uses. The following wording follows the second approach.
The wording refers to N3126.
Moved to Tentatively Ready after 6 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
// 20.4.2.5, tuple helper classes: template <class T> class tuple_size; // undefined template <class T> class tuple_size<const T>; template <class T> class tuple_size<volatile T>; template <class T> class tuple_size<const volatile T>; template <class... Types> class tuple_size<tuple<Types...> >; template <size_t I, class T> class tuple_element; // undefined template <size_t I, class T> class tuple_element<I, const T>; template <size_t I, class T> class tuple_element<I, volatile T>; template <size_t I, class T> class tuple_element<I, const volatile T>; template <size_t I, class... Types> class tuple_element<I, tuple<Types...> >;
template <class T> class tuple_size<const T>; template <class T> class tuple_size<volatile T>; template <class T> class tuple_size<const volatile T>;Let TS denote tuple_size<T> of the cv-unqualified type T. Then each of the three templates shall meet the UnaryTypeTrait requirements (20.7.1) with a BaseCharacteristic of integral_constant<remove_cv<decltype(TS::value)>::type, TS::value>.
template <size_t I, class T> class tuple_element<I, const T>; template <size_t I, class T> class tuple_element<I, volatile T>; template <size_t I, class T> class tuple_element<I, const volatile T>;Let TE denote tuple_element<I, T> of the cv-unqualified type T. Then each of the three templates shall meet the TransformationTrait requirements (20.7.1) with a member typedef type that shall name the same type as the following type:
- for the first specialization, the type add_const<TE::type>::type,
- for the second specialization, the type add_volatile<TE::type>::type, and
- for the third specialization, the type add_cv<TE::type>::type
Section: 20.11.3 [ratio.ratio] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-05-25 Last modified: 2015-04-08
View all other issues in [ratio.ratio].
View all issues with Resolved status.
Discussion:
The values num and den in the ratio template should be declared constexpr.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2994.
Proposed resolution:
20.11.3 [ratio.ratio]
namespace std { template <intmax_t N, intmax_t D = 1> class ratio { public: static constexpr intmax_t num; static constexpr intmax_t den; }; }
Section: 27.5.3.1.6 [ios::Init] Status: C++11 Submitter: James Kanze Opened: 2009-05-14 Last modified: 2015-04-08
View all other issues in [ios::Init].
View all issues with C++11 status.
Discussion:
As currently formulated, the standard doesn't require that there is ever a flush of cout, etc. (This implies, for example, that the classical hello, world program may have no output.) In the current draft (N2798), there is a requirement that the objects be constructed before main, and before the dynamic initialization of any non-local objects defined after the inclusion of <iostream> in the same translation unit. The only requirement that I can find concerning flushing, however, is in 27.5.3.1.6 [ios::Init], where the destructor of the last std::ios_base::Init object flushes. But there is, as far as I can see, no guarantee that such an object ever exists.
Also, the wording in [iostreams.objects] says that:
The objects are constructed and the associations are established at some time prior to or during the first time an object of class ios_base::Init is constructed, and in any case before the body of main begins execution.
In 27.5.3.1.6 [ios::Init], however, as an effect of the constructor, it says that
If init_cnt is zero, the function stores the value one in init_cnt, then constructs and initializes the objects cin, cout, cerr, clog wcin, wcout, wcerr, and wclog"
which seems to forbid earlier construction.
(Note that with these changes, the exposition only "static int init_cnt" in ios_base::Init can be dropped.)
Of course, a determined programmer can still inhibit the flush with things like:
new std::ios_base::Init ; // never deleted
or (in a function):
std::ios_base::Init ensureConstruction ; // ... exit( EXIT_SUCCESS ) ;
Perhaps some words somewhere to the effect that all std::ios_base::Init objects should have static lifetime would be in order.
[ 2009 Santa Cruz: ]
Moved to Ready. Some editorial changes are expected (in addition to the proposed wording) to remove init_cnt from Init.
Proposed resolution:
Change 27.4 [iostream.objects]/2:
-2- The objects are constructed and the associations are established at some time prior to or during the first time an object of class ios_base::Init is constructed, and in any case before the body of main begins execution.292 The objects are not destroyed during program execution.293
If a translation unit includes <iostream> or explicitly constructs an ios_base::Init object, these stream objects shall be constructed before dynamic initialization of non-local objects defined later in that translation unit.The results of including <iostream> in a translation unit shall be as if <iostream> defined an instance of ios_base::Init with static lifetime. Similarly, the entire program shall behave as if there were at least one instance of ios_base::Init with static lifetime.
Change 27.5.3.1.6 [ios::Init]/3:
Init();-3- Effects: Constructs an object of class Init.
If init_cnt is zero, the function stores the value one in init_cnt, then constructs and initializes the objects cin, cout, cerr, clog (27.4.1), wcin, wcout, wcerr, and wclog (27.4.2). In any case, the function then adds one to the value stored in init_cnt.Constructs and initializes the objects cin, cout, cerr, clog, wcin, wcout, wcerr and wclog if they have not already been constructed and initialized.
Change 27.5.3.1.6 [ios::Init]/4:
~Init();-4- Effects: Destroys an object of class Init.
The function subtracts one from the value stored in init_cnt and, if the resulting stored value is one,If there are no other instances of the class still in existance, calls cout.flush(), cerr.flush(), clog.flush(), wcout.flush(), wcerr.flush(), wclog.flush().
Section: 24.6.3.5 [istreambuf.iterator::equal] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-05-28 Last modified: 2015-04-08
View all other issues in [istreambuf.iterator::equal].
View all issues with C++11 status.
Discussion:
The equal member function of istreambuf_iterator is declared const, but takes its argument by non-const reference.
This is not compatible with the operator== free function overload, which is defined in terms of calling equal yet takes both arguments by reference to const.
[ The proposed wording is consistent with 110 with status TC1. ]
[ 2009-11-02 Howard adds: ]
Set to Tentatively Ready after 5 positive votes on c++std-lib.
Proposed resolution:
Ammend in both:
24.6.3 [istreambuf.iterator]
24.6.3.5 [istreambuf.iterator::equal]
bool equal(const istreambuf_iterator& b) const;
Section: 24.6.1.1 [istream.iterator.cons], 24.6.3 [istreambuf.iterator] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-05-30 Last modified: 2015-04-08
View all other issues in [istream.iterator.cons].
View all issues with Resolved status.
Discussion:
istream_iterator and istreambuf_iterator should support literal sentinel values. The default constructor is frequently used to terminate ranges, and could easily be a literal value for istreambuf_iterator, and istream_iterator when iterating value types. A little more work using a suitably sized/aligned char-array for storage (or an updated component like boost::optional proposed for TR2) would allow istream_iterator to support constexpr default constructor in all cases, although we might leave this tweak as a QoI issue. Note that requiring constexpr be supported also allows us to place no-throw guarantees on this constructor too.
[ 2009-06-02 Daniel adds: ]
I agree with the usefulness of the issue suggestion, but we need to ensure that istream_iterator can satisfy be literal if needed. Currently this is not clear, because 24.6.1 [istream.iterator]/3 declares a copy constructor and a destructor and explains their semantic in 24.6.1.1 [istream.iterator.cons]/3+4.
The prototype semantic specification is ok (although it seems somewhat redundant to me, because the semantic doesn't say anything interesting in both cases), but for support of trivial class types we also need a trivial copy constructor and destructor as of 9 [class]/6. The current non-informative specification of these two special members suggests to remove their explicit declaration in the class and add explicit wording that says that if T is trivial a default constructed iterator is also literal, alternatively it would be possible to mark both as defaulted and add explicit (memberwise) wording that guarantees that they are trivial.
Btw.: I'm quite sure that the istreambuf_iterator additions to ensure triviality are not sufficient as suggested, because the library does not yet give general guarantees that a defaulted special member declaration makes this member also trivial. Note that e.g. the atomic types do give a general statement!
Finally there is a wording issue: There does not exist something like a "literal constructor". The core language uses the term "constexpr constructor" for this.
Suggestion:
Change 24.6.1 [istream.iterator]/3 as indicated:
constexpr istream_iterator(); istream_iterator(istream_type& s); istream_iterator(const istream_iterator<T,charT,traits,Distance>& x) = default; ~istream_iterator() = default;Change 24.6.1.1 [istream.iterator.cons]/1 as indicated:
constexpr istream_iterator();-1- Effects: Constructs the end-of-stream iterator. If T is a literal type, then this constructor shall be a constexpr constructor.
Change 24.6.1.1 [istream.iterator.cons]/3 as indicated:
istream_iterator(const istream_iterator<T,charT,traits,Distance>& x) = default;-3- Effects: Constructs a copy of x. If T is a literal type, then this constructor shall be a trivial copy constructor.
Change 24.6.1.1 [istream.iterator.cons]/4 as indicated:
~istream_iterator() = default;-4- Effects: The iterator is destroyed. If T is a literal type, then this destructor shall be a trivial destructor.
Change 24.6.3 [istreambuf.iterator] before p. 1 as indicated:
constexpr istreambuf_iterator() throw(); istreambuf_iterator(const istreambuf_iterator&) throw() = default; ~istreambuf_iterator() throw() = default;Change 24.6.3 [istreambuf.iterator]/1 as indicated:
[..] The default constructor istreambuf_iterator() and the constructor istreambuf_iterator(0) both construct an end of stream iterator object suitable for use as an end-of-range. All specializations of istreambuf_iterator shall have a trivial copy constructor, a constexpr default constructor and a trivial destructor.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2994.
Proposed resolution:
24.6.1 [istream.iterator] para 3
constexpr istream_iterator();
24.6.1.1 [istream.iterator.cons]
constexpr istream_iterator();-1- Effects: Constructs the end-of-stream iterator. If T is a literal type, then this constructor shall be a literal constructor.
24.6.3 [istreambuf.iterator]
constexpr istreambuf_iterator() throw();
Section: 18.8.5 [propagation] Status: C++11 Submitter: Peter Dimov Opened: 2009-05-13 Last modified: 2015-04-08
View all other issues in [propagation].
View all issues with C++11 status.
Discussion:
The naming of std::copy_exception misleads almost everyone (experts included!) to think that it is the function that copies an exception_ptr:
exception_ptr p1 = current_exception(); exception_ptr p2 = copy_exception( p1 );
But this is not at all what it does. The above actually creates an exception_ptr p2 that contains a copy of p1, not of the exception to which p1 refers!
This is, of course, all my fault; in my defence, I used copy_exception because I was unable to think of a better name.
But I believe that, based on what we've seen so far, any other name would be better.
Therefore, I propose copy_exception to be renamed to create_exception:
template<class E> exception_ptr create_exception(E e);
with the following explanatory paragraph after it:
Creates an exception_ptr that refers to a copy of e.
[ 2009-05-13 Daniel adds: ]
What about
make_exception_ptrin similarity to make_pair and make_tuple, make_error_code and make_error_condition, or make_shared? Or, if a stronger symmetry to current_exception is preferred:
make_exceptionWe have not a single create_* function in the library, it was always make_* used.
[ 2009-05-13 Peter adds: ]
make_exception_ptr works for me.
[ 2009-06-02 Thomas J. Gritzan adds: ]
To avoid surprises and unwanted recursion, how about making a call to std::make_exception_ptr with an exception_ptr illegal?
It might work like this:
template<class E> exception_ptr make_exception_ptr(E e); template<> exception_ptr make_exception_ptr<exception_ptr>(exception_ptr e) = delete;
[ 2009 Santa Cruz: ]
Move to Review for the time being. The subgroup thinks this is a good idea, but doesn't want to break compatibility unnecessarily if someone is already shipping this. Let's talk to Benjamin and PJP tomorrow to make sure neither objects.
[ 2009-11-16 Jonathan Wakely adds: ]
GCC 4.4 shipped with copy_exception but we could certainly keep that symbol in the library (but not the headers) so it can still be found by any apps foolishly relying on the experimental C++0x mode being ABI stable.
[ 2009-11-16 Peter adopts wording supplied by Daniel. ]
[ 2009-11-16 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 18.8 [support.exception]/1, header <exception> synopsis as indicated:
exception_ptr current_exception(); void rethrow_exception [[noreturn]] (exception_ptr p); template<class E> exception_ptrcopy_exceptionmake_exception_ptr(E e);
Change 18.8.5 [propagation]:
template<class E> exception_ptrcopy_exceptionmake_exception_ptr(E e);-11- Effects: Creates an exception_ptr that refers to a copy of e, as if
try { throw e; } catch(...) { return current_exception(); }...
Change 30.6.5 [futures.promise]/7 as indicated:
Effects: if the associated state of *this is not ready, stores an exception object of type future_error with an error code of broken_promise as if by this->set_exception(
copy_exceptionmake_exception_ptr( future_error(future_errc::broken_promise)). Destroys ...
Section: 20.10.4.3 [meta.unary.prop] Status: C++11 Submitter: Niels Dekker Opened: 2009-06-01 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with C++11 status.
Discussion:
The alignment_of template is no longer necessary, now that the core language will provide alignof. Scott Meyers raised this issue at comp.std.c++, C++0x: alignof vs. alignment_of, May 21, 2009. In a reply, Daniel Krügler pointed out that alignof was added to the working paper after alignment_of. So it appears that alignment_of is only part of the current Working Draft (N2857) because it is in TR1.
Having both alignof and alignment_of would cause unwanted confusion. In general, I think TR1 functionality should not be brought into C++0x if it is entirely redundant with other C++0x language or library features.
[ 2009-11-16 Chris adds: ]
I would like to suggest the following new wording for this issue, based on recent discussions. Basically this doesn't delete alignment_of, it just makes it clear that it is just a wrapper for alignof. This deletes the first part of the proposed resolution, changes the second part by leaving in alignof(T) but changing the precondition and leaves the 3rd part unchanged.
Suggested Resolution:
Change the first row of Table 44 ("Type property queries"), from Type properties 20.10.4.3 [meta.unary.prop]:
Table 44 — Type property queries template <class T> struct alignment_of; alignof(T).
Precondition:T shall be a complete type, a reference type, or an array of unknown bound, but shall not be a function type or (possibly cv-qualified) void.alignof(T) shall be definedChange text in Table 51 ("Other transformations"), from Other transformations 20.10.7.6 [meta.trans.other], as follows:
Table 51 — Other transformations …aligned_storage; Len shall not be zero. Align shall be equal to alignment_of<T>::valuealignof(T) for some type T or to default-alignment.…
[ 2010-01-30 Alisdair proposes that Chris' wording be moved into the proposed wording section and tweaks it on the way. ]
Original proposed wording saved here:
Remove from Header <type_traits> synopsis 20.10.2 [meta.type.synop]:
template <class T> struct alignment_of;Remove the first row of Table 44 ("Type property queries"), from Type properties 20.10.4.3 [meta.unary.prop]:
Table 44 — Type property queries template <class T> struct alignment_of;alignof(T).
Precondition: T shall be a complete type, a reference type, or an array of unknown bound, but shall not be a function type or (possibly cv-qualified) void.Change text in Table 51 ("Other transformations"), from Other transformations 20.10.7.6 [meta.trans.other], as follows:
Table 51 — Other transformations …aligned_storage; Len shall not be zero. Align shall be equal to alignment_of<T>::valuealignof(T) for some type T or to default-alignment.…
[ 2010-01-30 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change the first row of Table 43 ("Type property queries"), from Type properties 20.10.4.3 [meta.unary.prop]:
Table 43 — Type property queries template <class T> struct alignment_of; alignof(T).
Precondition:T shall be a complete type, a reference type, or an array of unknown bound, but shall not be a function type or (possibly cv-qualified) void.alignof(T) is a valid expression (5.3.6 [expr.alignof])
Change text in Table 51 ("Other transformations"), from Other transformations 20.10.7.6 [meta.trans.other], as follows:
Table 51 — Other transformations …aligned_storage; Len shall not be zero. Align shall be equal to alignment_of<T>::valuealignof(T) for some type T or to default-alignment.…
Section: 23.3.4.6 [forwardlist.ops], 23.3.5.5 [list.ops] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-05-09 Last modified: 2015-04-08
View all other issues in [forwardlist.ops].
View all issues with C++11 status.
Discussion:
IIUC, N2844 means that lvalues will no longer bind to rvalue references. Therefore, the current specification of list::splice (list operations 23.3.5.5 [list.ops]) will be a breaking change of behaviour for existing programs. That is because we changed the signature to swallow via an rvalue reference rather than the lvalue reference used in 03.
Retaining this form would be safer, requiring an explicit move when splicing from lvalues. However, this will break existing programs. We have the same problem with forward_list, although without the risk of breaking programs so here it might be viewed as a positive feature.
The problem signatures:
void splice_after(const_iterator position, forward_list<T,Alloc>&& x); void splice_after(const_iterator position, forward_list<T,Alloc>&& x, const_iterator i); void splice_after(const_iterator position, forward_list<T,Alloc>&& x, const_iterator first, const_iterator last); void splice(const_iterator position, list<T,Alloc>&& x); void splice(const_iterator position, list<T,Alloc>&& x, const_iterator i); void splice(const_iterator position, list<T,Alloc>&& x, const_iterator first, const_iterator last);
Possible resolutions:
Option A. Add an additional (non-const) lvalue-reference overload in each case
Option B. Change rvalue reference back to (non-const) lvalue-reference overload in each case
Option C. Add an additional (non-const) lvalue-reference overload in just the std::list cases
I think (B) would be very unfortunate, I really like the forward_list behaviour in (C) but feel (A) is needed for consistency.
My actual preference would be NAD, ship with this as a breaking change as it is a more explicit interface. I don't think that will fly though!
See the thread starting with c++std-lib-23725 for more discussion.
[ 2009-10-27 Christopher Jefferson provides proposed wording for Option C. ]
[ 2009-12-08 Jonathan Wakely adds: ]
As Bill Plauger pointed out, list::merge needs similar treatment.
[ Wording updated. ]
[ 2009-12-13 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
In 23.3.5 [list]
Add lvalue overloads before rvalue ones:
void splice(const_iterator position, list<T,Allocator>& x); void splice(const_iterator position, list<T,Allocator>&& x); void splice(const_iterator position, list<T,Allocator>& x, const_iterator i); void splice(const_iterator position, list<T,Allocator>&& x, const_iterator i); void splice(const_iterator position, list<T,Allocator>& x, const_iterator first, const_iterator last); void splice(const_iterator position, list<T,Allocator>&& x, const_iterator first, const_iterator last); void merge(list<T,Allocator>& x); template <class Compare> void merge(list<T,Allocator>& x, Compare comp); void merge(list<T,Allocator>&& x); template <class Compare> void merge(list<T,Allocator>&& x, Compare comp);
In 23.3.5.5 [list.ops], similarly add lvalue overload before each rvalue one:
(After paragraph 2)
void splice(const_iterator position, list<T,Allocator>& x); void splice(const_iterator position, list<T,Allocator>&& x);
(After paragraph 6)
void splice(const_iterator position, list<T,Allocator>& x, const_iterator i); void splice(const_iterator position, list<T,Allocator>&& x, const_iterator i);
(After paragraph 10)
void splice(const_iterator position, list<T,Allocator>& x, const_iterator first, const_iterator last); void splice(const_iterator position, list<T,Allocator>&& x, const_iterator first, const_iterator last);
In 23.3.5.5 [list.ops], after paragraph 21
void merge(list<T,Allocator>& x); template <class Compare> void merge(list<T,Allocator>& x, Compare comp); void merge(list<T,Allocator>&& x); template <class Compare> void merge(list<T,Allocator>&& x, Compare comp);
Section: X [stdinth], X [fenv], 26.8 [c.math], X [cmplxh] Status: C++11 Submitter: Robert Klarer Opened: 2009-05-26 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
This is probably editorial.
The following items should be removed from the draft, because they're redundant with Annex D, and they arguably make some *.h headers non-deprecated:
X [stdinth] (regarding <stdint.h>)
X [fenv] (regarding <fenv.h>
Line 3 of 26.8 [c.math] (regarding <tgmath.h>)
X [cmplxh] (regarding <complex.h>, though the note in this subclause is not redundant)
[ 2009-06-10 Ganesh adds: ]
While searching for stdint in the CD, I found that <stdint.h> is also mentioned in 3.9.1 [basic.fundamental] p.5. I guess it should refer to <cstdint> instead.
[ 2009 Santa Cruz: ]
Real issue. Maybe just editorial, maybe not. Move to Ready.
Proposed resolution:
Remove the section X [stdinth].
Remove the section X [fenv].
Remove 26.8 [c.math], p3:
-3- The header <tgmath.h> effectively includes the headers <complex.h> and <math.h>.
Remove the section X [cmplxh].
Section: 18.8.5 [propagation] Status: Resolved Submitter: Daniel Krügler Opened: 2007-06-06 Last modified: 2015-04-08
View all other issues in [propagation].
View all issues with Resolved status.
Discussion:
As of N2857 18.8.5 [propagation] p.5, the implementation-defined type exception_ptr does provide the following ways to check whether it is a null value:
void f(std::exception_ptr p) { p == nullptr; p == 0; p == exception_ptr(); }
This is rather cumbersome way of checking for the null value and I suggest to require support for evaluation in a boolean context like so:
void g(std::exception_ptr p) { if (p) {} !p; }
[ 2009 Santa Cruz: ]
Move to Ready. Note to editor: considering putting in a cross-reference to 4 [conv], paragraph 3, which defines the phrase "contextually converted to bool".
[ 2010-03-14 Howard adds: ]
We moved N3073 to the formal motions page in Pittsburgh which should obsolete this issue. I've moved this issue to NAD Editorial, solved by N3073.
Rationale:
Solved by N3073.
Proposed resolution:
In section 18.8.5 [propagation] insert a new paragraph between p.5 and p.6:
An object e of type exception_ptr can be contextually converted to bool. The effect shall be as if e != exception_ptr() had been evaluated in place of e. There shall be no implicit conversion to arithmetic type, to enumeration type or to pointer type.
Section: 18.8.6 [except.nested] Status: C++11 Submitter: Daniel Krügler Opened: 2007-06-06 Last modified: 2015-04-08
View other active issues in [except.nested].
View all other issues in [except.nested].
View all issues with C++11 status.
Discussion:
It was recently mentioned in a newsgroup article http://groups.google.de/group/comp.std.c++/msg/f82022aff68edf3d that the specification of the member function rethrow_nested() of the class nested_exception is incomplete, specifically it remains unclear what happens, if member nested_ptr() returns a null value. In 18.8.6 [except.nested] we find only the following paragraph related to that:
void rethrow_nested() const; // [[noreturn]]-4- Throws: the stored exception captured by this nested_exception object.
This is a problem, because it is possible to create an object of nested_exception with exactly such a state, e.g.
#include <exception> #include <iostream> int main() try { std::nested_exception e; // OK, calls current_exception() and stores it's null value e.rethrow_nested(); // ? std::cout << "A" << std::endl; } catch(...) { std::cout << "B" << std::endl; }
I suggest to follow the proposal of the reporter, namely to invoke terminate() if nested_ptr() return a null value of exception_ptr instead of relying on the fallback position of undefined behavior. This would be consistent to the behavior of a throw; statement when no exception is being handled.
[ 2009 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Change around 18.8.6 [except.nested] p.4 as indicated:
-4- Throws: the stored exception captured by this nested_exception object, if nested_ptr() != nullptr
- Remarks: If nested_ptr() == nullptr, terminate() shall be called.
Section: 26.4.9 [cmplx.over] Status: C++11 Submitter: Marc Steinbach Opened: 2009-06-11 Last modified: 2015-04-08
View all other issues in [cmplx.over].
View all issues with C++11 status.
Discussion:
In clause 1, the Working Draft (N2857) specifies overloads of the functions
arg, conj, imag, norm, proj, real
for non-complex arithmetic types (float, double, long double, and integers). The only requirement (clause 2) specifies effective type promotion of arguments.
I strongly suggest to add the following requirement on the return types:
All the specified overloads must return real (i.e., non-complex) values, specifically, the nested value_type of effectively promoted arguments.
(This has no effect on arg, imag, norm, real: they are real-valued anyway.)
Rationale:
Mathematically, conj() and proj(), like the transcendental functions, are complex-valued in general but map the (extended) real line to itself. In fact, both functions act as identity on the reals. A typical user will expect conj() and proj() to preserve this essential mathematical property in the same way as exp(), sin(), etc. A typical use of conj(), e.g., is the generic scalar product of n-vectors:
template<typename T> inline T scalar_product(size_t n, T const* x, T const* y) { T result = 0; for (size_t i = 0; i < n; ++i) result += x[i] * std::conj(y[i]); return result; }
This will work equally well for real and complex floating-point types T if conj() returns T. It will not work with real types if conj() returns complex values.
Instead, the implementation of scalar_product becomes either less efficient and less useful (if a complex result is always returned), or unnecessarily complicated (if overloaded versions with proper return types are defined). In the second case, the real-argument overload of conj() cannot be used. In fact, it must be avoided.
Overloaded conj() and proj() are principally needed in generic programming. All such use cases will benefit from the proposed return type requirement, in a similar way as the scalar_product example. The requirement will not harm use cases where a complex return value is expected, because of implicit conversion to complex. Without the proposed return type guarantee, I find overloaded versions of conj() and proj() not only useless but actually troublesome.
[ 2009-11-11 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Insert a new paragraph after 26.4.9 [cmplx.over]/2:
All of the specified overloads shall have a return type which is the nested value_type of the effectively cast arguments.
Section: 21.4.8.1 [string::op+] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-06-12 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Many of the basic_string operator+ overloads return an rvalue-reference. Is that really intended?
I'm considering it might be a mild performance tweak to avoid making un-necessary copies of a cheaply movable type, but it opens risk to dangling references in code like:
auto && s = string{"x"} + string{y};
and I'm not sure about:
auto s = string{"x"} + string{y};
[ 2009-10-11 Howard updated Returns: clause for each of these. ]
[ 2009-11-05 Howard adds: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
Proposed resolution:
Strike the && from the return type in the following function signatures:
21.3 [string.classes] p2 Header Synopsis
template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(basic_string<charT,traits,Allocator>&& lhs, const basic_string<charT,traits,Allocator>& rhs); template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(const basic_string<charT,traits,Allocator>& lhs, basic_string<charT,traits,Allocator>&& rhs); template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(basic_string<charT,traits,Allocator>&& lhs, basic_string<charT,traits,Allocator>&& rhs); template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(const charT* lhs, basic_string<charT,traits,Allocator>&& rhs); template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(charT lhs, basic_string<charT,traits,Allocator>&& rhs); template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(basic_string<charT,traits,Allocator>&& lhs, const charT* rhs); template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(basic_string<charT,traits,Allocator>&& lhs, charT rhs);21.4.8.1 [string::op+]
template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(basic_string<charT,traits,Allocator>&& lhs, const basic_string<charT,traits,Allocator>& rhs);Returns: std::move(lhs.append(rhs))
template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(const basic_string<charT,traits,Allocator>& lhs, basic_string<charT,traits,Allocator>&& rhs);Returns: std::move(rhs.insert(0, lhs))
template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(basic_string<charT,traits,Allocator>&& lhs, basic_string<charT,traits,Allocator>&& rhs);Returns: std::move(lhs.append(rhs)) [Note: Or equivalently std::move(rhs.insert(0, lhs)) — end note]
template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(const charT* lhs, basic_string<charT,traits,Allocator>&& rhs);Returns: std::move(rhs.insert(0, lhs)).
template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(charT lhs, basic_string<charT,traits,Allocator>&& rhs);Returns: std::move(rhs.insert(0, 1, lhs)).
template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(basic_string<charT,traits,Allocator>&& lhs, const charT* rhs);Returns: std::move(lhs.append(rhs)).
template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>&&operator+(basic_string<charT,traits,Allocator>&& lhs, charT rhs);Returns: std::move(lhs.append(1, rhs)).
Section: 29 [atomics] Status: Resolved Submitter: LWG Opened: 2009-06-15 Last modified: 2015-04-08
View all other issues in [atomics].
View all issues with Resolved status.
Discussion:
Addresses US 87, UK 311
The atomics chapter is not concept enabled.
Needs to also consider issues 923 and 924.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2992.
Proposed resolution:
Section: 18.5 [support.start.term] Status: C++11 Submitter: LWG Opened: 2009-06-16 Last modified: 2015-04-08
View all other issues in [support.start.term].
View all issues with C++11 status.
Discussion:
Addresses UK 187
The term "thread safe" is not defined nor used in this context anywhere else in the standard.
Suggested action:
Clarify the meaning of "thread safe".
[ 2009 Santa Cruz: ]
The "thread safe" language has already been change in the WP. It was changed to "happen before", but the current WP text is still a little incomplete: "happen before" is binary, but the current WP text only mentions one thing.
Move to Ready.
Proposed resolution:
For the following functions in 18.5 [support.start.term].
extern "C" int at_quick_exit(void (*f)(void)); extern "C++" int at_quick_exit(void (*f)(void));
Edit paragraph 10 as follows. The intent is to provide the other half of the happens before relation; to note indeterminate ordering; and to clean up some formatting.
Effects: The
at_quick_exit()
functions register the function pointed to byf
to be called without arguments whenquick_exit
is called. It is unspecified whether a call toat_quick_exit()
that does nothappen-beforehappen before (1.10) all calls toquick_exit
will succeed. [Note: theat_quick_exit()
functions shall not introduce a data race (17.6.4.7).exitnote—end note] [Note: The order of registration may be indeterminate ifat_quick_exit
was called from more than one thread. —end note] [Note: Theat_quick_exit
registrations are distinct from theatexit
registrations, and applications may need to call both registration functions with the same argument. —end note]
For the following function.
void quick_exit [[noreturn]] (int status)
Edit paragraph 13 as follows. The intent is to note that thread-local variables may be different.
Effects: Functions registered by calls to
at_quick_exit
are called in the reverse order of their registration, except that a function shall be called after any previously registered functions that had already been called at the time it was registered. Objects shall not be destroyed as a result of callingquick_exit
. If control leaves a registered function called byquick_exit
because the function does not provide a handler for a thrown exception,terminate()
shall be called. [Note: Functions registered by one thread may be called by any thread, and hence should not rely on the identity of thread-storage-duration objects. —end note] After calling registered functions,quick_exit
shall call_Exit(status)
. [Note: The standard file buffers are not flushed. See: ISO C 7.20.4.4. —end note]
Section: 29 [atomics] Status: Resolved Submitter: LWG Opened: 2009-06-16 Last modified: 2015-04-08
View all other issues in [atomics].
View all issues with Resolved status.
Discussion:
Addresses UK 312
The contents of the <stdatomic.h> header are not listed anywhere, and <cstdatomic> is listed as a C99 header in chapter 17. If we intend to use these for compatibility with a future C standard, we should not use them now.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2992.
Proposed resolution:
Remove <cstdatomic> from the C99 headers in table 14. Add a new header <atomic> to the headers in table 13. Update chapter 29 to remove reference to <stdatomic.h> and replace the use of <cstdatomic> with <atomic>.
[ If and when WG14 adds atomic operations to C we can add corresponding headers to table 14 with a TR. ]
Section: 29.4 [atomics.lockfree] Status: Resolved Submitter: Jeffrey Yasskin Opened: 2009-06-16 Last modified: 2015-04-08
View all other issues in [atomics.lockfree].
View all issues with Resolved status.
Discussion:
Addresses US 88
The "lockfree" facilities do not tell the programmer enough.
There are 2 problems here.
First, at least on x86,
it's less important to me whether some integral types are lock free
than what is the largest type I can pass to atomic and have it be lock-free.
For example, if long longs are not lock-free,
ATOMIC_INTEGRAL_LOCK_FREE is probably 1,
but I'd still be interested in knowing whether longs are always lock-free.
Or if long longs at any address are lock-free,
I'd expect ATOMIC_INTEGRAL_LOCK_FREE to be 2,
but I may actually care whether I have access to
the cmpxchg16b
instruction.
None of the support here helps with that question.
(There are really 2 related questions here:
what alignment requirements are there for lock-free access;
and what processor is the program actually running on,
as opposed to what it was compiled for?)
Second, having atomic_is_lock_free only apply to individual objects is pretty useless (except, as Lawrence Crowl points out, for throwing an exception when an object is unexpectedly not lock-free). I'm likely to want to use its result to decide what algorithm to use, and that algorithm is probably going to allocate new memory containing atomic objects and then try to act on them. If I can't predict the lock-freedom of the new object by checking the lock-freedom of an existing object, I may discover after starting the algorithm that I can't continue.
[ 2009-06-16 Jeffrey Yasskin adds: ]
To solve the first problem, I think 2 macros would help: MAX_POSSIBLE_LOCK_FREE_SIZE and MAX_GUARANTEED_LOCK_FREE_SIZE, which expand to the maximum value of sizeof(T) for which atomic may (or will, respectively) use lock-free operations. Lawrence points out that this "relies heavily on implementations using word-size compare-swap on sub-word-size types, which in turn requires address modulation." He expects that to be the end state anyway, so it doesn't bother him much.
To solve the second, I think one could specify that equally aligned objects of the same type will return the same value from atomic_is_lock_free(). I don't know how to specify "equal alignment". Lawrence suggests an additional function, atomic_is_always_lock_free().
[ 2009-10-22 Benjamin Kosnik: ]
In the evolution discussion of N2925, "More Collected Issues with Atomics," there is an action item with respect to LWG 1146, US 88
This is stated in the paper as:
Relatedly, Mike Sperts will create an issue to propose adding a traits mechanism to check the compile-time properties through a template mechanism rather than macros
Here is my attempt to do this. I don't believe that a separate trait is necessary for this, and that instead atomic_integral::is_lock_free can be re-purposed with minimal work as follows.
[ Howard: Put Benjamin's wording in the proposed wording section. ]
[ 2009-10-22 Alberto Ganesh Barbati: ]
Just a thought... wouldn't it be better to use a scoped enum instead of plain integers? For example:
enum class is_lock_free { never = 0, sometimes = 1, always = 2; };if compatibility with C is deemed important, we could use an unscoped enum with suitably chosen names. It would still be more descriptive than 0, 1 and 2.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2992.
Proposed resolution:
Header <cstdatomic> synopsis [atomics.synopsis]
Edit as follows:
namespace std { ... // 29.4, lock-free property#define ATOMIC_INTEGRAL_LOCK_FREE unspecified#define ATOMIC_CHAR_LOCK_FREE unspecified #define ATOMIC_CHAR16_T_LOCK_FREE unspecified #define ATOMIC_CHAR32_T_LOCK_FREE unspecified #define ATOMIC_WCHAR_T_LOCK_FREE unspecified #define ATOMIC_SHORT_LOCK_FREE unspecified #define ATOMIC_INT_LOCK_FREE unspecified #define ATOMIC_LONG_LOCK_FREE unspecified #define ATOMIC_LLONG_LOCK_FREE unspecified #define ATOMIC_ADDRESS_LOCK_FREE unspecified
Lock-free Property 29.4 [atomics.lockfree]
Edit the synopsis as follows.
namespace std {#define ATOMIC_INTEGRAL_LOCK_FREE unspecified#define ATOMIC_CHAR_LOCK_FREE unspecified #define ATOMIC_CHAR16_T_LOCK_FREE unspecified #define ATOMIC_CHAR32_T_LOCK_FREE unspecified #define ATOMIC_WCHAR_T_LOCK_FREE unspecified #define ATOMIC_SHORT_LOCK_FREE unspecified #define ATOMIC_INT_LOCK_FREE unspecified #define ATOMIC_LONG_LOCK_FREE unspecified #define ATOMIC_LLONG_LOCK_FREE unspecified #define ATOMIC_ADDRESS_LOCK_FREE unspecified }
Edit paragraph 1 as follows.
The ATOMIC_...._LOCK_FREE macros
ATOMIC_INTEGRAL_LOCK_FREE and ATOMIC_ADDRESS_LOCK_FREEindicate the general lock-free property ofintegral and address atomicthe corresponding atomic integral types, with the signed and unsigned variants grouped together.The properties also apply to the corresponding specializations of the atomic template.A value of 0 indicates that the types are never lock-free. A value of 1 indicates that the types are sometimes lock-free. A value of 2 indicates that the types are always lock-free.
Operations on Atomic Types 29.6 [atomics.types.operations]
Edit as follows.
voidstatic constexpr bool A::is_lock_free() const volatile;Returns: True if the
object'stypes's operations are lock-free, false otherwise. [Note: In the same way that <limits> std::numeric_limits<short>::max() is related to <limits.h> __LONG_LONG_MAX__, <atomic> std::atomic_short::is_lock_free is related to <stdatomic.h> and ATOMIC_SHORT_LOCK_FREE — end note]
Section: 29.6 [atomics.types.operations] Status: Resolved Submitter: Jeffrey Yasskin Opened: 2009-06-16 Last modified: 2015-04-08
View all other issues in [atomics.types.operations].
View all issues with Resolved status.
Discussion:
Addresses US 90
The C++0X draft declares all of the functions dealing with atomics (section 29.6 [atomics.types.operations]) to take volatile arguments. Yet it also says (29.4-3),
[ Note: Many operations are volatile-qualified. The "volatile as device register" semantics have not changed in the standard. This qualification means that volatility is preserved when applying these operations to volatile objects. It does not mean that operations on non-volatile objects become volatile. Thus, volatile qualified operations on non-volatile objects may be merged under some conditions. — end note ]
I was thinking about how to implement this in gcc, and I believe that we'll want to overload most of the functions on volatile and non-volatile. Here's why:
To let the compiler take advantage of the permission to merge non-volatile atomic operations and reorder atomics in certain, we'll need to tell the compiler backend about exactly which atomic operation was used. So I expect most of the functions of the form atomic_<op>_explicit() (e.g. atomic_load_explicit, atomic_exchange_explicit, atomic_fetch_add_explicit, etc.) to become compiler builtins. A builtin can tell whether its argument was volatile or not, so those functions don't really need extra explicit overloads. However, I don't expect that we'll want to add builtins for every function in chapter 29, since most can be implemented in terms of the _explicit free functions:
class atomic_int {
__atomic_int_storage value;
public:
int fetch_add(int increment, memory_order order = memory_order_seq_cst) volatile {
// &value has type "volatile __atomic_int_storage*".
atomic_fetch_add_explicit(&value, increment, order);
}
...
};
But now this always calls the volatile builtin version of atomic_fetch_add_explicit(), even if the atomic_int wasn't declared volatile. To preserve volatility and the compiler's permission to optimize, I'd need to write:
class atomic_int {
__atomic_int_storage value;
public:
int fetch_add(int increment, memory_order order = memory_order_seq_cst) volatile {
atomic_fetch_add_explicit(&value, increment, order);
}
int fetch_add(int increment, memory_order order = memory_order_seq_cst) {
atomic_fetch_add_explicit(&value, increment, order);
}
...
};
But this is visibly different from the declarations in the standard because it's now overloaded. (Consider passing &atomic_int::fetch_add as a template parameter.)
The implementation may already have permission to add overloads to the member functions:
17.6.5.5 [member.functions] An implementation may declare additional non-virtual member function signatures within a class:
...
- by adding a member function signature for a member function name.
but I don't see an equivalent permission to add overloads to the free functions.
[ 2009-06-16 Lawrence adds: ]
I recommend allowing non-volatile overloads.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2992.
Proposed resolution:
Section: 17 [library] Status: Resolved Submitter: LWG Opened: 2009-06-28 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with Resolved status.
Discussion:
Addresses US 63
Description
The behavior of the library in the presence of threads is incompletely specified.
For example, if thread 1 assigns to X, then writes data to file f, which is read by thread 2, and then accesses variable X, is thread 2 guaranteed to be able to see the value assigned to X by thread 1? In other words, does the write of the data "happen before" the read?
Another example: does simultaneous access using operator at() to different characters in the same non-const string really introduce a data race?
Suggestion
Notes
17 SG: should go to threads group; misclassified in document
Concurrency SG: Create an issue. Hans will look into it.
[ 2009 Santa Cruz: ]
Move to "Open". Hans and the rest of the concurrency working group will study this. We can't make progress without a thorough review and a paper.
[ 2010 Pittsburgh: Moved to NAD Editorial. Rationale added below. ]
Rationale:
Solved by N3069.
Proposed resolution:
Section: 22.4.2.2.2 [facet.num.put.virtuals] Status: C++11 Submitter: Seungbeom Kim Opened: 2009-06-27 Last modified: 2015-04-08
View all other issues in [facet.num.put.virtuals].
View all issues with C++11 status.
Discussion:
In Table 73 — Floating-point conversions, 22.4.2.2.2 [facet.num.put.virtuals], in N2914, we have the following entries:
State | stdio equivalent |
---|---|
floatfield == ios_base::fixed | ios_base::scientific && !uppercase | %a |
floatfield == ios_base::fixed | ios_base::scientific | %A |
These expressions are supposed to mean:
floatfield == (ios_base::fixed | ios_base::scientific) && !uppercase floatfield == (ios_base::fixed | ios_base::scientific)
but technically parsed as:
((floatfield == ios_base::fixed) | ios_base::scientific) && (!uppercase) ((floatfield == ios_base::fixed) | ios_base::scientific)
and should be corrected with additional parentheses, as shown above.
[ 2009-10-28 Howard: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
Proposed resolution:
Change Table 83 — Floating-point conversions in 22.4.2.2.2 [facet.num.put.virtuals]:
State | stdio equivalent |
---|---|
floatfield == (ios_base::fixed | ios_base::scientific) && !uppercase | %a |
floatfield == (ios_base::fixed | ios_base::scientific) | %A |
Section: 17.6.4.2.1 [namespace.std] Status: C++11 Submitter: LWG Opened: 2009-06-28 Last modified: 2015-04-08
View all other issues in [namespace.std].
View all issues with C++11 status.
Discussion:
Addresses UK 175
Description
Local types can now be used to instantiate templates, but don't have external linkage.
Suggestion
Remove the reference to external linkage.
Notes
We accept the proposed solution. Martin will draft an issue.
[ 2009-07-28 Alisdair provided wording. ]
[ 2009-10 Santa Cruz: ]
Moved to Ready.
Proposed resolution:
17.6.4.2.1 [namespace.std]
Strike "of external linkage" in p1 and p2:
-1- The behavior of a C++ program is undefined if it adds declarations or definitions to namespace std or to a namespace within namespace std unless otherwise specified. A program may add a concept map for any standard library concept or a template specialization for any standard library template to namespace std only if the declaration depends on a user-defined type
of external linkageand the specialization meets the standard library requirements for the original template and is not explicitly prohibited.179-2- The behavior of a C++ program is undefined if it declares
- an explicit specialization of any member function of a standard library class template, or
- an explicit specialization of any member function template of a standard library class or class template, or
- an explicit or partial specialization of any member class template of a standard library class or class template.
A program may explicitly instantiate a template defined in the standard library only if the declaration depends on the name of a user-defined type
of external linkageand the instantiation meets the standard library requirements for the original template.
Section: 30.2.4 [thread.req.timing] Status: C++11 Submitter: LWG Opened: 2009-06-28 Last modified: 2015-04-08
View all other issues in [thread.req.timing].
View all issues with C++11 status.
Discussion:
Addresses UK 322, US 96
Description
Not all systems can provide a monotonic clock. How are they expected to treat a _for function?
Suggestion
Add at least a note explaining the intent for systems that do not support a monotonic clock.
Notes
Create an issue, together with UK 96. Note that the specification as is already allows a non-monotonic clock due to the word “should” rather than “shall”. If this wording is kept, a footnote should be added to make the meaning clear.
[ 2009-06-29 Beman provided a proposed resolution. ]
[ 2009-10-31 Howard adds: ]
Set to Tentatively Ready after 5 positive votes on c++std-lib.
[ 2010-02-24 Pete moved to Open: ]
LWG 1158's proposed resolution replaces the ISO-specified normative term "should" with "are encouraged but not required to", which presumably means the same thing, but has no ISO normative status. The WD used the latter formulation in quite a few non-normative places, but only three normative ones. I've changed all the normative uses to "should".
[ 2010-03-06 Beman updates wording. ]
[ 2010 Pittsburgh: Moved to Ready. ]
Proposed resolution:
Change Timing specifications 30.2.4 [thread.req.timing] as indicated:
The member functions whose names end in _for take an argument that specifies a relative time. Implementations should use a monotonic clock to measure time for these functions. [Note: Implementations are not required to use a monotonic clock because such a clock may be unavailable. — end note]
Section: 30.4.2.2.2 [thread.lock.unique.locking] Status: C++11 Submitter: LWG Opened: 2009-06-28 Last modified: 2015-04-08
View all other issues in [thread.lock.unique.locking].
View all issues with C++11 status.
Duplicate of: 1219
Discussion:
Addresses UK 327, UK 328
UK 327 Description
Not clear what the specification for error condition resource_deadlock_would_occur means. It is perfectly possible for this thread to own the mutex without setting owns to true on this specific lock object. It is also possible for lock operations to succeed even if the thread does own the mutex, if the mutex is recursive. Likewise, if the mutex is not recursive and the mutex has been locked externally, it is not always possible to know that this error condition should be raised, depending on the host operating system facilities. It is possible that 'i.e.' was supposed to be 'e.g.' and that suggests that recursive locks are not allowed. That makes sense, as the exposition-only member owns is boolean and not a integer to count recursive locks.
UK 327 Suggestion
Add a precondition !owns. Change the 'i.e.' in the error condition to be 'e.g.' to allow for this condition to propogate deadlock detection by the host OS.
UK 327 Notes
Create an issue. Assigned to Lawrence Crowl. Note: not sure what try_lock means for recursive locks when you are the owner. POSIX has language on this, which should ideally be followed. Proposed fix is not quite right, for example, try_lock should have different wording from lock.
UK 328 Description
There is a missing precondition that owns is true, or an if(owns) test is missing from the effect clause
UK 328 Suggestion
Add a precondition that owns == true. Add an error condition to detect a violation, rather than yield undefined behaviour.
UK 328 Notes
Handle in same issue as UK 327. Also uncertain that the proposed resolution is the correct one.
[ 2009-11-11 Alisdair notes that this issue is very closely related to 1219, if not a dup. ]
[ 2010-02-12 Anthony provided wording. ]
[ 2010 Pittsburgh: ]
Wording updated and moved to Ready for Pittsburgh.
Proposed resolution:
Modify 30.4.2.2.2 [thread.lock.unique.locking] p3 to say:
void lock();...
3 Throws: Any exception thrown by pm->lock(). std::system_error if an exception is required (30.2.2 [thread.req.exception]). std::system_error with an error condition of operation_not_permitted if pm is 0. std::system_error with an error condition of resource_deadlock_would_occur if on entry owns is true.
std::system_error when the postcondition cannot be achieved.
Remove 30.4.2.2.2 [thread.lock.unique.locking] p4 (Error condition clause).
Modify 30.4.2.2.2 [thread.lock.unique.locking] p8 to say:
bool try_lock();...
8 Throws: Any exception thrown by pm->try_lock(). std::system_error if an exception is required (30.2.2 [thread.req.exception]). std::system_error with an error condition of operation_not_permitted if pm is 0. std::system_error with an error condition of resource_deadlock_would_occur if on entry owns is true.
std::system_error when the postcondition cannot be achieved.
Remove 30.4.2.2.2 [thread.lock.unique.locking] p9 (Error condition clause).
Modify 30.4.2.2.2 [thread.lock.unique.locking] p13 to say:
template <class Clock, class Duration> bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);...
13 Throws: Any exception thrown by pm->try_lock_until(). std::system_error if an exception is required (30.2.2 [thread.req.exception]). std::system_error with an error condition of operation_not_permitted if pm is 0. std::system_error with an error condition of resource_deadlock_would_occur if on entry owns is true.
std::system_error when the postcondition cannot be achieved.
Remove 30.4.2.2.2 [thread.lock.unique.locking] p14 (Error condition clause).
Modify 30.4.2.2.2 [thread.lock.unique.locking] p18 to say:
template <class Rep, class Period> bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);...
18 Throws: Any exception thrown by pm->try_lock_for(). std::system_error if an exception is required (30.2.2 [thread.req.exception]). std::system_error with an error condition of operation_not_permitted if pm is 0. std::system_error with an error condition of resource_deadlock_would_occur if on entry owns is true.
std::system_error when the postcondition cannot be achieved.
Remove 30.4.2.2.2 [thread.lock.unique.locking] p19 (Error condition clause).
Section: 30.6.3 [futures.future_error] Status: Resolved Submitter: LWG Opened: 2009-06-28 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses UK 331
Description
Not clear what it means for a public constructor to be 'exposition only'. If the intent is purely to support the library calling this constructor then it can be made private and accessed through friendship. Otherwise it should be documented for public consumption.
Suggestion
Declare the constructor as private with a note about intended friendship, or remove the exposition-only comment and document the semantics.
Notes
Create an issue. Assigned to Detlef. Suggested resolution probably makes sense.
[ 2009-07 Frankfurt ]
Pending a paper from Anthony Williams / Detlef Vollmann.
[ 2009-10-14 Pending paper: N2967. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2997.
Proposed resolution:
Section: 30.6.6 [futures.unique_future] Status: Resolved Submitter: LWG Opened: 2009-06-28 Last modified: 2015-04-08
View all other issues in [futures.unique_future].
View all issues with Resolved status.
Discussion:
Addresses UK 336
Description
It is possible to transfer ownership of the asynchronous result from one unique_future instance to another via the move-constructor. However, it is not possible to transfer it back, and nor is it possible to create a default-constructed unique_future instance to use as a later move target. This unduly limits the use of unique_future in code. Also, the lack of a move-assignment operator restricts the use of unique_future in containers such as std::vector - vector::insert requires move-assignable for example.
Suggestion
Add a default constructor with the semantics that it creates a unique_future with no associated asynchronous result. Add a move-assignment operator which transfers ownership.
Notes
Create an issue. Detlef will look into it.
[ 2009-07 Frankfurt ]
Pending a paper from Anthony Williams / Detlef Vollmann.
[ 2009-10-14 Pending paper: N2967. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2997.
Proposed resolution:
Section: 30.6.7 [futures.shared_future] Status: Resolved Submitter: LWG Opened: 2009-06-28 Last modified: 2015-04-08
View all other issues in [futures.shared_future].
View all issues with Resolved status.
Discussion:
Addresses UK 337
Description
shared_future should support an efficient move constructor that can avoid unnecessary manipulation of a reference count, much like shared_ptr
Suggestion
Add a move constructor
Notes
Create an issue. Detlef will look into it.
[ 2009-07 Frankfurt ]
Pending a paper from Anthony Williams / Detlef Vollmann.
[ 2009-10-14 Pending paper: N2967. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2997.
Proposed resolution:
Section: 30.6.7 [futures.shared_future] Status: Resolved Submitter: LWG Opened: 2009-06-28 Last modified: 2015-04-08
View all other issues in [futures.shared_future].
View all issues with Resolved status.
Discussion:
Addresses UK 338
Description
shared_future is currently CopyConstructible, but not CopyAssignable. This is inconsistent with shared_ptr, and will surprise users. Users will then write work-arounds to provide this behaviour. We should provide it simply and efficiently as part of shared_future. Note that since the shared_future member functions for accessing the state are all declared const, the original usage of an immutable shared_future value that can be freely copied by multiple threads can be retained by declaring such an instance as "const shared_future".
Suggestion
Remove "=delete" from the copy-assignment operator of shared_future. Add a move-constructor shared_future(shared_future&& rhs), and a move-assignment operator shared_future& operator=(shared_future&& rhs). The postcondition for the copy-assignment operator is that *this has the same associated state as rhs. The postcondition for the move-constructor and move assignment is that *this has the same associated as rhs had before the constructor/assignment call and that rhs has no associated state.
Notes
Create an issue. Detlef will look into it.
[ 2009-07 Frankfurt ]
Pending a paper from Anthony Williams / Detlef Vollmann.
[ 2009-10-14 Pending paper: N2967. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Adressed by N2997.
Proposed resolution:
Section: 30.6.5 [futures.promise] Status: Resolved Submitter: LWG Opened: 2009-06-28 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with Resolved status.
Discussion:
Addresses UK 343
Description
The move constructor of a std::promise object does not need to allocate any memory, so the move-construct-with-allocator overload of the constructor is superfluous.
Suggestion
Remove the constructor with the signature template <class Allocator> promise(allocator_arg_t, const Allocator& a, promise& rhs);
Notes
Create an issue. Detlef will look into it. Will solicit feedback from Pablo. Note that "rhs" argument should also be an rvalue reference in any case.
[ 2009-07 Frankfurt ]
Pending a paper from Anthony Williams / Detlef Vollmann.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Adressed by N2997.
Proposed resolution:
Section: X [allocator.propagation], X [allocator.propagation.map], 23 [containers] Status: Resolved Submitter: LWG Opened: 2009-06-28 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses US 77
Description
Allocator-specific move and copy behavior for containers (N2525) complicates a little-used and already-complicated portion of the standard library (allocators), and breaks the conceptual model of move-constructor and move-assignment operations on standard containers being efficient operations. The extensions for allocator-specific move and copy behavior should be removed from the working paper.
With the introduction of rvalue references, we are teaching programmers that moving from a standard container (e.g., a vector<string>) is an efficient, constant-time operation. The introduction of N2525 removed that guarantee; depending on the behavior of four different traits (20.8.4), the complexity of copy and move operations can be constant or linear time. This level of customization greatly increases the complexity of standard containers, and benefits only a tiny fraction of the C++ community.
Suggestion
Remove 20.8.4.
Remove 20.8.5.
Remove all references to the facilities in 20.8.4 and 20.8.5 from clause 23.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2982.
Proposed resolution:
Section: 21.1 [strings.general] Status: C++11 Submitter: Beman Dawes Opened: 2009-06-22 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses UK 218
Prior to the introduction of constant expressions into the library, basic_string elements had to be POD types, and thus had to be both trivially copyable and standard-layout. This ensured that they could be memcpy'ed and would be compatible with other libraries and languages, particularly the C language and its library.
N2349, Constant Expressions in the Standard Library Revision 2, changed the requirement in 21/1 from "POD type" to "literal type". That change had the effect of removing the trivially copyable and standard-layout requirements from basic_string elements.
This means that basic_string elements no longer are guaranteed to be memcpy'able, and are no longer guaranteed to be standard-layout types:
3.9/p2 and 3.9/p3 both make it clear that a "trivially copyable type" is required for memcpy to be guaranteed to work.
Literal types (3.9p12) may have a non-trivial copy assignment operator, and that violates the trivially copyable requirements given in 9/p 6, bullet item 2.
Literal types (3.9p12) have no standard-layout requirement, either.
This situation probably arose because the wording for "Constant Expressions in the Standard Library" was in process at the same time the C++ POD deconstruction wording was in process.
Since trivially copyable types meet the C++0x requirements for literal types, and thus work with constant expressions, it seems an easy fix to revert the basic_string element wording to its original state.
[ 2009-07-28 Alisdair adds: ]
When looking for any resolution for this issue, consider the definition of "character container type" in 17.3 [defns.character.container]. This does require the character type to be a POD, and this term is used in a number of places through clause 21 and 28. This suggests the PODness constraint remains, but is much more subtle than before. Meanwhile, I suspect the change from POD type to literal type was intentional with the assumption that trivially copyable types with non-trivial-but-constexpr constructors should serve as well. I don't believe the current wording offers the right guarantees for either of the above designs.
[ 2009-11-04 Howard modifies proposed wording to disallow array types as char-like types. ]
[ 2010-01-23 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change General 21.1 [strings.general] as indicated:
This Clause describes components for manipulating sequences of any
literalnon-array POD (3.9) type. In this Clause such types are called char-like types, and objects of char-like types are called char-like objects or simply characters.
Section: 20.12.5 [time.duration] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-07-06 Last modified: 2015-04-08
View all other issues in [time.duration].
View all issues with C++11 status.
Discussion:
The duration types in 20.12.5 [time.duration] are exactly the sort of type that should be "literal types" in the new standard. Likewise, arithmetic operations on durations should be declared constexpr.
[ 2009-09-21 Daniel adds: ]
An alternative (and possibly preferable solution for potentially heap-allocating big_int representation types) would be to ask the core language to allow references to const literal types as feasible arguments for constexpr functions.
[ 2009-10-30 Alisdair adds: ]
I suggest this issue moves from New to Open.
Half of this issue was dealt with in paper n2994 on constexpr constructors.
The other half (duration arithmetic) is on hold pending Core support for const & in constexpr functions.
[ 2010-03-15 Alisdair updated wording to be consistent with N3078. ]
[ 2010 Rapperswil: ]
This issue was the motivation for Core adding the facility for constexpr functions to take parameters by const &. Move to Tentatively Ready.
[ Adopted at 2010-11 Batavia. ]
Proposed resolution:
Add constexpr to declaration of following functions and constructors:
Modify p1 20.12 [time], and the prototype definitions in 20.12.5.5 [time.duration.nonmember], 20.12.5.6 [time.duration.comparisons], and 20.12.5.7 [time.duration.cast]:
Header <chrono> synopsis
// duration arithmetic template <class Rep1, class Period1, class Rep2, class Period2> typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>>::type constexpr operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); template <class Rep1, class Period1, class Rep2, class Period2> typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>>::type constexpr operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> constexpr operator*(const duration<Rep1, Period>& d, const Rep2& s); template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> constexpr operator*(const Rep1& s, const duration<Rep2, Period>& d); template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> constexpr operator/(const duration<Rep1, Period>& d, const Rep2& s); template <class Rep1, class Period1, class Rep2, class Period2> typename common_type<Rep1, Rep2>::type constexpr operator/(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); // duration comparisons template <class Rep1, class Period1, class Rep2, class Period2> constexpr bool operator==(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); template <class Rep1, class Period1, class Rep2, class Period2> constexpr bool operator!=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); template <class Rep1, class Period1, class Rep2, class Period2> constexpr bool operator< (const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); template <class Rep1, class Period1, class Rep2, class Period2> constexpr bool operator<=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); template <class Rep1, class Period1, class Rep2, class Period2> constexpr bool operator> (const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); template <class Rep1, class Period1, class Rep2, class Period2> constexpr bool operator>=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); // duration_cast template <class ToDuration, class Rep, class Period> constexpr ToDuration duration_cast(const duration<Rep, Period>& d);
Change 20.12.5 [time.duration]:
template <class Rep, class Period = ratio<1>> class duration { ... public: ... constexpr duration(const duration&) = default; ... };
[ Note - this edit already seems assumed by definition of the duration static members zero/min/max. They cannot meaningfully be constexpr without this change. ]
Section: X [allocator.concepts.members] Status: Resolved Submitter: Alberto Ganesh Barbati Opened: 2009-07-08 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
I believe the two functions select_on_container_(copy|move)_construction() are over-constrained. For example, the return value of the "copy" version is (see X [allocator.concepts.members]/21):
Returns: x if the allocator should propagate from the existing container to the new container on copy construction, otherwise X().
Consider the case where a user decides to provide an explicit concept map for Allocator to adapt some legacy allocator class, as he wishes to provide customizations that the LegacyAllocator concept map template does not provide. Now, although it's true that the legacy class is required to have a default constructor, the user might have reasons to prefer a different constructor to implement select_on_container_copy_construction(). However, the current wording requires the use of the default constructor.
Moreover, it's not said explicitly that x is supposed to be the allocator of the existing container. A clarification would do no harm.
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Addressed by N2982.
Proposed resolution:
Replace X [allocator.concepts.members]/21 with:
X select_on_container_copy_construction(const X& x);-21- Returns:
x if the allocator should propagate from the existing container to the new container on copy construction, otherwise X().an allocator object to be used by the new container on copy construction. [Note: x is the allocator of the existing container that is being copied. The most obvious choices for the return value are x, if the allocator should propagate from the existing container, and X(). — end note]
Replace X [allocator.concepts.members]/25 with:
X select_on_container_move_construction(X&& x);-25- Returns:
move(x) if the allocator should propagate from the existing container to the new container on move construction, otherwise X().an allocator object to be used by the new container on move construction. [Note: x is the allocator of the existing container that is being moved. The most obvious choices for the return value are move(x), if the allocator should propagate from the existing container, and X(). — end note]
Section: 20.10.4.3 [meta.unary.prop] Status: Resolved Submitter: Jason Merrill Opened: 2009-07-16 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with Resolved status.
Discussion:
I've been implementing compiler support for is_standard_layout, and noticed a few nits about 20.10.4.3 [meta.unary.prop]:
[ See the thread starting with c++std-lib-24420 for further discussion. ]
[ Addressed in N2947. ]
[ 2009-10 Santa Cruz: ]
NAD EditorialResolved. Solved by N2984.
Proposed resolution:
Section: 20.12.5 [time.duration] Status: C++11 Submitter: Howard Hinnant Opened: 2009-07-18 Last modified: 2015-04-08
View all other issues in [time.duration].
View all issues with C++11 status.
Discussion:
"diagnostic required" has been used (by me) for code words meaning "use enable_if to constrain templated functions. This needs to be improved by referring to the function signature as not participating in the overload set, and moving this wording to a Remarks paragraph.
[ 2009-10 Santa Cruz: ]
Moved to Ready.
[ 2009-11-19 Pete opens: ]
Oh, and speaking of 1177, most of the changes result in rather convoluted prose. Instead of saying
A shall be B, else C
it should be
C if A is not B
That is:
Rep2 shall be implicitly convertible to CR(Rep1, Rep2), else this signature shall not participate in overload resolution.
should be
This signature shall not participate in overload resolution if Rep2 is not implicitly convertible to CR(Rep1, Rep2).
That is clearer, and eliminates the false requirement that Rep2 "shall be" convertible.
[ 2009-11-19 Howard adds: ]
I've updated the wording to match Pete's suggestion and included bullet 16 from 1195.
[ 2009-11-19 Jens adds: ]
Further wording suggestion using "unless":
This signature shall not participate in overload resolution unless Rep2 is implicitly convertible to CR(Rep1, Rep2).
[ 2009-11-20 Howard adds: ]
I've updated the wording to match Jens' suggestion.
[ 2009-11-22 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
[ This proposed resolution addresses 947 and 974. ]
Change 20.12.5.1 [time.duration.cons] (and reorder the Remarks paragraphs per 17.5.1.4 [structure.specifications]):
template <class Rep2> explicit duration(const Rep2& r);
Requires:Remarks: This constructor shall not participate in overload resolution unless Rep2shall beis implicitly convertible to rep and
- treat_as_floating_point<rep>::value
shall beis true, or- treat_as_floating_point<Rep2>::value
shall beis false.
Diagnostic required[Example:duration<int, milli> d(3); // OK duration<int, milli> d(3.5); // error— end example]
Effects: Constructs an object of type duration.
Postcondition: count() == static_cast<rep>(r).
template <class Rep2, class Period2> duration(const duration<Rep2, Period2>& d);
Requires:Remarks: This constructor shall not participate in overload resolution unless treat_as_floating_point<rep>::valueshall beis true or ratio_divide<Period2, period>::type::denshall beis 1.Diagnostic required.[Note: This requirement prevents implicit truncation error when converting between integral-based duration types. Such a construction could easily lead to confusion about the value of the duration. — end note] [Example:duration<int, milli> ms(3); duration<int, micro> us = ms; // OK duration<int, milli> ms2 = us; // error— end example]
Effects: Constructs an object of type duration, constructing rep_ from duration_cast<duration>(d).count().
Change the following paragraphs in 20.12.5.5 [time.duration.nonmember]:
template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator*(const duration<Rep1, Period>& d, const Rep2& s);
RequiresRemarks: This operator shall not participate in overload resolution unless Rep2shall beis implicitly convertible to CR(Rep1, Rep2).Diagnostic required.template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator*(const Rep1& s, const duration<Rep2, Period>& d);
RequiresRemarks: This operator shall not participate in overload resolution unless Rep1shall beis implicitly convertible to CR(Rep1, Rep2).Diagnostic required.template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator/(const duration<Rep1, Period>& d, const Rep2& s);
RequiresRemarks: This operator shall not participate in overload resolution unless Rep2shall beis implicitly convertible to CR(Rep1, Rep2) and Rep2shall not beis not an instantiation of duration.Diagnostic required.template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator%(const duration<Rep1, Period>& d, const Rep2& s);
RequiresRemarks: This operator shall not participate in overload resolution unless Rep2shall beis implicitly convertible to CR(Rep1, Rep2) and Rep2shall not beis not an instantiation of duration.Diagnostic required.
Change the following paragraphs in 20.12.5.7 [time.duration.cast]:
template <class ToDuration, class Rep, class Period> ToDuration duration_cast(const duration<Rep, Period>& d);
RequiresRemarks: This function shall not participate in overload resolution unless ToDurationshall beis an instantiation of duration.Diagnostic required.
Change 20.12.6.1 [time.point.cons]/3 as indicated:
Requires: Duration2 shall be implicitly convertible to duration. Diagnostic required.Remarks: This constructor shall not participate in overload resolution unless Duration2 is implicitly convertible to duration.
Change the following paragraphs in 20.12.6.7 [time.point.cast]:
template <class ToDuration, class Clock, class Duration> time_point<Clock, ToDuration> time_point_cast(const time_point<Clock, Duration>& t);
RequiresRemarks: This function shall not participate in overload resolution unless ToDurationshall beis an instantiation of duration.Diagnostic required.
Section: 17.6.5.2 [res.on.headers] Status: C++11 Submitter: Beman Dawes Opened: 2009-07-18 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
See Frankfurt notes of 1001.
Proposed resolution:
Change 17.6.5.2 [res.on.headers], Headers, paragraph 1, as indicated:
A C++ header may include other C++ headers.
[footnote]A C++ header shall provide the declarations and definitions that appear in its synopsis (3.2 [basic.def.odr]). A C++ header shown in its synopsis as including other C++ headers shall provide the declarations and definitions that appear in the synopses of those other headers.
[footnote] C++ headers must include a C++ header that contains any needed definition (3.2).
Section: 28.9.1 [re.submatch.members] Status: C++11 Submitter: Daniel Krügler Opened: 2009-07-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
The definition of class template sub_match is strongly dependent on the type basic_string<value_type>, both in interface and effects, but does not provide a corresponding typedef string_type, as e.g. class match_results does, which looks like an oversight to me that should be fixed.
[ 2009-11-15 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
In the class template sub_match synopsis 28.9 [re.submatch]/1 change as indicated:
template <class BidirectionalIterator> class sub_match : public std::pair<BidirectionalIterator, BidirectionalIterator> { public: typedef typename iterator_traits<BidirectionalIterator>::value_type value_type; typedef typename iterator_traits<BidirectionalIterator>::difference_type difference_type; typedef BidirectionalIterator iterator; typedef basic_string<value_type> string_type; bool matched; difference_type length() const; operatorbasic_string<value_type>string_type() const;basic_string<value_type>string_type str() const; int compare(const sub_match& s) const; int compare(constbasic_string<value_type>string_type& s) const; int compare(const value_type* s) const; };
In 28.9.1 [re.submatch.members]/2 change as indicated:
operatorbasic_string<value_type>string_type() const;Returns: matched ?
basic_string<value_type>string_type(first, second) :basic_string<value_type>string_type().
In 28.9.1 [re.submatch.members]/3 change as indicated:
basic_string<value_type>string_type str() const;Returns: matched ?
basic_string<value_type>string_type(first, second) :basic_string<value_type>string_type().
In 28.9.1 [re.submatch.members]/5 change as indicated:
int compare(constbasic_string<value_type>string_type& s) const;
Section: 28.9.2 [re.submatch.op] Status: C++11 Submitter: Daniel Krügler Opened: 2009-07-25 Last modified: 2015-04-08
View all other issues in [re.submatch.op].
View all issues with C++11 status.
Discussion:
Several heterogeneous comparison operators of class template sub_match are specified by return clauses that are not valid in general. E.g. 28.9.2 [re.submatch.op]/7:
template <class BiIter, class ST, class SA> bool operator==( const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& lhs, const sub_match<BiIter>& rhs);Returns: lhs == rhs.str().
The returns clause would be ill-formed for all cases where ST != std::char_traits<iterator_traits<BiIter>::value_type> or SA != std::allocator<iterator_traits<BiIter>::value_type>.
The generic character of the comparison was intended, so there are basically two approaches to fix the problem: The first one would define the semantics of the comparison using the traits class ST (The semantic of basic_string::compare is defined in terms of the compare function of the corresponding traits class), the second one would define the semantics of the comparison using the traits class
std::char_traits<iterator_traits<BiIter>::value_type>
which is essentially identical to
std::char_traits<sub_match<BiIter>::value_type>
I suggest to follow the second approach, because this emphasizes the central role of the sub_match object as part of the comparison and would also make sure that a sub_match comparison using some basic_string<char_t, ..> always is equivalent to a corresponding comparison with a string literal because of the existence of further overloads (beginning from 28.9.2 [re.submatch.op]/19). If users really want to take advantage of their own traits::compare, they can simply write a corresponding compare function that does so.
[ Post-Rapperswil ]
The following update is a result of the discussion during the Rapperswil meeting, the P/R expresses all comparisons by delegating to sub_match's compare functions. The processing is rather mechanical: Only == and < where defined by referring to sub_match's compare function, all remaining ones where replaced by the canonical definitions in terms of these two.
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
The wording refers to N3126.
template <class BiIter, class ST, class SA> bool operator==( const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& lhs, const sub_match<BiIter>& rhs);7 Returns:
lhs == rhs.str()rhs.compare(lhs.c_str()) == 0.
template <class BiIter, class ST, class SA> bool operator!=( const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& lhs, const sub_match<BiIter>& rhs);8 Returns:
lhs != rhs.str()!(lhs == rhs).
template <class BiIter, class ST, class SA> bool operator<( const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& lhs, const sub_match<BiIter>& rhs);9 Returns:
lhs < rhs.str()rhs.compare(lhs.c_str()) > 0.
template <class BiIter, class ST, class SA> bool operator>( const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& lhs, const sub_match<BiIter>& rhs);10 Returns:
lhs > rhs.str()rhs < lhs.
template <class BiIter, class ST, class SA> bool operator>=( const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& lhs, const sub_match<BiIter>& rhs);11 Returns:
lhs >= rhs.str()!(lhs < rhs).
template <class BiIter, class ST, class SA> bool operator<=( const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& lhs, const sub_match<BiIter>& rhs);12 Returns:
lhs <= rhs.str()!(rhs < lhs).
template <class BiIter, class ST, class SA> bool operator==(const sub_match<BiIter>& lhs, const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);13 Returns:
lhs.str() == rhslhs.compare(rhs.c_str()) == 0.
template <class BiIter, class ST, class SA> bool operator!=(const sub_match<BiIter>& lhs, const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);14 Returns:
lhs.str() != rhs!(lhs == rhs).
template <class BiIter, class ST, class SA> bool operator<(const sub_match<BiIter>& lhs, const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);15 Returns:
lhs.str() < rhslhs.compare(rhs.c_str()) < 0.
template <class BiIter, class ST, class SA> bool operator>(const sub_match<BiIter>& lhs, const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);16 Returns:
lhs.str() > rhsrhs < lhs.
template <class BiIter, class ST, class SA> bool operator>=(const sub_match<BiIter>& lhs, const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);17 Returns:
lhs.str() >= rhs!(lhs < rhs).
template <class BiIter, class ST, class SA> bool operator<=(const sub_match<BiIter>& lhs, const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);18 Returns:
lhs.str() <= rhs!(rhs < lhs).
template <class BiIter> bool operator==(typename iterator_traits<BiIter>::value_type const* lhs, const sub_match<BiIter>& rhs);19 Returns:
lhs == rhs.str()rhs.compare(lhs) == 0.
template <class BiIter> bool operator!=(typename iterator_traits<BiIter>::value_type const* lhs, const sub_match<BiIter>& rhs);20 Returns:
lhs != rhs.str()!(lhs == rhs).
template <class BiIter> bool operator<(typename iterator_traits<BiIter>::value_type const* lhs, const sub_match<BiIter>& rhs);21 Returns:
lhs < rhs.str()rhs.compare(lhs) > 0.
template <class BiIter> bool operator>(typename iterator_traits<BiIter>::value_type const* lhs, const sub_match<BiIter>& rhs);22 Returns:
lhs > rhs.str()rhs < lhs.
template <class BiIter> bool operator>=(typename iterator_traits<BiIter>::value_type const* lhs, const sub_match<BiIter>& rhs);23 Returns:
lhs >= rhs.str()!(lhs < rhs).
template <class BiIter> bool operator<=(typename iterator_traits<BiIter>::value_type const* lhs, const sub_match<BiIter>& rhs);24 Returns:
lhs <= rhs.str()!(rhs < lhs).
template <class BiIter> bool operator==(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const* rhs);25 Returns:
lhs.str() == rhslhs.compare(rhs) == 0.
template <class BiIter> bool operator!=(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const* rhs);26 Returns:
lhs.str() != rhs!(lhs == rhs).
template <class BiIter> bool operator<(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const* rhs);27 Returns:
lhs.str() < rhslhs.compare(rhs) < 0.
template <class BiIter> bool operator>(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const* rhs);28 Returns:
lhs.str() > rhsrhs < lhs.
template <class BiIter> bool operator>=(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const* rhs);29 Returns:
lhs.str() >= rhs!(lhs < rhs).
template <class BiIter> bool operator<=(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const* rhs);30 Returns:
lhs.str() <= rhs!(rhs < lhs).
template <class BiIter> bool operator==(typename iterator_traits<BiIter>::value_type const& lhs, const sub_match<BiIter>& rhs);
31 Returns: basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) == rhs.str().
31 Returns: rhs.compare(typename sub_match<BiIter>::string_type(1, lhs)) == 0.
template <class BiIter> bool operator!=(typename iterator_traits<BiIter>::value_type const& lhs, const sub_match<BiIter>& rhs);32 Returns:
basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) != rhs.str()!(lhs == rhs).
template <class BiIter> bool operator<(typename iterator_traits<BiIter>::value_type const& lhs, const sub_match<BiIter>& rhs);
33 Returns: basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) < rhs.str().
33 Returns: rhs.compare(typename sub_match<BiIter>::string_type(1, lhs)) > 0.
template <class BiIter> bool operator>(typename iterator_traits<BiIter>::value_type const& lhs, const sub_match<BiIter>& rhs);34 Returns:
basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) > rhs.str()rhs < lhs.
template <class BiIter> bool operator>=(typename iterator_traits<BiIter>::value_type const& lhs, const sub_match<BiIter>& rhs);35 Returns:
basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) >= rhs.str()!(lhs < rhs).
template <class BiIter> bool operator<=(typename iterator_traits<BiIter>::value_type const& lhs, const sub_match<BiIter>& rhs);36 Returns:
basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) <= rhs.str()!(rhs < lhs).
template <class BiIter> bool operator==(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const& rhs);
37 Returns: lhs.str() == basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs).
37 Returns: lhs.compare(typename sub_match<BiIter>::string_type(1, rhs)) == 0.
template <class BiIter> bool operator!=(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const& rhs);38 Returns:
lhs.str() != basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs)!(lhs == rhs).
template <class BiIter> bool operator<(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const& rhs);
39 Returns: lhs.str() < basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs).
39 Returns: lhs.compare(typename sub_match<BiIter>::string_type(1, rhs)) < 0.
template <class BiIter> bool operator>(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const& rhs);40 Returns:
lhs.str() > basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs)rhs < lhs.
template <class BiIter> bool operator>=(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const& rhs);41 Returns:
lhs.str() >= basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs)!(lhs < rhs).
template <class BiIter> bool operator<=(const sub_match<BiIter>& lhs, typename iterator_traits<BiIter>::value_type const& rhs);42 Returns:
lhs.str() <= basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs)!(rhs < lhs).
Section: 20.9.13 [unord.hash] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-07-28 Last modified: 2015-04-08
View other active issues in [unord.hash].
View all other issues in [unord.hash].
View all issues with C++11 status.
Discussion:
Addresses UK 324
The implied library dependencies created by spelling out all the hash template specializations in the <functional> synopsis are unfortunate. The potential coupling is greatly reduced if the hash specialization is declared in the appropriate header for each library type, as it is much simpler to forward declare the primary template and provide a single specialization than it is to implement a hash function for a string or vector without providing a definition for the whole string/vector template in order to access the necessary bits.
Note that the proposed resolution purely involves moving the declarations of a few specializations, it specifically does not make any changes to 20.9.13 [unord.hash].
[ 2009-09-15 Daniel adds: ]
I suggest to add to the current existing proposed resolution the following items.
Add to the very first strike-list of the currently suggested resolution the following lines:
template <> struct hash<std::error_code>;template <> struct hash<std::thread::id>;
Add the following declarations to 19.5 [syserr], header <system_error> synopsis after // 19.5.4:
// 19.5.x hash support template <class T> struct hash; template <> struct hash<error_code>;
Add a new clause 19.5.X (probably after 19.5.4):
19.5.X Hash support [syserr.hash]
template <> struct hash<error_code>;An explicit specialization of the class template hash (20.9.13 [unord.hash]) shall be provided for the type error_code suitable for using this type as key in unordered associative containers (23.5 [unord]).
Add the following declarations to 30.3.1.1 [thread.thread.id] just after the declaration of the comparison operators:
template <class T> struct hash; template <> struct hash<thread::id>;
Add a new paragraph at the end of 30.3.1.1 [thread.thread.id]:
template <> struct hash<thread::id>;An explicit specialization of the class template hash (20.9.13 [unord.hash]) shall be provided for the type thread::id suitable for using this type as key in unordered associative containers (23.5 [unord]).
[ 2009-11-13 Alisdair adopts Daniel's suggestion and the extended note from 889. ]
[ 2010-01-31 Alisdair: related to 1245 and 978. ]
[ 2010-02-07 Proposed wording updated by Beman, Daniel, Alisdair and Ganesh. ]
[ 2010-02-09 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Strike the following specializations declared in the <functional> synopsis p2 20.9 [function.objects]
template <> struct hash<std::string>;template <> struct hash<std::u16string>;template <> struct hash<std::u32string>;template <> struct hash<std::wstring>;template <> struct hash<std::error_code>;template <> struct hash<std::thread::id>;template <class Allocator> struct hash<std::vector<bool, Allocator> >;template <std::size_t N> struct hash<std::bitset<N> >;
Add the following at the end of 20.9.13 [unord.hash]:
template <> struct hash<bool>; template <> struct hash<char>; template <> struct hash<signed char>; template <> struct hash<unsigned char>; template <> struct hash<char16_t>; template <> struct hash<char32_t>; template <> struct hash<wchar_t>; template <> struct hash<short>; template <> struct hash<unsigned short>; template <> struct hash<int>; template <> struct hash<unsigned int>; template <> struct hash<long>; template <> struct hash<long long>; template <> struct hash<unsigned long>; template <> struct hash<unsigned long long>; template <> struct hash<float>; template <> struct hash<double>; template <> struct hash<long double>; template<class T> struct hash<T*>;Specializations meeting the requirements of class template hash 20.9.13 [unord.hash].
Add the following declarations to 19.5 [syserr], header <system_error> synopsis after // 19.5.4:
// [syserr.hash] hash support template <class T> struct hash; template <> struct hash<error_code>;
Add a new clause 19.5.X (probably after 19.5.4):
19.5.X Hash support [syserr.hash]
template <> struct hash<error_code>;Specialization meeting the requirements of class template hash 20.9.13 [unord.hash].
Add the following declarations to the synopsis of <string> in 21.3 [string.classes]
// [basic.string.hash] hash support template <class T> struct hash; template <> struct hash<string>; template <> struct hash<u16string>; template <> struct hash<u32string>; template <> struct hash<wstring>;
Add a new clause 21.4.X
21.4.X Hash support [basic.string.hash]>
template <> struct hash<string>; template <> struct hash<u16string>; template <> struct hash<u32string>; template <> struct hash<wstring>;Specializations meeting the requirements of class template hash 20.9.13 [unord.hash].
Add the following declarations to the synopsis of <vector> in 23.3 [sequences]
// 21.4.x hash support template <class T> struct hash; template <class Allocator> struct hash<vector<bool, Allocator>>;
Add a new paragraph to the end of 23.3.7 [vector.bool]
template <class Allocator> struct hash<vector<bool, Allocator>>;Specialization meeting the requirements of class template hash 20.9.13 [unord.hash].
Add the following declarations to the synopsis of <bitset> in 20.6 [template.bitset]
// [bitset.hash] hash support template <class T> struct hash; template <size_t N> struct hash<bitset<N> >;
Add a new subclause 20.3.7.X [bitset.hash]
20.3.7.X bitset hash support [bitset.hash]
template <size_t N> struct hash<bitset<N> >;Specialization meeting the requirements of class template hash 20.9.13 [unord.hash].
Add the following declarations to 30.3.1.1 [thread.thread.id] synopsis just after the declaration of the comparison operators:
template <class T> struct hash; template <> struct hash<thread::id>;
Add a new paragraph at the end of 30.3.1.1 [thread.thread.id]:
template <> struct hash<thread::id>;Specialization meeting the requirements of class template hash 20.9.13 [unord.hash].
Change Header <typeindex> synopsis 20.14.1 [type.index.synopsis] as indicated:
namespace std { class type_index; // [type.index.hash] hash support template <class T> struct hash; template<> struct hash<type_index>;: public unary_function<type_index, size_t> { size_t operator()(type_index index) const; }}
Change Template specialization hash<type_index> [type.index.templ] as indicated:
20.11.4
Template specialization hash<type_index> [type.index.templ]Hash support [type.index.hash]size_t operator()(type_index index) const;
Returns: index.hash_code()template<> struct hash<type_index>;Specialization meeting the requirements of class template hash [unord.hash]. For an object index of type type_index, hash<type_index>()(index) shall evaluate to the same value as index.hash_code().
Section: 27.5.5.3 [basic.ios.members] Status: C++11 Submitter: Daniel Krügler Opened: 2009-07-28 Last modified: 2015-04-08
View all other issues in [basic.ios.members].
View all issues with C++11 status.
Discussion:
The protected member function set_rdbuf had been added during the process of adding move and swap semantics to IO classes. A relevant property of this function is described by it's effects in 27.5.5.3 [basic.ios.members]/19:
Effects: Associates the basic_streambuf object pointed to by sb with this stream without calling clear().
This means that implementors of or those who derive from existing IO classes could cause an internal state where the stream buffer could be 0, but the IO class has the state good(). This would break several currently existing implementations which rely on the fact that setting a stream buffer via the currently only ways, i.e. either by calling
void init(basic_streambuf<charT,traits>* sb);
or by calling
basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);
to set rdstate() to badbit, if the buffer is 0. This has the effect that many internal functions can simply check rdstate() instead of rdbuf() for being 0.
I therefore suggest that a requirement is added for callers of set_rdbuf to set a non-0 value.
[ 2009-10 Santa Cruz: ]
Moved to Open. Martin volunteers to provide new wording, where set_rdbuf() sets the badbit but does not cause an exception to be thrown like a call to clear() would.
[ 2009-10-20 Martin provides wording: ]
Change 27.5.5.3 [basic.ios.members] around p. 19 as indicated:
void set_rdbuf(basic_streambuf<charT, traits>* sb);
Effects: Associates the basic_streambuf object pointed to by sb with this stream without calling clear(). Postconditions: rdbuf() == sb.Effects: As if:
iostate state = rdstate(); try { rdbuf(sb); } catch(ios_base::failure) { if (0 == (state & ios_base::badbit)) unsetf(badbit); }Throws: Nothing.
Rationale:
We need to be able to call set_rdbuf() on stream objects for which (rdbuf() == 0) holds without causing ios_base::failure to be thrown. We also don't want badbit to be set as a result of setting rdbuf() to 0 if it wasn't set before the call. This changed Effects clause maintains the current behavior (as of N2914) without requiring that sb be non-null.
[ Post-Rapperswil ]
Several reviewers and the submitter believe that the best solution would be to add a pre-condition that the buffer shall not be a null pointer value.
Moved to Tentatively Ready with revised wording provided by Daniel after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
void set_rdbuf(basic_streambuf<charT, traits>* sb);?? Requires: sb != nullptr.
23 Effects: Associates the basic_streambuf object pointed to by sb with this stream without calling clear().24 Postconditions: rdbuf() == sb.
25 Throws: Nothing.
Rationale:
We believe that setting a nullptr stream buffer can be prevented.
Section: 24.2 [iterator.requirements] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-07-31 Last modified: 2015-04-08
View all other issues in [iterator.requirements].
View all issues with Resolved status.
Discussion:
(wording relative to N2723 pending new working paper)
According to p3 24.2 [iterator.requirements], Forward iterators, Bidirectional iterators and Random Access iterators all satisfy the requirements for an Output iterator:
XXX iterators satisfy all the requirements of the input and output iterators and can be used whenever either kind is specified ...
Meanwhile, p4 goes on to contradict this:
Besides its category, a forward, bidirectional, or random access iterator can also be mutable or constant...
... Constant iterators do not satisfy the requirements for output iterators
The latter seems to be the overriding concern, as the iterator tag hierarchy does not define forward_iterator_tag as multiply derived from both input_iterator_tag and output_iterator_tag.
The work on concepts for iterators showed us that output iterator really is fundamentally a second dimension to the iterator categories, rather than part of the linear input -> forward -> bidirectional -> random-access sequence. It would be good to clear up these words to reflect that, and separately list output iterator requirements in the requires clauses for the appropriate algorithms and operations.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3066.
Proposed resolution:
Section: 20.10.7.6 [meta.trans.other] Status: C++11 Submitter: Jason Merrill Opened: 2009-08-07 Last modified: 2015-04-08
View other active issues in [meta.trans.other].
View all other issues in [meta.trans.other].
View all issues with C++11 status.
Discussion:
I notice that std::decay is specified to strip the cv-quals from anything but an array or pointer. This seems incorrect for values of class type, since class rvalues can have cv-qualified type (3.10 [basic.lval]/9).
[ 2009-08-09 Howard adds: ]
See the thread starting with c++std-lib-24568 for further discussion. And here is a convenience link to the original proposal. Also see the closely related issue 705.
[ 2010 Pittsburgh: Moved to Ready. ]
Proposed resolution:
Add a note to decay in 20.10.7.6 [meta.trans.other]:
[Note: This behavior is similar to the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conversions applied when an lvalue expression is used as an rvalue, but also strips cv-qualifiers from class types in order to more closely model by-value argument passing. — end note]
Section: 23.2.5 [unord.req], 23.5 [unord] Status: C++11 Submitter: Matt Austern Opened: 2009-08-10 Last modified: 2015-04-08
View other active issues in [unord.req].
View all other issues in [unord.req].
View all issues with C++11 status.
Discussion:
Consider a typical use case: I create an unordered_map and then start adding elements to it one at a time. I know that it will eventually need to store a few million elements, so, for performance reasons, I would like to reserve enough capacity that none of the calls to insert will trigger a rehash.
Unfortunately, the existing interface makes this awkward. The user naturally sees the problem in terms of the number of elements, but the interface presents it as buckets. If m is the map and n is the expected number of elements, this operation is written m.rehash(n / m.max_load_factor()) — not very novice friendly.
[ 2009-09-30 Daniel adds: ]
I recommend to replace "resize" by a different name like "reserve", because that would better match the intended use-case. Rational: Any existing resize function has the on-success post-condition that the provided size is equal to size(), which is not satisfied for the proposal. Reserve seems to fit the purpose of the actual renaming suggestion.
[ 2009-10-28 Ganesh summarizes alternative resolutions and expresses a strong preference for the second (and opposition to the first): ]
In the unordered associative container requirements (23.2.5 [unord.req]), remove the row for rehash and replace it with:
Table 87 — Unordered associative container requirements (in addition to container) Expression Return type Assertion/note pre-/post-condition Complexity a. rehashreserve(n)void Post: a.bucket_count > max(a.size(), n) / a.max_load_factor() and a.bucket_count() >= n.Average case linear in a.size(), worst case quadratic. Make the corresponding change in the class synopses in 23.5.4 [unord.map], 23.5.5 [unord.multimap], 23.5.6 [unord.set], and 23.5.7 [unord.multiset].
In 23.2.5 [unord.req]/9, table 98, append a new row after the last one:
Table 87 — Unordered associative container requirements (in addition to container) Expression Return type Assertion/note pre-/post-condition Complexity a.rehash(n) void Post: a.bucket_count > a.size() / a.max_load_factor() and a.bucket_count() >= n. Average case linear in a.size(), worst case quadratic. a.reserve(n) void Same as a.rehash(ceil(n / a.max_load_factor())) Average case linear in a.size(), worst case quadratic. In 23.5.4 [unord.map]/3 in the definition of class template unordered_map, in 23.5.5 [unord.multimap]/3 in the definition of class template unordered_multimap, in 23.5.6 [unord.set]/3 in the definition of class template unordered_set and in 23.5.7 [unord.multiset]/3 in the definition of class template unordered_multiset, add the following line after member function rehash():
void reserve(size_type n);
[ 2009-10-28 Howard: ]
Moved to Tentatively Ready after 5 votes in favor of Ganesh's option 2 above. The original proposed wording now appears here:
Informally: instead of providing rehash(n) provide resize(n), with the semantics "make the container a good size for n elements".
In the unordered associative container requirements (23.2.5 [unord.req]), remove the row for rehash and replace it with:
Table 87 — Unordered associative container requirements (in addition to container) Expression Return type Assertion/note pre-/post-condition Complexity a. rehashresize(n)void Post: a.bucket_count > max(a.size(), n) / a.max_load_factor() and a.bucket_count() >= n.Average case linear in a.size(), worst case quadratic. Make the corresponding change in the class synopses in 23.5.4 [unord.map], 23.5.5 [unord.multimap], 23.5.6 [unord.set], and 23.5.7 [unord.multiset].
Proposed resolution:
In 23.2.5 [unord.req]/9, table 98, append a new row after the last one:
Table 87 — Unordered associative container requirements (in addition to container) Expression Return type Assertion/note pre-/post-condition Complexity a.rehash(n) void Post: a.bucket_count > a.size() / a.max_load_factor() and a.bucket_count() >= n. Average case linear in a.size(), worst case quadratic. a.reserve(n) void Same as a.rehash(ceil(n / a.max_load_factor())) Average case linear in a.size(), worst case quadratic.
In 23.5.4 [unord.map]/3 in the definition of class template unordered_map, in 23.5.5 [unord.multimap]/3 in the definition of class template unordered_multimap, in 23.5.6 [unord.set]/3 in the definition of class template unordered_set and in 23.5.7 [unord.multiset]/3 in the definition of class template unordered_multiset, add the following line after member function rehash():
void reserve(size_type n);
Section: 20.4.2.6 [tuple.elem] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-08-18 Last modified: 2015-04-08
View all other issues in [tuple.elem].
View all issues with C++11 status.
Discussion:
The tuple get API should respect rvalues. This would allow for moving a single element out of a tuple-like type.
[ 2009-10-30 Alisdair adds: ]
The issue of rvalue overloads of get for tuple-like types was briefly discussed in Santa Cruz.
The feedback was this would be welcome, but we need full wording for the other types (pair and array) before advancing.
I suggest the issue moves to Open from New as it has been considered, feedback given, and it has not (yet) been rejected as NAD.
[ 2010 Rapperswil: ]
Note that wording has been provided, and this issue becomes more important now that we have added a function to support forwarding argument lists as tuples. Move to Tentatively Ready.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Add the following signature to p2 20.4.1 [tuple.general]
template <size_t I, class ... Types> typename tuple_element<I, tuple<Types...> >::type&& get(tuple<Types...> &&);
And again to 20.4.2.6 [tuple.elem].
template <size_t I, class ... Types> typename tuple_element<I, tuple<Types...> >::type&& get(tuple<Types...>&& t);Effects: Equivalent to return std::forward<typename tuple_element<I, tuple<Types...> >::type&&>(get<I>(t));
[Note: If a T in Types is some reference type X&, the return type is X&, not X&&. However, if the element type is non-reference type T, the return type is T&&. — end note]
Add the following signature to p1 20.2 [utility]
template <size_t I, class T1, class T2> typename tuple_element<I, pair<T1,T2> >::type&& get(pair<T1, T2>&&);
And to p5 20.3.4 [pair.astuple]
template <size_t I, class T1, class T2> typename tuple_element<I, pair<T1,T2> >::type&& get(pair<T1, T2>&& p);Returns: If I == 0 returns std::forward<T1&&>(p.first); if I == 1 returns std::forward<T2&&>(p.second); otherwise the program is ill-formed.
Throws: Nothing.
Add the following signature to 23.3 [sequences] <array> synopsis
template <size_t I, class T, size_t N> T&& get(array<T,N> &&);
And after p8 23.3.2.9 [array.tuple]
template <size_t I, class T, size_t N> T&& get(array<T,N> && a);Effects: Equivalent to return std::move(get<I>(a));
Section: 21.4.3 [string.iterators] Status: C++11 Submitter: Jonathan Wakely Opened: 2009-08-14 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Unlike the containers in clause 23, basic_string has definitions for begin() and end(), but these have not been updated to include cbegin, cend, crbegin and crend.
[ 2009-10-28 Howard: ]
Moved to Tentatively NAD after 5 positive votes on c++std-lib. Added rationale.
[ 2009-10-28 Alisdair disagrees: ]
I'm going to have to speak up as the dissenting voice.
I agree the issue could be handled editorially, and that would be my preference if Pete feels this is appropriate. Failing that, I really think this issue should be accepted and moved to ready. The other begin/end functions all have a semantic definition for this template, and it is confusing if a small few are missing.
I agree that an alternative would be to strike all the definitions for begin/end/rbegin/rend and defer completely to the requirements tables in clause 23. I think that might be confusing without a forward reference though, as those tables are defined in a later clause than the basic_string template itself. If someone wants to pursue this I would support it, but recommend it as a separate issue.
So my preference is strongly to move Ready over NAD, and a stronger preference for NAD Editorial if Pete is happy to make these changes.
[ 2009-10-29 Howard: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib. Removed rationale to mark it NAD. :-)
Proposed resolution:
Add to 21.4.3 [string.iterators]
iterator begin(); const_iterator begin() const; const_iterator cbegin() const;...
iterator end(); const_iterator end() const; const_iterator cend() const;...
reverse_iterator rbegin(); const_reverse_iterator rbegin() const; const_reverse_iterator crbegin() const;...
reverse_iterator rend(); const_reverse_iterator rend() const; const_reverse_iterator crend() const;
Section: 20.8.1.1 [unique.ptr.dltr] Status: C++11 Submitter: Daniel Krügler Opened: 2009-08-18 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
According to the general rules of 17.6.4.8 [res.on.functions] p 2 b 5 the effects are undefined, if an incomplete type is used to instantiate a library template. But neither in 20.8.1.1 [unique.ptr.dltr] nor in any other place of the standard such explicit allowance is given. Since this template is intended to be instantiated with incomplete types, this must be fixed.
[ 2009-11-15 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2009-11-17 Alisdair Opens: ]
LWG 1193 tries to support unique_ptr for incomplete types. I believe the proposed wording goes too far:
The template parameter T of default_delete may be an incomplete type.
Do we really want to support cv-void? Suggested ammendment:
The template parameter T of default_delete may be an incomplete type other than cv-void.
We might also consider saying something about arrays of incomplete types.
Did we lose support for unique_ptr<function-type> when the concept-enabled work was shelved? If so, we might want a default_delete partial specialization for function types that does nothing. Alternatively, function types should not be supported by default, but there is no reason a user cannot support them via their own deletion policy.
Function-type support might also lead to conditionally supporting a function-call operator in the general case, and that seems way too inventive at this stage to me, even if we could largely steal wording directly from reference_wrapper. shared_ptr would have similar problems too.
[ 2010-01-24 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Add two new paragraphs directly to 20.8.1.1 [unique.ptr.dltr] (before 20.8.1.1.2 [unique.ptr.dltr.dflt]) with the following content:
The class template default_delete serves as the default deleter (destruction policy) for the class template unique_ptr.
The template parameter T of default_delete may be an incomplete type.
Section: 23.6 [container.adaptors] Status: C++11 Submitter: Howard Hinnant Opened: 2009-08-20 Last modified: 2015-04-08
View all other issues in [container.adaptors].
View all issues with C++11 status.
Discussion:
23.6.3.1 [queue.defn] has the following queue constructor:
template <class Alloc> explicit queue(const Alloc&);
This will be implemented like so:
template <class Alloc> explicit queue(const Alloc& a) : c(a) {}
The issue is that Alloc can be anything that a container will construct from, for example an int. Is this intended to compile?
queue<int> q(5);
Before the addition of this constructor, queue<int>(5) would not compile. I ask, not because this crashes, but because it is new and appears to be unintended. We do not want to be in a position of accidently introducing this "feature" in C++0X and later attempting to remove it.
I've picked on queue. priority_queue and stack have the same issue. Is it useful to create a priority_queue of 5 identical elements?
[ Daniel, Howard and Pablo collaborated on the proposed wording. ]
[ 2009-10 Santa Cruz: ]
Move to Ready.
Proposed resolution:
[ This resolution includes a semi-editorial clean up, giving definitions to members which in some cases weren't defined since C++98. This resolution also offers editorially different wording for 976, and it also provides wording for 1196. ]
Change container.adaptors, p1:
The container adaptors each take a Container template parameter, and each constructor takes a Container reference argument. This container is copied into the Container member of each adaptor. If the container takes an allocator, then a compatible allocator may be passed in to the adaptor's constructor. Otherwise, normal copy or move construction is used for the container argument.
[Note: it is not necessary for an implementation to distinguish between the one-argument constructor that takes a Container and the one- argument constructor that takes an allocator_type. Both forms use their argument to construct an instance of the container. — end note]
Change queue.defn, p1:
template <class T, class Container = deque<T> > class queue { public: typedef typename Container::value_type value_type; typedef typename Container::reference reference; typedef typename Container::const_reference const_reference; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; public: explicit queue(const Container&); explicit queue(Container&& = Container()); queue(queue&& q);: c(std::move(q.c)) {}template <class Alloc> explicit queue(const Alloc&); template <class Alloc> queue(const Container&, const Alloc&); template <class Alloc> queue(Container&&, const Alloc&); template <class Alloc> queue(queue&&, const Alloc&); queue& operator=(queue&& q);{ c = std::move(q.c); return *this; }bool empty() const { return c.empty(); } ... };
Add a new section after 23.6.3.1 [queue.defn], [queue.cons]:
queue constructors [queue.cons]
explicit queue(const Container& cont);Effects: Initializes c with cont.
explicit queue(Container&& cont = Container());Effects: Initializes c with std::move(cont).
queue(queue&& q)Effects: Initializes c with std::move(q.c).
For each of the following constructors, if uses_allocator<container_type, Alloc>::value is false, then the constructor shall not participate in overload resolution.
template <class Alloc> explicit queue(const Alloc& a);Effects: Initializes c with a.
template <class Alloc> queue(const container_type& cont, const Alloc& a);Effects: Initializes c with cont as the first argument and a as the second argument.
template <class Alloc> queue(container_type&& cont, const Alloc& a);Effects: Initializes c with std::move(cont) as the first argument and a as the second argument.
template <class Alloc> queue(queue&& q, const Alloc& a);Effects: Initializes c with std::move(q.c) as the first argument and a as the second argument.
queue& operator=(queue&& q);Effects: Assigns c with std::move(q.c).
Returns: *this.
Add to 23.6.4.1 [priqueue.cons]:
priority_queue(priority_queue&& q);Effects: Initializes c with std::move(q.c) and initializes comp with std::move(q.comp).
For each of the following constructors, if uses_allocator<container_type, Alloc>::value is false, then the constructor shall not participate in overload resolution.
template <class Alloc> explicit priority_queue(const Alloc& a);Effects: Initializes c with a and value-initializes comp.
template <class Alloc> priority_queue(const Compare& compare, const Alloc& a);Effects: Initializes c with a and initializes comp with compare.
template <class Alloc> priority_queue(const Compare& compare, const Container& cont, const Alloc& a);Effects: Initializes c with cont as the first argument and a as the second argument, and initializes comp with compare.
template <class Alloc> priority_queue(const Compare& compare, Container&& cont, const Alloc& a);Effects: Initializes c with std::move(cont) as the first argument and a as the second argument, and initializes comp with compare.
template <class Alloc> priority_queue(priority_queue&& q, const Alloc& a);Effects: Initializes c with std::move(q.c) as the first argument and a as the second argument, and initializes comp with std::move(q.comp).
priority_queue& operator=(priority_queue&& q);Effects: Assigns c with std::move(q.c) and assigns comp with std::move(q.comp).
Returns: *this.
Change 23.6.5.2 [stack.defn]:
template <class T, class Container = deque<T> > class stack { public: typedef typename Container::value_type value_type; typedef typename Container::reference reference; typedef typename Container::const_reference const_reference; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; public: explicit stack(const Container&); explicit stack(Container&& = Container()); stack(stack&& s); template <class Alloc> explicit stack(const Alloc&); template <class Alloc> stack(const Container&, const Alloc&); template <class Alloc> stack(Container&&, const Alloc&); template <class Alloc> stack(stack&&, const Alloc&); stack& operator=(stack&& s); bool empty() const { return c.empty(); } ... };
Add a new section after 23.6.5.2 [stack.defn], [stack.cons]:
stack constructors [stack.cons]
stack(stack&& s);Effects: Initializes c with std::move(s.c).
For each of the following constructors, if uses_allocator<container_type, Alloc>::value is false, then the constructor shall not participate in overload resolution.
template <class Alloc> explicit stack(const Alloc& a);Effects: Initializes c with a.
template <class Alloc> stack(const container_type& cont, const Alloc& a);Effects: Initializes c with cont as the first argument and a as the second argument.
template <class Alloc> stack(container_type&& cont, const Alloc& a);Effects: Initializes c with std::move(cont) as the first argument and a as the second argument.
template <class Alloc> stack(stack&& s, const Alloc& a);Effects: Initializes c with std::move(s.c) as the first argument and a as the second argument.
stack& operator=(stack&& s);Effects: Assigns c with std::move(s.c).
Returns: *this.
Section: 17 [library] Status: C++11 Submitter: Daniel Krügler Opened: 2009-08-18 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with C++11 status.
Discussion:
Several parts of the library use the notion of "Diagnostic required" to indicate that in the corresponding situation an error diagnostic should occur, e.g. 20.8.1.1.2 [unique.ptr.dltr.dflt]/2
void operator()(T *ptr) const;Effects: calls delete on ptr. A diagnostic is required if T is an incomplete type.
The problem with this approach is that such a requirement is insufficient to prevent undefined behavior, if this situation occurs. According to 1.3 [defns.diagnostic] a diagnostic message is defined as
a message belonging to an implementation-defined subset of the implementation's output messages.
which doesn't indicate any relation to an ill-formed program. In fact, "compiler warnings" are a typical expression of such diagnostics. This means that above wording can be interpreted by compiler writers that they satisfy the requirements of the standard if they just produce such a "warning", if the compiler happens to compile code like this:
#include <memory> struct Ukn; // defined somewhere else Ukn* create_ukn(); // defined somewhere else int main() { std::default_delete<Ukn>()(create_ukn()); }
In this and other examples discussed here it was the authors intent to guarantee that the program is ill-formed with a required diagnostic, therefore such wording should be used instead. According to the general rules outlined in 1.4 [intro.compliance] it should be sufficient to require that these situations produce an ill-formed program and the "diagnostic required" part should be implied. The proposed resolution also suggests to remove several redundant wording of "Diagnostics required" to ensure that the absence of such saying does not cause a misleading interpretation.
[ 2009 Santa Cruz: ]
Move to NAD.
It's not clear that there's any important difference between "ill-formed" and "diagnostic required". From 1.4 [intro.compliance], 1.3 [defns.ill.formed], and 1.3 [defns.well.formed] it appears that an ill-formed program is one that is not correctly constructed according to the syntax rules and diagnosable semantic rules, which means that... "a conforming implementation shall issue at least one diagnostic message." The author's intent seems to be that we should be requiring a fatal error instead of a mere warning, but the standard just doesn't have language to express that distinction. The strongest thing we can ever require is a "diagnostic".
The proposed rewording may be a clearer way of expressing the same thing that the WP already says, but such a rewording is editorial.
[ 2009 Santa Cruz: ]
Considered again. Group disagrees that the change is technical, but likes it editorially. Moved to NAD Editorial.
[ 2009-11-19: Moved from NAD Editorial to Open. Please see the thread starting with Message c++std-lib-25916. ]
[ 2009-11-20 Daniel updated wording. ]
The following resolution differs from the previous one by avoiding the unusual and misleading term "shall be ill-formed", which does also not follow the core language style. This resolution has the advantage of a minimum impact on the current wording, but I would like to mention that a more intrusive solution might be preferrable - at least as a long-term solution: Jens Maurer suggested the following approach to get rid of the usage of the term "ill-formed" from the library by introducing a new category to existing elements to the list of 17.5.1.4 [structure.specifications]/3, e.g. "type requirements" or "static constraints" that define conditions that can be checked during compile-time and any violation would make the program ill-formed. As an example, the currently existing phrase 20.4.2.5 [tuple.helper]/1
Requires: I < sizeof...(Types). The program is ill-formed if I is out of bounds.
could then be written as
Static constraints: I < sizeof...(Types).
[ 2009-11-21 Daniel updated wording. ]
[ 2009-11-22 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 20.11 [ratio]/2 as indicated:
Throughout this subclause, if the template argument types R1 and R2
shall beare not specializations of the ratio template, the program is ill-formed.Diagnostic required.
Change 20.11.3 [ratio.ratio]/1 as indicated:
If tThe template argument D shall not
be is zero, and or the absolute values of
the template arguments N and D shall be are
not representable by type intmax_t, the program is
ill-formed. Diagnostic required. [..]
Change 20.11.4 [ratio.arithmetic]/1 as indicated:
Implementations may use other algorithms to compute these values. If overflow occurs, the program is ill-formed
a diagnostic shall be issued.
Change 20.11.5 [ratio.comparison]/2 as indicated:
[...] Implementations may use other algorithms to compute this relationship to avoid overflow. If overflow occurs, the program is ill-formed
a diagnostic is required.
Change 20.8.1.1.2 [unique.ptr.dltr.dflt]/2 as indicated:
Effects: calls delete on ptr.
A diagnostic is required if T is an incomplete type.Remarks: If T is an incomplete type, the program is ill-formed.
Change 20.8.1.1.3 [unique.ptr.dltr.dflt1]/1 as indicated:
void operator()(T* ptr) const;Effects:
operator()calls delete[] on ptr.A diagnostic is required if T is an incomplete type.Remarks: If T is an incomplete type, the program is ill-formed.
Change 20.8.1.2.1 [unique.ptr.single.ctor] as indicated: [Note: This editorially improves the currently suggested wording of 932 by replacing
"shall be ill-formed" by "is ill-formed"]
[If N3025 is accepted this bullet is applied identically in that paper as well.]
-1- Requires: D shall be default constructible, and that construction shall not throw an exception.
D shall not be a reference type or pointer type (diagnostic required)....
Remarks: If this constructor is instantiated with a pointer type or reference type for the template argument D, the program is ill-formed.
Change 20.8.1.2.1 [unique.ptr.single.ctor]/8 as indicated: [Note: This editorially improves the currently suggested wording of 932 by replacing
"shall be ill-formed" by "is ill-formed"]
[If N3025 is accepted this bullet is applied identically in that paper as well.]
unique_ptr(pointer p);...
Remarks: If this constructor is instantiated with a pointer type or reference type for the template argument D, the program is ill-formed.
Change 20.8.1.2.1 [unique.ptr.single.ctor]/13 as indicated:
[..] If d is an rvalue, it will bind to the second constructor of this pair and the program is ill-formed.
That constructor shall emit a diagnostic.[Note: The diagnostic could be implemented using a static_assert which assures that D is not a reference type. — end note] Else d is an lvalue and will bind to the first constructor of this pair. [..]
Change 20.8.1.3 [unique.ptr.runtime]/1 as indicated:
A specialization for array types is provided with a slightly altered interface.
- Conversions among different types of unique_ptr<T[], D> or to or from the non-array forms of unique_ptr
are disallowed (diagnostic required)produce an ill-formed program.- ...
Change 20.12.5 [time.duration]/2-4 as indicated:
2 Requires: Rep shall be an arithmetic type or a class emulating an arithmetic type.
If a program instantiates duration with a duration type for the template argument Rep a diagnostic is required.3 Remarks: If duration is instantiated with a duration type for the template argument Rep, the program is ill-formed.
34RequiresRemarks: If Periodshall beis not a specialization of ratio,diagnostic requiredthe program is ill-formed.
45RequiresRemarks: If Period::numshall beis not positive,diagnostic requiredthe program is ill-formed.
Change 20.12.6 [time.point]/2 as indicated:
If Duration
shall beis not an instance of duration, the program is ill-formed.Diagnostic required.
Section: 23.6.4.1 [priqueue.cons] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-08-19 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
The class template priority_queue declares signatures for a move constructor and move assignment operator in its class definition. However, it does not provide a definition (unlike std::queue, and proposed resolution for std::stack.) Nor does it provide a text clause specifying their behaviour.
[ 2009-08-23 Daniel adds: ]
1194 provides wording that solves this issue.
[ 2009-10 Santa Cruz: ]
Mark
NAD EditorialResolved, solved by issue 1194.
Proposed resolution:
Section: 23.2.5 [unord.req] Status: C++11 Submitter: Howard Hinnant Opened: 2009-08-24 Last modified: 2015-04-08
View other active issues in [unord.req].
View all other issues in [unord.req].
View all issues with C++11 status.
Discussion:
Table 97 "Unordered associative container requirements" in 23.2.5 [unord.req] says:
Table 97 — Unordered associative container requirements (in addition to container) Expression Return type Assertion/note pre-/post-condition Complexity b.bucket(k) size_type Returns the index of the bucket in which elements with keys equivalent to k would be found, if any such element existed. Post: the return value shall be in the range [0, b.bucket_count()). Constant
What should b.bucket(k) return if b.bucket_count() == 0?
I believe allowing b.bucket_count() == 0 is important. It is a very reasonable post-condition of the default constructor, or of a moved-from container.
I can think of several reasonable results from b.bucket(k) when b.bucket_count() == 0:
[ 2009-08-26 Daniel adds: ]
A forth choice would be to add the pre-condition "b.bucket_count() != 0" and thus imply undefined behavior if this is violated.
[ Howard: I like this option too, added to the list. ]
Further on here my own favorite solution (rationale see below):
Suggested resolution:
[Rationale: I suggest to follow choice (1). The main reason is that all associative container functions which take a key argument, are basically free of pre-conditions and non-disrupting, therefore excluding choices (3) and (4). Option (2) seems a bit unexpected to me. It would be more natural, if several similar functions would exist which would also justify the existence of a symbolic constant like npos for this situation. The value 0 is both simple and consistent, it has exactly the same role as a past-the-end iterator value. A typical use-case is:
size_type pos = m.bucket(key); if (pos != m.bucket_count()) { ... } else { ... }— end Rationale]
- Change Table 97 in 23.2.5 [unord.req] as follows (Row b.bucket(k), Column "Assertion/..."):
Table 97 — Unordered associative container requirements (in addition to container) Expression Return type Assertion/note pre-/post-condition Complexity b.bucket(k) size_type Returns the index of the bucket in which elements with keys equivalent to k would be found, if any such element existed. Post: if b.bucket_count() != 0, the return value shall be in the range [0, b.bucket_count()), otherwise 0. Constant
[ 2010-01-25 Choice 4 put into proposed resolution section. ]
[ 2010-01-31 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change Table 97 in 23.2.5 [unord.req] as follows (Row b.bucket(k), Column "Assertion/..."):
Table 97 — Unordered associative container requirements (in addition to container) Expression Return type Assertion/note pre-/post-condition Complexity b.bucket(k) size_type Pre: b.bucket_count() > 0 Returns the index of the bucket in which elements with keys equivalent to k would be found, if any such element existed. Post: the return value shall be in the range [0, b.bucket_count()). Constant
Section: 23.6 [container.adaptors] Status: C++11 Submitter: Pablo Halpern Opened: 2009-08-26 Last modified: 2015-04-08
View all other issues in [container.adaptors].
View all issues with C++11 status.
Discussion:
Under 23.6 [container.adaptors] of N2914 the member function of swap of queue and stack call:
swap(c, q.c);
But under 23.6 [container.adaptors] of N2723 these members are specified to call:
c.swap(q.c);
Neither draft specifies the semantics of member swap for priority_queue though it is declared.
Although the distinction between member swap and non-member swap is not important when these adaptors are adapting standard containers, it may be important for user-defined containers.
We (Pablo and Howard) feel that it is more likely for a user-defined container to support a namespace scope swap than a member swap, and therefore these adaptors should use the container's namespace scope swap.
[ 2009-09-30 Daniel adds: ]
The outcome of this issue should be considered with the outcome of 774 both in style and in content (e.g. 774 bullet 9 suggests to define the semantic of void priority_queue::swap(priority_queue&) in terms of the member swap of the container).
[ 2010-03-28 Daniel update to diff against N3092. ]
[ 2010 Rapperswil: ]
Preference to move the wording into normative text, rather than inline function definitions in the class synopsis. Move to Tenatively Ready.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 23.6.3.1 [queue.defn]:
template <class T, class Container = deque<T> > class queue { ... void swap(queue& q) { using std::swap;c.swap(c, q.c); } ... };
Change 23.6.4 [priority.queue]:
template <class T, class Container = vector<T>, class Compare = less<typename Container::value_type> > class priority_queue { ... void swap(priority_queue& q);{ using std::swap; swap(c, q.c); swap(comp, q.comp); } ... };
Change 23.6.5.2 [stack.defn]:
template <class T, class Container = deque<T> > class stack { ... void swap(stack& s) { using std::swap;c.swap(c, s.c); } ... };
Section: 23.6 [container.adaptors] Status: C++11 Submitter: Pablo Halpern Opened: 2009-08-26 Last modified: 2015-04-08
View all other issues in [container.adaptors].
View all issues with C++11 status.
Discussion:
queue has a constructor:
template <class Alloc> queue(queue&&, const Alloc&);
but it is missing a corresponding constructor:
template <class Alloc> queue(const queue&, const Alloc&);
The same is true of priority_queue, and stack. This "extended copy constructor" is needed for consistency and to ensure that the user of a container adaptor can always specify the allocator for his adaptor.
[ 2010-02-01 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
[ This resolution has been harmonized with the proposed resolution to issue 1194 ]
Change 23.6.3.1 [queue.defn], p1:
template <class T, class Container = deque<T> > class queue { public: typedef typename Container::value_type value_type; typedef typename Container::reference reference; typedef typename Container::const_reference const_reference; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; public: explicit queue(const Container&); explicit queue(Container&& = Container()); queue(queue&& q); template <class Alloc> explicit queue(const Alloc&); template <class Alloc> queue(const Container&, const Alloc&); template <class Alloc> queue(Container&&, const Alloc&); template <class Alloc> queue(const queue&, const Alloc&); template <class Alloc> queue(queue&&, const Alloc&); queue& operator=(queue&& q); bool empty() const { return c.empty(); } ... };
To the new section 23.6.3.2 [queue.cons], introduced in 1194, add:
template <class Alloc> queue(const queue& q, const Alloc& a);Effects: Initializes c with q.c as the first argument and a as the second argument.
Change 23.6.4 [priority.queue] as follows (I've an included an editorial change to move the poorly-placed move-assignment operator):
template <class T, class Container = vector<T>, class Compare = less<typename Container::value_type> > class priority_queue { public: typedef typename Container::value_type value_type; typedef typename Container::reference reference; typedef typename Container::const_reference const_reference; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; Compare comp; public: priority_queue(const Compare& x, const Container&); explicit priority_queue(const Compare& x = Compare(), Container&& = Container()); template <class InputIterator> priority_queue(InputIterator first, InputIterator last, const Compare& x, const Container&); template <class InputIterator> priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare(), Container&& = Container()); priority_queue(priority_queue&&);priority_queue& operator=(priority_queue&&);template <class Alloc> explicit priority_queue(const Alloc&); template <class Alloc> priority_queue(const Compare&, const Alloc&); template <class Alloc> priority_queue(const Compare&, const Container&, const Alloc&); template <class Alloc> priority_queue(const Compare&, Container&&, const Alloc&); template <class Alloc> priority_queue(const priority_queue&, const Alloc&); template <class Alloc> priority_queue(priority_queue&&, const Alloc&); priority_queue& operator=(priority_queue&&); ... };
Add to 23.6.4.1 [priqueue.cons]:
template <class Alloc> priority_queue(const priority_queue& q, const Alloc& a);Effects: Initializes c with q.c as the first argument and a as the second argument, and initializes comp with q.comp.
Change 23.6.5.2 [stack.defn]:
template <class T, class Container = deque<T> > class stack { public: typedef typename Container::value_type value_type; typedef typename Container::reference reference; typedef typename Container::const_reference const_reference; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; public: explicit stack(const Container&); explicit stack(Container&& = Container()); stack(stack&& s); template <class Alloc> explicit stack(const Alloc&); template <class Alloc> stack(const Container&, const Alloc&); template <class Alloc> stack(Container&&, const Alloc&); template <class Alloc> stack(const stack&, const Alloc&); template <class Alloc> stack(stack&&, const Alloc&); stack& operator=(stack&& s); bool empty() const { return c.empty(); } ... };
To the new section 23.6.5.3 [stack.cons], introduced in 1194, add:
template <class Alloc> stack(const stack& s, const Alloc& a);Effects: Initializes c with s.c as the first argument and a as the second argument.
Section: 17.6.4.9 [res.on.arguments] Status: C++11 Submitter: Howard Hinnant Opened: 2009-09-12 Last modified: 2015-04-08
View all other issues in [res.on.arguments].
View all issues with C++11 status.
Discussion:
When a library function binds an rvalue reference parameter to an argument, the library must be able to assume that the bound argument is a temporary, and not a moved-from lvalue. The reason for this is that the library function must be able to modify that argument without concern that such modifications will corrupt the logic of the calling code. For example:
template <class T, class A> void vector<T, A>::push_back(value_type&& v) { // This function should move from v, potentially modifying // the object v is bound to. }
If v is truly bound to a temporary, then push_back has the only reference to this temporary in the entire program. Thus any modifications will be invisible to the rest of the program.
If the client supplies std::move(x) to push_back, the onus is on the client to ensure that the value of x is no longer important to the logic of his program after this statement. I.e. the client is making a statement that push_back may treat x as a temporary.
The above statement is the very foundation upon which move semantics is based.
The standard is currently lacking a global statement to this effect. I propose the following addition to 17.6.4.9 [res.on.arguments]:
Each of the following statements applies to all arguments to functions defined in the C++ standard library, unless explicitly stated otherwise.
- If an argument to a function has an invalid value (such as a value outside the domain of the function, or a pointer invalid for its intended use), the behavior is undefined.
- If a function argument is described as being an array, the pointer actually passed to the function shall have a value such that all address computations and accesses to objects (that would be valid if the pointer did point to the first element of such an array) are in fact valid.
- If a function argument binds to an rvalue reference parameter, the C++ standard library may assume that this parameter is a unique reference to this argument. If the parameter is a generic parameter of the form T&&, and an lvalue of type A is bound, then the binding is considered to be to an lvalue reference (14.8.2.1 [temp.deduct.call]) and thus not covered by this clause. [Note: If a program casts an lvalue to an rvalue while passing that lvalue to a library function (e.g. move(x)), then the program is effectively asking the library to treat that lvalue as a temporary. The library is at liberty to optimize away aliasing checks which might be needed if the argument were an lvalue. — end note]
Such a global statement will eliminate the need for piecemeal statements such as 23.2.1 [container.requirements.general]/13:
An object bound to an rvalue reference parameter of a member function of a container shall not be an element of that container; no diagnostic required.
Additionally this clarifies that move assignment operators need not perform the traditional if (this != &rhs) test commonly found (and needed) in copy assignment operators.
[ 2009-09-13 Niels adds: ]
Note: This resolution supports the change of 27.9.1.3 [filebuf.assign]/1, proposed by LWG 900.
[ 2009 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Add a bullet to 17.6.4.9 [res.on.arguments]:
Each of the following statements applies to all arguments to functions defined in the C++ standard library, unless explicitly stated otherwise.
- If an argument to a function has an invalid value (such as a value outside the domain of the function, or a pointer invalid for its intended use), the behavior is undefined.
- If a function argument is described as being an array, the pointer actually passed to the function shall have a value such that all address computations and accesses to objects (that would be valid if the pointer did point to the first element of such an array) are in fact valid.
- If a function argument binds to an rvalue reference parameter, the C++ standard library may assume that this parameter is a unique reference to this argument. If the parameter is a generic parameter of the form T&&, and an lvalue of type A is bound, then the binding is considered to be to an lvalue reference (14.8.2.1 [temp.deduct.call]) and thus not covered by this clause. [Note: If a program casts an lvalue to an rvalue while passing that lvalue to a library function (e.g. move(x)), then the program is effectively asking the library to treat that lvalue as a temporary. The library is at liberty to optimize away aliasing checks which might be needed if the argument were an lvalue. — end note]
Delete 23.2.1 [container.requirements.general]/13:
An object bound to an rvalue reference parameter of a member function of a container shall not be an element of that container; no diagnostic required.
Section: 25 [algorithms] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-09-13 Last modified: 2015-04-08
View other active issues in [algorithms].
View all other issues in [algorithms].
View all issues with C++11 status.
Discussion:
There are a number of algorithms whose result might depend on the handling of an empty range. In some cases the result is not clear, while in others it would help readers to clearly mention the result rather than require some subtle intuition of the supplied wording.
25.2.1 [alg.all_of]
Returns: true if pred(*i) is true for every iterator i in the range [first,last), ...
What does this mean if the range is empty?
I believe that we intend this to be true and suggest a non-normative note to clarify:
Add to p1 25.2.1 [alg.all_of]:
[Note: Returns true if [first,last) is empty. — end note]
25.2.3 [alg.none_of]
Returns: true if pred(*i) is false for every iterator i in the range [first,last), ...
What does this mean if the range empty?
I believe that we intend this to be true and suggest a non-normative note to clarify:
Add to p1 25.2.3 [alg.none_of]:
[Note: Returns true if [first,last) is empty. — end note]
25.2.2 [alg.any_of]
The specification for an empty range is actually fairly clear in this case, but a note wouldn't hurt and would be consistent with proposals for all_of/none_of algorithms.
Add to p1 25.2.2 [alg.any_of]:
[Note: Returns false if [first,last) is empty. — end note]
25.2.6 [alg.find.end]
what does this mean if [first2,last2) is empty?
I believe the wording suggests the algorithm should return last1 in this case, but am not 100% sure. Is this in fact the correct result anyway? Surely an empty range should always match and the naive expected result would be first1?
My proposed wording is a note to clarify the current semantic:
Add to p2 25.2.6 [alg.find.end]:
[Note: Returns last1 if [first2,last2) is empty. — end note]
I would prefer a normative wording treating empty ranges specially, but do not believe we can change semantics at this point in the process, unless existing implementations actually yield this result:
Alternative wording: (NOT a note)
Add to p2 25.2.6 [alg.find.end]:
Returns first1 if [first2,last2) is empty.
25.2.7 [alg.find.first.of]
The phrasing seems precise when [first2, last2) is empty, but a small note to confirm the reader's understanding might still help.
Add to p2 25.2.7 [alg.find.first.of]
[Note: Returns last1 if [first2,last2) is empty. — end note]
25.2.13 [alg.search]
What is the expected result if [first2, last2) is empty?
I believe the wording suggests the algorithm should return last1 in this case, but am not 100% sure. Is this in fact the correct result anyway? Surely an empty range should always match and the naive expected result would be first1?
My proposed wording is a note to clarify the current semantic:
Add to p2 25.2.13 [alg.search]:
[Note: Returns last1 if [first2,last2) is empty. — end note]
Again, I would prefer a normative wording treating empty ranges specially, but do not believe we can change semantics at this point in the process, unless existing implementations actually yield this result:
Alternative wording: (NOT a note)
Add to p2 25.2.13 [alg.search]:
Returns first1 if [first2,last2) is empty.
25.3.13 [alg.partitions]
Is an empty range partitioned or not?
Proposed wording:
Add to p1 25.3.13 [alg.partitions]:
[Note: Returns true if [first,last) is empty. — end note]
25.4.5.1 [includes]
Returns: true if every element in the range [first2,last2) is contained in the range [first1,last1). ...
I really don't know what this means if [first2,last2) is empty. I could loosely guess that this implies empty ranges always match, and my proposed wording is to clarify exactly that:
Add to p1 25.4.5.1 [includes]:
[Note: Returns true if [first2,last2) is empty. — end note]
25.4.6.2 [pop.heap]
The effects clause is invalid if the range [first,last) is empty, unlike all the other heap alogorithms. The should be called out in the requirements.
Proposed wording:
Revise p2 25.4.6.2 [pop.heap]
Requires: The range [first,last) shall be a valid non-empty heap.
[Editorial] Reverse order of 25.4.6.2 [pop.heap] p1 and p2.
25.4.7 [alg.min.max]
minmax_element does not clearly specify behaviour for an empty range in the same way that min_element and max_element do.
Add to p31 25.4.7 [alg.min.max]:
Returns make_pair(first, first) if first == last.
25.4.8 [alg.lex.comparison]
The wording here seems quite clear, especially with the sample algorithm implementation. A note is recommended purely for consistency with the rest of these issue resolutions:
Add to p1 25.4.8 [alg.lex.comparison]:
[Note: An empty sequence is lexicographically less than any other non-empty sequence, but not to another empty sequence. — end note]
[ 2009-11-11 Howard changes Notes to Remarks and changed search to return first1 instead of last1. ]
[ 2009-11-11 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Add to 25.2.1 [alg.all_of]:
Remarks: Returns true if [first,last) is empty.
Add to 25.2.2 [alg.any_of]:
Remarks: Returns false if [first,last) is empty.
Add to 25.2.3 [alg.none_of]:
Remarks: Returns true if [first,last) is empty.
Add to 25.2.6 [alg.find.end]:
Remarks: Returns last1 if [first2,last2) is empty.
Add to 25.2.7 [alg.find.first.of]
Remarks: Returns last1 if [first2,last2) is empty.
Add to 25.2.13 [alg.search]:
Remarks: Returns first1 if [first2,last2) is empty.
Add to 25.3.13 [alg.partitions]:
Remarks: Returns true if [first,last) is empty.
Add to 25.4.5.1 [includes]:
Remarks: Returns true if [first2,last2) is empty.
Revise p2 25.4.6.2 [pop.heap]
Requires: The range [first,last) shall be a valid non-empty heap.
[Editorial]
Reverse order of 25.4.6.2 [pop.heap] p1 and p2.
Add to p35 25.4.7 [alg.min.max]:
template<class ForwardIterator, class Compare> pair<ForwardIterator, ForwardIterator> minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);Returns: make_pair(m, M), where m is the first iterator in [first,last) such that no iterator in the range refers to a smaller element, and where M is the last iterator in [first,last) such that no iterator in the range refers to a larger element. Returns make_pair(first, first) if first == last.
Add to 25.4.8 [alg.lex.comparison]:
Remarks: An empty sequence is lexicographically less than any other non-empty sequence, but not less than another empty sequence.
Section: 25.3.2 [alg.move] Status: C++11 Submitter: Howard Hinnant Opened: 2009-09-13 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
25.3.2 [alg.move], p6 says:
template<class BidirectionalIterator1, class BidirectionalIterator2> BidirectionalIterator2 move_backward(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result);...
Requires: result shall not be in the range [first,last).
This is essentially an "off-by-one" error.
When result == last, which is allowed by this specification, then the range [first, last) is being move assigned into the range [first, last). The move (forward) algorithm doesn't allow self move assignment, and neither should move_backward. So last should be included in the range which result can not be in.
Conversely, when result == first, which is not allowed by this specification, then the range [first, last) is being move assigned into the range [first - (last-first), first). I.e. into a non-overlapping range. Therefore first should not be included in the range which result can not be in.
The same argument applies to copy_backward though copy assigning elements to themselves (result == last) should be harmless (though is disallowed by copy).
[ 2010 Pittsburgh: Moved to Ready. ]
Proposed resolution:
Change 25.3.2 [alg.move], p6:
template<class BidirectionalIterator1, class BidirectionalIterator2> BidirectionalIterator2 move_backward(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result);...
Requires: result shall not be in the range
[(first,last]).
Change 25.3.1 [alg.copy], p13:
template<class BidirectionalIterator1, class BidirectionalIterator2> BidirectionalIterator2 copy_backward(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result);...
Requires: result shall not be in the range
[(first,last]).
Section: 23.3.5.5 [list.ops] Status: C++11 Submitter: Loïc Joly Opened: 2009-09-13 Last modified: 2015-04-08
View all other issues in [list.ops].
View all issues with C++11 status.
Discussion:
It looks to me like some operations of std::list (sort, reverse, remove, unique & merge) do not specify the validity of iterators, pointers & references to elements of the list after those operations. Is it implied by some other text in the standard?
I believe sort & reverse do not invalidating anything, remove & unique only invalidates what refers to erased elements, merge does not invalidate anything (with the same precision as splice for elements who changed of container). Are those assumptions correct ?
[ 2009-12-08 Jonathan Wakely adds: ]
23.2.1 [container.requirements.general] paragraph 11 says iterators aren't invalidated unless specified, so I don't think it needs to be repeated on every function that doesn't invalidate iterators. list::unique says it "eliminates" elements, that should probably be "erases" because IMHO that term is used elsewhere and so makes it clearer that iterators to the erased elements are invalidated.
list::merge coud use the same wording as list::splice w.r.t iterators and references to moved elements.
Suggested resolution:
In 23.3.5.5 [list.ops] change paragraph 19
void unique(); template <class BinaryPredicate> void unique(BinaryPredicate binary_pred);Effects:
EliminatesErases all but the first element from every consecutive group ...Add to the end of paragraph 23
void merge(list<T,Allocator>&& x); template <class Compare> void merge(list<T,Allocator>&& x, Compare comp);...
Effects: ... that is, for every iterator i, in the range other than the first, the condition comp(*i, *(i - 1) will be false. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
[ 2009-12-12 Loïc adds wording. ]
[ 2010-02-10 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-02-10 Alisdair opens: ]
I object to the current resolution of #1207. I believe it is overly strict with regard to list end iterators, being the only mutating operations to require such stability.
More importantly, the same edits need to be applied to forward_list, which uses slightly different words to describe some of these operations so may require subtly different edits (not checked.)
I am prepared to pick up the end() iterator as a separate (new) issue, as part of the FCD ballot review (BSI might tell me 'no' first ;~) but I do want to see forward_list adjusted at the same time.
[ 2010-03-28 Daniel adds the first 5 bullets in an attempt to address Alisdair's concerns. ]
[ 2010 Rapperswil: ]
The wording looks good. Move to Tentatively Ready.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 23.3.4.6 [forwardlist.ops]/12 as indicated:
void remove(const T& value); template <class Predicate> void remove_if(Predicate pred);12 Effects: Erases all the elements in the list referred by a list iterator i for which the following conditions hold: *i == value (for remove()), pred(*i) is true (for remove_if()). This operation shall be stable: the relative order of the elements that are not removed is the same as their relative order in the original list. Invalidates only the iterators and references to the erased elements.
Change 23.3.4.6 [forwardlist.ops]/15 as indicated:
template <class BinaryPredicate> void unique(BinaryPredicate pred);15 Effects::
EliminatesErases all but the first element from every consecutive group of equal elements referred to by the iterator i in the range [first + 1,last) for which *i == *(i-1) (for the version with no arguments) or pred(*i, *(i - 1)) (for the version with a predicate argument) holds. Invalidates only the iterators and references to the erased elements.
Change 23.3.4.6 [forwardlist.ops]/19 as indicated:
void merge(forward_list<T,Allocator>&& x); template <class Compare> void merge(forward_list<T,Allocator>&& x, Compare comp)[..]
19 Effects:: Merges x into *this. This operation shall be stable: for equivalent elements in the two lists, the elements from *this shall always precede the elements from x. x is empty after the merge. If an exception is thrown other than by a comparison there are no effects. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
Change 23.3.4.6 [forwardlist.ops]/22 as indicated:
void sort(); template <class Compare> void sort(Compare comp);[..]
22 Effects:: Sorts the list according to the operator< or the comp function object. This operation shall be stable: the relative order of the equivalent elements is preserved. If an exception is thrown the order of the elements in *this is unspecified. Does not affect the validity of iterators and references.
Change 23.3.4.6 [forwardlist.ops]/24 as indicated:
void reverse();24 Effects:: Reverses the order of the elements in the list. Does not affect the validity of iterators and references.
Change 23.3.5.5 [list.ops], p15:
void remove(const T& value); template <class Predicate> void remove_if(Predicate pred);Effects: Erases all the elements in the list referred by a list iterator i for which the following conditions hold: *i == value, pred(*i) != false. Invalidates only the iterators and references to the erased elements.
Change 23.3.5.5 [list.ops], p19:
void unique(); template <class BinaryPredicate> void unique(BinaryPredicate binary_pred);Effects:
EliminatesErases all but the first element from every consecutive group of equal elements referred to by the iterator i in the range [first + 1,last) for which *i == *(i-1) (for the version of unique with no arguments) or pred(*i, *(i - 1)) (for the version of unique with a predicate argument) holds. Invalidates only the iterators and references to the erased elements.
Change 23.3.5.5 [list.ops], p23:
void merge(list<T,Allocator>&& x); template <class Compare> void merge(list<T,Allocator>&& x, Compare comp);Effects: If (&x == this) does nothing; otherwise, merges the two sorted ranges [begin(), end()) and [x.begin(), x.end()). The result is a range in which the elements will be sorted in non-decreasing order according to the ordering defined by comp; that is, for every iterator i, in the range other than the first, the condition comp(*i, *(i - 1) will be false. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
Change 23.3.5.5 [list.ops], p26:
void reverse();Effects: Reverses the order of the elements in the list. Does not affect the validity of iterators and references.
Change 23.3.5.5 [list.ops], p30:
void sort(); template <class Compare> void sort(Compare comp);Effects: Sorts the list according to the operator< or a Compare function object. Does not affect the validity of iterators and references.
Section: 26.6.2.2 [valarray.cons] Status: C++11 Submitter: Howard Hinnant Opened: 2009-09-23 Last modified: 2015-04-08
View all other issues in [valarray.cons].
View all issues with C++11 status.
Discussion:
26.6.2.2 [valarray.cons] says:
valarray(initializer_list<T> il);Effects: Same as valarray(il.begin(), il.end()).
But there is no valarray constructor taking two const T*.
[ 2009-10-29 Howard: ]
Moved to Tentatively Ready after 6 positive votes on c++std-lib.
Proposed resolution:
Change 26.6.2.2 [valarray.cons]:
valarray(initializer_list<T> il);Effects: Same as valarray(il.begin(), il.
endsize()).
Section: 28.10.1 [re.results.const] Status: C++11 Submitter: Stephan T. Lavavej Opened: 2009-09-15 Last modified: 2015-04-08
View other active issues in [re.results.const].
View all other issues in [re.results.const].
View all issues with C++11 status.
Discussion:
In Working Draft N2914, match_results lacks a move constructor and move assignment operator. Because it owns dynamically allocated memory, it should be moveable.
As far as I can tell, this isn't tracked by an active issue yet; Library Issue 723 doesn't talk about match_results.
[ 2009-09-21 Daniel provided wording. ]
[ 2009-11-18: Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Add the following member declarations to 28.10 [re.results]/3:
// 28.10.1, construct/copy/destroy: explicit match_results(const Allocator& a = Allocator()); match_results(const match_results& m); match_results(match_results&& m); match_results& operator=(const match_results& m); match_results& operator=(match_results&& m); ~match_results();
Add the following new prototype descriptions to 28.10.1 [re.results.const] using the table numbering of N3000 (referring to the table titled "match_results assignment operator effects"):
match_results(const match_results& m);4 Effects: Constructs an object of class match_results, as a copy of m.
match_results(match_results&& m);5 Effects: Move-constructs an object of class match_results from m satisfying the same postconditions as Table 131. Additionally the stored Allocator value is move constructed from m.get_allocator(). After the initialization of *this sets m to an unspecified but valid state.
6 Throws: Nothing if the allocator's move constructor throws nothing.
match_results& operator=(const match_results& m);7 Effects: Assigns m to *this. The postconditions of this function are indicated in Table 131.
match_results& operator=(match_results&& m);8 Effects: Move-assigns m to *this. The postconditions of this function are indicated in Table 131. After the assignment, m is in a valid but unspecified state.
9 Throws: Nothing.
Section: 24.2 [iterator.requirements] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-09-18 Last modified: 2015-04-08
View all other issues in [iterator.requirements].
View all issues with Resolved status.
Discussion:
p6 Iterator requirements 24.2 [iterator.requirements]
An iterator j is called reachable from an iterator i if and only if there is a finite sequence of applications of the expression ++i that makes i == j. If j is reachable from i, they refer to the same container.
A good example would be stream iterators, which do not refer to a container. Typically, the end iterator from a range of stream iterators will compare equal for many such ranges. I suggest striking the second sentence.
An alternative wording might be:
If j is reachable from i, and both i and j are dereferencable iterators, then they refer to the same range.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3066.
Proposed resolution:
Change 24.2 [iterator.requirements], p6:
An iterator j is called reachable from an iterator i if and only if there is a finite sequence of applications of the expression ++i that makes i == j.
If j is reachable from i, they refer to the same container.
Section: 24.5.3.1 [move.iterator] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-09-18 Last modified: 2015-04-08
View all other issues in [move.iterator].
View all issues with Resolved status.
Discussion:
I contend that while we can support both bidirectional and random access traversal, the category of a move iterator should never be better than input_iterator_tag.
The contentious point is that you cannot truly have a multipass property when values are moved from a range. This is contentious if you view a moved-from object as still holding a valid value within the range.
The second reason comes from the Forward Iterator requirements table:
Forward iterators 24.2.5 [forward.iterators]
Table 102 — Forward iterator requirements
For expression *a the return type is: "T& if X is mutable, otherwise const T&"
There is a similar constraint on a->m.
There is no support for rvalue references, nor do I believe their should be. Again, opinions may vary but either this table or the definition of move_iterator need updating.
Note: this requirement probably need updating anyway if we wish to support proxy iterators but I am waiting to see a new working paper before filing that issue.
[ 2009-10 post-Santa Cruz: ]
Move to Open. Howard to put his rationale mentioned above into the issue as a note.
[ 2009-10-26 Howard adds: ]
vector::insert(pos, iter, iter) is significantly more effcient when iter is a random access iterator, as compared to when it is an input iterator.
When iter is an input iterator, the best algorithm is to append the inserted range to the end of the vector using push_back. This may involve several reallocations before the input range is exhausted. After the append, then one can use std::rotate to place the inserted range into the correct position in the vector.
But when iter is a random access iterator, the best algorithm is to first compute the size of the range to be inserted (last - first), do a buffer reallocation if necessary, scoot existing elements in the vector down to make the "hole", and then insert the new elements directly to their correct place.
The insert-with-random-access-iterators algorithm is considerably more efficient than the insert-with-input-iterators algorithm
Now consider:
vector<A> v; // ... build up a large vector of A ... vector<A> temp; // ... build up a large temporary vector of A to later be inserted ... typedef move_iterator<vector<A>::iterator> MI; // Now insert the temporary elements: v.insert(v.begin() + N, MI(temp.begin()), MI(temp.end()));A major motivation for using move_iterator in the above example is the expectation that A is cheap to move but expensive to copy. I.e. the customer is looking for high performance. If we allow vector::insert to subtract two MI's to get the distance between them, the customer enjoys substantially better performance, compared to if we say that vector::insert can not subtract two MI's.
I can find no rationale for not giving this performance boost to our customers. Therefore I am strongly against restricting move_iterator to the input_iterator_tag category.
I believe that the requirement that forward iterators have a dereference that returns an lvalue reference to cause unacceptable pessimization. For example vector<bool>::iterator also does not return a bool& on dereference. Yet I am not aware of a single vendor that is willing to ship vector<bool>::iterator as an input iterator. Everyone classifies it as a random access iterator. Not only does this not cause any problems, it prevents significant performance problems.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3066.
Proposed resolution:
Class template move_iterator 24.5.3.1 [move.iterator]
namespace std { template <class Iterator> class move_iterator { public: ... typedeftypename iterator_traits<Iterator>::iterator_categoryinput_iterator_tag iterator_category;
Section: 24.2 [iterator.requirements] Status: Resolved Submitter: Alisdair Meredith Opened: 2009-09-18 Last modified: 2015-04-08
View all other issues in [iterator.requirements].
View all issues with Resolved status.
Discussion:
Forward iterator and bidirectional iterator place different requirements on the result of post-increment/decrement operator. The same form should be used in each case.
Merging row from:
Table 102 -- Forward iterator requirements Table 103 -- Bidirectional iterator requirements r++ : convertible to const X& r-- : convertible to const X& *r++ : T& if X is mutable, otherwise const T& *r-- : convertible to T
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3066.
Proposed resolution:
Section: 23.2.4 [associative.reqmts] Status: C++14 Submitter: Daniel Krügler Opened: 2009-09-20 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with C++14 status.
Discussion:
Scott Meyers' mentions on a recent posting on c.s.c++ some arguments that point to an incomplete resolution of 103 and to an inconsistency of requirements on keys in ordered and unordered associative containers:
1) 103 introduced the term immutable without defining it in a unique manner in 23.2.4 [associative.reqmts]/5:
[..] Keys in an associative container are immutable.
According to conventional dictionaries immutable is an unconditional way of saying that something cannot be changed. So without any further explicit allowance a user always runs into undefined behavior if (s)he attempts to modify such a key. IMO this was not the intend of the committee to resolve 103 in that way because the comments suggest an interpretation that should give any user the freedom to modify the key in an explicit way provided it would not affect the sort order in that container.
2) Another observation was that surprisingly no similar 'safety guards' exists against unintentional key changes for the unordered associative containers, specifically there is no such requirement as in 23.2.4 [associative.reqmts]/6 that "both iterator and const_iterator are constant iterators". But the need for such protection against unintentional changes as well as the constraints in which manner any explicit changes may be performed are both missing and necessary, because such changes could potentially change the equivalence of keys that is measured by the hasher and key_equal.
I suggest to fix the unconditional wording involved with "immutable keys" by at least adding a hint for the reader that users may perform such changes in an explicit manner and to perform similar wording changes as 103 did for the ordered associative containers also for the unordered containers.
[ 2010-03-27 Daniel provides wording. ]
This update attempts to provide normative wording that harmonizes the key and function object constraints of associative and unordered containers.
[ 2010 Batavia: ]
We're uncomfortable with the first agenda item, and we can live with the second agenda item being applied before or after Madrid.
[ 2011 Bloomington ]
Further discussion persuades us this issue is Ready (and so moved). We may need a further issue clarifying the notion of key value vs. key object, as object identity appears to be important to this wording.
Proposed resolution:
Change 23.2.4 [associative.reqmts]/2 as indicated: [This ensures that associative containers make better clear what this "arbitrary" type is, as the unordered containers do in 23.2.5 [unord.req]/3]
2 Each associative container is parameterized on Key and an ordering relation Compare that induces a strict weak ordering (25.4) on elements of Key. In addition, map and multimap associate an arbitrary mapped type
typeT with the Key. The object of type Compare is called the comparison object of a container.
Change 23.2.4 [associative.reqmts]/5 as indicated: [This removes the too strong requirement that keys must not be changed at all and brings this line in sync with 23.2.5 [unord.req]/7. We take care about the real constraints by the remaining suggested changes. The rationale provided by LWG 103 didn't really argue why that addition is necessary, and I believe the remaining additions make it clear that any user changes have strong restrictions]:
5 For set and multiset the value type is the same as the key type. For map and multimap it is equal to pair<const Key, T>.
Keys in an associative container are immutable.
Change 23.2.5 [unord.req]/3+4 as indicated: [The current sentence of p.4 has doesn't say something really new and this whole subclause misses to define the concepts of the container-specific hasher object and predicate object. We introduce the term key equality predicate which is already used in the requirements table. This change does not really correct part of this issue, but is recommended to better clarify the nomenclature and the difference between the function objects and the function object types, which is important, because both can potentially be stateful.]
3 Each unordered associative container is parameterized by Key, by a function object type Hash that meets the Hash requirements (20.2.4) and acts as a hash function for argument values of type Key, and by a binary predicate Pred that induces an equivalence relation on values of type Key. Additionally, unordered_map and unordered_multimap associate an arbitrary mapped type T with the Key.
4 The container's object of type Hash - denoted by hash - is called the hash function of the container. The container's object of type Pred - denoted by pred - is called the key equality predicate of the container.
A hash function is a function object that takes a single argument of type Key and returns a value of type std::size_t.
Change 23.2.5 [unord.req]/5 as indicated: [This adds a similar safe-guard as the last sentence of 23.2.4 [associative.reqmts]/3]
5 Two values k1 and k2 of type Key are considered equivalent if the container's key equality predicate
key_equal function objectreturns true when passed those values. If k1 and k2 are equivalent, the container's hash function shall return the same value for both. [Note: thus, when an unordered associative container is instantiated with a non-default Pred parameter it usually needs a non-default Hash parameter as well. — end note] For any two keys k1 and k2 in the same container, calling pred(k1, k2) shall always return the same value. For any key k in a container, calling hash(k) shall always return the same value.
After 23.2.5 [unord.req]/7 add the following new paragraph: [This ensures the same level of compile-time protection that we already require for associative containers. It is necessary for similar reasons, because any change in the stored key which would change it's equality relation to others or would change it's hash value such that it would no longer fall in the same bucket, would break the container invariants]
7 For unordered_set and unordered_multiset the value type is the same as the key type. For unordered_map and unordered_multimap it is std::pair<const Key, T>.
For unordered containers where the value type is the same as the key type, both iterator and const_iterator are constant iterators. It is unspecified whether or not iterator and const_iterator are the same type. [Note: iterator and const_iterator have identical semantics in this case, and iterator is convertible to const_iterator. Users can avoid violating the One Definition Rule by always using const_iterator in their function parameter lists. — end note]
Section: 23.3.5.5 [list.ops] Status: C++11 Submitter: Pablo Halpern Opened: 2009-09-24 Last modified: 2015-04-08
View all other issues in [list.ops].
View all issues with C++11 status.
Discussion:
In Bellevue (I think), we passed N2525, which, among other things, specifies that the behavior of list::splice is undefined if the allocators of the two lists being spliced do not compare equal. The same rationale should apply to list::merge. The intent of list::merge (AFAIK) is to move nodes from one sorted list into another sorted list without copying the elements. This is possible only if the allocators compare equal.
Proposed resolution:
Relative to the August 2009 WP, N2857, change 23.3.5.5 [list.ops], paragraphs 22-25 as follows:
void merge(list&& x); template <class Compare> void merge(list&& x, Compare comp);Requires: both the list and the argument list shall be sorted according to operator< or comp.
Effects: If (&x == this) does nothing; otherwise, merges the two sorted ranges [begin(), end()) and [x.begin(), x.end()). The result is a range in which the elements will be sorted in non-decreasing order according to the ordering defined by comp; that is, for every iterator i, in the range other than the first, the condition comp(*i, *(i - 1)) will be false.
Remarks: Stable. If (&x != this) the range [x.begin(), x.end()) is empty after the merge. No elements are copied by this operation. The behavior is undefined if this->get_allocator() != x.get_allocator().
Complexity: At most size() + x.size() - 1 applications of comp if (&x != this); otherwise, no applications of comp are performed. If an exception is thrown other than by a comparison there are no effects.
Section: 18.8.6 [except.nested] Status: C++11 Submitter: Pete Becker Opened: 2009-09-25 Last modified: 2015-04-08
View other active issues in [except.nested].
View all other issues in [except.nested].
View all issues with C++11 status.
Discussion:
LWG 1066 adds [[noreturn]] to a bunch of things. It doesn't add it to rethrow_nested(), which seems like an obvious candidate. I've made the changes indicated in the issue, and haven't changed rethrow_nested().
[ 2009 Santa Cruz: ]
Move to Ready.
Proposed resolution:
Add [[noreturn]] to rethrow_nested() in 18.8.6 [except.nested].
Section: 30.4.1 [thread.mutex.requirements] Status: C++11 Submitter: Jeffrey Yasskin Opened: 2009-09-30 Last modified: 2015-04-08
View other active issues in [thread.mutex.requirements].
View all other issues in [thread.mutex.requirements].
View all issues with C++11 status.
Discussion:
If an object *o contains a mutex mu and a correctly-maintained reference count c, is the following code safe?
o->mu.lock(); bool del = (--(o->c) == 0); o->mu.unlock(); if (del) { delete o; }
If the implementation of mutex::unlock() can touch the mutex's memory after the moment it becomes free, this wouldn't be safe, and "Construction and destruction of an object of a Mutex type need not be thread-safe" 30.4.1 [thread.mutex.requirements] may imply that it's not safe. Still, it's useful to allow mutexes to guard reference counts, and if it's not allowed, users are likely to write bugs.
[ 2009-11-18: Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Add a new paragraph after 30.4.1.2.1 [thread.mutex.class] p1:
1 The class mutex provides a non-recursive mutex ...
[Note: After a thread A has called unlock(), releasing the mutex, it is possible for another thread B to lock the same mutex, observe that it is no longer in use, unlock and destroy it, before thread A appears to have returned from its unlock call. Implementations are required to handle such scenarios correctly, as long as thread A doesn't access the mutex after the unlock call returns. These cases typically occur when a reference-counted object contains a mutex that is used to protect the reference count. — end note]
Section: 30.5 [thread.condition] Status: C++11 Submitter: Jeffrey Yasskin Opened: 2009-09-30 Last modified: 2015-04-08
View all other issues in [thread.condition].
View all issues with C++11 status.
Discussion:
"Class condition_variable provides a condition variable that can only wait on an object of type unique_lock" should say "...object of type unique_lock<mutex>"
[ 2009-11-06 Howard adds: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
Proposed resolution:
Change 30.5 [thread.condition], p1:
Condition variables provide synchronization primitives used to block a thread until notified by some other thread that some condition is met or until a system time is reached. Class condition_variable provides a condition variable that can only wait on an object of type unique_lock<mutex>, allowing maximum efficiency on some platforms. Class condition_variable_any provides a general condition variable that can wait on objects of user-supplied lock types.
Section: 30.5.1 [thread.condition.condvar] Status: C++11 Submitter: Jeffrey Yasskin Opened: 2009-09-30 Last modified: 2015-04-08
View all other issues in [thread.condition.condvar].
View all issues with C++11 status.
Discussion:
30.5.1 [thread.condition.condvar] says:
~condition_variable();Precondition: There shall be no thread blocked on *this. [Note: That is, all threads shall have been notified; they may subsequently block on the lock specified in the wait. Beware that destroying a condition_variable object while the corresponding predicate is false is likely to lead to undefined behavior. — end note]
The text hasn't introduced the notion of a "corresponding predicate" yet.
[ 2010-02-11 Anthony provided wording. ]
[ 2010-02-12 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Modify 30.5.1 [thread.condition.condvar]p4 as follows:
~condition_variable();4 Precondition: There shall be no thread blocked on *this. [Note: That is, all threads shall have been notified; they may subsequently block on the lock specified in the wait.
Beware that destroying a condition_variable object while the corresponding predicate is false is likely to lead to undefined behavior.The user must take care to ensure that no threads wait on *this once the destructor has been started, especially when the waiting threads are calling the wait functions in a loop or using the overloads of wait, wait_for or wait_until that take a predicate. — end note]
Section: 30.5 [thread.condition] Status: C++11 Submitter: Jeffrey Yasskin Opened: 2009-09-30 Last modified: 2015-04-08
View all other issues in [thread.condition].
View all issues with C++11 status.
Discussion:
30.5.1 [thread.condition.condvar] says:
void wait(unique_lock<mutex>& lock);...
Effects:
- ...
- If the function exits via an exception, lock.unlock() shall be called prior to exiting the function scope.
Should that be lock.lock()?
[ 2009-11-17 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 30.5.1 [thread.condition.condvar] p10:
void wait(unique_lock<mutex>& lock);...
Effects:
- ...
- If the function exits via an exception, lock.
unlock() shall be called prior to exiting the function scope.
And make a similar change in p16, and in 30.5.2 [thread.condition.condvarany], p8 and p13.
Section: X [func.ret] Status: Resolved Submitter: Sebastian Gesemann Opened: 2009-10-05 Last modified: 2015-04-08
View all other issues in [func.ret].
View all issues with Resolved status.
Discussion:
I think the text about std::result_of could be a little more precise. Quoting from N2960...
X [func.ret] Function object return types
template<class> class result_of; template<class Fn, class... ArgTypes> class result_of<Fn(ArgTypes...)> { public: typedef see below type; };Given an rvalue fn of type Fn and values t1, t2, ..., tN of types T1, T2, ... TN in ArgTypes respectivly, the type member is the result type of the expression fn(t1,t2,...,tN). the values ti are lvalues when the corresponding type Ti is an lvalue-reference type, and rvalues otherwise.
This text doesn't seem to consider lvalue reference types for Fn. Also, it's not clear whether this class template can be used for "SFINAE" like std::enable_if. Example:
template<typename Fn, typename... Args> typename std::result_of<Fn(Args...)>::type apply(Fn && fn, Args && ...args) { // Fn may be an lvalue reference, too return std::forward<Fn>(fn)(std::forward<Args>(args)...); }
Either std::result_of<...> can be instantiated and simply may not have a typedef "type" (-->SFINAE) or instantiating the class template for some type combinations will be a "hard" compile-time error.
[ 2010-02-14 Daniel adds: ]
This issue should be considered resolved by 1255 and 1270. The wish to change result_of into a compiler-support trait was beyond the actual intention of the submitter Sebastian.
[
2010 Pittsburgh: Moved to NAD EditorialResolved, rationale added below.
]
Rationale:
Solved by 1270.
Proposed resolution:
[ These changes will require compiler support ]
Change X [func.ret]:
template<class> class result_of; // undefined template<class Fn, class... ArgTypes> class result_of<Fn(ArgTypes...)> { public:typedefsee belowtype;};
Given an rvalue fn of type Fn and values t1, t2, ..., tN of types T1, T2, ... TN in ArgTypes respectivly, the type member is the result type of the expression fn(t1,t2,...,tN). the values ti are lvalues when the corresponding type Ti is an lvalue-reference type, and rvalues otherwise.The class template result_of shall meet the requirements of a TransformationTrait: Given the types Fn, T1, T2, ..., TN every template specialization result_of<Fn(T1,T2,...,TN)> shall define the member typedef type equivalent to decltype(RE) if and only if the expression RE
value<Fn>() ( value<T1>(), value<T2>(), ... value<TN>() )would be well-formed. Otherwise, there shall be no member typedef type defined.
[ The value<> helper function is a utility Daniel Krügler proposed in N2958. ]
Section: 30.6.2 [futures.errors] Status: Resolved Submitter: Daniel Krügler Opened: 2009-10-05 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Defect issue 890 overlooked to adapt the future_category from 30.6.1 [futures.overview] and 30.6.2 [futures.errors]:
extern const error_category* const future_category;
which should be similarly transformed into function form.
[ 2009-10-27 Howard: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ 2009-11-11 Daniel adds: ]
I just observe that the proposed resolution of this issue is incomplete and needs to reworded. The problem is that the corresponding declarations
constexpr error_code make_error_code(future_errc e); constexpr error_condition make_error_condition(future_errc e);as constexpr functions are incompatible to the requirements of constexpr functions given their specified implementation. Note that the incompatibility is not a result of the modifications proposed by the issue resolution, but already existed within the N2960 state where we have
extern const error_category* const future_category;combined with
constexpr error_code make_error_code(future_errc e);3 Returns: error_code(static_cast<int>(e), *future_category).
constexpr error_code make_error_condition(future_errc e);4 Returns: error_condition(static_cast<int>(e), *future_category).
Neither is any of the constructors of error_code and error_condition constexpr, nor does the expression *future_category satisfy the requirements for a constant expression (5.20 [expr.const]/2 bullet 6 in N3000).
The simple solution is just to remove the constexpr qualifiers for both functions, which makes sense, because none of the remaining make_error_* overloads in the library is constexpr. One might consider to realize that those make_* functions could satisfy the constexpr requirements, but this looks not like an easy task to me, because it would need to rely on a not yet existing language feature. If such a change is wanted, a new issue should be opened after the language extension approval (if at all) [1].
If no-one complaints I would like to ask Howard to add the following modifications to this issue, alternatively a new issue could be opened but I don't know what the best solution is that would cause as little overhead as possible.
What-ever the route is, the following is my proposed resolution for this issue interaction part of the story:
In 30.6.1 [futures.overview]/1, Header <future> synopsis and in 30.6.2 [futures.errors]/3+4 change as indicated:
constexprerror_code make_error_code(future_errc e);constexprerror_condition make_error_condition(future_errc e);[1] Let me add that we have a related NAD issue here: 832 so the chances for realization are little IMO.
[ Howard: I've updated the proposed wording as Daniel suggests and set to Review. ]
[ 2009-11-13 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010 Pittsburgh: ]
Moved to
NAD EditorialResolved. Rationale added below.
Rationale:
Solved by N3058.
Proposed resolution:
Change in 30.6.1 [futures.overview], header <future> synopsis:
externconst error_category&* constfuture_category();
In 30.6.1 [futures.overview]/1, Header <future> synopsis change as indicated:
constexprerror_code make_error_code(future_errc e);constexprerror_condition make_error_condition(future_errc e);
Change in 30.6.2 [futures.errors]:
externconst error_category&* constfuture_category();
1- future_category shall point to a statically initialized object of a type derived from class error_category.1- Returns: A reference to an object of a type derived from class error_category.
constexprerror_code make_error_code(future_errc e);3 Returns: error_code(static_cast<int>(e),
*future_category()).constexprerror_codecondition make_error_condition(future_errc e);4 Returns: error_condition(static_cast<int>(e),
*future_category()).
Section: 20.6 [template.bitset] Status: C++11 Submitter: Bo Persson Opened: 2009-10-05 Last modified: 2015-04-08
View other active issues in [template.bitset].
View all other issues in [template.bitset].
View all issues with C++11 status.
Discussion:
The resolutions to some library defect reports, like 1178 requires that #includes in each synopsis should be taken literally. This means that the <bitset> header now must include <stdexcept>, even though none of the exceptions are mentioned in the <bitset> header.
Many other classes are required to throw exceptions like invalid_argument and out_of_range, without explicitly including <stdexcept> in their synopsis. It is totally possible for implementations to throw the needed exceptions from utility functions, whose implementations are not visible in the headers.
I propose that <stdexcept> is removed from the <bitset> header.
[ 2009-10 Santa Cruz: ]
Moved to Ready.
Proposed resolution:
Change 20.6 [template.bitset]:
#include <cstddef> // for size_t #include <string>#include <stdexcept> // for invalid_argument,// out_of_range, overflow_error#include <iosfwd> // for istream, ostream namespace std { ...
Section: 19.5.2.3 [syserr.errcode.modifiers] Status: Resolved Submitter: Stephan T. Lavavej Opened: 2009-10-08 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
N2960 19.5.2.1 [syserr.errcode.overview] and 19.5.2.3 [syserr.errcode.modifiers] say:
template <class ErrorCodeEnum> typename enable_if<is_error_code_enum<ErrorCodeEnum>::value>::type& operator=(ErrorCodeEnum e);
They should say:
template <class ErrorCodeEnum> typename enable_if<is_error_code_enum<ErrorCodeEnum>::value, error_code>::type& operator=(ErrorCodeEnum e);
Or (I prefer this form):
template <class ErrorCodeEnum> typename enable_if<is_error_code_enum<ErrorCodeEnum>::value, error_code&>::type operator=(ErrorCodeEnum e);
This is because enable_if is declared as (20.10.7.6 [meta.trans.other]):
template <bool B, class T = void> struct enable_if;
So, the current wording makes operator= return void&, which is not good.
19.5.2.3 [syserr.errcode.modifiers]/4 says
Returns: *this.
which is correct.
Additionally,
19.5.3.1 [syserr.errcondition.overview]/1 says:
template<typename ErrorConditionEnum> typename enable_if<is_error_condition_enum<ErrorConditionEnum>, error_code>::type & operator=( ErrorConditionEnum e );
Which contains several problems (typename versus class inconsistency, lack of ::value, error_code instead of error_condition), while 19.5.3.3 [syserr.errcondition.modifiers] says:
template <class ErrorConditionEnum> typename enable_if<is_error_condition_enum<ErrorConditionEnum>::value>::type& operator=(ErrorConditionEnum e);
Which returns void&. They should both say:
template <class ErrorConditionEnum> typename enable_if<is_error_condition_enum<ErrorConditionEnum>::value, error_condition>::type& operator=(ErrorConditionEnum e);
Or (again, I prefer this form):
template <class ErrorConditionEnum> typename enable_if<is_error_condition_enum<ErrorConditionEnum>::value, error_condition&>::type operator=(ErrorConditionEnum e);
Additionally, 19.5.3.3 [syserr.errcondition.modifiers] lacks a "Returns: *this." paragraph, which is presumably necessary.
[ 2009-10-18 Beman adds: ]
The proposed resolution for issue 1237 makes this issue moot, so it should become NAD.
[ 2009-10 Santa Cruz: ]
NADResolved, solved by 1237.
Proposed resolution:
Change 19.5.2.1 [syserr.errcode.overview] and 19.5.2.3 [syserr.errcode.modifiers]:
template <class ErrorCodeEnum> typename enable_if<is_error_code_enum<ErrorCodeEnum>::value, error_code&>::type&operator=(ErrorCodeEnum e);
Change 19.5.3.1 [syserr.errcondition.overview]:
template<typenameclass ErrorConditionEnum> typename enable_if<is_error_condition_enum<ErrorConditionEnum>::value, error_conditionde&>::type&operator=( ErrorConditionEnum e );
Change 19.5.3.3 [syserr.errcondition.modifiers]:
template <class ErrorConditionEnum> typename enable_if<is_error_condition_enum<ErrorConditionEnum>::value, error_condition&>::type&operator=(ErrorConditionEnum e);Postcondition: *this == make_error_condition(e).
Returns: *this.
Throws: Nothing.
Section: 20.8.2.3.5 [util.smartptr.weak.obs] Status: C++11 Submitter: Daniel Krügler Opened: 2009-10-10 Last modified: 2015-04-08
View all other issues in [util.smartptr.weak.obs].
View all issues with C++11 status.
Discussion:
The n2637 paper suggested several updates of the ordering semantics of shared_ptr and weak_ptr, among those the explicit comparison operators of weak_ptr were removed/deleted, instead a corresponding functor owner_less was added. The problem is that n2637 did not clearly enough specify, how the previous wording parts describing the comparison semantics of weak_ptr should be removed.
[ 2009-11-06 Howard adds: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
Proposed resolution:
Change 20.8.2.3 [util.smartptr.weak]/2 as described, the intention is to fix the now no longer valid requirement that weak_ptr is LessComparable [Note the deleted comma]:
Specializations of weak_ptr shall be CopyConstructible
,and CopyAssignable,and LessThanComparable,allowing their use in standard containers.
In 20.8.2.3.5 [util.smartptr.weak.obs] remove the paragraphs 9-11 including prototype:
template<class T, class U> bool operator<(const weak_ptr<T>& a, const weak_ptr<U>& b);Returns: an unspecified value such that
operator< is a strict weak ordering as described in 25.4;under the equivalence relation defined by operator<, !(a < b) && !(b < a), two weak_ptr instances are equivalent if and only if they share ownership or are both empty.
Throws: nothing.
[Note: Allows weak_ptr objects to be used as keys in associative containers. — end note]
Section: 23.2.3 [sequence.reqmts] Status: C++11 Submitter: Matt Austern Opened: 2009-10-09 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with C++11 status.
Discussion:
On g++ 4.2.4 (x86_64-linux-gnu), the following file gives a compile error:
#include <vector> void foo() { std::vector<int*> v(500L, NULL); }
Is this supposed to work?
The issue: if NULL happens to be defined as 0L, this is an invocation of the constructor with two arguments of the same integral type. 23.2.3 [sequence.reqmts]/14 (N3035) says that this will behave as if the overloaded constructor
X(size_type, const value_type& = value_type(), const allocator_type& = allocator_type())
were called instead, with the arguments static_cast<size_type>(first), last and alloc, respectively. However, it does not say whether this actually means invoking that constructor with the exact textual form of the arguments as supplied by the user, or whether the standard permits an implementation to invoke that constructor with variables of the same type and value as what the user passed in. In most cases this is a distinction without a difference. In this particular case it does make a difference, since one of those things is a null pointer constant and the other is not.
Note that an implementation based on forwarding functions will use the latter interpretation.
[ 2010 Pittsburgh: Moved to Open. ]
[ 2010-03-19 Daniel provides wording. ]
- Adapts the numbering used in the discussion to the recent working paper N3035.
- Proposes a resolution that requires implementations to use sfinae-like means to possibly filter away the too generic template c'tor. In fact this resolution is equivalent to that used for the pair-NULL problem (811), the only difference is, that issue 1234 was already a C++03 problem.
This issue can be considered as a refinement of 438.
[ Post-Rapperswil ]
Wording was verified to match with the most recent WP. Jonathan Wakely and Alberto Barbati observed that the current WP has a defect that should be fixed here as well: The functions signatures fx1 and fx3 are incorrectly referring to iterator instead of const_iterator.
Moved to Tentatively Ready with revised wording after 7 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 23.2.3 [sequence.reqmts]/14+15 as indicated:
14 For every sequence container defined in this Clause and in Clause 21:
If the constructor
template <class InputIterator> X(InputIterator first, InputIterator last, const allocator_type& alloc = allocator_type())is called with a type InputIterator that does not qualify as an input iterator, then the constructor shall not participate in overload resolution.
will behave as if the overloaded constructor:X(size_type, const value_type& = value_type(), const allocator_type& = allocator_type())
were called instead, with the arguments static_cast<size_type>(first), last and alloc, respectively.If the member functions of the forms:
template <class InputIterator> // such as insert() rt fx1(const_iterator p, InputIterator first, InputIterator last); template <class InputIterator> // such as append(), assign() rt fx2(InputIterator first, InputIterator last); template <class InputIterator> // such as replace() rt fx3(const_iterator i1, const_iterator i2, InputIterator first, InputIterator last);are called with a type InputIterator that does not qualify as an input iterator, then these functions shall not participate in overload resolution.
will behave as if the overloaded member functions:rt fx1(iterator, size_type, const value_type&);rt fx2(size_type, const value_type&);rt fx3(iterator, iterator, size_type, const value_type&);
were called instead, with the same arguments.
15 In the previous paragraph the alternative binding will fail if first is not implicitly convertible to X::size_type or if last is not implicitly convertible to X::value_type.
Section: 19.5 [syserr] Status: C++11 Submitter: Daniel Krügler Opened: 2009-10-14 Last modified: 2015-04-08
View all other issues in [syserr].
View all issues with C++11 status.
Discussion:
I'm just reflecting on the now SFINAE-constrained constructors and assignment operators of error_code and error_condition:
These are the only library components that are pro-actively announcing that they are using std::enable_if as constraining tool, which has IMO several disadvantages:
With the availability of template default arguments and decltype, using enable_if in the C++0x standard library, seems unnecessary restricting implementation freedom. E.g. there should be no need for a useless specification of a dummy default function argument, which only confuses the reader. A more reasonable implementation could e.g. be
template <class ErrorCodeEnum class = typename enable_if<is_error_code_enum<ErrorCodeEnum>::value>::type> error_code(ErrorCodeEnum e);
As currently specified, the function signatures are so unreadable, that errors quite easily happen, see e.g. 1229.
We have a lot of constrained functions in other places, that now have a standard phrase that is easily understandable:
Remarks: This constructor/function shall participate in overload resolution if and only if X.
where X describes the condition. Why should these components deviate?
If enable_if would not be explicitly specified, the standard library is much better prepared for the future. It would also be possible, that libraries with partial support for not-yet-standard-concepts could provide a much better diagnostic as is possible with enable_if. This again would allow for experimental concept implementations in the wild, which as a result would make concept standardization a much more natural thing, similar to the way as templates were standardized in C++.
In summary: I consider it as a library defect that error_code and error_condition explicitly require a dependency to enable_if and do limit implementation freedom and I volunteer to prepare a corresponding resolution.
[ 2009-10-18 Beman adds: ]
I support this proposed resolution, and thank Daniel for writing it up.
[ 2009-10 Santa Cruz: ]
Moved to Ready.
Proposed resolution:
[ Should this resolution be accepted, I recommend to resolve 1229 as NAD ]
In 19.5.2.1 [syserr.errcode.overview]/1, class error_code, change as indicated:
// 19.5.2.2 constructors: error_code(); error_code(int val, const error_category& cat); template <class ErrorCodeEnum> error_code(ErrorCodeEnum e, typename enable_if<is_error_code_enum<ErrorCodeEnum>::value>::type * = 0); // 19.5.2.3 modifiers: void assign(int val, const error_category& cat); template <class ErrorCodeEnum>typename enable_if<is_error_code_enum<ErrorCodeEnum>::value>::typeerror_code& operator=(ErrorCodeEnum e); void clear();
Change 19.5.2.2 [syserr.errcode.constructors] around the prototype before p. 7:
template <class ErrorCodeEnum> error_code(ErrorCodeEnum e, typename enable_if<is_error_code_enum<ErrorCodeEnum>::value>::type * = 0);Remarks: This constructor shall not participate in overload resolution, unless is_error_code_enum<ErrorCodeEnum>::value == true.
Change 19.5.2.3 [syserr.errcode.modifiers] around the prototype before p. 3:
template <class ErrorCodeEnum>typename enable_if<is_error_code_enum<ErrorCodeEnum>::value>::typeerror_code& operator=(ErrorCodeEnum e);Remarks: This operator shall not participate in overload resolution, unless is_error_code_enum<ErrorCodeEnum>::value == true.
In 19.5.3.1 [syserr.errcondition.overview]/1, class error_condition, change as indicated:
// 19.5.3.2 constructors: error_condition(); error_condition(int val, const error_category& cat); template <class ErrorConditionEnum> error_condition(ErrorConditionEnum e, typename enable_if<is_error_condition_enum<ErrorConditionEnum>::type* = 0); // 19.5.3.3 modifiers: void assign(int val, const error_category& cat); template<typenameclass ErrorConditionEnum>typename enable_if<is_error_condition_enum<ErrorConditionEnum>, error_code>::typeerror_condition & operator=( ErrorConditionEnum e ); void clear();
Change 19.5.3.2 [syserr.errcondition.constructors] around the prototype before p. 7:
template <class ErrorConditionEnum> error_condition(ErrorConditionEnum e, typename enable_if<is_error_condition_enum<ErrorConditionEnum>::value>::type* = 0);Remarks: This constructor shall not participate in overload resolution, unless is_error_condition_enum<ErrorConditionEnum>::value == true.
Change 19.5.3.3 [syserr.errcondition.modifiers] around the prototype before p. 3:
template <class ErrorConditionEnum>typename enable_if<is_error_condition_enum<ErrorConditionEnum>::value>::typeerror_condition& operator=(ErrorConditionEnum e);Remarks: This operator shall not participate in overload resolution, unless is_error_condition_enum<ErrorConditionEnum>::value == true.
Postcondition: *this == make_error_condition(e).
Returns: *this
Section: 20.9.12.2 [func.wrap.func] Status: C++11 Submitter: Daniel Krügler Opened: 2009-10-18 Last modified: 2015-04-08
View other active issues in [func.wrap.func].
View all other issues in [func.wrap.func].
View all issues with C++11 status.
Discussion:
The class template std::function contains the following member declarations:
// deleted overloads close possible hole in the type system template<class R2, class... ArgTypes2> bool operator==(const function<R2(ArgTypes2...)>&) = delete; template<class R2, class... ArgTypes2> bool operator!=(const function<R2(ArgTypes2...)>&) = delete;
The leading comment here is part of the history of std::function, which was introduced with N1402. During that time no explicit conversion functions existed, and the "safe-bool" idiom (based on pointers-to-member) was a popular technique. The only disadvantage of this idiom was that given two objects f1 and f2 of type std::function the expression
f1 == f2;
was well-formed, just because the built-in operator== for pointer to member was considered after a single user-defined conversion. To fix this, an overload set of undefined comparison functions was added, such that overload resolution would prefer those ending up in a linkage error. The new language facility of deleted functions provided a much better diagnostic mechanism to fix this issue.
The central point of this issue is, that with the replacement of the safe-bool idiom by explicit conversion to bool the original "hole in the type system" does no longer exist and therefore the comment is wrong and the superfluous function definitions should be removed as well. An explicit conversion function is considered in direct-initialization situations only, which indirectly contain the so-called "contextual conversion to bool" (4 [conv]/3). These conversions are not considered for == or != as defined by the core language.
[ Post-Rapperswil ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
In 20.9.12.2 [func.wrap.func]/1, class function change as indicated:
// 20.7.15.2.3, function capacity: explicit operator bool() const;// deleted overloads close possible hole in the type systemtemplate<class R2, class... ArgTypes2>bool operator==(const function<R2(ArgTypes2...)>&) = delete;template<class R2, class... ArgTypes2>bool operator!=(const function<R2(ArgTypes2...)>&) = delete;
Section: 25.3.9 [alg.unique] Status: C++11 Submitter: Daniel Krügler Opened: 2009-10-17 Last modified: 2015-04-08
View all other issues in [alg.unique].
View all issues with C++11 status.
Discussion:
A lot of fixes were silently applied during concept-time and we should not lose them again. The Requires clause of 25.3.9 [alg.unique]/5 doesn't mention that == and the predicate need to satisfy an EquivalenceRelation, as it is correctly said for unique. This was intentionally fixed during conceptification, were we had:
template<InputIterator InIter, class OutIter> requires OutputIterator<OutIter, RvalueOf<InIter::value_type>::type> && EqualityComparable<InIter::value_type> && HasAssign<InIter::value_type, InIter::reference> && Constructible<InIter::value_type, InIter::reference> OutIter unique_copy(InIter first, InIter last, OutIter result); template<InputIterator InIter, class OutIter, EquivalenceRelation<auto, InIter::value_type> Pred> requires OutputIterator<OutIter, RvalueOf<InIter::value_type>::type> && HasAssign<InIter::value_type, InIter::reference> && Constructible<InIter::value_type, InIter::reference> && CopyConstructible<Pred> OutIter unique_copy(InIter first, InIter last, OutIter result, Pred pred);
Note that EqualityComparable implied an equivalence relation.
[ N.B. adjacent_find was also specified to require EquivalenceRelation, but that was considered as a defect in concepts, see 1000 ]
[ 2009-10-31 Howard adds: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
Proposed resolution:
Change 25.3.9 [alg.unique]/5 as indicated:
template<class InputIterator, class OutputIterator> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result); template<class InputIterator, class OutputIterator, class BinaryPredicate> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result, BinaryPredicate pred);Requires: The comparison function shall be an equivalence relation. The ranges [first,last) and [result,result+(last-first)) shall not overlap. The expression *result = *first shall be valid. If neither InputIterator nor OutputIterator meets the requirements of forward iterator then the value type of InputIterator shall be CopyConstructible (34) and CopyAssignable (table 36). Otherwise CopyConstructible is not required.
Section: 30.6 [futures] Status: Resolved Submitter: Detlef Vollmann Opened: 2009-10-22 Last modified: 2015-04-08
View all other issues in [futures].
View all issues with Resolved status.
Discussion:
With the addition of async(), a future might be associated with a function that is not running in a different thread but is stored to by run synchronously on the get() call. It's not clear what the wait() functions should do in this case.
Suggested resolution:
Throw an exception.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3058.
Proposed resolution:
Section: 20.9.13 [unord.hash] Status: C++11 Submitter: Paolo Carlini Opened: 2009-10-22 Last modified: 2015-04-08
View other active issues in [unord.hash].
View all other issues in [unord.hash].
View all issues with C++11 status.
Discussion:
In 20.9.13 [unord.hash], operator() is specified as taking the argument by value. Moreover, it is said that operator() shall not throw exceptions.
However, for the specializations for class types, like string, wstring, etc, the former requirement seems suboptimal from the performance point of view (a specific PR has been filed about this in the GCC Bugzilla) and, together with the latter requirement, hard if not impossible to fulfill. It looks like pass by const reference should be allowed in such cases.
[ 2009-11-18: Ganesh updates wording. ]
I've removed the list of types for which hash shall be instantiated because it's already explicit in the synopsis of header <functional> in 20.9 [function.objects]/2.
[ 2009-11-18: Original wording here: ]
Add to 20.9.13 [unord.hash]/2:
namespace std { template <class T> struct hash : public std::unary_function<T, std::size_t> { std::size_t operator()(T val) const; }; }The return value of operator() is unspecified, except that equal arguments shall yield the same result. operator() shall not throw exceptions. It is also unspecified whether operator() of std::hash specializations for class types takes its argument by value or const reference.
[ 2009-11-19 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2009-11-24 Ville Opens: ]
I have received community requests to ask for this issue to be reopened. Some users feel that mandating the inheritance is overly constraining.
[ 2010-01-31 Alisdair: related to 978 and 1182. ]
[ 2010-02-07 Proposed resolution updated by Beman, Daniel and Ganesh. ]
[ 2010-02-09 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Insert a new subclause either before or after the current 17.6.3.5 [allocator.requirements]:
Hash Requirements [hash.requirements]
This subclause defines the named requirement Hash, used in several clauses of the C++ standard library. A type H meets the Hash requirement if
it is a function object type (20.9 [function.objects]).
it satisfies the requirements of CopyConstructible, and Destructible (17.6.3.1 [utility.arg.requirements]),
the expressions shown in the following table are valid and have the indicated semantics, and
it satisfies all other requirements of this subclause.
Given Key is an argument type for function objects of type H, in the table below h is a value of type (possibly const) H, u is an lvalue of type Key, and k is a value of a type convertible to (possibly const) Key:
Table ? — Hash requirements Expression Return type Requirement h(k) size_t Shall not throw exceptions. The value returned shall depend only on the argument k. [Note: Thus all evaluations of the expression h(k) with the same value for k yield the same result. — end note] [Note: For t1 and t2 of different values, the probability that h(t1) and h(t2) compare equal should be very small, approaching (1.0/numeric_limits<size_t>::max()). — end note] Comment (not to go in WP): The wording for the second note is based on a similar note in 22.4.4.1.2 [locale.collate.virtuals]/3 h(u) size_t Shall not modify u.
Change 20.9.13 [unord.hash] as indicated:
1 The unordered associative containers defined in Clause 23.5 [unord] use specializations of the class template hash as the default hash function. For all object types T for which there exists a specialization hash<T>, the instantiation hash<T> shall:
- satisfy the Hash requirements([hash.requirements]), with T as the function call argument type, the DefaultConstructible requirements ([defaultconstructible]), the CopyAssignable requirements ([copyassignable]), and the Swappable requirements ([swappable]),
- provide two nested types result_type and argument_type which shall be synonyms for size_t and T, respectively,
- satisfy the requirement that if k1 == k2 is true, h(k1) == h(k2) is true, where h is an object of type hash<T>, and k1, k2 are objects of type T.
This class template is only required to be instantiable for integer types (3.9.1 [basic.fundamental]), floating-point types (3.9.1 [basic.fundamental]), pointer types (8.3.1 [dcl.ptr]), and std::string, std::u16string, std::u32string, std::wstring, std::error_code, std::thread::id, std::bitset, and std::vector<bool>.namespace std { template <class T> struct hash : public std::unary_function<T, std::size_t> { std::size_t operator()(T val) const; }; }
2 The return value of operator() is unspecified, except that equal arguments shall yield the same result. operator() shall not throw exceptions.
Change Unordered associative containers 23.2.5 [unord.req] as indicated:
Each unordered associative container is parameterized by Key, by a function object type Hash([hash.requirements]) that acts as a hash function for argument values of type Key, and by a binary predicate Pred that induces an equivalence relation on values of type Key. Additionally, unordered_map and unordered_multimap associate an arbitrary mapped type T with the Key.
A hash function is a function object that takes a single argument of type Key and returns a value of type std::size_t.
Two values k1 and k2 of type Key are considered equal if the container's equality function object returns true when passed those values. If k1 and k2 are equal, the hash function shall return the same value for both. [Note: Thus supplying a non-default Pred parameter usually implies the need to supply a non-default Hash parameter. — end note]
Section: X [auto.ptr] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-10-24 Last modified: 2015-04-08
View all other issues in [auto.ptr].
View all issues with C++11 status.
Discussion:
This issue is extracted as the ongoing point-of-interest from earlier issue 463.
auto_ptr is overspecified as the auto_ptr_ref implementation detail is formally specified, and the technique is observable so workarounds for compiler defects can cause a working implementation of the primary auto_ptr template become non-conforming.
auto_ptr_ref is a documentation aid to describe a possible mechanism to implement the class. It should be marked exposition only, as per similar classes, e.g., istreambuf_iterator::proxy
[ 2009-10-25 Daniel adds: ]
I wonder, whether the revised wording shouldn't be as straight as for istream_buf by adding one further sentence:
An implementation is permitted to provide equivalent functionality without providing a class with this name.
[ 2009-11-06 Alisdair adds Daniel's suggestion to the proposed wording. ]
[ 2009-11-06 Howard moves issue to Review. ]
[ 2009-11-14 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Add the term "exposition only" in the following two places:
Ammend X [auto.ptr]p2:
The exposition only class
Ttemplate auto_ptr_ref holds a reference to an auto_ptr. It is used by the auto_ptr conversions to allow auto_ptr objects to be passed to and returned from functions. An implementation is permitted to provide equivalent functionality without providing a class with this name.namespace std { template <class Y> struct auto_ptr_ref { }; // exposition only
Section: 23.5 [unord] Status: Resolved Submitter: Herb Sutter Opened: 2009-10-25 Last modified: 2015-04-08
View all other issues in [unord].
View all issues with Resolved status.
Discussion:
See N2986.
[ 2010-01-22 Alisdair Opens. ]
[ 2010-01-24 Alisdair provides wording. ]
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3068.
Proposed resolution:
Apply paper N2986.
Section: 27.5.5.2 [basic.ios.cons] Status: C++11 Submitter: Martin Sebor Opened: 2009-10-25 Last modified: 2015-04-08
View all other issues in [basic.ios.cons].
View all issues with C++11 status.
Discussion:
The basic_ios default ctor is required to leave the objects members uninitialized (see below). The paragraph says the object must be initialized by calling basic_ios::init() before it's destroyed but I can't find a requirement that it be initialized before calling any of the class other member functions. Am I not looking in the right place or that an issue?
[ 2009-10-25 Daniel adds: ]
I agree, that your wording makes that clearer, but suggest to write
... calling basic_ios::init
()before ...Doing so, I recommend to adapt that of ios_base(); as well, where we have:
Effects: Each ios_base member has an indeterminate value after construction. These members shall be initialized by calling basic_ios::init. If an ios_base object is destroyed before these initializations have taken place, the behavior is undefined.
[ Post-Rapperswil: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 27.5.3.7 [ios.base.cons] p1:
ios_base();Effects: Each ios_base member has an indeterminate value after construction.
TheseThe object's members shall be initialized by calling basic_ios::init before the object's first use or before it is destroyed, whichever comes first; otherwise the behavior is undefined..If an ios_base object is destroyed before these initializations have taken place, the behavior is undefined.
Change 27.5.5.2 [basic.ios.cons] p2:
basic_ios();Effects: Constructs an object of class basic_ios (27.5.2.7) leaving its member objects uninitialized. The object shall be initialized by calling
itsbasic_ios::init before its first use or before it is destroyed, whichever comes first; otherwise the behavior is undefined.member function. If it is destroyed before it has been initialized the behavior is undefined.
Section: 20.6 [template.bitset] Status: C++11 Submitter: Martin Sebor Opened: 2009-10-29 Last modified: 2015-04-08
View other active issues in [template.bitset].
View all other issues in [template.bitset].
View all issues with C++11 status.
Discussion:
Issue 1227 — <bitset> synopsis overspecified makes the observation that std::bitset, and in fact the whole library, may be implemented without needing to #include <stdexcept> in any library header. The proposed resolution removes the #include <stdexcept> directive from the header.
I'd like to add that the <bitset> header (as well as the rest of the library) has also been implemented without #including the <cstddef> header in any library header. In the case of std::bitset, the template is fully usable (i.e., it may be instantiated and all its member functions may be used) without ever mentioning size_t. In addition, just like no library header except for <bitset> #includes <stdexcept> in its synopsis, no header but <bitset> #includes <cstddef> either.
Thus I suggest that the #include <cstddef> directive be similarly removed from the synopsis of <bitset>.
[ 2010-02-08 Moved to Tentatively Ready after 6 positive votes on c++std-lib. ]
Proposed resolution:
Change 20.6 [template.bitset]:
#include <cstddef> // for size_t#include <string> #include <iosfwd> // for istream, ostream namespace std { ...
Section: 22.3.3.2.3 [conversions.buffer] Status: C++11 Submitter: Bo Persson Opened: 2009-10-21 Last modified: 2015-04-08
View other active issues in [conversions.buffer].
View all other issues in [conversions.buffer].
View all issues with C++11 status.
Discussion:
The synopsis for wbuffer_convert 22.3.3.2.3 [conversions.buffer]/2 contains
typedef typename Tr::state_type state_type;
making state_type a synonym for (possibly) some char_traits<x>::state_type.
However, in paragraph 9 of the same section, we have
typedef typename Codecvt::state_type state_type;The type shall be a synonym for Codecvt::state_type.
From what I can see, it might be hard to implement wbuffer_convert if the types were not both std::mbstate_t, but I cannot find a requirement that they must be the same type.
[ Batavia 2010: ]
Howard to draft wording, move to Review. Run it by Bill. Need to move this in Madrid.
[2011-03-06: Howard drafts wording]
[2011-03-24 Madrid meeting]
Moved to Immediate
Proposed resolution:
Modify the state_type typedef in the synopsis of 22.3.3.2.3 [conversions.buffer] p.2 as shown [This makes the synopsis consistent with 22.3.3.2.3 [conversions.buffer] p.9]:
namespace std { template<class Codecvt, class Elem = wchar_t, class Tr = std::char_traits<Elem> > class wbuffer_convert : public std::basic_streambuf<Elem, Tr> { public: typedef typenameTrCodecvt::state_type state_type; […] }; }
Section: 23.2.4 [associative.reqmts] Status: C++11 Submitter: Boris Dušek Opened: 2009-10-24 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with C++11 status.
Discussion:
In the latest published draft N2960, section 23.2.4 [associative.reqmts], paragraph 8, it is specified that that insert does not invalidate any iterators. As per 23.2.1 [container.requirements.general], paragraph 12, this holds true not only for insert, but emplace as well. This gives the insert member a special treatment w.r.t. emplace member in 23.2.4 [associative.reqmts], par. 8, since both modify the container. For the sake of consistency, in 23.2.4 [associative.reqmts], par. 8: either reference to insert should be removed (i.e. count on 23.2.1 [container.requirements.general], par. 12), or reference to emplace be added (i.e. mention all members of assoc. containers that modify it).
[ 2009-11-18 Chris provided wording. ]
This suggested wording covers both the issue discussed, and a number of other identical issues (namely insert being discussed without emplace). I'm happy to go back and split and introduce a new issue if appropriate, but I think the changes are fairly mechanical and obvious.
[ 2010-01-23 Daniel Krügler and J. Daniel García updated wording to make the use of hint consistent with insert. ]
[ 2011-02-23 Daniel Krügler adapts wording to numbering changes to match the N3225 draft. During this action it was found that 23.2.5 [unord.req] had been changed considerably due to acceptance of N3068 during the Pittsburgh meeting, such that the suggested wording change to p. 6 can no longer be applied. The new wording is more general and should now include insert() and emplace() calls as well ("mutating operations"). ]
[2011-03-06 Daniel Krügler adapts wording to numbering changes to match the N3242 draft]
Proposed resolution:
Modify bullet 1 of 23.2.1 [container.requirements.general], p. 10:
10 Unless otherwise specified (see [associative.reqmts.except], [unord.req.except], [deque.modifiers], and [vector.modifiers]) all container types defined in this Clause meet the following additional requirements:
Modify 23.2.4 [associative.reqmts], p. 4:
4 An associative container supports unique keys if it may contain at most one element for each key. Otherwise, it supports equivalent keys. The set and map classes support unique keys; the multiset and multimap classes support equivalent keys. For multiset and multimap, insert, emplace, and erase preserve the relative ordering of equivalent elements.
Modify Table 102 — Associative container requirements in 23.2.4 [associative.reqmts]:
Table 102 — Associative container requirements (in addition to container) Expression Return type Assertion/note
pre-/post-conditionComplexity […] a_eq.emplace(args) iterator […] Effects: Inserts a T object t constructed with std::forward<Args>(args)... and returns the iterator pointing to the newly inserted element. If a range containing elements equivalent to t exists in a_eq, t is inserted at the end of that range. logarithmic a.emplace_hint(p, args) iterator equivalent to a.emplace(std::forward<Args>(args)...). Return value is an iterator pointing to the element with the key equivalent to the newly inserted element. The const_iterator p is a hint pointing to where the search should start.The element is inserted as close as possible to the position just prior to p.Implementations are permitted to ignore the hint.logarithmic in general, but amortized constant if the element is inserted right afterbefore p[…]
Modify 23.2.4 [associative.reqmts], p. 9:
9 The insert and emplace members shall not affect the validity of iterators and references to the container, and the erase members shall invalidate only iterators and references to the erased elements.
Modify 23.2.4.1 [associative.reqmts.except], p. 2:
2 For associative containers, if an exception is thrown by any operation from within an insert() or emplace() function inserting a single element, the
insert() functioninsertion has no effect.
Modify 23.2.5 [unord.req], p. 13 and p. 14:
6 An unordered associative container supports unique keys if it may contain at most one element for each key. Otherwise, it supports equivalent keys. unordered_set and unordered_map support unique keys. unordered_multiset and unordered_multimap support equivalent keys. In containers that support equivalent keys, elements with equivalent keys are adjacent to each other in the iteration order of the container. Thus, although the absolute order of elements in an unordered container is not specified, its elements are grouped into equivalent-key groups such that all elements of each group have equivalent keys. Mutating operations on unordered containers shall preserve the relative order of elements within each equivalent-key group unless otherwise specified.
[…]
13 The insert and emplace members shall not affect the validity of references to container elements, but may invalidate all iterators to the container. The erase members shall invalidate only iterators and references to the erased elements.
14 The insert and emplace members shall not affect the validity of iterators if (N+n) < z * B, where N is the number of elements in the container prior to the insert operation, n is the number of elements inserted, B is the container's bucket count, and z is the container's maximum load factor.
Modify 23.2.5.1 [unord.req.except], p. 2:
2 For unordered associative containers, if an exception is thrown by any operation other than the container's hash function from within an insert() or emplace() function inserting a single element, the
insert()insertionfunctionhas no effect.
Section: 23.3.7 [vector.bool] Status: C++11 Submitter: Christopher Jefferson Opened: 2009-11-01 Last modified: 2015-04-08
View all other issues in [vector.bool].
View all issues with C++11 status.
Discussion:
The effects of vector<bool>::flip has the line:
It is unspecified whether the function has any effect on allocated but unused bits.
While this is technically true, it is misleading, as any member function in any standard container may change unused but allocated memory. Users can never observe such changes as it would also be undefined behaviour to read such memory.
[ 2009-11-14 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Strike second sentence from the definition of vector<bool>::flip(), 23.3.7 [vector.bool], paragraph 5.
Effects: Replaces each element in the container with its complement.
It is unspecified whether the function has any effect on allocated but unused bits.
Section: 20.2 [utility] Status: C++11 Submitter: Daniel Krügler Opened: 2009-11-03 Last modified: 2015-04-08
View other active issues in [utility].
View all other issues in [utility].
View all issues with C++11 status.
Discussion:
During the Santa Cruz meeting it was decided to split off the provision of the library utility value() proposed in N2979 from the concrete request of the UK 300 comment. The provision of a new library component that allows the production of values in unevaluated expressions is considered as important to realize constrained templates in C++0x where concepts are not available.
The following proposed resolution is an improvement over that suggested in N2958, because the proposed component can now be defined without loss of general usefulness and any use by user-code will make the program ill-formed. A possible prototype implementation that satisfies the core language requirements can be written as:
template<class T>
struct declval_protector {
static const bool stop = false;
static typename std::add_rvalue_reference<T>::type delegate(); // undefined
};
template<class T>
typename std::add_rvalue_reference<T>::type declval() {
static_assert(declval_protector<T>::stop, "declval() must not be used!");
return declval_protector<T>::delegate();
}
Further-on the earlier suggested name value() has been changed to declval() after discussions with committee members.
Finally the suggestion shown below demonstrates that it can simplify existing standard wording by directly using it in the library specification, and that it also improves an overlooked corner case for common_type by adding support for cv void.
[ 2009-11-19 Moved to Tentatively Ready after 6 positive votes on c++std-lib. ]
Proposed resolution:
[ The proposed resolution has been updated to N3000 numbering and wording ]
Change 20.2 [utility], header <utility> synopsis as indicated:
// 20.3.3, forward/move: template <class T> struct identity; template <class T, class U> T&& forward(U&&); template <class T> typename remove_reference<T>::type&& move(T&&); // 20.3.4, declval: template <class T> typename add_rvalue_reference<T>::type declval(); // as unevaluated operand
Immediately after the current section 20.2.4 [forward] insert a new section:
20.3.4 Function template declval [declval]
The library provides the function template declval to simplify the definition of expressions which occur as unevaluated operands (5 [expr]). The template parameter T of declval may be an incomplete type.
template <class T> typename add_rvalue_reference<T>::type declval(); // as unevaluated operand
Remarks: If this function is used according to 3.2 [basic.def.odr], the program is ill-formed.
[Example:
template<class To, class From> decltype(static_cast<To>(declval<From>())) convert(From&&);declares a function template convert, which only participates in overloading if the type From can be explicitly cast to type To. For another example see class template common_type (20.10.7.6 [meta.trans.other]). — end example]
This bullet just makes clear that after applying N2984, the changes in 20.10.4.3 [meta.unary.prop], before table Type property queries should not use declval, because the well-formedness requirement of the specification of is_constructible would become more complicated, because we would need to make sure that the expression CE is checked in an unevaluated context.
Also 20.10.6 [meta.rel]/4 is not modified similar to the previous bullet, because with the stricter requirements of not using declval() the well-formedness condition would be harder to specify. The following changes are only editorial ones (e.g. the removal of the duplicate declaration of create()):
Given the following function prototype:
template <class T> typename add_rvalue_reference<T>::type create();the predicate condition for a template specialization is_convertible<From, To> shall be satisfied if and only if the return expression in the following code would be well-formed, including any implicit conversions to the return type of the function:
template <class T> typename add_rvalue_reference<T>::type create();To test() { return create<From>(); }
Change the entry in column "Comments" for common_type in Table 51 — Other transformations (20.10.7.6 [meta.trans.other]):
[ NB: This wording change extends the type domain of common_type for cv void => cv void transformations and thus makes common_type usable for all binary type combinations that are supported by is_convertible ]
The member typedef type shall be defined as set out below. All types in the parameter pack T shall be complete or (possibly cv-qualified) void. A program may specialize this trait if at least one template parameter in the specialization is a user-defined type. [Note: Such specializations are needed when only explicit conversions are desired among the template arguments. — end note]
Change 20.10.7.6 [meta.trans.other]/3 as indicated:
[ NB: This wording change is more than an editorial simplification of the definition of common_type: It also extends its usefulness for cv void types as outlined above ]
The nested typedef common_type::type shall be defined as follows:
[..]
template <class T, class U> struct common_type<T, U> {private: static T&& __t(); static U&& __u(); public:typedef decltype(true ?__tdeclval<T>() :__udeclval<U>()) type; };
Change X [func.ret]/1 as indicated [This part solves some main aspects of issue 1225]:
namespace std { template <class> class result_of; // undefined template <class Fn, class... ArgTypes> class result_of<Fn(ArgTypes...)> { public :// typestypedefsee belowdecltype(declval<Fn>() ( declval<ArgTypes>()... )) type; }; }
1 Given an rvalue fn of type Fn and values t1, t2, ..., tN of types T1, T2, ..., TN in ArgTypes, respectively, the type member is the result type of the expression fn(t1, t2, ...,tN). The values ti are lvalues when the corresponding type Ti is an lvalue-reference type, and rvalues otherwise.
Section: 20.8.2.3 [util.smartptr.weak] Status: C++11 Submitter: Daniel Krügler Opened: 2009-11-04 Last modified: 2015-04-08
View all other issues in [util.smartptr.weak].
View all issues with C++11 status.
Discussion:
Additional to the necessary cleanup of the description of the the weak_ptr component from 20.8.2.3 [util.smartptr.weak] described in 1231 it turns out that the currently deleted comparison functions of weak_ptr are not needed at all: There is no safe-bool conversion from weak_ptr, and it won't silently chose a conversion to shared_ptr.
[ 2009-11-14 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 20.8.2.3 [util.smartptr.weak]/1 as indicated:
namespace std { template<class T> class weak_ptr { public: ...// comparisonstemplate<class Y> bool operator<(weak_ptr<Y> const&) const = delete;template<class Y> bool operator<=(weak_ptr<Y> const&) const = delete;template<class Y> bool operator>(weak_ptr<Y> const&) const = delete;template<class Y> bool operator>=(weak_ptr<Y> const&) const = delete;}; ...
concept_map
Section: 27.5 [iostreams.base] Status: C++11 Submitter: Beman Dawes Opened: 2009-11-04 Last modified: 2015-04-08
View all other issues in [iostreams.base].
View all issues with C++11 status.
Discussion:
The current WP still contains a concept_map.
[ 2009-11-11 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change Iostreams base classes 27.5 [iostreams.base], Header <ios> synopsis, as indicated:
concept_map ErrorCodeEnum<io_errc> { };template <> struct is_error_code_enum<io_errc> : true_type { } error_code make_error_code(io_errc e); error_condition make_error_condition(io_errc e); const error_category& iostream_category();
Section: 20.9.12.2.2 [func.wrap.func.mod] Status: Resolved Submitter: Daniel Krügler Opened: 2009-11-05 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
As of 20.9.12.2.2 [func.wrap.func.mod]/2+ we have the following prototype description:
template<class F, Allocator Alloc> void assign(F, const Alloc&);Effects: function(f, a).swap(*this)
Two things: First the concept debris needs to be removed, second and much more importantly, the effects clause is now impossible to satisfy, because there is no constructor that would match the parameter sequence (FunctionObject, Allocator) [plus the fact that no f and no a is part of the signature]. The most probable candidate is
template<class F, class A> function(allocator_arg_t, const A&, F);
and the effects clause needs to be adapted to use this signature.
[ 2009-11-13 Daniel brought wording up to date. ]
[ 2009-11-15 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-02-11 Moved to Tentatively NAD Editorial after 5 positive votes on c++std-lib. It was noted that this issue was in partial conflict with 1288, and the two issues were merged in 1288. ]
Rationale:
Addressed by 1288.
Proposed resolution:
Change in 20.9.12.2.2 [func.wrap.func.mod] the complete prototype description as indicated
[ Question to the editor: Shouldn't there a paragraph number in front of the Effects clause? ]
template<class F,Allocator Allocclass A> void assign(F f, const Alloc& a);3 Effects: function(
f, aallocator_arg, a, f).swap(*this)
Section: 20.10.4.3 [meta.unary.prop] Status: Resolved Submitter: Peter Dimov Opened: 2009-11-07 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with Resolved status.
Discussion:
The specification of is_constructible<T,Args...> in N3000 uses
static_cast<T>(create<Args>()...)
for the one-argument case, but static_cast also permits unwanted conversions such as void* to T* and Base* to Derived*.
[ Post-Rapperswil: ]
Moved to
NAD EditorialResolved, this issue is addressed by paper n3047
Proposed resolution:
Change 20.10.4.3 [meta.unary.prop], p6:
the predicate condition for a template specialization is_constructible<T, Args> shall be satisfied, if and only if the following
expression CEvariable definition would be well-formed:
if sizeof...(Args) == 0
1, the expression:static_cast<T>(create<Args>()...)T t;otherwise
the expression:T t(create<Args>()...);
Section: 21.5 [string.conversions] Status: C++11 Submitter: Christopher Jefferson Opened: 2009-11-10 Last modified: 2015-04-08
View all other issues in [string.conversions].
View all issues with C++11 status.
Discussion:
Reported on the gcc mailing list.
The code "int i; to_string(i);" fails to compile, as 'int' is ambiguous between 'long long' and 'long long unsigned'. It seems unreasonable to expect users to cast numbers up to a larger type just to use to_string.
[ 2009-11-14 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
21.3 [string.classes], change to_string and to_wstring to:
string to_string(int val); string to_string(unsigned val); string to_string(long val); string to_string(unsigned long val); string to_string(long long val); string to_string(unsigned long long val); string to_string(float val); string to_string(double val); string to_string(long double val); wstring to_wstring(int val); wstring to_wstring(unsigned val); wstring to_wstring(long val); wstring to_wstring(unsigned long val); wstring to_wstring(long long val); wstring to_wstring(unsigned long long val); wstring to_wstring(float val); wstring to_wstring(double val); wstring to_wstring(long double val);
In 21.5 [string.conversions], paragraph 7, change to:
string to_string(int val); string to_string(unsigned val); string to_string(long val); string to_string(unsigned long val); string to_string(long long val); string to_string(unsigned long long val); string to_string(float val); string to_string(double val); string to_string(long double val);7 Returns: each function returns a string object holding the character representation of the value of its argument that would be generated by calling sprintf(buf, fmt, val) with a format specifier of "%d", "%u", "%ld", "%lu", "%lld", "%llu", "%f", "%f", or "%Lf", respectively, where buf designates an internal character buffer of sufficient size.
In 21.5 [string.conversions], paragraph 14, change to:
wstring to_wstring(int val); wstring to_wstring(unsigned val); wstring to_wstring(long val); wstring to_wstring(unsigned long val); wstring to_wstring(long long val); wstring to_wstring(unsigned long long val); wstring to_wstring(float val); wstring to_wstring(double val); wstring to_wstring(long double val);14 Returns: Each function returns a wstring object holding the character representation of the value of its argument that would be generated by calling swprintf(buf, buffsz, fmt, val) with a format specifier of L"%d", L"%u", L"%ld", L"%lu", L"%lld", L"%llu", L"%f", L"%f", or L"%Lf", respectively, where buf designates an internal character buffer of sufficient size buffsz.
Section: 20.8.2.2.7 [util.smartptr.shared.cmp] Status: C++11 Submitter: Jonathan Wakely Opened: 2009-11-10 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
20.8.2.2.7 [util.smartptr.shared.cmp]/5 says:
For templates greater, less, greater_equal, and less_equal, the partial specializations for shared_ptr shall yield a total order, even if the built-in operators <, >, <=, and >= do not. Moreover, less<shared_ptr<T> >::operator()(a, b) shall return std::less<T*>::operator()(a.get(), b.get()).
This is necessary in order to use shared_ptr as the key in associate containers because n2637 changed operator< on shared_ptrs to be defined in terms of operator< on the stored pointers (a mistake IMHO but too late now.) By 5.9 [expr.rel]/2 the result of comparing builtin pointers is unspecified except in special cases which generally do not apply to shared_ptr.
Earlier versions of the WP (n2798, n2857) had the following note on that paragraph:
[Editor's note: It's not clear to me whether the first sentence is a requirement or a note. The second sentence seems to be a requirement, but it doesn't really belong here, under operator<.]
I agree completely - if partial specializations are needed they should be properly specified.
20.8.2.2.7 [util.smartptr.shared.cmp]/6 has a note saying the comparison operator allows shared_ptr objects to be used as keys in associative containers, which is misleading because something else like a std::less partial specialization is needed. If it is not correct that note should be removed.
20.8.2.2.7 [util.smartptr.shared.cmp]/3 refers to 'x' and 'y' but the prototype has parameters 'a' and 'b' - that needs to be fixed even if the rest of the issue is NAD.
I see two ways to fix this, I prefer the first because it removes the need for any partial specializations and also fixes operator> and other comparisons when defined in terms of operator<.
Replace 20.8.2.2.7 [util.smartptr.shared.cmp]/3 with the following and remove p5:
template<class T, class U> bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b);3 Returns:
x.get() < y.get().std::less<V>()(a.get(), b.get()), where V is the composite pointer type (5.9 [expr.rel]).4 Throws: nothing.
5 For templates greater, less, greater_equal, and less_equal, the partial specializations for shared_ptr shall yield a total order, even if the built-in operators <, >, <=, and >= do not. Moreover, less<shared_ptr<T> >::operator()(a, b) shall return std::less<T*>::operator()(a.get(), b.get()).6 [Note: Defining a comparison operator allows shared_ptr objects to be used as keys in associative containers. — end note]
Add to 20.8.2.2 [util.smartptr.shared]/1 (after the shared_ptr comparisons)
template<class T> struct greater<shared_ptr<T>>; template<class T> struct less<shared_ptr<T>>; template<class T> struct greater_equal<shared_ptr<T>>; template<class T> struct less_equal<shared_ptr<T>>;
Remove 20.8.2.2.7 [util.smartptr.shared.cmp]/5 and /6 and replace with:
template<class T, class U> bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b);3 Returns:
xa.get() <yb.get().4 Throws: nothing.
5 For templates greater, less, greater_equal, and less_equal, the partial specializations for shared_ptr shall yield a total order, even if the built-in operators <, >, <=, and >= do not. Moreover, less<shared_ptr<T> >::operator()(a, b) shall return std::less<T*>::operator()(a.get(), b.get()).
6 [Note: Defining a comparison operator allows shared_ptr objects to be used as keys in associative containers. — end note]template<class T> struct greater<shared_ptr<T>> : binary_function<shared_ptr<T>, shared_ptr<T>, bool> { bool operator()(const shared_ptr<T>& a, const shared_ptr<T>& b) const; };operator() returns greater<T*>()(a.get(), b.get()).
template<class T> struct less<shared_ptr<T>> : binary_function<shared_ptr<T>, shared_ptr<T>, bool> { bool operator()(const shared_ptr<T>& a, const shared_ptr<T>& b) const; };operator() returns less<T*>()(a.get(), b.get()).
template<class T> struct greater_equal<shared_ptr<T>> : binary_function<shared_ptr<T>, shared_ptr<T>, bool> { bool operator()(const shared_ptr<T>& a, const shared_ptr<T>& b) const; };operator() returns greater_equal<T*>()(a.get(), b.get()).
template<class T> struct less_equal<shared_ptr<T>> : binary_function<shared_ptr<T>, shared_ptr<T>, bool> { bool operator()(const shared_ptr<T>& a, const shared_ptr<T>& b) const; };operator() returns less_equal<T*>()(a.get(), b.get()).
[ 2009-11-18: Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Replace 20.8.2.2.7 [util.smartptr.shared.cmp]/3 with the following and remove p5:
template<class T, class U> bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b);3 Returns:
x.get() < y.get().less<V>()(a.get(), b.get()), where V is the composite pointer type (5.9 [expr.rel]) of T* and U*.4 Throws: nothing.
5 For templates greater, less, greater_equal, and less_equal, the partial specializations for shared_ptr shall yield a total order, even if the built-in operators <, >, <=, and >= do not. Moreover, less<shared_ptr<T> >::operator()(a, b) shall return std::less<T*>::operator()(a.get(), b.get()).6 [Note: Defining a comparison operator allows shared_ptr objects to be used as keys in associative containers. — end note]
Section: 17.6.1.3 [compliance] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-11-12 Last modified: 2015-04-08
View all other issues in [compliance].
View all issues with C++11 status.
Discussion:
Addresses UK 172
This issue is a response to NB comment UK-172
The functions quick_exit and at_quick_exit should be added to the required features of <cstdlib> in a freestanding implementation.
This comment was rejected in Summit saying neither at_exit nor at_quick_exit should be required. This suggests the comment was misread, as atexit is already required to be supported. If the LWG really did wish to not require the registration functions be supported, then a separate issue should be opened to change the current standard.
Given both exit and atexit are required, the UK panel feels it is appropriate to require the new quick_exit facility is similarly supported.
[ 2009-12-11 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Ammend p3 Freestanding implementations 17.6.1.3 [compliance]
3 The supplied version of the header <cstdlib> shall declare at least the functions abort
(), atexit(), at_quick_exit,andexit(), and quick_exit(18.5 [support.start.term]). The other headers listed in this table shall meet the same requirements as for a hosted implementation.
Section: 30.6.7 [futures.shared_future] Status: Resolved Submitter: Anthony Williams Opened: 2009-11-17 Last modified: 2015-04-08
View all other issues in [futures.shared_future].
View all issues with Resolved status.
Discussion:
If a shared_future is constructed with the result of an async call with a deferred function, and two or more copies of that shared_future are created, with multiple threads calling get(), it is not clear which thread runs the deferred function. 30.6.7 [futures.shared_future]p22 from N3000 says (minus editor's note):
Effects: if the associated state contains a deferred function, executes the deferred function. Otherwise, blocks until the associated state is ready.
In the absence of wording to the contrary, this implies that every thread that calls wait() will execute the deferred function.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3058.
Proposed resolution:
Replace 30.6.7 [futures.shared_future]p22 with the following:
Effects: If the associated state
contains a deferred function, executes the deferred function. Otherwise, blocks until the associated state is ready.was created by a promise or packaged_task object, block until the associated state is ready. If the associated state is associated with a thread created for an async call (30.6.8 [futures.async]), as if associated-thread.join().If the associated state contains a deferred function, calls to wait() on all shared_future objects that share the same associated state are serialized. The first call to wait() that shares a given associated state executes the deferred function and stores the return value or exception in the associated state.
Synchronization: if the associated state was created by a promise object, the completion of set_value() or set_exception() to that promise happens before (1.10 [intro.multithread]) wait() returns. If the associated state was created by a packaged_task object, the completion of the associated task happens before wait() returns. If the associated state is associated with a thread created for an async call (30.6.8 [futures.async]), the completion of the associated thread happens-before wait() returns.
If the associated state contained a deferred function, the invocation of the deferred function happens-before any call to wait() on a future that shares that state returns.
Section: 30.5.2 [thread.condition.condvarany] Status: C++11 Submitter: Anthony Williams Opened: 2009-11-17 Last modified: 2015-04-08
View all other issues in [thread.condition.condvarany].
View all issues with C++11 status.
Discussion:
30.5.2 [thread.condition.condvarany]p18 and 30.5.2 [thread.condition.condvarany]p27 specify incorrect preconditions for condition_variable_any::wait_for. The stated preconditions require that lock has a mutex() member function, and that this produces the same result for all concurrent calls to wait_for(). This is inconsistent with wait() and wait_until() which do not impose such a requirement.
[ 2009-12-24 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Remove 30.5.2 [thread.condition.condvarany]p18 and 30.5.2 [thread.condition.condvarany]p27.
template <class Lock, class Rep, class Period> cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);
18 Precondition: lock is locked by the calling thread, and either
no other thread is waiting on this condition_variable object orlock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting (via wait, wait_for, or wait_until) threads....
template <class Lock, class Rep, class Period, class Predicate> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);
27 Precondition: lock is locked by the calling thread, and either
no other thread is waiting on this condition_variable object orlock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting (via wait, wait_for, or wait_until) threads.
Section: 30.4 [thread.mutex] Status: Resolved Submitter: Anthony Williams Opened: 2009-11-17 Last modified: 2015-04-08
View all other issues in [thread.mutex].
View all issues with Resolved status.
Discussion:
The Mutex requirements in 30.4.1 [thread.mutex.requirements] and 30.4.1.3 [thread.timedmutex.requirements] confuse the requirements on the behaviour of std::mutex et al with the requirements on Lockable types for use with std::unique_lock, std::lock_guard and std::condition_variable_any.
[ 2010 Pittsburgh: ]
Concepts of threads chapter and issue presentation are: Lockable < Mutex < TimedMutex and Lockable < TimedLockable < TimedMutex.
Typo in failed deletion of Mutex in 30.4.4 p4 edits.
Lockable requirements are too weak for condition_variable_any, but the Mutex requirements are too strong.
Need subset of Lockable requirements for condition_variable_any that does not include try_lock. E.g. CvLockable < Lockable.
Text needs updating to recent draft changes.
Needs to specify exception behavior in Lockable.
The current standard is fine for what it says, but it places requirements that are too strong on authors of mutexes and locks.
Move to open status. Suggest Anthony look at condition_variable_any requirements. Suggest Anthony refine requirements/concepts categories.
[ 2010-03-28 Daniel synced with N3092. ]
[ 2010-10-25 Daniel adds: ]
Accepting n3130 would solve this issue.
[ 2010-11 Batavia: ]
Resolved by adopting n3197.
Proposed resolution:
Add a new section to 30.2 [thread.req] after 30.2.4 [thread.req.timing] as follows:
30.2.5 Requirements for Lockable types
The standard library templates unique_lock (30.4.2.2 [thread.lock.unique]), lock_guard (30.4.2.1 [thread.lock.guard]), lock, try_lock (30.4.3 [thread.lock.algorithm]) and condition_variable_any (30.5.2 [thread.condition.condvarany]) all operate on user-supplied Lockable objects. Such an object must support the member functions specified for either the Lockable Requirements or the TimedLockable requirements as appropriate to acquire or release ownership of a lock by a given thread. [Note: the nature of any lock ownership and any synchronization it may entail are not part of these requirements. — end note]
30.2.5.1 Lockable Requirements
In order to qualify as a Lockable type, the following expressions must be supported, with the specified semantics, where m denotes a value of type L that supports the Lockable:
The expression m.lock() shall be well-formed and have the following semantics:
- Effects:
- Block until a lock can be acquired for the current thread.
- Return type:
- void
The expression m.try_lock() shall be well-formed and have the following semantics:
- Effects:
- Attempt to acquire a lock for the current thread without blocking.
- Return type:
- bool
- Returns:
- true if the lock was acquired, false otherwise.
The expression m.unlock() shall be well-formed and have the following semantics:
- Effects:
- Release a lock on m held by the current thread.
- Return type:
- void
- Throws:
- Nothing if the current thread holds a lock on m.
30.2.5.2 TimedLockable Requirements
For a type to qualify as TimedLockable it must meet the Lockable requirements, and additionally the following expressions must be well-formed, with the specified semantics, where m is an instance of a type TL that supports the TimedLockable requirements, rel_time denotes instantiation of duration (20.12.5 [time.duration]) and abs_time denotes an instantiation of time_point (20.12.6 [time.point])
The expression m.try_lock_for(rel_time) shall be well-formed and have the following semantics:
- Effects:
- Attempt to acquire a lock for the current thread within the specified time period.
- Return type:
- bool
- Returns:
- true if the lock was acquired, false otherwise.
The expression m.try_lock_until(abs_time) shall be well-formed and have the following semantics:
- Effects:
- Attempt to acquire a lock for the current thread before the specified point in time.
- Return type:
- bool
- Returns:
- true if the lock was acquired, false otherwise.
Replace 30.4.1 [thread.mutex.requirements] paragraph 2 with the following:
2 This section describes requirements on
template argument types used to instantiate templates defined inthe mutex types supplied by the C++ standard library.The template definitions in the C++ standard library referThese types shall conform to the named Mutex requirements whose details are set out below. In this description, m is an object ofa Mutex typeone of the standard library mutex types std::mutex, std::recursive_mutex, std::timed_mutex or std::recursive_timed_mutex..
Add the following paragraph after 30.4.1 [thread.mutex.requirements] paragraph 2:
A Mutex type shall conform to the Lockable requirements (30.2.5.1).
Replace 30.4.1.3 [thread.timedmutex.requirements] paragraph 1 with the following:
The C++ standard library TimedMutex types std::timed_mutex and std::recursive_timed_mutex
A TimedMutex typeshall meet the requirements for a Mutex type. In addition,itthey shall meet the requirements set outin this Clause 30.4.2below, where rel_time denotes an instantiation of duration (20.12.5 [time.duration]) and abs_time denotes an instantiation of time_point (20.12.6 [time.point]).
Add the following paragraph after 30.4.1.3 [thread.timedmutex.requirements] paragraph 1:
A TimedMutex type shall conform to the TimedLockable requirements (30.2.5.1).
Add the following paragraph following 30.4.2.1 [thread.lock.guard] paragraph 1:
The supplied Mutex type shall meet the Lockable requirements (30.2.5.1).
Add the following paragraph following 30.4.2.2 [thread.lock.unique] paragraph 1:
The supplied Mutex type shall meet the Lockable requirements (30.2.5.1). unique_lock<Mutex> meets the Lockable requirements. If Mutex meets the TimedLockable requirements (30.2.5.2) then unique_lock<Mutex> also meets the TimedLockable requirements.
Replace the use of "mutex" or "mutex object" with "lockable object" throughout clause 30.4.2 [thread.lock] paragraph 1:
1 A lock is an object that holds a reference to a
mutexlockable object and may unlock themutexlockable object during the lock's destruction (such as when leaving block scope). A thread of execution may use a lock to aid in managingmutexownership of a lockable object in an exception safe manner. A lock is said to own amutexlockable object if it is currently managing the ownership of thatmutexlockable object for a thread of execution. A lock does not manage the lifetime of themutexlockable object it references. [ Note: Locks are intended to ease the burden of unlocking themutexlockable object under both normal and exceptional circumstances. — end note ]
30.4.2 [thread.lock] paragaph 2:
2 Some lock constructors take tag types which describe what should be done with the
mutexlockable object during the lock's constuction.
30.4.2.1 [thread.lock.guard] paragaph 1:
1 An object of type lock_guard controls the ownership of a
mutexlockable object within a scope. A lock_guard object maintains ownership of amutexlockable object throughout the lock_guard object's lifetime. The behavior of a program is undefined if themutexlockable object referenced by pm does not exist for the entire lifetime (3.8) of the lock_guard object. Mutex shall meet the Lockable requirements (30.2.5.1).
30.4.2.2 [thread.lock.unique] paragaph 1:
1 An object of type unique_lock controls the ownership of a
mutexlockable object within a scope.MutexoOwnership of the lockable object may be acquired at construction or after construction, and may be transferred, after acquisition, to another unique_lock object. Objects of type unique_lock are not copyable but are movable. The behavior of a program is undefined if the contained pointer pm is not null and the mutex pointed to by pm does not exist for the entire remaining lifetime (3.8) of the unique_lock object. Mutex shall meet the Lockable requirements (30.2.5.1).
Add the following to the precondition of unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time) in 30.4.2.2.1 [thread.lock.unique.cons] paragraph 18:
template <class Clock, class Duration> unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time);18 Requires: If mutex_type is not a recursive mutex the calling thread does not own the mutex. The supplied mutex_type type shall meet the TimedLockable requirements (30.2.5.2).
Add the following to the precondition of unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time) in 30.4.2.2.1 [thread.lock.unique.cons] paragraph 22
22 Requires: If mutex_type is not a recursive mutex the calling thread does not own the mutex. The supplied mutex_type type shall meet the TimedLockable requirements (30.2.5.2).
Add the following as a precondition of bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time) before 30.4.2.2.2 [thread.lock.unique.locking] paragraph 8
template <class Clock, class Duration> bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);Requires: The supplied mutex_type type shall meet the TimedLockable requirements (30.2.5.2).
Add the following as a precondition of bool try_lock_for(const chrono::duration<Rep, Period>& rel_time) before 30.4.2.2.2 [thread.lock.unique.locking] paragraph 12
template <class Rep, class Period> bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);Requires: The supplied mutex_type type shall meet the TimedLockable requirements (30.2.5.2).
Replace 30.4.3 [thread.lock.algorithm] p1 with the following:
template <class L1, class L2, class... L3> int try_lock(L1&, L2&, L3&...);1 Requires: Each template parameter type shall meet the
MutexLockable requirements (30.2.5.1)., except that a call to try_lock() may throw an exception.[Note: The unique_lock class template meets these requirements when suitably instantiated. — end note]
Replace 30.4.3 [thread.lock.algorithm] p4 with the following:
template <class L1, class L2, class... L3> void lock(L1&, L2&, L3&...);4 Requires: Each template parameter type shall meet the Mutex
MutexLockable requirements (30.2.5.1)., except that a call to try_lock() may throw an exception.[Note: The unique_lock class template meets these requirements when suitably instantiated. — end note]
Replace 30.5.2 [thread.condition.condvarany] paragraph 1 with:
1 A Lock type shall meet the
requirements for a Mutex typeLockable requirements (30.2.5.1), except that try_lock is not required. [Note: All of the standard mutex types meet this requirement. — end note]
Section: 30.6.4 [futures.state] Status: Resolved Submitter: Anthony Williams Opened: 2009-11-18 Last modified: 2015-04-08
View all other issues in [futures.state].
View all issues with Resolved status.
Discussion:
The current description of the associated state in 30.6.4 [futures.state] does not allow for futures created by an async call. The description therefore needs to be extended to cover that.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3058.
Proposed resolution:
Add a new sentence to 30.6.4 [futures.state] p2:
2 This associated state consists of some state information and some (possibly not yet evaluated) result, which can be a (possibly void) value or an exception. If the associated state was created by a call to async (30.6.8 [futures.async]) then it may also contain a deferred function or an associated thread.
Add an extra bullet to 30.6.4 [futures.state] p3:
The result of an associated state can be set by calling:
- promise::set_value,
- promise::set_exception,
or- packaged_task::operator()
., or- a call to async (30.6.8 [futures.async]).
Section: X [func.ret] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-11-19 Last modified: 2015-04-08
View all other issues in [func.ret].
View all issues with C++11 status.
Discussion:
Addresses UK 198
NB Comment: UK-198 makes this request among others. It refers to a more detailed issue that BSI did not manage to submit by the CD1 ballot deadline though.
result_of is essentially a metafunction to return the type of an expression, and belongs with the other library metafunctions in <type_traits> rather than lurking in <functional>. The current definition in <functional> made sense when result_of was nothing more than a protocol to enable several components in <functional> to provide their own result types, but it has become a more general tool. For instance, result_of is now used in the threading and futures components.
Now that <type_traits> is a required header for free-standing implementations it will be much more noticeable (in such environments) that a particularly useful trait is missing, unless that implementation also chooses to offer <functional> as an extension.
The simplest proposal is to simply move the wording (editorial direction below) although a more consistent form for type_traits would reformat this as a table.
Following the acceptance of 1255, result_of now depends on the declval function template, tentatively provided in <utility> which is not (yet) required of a free-standing implementation.
This dependency is less of an issue when result_of continues to live in <functional>.
Personally, I would prefer to clean up the dependencies so both result_of and declval are available in a free-standing implementation, but that would require slightly more work than suggested here. A minimal tweak would be to require <utility> in a free-standing implementation, although there are a couple of subtle issues with make_pair, which uses reference_wrapper in its protocol and that is much harder to separate cleanly from <functional>.
An alternative would be to enact the other half of N2979 and create a new minimal header for the new C++0x library facilities to be added to the freestanding requirements (plus swap.)
I have a mild preference for the latter, although there are clearly reasons to consider better library support for free-standing in general, and adding the whole of <utility> could be considered a step in that direction. See NB comment JP-23 for other suggestions (array, ratio)
[ 2010-01-27 Beman updated wording. ]
The original wording is preserved here:
Move X [func.ret] to a heading below 20.10 [meta]. Note that in principle we should not change the tag, although this is a new tag for 0x. If it has been stable since TR1 it is clearly immutable though.
This wording should obviously adopt any other changes currently in (Tentatively) Ready status that touch this wording, such as 1255.
[ 2010-02-09 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
From Function objects 20.9 [function.objects], Header <functional> synopsis, remove:
// 20.7.4 result_of: template <class> class result_of; // undefined template <class F, class... Args> class result_of<F(ArgTypes...)>;
Remove Function object return types X [func.ret] in its entirety. This sub-section reads:
namespace std { template <class> class result_of; // undefined template <class Fn, class... ArgTypes> class result_of<Fn(ArgTypes...)> { public : // types typedef see below type; }; }Given an rvalue
fn
of typeFn
and valuest1, t2, ..., tN
of types T1, T2, ..., TN inArgTypes
, respectively, the type member is the result type of the expressionfn(t1, t2, ...,tN)
. The valuesti
are lvalues when the corresponding typeTi
is an lvalue-reference type, and rvalues otherwise.
To Header <type_traits> synopsis 20.10.2 [meta.type.synop], add at the indicated location:
template <class T> struct underlying_type; template <class T> struct result_of; // not defined template <class Fn, class... ArgTypes> struct result_of<Fn(ArgTypes...)>;
To Other transformations 20.10.7.6 [meta.trans.other], Table 51 — Other transformations, add:
Template Condition Comments template <class T>
struct underlying_type;T
shall be an enumeration type (7.2)The member typedef type
shall name the underlying type ofT
.template <class Fn, class... ArgTypes> struct result_of<Fn(ArgTypes...)>;
Fn
shall be a function object type 20.9 [function.objects], reference to function, or reference to function object type. decltype(declval<Fn>()(declval<ArgTypes>()...)) shall be well formed.The member typedef type
shall name the typedecltype(declval<Fn>()(declval<ArgTypes>()...))
.
At the end of Other transformations 20.10.7.6 [meta.trans.other] add:
[Example: Given these definitions:
typedef bool(&PF1)(); typedef short(*PF2)(long); struct S { operator PF2() const; double operator()(char, int&); };the following assertions will hold:
static_assert(std::is_same<std::result_of<S(int)>::type, short>::value, "Error!"); static_assert(std::is_same<std::result_of<S&(unsigned char, int&)>::type, double>::value, "Error!"); static_assert(std::is_same<std::result_of<PF1()>::type, bool>::value, "Error!");— end example]
Section: 20.12.5.5 [time.duration.nonmember] Status: C++11 Submitter: Daniel Krügler Opened: 2009-11-21 Last modified: 2015-04-08
View all other issues in [time.duration.nonmember].
View all issues with C++11 status.
Discussion:
IMO CR alone is not really defined (it should be CR(Rep1, Rep2)).
[ 2009-12-24 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 20.12.5.5 [time.duration.nonmember] paragraphs 9 and 12:
template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator/(const duration<Rep1, Period>& d, const Rep2& s);9 Returns: duration<CR(Rep1, Rep2), Period>(d) /= s.
template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator%(const duration<Rep1, Period>& d, const Rep2& s);12 Returns: duration<CR(Rep1, Rep2), Period>(d) %= s.
Section: 30.6.5 [futures.promise] Status: Resolved Submitter: Jonathan Wakely Opened: 2009-11-22 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with Resolved status.
Discussion:
The definitions of promise::set_value need tidying up, the synopsis says:
// setting the result void set_value(const R& r); void set_value(see below);
Why is the first one there? It implies it is always present for all specialisations of promise, which is not true.
The definition says:
void set_value(const R& r); void promise::set_value(R&& r); void promise<R&>::set_value(R& r); void promise<void>::set_value();
The lack of qualification on the first one again implies it's present for all specialisations, again not true.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3058.
Proposed resolution:
Change the synopsis in 30.6.5 [futures.promise]:
// setting the resultvoid set_value(const R& r);void set_value(see below);
And the definition be changed by qualifying the first signature:
void promise::set_value(const R& r); void promise::set_value(R&& r); void promise<R&>::set_value(R& r); void promise<void>::set_value();
Section: 30.6.6 [futures.unique_future] Status: Resolved Submitter: Jonathan Wakely Opened: 2009-11-22 Last modified: 2015-04-08
View all other issues in [futures.unique_future].
View all issues with Resolved status.
Discussion:
30.6.6 [futures.unique_future]/3 says:
The effect of calling any member function other than the destructor or the move-assignment operator on a future object for which valid() == false is undefined.
This means calling future::valid() is undefined unless it will return true, so you can only use it if you know the answer!
[ 2009-12-08 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010 Pittsburgh: ]
Moved to
NAD EditorialResolved. Rationale added below.
Rationale:
Solved by N3058.
Proposed resolution:
Change 30.6.6 [futures.unique_future]/3:
The effect of calling any member function other than the destructor, or the move-assignment operator, or valid, on a future object for which valid() == false is undefined.
Section: X [futures.atomic_future] Status: Resolved Submitter: Jonathan Wakely Opened: 2009-11-22 Last modified: 2015-04-08
View all other issues in [futures.atomic_future].
View all issues with Resolved status.
Discussion:
In X [futures.atomic_future] this constructor:
atomic_future(future<R>&&);
is declared in the synopsis, but not defined. Instead n2997 defines:
atomic_future(const future<R>&& rhs);
and n3000 defines
atomic_future(atomic_future<R>&& rhs);
both of which are wrong. The constructor definition should be changed to match the synopsis.
[ 2009-12-12 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010 Pittsburgh: ]
Moved to
NAD EditorialResolved. Rationale added below.
Rationale:
Solved by N3058.
Proposed resolution:
Adjust the signature above X [futures.atomic_future]/6 like so:
atomic_future(atomic_future<R>&& rhs);
Section: 30.6 [futures] Status: Resolved Submitter: Jonathan Wakely Opened: 2009-11-22 Last modified: 2015-04-08
View all other issues in [futures].
View all issues with Resolved status.
Discussion:
30.6.6 [futures.unique_future]/1 should be updated to mention async.
30.6.7 [futures.shared_future]/1 should also be updated for async. That paragraph also says
... Its value or exception can be set by use of a shared_future, promise (30.6.5 [futures.promise]), or packaged_task (30.6.9 [futures.task]) object that shares the same associated state.
How can the value be set by a shared_future?
X [futures.atomic_future]/1 says
An atomic_future object can only be created by use of a promise (30.6.5 [futures.promise]) or packaged_task (30.6.9 [futures.task]) object.
which is wrong, it's created from a std::future, which could have been default-constructed. That paragraph should be closer to the text of 30.6.7 [futures.shared_future]/1, and should also mention async.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3058.
Proposed resolution:
Section: 23.3.4 [forwardlist] Status: C++11 Submitter: Daniel Krügler Opened: 2009-12-12 Last modified: 2015-04-08
View all other issues in [forwardlist].
View all issues with C++11 status.
Discussion:
I found that forward_list has only
forward_list(const forward_list<T,Allocator>& x); forward_list(forward_list<T,Allocator>&& x);
but misses
forward_list(const forward_list& x, const Allocator&); forward_list(forward_list&& x, const Allocator&);
Note to other reviewers: I also checked the container adaptors for similar inconsistencies, but as far as I can see these are already handled by the current active issues 1194 and 1199.
[ 2010-01-14 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
In 23.3.4 [forwardlist]/3, class template forward_list synopsis change as indicated:
forward_list(const forward_list<T,Allocator>& x); forward_list(forward_list<T,Allocator>&& x); forward_list(const forward_list&, const Allocator&); forward_list(forward_list&&, const Allocator&);
Section: 30.3.1.1 [thread.thread.id] Status: C++11 Submitter: Anthony Williams Opened: 2009-11-24 Last modified: 2015-04-08
View all other issues in [thread.thread.id].
View all issues with C++11 status.
Discussion:
The class definition of std::thread::id in N3000 is:
class thread::id { public: id(); };
Typically, I expect that the internal data members will either be pointers or integers, so that in practice the class will be trivially copyable. However, I don't think the current wording guarantees it, and I think it would be useful. In particular, I can see a use for std::atomic<std::thread::id> to allow a thread to claim ownership of a data structure atomicly, and std::atomic<T> requires that T is trivially copyable.
[ 2010-02-12 Moved to Tentatively Ready after 7 positive votes on c++std-lib. ]
Proposed resolution:
Add a new sentence to 30.3.1.1 [thread.thread.id] p1:
1 An object of type thread::id provides a unique identifier for each thread of execution and a single distinct value for all thread objects that do not represent a thread of execution (30.3.1 [thread.thread.class]). Each thread of execution has an associated thread::id object that is not equal to the thread::id object of any other thread of execution and that is not equal to the thread::id object of any std::thread object that does not represent threads of execution. The library may reuse the value of a thread::id of a terminated thread that can no longer be joined. thread::id shall be a trivially copyable class (9 [class]).
Section: 23.3.4.5 [forwardlist.modifiers] Status: C++11 Submitter: Bo Persson Opened: 2009-11-25 Last modified: 2015-04-08
View all other issues in [forwardlist.modifiers].
View all issues with C++11 status.
Discussion:
After applying LDR149, forward_list now has 5 overloads of insert_after, all returning an iterator.
However, two of those - inserting a single object - return "An iterator pointing to a copy of x [the inserted object]" while the other three - inserting zero or more objects - return an iterator equivalent to the position parameter, pointing before any possibly inserted objects.
Is this the intended change?
I don't really know what insert_after(position, empty_range) should really return, but always returning position seems less than useful.
[ 2010-02-04 Howard adds: ]
I agree this inconsistency will be error prone and needs to be fixed. Additionally emplace_after's return value is unspecified.
[ 2010-02-04 Nico provides wording. ]
[ 2010 Pittsburgh: ]
We prefer to return an iterator to the last inserted element. Modify the proposed wording and then set to Ready.
[ 2010-03-15 Howard adds: ]
Wording updated and set to Ready.
Proposed resolution:
In forward_list modifiers 23.3.4.5 [forwardlist.modifiers] make the following modifications:
iterator insert_after(const_iterator position, size_type n, const T& x);...
10 Returns:
position.An iterator pointing to the last inserted copy of x or position if n == 0.template <class InputIterator> iterator insert_after(const_iterator position, InputIterator first, InputIterator last);...
13 Returns:
position.An iterator pointing to the last inserted element or position if first == last.iterator insert_after(const_iterator position, initializer_list<T> il);...
15 Returns:
position.An iterator pointing to the last inserted element or position if il is empty.template <class... Args> iterator emplace_after(const_iterator position, Args&&... args);...
17 ...
Returns: An iterator pointing to the new constructed element from args.
Section: X [depr.base] Status: C++11 Submitter: Alberto Ganesh Barbati Opened: 2009-11-30 Last modified: 2015-04-08
View all other issues in [depr.base].
View all issues with C++11 status.
Discussion:
A program should not be allowed to add specialization of class templates unary_function and binary_function, in force of 17.6.4.2.1 [namespace.std]/1. If a program were allowed to specialize these templates, the library could no longer rely on them to provide the intended typedefs or there might be other undesired interactions.
[ 2010-03-27 Daniel adds: ]
Accepting issue 1290 would resolve this issue as NAD editorial.
[ 2010-10-24 Daniel adds: ]
Accepting n3145 would resolve this issue as NAD editorial.
[ 2010 Batavia: ]
Pete: Is this issue actually addressed by N3198, or did deprecating unary/binary_function?
We determined that this issue is NOT resolved and that it must be resolved or else N3198 could break code that does specialize unary/binary function. Matt: don't move to NAD Howard: I suggest we go further and move 1279 to ready for Madrid. Group: Agrees move 1279 to ready for Madrid
Previous proposed resolution:
1 The following
classesclass templates are provided to simplify the typedefs of the argument and result types:. A program shall not declare specializations of these templates.
[2011-03-06 Daniel comments]
This meeting outcome was not properly reflected in the proposed resolution. I also adapted the suggested wording to the N3242 numbering and content state. During this course of action it turned out that the first suggested wording change has already been applied.
Proposed resolution:
Change paragraph X [depr.base]/1 as follows:
1 The class templates unary_function and binary_function are deprecated. A program shall not declare specializations of these templates.
Section: 24.6.1.1 [istream.iterator.cons], 24.6.2.1 [ostream.iterator.cons.des] Status: C++11 Submitter: Jonathan Wakely Opened: 2009-12-04 Last modified: 2015-04-08
View all other issues in [istream.iterator.cons].
View all issues with C++11 status.
Discussion:
24.6.1.1 [istream.iterator.cons] describes the effects in terms of:
basic_istream<charT,traits>* in_stream; // exposition only3 Effects: Initializes in_stream with s.
That should be &s and similarly for 24.6.2.1 [ostream.iterator.cons.des].
[ 2009-12-23 Moved to Tentatively Ready after 6 positive votes on c++std-lib. ]
Proposed resolution:
Change 24.6.1.1 [istream.iterator.cons] like so:
istream_iterator(istream_type& s);3 Effects: Initializes in_stream with &s. value ...
And 24.6.2.1 [ostream.iterator.cons.des] like so:
ostream_iterator(ostream_type& s);1 Effects: Initializes out_stream with &s and delim with null.
ostream_iterator(ostream_type& s, const charT* delimiter);2 Effects: Initializes out_stream with &s and delim with delimiter.
Section: 20.11.3 [ratio.ratio] Status: Resolved Submitter: Vicente Juan Botet Escribá Opened: 2009-12-07 Last modified: 2015-04-08
View all other issues in [ratio.ratio].
View all issues with Resolved status.
Discussion:
CopyConstruction and Assignment between ratios having the same normalized form. Current N3000 do not allows to copy-construct or assign ratio instances of ratio classes having the same normalized form.
Two ratio classes ratio<N1,D1> and ratio<N2,D2> have the same normalized form if
ratio<N1, D1>::num == ratio<N2, D2>::num && ratio<N1, D1>::den == ratio<N2, D2>::den
This simple example
ratio<1,3> r1; ratio<3,9> r2; r1 = r2; // (1)
fails to compile in (1). Other example
ratio<1,3> r1; ratio_subtract<ratio<2,3>, ratio<1,3>>::type r2; r1 = r2;
The nested type of ratio_subtract<ratio<2,3>, ratio<1,3>> could be ratio<3,9> so the compilation could fail. It could also be ratio<1,3> and the compilation succeeds.
In 20.11.4 [ratio.arithmetic] 3 and similar clauses
3 The nested typedef type shall be a synonym for ratio<T1, T2> where T1 has the value R1::num * R2::den - R2::num * R1::den and T2 has the value R1::den * R2::den.
the meaning of synonym let think that the result shall be a normalized ratio equivalent to ratio<T1, T2>, but there is not an explicit definition of what synonym means in this context.
Additionally we should add a typedef for accessing the normalized ratio, and change 20.11.4 [ratio.arithmetic] to return only this normalized result.
[ 2010 Pittsburgh: ]
There is no consensus to add the converting copy constructor or converting copy assignment operator. However there was consensus to add the typedef.
Proposed wording modified. Original proposed wording preserved here. Moved to Review.
Make ratio default constructible, copy-constructible and assignable from any ratio which has the same reduced form.
Add to 20.11.3 [ratio.ratio] synopsis
template <intmax_t N, intmax_t D = 1> class ratio { public: static constexpr intmax_t num; static constexpr intmax_t den; typedef ratio<num, den> type; ratio() = default; template <intmax_t N2, intmax_t D2> ratio(const ratio<N2, D2>&); template <intmax_t N2, intmax_t D2> ratio& operator=(const ratio<N2, D2>&); };Add to 20.11.3 [ratio.ratio]:
Two ratio classes ratio<N1,D1> and ratio<N2,D2> have the same reduced form if ratio<N1,D1>::type is the same type as ratio<N2,D2>::type
Add a new section: [ratio.cons]
Construction and assignment [ratio.cons]
template <intmax_t N2, intmax_t D2> ratio(const ratio<N2, D2>& r);Effects: Constructs a ratio object.
Remarks: This constructor shall not participate in overload resolution unless r has the same reduced form as *this.
template <intmax_t N2, intmax_t D2> ratio& operator=(const ratio<N2, D2>& r);Effects: None.
Returns: *this.
Remarks: This operator shall not participate in overload resolution unless r has the same reduced form as *this.
Change 20.11.4 [ratio.arithmetic]
Implementations may use other algorithms to compute these values. If overflow occurs, a diagnostic shall be issued.
template <class R1, class R2> struct ratio_add { typedef see below type; };The nested typedef type shall be a synonym for ratio<T1, T2>::type where T1 has the value R1::num * R2::den + R2::num * R1::den and T2 has the value R1::den * R2::den.
template <class R1, class R2> struct ratio_subtract { typedef see below type; };The nested typedef type shall be a synonym for ratio<T1, T2>::type where T1 has the value R1::num * R2::den - R2::num * R1::den and T2 has the value R1::den * R2::den.
template <class R1, class R2> struct ratio_multiply { typedef see below type; };The nested typedef type shall be a synonym for ratio<T1, T2>::type where T1 has the value R1::num * R2::num and T2 has the value R1::den * R2::den.
template <class R1, class R2> struct ratio_divide { typedef see below type; };The nested typedef type shall be a synonym for ratio<T1, T2>::type where T1 has the value R1::num * R2::den and T2 has the value R1::den * R2::num.
[ 2010-03-27 Howard adds: ]
Daniel brought to my attention the recent addition of the typedef type to the FCD N3092:
typedef ratio type;This issue was discussed in Pittsburgh, and the decision there was to accept the typedef as proposed and move to Review. Unfortunately the issue was accidently applied to the FCD, and incorrectly. The FCD version of the typedef refers to ratio<N, D>, but the typedef is intended to refer to ratio<num, den> which in general is not the same type.
I've updated the wording to diff against N3092.
[Batavia: NAD EditorialResolved - see rationale below]
Rationale:
Already fixed in working draft
Proposed resolution:
Add to 20.11.3 [ratio.ratio] synopsis
template <intmax_t N, intmax_t D = 1> class ratio { public: static constexpr intmax_t num; static constexpr intmax_t den; typedef ratio<num, den> type; };
Section: 17.6.3.1 [utility.arg.requirements] Status: Resolved Submitter: Howard Hinnant Opened: 2009-12-12 Last modified: 2015-04-08
View all other issues in [utility.arg.requirements].
View all issues with Resolved status.
Discussion:
Addresses UK 150
There is on going confusion over what one can and can not do with a moved-from object (e.g. UK 150, 910). This issue attempts to clarify that moved-from objects are valid objects with an unknown state.
[ 2010-01-22 Wording tweaked by Beman. ]
[ 2010-01-22 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-01-23 Alisdair opens: ]
I'm afraid I must register an objection.
My primary objection is that I have always been opposed to this kind of a resolution as over-constraining. My preferred example is a call implementing the pImpl idiom via unique_ptr. Once the pImpl has been moved from, it is no longer safe to call the vast majority of the object's methods, yet I see no reason to make such a type unusable in the standard library. I would prefer a resolution along the lines suggested in the UK comment, which only requires that the object can be safely destroyed, and serve as the target of an assignment operator (if supported.)
However, I will not hold the issue up if I am a lone dissenting voice on this (yes, that is a call to hear more support, or I will drop that objection in Pittsburgh)
With the proposed wording, I'm not clear what the term 'valid object' means. In my example above, is a pImpl holding a null pointer 'valid'? What about a float holding a signalling NaN? What determines if an object is valid? Without a definition of a valid/invalid object, I don't think this wording adds anything, and this is an objection that I do want resolved.
[ 2010-01-24 Alisdair removes his objection. ]
[ 2010-01-24 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-02-10 Reopened. The wording here has been merged into 1309. ]
[
2010-02-10 Moved to Tentatively NAD EditorialResolved after 5 postive votes on
c++std-lib. Rationale added below.
]
Rationale:
This issue is now addressed by 1309.
Proposed resolution:
Change the follwing tables in 17.6.3.1 [utility.arg.requirements] as shown:
Table 33 — MoveConstructible requirements [moveconstructible] Expression Post-condition T t(rv) t is equivalent to the value of rv before the construction. [Note: There is no requirement on the value of rv after the construction.rv remains a valid object. Its state is unspecified. — end note]
Table 35 — MoveAssignable requirements [moveassignable] Expression Return type Return value Post-condition t = rv T& t t is equivalent to the value of rv before the assigment. [Note: There is no requirement on the value of rv after the assignment.rv remains a valid object. Its state is unspecified. — end note]
Section: 23.3.7 [vector.bool] Status: C++11 Submitter: Bo Persson Opened: 2009-12-09 Last modified: 2015-04-08
View all other issues in [vector.bool].
View all issues with C++11 status.
Discussion:
The specialization for vector<bool> (23.3.7 [vector.bool]) has a constructor
vector(initializer_list<bool>);
which differs from the base template's constructor (and other containers) in that it has no allocator parameter.
[ 2009-12-16 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change the signature in the synopsis of 23.3.7 [vector.bool] to
vector(initializer_list<bool>, const Allocator& = Allocator());
Section: 20.7.8.2 [allocator.traits.members] Status: C++11 Submitter: Howard Hinnant Opened: 2009-12-10 Last modified: 2015-04-08
View all other issues in [allocator.traits.members].
View all issues with C++11 status.
Discussion:
LWG issue 402 added "::" to the call to new within allocator::construct. I suspect we want to retain that fix.
[ 2009-12-13 Moved to Tentatively Ready after 7 positive votes on c++std-lib. ]
Proposed resolution:
Change 17.6.3.5 [allocator.requirements], table 40 "Allocator requirements":
Table 40 — Allocator requirements Expression Return type Assertion/note
pre-/post-conditionDefault a.construct(c,args) (not used) Effect: Constructs an object of type C at c ::new ((void*)c) C(forward<Args>(args)...)
Change 20.7.8.2 [allocator.traits.members], p4:
template <class T, class... Args> static void construct(Alloc& a, T* p, Args&&... args);4 Effects: calls a.construct(p, std::forward<Args>(args)...) if that call is well-formed; otherwise, invokes ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...).
Section: 20.7.8.2 [allocator.traits.members] Status: C++11 Submitter: Howard Hinnant Opened: 2009-12-10 Last modified: 2015-04-08
View all other issues in [allocator.traits.members].
View all issues with C++11 status.
Discussion:
allocator_traits::select_on_container_copy_construction refers to an unknown "a":
static Alloc select_on_container_copy_construction(const Alloc& rhs);7 Returns: rhs.select_on_container_copy_construction(a) if that expression is well-formed; otherwise, rhs.
[ 2009-12-13 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 20.7.8.2 [allocator.traits.members], p7:
static Alloc select_on_container_copy_construction(const Alloc& rhs);7 Returns: rhs.select_on_container_copy_construction(
a) if that expression is well-formed; otherwise, rhs.
Section: 20.9.12.2.1 [func.wrap.func.con] Status: C++11 Submitter: Jonathan Wakely Opened: 2009-12-13 Last modified: 2015-04-08
View all other issues in [func.wrap.func.con].
View all issues with C++11 status.
Discussion:
I think std::function should require CopyConstructible for the target object.
I initially thought that MoveConstructible was enough, but it's not. If F is move-only then function's copy constructor cannot be called, but because function uses type erasure, F is not known and so the copy constructor cannot be disabled via enable_if. One option would be to throw an exception if you try to copy a function with a non-copyable target type, but I think that would be a terrible idea.
So although the constructors require that the target be initialised by std::move(f), that's only an optimisation, and a copy constructor is required.
[ 2009-12-24 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Add to 20.9.12.2.1 [func.wrap.func.con] paragraph 9:
template<class F> function(F f); template <class F, class A> function(allocator_arg_t, const A& a, F f);9 Requires: F shall be CopyConstructible. f shall be callable for argument types ArgTypes and return type R. The copy constructor and destructor of A shall not throw exceptions.
Section: 20.9.12.2.1 [func.wrap.func.con] Status: C++11 Submitter: Jonathan Wakely Opened: 2009-12-13 Last modified: 2015-04-08
View all other issues in [func.wrap.func.con].
View all issues with C++11 status.
Discussion:
In 20.9.12.2.1 [func.wrap.func.con]
template<class F> function& operator=(F f);20 Effects: function(f).swap(*this);
21 Returns: *this
This assignment operator can be called such that F is an rvalue-reference e.g.
func.operator=<F&&>(f);
There are two issues with this.
The same issues apply to function::assign.
N.B. this issue is not related to 1287 and applies whether that issue is resolved or not. The wording below assumes the resolution of LWG 1258 has been applied.
[ 2009-12-16 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 201002-11 Opened by Alisdair for the purpose of merging 1258 into this issue as there is a minor conflict. ]
[ 2010-02-11 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
In 20.9.12.2.1 [func.wrap.func.con]
template<class F> function& operator=(F&& f);20 Effects: function(std::forward<F>(f)).swap(*this);
21 Returns: *this
In 20.9.12.2.2 [func.wrap.func.mod]
template<class F,Allocator Allocclass A> void assign(F&& f, const Alloc& a);3 Effects: function(
f, aallocator_arg, a, std::forward<F>(f)).swap(*this);
Update member function signature for class template in 20.9.12.2 [func.wrap.func]
template<class F> function& operator=(F&&); template<class F, class A> void assign(F&&, const A&);
Section: 20.9 [function.objects] Status: Resolved Submitter: Daniel Krügler Opened: 2009-12-14 Last modified: 2015-04-08
View all other issues in [function.objects].
View all issues with Resolved status.
Discussion:
This issue is a follow-up of the discussion on issue 870 during the 2009 Santa Cruz meeting.
The class templates unary_function and binary_function are actually very simple typedef providers,
namespace std { template <class Arg, class Result> struct unary_function { typedef Arg argument_type; typedef Result result_type; }; template <class Arg1, class Arg2, class Result> struct binary_function { typedef Arg1 first_argument_type; typedef Arg2 second_argument_type; typedef Result result_type; }; }
which may be used as base classes (similarly to the iterator template), but were originally not intended as a customization point. The SGI documentation introduced the concept Adaptable Unary Function as function objects "with nested typedefs that define its argument type and result type" and a similar definition for Adaptable Binary Function related to binary_function. But as of TR1 a protocol was introduced that relies on inheritance relations based on these types. 20.9.4 [refwrap]/3 b. 3 requires that a specialization of reference_wrapper<T> shall derive from unary_function, if type T is "a class type that is derived from std::unary_function<T1, R>" and a similar inheritance-based rule for binary_function exists as well.
As another disadvantage it has been pointed out in the TR1 issue list, N1837 (see section 10.39), that the requirements of mem_fn 20.9.11 [func.memfn]/2+3 to derive from std::unary_function/std::binary_function under circumstances, where the provision of corresponding typedefs would be sufficient, unnecessarily prevent implementations that take advantage of empty-base-class optimizations.
Both requirements should be relaxed in the sense that the reference_wrapper should provide typedef's argument_type, first_argument_type, and second_argument_type based on similar rules as the weak result type rule (20.9.2 [func.require]/3) does specify the presence of result_type member types.
For a related issue see also 1279.
[ 2010-10-24 Daniel adds: ]
Accepting n3145 would resolve this issue as NAD editorial.
[ 2010-11 Batavia: Solved by N3198 ]
Resolved by adopting n3198.
Previous proposed resolution:
[ The here proposed resolution is an attempt to realize the common denominator of the reflector threads c++std-lib-26011, c++std-lib-26095, and c++std-lib-26124. ]
Change [base]/1 as indicated: [The intend is to provide an alternative fix for issue 1279 and some editorial harmonization with existing wording in the library, like 24.4.2 [iterator.basic]/1]
1 The following class templates are provided to simplify the definition of typedefs of the argument and result types for function objects. The behavior of a program that adds specializations for any of these templates is undefined.
:namespace std { template <class Arg, class Result> struct unary_function { typedef Arg argument_type; typedef Result result_type; }; } namespace std { template <class Arg1, class Arg2, class Result> struct binary_function { typedef Arg1 first_argument_type; typedef Arg2 second_argument_type; typedef Result result_type; }; }Change 20.9.4 [refwrap], class template reference_wrapper synopsis as indicated: [The intent is to remove the requirement that reference_wrapper derives from unary_function or binary_function if the situation requires the definition of the typedefs argument_type, first_argument_type, or second_argument_type. This change is suggested, because the new way of definition uses the same strategy as the weak result type specification applied to argument types, which provides the following advantages: It creates less potential conflicts between [u|bi]nary_function bases and typedefs in a function object and it ensures that user-defined function objects which provide typedefs but no such bases are handled as first class citizens.]
namespace std { template <class T> class reference_wrapper: public unary_function<T1, R> // see below: public binary_function<T1, T2, R> // see below{ public : // types typedef T type; typedef see below result_type; // not always defined typedef see below argument_type; // not always defined typedef see below first_argument_type; // not always defined typedef see below second_argument_type; // not always defined // construct/copy/destroy ... };Change 20.9.4 [refwrap]/3 as indicated: [The intent is to remove the requirement that reference_wrapper derives from unary_function if the situation requires the definition of the typedef argument_type and result_type. Note that this clause does concentrate on argument_type alone, because the result_type is already ruled by p. 2 via the weak result type specification. The new way of specifying argument_type is equivalent to the weak result type specification]
3 The template instantiation reference_wrapper<T> shall
be derived from std::unary_function<T1, R>define a nested type named argument_type as a synonym for T1 only if the type T is any of the following:
- a function type or a pointer to function type taking one argument of type T1
and returning R- a pointer to member function R T0::f cv (where cv represents the member function's cv-qualifiers); the type T1 is cv T0*
- a class type
that is derived from std::unary_function<T1, R>with a member type argument_type; the type T1 is T::argument_typeChange 20.9.4 [refwrap]/4 as indicated: [The intent is to remove the requirement that reference_wrapper derives from binary_function if the situation requires the definition of the typedef first_argument_type, second_argument_type, and result_type. Note that this clause does concentrate on first_argument_type and second_argument_type alone, because the result_type is already ruled by p. 2 via the weak result type specification. The new way of specifying first_argument_type and second_argument_type is equivalent to the weak result type specification]
The template instantiation reference_wrapper<T> shall
be derived from std::binary_function<T1, T2, R>define two nested types named first_argument_type and second_argument_type as a synonym for T1 and T2, respectively, only if the type T is any of the following:
- a function type or a pointer to function type taking two arguments of types T1 and T2
and returning R- a pointer to member function R T0::f(T2) cv (where cv represents the member function's cv-qualifiers); the type T1 is cv T0*
- a class type
that is derived from std::binary_function<T1, T2, R>with member types first_argument_type and second_argument_type; the type T1 is T::first_argument_type and the type T2 is T::second_argument_typeChange 20.9.11 [func.memfn]/2+3 as indicated: [The intent is to remove the requirement that mem_fn's return type has to derive from [u|bi]nary_function. The reason for suggesting the change here is to better support empty-base-class optimization choices as has been pointed out in N1837]
2 The simple call wrapper shall
be derived from std::unary_function<cv T*, Ret>define two nested types named argument_type and result_type as a synonym for cv T* and Ret, respectively, when pm is a pointer to member function with cv-qualifier cv and taking no arguments, where Ret is pm's return type.3 The simple call wrapper shall
be derived from std::binary_function<cv T*, T1, Ret>define three nested types named first_argument_type, second_argument_type, and result_type as a synonym for cv T*, T1, and Ret, respectively, when pm is a pointer to member function with cv-qualifier cv and taking one argument of type T1, where Ret is pm's return type.
Proposed resolution:
Addressed by paper n3198.
Section: 30.6.5 [futures.promise] Status: Resolved Submitter: Jonathan Wakely Opened: 2009-12-18 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with Resolved status.
Discussion:
In 30.6.5 [futures.promise]
Does promise<R>::set_value return normally if the copy/move constructor of R throws?
The exception could be caught and set using promise<R>::set_exception, or it could be allowed to leave the set_value call, but it's not clear which is intended. I suggest the exception should not be caught.
N.B. This doesn't apply to promise<R&>::set_value or promise<void>::set_value because they don't construct a new object.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3058.
Proposed resolution:
Change 30.6.5 [futures.promise]/18:
18 Throws: future_error if its associated state is already ready or, for the first version an exception thrown by the copy constructor of R, or for the second version an exception thrown by the move constructor of R.
Section: 20.9.12.2.1 [func.wrap.func.con] Status: C++11 Submitter: Daniel Krügler Opened: 2009-12-19 Last modified: 2015-04-08
View all other issues in [func.wrap.func.con].
View all issues with C++11 status.
Discussion:
Some parts of the specification of std::function is unnecessarily restricted to a subset of all callable types (as defined in 20.9.1 [func.def]/3), even though the intent clearly is to be usable for all of them as described in 20.9.12.2 [func.wrap.func]/1. This argument becomes strengthened by the fact that current C++0x-compatible compilers work fine with them:
#include <functional> #include <iostream> struct A { int foo(int i) const {return i+1;} }; struct B { int mem; }; int main() { std::function<int(const A&, int)> f(&A::foo); A a; std::cout << f(a, 1) << '\n'; std::cout << f.target_type().name() << '\n'; typedef int (A::* target_t)(int) const; target_t* p = f.target<target_t>(); std::cout << (p != 0) << '\n'; std::function<int(B&)> f2(&B::mem); B b = { 42 }; std::cout << f2(b) << '\n'; std::cout << f2.target_type().name() << '\n'; typedef int (B::* target2_t); target2_t* p2 = f2.target<target2_t>(); std::cout << (p2 != 0) << '\n'; }
The problematic passages are 20.9.12.2.1 [func.wrap.func.con]/10:
template<class F> function(F f); template <class F, class A> function(allocator_arg_t, const A& a, F f);...
10 Postconditions: !*this if any of the following hold:
- f is a NULL function pointer.
- f is a NULL member function pointer.
- F is an instance of the function class template, and !f
because it does not consider pointer to data member and all constraints based on function objects which like 20.9.12.2 [func.wrap.func]/2 or 20.9.12.2.5 [func.wrap.func.targ]/3. The latter two will be resolved by the proposed resolution of 870 and are therefore not handled here.
[ Post-Rapperswil: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 20.9.12.2.1 [func.wrap.func.con]/10+11 as indicated:
template<class F> function(F f); template <class F, class A> function(allocator_arg_t, const A& a, F f);...
10 Postconditions: !*this if any of the following hold:
- f is a NULL function pointer.
- f is a NULL pointer to member
function pointer.- F is an instance of the function class template, and !f
11 Otherwise, *this targets a copy of f
or, initialized with std::move(f)if f is not a pointer to member function, and targets a copy of mem_fn(f) if f is a pointer to member function. [Note: implementations are encouraged to avoid the use of dynamically allocated memory for small function objects, for example, where f's target is an object holding only a pointer or reference to an object and a member function pointer. — end note]
Section: 20.8.1.3 [unique.ptr.runtime] Status: Resolved Submitter: Daniel Krügler Opened: 2009-12-20 Last modified: 2015-04-08
View all other issues in [unique.ptr.runtime].
View all issues with Resolved status.
Discussion:
Addresses UK 211
As a response to UK 211 LWG issue 1021 has replaced the unspecified-pointer-type by nullptr_t to allow assignment of type-safe null-pointer literals in the non-array form of unique_ptr::operator=, but did not the same for the specialization for arrays of runtime length. But without this parallel change of the signature we have a status quo, where unique_ptr<T[], D> declares a member function which is completely unspecified.
[ 2009-12-21 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-03-14 Howard adds: ]
We moved N3073 to the formal motions page in Pittsburgh which should obsolete this issue. I've moved this issue to NAD Editorial, solved by N3073.
Rationale:
Solved by N3073.
Proposed resolution:
In 20.8.1.3 [unique.ptr.runtime], class template unique_ptr<T[], D> synopsis, change as indicated:
// assignment unique_ptr& operator=(unique_ptr&& u); unique_ptr& operator=(unspecified-pointer-typenullptr_t);
Section: 20.9.2 [func.require] Status: C++11 Submitter: Jens Maurer Opened: 2009-12-21 Last modified: 2015-04-08
View other active issues in [func.require].
View all other issues in [func.require].
View all issues with C++11 status.
Discussion:
The current wording in the standard makes it hard to discriminate the difference between a "call wrapper" as defined in 20.9.1 [func.def]/5+6:
5 A call wrapper type is a type that holds a callable object and supports a call operation that forwards to that object.
6 A call wrapper is an object of a call wrapper type.
and a "forwarding call wrapper" as defined in 20.9.2 [func.require]/4:
4 [..] A forwarding call wrapper is a call wrapper that can be called with an argument list. [Note: in a typical implementation forwarding call wrappers have an overloaded function call operator of the form
template<class... ArgTypes> R operator()(ArgTypes&&... args) cv-qual;— end note]
Reason for this lack of clear difference seems to be that the wording adaption to variadics and rvalues that were applied after it's original proposal in N1673:
[..] A forwarding call wrapper is a call wrapper that can be called with an argument list t1, t2, ..., tN where each ti is an lvalue. The effect of calling a forwarding call wrapper with one or more arguments that are rvalues is implementation defined. [Note: in a typical implementation forwarding call wrappers have overloaded function call operators of the form
template<class T1, class T2, ..., class TN> R operator()(T1& t1, T2& t2, ..., TN& tN) cv-qual;— end note]
combined with the fact that the word "forward" has two different meanings in this context. This issue attempts to clarify the difference better.
[ 2010-09-14 Daniel provides improved wording and verified that it is correct against N3126. Previous resolution is shown here: ]
4 [..] A forwarding call wrapper is a call wrapper that can be called with an arbitrary argument list and uses perfect forwarding to deliver the arguments to the wrapped callable object. [Note: in a typical implementation forwarding call wrappers have an overloaded function call operator of the form
template<class... ArgTypes> R operator()(ArgTypes&&... args) cv-qual;— end note]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 20.9.2 [func.require]/4 as indicated:
[..] A forwarding call wrapper is a call wrapper that can be called with an arbitrary argument list and delivers the arguments as references to the wrapped callable object. This forwarding step shall ensure that rvalue arguments are delivered as rvalue-references and lvalue arguments are delivered as lvalue-references. [Note: in a typical implementation forwarding call wrappers have an overloaded function call operator of the form
template<class... UnBoundArgs> R operator()(UnBoundArgs&&... unbound_args) cv-qual;— end note ]
Section: 20.9.2 [func.require] Status: C++11 Submitter: Daniel Krügler Opened: 2009-12-22 Last modified: 2015-04-08
View other active issues in [func.require].
View all other issues in [func.require].
View all issues with C++11 status.
Discussion:
20.9.2 [func.require]/3 b 1 says
3 If a call wrapper (20.9.1 [func.def]) has a weak result type the type of its member type result_type is based on the type T of the wrapper's target object (20.9.1 [func.def]):
- if T is a function, reference to function, or pointer to function type, result_type shall be a synonym for the return type of T;
- [..]
The first two enumerated types (function and reference to function) can never be valid types for T, because
20.9.1 [func.def]/7
7 A target object is the callable object held by a call wrapper.
and 20.9.1 [func.def]/3
3 A callable type is a pointer to function, a pointer to member function, a pointer to member data, or a class type whose objects can appear immediately to the left of a function call operator.
exclude functions and references to function as "target objects".
[ Post-Rapperswil: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 20.9.2 [func.require]/3 b 1 as indicated:
3 If a call wrapper (20.9.1 [func.def]) has a weak result type the type of its member type result_type is based on the type T of the wrapper's target object (20.9.1 [func.def]):
- if T is a
function, reference to function, orpointer to function type, result_type shall be a synonym for the return type of T;- [..]
Section: 20.8.1.5 [unique.ptr.special] Status: Resolved Submitter: Daniel Krügler Opened: 2009-12-23 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
The comparison functions of unique_ptr currently directly delegate to the underlying comparison functions of unique_ptr<T, D>::pointer. This is disadvantageous, because this would not guarantee to induce a total ordering for native pointers and it is hard to define a total order for mixed types anyway.
The currently suggested resolution for shared_ptr comparison as of 1262 uses a normalization strategy: They perform the comparison on the composite pointer type (5.9 [expr.rel]). This is not exactly possible for unique_ptr in the presence of user-defined pointer-like types but the existing definition of std::duration comparison as of 20.12.5.6 [time.duration.comparisons] via common_type of both argument types demonstrates a solution of this problem. The approach can be seen as the general way to define a composite pointer type and this is the approach which is used for here suggested wording change.
For consistency reasons I would have preferred the same normalization strategy for == and !=, but Howard convinced me not to do so (now).
[ 2010-11-03 Daniel comments and adjustes the currently proposed wording changes: ]
Issue 1401 is remotely related. Bullet A of its proposed resolution provides an alternative solution for issue discussed here and addresses NB comment GB-99. Additionally I updated the below suggested wording in regard to the following: It is an unncessary requirement that the below defined effective composite pointer-like type CT satisfies the LessThanComparable requirements. All what is needed is, that the function object type less<CT> induces a strict weak ordering on the pointer values.
[2011-03-24 Madrid meeting]
Resolved by 1401
Proposed resolution:
Change 20.8.1.5 [unique.ptr.special]/4-7 as indicated: [The implicit requirements and remarks imposed on the last three operators are the same as for the first one due to the normative "equivalent to" usage within a Requires element, see 17.5.1.4 [structure.specifications]/4. The effects of this change are that all real pointers wrapped in a unique_ptr will order like shared_ptr does.]
template <class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);? Requires: Let CT be common_type<unique_ptr<T1, D1>::pointer, unique_ptr<T2, D2>::pointer>::type. Then the specialization less<CT> shall be a function object type ([function.objects]) that induces a strict weak ordering ([alg.sorting]) on the pointer values.
4 Returns: less<CT>()(x.get(), y.get())
x.get() < y.get().? Remarks: If unique_ptr<T1, D1>::pointer is not implicitly convertible to CT or unique_ptr<T2, D2>::pointer is not implicitly convertible to CT, the program is ill-formed.
template <class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);5 Effects: Equivalent to return !(y < x)
Returns: x.get() <= y.get().template <class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);6 Effects: Equivalent to return (y < x)
Returns: x.get() > y.get().template <class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);7 Effects: Equivalent to return !(x < y)
Returns: x.get() >= y.get().
Section: 22.2 [locale.syn] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-12-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
The <locale> synopsis in 22.2 [locale.syn] calls out an explicit specialization for ctype_byname<char>, however no such specialization is defined in the standard. The only reference I can find to ctype_byname<char> is 22.3.1.1.2 [locale.facet]:Table 77 — Required specializations (for facets) which also refers to ctype_byname<wchar_t> which has no special consideration.
Is the intent an explicit instantiation which would use a slightly different syntax? Should the explicit specialization simply be struck?
[ 2010-01-31 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
22.2 [locale.syn]
Strike the explicit specialization for ctype_byname<char> from the <locale> synopsis
... template <class charT> class ctype_byname;template <> class ctype_byname<char>; // specialization...
Section: 27.7.5 [ext.manip] Status: C++11 Submitter: Alisdair Meredith Opened: 2009-12-25 Last modified: 2015-04-08
View all other issues in [ext.manip].
View all issues with C++11 status.
Discussion:
Extended Manipulators 27.7.5 [ext.manip] p8 defines the semantics of get_time in terms of a function f.
template <class charT, class traits> void f(basic_ios<charT, traits>& str, struct tm* tmb, const charT* fmt) { typedef istreambuf_iterator<charT, traits> Iter; typedef time_get<charT, Iter> TimeGet; ios_base::iostate err = ios_base::goodbit; const TimeGet& tg = use_facet<TimeGet>(str.getloc()); tm.get(Iter(str.rdbuf()), Iter(), str, err, tmb, fmt, fmt + traits::length(fmt)); if (err != ios_base::goodbit) str.setstate(err): }
Note the call to tm.get. This is clearly an error, as tm is a type and not an object. I believe this should be tg.get, rather than tm, but this is not my area of expertise.
[ 2010-01-14 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 27.7.5 [ext.manip] p8:
template <class charT, class traits> void f(basic_ios<charT, traits>& str, struct tm* tmb, const charT* fmt) { typedef istreambuf_iterator<charT, traits> Iter; typedef time_get<charT, Iter> TimeGet; ios_base::iostate err = ios_base::goodbit; const TimeGet& tg = use_facet<TimeGet>(str.getloc()); tgm.get(Iter(str.rdbuf()), Iter(), str, err, tmb, fmt, fmt + traits::length(fmt)); if (err != ios_base::goodbit) str.setstate(err): }
Section: 30.6.5 [futures.promise] Status: Resolved Submitter: Jonathan Wakely Opened: 2009-12-26 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with Resolved status.
Discussion:
30.6.5 [futures.promise]/12 defines the effects of promise::swap(promise&) as
void swap(promise& other);12 Effects: swap(*this, other)
and 30.6.5 [futures.promise]/25 defines swap(promise<R&>, promise<R>&) as
template <class R> void swap(promise<R>& x, promise<R>& y);25 Effects: x.swap(y).
[ 2010-01-13 Daniel added "Throws: Nothing." ]
[ 2010-01-14 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010 Pittsburgh: ]
Moved to
NAD EditorialResolved. Rationale added below.
Rationale:
Solved by N3058.
Proposed resolution:
Change 30.6.5 [futures.promise] paragraph 12
void swap(promise& other);12 Effects:
swap(*this, other)Exchanges the associated states of *this and other.13 ...
Throws: Nothing.
Section: 20.8.1.2 [unique.ptr.single], 20.8.2.2 [util.smartptr.shared] Status: C++11 Submitter: Stephan T. Lavavej Opened: 2010-01-23 Last modified: 2015-04-08
View all other issues in [unique.ptr.single].
View all issues with C++11 status.
Discussion:
N3000 20.8.2.2 [util.smartptr.shared]/1 still says:
template <class Y, class D> explicit shared_ptr(const unique_ptr<Y, D>& r) = delete; template <class Y, class D> shared_ptr& operator=(const unique_ptr<Y, D>& r) = delete;
I believe that this is unnecessary now that "rvalue references v2" prevents rvalue references from binding to lvalues, and I didn't see a Library Issue tracking this.
[ 2010-02-12 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Strike from 20.8.1.2 [unique.ptr.single]:
template <class T, class D = default_delete<T>> class unique_ptr { ... unique_ptr(const unique_ptr&) = delete;template <class U, class E> unique_ptr(const unique_ptr<U, E>&) = delete;unique_ptr& operator=(const unique_ptr&) = delete;template <class U, class E> unique_ptr& operator=(const unique_ptr<U, E>&) = delete;};
Strike from 20.8.2.2 [util.smartptr.shared]:
template<class T> class shared_ptr { ...template <class Y, class D> explicit shared_ptr(const unique_ptr<Y, D>& r) = delete;...template <class Y, class D> shared_ptr& operator=(const unique_ptr<Y, D>& r) = delete;... };
Section: 30.6.7 [futures.shared_future] Status: Resolved Submitter: Alisdair Meredith Opened: 2010-01-23 Last modified: 2015-04-08
View all other issues in [futures.shared_future].
View all issues with Resolved status.
Discussion:
The revised futures package in the current working paper simplified the is_ready/has_exception/has_value set of APIs, replacing them with a single 'valid' method. This method is used in many places to signal pre- and post- conditions, but that edit is not complete. Each method on a shared_future that requires an associated state should have a pre-condition that valid() == true.
[ 2010-01-28 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010 Pittsburgh: ]
Moved to
NAD EditorialResolved. Rationale added below.
Rationale:
Solved by N3058.
Proposed resolution:
Insert the following extra paragraphs:
In 30.6.7 [futures.shared_future]
shared_future();4 Effects: constructs ...
Postcondition: valid() == false.
Throws: nothing.
void wait() const;Requires: valid() == true.
22 Effects: if the associated ...
template <class Rep, class Period> bool wait_for(const chrono::duration<Rep, Period>& rel_time) const;Requires: valid() == true.
23 Effects: if the associated ...
template <class Clock, class Duration> bool wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;Requires: valid() == true.
25 Effects: blocks until ...
Section: X [futures.atomic_future] Status: Resolved Submitter: Alisdair Meredith Opened: 2010-01-23 Last modified: 2015-04-08
View all other issues in [futures.atomic_future].
View all issues with Resolved status.
Discussion:
The revised futures package in the current working paper simplified the is_ready/has_exception/has_value set of APIs, replacing them with a single 'valid' method. This method is used in many places to signal pre- and post- conditions, but that edit is not complete.
Atomic future retains the extended earlier API, and provides defined, synchronized behaviour for all calls. However, some preconditions and throws clauses are missing, which can easily be built around the new valid() api. Note that for consistency, I suggest is_ready/has_exception/has_value throw an exception if valid() is not true, rather than return false. I think this is implied by the existing pre-condition on is_ready.
[ 2010-01-23 See discussion starting with Message c++std-lib-26666. ]
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3058.
Proposed resolution:
Insert the following extra paragraphs:
In X [futures.atomic_future]
bool is_ready() const;17
PreconditionRequires: valid() == true.18 Returns: true only if the associated state is ready.
Throws: future_error with an error condition of no_state if the precondition is not met.
bool has_exception() const;Requires: valid() == true.
19 Returns: true only if the associated state is ready and contains an exception.
Throws: future_error with an error condition of no_state if the precondition is not met.
bool has_value() const;Requires: valid() == true.
20 Returns: true only if the associated state is ready and contains a value.
Throws: future_error with an error condition of no_state if the precondition is not met.
void wait() const;Requires: valid() == true.
22 Effects: blocks until ...
Throws: future_error with an error condition of no_state if the precondition is not met.
template <class Rep, class Period> bool wait_for(const chrono::duration<Rep, Period>& rel_time) const;Requires: valid() == true.
23 Effects: blocks until ...
24 Returns: true only if ...
Throws: future_error with an error condition of no_state if the precondition is not met.
template <class Clock, class Duration> bool wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;Requires: valid() == true.
25 Effects: blocks until ...
26 Returns: true only if ...
Throws: future_error with an error condition of no_state if the precondition is not met.
Section: 23.3.2 [array] Status: C++11 Submitter: Nicolai Josuttis Opened: 2010-01-24 Last modified: 2015-04-08
View other active issues in [array].
View all other issues in [array].
View all issues with C++11 status.
Discussion:
Class <array> is the only sequence container class that has no types pointer and const_pointer defined. You might argue that this makes no sense because there is no allocator support, but on the other hand, types reference and const_reference are defined for array.
[ 2010-02-11 Moved to Tentatively Ready after 6 positive votes on c++std-lib. ]
Proposed resolution:
Add to Class template array 23.3.2 [array]:
namespace std { template <class T, size_t N > struct array { ... typedef T value_type; typedef T * pointer; typedef const T * const_pointer; ... }; }
Section: 18.8.5 [propagation] Status: Resolved Submitter: Daniel Krügler Opened: 2010-01-26 Last modified: 2015-04-08
View all other issues in [propagation].
View all issues with Resolved status.
Discussion:
The current requirements for a conforming implementation of std::exception_ptr (18.8.5 [propagation]/1-6) does not clarify whether the expression
e1 != e2 e1 != nullptr
with e1 and e2 being two values of type std::exception_ptr are supported or not. Reason for this oddity is that the concept EqualityComparable does not provide operator !=.
For the same reason programmers working against the types X::pointer, X::const_pointer, X::void_pointer, and X::const_void_pointer of any allocator concept X (17.6.3.5 [allocator.requirements]/4 + Table 40) in a generic context can not rely on the availability of the != operation, which is rather unnatural and error-prone.
[ 2010 Pittsburgh: Moved to NAD Editorial. Rationale added below. ]
Rationale:
Solved by N3073.
Proposed resolution:
Section: 17.6.3.1 [utility.arg.requirements] Status: C++11 Submitter: Daniel Krügler Opened: 2010-02-03 Last modified: 2015-04-08
View all other issues in [utility.arg.requirements].
View all issues with C++11 status.
Discussion:
Table 33 — MoveConstructible requirements [moveconstructible] and Table 34 — CopyConstructible requirements [copyconstructible] support solely the following expression:
T t(rv)
where rv is defined to be as "non-const rvalue of type T" and t as a "modifiable lvalue of type T" in 17.6.3.1 [utility.arg.requirements]/1.
This causes two different defects:
We cannot move/copy-initialize a const lvalue of type T as in:
int get_i(); const int i1(get_i());
both in Table 33 and in Table 34.
The single support for
T t(rv)
in case of CopyConstructible means that we cannot provide an lvalue as a source of a copy as in
const int& get_lri(); int i2(get_lri());
I believe this second defect is due to the fact that this single expression supported both initialization situations according to the old (implicit) lvalue reference -> rvalue reference conversion rules.
Finally [copyconstructible] refers to some name u which is not part of the expression, and both [copyconstructible] and [moveconstructible] should support construction expressions from temporaries - this would be a stylistic consequence in the light of the new DefaultConstructible requirements and compared with existing requirements (see e.g. Container requirements or the output/forward iterator requirements)..
[ 2010-02-09 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
[ 2010-02-10 Reopened. The proposed wording of 1283 has been merged here. ]
[ 2010-02-10 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
Change 17.6.3.1 [utility.arg.requirements]/1 as indicated: [This change suggestion is motivated to make type descriptions clearer: First, a, b, and c may also be non-const T. Second, u is described in a manner consistent with the container requirements tables.]
1 The template definitions in the C++ standard library refer to various named requirements whose details are set out in tables 31-38. In these tables, T is an object or reference type to be supplied by a C++ program instantiating a template; a, b, and c are values of type (possibly const) T; s and t are modifiable lvalues of type T; u denotes an identifier;
is a value of type (possibly const) T; andrv is annon-constrvalue of type T; and v is an lvalue of type (possibly const) T or an rvalue of type const T.
In 17.6.3.1 [utility.arg.requirements] Table 33 ([moveconstructible]) change as indicated [Note: The symbol u is defined to be either a const or a non-const value and is the right one we need here]:
Table 33 — MoveConstructible requirements [moveconstructible] Expression Post-condition T tu(rv);tu is equivalent to the value of rv before the constructionT(rv) T(rv) is equivalent to the value of rv before the construction [Note: There is no requirement on the value of rv after the construction.rv remains a valid object. Its state is unspecified. — end note]
In 17.6.3.1 [utility.arg.requirements] Table 34 ([copyconstructible]) change as indicated [Note: The symbol u is defined to be either a const or a non-const value and is the right one we need here. The expressions using a are recommended to ensure that lvalues are supported as sources of the copy expression]:
Table 34 — CopyConstructible requirements [copyconstructible]
(in addition to MoveConstructible)Expression Post-condition T tu(rv);the value of uv is unchanged and is equivalent totuT(v) the value of v is unchanged and is equivalent to T(v) [Note: A type that satisfies the CopyConstructible requirements also satisfies the MoveConstructible requirements. — end note]
In Table 35 — MoveAssignable requirements [moveassignable] change as indicated:
Table 35 — MoveAssignable requirements [moveassignable] Expression Return type Return value Post-condition t = rv T& t t is equivalent to the value of rv before the assigment. [Note: There is no requirement on the value of rv after the assignment.rv remains a valid object. Its state is unspecified. — end note]
In 17.6.3.1 [utility.arg.requirements] change Table 36 as indicated:
Table 36 — CopyAssignable requirements [copyassignable]
(in addition to MoveAssignable)Expression Return type Return value Post-condition t = uvT& t t is equivalent to uv, the value ofuv is unchanged[Note: A type that satisfies the CopyAssignable requirements also satisfies the MoveAssignable requirements. — end note]
Section: 23.3.4.6 [forwardlist.ops] Status: C++11 Submitter: Howard Hinnant Opened: 2010-02-05 Last modified: 2015-04-08
View all other issues in [forwardlist.ops].
View all issues with C++11 status.
Discussion:
We've moved 1133 to Tentatively Ready and I'm fine with that.
1133 adds lvalue-references to the splice signatures for list. So now list can splice from lvalue and rvalue lists (which was the intent of the original move papers btw). During the discussion of this issue it was mentioned that if we want to give the same treatment to forward_list, that should be a separate issue.
This is that separate issue.
Consider the following case where you want to splice elements from one place in a forward_list to another. Currently this must be coded like so:
fl.splice_after(to_here, std::move(fl), from1, from2);
This looks pretty shocking to me. I would expect to be able to code instead:
fl.splice_after(to_here, fl, from1, from2);
but we currently don't allow it.
When I say move(fl), I consider that as saying that I don't care about the value of fl any more (until I assign it a new value). But in the above example, this simply isn't true. I do care about the value of fl after the move, and I'm not assigning it a new value. I'm merely permuting its current value.
I propose adding forward_list& overloads to the 3 splice_after members. For consistency's sake (principal of least surprise) I'm also proposing to overload merge this way as well.
Proposed resolution:
Add to the synopsis of 23.3.4.1 [forwardlist.overview]:
template <class T, class Allocator = allocator<T> > class forward_list { public: ... // [forwardlist.ops], forward_list operations: void splice_after(const_iterator p, forward_list& x); void splice_after(const_iterator p, forward_list&& x); void splice_after(const_iterator p, forward_list& x, const_iterator i); void splice_after(const_iterator p, forward_list&& x, const_iterator i); void splice_after(const_iterator p, forward_list& x, const_iterator first, const_iterator last); void splice_after(const_iterator p, forward_list&& x, const_iterator first, const_iterator last); ... void merge(forward_list& x); void merge(forward_list&& x); template <class Compare> void merge(forward_list& x, Compare comp); template <class Compare> void merge(forward_list&& x, Compare comp); ... };
Add to the signatures of 23.3.4.6 [forwardlist.ops]:
void splice_after(const_iterator p, forward_list& x); void splice_after(const_iterator p, forward_list&& x);1 ...
void splice_after(const_iterator p, forward_list& x, const_iterator i); void splice_after(const_iterator p, forward_list&& x, const_iterator i);4 ...
void splice_after(const_iterator p, forward_list& x, const_iterator first, const_iterator last); void splice_after(const_iterator p, forward_list&& x, const_iterator first, const_iterator last);7 ...
void merge(forward_list& x); void merge(forward_list&& x); template <class Compare> void merge(forward_list& x, Compare comp); template <class Compare> void merge(forward_list&& x, Compare comp);16 ...
Section: 24.2.5 [forward.iterators] Status: Resolved Submitter: Alisdair Meredith Opened: 2010-02-07 Last modified: 2015-04-08
View all other issues in [forward.iterators].
View all issues with Resolved status.
Discussion:
The following example demonstrates code that would meet the guarantees of a Forward Iterator, but only permits a single traversal of the underlying sequence:
template< typename ForwardIterator> struct bad_iterator { shared_ptr<ForwardIterator> impl; bad_iterator( ForwardIterator iter ) { : impl{new ForwardIterator{iter} } { } auto operator*() const -> decltype(*ForwardIterator{}) { return **impl; } auto operator->() const -> ForwardIterator { return *impl; } auto operator==(bad_iterator const & rhs) const -> bool { return impl == rhs.impl; } auto operator++() -> bad_iterator& { ++(*impl); return *this; } // other operations as necessary... };
Here, we use shared_ptr to wrap a forward iterator, so all iterators constructed from the same original iterator share the same 'value', and incrementing any one copy increments all others.
There is a missing guarantee, expressed by the following code sequence
FwdIter x = seq.begin(); // obtain forward iterator from a sequence FwdIter y = x; // copy the iterator assert(x == y); // iterators must be the same ++x; // increment *just one* iterator assert(x != y); // iterators *must now be different* ++y; // increment the other iterator assert(x == y); // now the iterators must be the same again
That inequality in the middle is an essential guarantee. Note that this list is simplified, as each assertion should also note that they refer to exactly the same element (&*x == &*y) but I am not complicating the issue with tests to support proxy iterators, or value types overloading unary operator+.
I have not yet found a perverse example that can meet this additional constraint, and not meet the multi-pass expectations of a Forward Iterator without also violating other Forward Iterator requirements.
Note that I do not yet have standard-ready wording to resolve the problem, as saying this neatly and succinctly in 'standardese' is more difficult.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3066.
Proposed resolution:
Section: 23.3.6.4 [vector.data] Status: C++11 Submitter: Alisdair Meredith Opened: 2010-02-07 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
The original intent of vector::data was to match array::data in providing a simple API with direct access to the contiguous buffer of elements that could be passed to a "classic" C API. At some point, the return type became the 'pointer' typedef, which is not derived from the allocator via allocator traits - it is no longer specified to precisely T *. The return type of this function should be corrected to no longer use the typedef.
[ 2010-02-10 Moved to Tentatively Ready after 5 positive votes on c++std-lib. ]
Proposed resolution:
23.3.6 [vector]
Update the class definition in p2:
// 23.3.6.3 data accesspointerT * data();const_pointerconst T * data() const;
23.3.6.4 [vector.data]
Adjust signatures:
pointerT * data();const_pointerconst T * data() const;
Section: 20.13 [allocator.adaptor] Status: C++11 Submitter: Pablo Halpern Opened: 2009-02-11 Last modified: 2015-04-08
View all other issues in [allocator.adaptor].
View all issues with C++11 status.
Discussion:
The WP (N3000) contains these declarations:
template <class OuterA1, class OuterA2, class... InnerAllocs> bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a, const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b); template <class OuterA1, class OuterA2, class... InnerAllocs> bool operator!=(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a, const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b);
But does not define what the behavior of these operators are.
[ Post-Rapperswil: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Add a new section after 20.13.4 [allocator.adaptor.members]:
Scoped allocator operators [scoped.adaptor.operators]
template <class OuterA1, class OuterA2, class... InnerAllocs> bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a, const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b);Returns:
a.outer_allocator() == b.outer_allocator()
ifsizeof...(InnerAllocs)
is zero; otherwise,a.outer_allocator() == b.outer_allocator() && a.inner_allocator() == b.inner_allocator()
.template <class OuterA1, class OuterA2, class... InnerAllocs> bool operator!=(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a, const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b);Returns:
!(a == b)
.
Section: 23.2.1 [container.requirements.general] Status: C++11 Submitter: Alisdair Meredith Opened: 2010-02-16 Last modified: 2015-04-08
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with C++11 status.
Discussion:
The requirements on container iterators are spelled out in 23.2.1 [container.requirements.general], table 91.
Table 91 — Container requirements Expression Return type Operational semantics Assertion/note
pre-/post-conditionComplexity ... X::iterator iterator type whose value type is T any iterator category except output iterator. Convertible to X::const_iterator. compile time X::const_iterator constant iterator type whose value type is T any iterator category except output iterator compile time ...
As input iterators do not have the multi-pass guarantee, they are not suitable for iterating over a container. For example, taking two calls to begin(), incrementing either iterator might invalidate the other. While data structures might be imagined where this behaviour produces interesting and useful results, it is very unlikely to meet the full set of requirements for a standard container.
[ Post-Rapperswil: ]
Daniel notes: I changed the currently suggested P/R slightly, because it is not robust in regard to new fundamental iterator catagories. I recommend to say instead that each container::iterator shall satisfy (and thus may refine) the forward iterator requirements.
Moved to Tentatively Ready with revised wording after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Table 93 — Container requirements Expression Return type Operational
semanticsAssertion/note
pre-/post-conditionComplexity ... X::iterator iterator type
whose value
type is Tany iterator category except output iterator
that meets the forward iterator requirements. convertible
to
X::const_iteratorcompile time X::const_iterator constant iterator type
whose value
type is Tany iterator category except output iterator
that meets the forward iterator requirements.compile time ...
Section: 20.13.4 [allocator.adaptor.members] Status: Resolved Submitter: Howard Hinnant Opened: 2010-02-16 Last modified: 2015-04-08
View all other issues in [allocator.adaptor.members].
View all issues with Resolved status.
Discussion:
20.13.4 [allocator.adaptor.members] p8-9 says:
template <class T, class... Args> void construct(T* p, Args&&... args);8 Effects: let OUTERMOST(x) be x if x does not have an outer_allocator() function and OUTERMOST(x.outer_allocator()) otherwise.
- If uses_allocator<T, inner_allocator_type>::value is false and is_constructible<T, Args...>::value is true, calls OUTERMOST(*this).construct(p, std::forward<Args>(args)...).
- Otherwise, if uses_allocator<T, inner_allocator_type>::value is true and is_constructible<T, allocator_arg_t, inner_allocator_type, Args...>::value is true, calls OUTERMOST(*this).construct(p, allocator_arg, inner_allocator(),std::forward<Args>(args)...).
- Otherwise, if uses_allocator<T, inner_allocator_type>::value is true and is_constructible<T, Args..., inner_allocator_type>::value is true, calls OUTERMOST(*this).construct(p, std::forward<Args>(args)..., inner_allocator()).
- Otherwise, the program is ill-formed. [Note: an error will result if uses_allocator evaluates to true but the specific constructor does not take an allocator. This definition prevents a silent failure to pass an inner allocator to a contained element. — end note]
template <class T> void destroy(T* p);9 Effects: calls outer_allocator().destroy(p).
In all other calls where applicable scoped_allocator_adaptor does not call members of an allocator directly, but rather does so indirectly via allocator_traits. For example:
size_type max_size() const;7 Returns: allocator_traits<OuterAlloc>::max_size(outer_allocator()).
Indeed, without the indirection through allocator_traits the definitions for construct and destroy are likely to fail at compile time since the outer_allocator() may not have the members construct and destroy.
[ The proposed wording is a product of Pablo, Daniel and Howard. ]
[ 2010 Pittsburgh: Moved to NAD Editorial. Rationale added below. ]
Rationale:
Solved by N3059.
Proposed resolution:
In 20.13.4 [allocator.adaptor.members] move and change p8 as indicated, and change p9 as indicated:
Let OUTERMOST(x) be x if x does not have an outer_allocator() member function and OUTERMOST(x.outer_allocator()) otherwise. Let OUTERMOST_ALLOC_TRAITS(x) be allocator_traits<decltype(OUTERMOST(x))>. [Note: OUTERMOST(x) and OUTERMOST_ALLOC_TRAITS(x) are recursive operations. It is incumbent upon the definition of outer_allocator() to ensure that the recursion terminates. It will terminate for all instantiations of scoped_allocator_adaptor. — end note]
template <class T, class... Args> void construct(T* p, Args&&... args);8 Effects:
let OUTERMOST(x) be x if x does not have an outer_allocator() function and OUTERMOST(x.outer_allocator()) otherwise.
- If uses_allocator<T, inner_allocator_type>::value is false and is_constructible<T, Args...>::value is true, calls
OUTERMOST(*this).OUTERMOST_ALLOC_TRAITS(outer_allocator())::construct( OUTERMOST(outer_allocator()), p, std::forward<Args>(args)... ).- Otherwise, if uses_allocator<T, inner_allocator_type>::value is true and is_constructible<T, allocator_arg_t, inner_allocator_type, Args...>::value is true, calls
OUTERMOST(*this).OUTERMOST_ALLOC_TRAITS(outer_allocator())::construct( OUTERMOST(outer_allocator()), p, allocator_arg, inner_allocator(), std::forward<Args>(args)... ).- Otherwise, if uses_allocator<T, inner_allocator_type>::value is true and is_constructible<T, Args..., inner_allocator_type>::value is true, calls
OUTERMOST(*this).OUTERMOST_ALLOC_TRAITS(outer_allocator())::construct( OUTERMOST(outer_allocator()), p, std::forward<Args>(args)..., inner_allocator() ).- Otherwise, the program is ill-formed. [Note: an error will result if uses_allocator evaluates to true but the specific constructor does not take an allocator. This definition prevents a silent failure to pass an inner allocator to a contained element. — end note]
template <class T> void destroy(T* p);9 Effects: calls
outer_allocator().OUTERMOST_ALLOC_TRAITS(outer_allocator())::destroy( OUTERMOST(outer_allocator()), p).
Section: 17.6.3.1 [utility.arg.requirements] Status: Resolved Submitter: Daniel Krügler Opened: 2010-02-16 Last modified: 2015-04-08
View all other issues in [utility.arg.requirements].
View all issues with Resolved status.
Discussion:
With the acceptance of library defect 822 only direct-initialization is supported, and not copy-initialization in the requirement sets MoveConstructible and CopyConstructible. This is usually a good thing, if only the library implementation needs to obey these restrictions, but the Empire strikes back quickly:
Affects user-code: std::exception_ptr is defined purely via requirements, among them CopyConstructible. A strict reading of the standard would make implementations conforming where std::exception_ptr has an explicit copy-c'tor and user-code must code defensively. This is a very unwanted effect for such an important component like std::exception_ptr.
Wrong re-use: Recently proposed requirement sets (NullablePointer as of N3025, Hash) or cleanup of existing requirement sets (e.g. iterator requirements as of N3046) tend to reuse existing requirement sets, so reusing CopyConstructible is attempting, even in cases, where the intend is to support copy-initialization as well.
Inconsistency: The current iterator requirements set Table 102 (output iterator requirements) and Table 103 (forward iterator requirements) demonstrate quite clearly a strong divergence of copy-semantics: The specified semantics of
X u(a); X u = a;
are underspecified compared to the most recent clarifications of the CopyConstructible requirements, c.f. issue 1309 which is very unsatisfactory. This will become worse for each further issue that involves the CopyConstructible specification (for possible directions see 1173).
The suggested resolution is to define two further requirements implicit-MoveConstructible and implicit-CopyConstructible (or any other reasonable name like MoveConvertible and CopyConvertible) each with a very succinct but precise meaning solving all three problems mentioned above.
[Batavia: Resolved by accepting n3215.]
Proposed resolution:
Add the following new table ?? after Table 34 — MoveConstructible requirements [moveconstructible]:
Table ?? — Implicit MoveConstructible requirements [implicit.moveconstructible] (in addition to MoveConstructible) Expression Operational Semantics T u = rv; Equivalent to: T u(rv);
Add the following new table ?? after Table 35 — CopyConstructible requirements [copyconstructible]:
Table ?? — Implicit CopyConstructible requirements [implicit.copyconstructible] (in addition to CopyConstructible) Expression Operational Semantics T u = v; Equivalent to: T u(v);
Change 17.6.3.3 [nullablepointer.requirements]/1 as follows:
A NullablePointer type is a pointer-like type that supports null values. A type P meets the requirements of NullablePointer if:
- P satisfies the requirements of EqualityComparable, DefaultConstructible, implicit CopyConstructible, CopyAssignable, and Destructible,
- [..]
Change 17.6.3.4 [hash.requirements]/1 as indicated: [explicit copy-constructible functors could not be provided as arguments to any algorithm that takes these by value. Also a typo is fixed.]
1 A type H meets the Hash requirements if:
- it is a function object type (20.8),
- it satisfies
ifesthe requirements of implicit CopyConstructible and Destructible (20.2.1),- [..]
Change 20.10.1 [meta.rqmts]/1+2 as indicated:
1 A UnaryTypeTrait describes a property of a type. It shall be a class template that takes one template type argument and, optionally, additional arguments that help define the property being described. It shall be DefaultConstructible, implicit CopyConstructible, [..]
2 A BinaryTypeTrait describes a relationship between two types. It shall be a class template that takes two template type arguments and, optionally, additional arguments that help define the relationship being described. It shall be DefaultConstructible, implicit CopyConstructible, and [..]
Change 20.9.2 [func.require]/4 as indicated: [explicit copy-constructible functors could not be provided as arguments to any algorithm that takes these by value]
4 Every call wrapper (20.8.1) shall be implicit MoveConstructible. A simple call wrapper is a call wrapper that is implicit CopyConstructible and CopyAssignable and whose copy constructor, move constructor, and assignment operator do not throw exceptions. [..]
Change 20.9.4 [refwrap]/1 as indicated:
1 reference_wrapper<T> is an implicit CopyConstructible and CopyAssignable wrapper around a reference to an object or function of type T.
Change 20.9.10.3 [func.bind.bind]/5+9 as indicated:
5 Remarks: The return type shall satisfy the requirements of implicit MoveConstructible. If all of FD and TiD satisfy the requirements of CopyConstructible, then the return type shall satisfy the requirements of implicit CopyConstructible. [Note: this implies that all of FD and TiD are MoveConstructible. — end note]
[..]
9 Remarks: The return type shall satisfy the requirements of implicit MoveConstructible. If all of FD and TiD satisfy the requirements of CopyConstructible, then the return type shall satisfy the requirements of implicit CopyConstructible. [Note: this implies that all of FD and TiD are MoveConstructible. — end note]
Change 20.9.10.4 [func.bind.place] as indicated:
1 All placeholder types shall be DefaultConstructible and implicit CopyConstructible, and [..]
Change 20.8.1 [unique.ptr]/5 as indicated:
5 Each object of a type U instantiated form the unique_ptr template specified in this subclause has the strict ownership semantics, specified above, of a unique pointer. In partial satisfaction of these semantics, each such U is implicit MoveConstructible and MoveAssignable, but is not CopyConstructible nor CopyAssignable. The template parameter T of unique_ptr may be an incomplete type.
Change 20.8.2.2 [util.smartptr.shared]/2 as indicated:
2 Specializations of shared_ptr shall be implicit CopyConstructible, CopyAssignable, and LessThanComparable, [..]
Change 20.8.2.3 [util.smartptr.weak]/2 as indicated:
2 Specializations of weak_ptr shall be implicit CopyConstructible and CopyAssignable, allowing their use in standard containers. The template parameter T of weak_ptr may be an incomplete type.
Change 24.2.2 [iterator.iterators]/2 as indicated: [This fixes a defect in the Iterator requirements. None of the usual algorithms accepting iterators would be usable with iterators with explicit copy-constructors]
2 A type X satisfies the Iterator requirements if:
- X satisfies the implicit CopyConstructible, CopyAssignable, and Destructible requirements (20.2.1) and lvalues of type X are swappable (20.2.2), and [..]
- ...
Change X [auto.ptr]/3 as indicated:
3 [..] Instances of auto_ptr meet the requirements of implicit MoveConstructible and MoveAssignable, but do not meet the requirements of CopyConstructible and CopyAssignable. — end note]
Section: 21.4.6.6 [string::replace] Status: C++11 Submitter: Daniel Krügler Opened: 2010-02-19 Last modified: 2015-04-08
View all other issues in [string::replace].
View all issues with C++11 status.
Discussion:
In contrast to all library usages of purely positional iterator values several overloads of std::basic_string::replace still use iterator instead of const_iterator arguments. The paper N3021 quite nicely visualizes the purely positional responsibilities of the function arguments.
This should be fixed to make the library consistent, the proposed changes are quite mechanic.
[ Post-Rapperswil: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
In 21.4 [basic.string], class template basic_string synopsis change as indicated:
// 21.4.6 modifiers: ... basic_string& replace(const_iterator i1, const_iterator i2, const basic_string& str); basic_string& replace(const_iterator i1, const_iterator i2, const charT* s, size_type n); basic_string& replace(const_iterator i1, const_iterator i2, const charT* s); basic_string& replace(const_iterator i1, const_iterator i2, size_type n, charT c); template<class InputIterator> basic_string& replace(const_iterator i1, const_iterator i2, InputIterator j1, InputIterator j2); basic_string& replace(const_iterator, const_iterator, initializer_list<charT>);
In 21.4.6.6 [string::replace] before p.18, change the following signatures as indicated:
basic_string& replace(const_iterator i1, const_iterator i2, const basic_string& str);
In 21.4.6.6 [string::replace] before p.21, change the following signatures as indicated:
basic_string& replace(const_iterator i1, const_iterator i2, const charT* s, size_type n);
In 21.4.6.6 [string::replace] before p.24, change the following signatures as indicated:
basic_string& replace(const_iterator i1, const_iterator i2, const charT* s);
In 21.4.6.6 [string::replace] before p.27, change the following signatures as indicated:
basic_string& replace(const_iterator i1, const_iterator i2, size_type n, charT c);
In 21.4.6.6 [string::replace] before p.30, change the following signatures as indicated:
template<class InputIterator> basic_string& replace(const_iterator i1, const_iterator i2, InputIterator j1, InputIterator j2);
In 21.4.6.6 [string::replace] before p.33, change the following signatures as indicated:
basic_string& replace(const_iterator i1, const_iterator i2, initializer_list<charT> il);
Section: 20.3.2 [pairs.pair], 20.4.2.1 [tuple.cnstr] Status: Resolved Submitter: Daniel Krügler Opened: 2010-03-20 Last modified: 2015-04-08
View all other issues in [pairs.pair].
View all issues with Resolved status.
Discussion:
In analogy to library defect 811, tuple's variadic constructor
template <class... UTypes> explicit tuple(UTypes&&... u);
creates the same problem as pair:
#include <tuple> int main() { std::tuple<char*> p(0); }
produces a similar compile error for a recent gcc implementation.
I suggest to follow the same resolution path as has been applied to pair's corresponding c'tor, that is require that these c'tors should not participate in overload resolution, if the arguments are not implicitly convertible to the element types.
Further-on both pair and tuple provide converting constructors from different pairs/tuples that should be not available, if the corresponding element types are not implicitly convertible. It seems astonishing that in the following example
struct A { explicit A(int); }; A a = 1; // Error std::tuple<A> ta = std::make_tuple(1); // # OK?
the initialization marked with # could be well-formed.
[ Only constraints on constructors are suggested. Adding similar constraints on assignment operators is considered as QoI, because the assigments wouldn't be well-formed anyway. ]
Following 20.3.2 [pairs.pair]/5 add a new Remarks element:
template<class U, class V> pair(const pair<U, V>& p);5 Effects: Initializes members from the corresponding members of the argument
, performing implicit conversions as needed.Remarks: This constructor shall not participate in overload resolution unless U is implicitly convertible to first_type and V is implicitly convertible to second_type.
Following 20.3.2 [pairs.pair]/6 add a new Remarks element:
template<class U, class V> pair(pair<U, V>&& p);6 Effects: The constructor initializes first with std::move(p.first) and second with std::move(p.second).
Remarks: This constructor shall not participate in overload resolution unless U is implicitly convertible to first_type and V is implicitly convertible to second_type.
Following 20.4.2.1 [tuple.cnstr]/7 add a new Remarks element:
template <class... UTypes> explicit tuple(UTypes&&... u);6 Requires: Each type in Types shall satisfy the requirements of MoveConstructible (Table 33) from the corresponding type in UTypes. sizeof...(Types) == sizeof...(UTypes).
7 Effects: Initializes the elements in the tuple with the corresponding value in std::forward<UTypes>(u).
Remarks: This constructor shall not participate in overload resolution unless each type in UTypes is implicitly convertible to its corresponding type in Types.
Following 20.4.2.1 [tuple.cnstr]/13 add a new Remarks element:
template <class... UTypes> tuple(const tuple<UTypes...>& u);12 Requires: Each type in Types shall be constructible from the corresponding type in UTypes. sizeof...(Types) == sizeof...(UTypes).
13 Effects: Constructs each element of *this with the corresponding element of u.
Remarks: This constructor shall not participate in overload resolution unless each type in UTypes is implicitly convertible to its corresponding type in Types.
14 [Note: enable_if can be used to make the converting constructor and assignment operator exist only in the cases where the source and target have the same number of elements. — end note]
Following 20.4.2.1 [tuple.cnstr]/16 add a new Remarks element:
template <class... UTypes> tuple(tuple<UTypes...>&& u);15 Requires: Each type in Types shall shall satisfy the requirements of MoveConstructible (Table 33) from the corresponding type in UTypes. sizeof...(Types) == sizeof...(UTypes).
16 Effects: Move-constructs each element of *this with the corresponding element of u.
Remarks: This constructor shall not participate in overload resolution unless each type in UTypes is implicitly convertible to its corresponding type in Types.
[Note: enable_if can be used to make the converting constructor and assignment operator exist only in the cases where the source and target have the same number of elements. — end note]
Following 20.4.2.1 [tuple.cnstr]/18 add a new Remarks element:
template <class U1, class U2> tuple(const pair<U1, U2>& u);17 Requires: The first type in Types shall be constructible from U1 and the second type in Types shall be constructible from U2. sizeof...(Types) == 2.
18 Effects: Constructs the first element with u.first and the second element with u.second.
Remarks: This constructor shall not participate in overload resolution unless U1 is implicitly convertible to the first type in Types and U2 is implicitly convertible to the second type in Types.
Following 20.4.2.1 [tuple.cnstr]/20 add a new Remarks element:
template <class U1, class U2> tuple(pair<U1, U2>&& u);19 Requires: The first type in Types shall shall satisfy the requirements of MoveConstructible(Table 33) from U1 and the second type in Types shall be move-constructible from U2. sizeof...(Types) == 2.
20 Effects: Constructs the first element with std::move(u.first) and the second element with std::move(u.second)
Remarks: This constructor shall not participate in overload resolution unless U1 is implicitly convertible to the first type in Types and U2 is implicitly convertible to the second type in Types.
[ 2010-10-24 Daniel adds: ]
Accepting n3140 would solve this issue.
Proposed resolution:
See n3140.
Section: 20.6.1 [bitset.cons] Status: C++11 Submitter: Christopher Jefferson Opened: 2010-03-07 Last modified: 2015-04-08
View all other issues in [bitset.cons].
View all issues with C++11 status.
Discussion:
As mentioned on the boost mailing list:
The following code, valid in C++03, is broken in C++0x due to ambiguity between the "unsigned long long" and "char*" constructors.
#include <bitset> std::bitset<10> b(0);
[ The proposed resolution has been reviewed by Stephan T. Lavavej. ]
[ Post-Rapperswil ]
The proposed resolution has two problems:
it fails to provide support for non-terminated strings, which could be easily added and constitutes an important use-case. For example, the following code would invoke UB with the current P/R:
because it requires the evaluation (under the as-if rule, to be fair, but it doesn't matter) of basic_string<char>(s)char s[4] = { '0', '1', '0', '1' }; // notice: not null-terminated! bitset<4> b(s, 0, 4);
it promotes a consistency between the two bitset constructors that take a const std::string& and a const char*, respectively, while practice established by std::basic_string would recommend a different set of parameters. In particular, the constructor of std::basic_string that takes a const char* does not have a pos parameter
Moved to Tentatively Ready with revised wording provided by Alberto Ganesh Babati after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
explicit bitset(const char *str);template <class charT> explicit bitset( const charT *str, typename basic_string<charT>::size_type n = basic_string<charT>::npos, charT zero = charT('0'), charT one = charT('1'));
explicit bitset(const char *str);template <class charT> explicit bitset(const charT *str, typename basic_string<charT>::size_type n = basic_string<charT>::npos, charT zero = charT('0'), charT one = charT('1'));
Effects: Constructs an object of class
bitset<N> as if by
bitset(string(str)).
bitset( n == basic_string<charT>::npos ? basic_string<charT>(str) : basic_string<charT>(str, n), 0, n, zero, one)
Section: 20.3.2 [pairs.pair], 20.4.2.1 [tuple.cnstr] Status: Resolved Submitter: Daniel Krügler Opened: 2010-03-07 Last modified: 2015-04-08
View all other issues in [pairs.pair].
View all issues with Resolved status.
Discussion:
There are several constructors and creation functions of std::tuple that impose requirements on it's arguments, that are unnecessary restrictive and don't match the intention for the supported argument types. This is related to the fact that tuple is supposed to accept both object types and lvalue-references and the usual MoveConstructible and CopyConstructible requirements are bad descriptions for non-const references. Some examples:
20.4.2.1 [tuple.cnstr] before p.4 and p.8, resp.:
explicit tuple(const Types&...);4 Requires: Each type in Types shall be copy constructible.
tuple(const tuple& u) = default;8 Requires: Each type in Types shall satisfy the requirements of CopyConstructible (Table 34).
A tuple that contains lvalue-references to non-const can never satisfy the CopyConstructible requirements. CopyConstructible requirements refine the MoveConstructible requirements and this would require that these lvalue-references could bind rvalues. But the core language does not allow that. Even, if we would interpret that requirement as referring to the underlying non-reference type, this requirement would be wrong as well, because there is no reason to disallow a type such as
struct NoMoveNoCopy { NoMoveNoCopy(NoMoveNoCopy&&) = delete; NoMoveNoCopy(const NoMoveNoCopy&) = delete; ... }:
for the instantiation of std::tuple<NoMoveNoCopy&> and that of it's copy constructor.
A more reasonable requirement for this example would be to require that "is_constructible<Ti, const Ti&>::value shall evaluate to true for all Ti in Types". In this case the special reference-folding and const-merging rules of references would make this well-formed in all cases. We could also add the further constraint "if Ti is an object type, it shall satisfy the CopyConstructible requirements", but this additional requirement seems not really to help here. Ignoring it would only mean that if a user would provide a curious object type C that satisfies the std::is_constructible<C, const C&> test, but not the "C is CopyConstructible" test would produce a tuple<C> that does not satisfy the CopyConstructible requirements as well.
20.4.2.1 [tuple.cnstr] before p.6 and p.10, resp.:
template <class... UTypes> explicit tuple(UTypes&&... u);6 Requires: Each type in Types shall satisfy the requirements of MoveConstructible (Table 33) from the corresponding type in UTypes. sizeof...(Types) == sizeof...(UTypes).
tuple(tuple&& u);10 Requires: Each type in Types shall shall satisfy the requirements of MoveConstructible (Table 33).
We have a similar problem as in (a): Non-const lvalue-references are intended template arguments for std::tuple, but cannot satisfy the MoveConstructible requirements. In this case the correct requirements would be
is_constructible<Ti, Ui>::value shall evaluate to true for all Ti in Types and for all Ui in UTypes
and
is_constructible<Ti, Ti>::value shall evaluate to true for all Ti in Types
respectively.
Many std::pair member functions do not add proper requirements, e.g. the default c'tor does not require anything. This is corrected within the suggested resolution. Further-on the P/R has been adapted to the FCD numbering.
[ 2010-03-25 Daniel updated wording: ]
The issue became updated to fix some minor inconsistencies and to ensure a similarly required fix for std::pair, which has the same specification problem as std::tuple, since pair became extended to support reference members as well.
[Original proposed resolution:]
Change 20.3.2 [pairs.pair]/1 as indicated [The changes for the effects elements are not normative changes, they just ensure harmonization with existing wording style]:
constexpr pair();Requires: first_type and second_type shall satisfy the DefaultConstructible requirements.
1 Effects: Value-initializes first and second.
Initializes its members as if implemented: pair() : first(), second() { }.
Change 20.3.2 [pairs.pair]/2 as indicated:
pair(const T1& x, const T2& y);Requires: is_constructible<T1, const T1&>::value is true and is_constructible<T2, const T2&>::value is true.
2 Effects: The constructor initializes first with x and second with y.
Change 20.3.2 [pairs.pair]/3 as indicated:
template<class U, class V> pair(U&& x, V&& y);Requires: is_constructible<first_type, U>::value is true and is_constructible<second_type, V>::value is true.
3 Effects: The constructor initializes first with std::forward<U>(x) and second with std::forward<V>(y).
4 Remarks: If U is not implicitly convertible to first_type or V is not implicitly convertible to second_type this constructor shall not participate in overload resolution.
Change 20.3.2 [pairs.pair]/5 as indicated [The change in the effects element should be non-normatively and is in compatible to the change suggestion of 1324]:
template<class U, class V> pair(const pair<U, V>& p);Requires: is_constructible<first_type, const U&>::value is true and is_constructible<second_type, const V&>::value is true.
5 Effects: Initializes members from the corresponding members of the argument
, performing implicit conversions as needed.
Change 20.3.2 [pairs.pair]/6 as indicated:
template<class U, class V> pair(pair<U, V>&& p);Requires: is_constructible<first_type, U>::value is true and is_constructible<second_type, V>::value is true.
6 Effects: The constructor initializes first with std::
moveforward<U>(p.first) and second with std::moveforward<V>(p.second).
Change 20.3.2 [pairs.pair]/7+8 as indicated [The deletion in the effects element should be non-normatively]:
template<class... Args1, class... Args2> pair(piecewise_construct_t, tuple<Args1...> first_args, tuple<Args2...> second_args);7 Requires: is_constructible<first_type, Args1...>::value is true and is_constructible<second_type, Args2...>::value is true.
All the types in Args1 and Args2 shall be CopyConstructible (Table 35). T1 shall be constructible from Args1. T2 shall be constructible from Args2.8 Effects: The constructor initializes first with arguments of types Args1... obtained by forwarding the elements of first_args and initializes second with arguments of types Args2... obtained by forwarding the elements of second_args.
(Here, forwarding an element x of type U within a tuple object means calling std::forward<U>(x).)This form of construction, whereby constructor arguments for first and second are each provided in a separate tuple object, is called piecewise construction.
Change 20.3.2 [pairs.pair] before 12 as indicated:
pair& operator=(pair&& p);Requires: first_type and second_type shall satisfy the MoveAssignable requirements.
12 Effects: Assigns to first with std::move(p.first) and to second with std::move(p.second).
13 Returns: *this.
Change [pairs.pair] before 14 as indicated: [The heterogeneous usage of MoveAssignable is actually not defined, but the library uses it at several places, so we follow this tradition until a better term has been agreed on. One alternative could be to write "first_type shall be assignable from an rvalue of U [..]"]
template<class U, class V> pair& operator=(pair<U, V>&& p);Requires: first_type shall be MoveAssignable from U and second_type shall be MoveAssignable from V.
14 Effects: Assigns to first with std::move(p.first) and to second with std::move(p.second).
15 Returns: *this.
Change 20.4.2.1 [tuple.cnstr]/4+5 as indicated:
explicit tuple(const Types&...);4 Requires: is_constructible<Ti, const Ti&>::value == true for e
Each type Ti in Typesshall be copy constructible.5 Effects:
Copy iInitializes each element with the value of the corresponding parameter.
Change 20.4.2.1 [tuple.cnstr]/6 as indicated:
template <class... UTypes> explicit tuple(UTypes&&... u);6 Requires: is_constructible<Ti, Ui>::value == true for e
Each type Ti in Typesshall satisfy the requirements of MoveConstructible (Table 33) fromand for the corresponding type Ui in UTypes. sizeof...(Types) == sizeof...(UTypes).7 Effects: Initializes the elements in the tuple with the corresponding value in std::forward<UTypes>(u).
Change 20.4.2.1 [tuple.cnstr]/8+9 as indicated:
tuple(const tuple& u) = default;8 Requires: is_constructible<Ti, const Ti&>::value == true for e
Each type Ti in Typesshall satisfy the requirements of CopyConstructible(Table 34).9 Effects: Initializes
Copy constructseach element of *this with the corresponding element of u.
Change 20.4.2.1 [tuple.cnstr]/10+11 as indicated:
tuple(tuple&& u);10 Requires: Let i be in [0, sizeof...(Types)) and let Ti be the ith type in Types. Then is_constructible<Ti, Ti>::value shall be true for all i.
Each type in Types shall shall satisfy the requirements of MoveConstructible (Table 34).11 Effects: For each Ti in Types, initializes the ith
Move-constructs eachelement of *this withthe corresponding element ofstd::forward<Ti>(get<i>(u)).
Change 20.4.2.1 [tuple.cnstr]/15+16 as indicated:
template <class... UTypes> tuple(tuple<UTypes...>&& u);15 Requires: Let i be in [0, sizeof...(Types)), Ti be the ith type in Types, and Ui be the ith type in UTypes. Then is_constructible<Ti, Ui>::value shall be true for all i.
Each type in Types shall shall satisfy the requirements of MoveConstructible (Table 34) from the corresponding type in UTypes. sizeof...(Types) == sizeof...(UTypes).16 Effects: For each type Ti, initializes the ith
Move-constructs eachelement of *this withthe corresponding element ofstd::forward<Ui>(get<i>(u)).
Change 20.4.2.1 [tuple.cnstr]/19+20 as indicated:
template <class U1, class U2> tuple(pair<U1, U2>&& u);19 Requires: is_constructible<T1, U1>::value == true for t
The first type T1 in Typesshall shall satisfy the requirements of MoveConstructible(Table 33) from U1and is_constructible<T2, U2>::value == true for the second type T2 in Typesshall be move-constructible from U2. sizeof...(Types) == 2.20 Effects: Initializes
Constructsthe first element with std::forward<U1>move(u.first) and the second element with std::forward<U2>move(u.second).
Change 20.4.2.4 [tuple.creation]/9-16 as indicated:
template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(const tuple<TTypes...>& t, const tuple<UTypes...>& u);9 Requires: is_constructible<Ti, const Ti&>::value == true for each type Ti
All the typesin TTypesshall be CopyConstructible (Table 34). is_constructible<Ui, const Ui&>::value == true for each type UiAll the typesin UTypesshall be CopyConstructible (Table 34).10 Returns: A tuple object constructed by initializing
copy constructingits first sizeof...(TTypes) elements from the corresponding elements of t and initializingcopy constructingits last sizeof...(UTypes) elements from the corresponding elements of u.template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(tuple<TTypes...>&& t, const tuple<UTypes...>& u);11 Requires: Let i be in [0, sizeof...(TTypes)), Ti be the ith type in Types, j be in [0, sizeof...(UTypes)), and Uj be the jth type in UTypes. is_constructible<Ti, Ti>::value shall be true for each type Ti and is_constructible<Uj, const Uj&>::value shall be true for each type Uj
All the types in TTypes shall be MoveConstructible (Table 34). All the types in UTypes shall be CopyConstructible (Table 35).12 Returns: A tuple object constructed by initializing the ith element with std::forward<Ti>(get<i>(t)) for all Ti in TTypes and initializing the (j+sizeof...(TTypes))th element with get<j>(u) for all Uj in UTypes.
move constructing its first sizeof...(TTypes) elements from the corresponding elements of t and copy constructing its last sizeof...(UTypes) elements from the corresponding elements of u.template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(const tuple<TTypes...>& t, tuple<UTypes...>&& u);13 Requires: Let i be in [0, sizeof...(TTypes)), Ti be the ith type in Types, j be in [0, sizeof...(UTypes)), and Uj be the jth type in UTypes. is_constructible<Ti, const Ti&>::value shall be true for each type Ti and is_constructible<Uj, Uj>::value shall be true for each type Uj
All the types in TTypes shall be CopyConstructible (Table 35). All the types in UTypes shall be MoveConstructible (Table 34).14 Returns: A tuple object constructed by initializing the ith element with get<i>(t) for each type Ti and initializing the (j+sizeof...(TTypes))th element with std::forward<Uj>(get<j>(u)) for each type Uj
copy constructing its first sizeof...(TTypes) elements from the corresponding elements of t and move constructing its last sizeof...(UTypes) elements from the corresponding elements of u.template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(tuple<TTypes...>&& t, tuple<UTypes...>&& u);15 Requires: Let i be in [0, sizeof...(TTypes)), Ti be the ith type in Types, j be in [0, sizeof...(UTypes)), and Uj be the jth type in UTypes. is_constructible<Ti, Ti>::value shall be true for each type Ti and is_constructible<Uj, Uj>::value shall be true for each type Uj
All the types in TTypes shall be MoveConstructible (Table 34). All the types in UTypes shall be MoveConstructible (Table 34).16 Returns: A tuple object constructed by initializing the ith element with std::forward<Ti>(get<i>(t)) for each type Ti and initializing the (j+sizeof...(TTypes))th element with std::forward<Uj>(get<j>(u)) for each type Uj
move constructing its first sizeof...(TTypes) elements from the corresponding elements of t and move constructing its last sizeof...(UTypes) elements from the corresponding elements of u.
[ 2010-10-24 Daniel adds: ]
Accepting n3140 would solve this issue.
Proposed resolution:
See n3140.
Section: 26.8 [c.math] Status: Resolved Submitter: Michael Wong Opened: 2010-03-07 Last modified: 2015-04-08
View other active issues in [c.math].
View all other issues in [c.math].
View all issues with Resolved status.
Discussion:
In 26.8 [c.math]p12 The templates defined in <cmath> replace the C99 macros with the same names. The templates have the following declarations:
namespace std { template <class T> bool signbit(T x); template <class T> int fpclassify(T x); template <class T> bool isfinite(T x); template <class T> bool isinf(T x); template <class T> bool isnan(T x); template <class T> bool isnormal(T x); template <class T> bool isgreater(T x, T y); template <class T> bool isgreaterequal(T x, T y); template <class T> bool isless(T x, T y); template <class T> bool islessequal(T x, T y); template <class T> bool islessgreater(T x, T y); template <class T> bool isunordered(T x, T y); }
and p13:
13 The templates behave the same as the C99 macros with corresponding names defined in C99 7.12.3, Classification macros, and C99 7.12.14, Comparison macros in the C standard.
The C Std versions look like this:
7.12.14.1/p1:
Synopsis
1 #include <math.h>
int isgreaterequal(real-floating x, real-floating y);
which is not necessarily the same types as is required by C++ since the two parameters may be different. Would it not be better if it were truly aligned with C?
[ 2010 Pittsburgh: Bill to ask WG-14 if heterogeneous support for the two-parameter macros is intended. ]
[ 2010-09-13 Daniel comments: ]
I recommend to resolve this issue as NAD Editorial because the accepted resolution for NB comment US-136 by motion 27 does address this.
[ 2010-09-14 Bill comments: ]
Motion 27 directly addresses LWG 1327 and solves the problem presented there. Moreover, the solution has been aired before WG14 with no dissent. These functions now behave the same for mixed-mode calls in both C and C++
Proposed resolution:
Apply proposed resolution for US-136
Section: 27.7.2.1.3 [istream::sentry] Status: Resolved Submitter: Paolo Carlini Opened: 2010-02-17 Last modified: 2015-04-08
View all other issues in [istream::sentry].
View all issues with Resolved status.
Discussion:
Basing on the recent discussion on the library reflector, see c++std-lib-27728 and follow ups, I hereby formally ask for LWG 419 to be re-opened, the rationale being that according to the current specifications, per n3000, it seems actually impossible to seek away from end of file, contrary to the rationale which led 342 to its closure as NAD. My request is also supported by Martin Sebor, and I'd like also to add, as tentative proposed resolution for the re-opened issue, the wording suggested by Sebor, thus, change the beginning of 27.7.2.1.3 [istream::sentry]/2, to:
2 Effects: If (!noskipws && !is.good()) is
falsetrue, calls is.setstate(failbit). Otherwise prepares for formatted or unformatted input. ...
[ 2010-10 Batavia ]
Resolved by adopting n3168.
Previous proposed resolution:
Change 27.7.2.1.3 [istream::sentry] p.2:2 Effects: If (!noskipws && !is.good()) is
falsetrue, calls is.setstate(failbit). Otherwise prepares for formatted or unformatted input. ...
Proposed resolution:
Addressed by paper n3168.
vector<bool>
Section: 23.2.2 [container.requirements.dataraces] Status: Resolved Submitter: Jeffrey Yaskin Opened: 2010-03-09 Last modified: 2015-04-08
View all other issues in [container.requirements.dataraces].
View all issues with Resolved status.
Discussion:
The common implementation of vector<bool> is as an unsynchronized bitfield. The addition of 23.2.2 [container.requirements.dataraces]/2 would require either a change in representation or a change in access synchronization, both of which are undesireable with respect to compatibility and performance.
[
2010 Pittsburgh: Moved to NAD EditorialResolved. Rationale added below.
]
Rationale:
Solved by N3069.
Proposed resolution:
Container data races 23.2.2 [container.requirements.dataraces]
Paragraph 1 is unchanged as follows:
1 For purposes of avoiding data races (17.6.4.8), implementations shall consider the following functions to be
const
:begin
,end
,rbegin
,rend
,front
,back
,data
,find
,lower_bound
,upper_bound
,equal_range
, and, except in associative containers,operator[]
.
Edit paragraph 2 as follows:
2 Notwithstanding (17.6.4.8), implementations are required to avoid data races when the contents of the contained object in different elements in the same sequence, excepting
vector<bool>
, are modified concurrently.
Edit paragraph 3 as follows:
3 [Note: For a
vector<int> x
with a size greater than one,x[1] = 5
and*x.begin() = 10
can be executed concurrently without a data race, butx[0] = 5
and*x.begin() = 10
executed concurrently may result in a data race. As an exception to the general rule, for avector<bool> y
,y[i] = true
may race withy[j] = true
. —end note]
Section: 17.6.3.4 [hash.requirements] Status: C++11 Submitter: Daniel Krügler Opened: 2010-03-26 Last modified: 2015-04-08
View all other issues in [hash.requirements].
View all issues with C++11 status.
Discussion:
The currently added Hash requirements demand in Table 40 — Hash requirements [hash]:
Table 40 — Hash requirements [hash] Expression Return type Requirement h(k) size_t Shall not throw exceptions. [..]
While it surely is a generally accepted idea that hash function objects should not throw exceptions, this basic constraint for such a fundamental requirement set does neither match the current library policy nor real world cases:
The new definition goes beyond the original hash requirements as specified by SGI library in regard to the exception requirement:
Even though the majority of all known move, swap, and hash functions won't throw and in some cases must not throw, it seems like unnecessary over-constraining the definition of a Hash functor not to propagate exceptions in any case and it contradicts the general principle of C++ to impose such a requirement for this kind of fundamental requirement.
[ 2010-11-11 Daniel asks the working group whether they would prefer a replacement for the second bullet of the proposed resolution (a result of discussing this with Alberto) of the form: ]
Add to 20.9.13 [unord.hash]/1 a new bullet:
1 The unordered associative containers defined in Clause 23.5 use specializations of the class template hash as the default hash function. For all object types Key for which there exists a specialization hash<Key>, the instantiation hash<Key> shall:
- satisfy the Hash requirements (20.2.4), with Key as the function call argument type, the DefaultConstructible requirements (33), the CopyAssignable requirements (37),
- be swappable (20.2.2) for lvalues,
- provide two nested types result_type and argument_type which shall be synonyms for size_t and Key, respectively,
- satisfy the requirement that if k1 == k2 is true, h(k1) == h(k2) is also true, where h is an object of type hash<Key> and k1 and k2 are objects of type Key,
.- satisfy the requirement noexcept(h(k)) == true, where h is an object of type hash<Key> and k is an object of type Key, unless hash<Key> is a user-defined specialization that depends on at least one user-defined type.
[Batavia: Closed as NAD Future, then reopened. See the wiki for Tuesday.]
Proposed resolution:
Change Table 26 — Hash requirements [tab:hash] as indicated:
Table 26 — Hash requirements [tab:hash] Expression Return type Requirement h(k) size_t Shall not throw exceptions.[…]
Add to 20.9.13 [unord.hash] p. 1 a new bullet:
1 The unordered associative containers defined in Clause 23.5 [unord] use specializations of the class template hash as the default hash function. For all object types Key for which there exists a specialization hash<Key>, the instantiation hash<Key> shall:
- satisfy the Hash requirements ([hash.requirements]), with Key as the function call argument type, the DefaultConstructible requirements (Table [defaultconstructible]), the CopyAssignable requirements (Table [copyassignable]),
- be swappable ([swappable.requirements]) for lvalues,
- provide two nested types result_type and argument_type which shall be synonyms for size_t and Key, respectively,
- satisfy the requirement that if k1 == k2 is true, h(k1) == h(k2) is also true, where h is an object of type hash<Key> and k1 and k2 are objects of type Key,
.- satisfy the requirement that the expression h(k), where h is an object of type hash<Key> and k is an object of type Key, shall not throw an exception, unless hash<Key> is a user-defined specialization that depends on at least one user-defined type.
Section: 20.9.12.2.4 [func.wrap.func.inv] Status: C++11 Submitter: Daniel Krügler Opened: 2010-03-26 Last modified: 2015-04-08
View all other issues in [func.wrap.func.inv].
View all issues with C++11 status.
Discussion:
The current wording of 20.9.12.2.4 [func.wrap.func.inv]/1:
R operator()(ArgTypes... args) constEffects: INVOKE(f, t1, t2, ..., tN, R) (20.8.2), where f is the target object (20.8.1) of *this and t1, t2, ..., tN are the values in args....
uses an unclear relation between the actual args and the used variables ti. It should be made clear, that std::forward has to be used to conserve the expression lvalueness.
[ Post-Rapperswil: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 20.9.12.2.4 [func.wrap.func.inv]/1+2 as indicated:
R operator()(ArgTypes... args) const1 Effects:: INVOKE(f, std::forward<ArgTypes>(args)...
t1, t2, ..., tN, R) (20.8.2), where f is the target object (20.8.1) of *thisand t1, t2, ..., tN are the values in args....2 Returns: Nothing if R is void, otherwise the return value of INVOKE(f, std::forward<ArgTypes>(args)...
t1, t2, ..., tN, R).3 Throws: bad_function_call if !*this; otherwise, any exception thrown by the wrapped callable object.
Section: 24.5.2.2.2 [back.insert.iter.op=], 24.5.2.4.2 [front.insert.iter.op=], X [insert.insert.iter.op=] Status: C++11 Submitter: Daniel Krügler Opened: 2010-03-28 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
In C++03 this was valid code:
#include <vector> #include <iterator> int main() { typedef std::vector<bool> Cont; Cont c; std::back_insert_iterator<Cont> it = std::back_inserter(c); *it = true; }
In C++0x this code does no longer compile because of an ambiguity error for this operator= overload pair:
back_insert_iterator<Container>& operator=(typename Container::const_reference value); back_insert_iterator<Container>& operator=(typename Container::value_type&& value);
This is so, because for proxy-containers like std::vector<bool> the const_reference usually is a non-reference type and in this case it's identical to Container::value_type, thus forming the ambiguous overload pair
back_insert_iterator<Container>& operator=(bool value); back_insert_iterator<Container>& operator=(bool&& value);
The same problem exists for std::back_insert_iterator, std::front_insert_iterator, and std::insert_iterator.
One possible fix would be to require that const_reference of a proxy container must not be the same as the value_type, but this would break earlier valid code. The alternative would be to change the first signature to
back_insert_iterator<Container>& operator=(const typename Container::const_reference& value);
This would have the effect that this signature always expects an lvalue or rvalue, but it would not create an ambiguity relative to the second form with rvalue-references. [For all non-proxy containers the signature will be the same as before due to reference-collapsing and const folding rules]
[ Post-Rapperswil ]
This problem is not restricted to the unspeakable vector<bool>, but is already existing for other proxy containers like gcc's rope class. The following code does no longer work ([Bug libstdc++/44963]):
#include <iostream> #include <ext/rope> using namespace std; int main() { __gnu_cxx::crope line("test"); auto ii(back_inserter(line)); *ii++ = 'm'; // #1 *ii++ = 'e'; // #2 cout << line << endl; }
Both lines marked with #1 and #2 issue now an error because the library has properly implemented the current wording state (Thanks to Paolo Calini for making me aware of this real-life example).
The following P/R is a revision of the orignal P/R and was initially suggested by Howard Hinnant. Paolo verified that the approach works in gcc.
Moved to Tentatively Ready with revised wording after 6 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
The wording refers to N3126.
template <class Container> class back_insert_iterator : public iterator<output_iterator_tag,void,void,void,void> { protected: Container* container; public: [..] back_insert_iterator<Container>& operator=(const typename Container::const_referencevalue_type& value); back_insert_iterator<Container>& operator=(typename Container::value_type&& value); [..] };
back_insert_iterator<Container>& operator=(const typename Container::const_referencevalue_type& value);1 Effects: container->push_back(value);
2 Returns: *this.
template <class Container> class front_insert_iterator : public iterator<output_iterator_tag,void,void,void,void> { protected: Container* container; public: [..] front_insert_iterator<Container>& operator=(const typename Container::const_referencevalue_type& value); front_insert_iterator<Container>& operator=(typename Container::value_type&& value); [..] };
front_insert_iterator<Container>& operator=(const typename Container::const_referencevalue_type& value);1 Effects: container->push_front(value);
2 Returns: *this.
template <class Container> class insert_iterator : public iterator<output_iterator_tag,void,void,void,void> { protected: Container* container; typename Container::iterator iter; public: [..] insert_iterator<Container>& operator=(const typename Container::const_referencevalue_type& value); insert_iterator<Container>& operator=(typename Container::value_type&& value); [..] };
insert_iterator<Container>& operator=(const typename Container::const_referencevalue_type& value);1 Effects:
iter = container->insert(iter, value); ++iter;2 Returns: *this.
Section: 20.4.2.7 [tuple.rel] Status: C++11 Submitter: Joe Gottman Opened: 2010-05-15 Last modified: 2015-04-08
View other active issues in [tuple.rel].
View all other issues in [tuple.rel].
View all issues with C++11 status.
Discussion:
The requirements section for std::tuple says the following:
Requires: For all i, where 0 <= i and i < sizeof...(Types), get<i>(t) < get<i>(u) is a valid expression returning a type that is convertible to bool. sizeof...(TTypes) == sizeof...(UTypes).
This is necessary but not sufficient, as the algorithm for comparing tuples also computes get<i>(u) < get<i>(t) (note the order)
[ Post-Rapperswil ]
Moved to Tentatively Ready with updated wording correcting change-bars after 6 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
template<class... TTypes, class... UTypes> bool operator<(const tuple<TTypes...>& t, const tuple<UTypes...>& u);Requires: For all i, where 0 <= i and i < sizeof...(Types), get<i>(t) < get<i>(u) and get<i>(u) < get<i>(t)
is a valid expression returning a type that isare valid expressions returning types that are convertible to bool. sizeof...(TTypes) == sizeof...(UTypes).
Section: 28.7 [re.traits] Status: C++11 Submitter: Howard Hinnant Opened: 2010-06-21 Last modified: 2015-04-08
View all other issues in [re.traits].
View all issues with C++11 status.
Discussion:
28.7 [re.traits]/12 describes regex_traits::isctype in terms of ctype::is(c, m), where c is a charT and m is a ctype_base::mask. Unfortunately 22.4.1.1.1 [locale.ctype.members] specifies this function as ctype::is(m, c)
[ Post-Rapperswil: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 28.7 [re.traits] p.12:
bool isctype(charT c, char_class_type f) const;11 ...
12 Returns: Converts f into a value m of type std::ctype_base::mask in an unspecified manner, and returns true if use_facet<ctype<charT> >(getloc()).is(
cm,mc) is true. Otherwise returns true if f bitwise or'ed with the result of calling lookup_classname with an iterator pair that designates the character sequence "w" is not equal to 0 and c == '_', or if f bitwise or'ed with the result of calling lookup_classname with an iterator pair that designates the character sequence "blank" is not equal to 0 and c is one of an implementation-defined subset of the characters for which isspace(c, getloc()) returns true, otherwise returns false.
Section: 25.2.13 [alg.search] Status: C++11 Submitter: Howard Hinnant Opened: 2010-06-25 Last modified: 2015-04-08
View all other issues in [alg.search].
View all issues with C++11 status.
Discussion:
LWG 1205 (currently in WP) clarified the return value of several algorithms when dealing with empty ranges. In particular it recommended for 25.2.13 [alg.search]:
template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);1 Effects: ...
2 Returns: ... Returns last1 if no such iterator is found.
3 Remarks: Returns first1 if [first2,last2) is empty.
Unfortunately this got translated to an incorrect specification for what gets returned when no such iterator is found (N3092):
template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);1 Effects: ...
2 Returns: ... Returns first1 if [first2,last2) is empty or if no such iterator is found.
LWG 1205 is correct and N3092 is not equivalent nor correct.
I have not reviewed the other 10 recommendations of 1205.
[ Post-Rapperswil ]
It was verified that none of the remaining possibly affected algorithms does have any similar problems and a concrete P/R was added that used a similar style as has been applied to the other cases.
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);1 - [...]
2 - Returns: The first iterator i in the range [first1,last1 - (last2-first2)) such that for any nonnegative integer n less than last2 - first2 the following corresponding conditions hold: *(i + n) == *(first2 + n), pred(*(i + n), *(first2 + n)) != false. Returns first1 if [first2,last2) is emptyor, otherwise returns last1 if no such iterator is found.
Section: 20.7.12.4 [uninitialized.fill.n] Status: C++11 Submitter: Jared Hoberock Opened: 2010-07-14 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
N3092's specification of uninitialized_fill_n discards useful information and is inconsistent with other algorithms such as fill_n which accept an iterator and a size. As currently specified, unintialized_fill_n requires an additional linear traversal to find the end of the range.
Instead of returning void, unintialized_fill_n should return one past the last iterator it dereferenced.
[ Post-Rapperswil: ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
In section 20.7 [memory] change:,
template <class ForwardIterator, class Size, class T>voidForwardIterator uninitialized_fill_n(ForwardIterator first, Size n, const T& x);
In section 20.7.12.4 [uninitialized.fill.n] change,
template <class ForwardIterator, class Size, class T>voidForwardIterator uninitialized_fill_n(ForwardIterator first, Size n, const T& x);1 Effects:
for (; n--; ++first) ::new (static_cast<void*>(&*first)) typename iterator_traits<ForwardIterator>::value_type(x); return first;
Section: 23.3.4.5 [forwardlist.modifiers] Status: C++11 Submitter: James McNellis Opened: 2010-07-16 Last modified: 2015-04-08
View all other issues in [forwardlist.modifiers].
View all issues with C++11 status.
Discussion:
In N3092 23.3.4.5 [forwardlist.modifiers], the resize() member function is declared as:
void resize(size_type sz, value_type c);
The other sequence containers (list, deque, and vector) take 'c' by const reference.
Is there a reason for this difference? If not, then resize() should be declared as:
void resize(size_type sz, const value_type& c);
The declaration would need to be changed both at its declaration in the class definition at 23.3.4 [forwardlist]/3 and where its behavior is specified at 23.3.4.5 [forwardlist.modifiers]/22.
This would make forward_list consistent with the CD1 issue 679.
[ Post-Rapperswil ]
Daniel changed the P/R slightly, because one paragraph number has been changed since the issue had been submitted. He also added a similar Requires element that exists in all other containers with a resize member function. He deliberately did not touch the wrong usage of "default-constructed" because that will be taken care of by LWG issue 868.
Moved to Tentatively Ready with revised wording after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
... void resize(size_type sz); void resize(size_type sz, const value_type& c); void clear(); ...
void resize(size_type sz); void resize(size_type sz, const value_type& c);27 Effects: If sz < distance(begin(), end()), erases the last distance(begin(), end()) - sz elements from the list. Otherwise, inserts sz - distance(begin(), end()) elements at the end of the list. For the first signature the inserted elements are default constructed, and for the second signature they are copies of c.
28 - Requires: T shall be DefaultConstructible for the first form and it shall be CopyConstructible for the second form.
Section: 17 [library] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with Resolved status.
Duplicate of: 1351
Discussion:
Addresses GB-60, CH-16
Dynamic exception specifications are deprecated; the library should recognise this by replacing all non-throwing exception specifications of the form throw() with the noexcept form.
[ Resolution proposed by ballot comment: ]
Replace all non-throwing exception specifications of the form 'throw()' with the 'noexcept' form.
[ 2010-10-31 Daniel comments: ]
The proposed resolution of n3148 would satisfy this request.
[ 2010-Batavia: ]
Resolved by adopting n3148.
Proposed resolution:
See n3148 See n3150 See n3195 See n3155 See n3156
Section: 17 [library] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with Resolved status.
Discussion:
Addresses GB-61
All library types should have non-throwing move constructors and move-assignment operators unless wrapping a type with a potentially throwing move operation. When such a type is a class-template, these operations should have a conditional noexcept specification.
There are many other places where a noexcept specification may be considered, but the move operations are a special case that must be called out, to effectively support the move_if_noexcept function template.
[ Resolution proposed by ballot comment: ]
Review every class and class template in the library. If noexcept move constructor/assignment operators can be implicitly declared, then they should be implicitly declared, or explicitly defaulted. Otherwise, a move constructor/move assignment operator with a noexcept exception specification should be provided.
[ 2010-10-31 Daniel comments: ]
The proposed resolution of n3157 would satisfy this request.
[2011-03-24 Madrid meeting]
Resolved by papers to be listed later
Proposed resolution:
See n3157
Section: 17 [library] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with Resolved status.
Duplicate of: 1352
Discussion:
Addresses GB-62, CH-17
Issues with efficiency and unsatisfactory semantics mean many library functions document they do not throw exceptions with a Throws: Nothing clause, but do not advertise it with an exception specification. The semantic issues are largely resolved with the new 'noexcept' specifications, and the noexcept operator means we will want to detect these guarantees programatically in order to construct programs taking advantage of the guarantee.
[ Resolution proposed by ballot comment: ]
Add a noexcept exception specification on each libary API that offers an unconditional Throws: Nothing guarantee. Where the guarantee is conditional, add the appropriate noexcept(constant-expression) if an appropriate constant expression exists.
[ 2010-10-31 Daniel comments: ]
The proposed resolution of n3149 would satisfy this request.
[ 2010-Batavia: ]
Resolved by adopting n3149.
Proposed resolution:
This issue is resolved by the adoption of n3195
Section: 17 [library] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with Resolved status.
Discussion:
Addresses GB-63, US-80
Since the newly introduced operator noexcept makes it easy (easier than previously) to detect whether or not a function has been declared with the empty exception specification (including noexcept) library functions that cannot throw should be decorated with the empty exception specification. Failing to do so and leaving it as a matter of QoI would be detrimental to portability and efficiency.
[ Resolution proposed by ballot comment ]
Review the whole library, and apply the noexcept specification where it is appropriate.
[ 2010-10-31 Daniel comments: ]
The proposed resolution of the combination of n3155, n3156, n3157, n3167 would satisfy this request. The paper n3150 is related to this as well.
[ 2010 Batavia: ]
While the LWG expects to see further papers in this area, sufficient action was taken in Batavia to close the issue as Resolved by the listed papers.
Proposed resolution:
See n3155, n3156, n3157, n3167 and remotely n3150
Section: 17 [library] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with C++11 status.
Discussion:
Addresses GB-65
Nothrowing swap operations are key to many C++ idioms, notably the common copy/swap idiom to provide the strong exception safety guarantee.
[ Resolution proposed by ballot comment ]
Where possible, all library types should provide a swap operation with an exception specification guaranteeing no exception shall propagate. Where noexcept(true) cannot be guaranteed to not terminate the program, and the swap in questions is a template, an exception specification with the appropriate conditional expression could be specified.
[2011-03-13: Daniel comments and drafts wording]
During a survey of the library some main categories for potential noexcept swap function could be isolated:
Negative list:
While evaluating the current state of swap functions of library components it was observed that several conditional noexcept functions have turned into unconditional ones, e.g. in the header <utility> synopsis:
template<class T> void swap(T& a, T& b) noexcept;
The suggested resolution shown below also attempts to fix these cases.
[2011-03-22 Daniel redrafts to satisfy new criteria for applying noexcept. Parts resolved by N3263-v2 and D3267 are not added here.]
Proposed resolution:
Edit 20.2 [utility] p. 2, header <utility> synopsis and 20.2.2 [utility.swap] before p. 1, as indicated (The intent is to fix an editorial omission):
template<class T> void swap(T& a, T& b) noexcept(see below);
Edit the prototype declaration in 20.3.2 [pairs.pair] before p. 34 as indicated (The intent is to fix an editorial omission):
void swap(pair& p) noexcept(see below);
Edit 20.4.1 [tuple.general] p. 2 header <tuple> synopsis and 20.4.2.9 [tuple.special] before p. 1 as indicated (The intent is to fix an editorial omission):
template <class... Types> void swap(tuple<Types...>& x, tuple<Types...>& y) noexcept(see below);
Edit 20.4.2 [tuple.tuple], class template tuple synopsis and 20.4.2.3 [tuple.swap] before p. 1 as indicated (The intent is to fix an editorial omission):
void swap(tuple&) noexcept(see below);
Edit 20.7.2 [memory.syn] p. 1, header <memory> synopsis as indicated (The intent is to fix an editorial omission of the proposing paper N3195).
template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept;
Edit header <valarray> synopsis, 26.6.1 [valarray.syn] and 26.6.3.4 [valarray.special] before p. 1 as indicated [Drafting comment: The corresponding member swap is already noexcept]:
template<class T> void swap(valarray<T>&, valarray<T>&) noexcept;
Section: 17 [library] Status: Resolved Submitter: Switzerland Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [library].
View all other issues in [library].
View all issues with Resolved status.
Discussion:
Addresses CH-18
The general approach on moving is that a library object after moving out is in a "valid but unspecified state". But this is stated at the single object specifications, which is error prone (especially if the move operations are implicit) and unnecessary duplication.
[ Resolution proposed by ballot comment ]
Consider putting a general statement to the same effect into clause 17.
[2010-11-05 Beman provides exact wording. The wording was inspired by Dave Abrahams' message c++std-lib-28958, and refined with help from Alisdair, Daniel, and Howard. ]
[2011-02-25 P/R wording superseded by N3241. ]
Proposed resolution:
Resolved by N3241
Section: 17.3 [defns.deadlock] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses GB-52
The definition of deadlock in 17.3.7 excludes cases involving a single thread making it incorrect.
[ Resolution proposed by ballot comment ]
The definition should be corrected.
[ 2010 Batavia Concurrency group provides a Proposed Resolution ]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 17.3 [defns.deadlock] as indicated:
deadlock
twoone or more threads are unable to continue execution because each is blocked waiting for one or more of the others to satisfy some condition.
Section: X [defns.move.assign.op] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses GB-50
This definition of move-assignment operator is redundant and confusing now that the term move-assignment operator is defined by the core language in subclause 12.8p21.
[ 2010-10-24 Daniel adds: ]
Accepting n3142 provides a superior resolution.
[ Resolution proposed by ballot comment ]
Strike subclause X [defns.move.assign.op]. Add a cross-reference to (12.8) to 17.3.12.
Proposed resolution:
Resolved by paper n3142.
Section: X [defns.move.ctor] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses GB-51
This definition of move-constructor is redundant and confusing now that the term constructor is defined by the core language in subclause 12.8p3.
[ 2010-10-24 Daniel adds: ]
Accepting n3142 provides a superior resolution.
[ 2010 Batavia: resolved as NAD Editorial by adopting paper n3142. ]
Original proposed resolution preserved for reference:
Strike subclause 17.3.14, [defns.move.ctor]
17.3.14 [defns.move.ctor]
move constructor a constructor which accepts only an rvalue argument of the type being constructed and might modify the argument as a side effect during construction.
Proposed resolution:
Resolved by paper n3142.
Section: 17.5.2.1.3 [bitmask.types] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [bitmask.types].
View all issues with Resolved status.
Discussion:
Addresses GB-53
The bitmask types defined in 27.5.2 and 28.5 contradict the bitmask type requirements in 17.5.2.1.3, and have missing or incorrectly defined operators.
[ Resolution proposed by ballot comment ]
See Appendix 1 - Additional Details
[ 2010 - Rapperswil ]
The paper n3110 was made available during the meeting to resolve this comment, but withdrawn from formal motions to give others time to review the document. There was no technical objection, and it is expected that this paper will go forward at the next meeting.
Proposed resolution:
See n3110.
Section: 17.6.1.3 [compliance] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [compliance].
View all issues with C++11 status.
Discussion:
Addresses GB-57
The atomic operations facility is closely tied to clause 1 and the memory model. It is not easily supplied as an after-market extension, and should be trivial to implement of a single-threaded serial machine. The consequence of not having this facility will be poor interoperability with future C++ libraries that memory model concerns seriously, and attempt to treat them in a portable way.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add <atomic> to table 15, headers required for a free-standing implementation.
Section: 17.6.4.9 [res.on.arguments] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [res.on.arguments].
View all issues with C++11 status.
Discussion:
Addresses US-82
17.6.4.9 [res.on.arguments] p.1. b.3: The second Note can benefit by adopting recent nomenclature.
[ Resolution proposed by the ballot comment: ]
Rephrase the Note in terms of xvalue.
[ Pre-Batavia: ]
Walter Brown provides wording.
[Batavia: Immediate]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Amend the note in 17.6.3.9 [res.on.arguments] p1 bullet 3.
[ Note: If a program casts an lvalue to an
rvaluexvalue while passing that lvalue to a library function (e.g. by calling the function with the argument move(x)), the program is effectively asking that function to treat that lvalue as a temporary. The implementation is free to optimize away aliasing checks which might be needed if the argument was anlvalue. — end note]
Section: 18.2 [support.types] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [support.types].
View all issues with C++11 status.
Discussion:
Addresses GB-68
There is no reason for the offsetof macro to invoke potentially throwing operations, so the result of noexcept(offsetof(type,member-designator)) should be true.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add to the end of 18.2p4:
No operation invoked by the offsetof macro shall throw an exception, and noexcept(offsetof(type,member-designator)) shall be true.
Section: 18.8.5 [propagation] Status: Resolved Submitter: Switzerland Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [propagation].
View all issues with Resolved status.
Discussion:
Addresses CH-19
It is not clear how exception_ptr is synchronized.
[ Resolution proposed by ballot comment ]
Make clear that accessing in different threads multiple exception_ptr objects that all refer to the same exception introduce a race.
[2011-03-08: Lawrence comments and drafts wording]
I think fundamentally, this issue is NAD, but clarification would not hurt.
Proposed resolution
Add a new paragraph to 18.8.5 [propagation] after paragraph 6 as follows:
[Note: Exception objects have no synchronization requirements, and expressions using them may conflict (1.10 [intro.multithread]). — end note]
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: 18.6.2 [alloc.errors] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses GB-71
The thread safety of std::set_new_handler(), std::set_unexpected(), std::set_terminate(), is unspecified making the the functions impossible to use in a thread safe manner.
[ Resolution proposed by ballot comment: ]
The thread safety guarantees for the functions must be specified and new interfaces should be provided to make it possible to query and install handlers in a thread safe way.
[ 2010-10-31 Daniel comments: ]
The proposed resolution of n3122 partially addresses this request. This issue is related to 1366.
[ 2010-Batavia: ]
Resolved by adopting n3189.
Proposed resolution:
Resolved in Batavia by accepting n3189.
Section: 18.6.1.4 [new.delete.dataraces] Status: Resolved Submitter: DIN Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [new.delete.dataraces].
View all issues with Resolved status.
Discussion:
Addresses DE-14
It is unclear how a user replacement function can simultaneously satisfy the race-free conditions imposed in this clause and query the new-handler in case of a failed allocation with the only available, mutating interface std::set_new_handler.
[ Resolution proposed by ballot comment: ]
Offer a non-mutating interface to query the current new-handler.
[ 2010-10-24 Daniel adds: ]
Accepting n3122 would solve this issue. This issue is related to 1365.
[ 2010-Batavia: ]
Resolved by adopting n3189.
Proposed resolution:
Resolved in Batavia by accepting n3189.
Section: D.8 [exception.unexpected] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses GB-72
Dynamic exception specifications are deprecated, so clause 18.8.2 that describes library support for this facility should move to Annex D, with the exception of the bad_exception class which is retained to indicate other failures in the exception dispatch mechanism (e.g. calling current_exception()).
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
With the exception of 18.8.2.1 [bad.exception], move clause 18.8.2 directly to Annex D. [bad.exception] should simply become the new 18.8.2.
Section: X [uncaught] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses GB-73
The thread safety std::uncaught_exception() and the result of the function when multiple threads throw exceptions at the same time are unspecified. To make the function safe to use in the presence of exceptions in multiple threads the specification needs to be updated.
[ Resolution proposed by ballot comment ]
Update this clause to support safe calls from multiple threads without placing synchronization requirements on the user.
[ 2010 Batavia Concurrency group provides a Proposed Resolution ]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change X [uncaught] p. 1 as follows:
Returns: true after the current thread has initialized initializing
an exception object (15.1) until a handler for the exception (including unexpected() or terminate())
is activated (15.3). [ Note: This includes stack unwinding (15.2). — end note ]
Section: 18.8.6 [except.nested] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [except.nested].
View all other issues in [except.nested].
View all issues with C++11 status.
Discussion:
Addresses US-84
The throw_with_nested specification passes in its argument as T&& (perfect forwarding pattern), but then discusses requirements on T without taking into account that T may be an lvalue-reference type. It is also not clear in the spec that t is intended to be perfectly forwarded.
[ Resolution proposed by ballot comment ]
Patch [except.nested] p6-7 to match the intent with regards to requirements on T and the use of std::forward<T>(t).
[ 2010-10-24 Daniel adds: ]
Accepting n3144 would solve this issue.
[2010-11-10 Batavia: LWG accepts Howard's updated wording with corrected boo boos reported by Sebastian Gesemann and Pete Becker, which is approved for Immediate adoption this meeting.]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 18.8.7 nested_exception [except.nested] as indicated:
[[noreturn]] template <class T> void throw_with_nested(T&& t);Let U be remove_reference<T>::type
6 Requires:
TU shall be CopyConstructible.7 Throws: If
TU is a non-union class type not derived from nested_exception, an exception of unspecified type that is publicly derived from bothTU and nested_exception and constructed from std::forward<T>(t), otherwise throws std::forward<T>(t).
Section: 19.5.1.5 [syserr.errcat.objects] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses GB-76
The C++0x FCD recommends, in a note (see 19.5.1.1/1), that users create a single error_category object for each user defined error category and specifies error_category equality comparsions based on equality of addresses (19.5.1.3). The Draft apparently ignores this when specifying standard error category objects in section 19.5.1.5, by allowing the generic_category() and system_category() functions to return distinct objects for each invocation.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Append a new sentence to 19.5.1.5 [syserr.errcat.objects]/1, and append the same sentence to 19.5.1.5/3.
All calls of this function return references to the same object.
Section: 20.2 [utility] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [utility].
View all other issues in [utility].
View all issues with Resolved status.
Discussion:
Addresses US-90
In n3090, at variance with previous iterations of the idea discussed in papers and incorporated in WDs, std::forward is constrained via std::is_convertible, thus is not robust wrt access control. This causes problems in normal uses as implementation detail of member functions. For example, the following snippet leads to a compile time failure, whereas that was not the case for an implementation along the lines of n2835 (using enable_ifs instead of concepts for the constraining, of course)
#include <utility> struct Base { Base(Base&&); }; struct Derived : private Base { Derived(Derived&& d) : Base(std::forward<Base>(d)) { } };
In other terms, LWG 1054 can be resolved in a better way, the present status is not acceptable.
[ 2010-10-24 Daniel adds: ]
Accepting n3143 would solve this issue.
Proposed resolution:
Resolved as NAD Editorial by paper n3143.
Section: 20.3 [pairs] Status: Resolved Submitter: DIN Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with Resolved status.
Discussion:
Addresses DE-15
Several function templates of pair and tuple allow for too many implicit conversions, for example:
#include <tuple> std::tuple<char*> p(0); // Error? struct A { explicit A(int){} }; A a = 1; // Error std::tuple<A> ta = std::make_tuple(1); // OK?
[ Resolution proposed by ballot comment ]
Consider to add wording to constrain these function templates.
[ 2010-10-24 Daniel adds: ]
Accepting n3140 would solve this issue.
Proposed resolution:
See n3140.
Section: 20.3.2 [pairs.pair] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [pairs.pair].
View all issues with Resolved status.
Discussion:
Addresses US-95
Copy-assignment for pair is defaulted and does not work for pairs with reference members. This is inconsistent with conversion-assignment, which deliberately succeeds even if one or both elements are reference types, just as for tuple. The copy-assignment operator should be consistent with the conversion-assignment operator and with tuple's assignment operators.
[ 2010-10-24 Daniel adds: ]
Accepting n3140 would provide a superior resolution, because pair does not depend on the semantic requirements of CopyAssignable.
[ 2010-11 Batavia ]
Resolved by adopting n3140.
Proposed resolution:
Add to pair synopsis:
pair& operator=(const pair& p);
Add before paragraph 9:
pair& operator=(const pair& p);
Requires: T1 and T2 shall satisfy the requirements of CopyAssignable.
Effects: Assigns p.first to first and p.second to second. Returns: *this.
Section: 20.3 [pairs] Status: Resolved Submitter: DIN Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with Resolved status.
Discussion:
Addresses DE-16
Several pair and tuple functions in regard to move operations are incorrectly specified if the member types are references, because the result of a std::move cannot be assigned to lvalue-references. In this context the usage of the requirement sets MoveConstructible and CopyConstructible also doesn't make sense, because non-const lvalue-references cannot satisfy these requirements.
[ Resolution proposed by ballot comment ]
Replace the usage of std::move by that of std::forward and replace MoveConstructible and CopyConstructible requirements by other requirements.
[ 2010-10-24 Daniel adds: ]
Accepting n3140 would solve this issue.
[ 2010-11 Batavia: ]
Resolved by adopting n3140.
Proposed resolution:
See n3140.
Section: X [pair.range] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses GB-85
While std::pair may happen to hold a pair of iterators forming a valid range, this is more likely a coincidence than a feature guaranteed by the semantics of the pair template. A distinct range-type should be supplied to enable the new for-loop syntax rather than overloading an existing type with a different semantic.
If a replacement facility is required for C++0x, consider n2995.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Strike 20.3.5.4 and the matching declarations in 20.3 header synopsis.
Section: 20.3 [pairs] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with Resolved status.
Discussion:
Addresses US-96
pair and tuple constructors and assignment operators use std::move when they should use std::forward. This causes lvalue references to be erroneously converted to rvalue references. Related requirements clauses are also wrong.
[ Resolution proposed by ballot comment ]
See Appendix 1 - Additional Details
[ 2010-10-24 Daniel adds: ]
Accepting n3140 would solve this issue.
[ 2010-11 Batavia ]
Resolved by adopting n3140.
Proposed resolution:
See n3140.
Section: 20.3 [pairs], 20.4 [tuple] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [pairs].
View all issues with Resolved status.
Discussion:
Addresses US-97
pair's class definition in N3092 20.3.2 [pairs.pair] contains "pair(const pair&) = default;" and "pair& operator=(pair&& p);". The latter is described by 20.3.2 [pairs.pair] p.12-13.
"pair(const pair&) = default;" is a user-declared explicitly defaulted copy constructor. According to 12.8 [class.copy]/10, this inhibits the implicitly-declared move constructor. pair should be move constructible. (12.8 [class.copy]/7 explains that "pair(pair<U, V>&& p)" will never be instantiated to move pair<T1, T2> to pair<T1, T2>.)tuple(const tuple&) = default; tuple(tuple&&); tuple& operator=(const tuple&); tuple& operator=(tuple&&);
They should all be removed or all be explicitly-defaulted, to be consistent with pair. Additionally, 20.4.2.1 [tuple.cnstr]/8-9 specifies the behavior of an explicitly defaulted function, which is currently inconsistent with pair.
[ Resolution proposed by ballot comment: ]
Either remove "pair(const pair&) = default;" and "pair& operator=(pair&& p);" from pair's class definition in 20.3.2 [pairs.pair] and from 20.3.2 [pairs.pair] p.12-13, or give pair explicitly-defaulted copy/move constructors and copy/move assignment operators.
Change tuple to match.
[ 2010-10-24 Daniel adds: ]
Accepting n3140 would solve this issue: The move/copy constructor will be defaulted, but the corresponding assignment operators need a non-default implementation because they are supposed to work for references as well.
Proposed resolution:
See n3140.
Section: 20.4.2.4 [tuple.creation] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [tuple.creation].
View all issues with C++11 status.
Discussion:
Addresses US-98
pack_arguments is poorly named. It does not reflect the fact that it is a tuple creation function and that it forwards arguments.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Rename pack_arguments to forward_as_tuple throughout the standard.
Section: 20.4.2.4 [tuple.creation] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [tuple.creation].
View all issues with C++11 status.
Discussion:
Addresses GB-88
The tuple_cat template consists of four overloads and that can concatenate only two tuples. A single variadic signature that can concatenate an arbitrary number of tuples would be preferred.
[ Resolution proposed by ballot comment: ]
Adopt a simplified form of the proposal in n2975, restricted to tuples and neither requiring nor outlawing support for other tuple-like types.
[ 2010 Rapperswil: Alisdair to provide wording. ]
[ 2010-11-06: Daniel comments and proposes some alternative wording: ]
There are some problems in the wording: First, even though the result type tuple<see below> implies it, the specification of the contained tuple element types is missing. Second, the term "tuple protocol" is not defined anywhere and I see no reason why this normative wording should not be a non-normative note. We could at least give a better approximation, maybe "tuple-like protocol" as indicated from header <utility> synopsis. Further, it seems to me that the effects need to contain a combination of std::forward with the call of get. Finally I suggest to replace the requirements Move/CopyConstructible by proper usage of is_constructible, as indicated by n3140.
[ 2010 Batavia ]
Moved to Ready with Daniel's improved wording.
Proposed resolution:
Note: This alternate proposed resolution works only if 1191 has been accepted.
namespace std { ... // 20.4.2.4, tuple creation functions: const unspecified ignore; template <class... Types> tuple<VTypes...> make_tuple(Types&&...); template <class... Types> tuple<ATypes...> forward_as_tuple(Types&&...); template<class... Types> tuple<Types&...> tie(Types&...);template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(const tuple<TTypes...>&, const tuple<UTypes...>&); template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(tuple<TTypes...>&&, const tuple<UTypes...>&); template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(const tuple<TTypes...>&, tuple<UTypes...>&&); template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(tuple<TTypes...>&&, tuple<UTypes...>&&);template <class... Tuples> tuple<CTypes...> tuple_cat(Tuples&&...); ...
template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(const tuple<TTypes...>& t, const tuple<UTypes...>& u);
8 Requires: All the types in TTypes shall be CopyConstructible (Table 35). All the types in UTypes shall be CopyConstructible (Table 35).
9 Returns: A tuple object constructed by copy constructing its first sizeof...(TTypes) elements from the corresponding elements of t and copy constructing its last sizeof...(UTypes) elements from the corresponding elements of u.template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(tuple<TTypes...>&& t, const tuple<UTypes...>& u);
10 Requires: All the types in TTypes shall be MoveConstructible (Table 34). All the types in UTypes shall be CopyConstructible (Table 35).
11 Returns: A tuple object constructed by move constructing its first sizeof...(TTypes) elements from the corresponding elements of t and copy constructing its last sizeof...(UTypes) elements from the corresponding elements of u.template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(const tuple<TTypes...>& t, tuple<UTypes...>&& u);
12 Requires: All the types in TTypes shall be CopyConstructible (Table 35). All the types in UTypes shall be MoveConstructible (Table 34).
13 Returns: A tuple object constructed by copy constructing its first sizeof...(TTypes) elements from the corresponding elements of t and move constructing its last sizeof...(UTypes) elements from the corresponding elements of u.template <class... TTypes, class... UTypes> tuple<TTypes..., UTypes...> tuple_cat(tuple<TTypes...>&& t, tuple<UTypes...>&& u);
14 Requires: All the types in TTypes shall be MoveConstructible (Table 34). All the types in UTypes shall be MoveConstructible (Table 34).
15 Returns: A tuple object constructed by move constructing its first sizeof...(TTypes) elements from the corresponding elements of t and move constructing its last sizeof...(UTypes) elements from the corresponding elements of u.template <class... Tuples> tuple<CTypes...> tuple_cat(Tuples&&... tpls);8 Let Ti be the ith type in Tuples, Ui be remove_reference<Ti>::type, and tpi be the ith parameter in the function parameter pack tpls, where all indexing is zero-based in the following paragraphs of this sub-clause [tuple.creation].
9 Requires: For all i, Ui shall be the type cvi tuple<Argsi...>, where cvi is the (possibly empty) ith cv-qualifier-seq, and Argsi is the parameter pack representing the element types in Ui. Let Aik be the kith type in Argsi, then for all Aik the following requirements shall be satisfied: If Ti is deduced as an lvalue reference type, then is_constructible<Aik, cvi Aik&>::value == true, otherwise is_constructible<Aik, cvi Aik&&>::value == true.
10 Remarks: The types in CTypes shall be equal to the ordered sequence of the expanded types Args0..., Args1..., Argsn-1..., where n equals sizeof...(Tuples). Let ei... be the ith ordered sequence of tuple elements of the result tuple object corresponding to the type sequence Argsi.
11 Returns: A tuple object constructed by initializing the kith type element eik in ei... with get<ki>(std::forward<Ti>(tpi)) for each valid ki and each element group ei in order.
12 [Note: An implementation may support additional types in the parameter pack Tuples, such as pair and array that support the tuple-like protocol. — end note]
Section: 20.4.2.4 [tuple.creation] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [tuple.creation].
View all issues with C++11 status.
Discussion:
Addresses US-99
pack_arguments is overly complex.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
This issue resulted from a lack of understanding of
how references are forwarded. The definition of
pack_arguments should be simply:
template <class... Types>
tuple<ATypes&&>
pack_arguments(Types&&...t);
Types: Let Ti be each type in Types....
Effects: ...
Returns:
tuple<ATypes&&...>(std::forward<Types>(t)...)
The synopsis should also change to reflect this simpler signature.
Section: X [tuple.range] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses GB-87
There is no compelling reason to assume a heterogeneous tuple of two elements holds a pair of iterators forming a valid range. Unlike std::pair, there are no functions in the standard library using this as a return type with a valid range, so there is even less reason to try to adapt this type for the new for-loop syntax.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Strike 20.4.2.10 and the matching declarations in the header synopsis in 20.4.
Section: 20.11.3 [ratio.ratio] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [ratio.ratio].
View all issues with C++11 status.
Discussion:
Addresses US-100
LWG 1281 was discussed in Pittsburgh, and the decision there was to accept the typedef as proposed and move to Review. Unfortunately the issue was accidentally applied to the FCD, and incorrectly. The FCD version of the typedef refers to ratio<N, D>, but the typedef is intended to refer to ratio<num, den> which in general is not the same type.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Accept the current proposed wording of LWG 1281 which adds:
typedef ratio<num, den> type;
Section: 20.11.4 [ratio.arithmetic] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [ratio.arithmetic].
View all issues with Resolved status.
Discussion:
Addresses GB-89
The alias representations of the ratio arithmetic templates do not allow implementations to avoid overflow, since they explicitly specify the form of the aliased template instantiation. For example ratio_multiply, ratio<2, LLONG_MAX> is required to alias ratio<2*LLONG_MAX, LLONG_MAX*2>, which overflows, so is ill-formed. However, this is trivially equal to ratio<1, 1>. It also contradicts the opening statement of 20.11.4 [ratio.arithmetic] p. 1 "implementations may use other algorithms to compute these values".
[ 2010-10-25 Daniel adds: ]
Accepting n3131 would solve this issue.
[Batavia: Resolved by accepting n3210.]
Proposed resolution:
Change the wording in 20.11.4 [ratio.arithmetic] p. 2-5 as follows:
template <class R1, class R2> using ratio_add = see below;2 The type ratio_add<R1, R2> shall be a synonym for
ratio<T1, T2>ratio<U, V> such that ratio<U, V>::num and ratio<U, V>::den are the same as the corresponding members of ratio<T1, T2> would be in the absence of arithmetic overflow where T1 has the value R1::num * R2::den + R2::num * R1::den and T2 has the value R1::den * R2::den. If the required values of ratio<U, V>::num and ratio<U, V>::den cannot be represented in intmax_t then the program is ill-formed.
template <class R1, class R2> using ratio_subtract = see below;3 The type ratio_subtract<R1, R2> shall be a synonym for
ratio<T1, T2>ratio<U, V> such that ratio<U, V>::num and ratio<U, V>::den are the same as the corresponding members of ratio<T1, T2> would be in the absence of arithmetic overflow where T1 has the value R1::num * R2::den - R2::num * R1::den and T2 has the value R1::den * R2::den. If the required values of ratio<U, V>::num and ratio<U, V>::den cannot be represented in intmax_t then the program is ill-formed.
template <class R1, class R2> using ratio_multiply = see below;4 The type ratio_multiply<R1, R2> shall be a synonym for
ratio<T1, T2>ratio<U, V> such that ratio<U, V>::num and ratio<U, V>::den are the same as the corresponding members of ratio<T1, T2> would be in the absence of arithmetic overflow where T1 has the value R1::num * R2::num and T2 has the value R1::den * R2::den. If the required values of ratio<U, V>::num and ratio<U, V>::den cannot be represented in intmax_t then the program is ill-formed.
template <class R1, class R2> using ratio_divide = see below;5 The type ratio_divide<R1, R2> shall be a synonym for
ratio<T1, T2>ratio<U, V> such that ratio<U, V>::num and ratio<U, V>::den are the same as the corresponding members of ratio<T1, T2> would be in the absence of arithmetic overflow where T1 has the value R1::num * R2::den and T2 has the value R1::den * R2::num. If the required values of ratio<U, V>::num and ratio<U, V>::den cannot be represented in intmax_t then the program is ill-formed.
Section: 20.10 [meta] Status: Resolved Submitter: DIN Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [meta].
View all other issues in [meta].
View all issues with Resolved status.
Discussion:
Addresses DE-17
Speculative compilation for std::is_constructible and std::is_convertible should be limited, similar to the core language (see 14.8.2 paragraph 8).
[ 2010-10-24 Daniel adds: ]
Accepting n3142 would solve this issue.
Proposed resolution:
Resolved by paper n3142.
Section: 20.10 [meta] Status: Resolved Submitter: DIN Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [meta].
View all other issues in [meta].
View all issues with Resolved status.
Discussion:
Addresses DE-18
Several type traits require compiler support, e.g. std::is_constructible or std::is_convertible. Their current specification seems to imply, that the corresponding test expressions should be well-formed, even in absense of access:
class X { X(int){} }; constexpr bool test = std::is_constructible<X, int>::value;
The specification does not clarify the context of this test and because it already goes beyond normal language rules, it's hard to argue by means of normal language rules what the context and outcome of the test should be.
[ Resolution proposed by ballot comment ]
Specify that std::is_constructible and std::is_convertible will return true only for public constructors/conversion functions.
[ 2010-10-24 Daniel adds: ]
Accepting n3142 would solve this issue.
Proposed resolution:
Resolved by paper n3142.
Section: 20.10.4 [meta.unary] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [meta.unary].
View all issues with Resolved status.
Discussion:
Addresses US-102
Despite Library Issue 520's ("result_of and pointers to data members") resolution of CD1, the FCD's result_of supports neither pointers to member functions nor pointers to data members. It should.
[ Resolution proposed by ballot comment ]
Ensure result_of supports pointers to member functions and pointers to data members.
[ 2010-10-24 Daniel adds: ]
Accepting n3123 would solve this issue.
Proposed resolution:
Resolved by n3123.
Section: 20.10.4.3 [meta.unary.prop] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with Resolved status.
Discussion:
Addresses GB-92
Trivial functions implicitly declare a noexcept exception specification, so the references to has_trivial_* traits in the has_nothrow_* traits are redundant, and should be struck for clarity.
[ Resolution proposed by ballot comment ]
For each of the has_nothrow_something traits, remove all references to the matching has_trivial_something traits.
[ 2010-10-24 Daniel adds: ]
Accepting n3142 would solve this issue.
Proposed resolution:
Resolved by n3142.
Section: 20.10.4.3 [meta.unary.prop] Status: Resolved Submitter: DIN Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with Resolved status.
Discussion:
Addresses DE-19
The fundamental trait is_constructible reports false positives, e.g.
is_constructible<char*, void*>::value
evaluates to true, even though a corresponding variable initialization would be ill-formed.
[ Resolved in Rapperswil by paper N3047. ]
Proposed resolution:
Remove all false positives from the domain of is_constructible.
Section: 20.9 [function.objects] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [function.objects].
View all issues with Resolved status.
Discussion:
Addresses GB-95
The adaptable function protocol supported by unary_function/binary_function has been superceded by lambda expressions and std::bind. Despite the name, the protocol is not very adaptable as it requires intrusive support in the adaptable types, rather than offering an external traits-like adaption mechanism. This protocol and related support functions should be deprecated, and we should not make onerous requirements for the specification to support this protocol for callable types introduced in this standard revision, including those adopted from TR1. It is expected that high-quality implementations will provide such support, but we should not have to write robust standard specifications mixing this restricted support with more general components such as function, bind and reference_wrapper.
[ Resolution proposed by ballot comment ]
Move clauses 20.8.3, 20.8.9, 20.8.11 and 20.8.12 to Annex D.
Remove the requirements to conditionally derive from unary/binary_function from function, reference_wrapper, and the results of calling mem_fn and bind.[ 2010-10-24 Daniel adds: ]
Accepting n3145 would solve this issue.
Proposed resolution:
Resolved by paper N3198.
Section: 20.9.12.2 [func.wrap.func] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [func.wrap.func].
View all other issues in [func.wrap.func].
View all issues with C++11 status.
Discussion:
Addresses JP-3
explicit default contructor is defined in std::function. Although it is allowed according to 12.3.1, it seems unnecessary to qualify the constructor as explicit. If it is explicit, there will be a limitation in initializer_list.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Remove explicit.
namespace std { template<class> class function; // undefined template<class R, class... ArgTypes> class function<R(ArgTypes...)> : public unary_function<T1, R> // iff sizeof...(ArgTypes) == 1 and ArgTypes contains T1 : public binary_function<T1, T2, R> // iff sizeof...(ArgTypes) == 2 and ArgTypes contains T1 andT2 { public:typedef R result_type; // 20.8.14.2.1, construct/copy/destroy:explicitfunction();
Section: 20.9.12.2.1 [func.wrap.func.con] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [func.wrap.func.con].
View all issues with C++11 status.
Discussion:
Addresses JP-4
Really does the function require that default constructor is explicit?
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Remove explicit.
function(); template <class A> function(allocator_arg_t, const A& a);
Section: 20.7 [memory] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [memory].
View all issues with C++11 status.
Discussion:
Addresses GB-99
One reason that the unique_ptr constructor taking a nullptr_t argument is not explicit is to allow conversion of nullptr to unique_ptr in contexts like equality comparison. Unfortunately operator== for unique_ptr is a little more clever than that, deducing template parameters for both arguments. This means that nullptr does not get deduced as unique_ptr type, and there are no other comparison functions to match.
[ Resolution proposed by ballot comment: ]
Add the following signatures to 20.7 [memory] p.1, <memory> header synopsis:
template<typename T, typename D> bool operator==(const unique_ptr<T, D> & lhs, nullptr_t); template<typename T, typename D> bool operator==(nullptr_t, const unique_ptr<T, D> & rhs); template<typename T, typename D> bool operator!=(const unique_ptr<T, D> & lhs, nullptr_t); template<typename T, typename D> bool operator!=(nullptr_t, const unique_ptr<T, D> & rhs);
[ 2010-11-02 Daniel comments and provides a proposed resolution: ]
The same problem applies to shared_ptr as well: In both cases there are no conversions considered because the comparison functions are templates. I agree with the direction of the proposed resolution, but I believe it would be very surprising and inconsistent, if given a smart pointer object p, the expression p == nullptr would be provided, but not p < nullptr and the other relational operators. According to 5.9 [expr.rel] they are defined if null pointer values meet other pointer values, even though the result is unspecified for all except some trivial ones. But null pointer values are nothing special here: The Library already defines the relational operators for both unique_ptr and shared_ptr and the outcome of comparing non-null pointer values will be equally unspecified. If the idea of supporting nullptr_t arguments for relational operators is not what the committee prefers, I suggest at least to consider to remove the existing relational operators for both unique_ptr and shared_ptr for consistency. But that would not be my preferred resolution of this issue.
The number of overloads triple the current number, but I think it is much clearer to provide them explicitly instead of adding wording that attempts to say that "sufficient overloads" are provided. The following proposal makes the declarations explicit. Additionally, the proposal adds the missing declarations for some shared_ptr comparison functions for consistency.
[ 2010-11-03 Daniel adds: ]
Issue 1297 is remotely related. The following proposed resolution splits this bullet into sub-bullets A and B. Sub-bullet A would also solve 1297, but sub-bullet B would not.
A further remark in regard to the proposed semantics of the ordering of nullptr against other pointer(-like) values: One might think that the following definition might be superior because of simplicity:template<class T> bool operator<(const shared_ptr<T>& a, nullptr_t); template<class T> bool operator>(nullptr_t, const shared_ptr<T>& a);Returns: false.
The underlying idea behind this approach is the assumption that nullptr corresponds to the least ordinal pointer value. But this assertion does not hold for all supported architectures, therefore this approach was not followed because it would lead to the inconsistency, that the following assertion could fire:
shared_ptr<int> p(new int); shared_ptr<int> null; bool v1 = p < nullptr; bool v2 = p < null; assert(v1 == v2);
[2011-03-06: Daniel comments]
The current issue state is not acceptable, because the Batavia meeting did not give advice whether choice A or B of bullet 3 should be applied. Option B will now be removed and if this resolution is accepted, issue 1297 should be declared as resolved by 1401. This update also resyncs the wording with N3242.
Proposed resolution:
Wording changes are against N3242.
namespace std { […] // [unique.ptr] Class unique_ptr: template <class T> class default_delete; template <class T> class default_delete<T[]>; template <class T, class D = default_delete<T>> class unique_ptr; template <class T, class D> class unique_ptr<T[], D>; template <class T1, class D1, class T2, class D2> bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T, class D> bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator==(nullptr_t, const unique_ptr<T, D>& x) noexcept; template <class T, class D> bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator!=(nullptr_t, const unique_ptr<T, D>& x) noexcept; template <class T, class D> bool operator<(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator<(nullptr_t, const unique_ptr<T, D>& x); template <class T, class D> bool operator<=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator<=(nullptr_t, const unique_ptr<T, D>& x); template <class T, class D> bool operator>(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>(nullptr_t, const unique_ptr<T, D>& x); template <class T, class D> bool operator>=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>=(nullptr_t, const unique_ptr<T, D>& x); // [util.smartptr.weakptr], Class bad_weak_ptr: class bad_weak_ptr; // [util.smartptr.shared], Class template shared_ptr: template<class T> class shared_ptr; // [util.smartptr.shared.cmp], shared_ptr comparisons: template<class T, class U> bool operator==(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T, class U> bool operator!=(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T, class U> bool operator<(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T, class U> bool operator>(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T, class U> bool operator<=(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T, class U> bool operator>=(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T> bool operator==(shared_ptr<T> const& a, nullptr_t) noexcept; template<class T> bool operator==(nullptr_t, shared_ptr<T> const& a) noexcept; template<class T> bool operator!=(shared_ptr<T> const& a, nullptr_t) noexcept; template<class T> bool operator!=(nullptr_t, shared_ptr<T> const& a) noexcept; template<class T> bool operator<(shared_ptr<T> const& a, nullptr_t) noexcept; template<class T> bool operator<(nullptr_t, shared_ptr<T> const& a) noexcept; template>class T> bool operator>(shared_ptr<T> const& a, nullptr_t) noexcept; template>class T> bool operator>(nullptr_t, shared_ptr<T> const& a) noexcept; template<class T> bool operator<=(shared_ptr<T> const& a, nullptr_t) noexcept; template<class T> bool operator<=(nullptr_t, shared_ptr<T> const& a) noexcept; template>class T> bool operator>=(shared_ptr<T> const& a, nullptr_t) noexcept; template>class T> bool operator>=(nullptr_t, shared_ptr<T> const& a) noexcept; […] }
namespace std { […] template <class T1, class D1, class T2, class D2> bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T, class D> bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator==(nullptr_t, const unique_ptr<T, D>& x) noexcept; template <class T, class D> bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator!=(nullptr_t, const unique_ptr<T, D>& x) noexcept; template <class T, class D> bool operator<(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator<(nullptr_t, const unique_ptr<T, D>& x); template <class T, class D> bool operator<=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator<=(nullptr_t, const unique_ptr<T, D>& x); template <class T, class D> bool operator>(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>(nullptr_t, const unique_ptr<T, D>& x); template <class T, class D> bool operator>=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>=(nullptr_t, const unique_ptr<T, D>& x); }
Change 20.8.1.5 [unique.ptr.special] p. 4-7 as indicated and add a series of prototype descriptions:
template <class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);? Requires: Let CT be common_type<unique_ptr<T1, D1>::pointer, unique_ptr<T2, D2>::pointer>::type. Then the specialization less<CT> shall be a function object type ([function.objects]) that induces a strict weak ordering ([alg.sorting]) on the pointer values.
4 Returns: less<CT>()(x.get(), y.get())
x.get() < y.get().? Remarks: If unique_ptr<T1, D1>::pointer is not implicitly convertible to CT or unique_ptr<T2, D2>::pointer is not implicitly convertible to CT, the program is ill-formed.
template <class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);5 Returns: !(y < x)
x.get() <= y.get().template <class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);6 Returns: (y < x)
x.get() > y.get().template <class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);7 Returns: !(x < y)
x.get() >= y.get().
template <class T, class D> bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator==(nullptr_t, const unique_ptr<T, D>& x) noexcept;? Returns: !x.
template <class T, class D> bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator!=(nullptr_t, const unique_ptr<T, D>& x) noexcept;? Returns: (bool) x.
template <class T, class D> bool operator<(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>(nullptr_t, const unique_ptr<T, D>& x);? Requires: The specialization less<unique_ptr<T, D>::pointer> shall be a function object type ([function.objects]) that induces a strict weak ordering ([alg.sorting]) on the pointer values.
? Returns: less<unique_ptr<T, D>::pointer>()(x.get(), nullptr).
template <class T, class D> bool operator<(nullptr_t, const unique_ptr<T, D>& x); template <class T, class D> bool operator>(const unique_ptr<T, D>& x, nullptr_t);? Requires: The specialization less<unique_ptr<T, D>::pointer> shall be a function object type ([function.objects]) that induces a strict weak ordering ([alg.sorting]) on the pointer values.
? Returns: less<unique_ptr<T, D>::pointer>()(nullptr, x.get()).
template <class T, class D> bool operator<=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>=(nullptr_t, const unique_ptr<T, D>& x);? Returns: !(nullptr < x).
template <class T, class D> bool operator<=(nullptr_t, const unique_ptr<T, D>& x); template <class T, class D> bool operator>=(const unique_ptr<T, D>& x, nullptr_t);? Returns: !(x < nullptr).
Change 20.8.2.2 [util.smartptr.shared] p. 1, class template shared_ptr synopsis as indicated. For consistency reasons the remaining normal relation operators are added as well:
namespace std { […] // [util.smartptr.shared.cmp], shared_ptr comparisons: template<class T, class U> bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator!=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator<=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator>=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T> bool operator==(const shared_ptr<T>& a, nullptr_t) noexcept; template<class T> bool operator==(nullptr_t, const shared_ptr<T>& a) noexcept; template<class T> bool operator!=(const shared_ptr<T>& a, nullptr_t) noexcept; template<class T> bool operator!=(nullptr_t, const shared_ptr<T>& a) noexcept; template<class T> bool operator<(const shared_ptr<T>& a, nullptr_t) noexcept; template<class T> bool operator<(nullptr_t, const shared_ptr<T>& a) noexcept; template>class T> bool operator>(const shared_ptr<T>& a, nullptr_t) noexcept; template>class T> bool operator>(nullptr_t, const shared_ptr<T>& a) noexcept; template<class T> bool operator<=(const shared_ptr<T>& a, nullptr_t) noexcept; template<class T> bool operator<=(nullptr_t, const shared_ptr<T>& a) noexcept; template>class T> bool operator>=(const shared_ptr<T>& a, nullptr_t) noexcept; template>class T> bool operator>=(nullptr_t, const shared_ptr<T>& a) noexcept; […] }
template<class T> bool operator==(const shared_ptr<T>& a, nullptr_t) noexcept; template<class T> bool operator==(nullptr_t, const shared_ptr<T>& a) noexcept;? Returns: !a.
template<class T> bool operator!=(const shared_ptr<T>& a, nullptr_t) noexcept; template<class T> bool operator!=(nullptr_t, const shared_ptr<T>& a) noexcept;? Returns: (bool) a.
template<class T> bool operator<(const shared_ptr<T>& a, nullptr_t) noexcept; template<class T> bool operator>(nullptr_t, const shared_ptr<T>& a) noexcept;? Returns: less<T*>()(a.get(), nullptr).
template<class T> bool operator<(nullptr_t, const shared_ptr<T>& a) noexcept; template<class T> bool operator>(const shared_ptr<T>& a, nullptr_t) noexcept;? Returns: less<T*>()(nullptr, a.get()).
template<class T> bool operator<=(const shared_ptr<T>& a, nullptr_t) noexcept; template<class T> bool operator>=(nullptr_t, const shared_ptr<T>& a) noexcept;? Returns: !(nullptr < a).
template<class T> bool operator<=(nullptr_t, const shared_ptr<T>& a) noexcept; template<class T> bool operator>=(const shared_ptr<T>& a, nullptr_t) noexcept;? Returns: !(a < nullptr).
Section: 20.7 [memory] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [memory].
View all issues with C++11 status.
Discussion:
Addresses GB-100
The unique_ptr and shared_ptr constructors taking nullptr_t delegate to a constexpr constructor, and could be constexpr themselves.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
In the 20.8.1.2 [unique.ptr.single] synopsis add
"constexpr" to unique_ptr(nullptr_t).
In the 20.8.1.3 [unique.ptr.runtime] synopsis add
"constexpr" to unique_ptr(nullptr_t).
In the 20.8.2.2 [util.smartptr.shared] synopsis
add "constexpr" to shared_ptr(nullptr_t).
Section: 20.7.6 [allocator.tag] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses JP-85
There are inconsistent definitions for allocator_arg. In 20.7 [memory] paragraph 1,
constexpr allocator_arg_t allocator_arg = allocator_arg_t();
and in 20.9.1,
const allocator_arg_t allocator_arg = allocator_arg_t();
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Change "const" to "constexpr" in 20.9.1 as follows.
constexpr allocator_arg_t allocator_arg = allocator_arg_t();
Section: 20.7.3 [pointer.traits] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses US-106
pointer_traits should have a size_type member for completeness.
Add typedef see below size_type; to the generic pointer_traits template and typedef size_t size_type; to pointer_traits<T*>. Use pointer_traits::size_type and pointer_traits::difference_type as the defaults for allocator_traits::size_type and allocator_traits::difference_type.
See Appendix 1 - Additional Details
[ Post-Rapperswil, Pablo provided wording: ]
The original ballot comment reads simply: "pointer_traits should have a size_type for completeness." The additional details reveal, however, that the desire for a size_type is actually driven by the needs of allocator_traits. The allocator_traits template should get its default difference_type from pointer_traits but if it did, it should get its size_type from the same source. Unfortunately, there is no obvious meaning for size_type in pointer_traits.
Alisdair suggested, however, that the natural relationship between difference_type and size_type can be expressed simply by the std::make_unsigned<T> metafunction. Using this metafunction, we can easily define size_type for allocator_traits without artificially adding size_type to pointer_traits.
Moved to Tentatively Ready after 6 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
In [allocator.requirements], Table 42, change two rows as follows:
X::size_type unsigned integral type a type that can represent the size of the largest object in the allocation model size_tmake_unsigned<X::difference_type>::typeX::difference_type signed integral type a type that can represent the difference between any two pointers in the allocation model ptrdiff_tpointer_traits<X::pointer>::difference_type
In [allocator.traits.types], Change the definition of difference_type and size_type as follows:
typedef see below difference_type;
Type: Alloc::difference_type if such a type exists, else
ptrdiff_tpointer_traits<pointer>::difference_type.typedef see below size_type;
Type: Alloc::size_type if such a type exists, else
size_tmake_unsigned<difference_type>::type.
Section: 20.13 [allocator.adaptor] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [allocator.adaptor].
View all issues with Resolved status.
Discussion:
Addresses US-107
scoped_allocator_adaptor should have its own header.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
See Appendix 1 - Additional Details
Section: 20.8.2.2.1 [util.smartptr.shared.const] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.const].
View all issues with Resolved status.
Discussion:
Addresses US-108
shared_ptr should have the same policy for constructing from auto_ptr as unique_ptr. Currently it does not.
[ Resolved in Rapperswil by paper N3109. ]
Proposed resolution:
Add
template <class Y> explicit shared_ptr(auto_ptr<Y>&);
to [util.smartptr.shared.const] (and to the synopsis).
Section: 20.7.4 [util.dynamic.safety] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [util.dynamic.safety].
View all issues with C++11 status.
Discussion:
Addresses GB-103
The precondition to calling declare_no_pointers is that no bytes in the range "have been previously registered" with this call. As written, this precondition includes bytes in ranges, even after they have been explicitly unregistered with a later call to undeclare_no_pointers.
Proposed resolution:
Update 20.7.4 [util.dynamic.safety] p.9:
void declare_no_pointers(char *p, size_t n);9 Requires: No bytes in the specified range
have been previously registeredare currently registered with declare_no_pointers(). If the specified range is in an allocated object, then it must be entirely within a single allocated object. The object must be live until the corresponding undeclare_no_pointers() call. [..]
Section: X [time.clock.monotonic] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [time.clock.monotonic].
View all issues with Resolved status.
Discussion:
Addresses US-111
What it means for monotonic_clock to be a synonym is undefined. If it may or may not be a typedef, then certain classes of programs become unportable.
[ Resolution proposed in ballot comment: ]
Require that it be a distinct class type.
[ 2010-11-01 Daniel comments: ]
Paper n3128 addresses this issue by replacing monotonic_clock with steady_clock, which is not a typedef.
Proposed resolution:
This is resolved by n3191.
Section: X [time.clock.monotonic] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [time.clock.monotonic].
View all issues with Resolved status.
Duplicate of: 1411
Discussion:
Addresses GB-107, DE-20
1.4 [intro.compliance] p.9 states that which conditionally supported constructs are available should be provided in the documentation for the implementation. This doesn't help programmers trying to write portable code, as they must then rely on implementation-specific means to determine the availability of such constructs. In particular, the presence or absence of std::chrono::monotonic_clock may require different code paths to be selected. This is the only conditionally-supported library facility, and differs from the conditionally-supported language facilities in that it has standard-defined semantics rather than implementation-defined semantics.
[ Resolution proposed in ballot comment: ]
Provide feature test macro for determining the presence of std::chrono::monotonic_clock. Add _STDCPP_HAS_MONOTONIC_CLOCK to the <chrono> header, which is defined if monotonic_clock is present, and not defined if it is not present.
[ 2010-11-01 Daniel comments: ]
Paper n3128 addresses this issue by replacing monotonic_clock with steady_clock, which is not conditionally supported, so there is no need to detect it.
Proposed resolution:
This is resolved by n3191.
Section: X [time.clock.monotonic] Status: Resolved Submitter: Switzerland Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [time.clock.monotonic].
View all issues with Resolved status.
Discussion:
Addresses CH-21
Monotonic clocks are generally easy to provide on all systems and are implicitely required by some of the library facilities anyway.
[ 2010-11-01 Daniel comments: ]
Paper n3128 addresses this issue by replacing monotonic_clock with steady_clock, which is mandatory.
[ 2010-11-13 Batavia meeting: ]
This is resolved by adopting n3191. The original resolution is preserved for reference:
Make monotonic clocks mandatory.
Strike X [time.clock.monotonic] p.2
2
The class monotonic_clock is conditionally supported.Change 30.2.4 [thread.req.timing] p.2 accordingly
The member functions whose names end in _for take an argument that specifies a relative time. Implementations should use a monotonic clock to measure time for these functions.
[ Note: Implementations are not required to use a monotonic clock because such a clock may not be available. — end note ]
Proposed resolution:
This is resolved by n3191.
Section: 21.2.3.2 [char.traits.specializations.char16_t] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Duplicate of: 1444
Discussion:
Addresses GB-109, GB-123
It is not clear what the specification means for u16streampos, u32streampos or wstreampos when they refer to the requirements for POS_T in 21.2.2, as there are no longer any such requirements. Similarly the annex D.7 refers to the requirements of type POS_T in 27.3 that no longer exist either.
Clarify the meaning of all cross-reference to the removed type POS_T.
[ Post-Rapperswil, Daniel provides the wording. ]
When preparing the wording for this issue I first thought about adding both u16streampos and u32streampos to the [iostream.forward] header <iosfwd> synopsis similar to streampos and wstreampos, but decided not to do so, because the IO library does not yet actively support the char16_t and char32_t character types. Adding those would misleadingly imply that they would be part of the iostreams. Also, the addition would make them also similarly equal to a typedef to fpos<mbstate_t>, as for streampos and wstreampos, so there is no loss for users that would like to use the proper fpos instantiation for these character types.
Additionally the way of referencing was chosen to follow the style suggested by NB comment GB 108.
Moved to Tentatively Ready with proposed wording after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
The following wording changes are against N3126.
Change [char.traits.specializations.char16_t]p.1 as indicated:
1 - The type u16streampos shall be an implementation-defined type that satisfies the requirements for
POS_T in 21.2.2pos_type in [iostreams.limits.pos].
Change [char.traits.specializations.char32_t]p.1 as indicated:
1 - The type u32streampos shall be an implementation-defined type that satisfies the requirements for
POS_T in 21.2.2pos_type in [iostreams.limits.pos].
Change [char.traits.specializations.wchar.t]p.2 as indicated:
2 - The type wstreampos shall be an implementation-defined type that satisfies the requirements for
POS_T in 21.2.2pos_type in [iostreams.limits.pos].
Change [fpos.operations], Table 124 — Position type requirements as indicated:
Table 124 — Position type requirements Expression Return type ... ... ... ... O(p) OFF_Tstreamoff... ... ... ... o = p - q OFF_Tstreamoff... streamsize(o)
O(sz)streamsize OFF_Tstreamoff...
Change [depr.ios.members]p.1 as indicated:
namespace std { class ios_base { public: typedef T1 io_state; typedef T2 open_mode; typedef T3 seek_dir; typedefOFF_Timplementation-defined streamoff; typedefPOS_Timplementation-defined streampos; // remainder unchanged }; }
Change [depr.ios.members]p.5+6 as indicated:
5 - The type streamoff is an implementation-defined type that satisfies the requirements of
type OFF_T (27.5.1)off_type in [iostreams.limits.pos].6 - The type streampos is an implementation-defined type that satisfies the requirements of
type POS_T (27.3)pos_type in [iostreams.limits.pos].
Section: 23.2 [container.requirements] Status: C++11 Submitter: DIN Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [container.requirements].
View all other issues in [container.requirements].
View all issues with C++11 status.
Discussion:
Addresses DE-21
23.2.1/11 provides a general no-throw guarantee for erase() container functions, exceptions from this are explicitly mentioned for individual containers. Because of its different name, forward_list's erase_after() function is not ruled by this but should so.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add a "Throws: Nothing" clause to both erase_after overloads in 23.3.3.4, [forwardlist.modifiers].
Section: 23.3.2.8 [array.zero] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [array.zero].
View all issues with C++11 status.
Discussion:
Addresses GB-112
Should the effect of calling front/back on a zero-sized array really be implementation defined i.e. require the implementor to define behaviour?
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Change "implementation defined" to "undefined"
Section: 23.3.3.3 [deque.capacity] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [deque.capacity].
View all issues with C++11 status.
Discussion:
Addresses GB-113
There is no mention of what happens if sz==size(). While it obviously does nothing I feel a standard needs to say this explicitely.
[ 2010 Batavia ]
Accepted with a simplified resolution turning one of the < comparisons into <=.
Proposed resolution:
Ammend [deque.capacity]
void resize(size_type sz);
Effects: If sz <= size(), equivalent to erase(begin() +
sz, end());. If size() < sz, appends sz - size() default
constructedvalue initialized elements to the sequence.
Section: 23.3.5.3 [list.capacity] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [list.capacity].
View all issues with C++11 status.
Discussion:
Addresses GB-115
There is no mention of what happens if sz==size(). While it obviously does nothing I feel a standard needs to say this explicitely.
[ Resolution proposed in ballot comment ]
Express the semantics as pseudo-code similarly to the way it is done for the copying overload that follows (in p3). Include an else clause that does nothing and covers the sz==size() case.
[ 2010 Batavia ]
Accepted with a simplified resolution turning one of the < comparisons into <=.
Proposed resolution:
Ammend [list.capacity] p1:
void resize(size_type sz);
Effects: If sz <= size(), equivalent to list<T>::iterator it = begin(); advance(it, sz); erase(it, end());. If size() < sz, appends sz - size()
default constructedvalue initialized elements to the sequence.
Section: 23.6 [container.adaptors] Status: Resolved Submitter: DIN Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [container.adaptors].
View all issues with Resolved status.
Duplicate of: 1350
Discussion:
Addresses DE-22, CH-15
With the final acceptance of move operations as special members and introduction of corresponding suppression rules of implicitly generated copy operations the some library types that were copyable in C++03 are no longer copyable (only movable) in C++03, among them queue, priority_queue, and stack.
[ 2010-10-26: Daniel comments: ]
Accepting n3112 should fix this.
[2011-02-17: Lawrence comments:]
The only open issue in CH 15 with respect to the concurrency group was the treatment of atomic_future. Since we removed atomic_future in Batavia, I think all that remains is to remove the open issue from N3112 and adopt it.
[2011-03-23 Madrid meeting]
Resolved by N3264
Proposed resolution:
See n3112
Section: 23.4.4 [map] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [map].
View all issues with C++11 status.
Discussion:
Addresses JP-6
Constructor accepting an allocator as a single parameter should be qualified as explicit.
namespace std { template <class Key, class T, class Compare = less<Key>, class Allocator = allocator<pair<const Key, T> > > class map { public: ... map(const Allocator&);
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add explicit.
namespace std { template <class Key, class T, class Compare = less<Key>, class Allocator = allocator<pair<const Key, T> > > class map { public: ... explicit map(const Allocator&);
Section: 23.4.5 [multimap] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses JP-7
Constructor accepting an allocator as a single parameter should be qualified as explicit.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add explicit.
namespace std { template <class Key, class T, class Compare = less<Key>, class Allocator = allocator<pair<const Key, T> > > class multimap { public: ... explicit multimap(const Allocator&);
Section: 23.4.6 [set] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [set].
View all issues with C++11 status.
Discussion:
Addresses JP-8
Constructor accepting an allocator as a single parameter should be qualified as explicit.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add explicit.
namespace std { template <class Key, class Compare = less<Key>, class Allocator = allocator<Key> > class set { public: ... explicit set(const Allocator&);
Section: 23.4.7 [multiset] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses JP-9
Constructor accepting an allocator as a single parameter should be qualified as explicit.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add explicit.
namespace std { template <class Key, class Compare = less<Key>, class Allocator = allocator<Key> > class multiset { public: ... explicit multiset(const Allocator&);
Section: 23.5.4 [unord.map] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [unord.map].
View all issues with C++11 status.
Discussion:
Addresses JP-10
Constructor accepting an allocator as a single parameter should be qualified as explicit.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add explicit.
namespace std { template <class Key, template <class Key, class T, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<std::pair<const Key, T> > > class unordered_map { public: ... explicit unordered_map(const Allocator&);
Section: 23.5.5 [unord.multimap] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses JP-11
Constructor accepting an allocator as a single parameter should be qualified as explicit.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add explicit.
namespace std { template <class Key, class T, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<std::pair<const Key, T> > > class unordered_multimap { public: ... explicit unordered_multimap(const Allocator&);
Section: 23.5.6 [unord.set] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses JP-12
Constructor accepting an allocator as a single parameter should be qualified as explicit.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add explicit.
namespace std { template <class Key, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<Key> > class unordered_set { public: ... explicit unordered_set(const Allocator&);
Section: 23.5.7 [unord.multiset] Status: C++11 Submitter: Japan Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses JP-13
Constructor accepting an allocator as a single parameter should be qualified as explicit.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Add explicit.
namespace std { template <class Key, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<Key> > class unordered_multiset { public: ... explicit unordered_multiset(const Allocator&);
Section: 25.2.12 [alg.is_permutation] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses US-120
is_permutation is underspecified for anything but the simple case where both ranges have the same value type and the comparison function is an equivalence relation.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
Restrict is_permutation to the case where it is well specified. See Appendix 1 - Additional Details
Section: 25.3.12 [alg.random.shuffle] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [alg.random.shuffle].
View all issues with C++11 status.
Duplicate of: 1433
Discussion:
Addresses US-121, GB-119
random_shuffle and shuffle should be consistent in how they accept their source of randomness: either both by rvalue reference or both by lvalue reference.
[ Post-Rapperswil, Daniel provided wording ]
The signatures of the shuffle and random_shuffle algorithms are different in regard to the support of rvalues and lvalues of the provided generator:
template<class RandomAccessIterator, class RandomNumberGenerator> void random_shuffle(RandomAccessIterator first, RandomAccessIterator last, RandomNumberGenerator&& rand);
template<class RandomAccessIterator, class UniformRandomNumberGenerator> void shuffle(RandomAccessIterator first, RandomAccessIterator last, UniformRandomNumberGenerator& g);
The first form uses the perfect forwarding signature and that change compared to C++03 was done intentionally as shown in the first rvalue proposal papers.
While it is true, that random generators are excellent examples of stateful functors, there still exist good reasons to support rvalues as arguments:
Arguments have been raised that accepting rvalues is error-prone or even fundamentally wrong. The author of this proposal disagrees with that position for two additional reasons:
instead of writingmy_generator get_generator(int size);
they will just writestd::vector<int> v = ...; std::shuffle(v.begin(), v.end(), get_generator(v.size()));
and feel annoyed about the need for it.std::vector<int> v = ...; auto gen = get_generator(v.size()); std::shuffle(v.begin(), v.end(), gen);
Thus this proposal recommends to make both shuffle functions consistent and perfectly forward-able.
Moved to Tentatively Ready after 6 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
template<class RandomAccessIterator, class UniformRandomNumberGenerator> void shuffle(RandomAccessIterator first, RandomAccessIterator last, UniformRandomNumberGenerator&& rand);
template<class RandomAccessIterator, class UniformRandomNumberGenerator> void shuffle(RandomAccessIterator first, RandomAccessIterator last, UniformRandomNumberGenerator&& rand);
Section: 26.4.7 [complex.value.ops] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [complex.value.ops].
View all issues with C++11 status.
Discussion:
Addresses GB-120
The complex number functions added for compatibility with the C99 standard library are defined purely as a cross-reference, with no hint of what they should return. This is distinct from the style of documentation for the functions in the earlier standard. In the case of the inverse-trigonometric and hyperbolic functions, a reasonable guess of the functionality may be made from the name, this is not true of the cproj function, which apparently returns the projection on the Reimann Sphere. A single line description of each function, associated with the cross-reference, will greatly improve clarity.
[2010-11-06 Beman provides proposed resolution wording.]
[ 2010 Batavia: The working group concurred with the issue's Proposed Resolution ]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 26.4.7 complex value operations [complex.value.ops] as indicated:
template<class T> complex<T> proj(const complex<T>& x);
Returns: the projection of x onto the Riemann sphere.
Effects:Remarks: Behaves the same as the C function cproj, defined in 7.3.9.4.
Change 26.4.8 complex transcendentals [complex.transcendentals] as indicated:
template<class T> complex<T> acos(const complex<T>& x);
Returns: the complex arc cosine of x.
Effects:Remarks: Behaves the same as the C function cacos, defined in 7.3.5.1.
Change 26.4.8 complex transcendentals [complex.transcendentals] as indicated:
template<class T> complex<T> asin(const complex<T>& x);
Returns: the complex arc sine of x.
Effects:Remarks: Behaves the same as the C function casin, defined in 7.3.5.2.
Change 26.4.8 complex transcendentals [complex.transcendentals] as indicated:
template<class T> complex<T> atan(const complex<T>& x);
Returns: the complex arc tangent of x.
Effects:Remarks: Behaves the same as the C function catan, defined in 7.3.5.3.
Change 26.4.8 complex transcendentals [complex.transcendentals] as indicated:
template<class T> complex<T> acosh(const complex<T>& x);
Returns: the complex arc hyperbolic cosine of x.
Effects:Remarks: Behaves the same as the C function cacosh, defined in 7.3.6.1.
Change 26.4.8 complex transcendentals [complex.transcendentals] as indicated:
template<class T> complex<T> asinh(const complex<T>& x);
Returns: the complex arc hyperbolic sine of x.
Effects:Remarks: Behaves the same as the C function casinh, defined in 7.3.6.2.
Change 26.4.8 complex transcendentals [complex.transcendentals] as indicated:
template<class T> complex<T> atanh(const complex<T>& x);
Returns: the complex arc hyperbolic tangent of x.
Effects:Remarks: Behaves the same as the C function catanh, defined in 7.3.6.2.
Section: 26.5.3 [rand.eng] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [rand.eng].
View all issues with C++11 status.
Discussion:
Addresses GB-121
All the random number engine types in this clause have a constructor taking an unsigned integer type, and a constructor template for seed sequences. This means that an attempt to create a random number engine seeded by an integer literal must remember to add the appropriate unsigned suffix to the literal, as a signed integer will attempt to use the seed sequence template, yielding undefined behaviour, as per 26.5.1.1p1a. It would be helpful if at least these anticipated cases produced a defined behaviour, either an erroneous program with diagnostic, or a conversion to unsigned int forwarding to the appropriate constructor.
[ 2010-11-03 Daniel comments and provides a proposed resolution: ]
I suggest to apply a similar solution as recently suggested for 1234. It is basically a requirement for an implementation to constrain the template.
[ 2010-11-04 Howard suggests to use !is_convertible<Sseq, result_type>::value as minimum requirement instead of the originally proposed !is_scalar<Sseq>::value. This would allow for a user-defined type BigNum, that is convertible to result_type, to be used as argument for a seed instead of a seed sequence. The wording has been updated to reflect this suggestion. ]
[ 2010 Batavia: There were some initial concerns regarding the portability and reproducibility of results when seeded with a negative signed value, but these concerns were allayed after discussion. Thus, after reviewing the issue, the working group concurred with the issue's Proposed Resolution. ]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Add the following paragraph at the end of 26.5.3 [rand.eng]:
5 Each template specified in this section [rand.eng] requires one or more relationships, involving the value(s) of its non-type template parameter(s), to hold. A program instantiating any of these templates is ill-formed if any such required relationship fails to hold.
? For every random number engine and for every random number engine adaptor X defined in this sub-clause [rand.eng] and in sub-clause [rand.adapt]:
- If the constructor
template<class Sseq> explicit X(Sseq& q);is called with a type Sseq that does not qualify as a seed sequence, then this constructor shall not participate in overload resolution.
- If the member function
template<class Sseq> void seed(Sseq& q);is called with a type Sseq that does not qualify as a seed sequence, then this function shall not participate in overload resolution.
The extent to which an implementation determines that a type cannot be a seed sequence is unspecified, except that as a minimum a type shall not qualify as seed sequence, if it is implicitly convertible to X::result_type.
Section: 26.5.3.2 [rand.eng.mers] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [rand.eng.mers].
View all issues with C++11 status.
Discussion:
Addresses US-124
The Mersenne twister algorithm is meaningless for word sizes less than two, as there are then insufficient bits available to be “twisted”.
[ Resolution proposed by ballot comment: ]
Insert the following among the relations that are required to hold: 2u < w.
[ 2010 Batavia: The working group concurred with the issue's Proposed Resolution ]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 26.5.3.2 [rand.eng.mers] p. 4 as indicated:
4 The following relations shall hold: 0 < m, m <= n, 2u < w, r <= w, u <= w, s <= w, t <= w, l <= w, w <= numeric_limits<UIntType>::digits, a <= (1u<<w) - 1u, b <= (1u<<w) - 1u, c <= (1u<<w) - 1u, d <= (1u<<w) - 1u, and f <= (1u<<w) - 1u.
Section: 26.5.4.2 [rand.adapt.disc] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [rand.adapt.disc].
View all issues with C++11 status.
Discussion:
Addresses US-126
Each adaptor has a member function called base() which has no definition.
[ Resolution proposed by ballot comment: ]
Give it the obvious definition.
[ 2010-11-03 Daniel comments and provides a proposed resolution: ]
The following proposal adds noexcept specifiers to the declarations of the base() functions as replacement for a "Throws: Nothing" element.
[ 2010 Batavia: The working group reviewed this issue, and recommended to add the following to the Proposed Resolution. ]
After further review, the working group concurred with the Proposed Resolution.
[Batavia: waiting for WEB to review wording]
Proposed resolution:
A random number engine adaptor (commonly shortened to adaptor) a of type A is a random number engine that takes values produced by some other random number engine, and applies an algorithm to those values in order to deliver a sequence of values with different randomness properties. An engine b of type B adapted in this way is termed a base engine in this context. The expression a.base() shall be valid and shall return a const reference to a's base engine.
// property functions const Engine& base() const noexcept;
const Engine& base() const noexcept;? Returns: e.
// property functions const Engine& base() const noexcept;
const Engine& base() const noexcept;? Returns: e.
// property functions const Engine& base() const noexcept;
const Engine& base() const noexcept;? Returns: e.
Section: 26.5.8.6.2 [rand.dist.samp.pconst] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [rand.dist.samp.pconst].
View all issues with C++11 status.
Discussion:
Addresses US-134
These two distributions have a member function called densities() which returns a vector<double>. The distribution is templated on RealType. The distribution also has another member called intervals() which returns a vector<RealType>. Why doesn't densities return vector<RealType> as well? If RealType is long double, the computed densities property isn't being computed to the precision the client desires. If RealType is float, the densities vector is taking up twice as much space as the client desires.
[ Resolution proposed by ballot comment: ]
Change the piecewise constant and linear distributions to hold / return the densities in a vector<result_type>.
If this is not done, at least correct 26.5.8.6.2 [rand.dist.samp.pconst] p. 13 which describes the return of densities as a vector<result_type>.
[ Batavia 2010: After reviewing this issue, the working group concurred with the first of the suggestions proposed by the NB comment: "Change the piecewise constant and linear distributions to hold/return the densities in a vector. " ]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
vector<doubleresult_type> densities() const;
vector<doubleresult_type> densities() const;
Section: 26.5.8.6.3 [rand.dist.samp.plinear] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses US-135
This paragraph says: Let bk = xmin+k·δ for k = 0,...,n, and wk = fw(bk +δ) for k = 0,...,n. However I believe that fw(bk) would be far more desirable. I strongly suspect that this is nothing but a type-o.
[ Resolution proposed by ballot comment: ]
Change p. 10 to read:
Let bk = xmin+k·δ for k = 0,...,n, and wk = fw(bk) for k = 0,...,n.
[ 2010-11-02 Daniel translates into a proposed resolution ]
[ 2010 Batavia: The working group concurred with the issue's Proposed Resolution ]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Change 26.5.8.6.3 [rand.dist.samp.plinear] p. 10 as indicated:
10 Effects: Constructs a piecewise_linear_distribution object with parameters taken or calculated from the following values: Let bk = xmin+k·δ for k = 0, . . . , n, and wk = fw(bk
+δ) for k = 0, . . . , n.
Section: 26.8 [c.math] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [c.math].
View all other issues in [c.math].
View all issues with C++11 status.
Discussion:
Addresses US-136
Floating-point test functions are incorrectly specified.
[ Resolved in Rapperswil by a motion to directly apply the words from the ballot comment in N3102. ]
Proposed resolution:
See Appendix 1 - Additional Details
Section: 27.7 [iostream.format] Status: Resolved Submitter: INCITS/PJ Plauger Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [iostream.format].
View all issues with Resolved status.
Discussion:
Addresses US-137
Several iostreams member functions are incorrectly specified.
[ Resolution proposed by ballot comment: ]
See Appendix 1 - Additional Details
[ 2010-10-24 Daniel adds: ]
Accepting n3168 would solve this issue.
Proposed resolution:
Addressed by paper n3168.
Section: 27.7 [iostream.format] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [iostream.format].
View all issues with Resolved status.
Discussion:
Addresses US-139
Resolve issue LWG 1328 one way or the other, but preferably in the direction outlined in the proposed resolution, which, however, is not complete as-is: in any case, the sentry must not set ok_ = false if is.good() == false, otherwise istream::seekg, being an unformatted input function, does not take any action because the sentry object returns false when converted to type bool. Thus, it remains impossible to seek away from end of file.
Proposed resolution:
Addressed by paper n3168.
Section: 27.8.2.3 [stringbuf.members] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses GB-124
N3092 27.8.2.3 [stringbuf.members] contains this text specifying the postconditions of basic_stringbuf::str(basic_string):
Postconditions: If mode & ios_base::out is true, pbase() points to the first underlying character and epptr() >= pbase() + s.size() holds; in addition, if mode & ios_base::in is true, pptr() == pbase() + s.data() holds, otherwise pptr() == pbase() is true. [...]
Firstly, there's a simple mistake: It should be pbase() + s.length(), not pbase() + s.data().
Secondly, it doesn't match existing implementations. As far as I can tell, GCC 4.5 does not test for mode & ios_base::in in the second part of that sentence, but for mode & (ios_base::app | ios_base_ate), and Visual C++ 9 for mode & ios_base::app. Besides, the wording of the C++0x draft doesn't make any sense to me. I suggest changing the second part of the sentence to one of the following:
Replace ios_base::in with (ios_base::ate | ios_base::app), but this would require Visual C++ to change (replacing only with ios_base::ate would require GCC to change, and would make ios_base::app completely useless with stringstreams):
in addition, if mode & (ios_base::ate | ios_base::app) is true, pptr() == pbase() + s.length() holds, otherwise pptr() == pbase() is true.
Leave pptr() unspecified if mode & ios_base::app, but not mode & ios_base::ate (implementations already differ in this case, and it is always possible to use ios_base::ate to get the effect of appending, so it is not necessary to require any implementation to change):
in addition, if mode & ios_base::ate is true, pptr() == pbase() + s.length() holds, if neither mode & ios_base::ate nor mode & ios_base::app is true, pptr() == pbase() holds, otherwise pptr() >= pbase() && pptr() <= pbase() + s.length() (which of the values in this range is unspecified).
Slightly stricter:
in addition, if mode & ios_base::ate is true, pptr() == pbase() + s.length() holds, if neither mode & ios_base::ate nor mode & ios_base::app is true, pptr() == pbase() holds, otherwise pptr() == pbase() || pptr() == pbase() + s.length() (which of these two values is unspecified). A small table might help to better explain the three cases. BTW, at the end of the postconditions is this text: "egptr() == eback() + s.size() hold". Is there a perference for basic_string::length or basic_string::size? It doesn't really matter, but it looks a bit inconsistent.
[2011-03-09: Nicolai Josuttis comments and drafts wording]
First, it seems the current wording is just an editorial mistake. When we added issue 432 to the draft standard (in n1733), the wording in the issue:
If mode & ios_base::out is true, initializes the output sequence such that pbase() points to the first underlying character, epptr() points one past the last underlying character, and if (mode & ios_base::ate) is true, pptr() is set equal to epptr() else pptr() is set equal to pbase().
became:
If mode & ios_base::out is true, initializes the output sequence such that pbase() points to the first underlying character, epptr() points one past the last underlying character, and pptr() is equal to epptr() if mode & ios_base::in is true, otherwise pptr() is equal to pbase().
which beside some changes of the order of words changed
ios_base::ate
into
ios_base::in
So, from this point of view, clearly mode & ios_base::ate was meant.
Nevertheless, with this proposed resolution we'd have no wording regarding ios_base::app. Currently the only statements about app in the Standard are just in two tables:
Indeed we seem to have different behavior currently in respect to app: For
stringstream s2(ios_base::out|ios_base::in|ios_base::app); s2.str("s2 hello"); s1 << "more";
BTW, for fstreams, both implementations append when app is set: If f2.txt has contents "xy",
fstream f2("f2.txt",ios_base::out|ios_base::in|ios_base::app); f1 << "more";
appends "more" so that the contents is "xymore".
So IMO app should set the write pointer to the end so that each writing appends.
I don't know whether what the standard says is enough. You can argue the statement in Table 125 clearly states that such a buffer should always append, which of course also applies to str() of stringbuffer. Nevertheless, it doesn't hurt IMO if we clarify the behavior of str() here in respect to app.[2011-03-10: P.J.Plauger comments:]
I think we should say nothing special about app at construction time (thus leaving the write pointer at the beginning of the buffer). Leave implementers wiggle room to ensure subsequent append writes as they see fit, but don't change existing rules for initial seek position.
[Madrid meeting: It was observed that a different issue should be opened that clarifies the meaning of app for stringstream]
Proposed resolution:
Change 27.8.2.3 [stringbuf.members] p. 3 as indicated:
void str(const basic_string<charT,traits,Allocator>& s);2 Effects: Copies the content of s into the basic_stringbuf underlying character sequence and initializes the input and output sequences according to mode.
3 Postconditions: If mode & ios_base::out is true, pbase() points to the first underlying character and epptr() >= pbase() + s.size() holds; in addition, if mode &ios_base::inios_base::ate is true, pptr() == pbase() +s.data()s.size() holds, otherwise pptr() == pbase() is true. If mode & ios_base::in is true, eback() points to the first underlying character, and both gptr() == eback() and egptr() == eback() + s.size() hold.
Section: 27.8.3 [istringstream] Status: C++11 Submitter: Canada Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses CA-4
Subclause 27.9.2 [c.files] specifies that <cinttypes> has declarations for abs() and div(); however, the signatures are not present in this subclause. The signatures proposed under TR1 ([tr.c99.inttypes]) are not present in FCD (unless if intmax_t happened to be long long). It is unclear as to which, if any of the abs() and div() functions in [c.math] are meant to be declared by <cinttypes>. This subclause mentions imaxabs() and imaxdiv(). These functions, among other things, are not specified in FCD to be the functions from Subclause 7.8 of the C Standard. Finally, <cinttypes> is not specified in FCD to include <cstdint> (whereas <inttypes.h> includes <stdint.h> in C).
[ Post-Rapperswil, Daniel provides wording ]
Subclause [c.files] specifies that <cinttypes> has declarations for abs() and div(); however, the signatures are not present in this subclause. The signatures proposed under TR1 ([tr.c99.inttypes]) are not present in FCD (unless if intmax_t happened to be long long). It is unclear as to which, if any of the abs() and div() functions in [c.math] are meant to be declared by <cinttypes>. This subclause mentions imaxabs() and imaxdiv(). These functions, among other things, are not specified in FCD to be the functions from subclause 7.8 of the C Standard. Finally, <cinttypes> is not specified in FCD to include <cstdint> (whereas <inttypes.h> includes <stdint.h> in C).
Moved to Tentatively Ready with proposed wording after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
The wording refers to N3126.
Table 132 describes header <cinttypes>. [Note: The macros defined by <cinttypes> are provided unconditionally. In particular, the symbol __STDC_FORMAT_MACROS, mentioned in footnote 182 of the C standard, plays no role in C++. — end note ]
2 - The contents of header <cinttypes> are the same as the Standard C library header <inttypes.h>, with the following changes: 3 - The header <cinttypes> includes the header <cstdint> instead of <stdint.h>. 4 - If and only if the type intmax_t designates an extended integer type ([basic.fundamental]), the following function signatures are added:intmax_t abs(intmax_t); imaxdiv_t div(intmax_t, intmax_t);which shall have the same semantics as the function signatures intmax_t imaxabs(intmax_t) and imaxdiv_t imaxdiv(intmax_t, intmax_t), respectively.
Section: 28.5.2 [re.matchflag] Status: C++14 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
Addresses GB-127
The Bitmask Type requirements in 17.5.2.1.3 [bitmask.types] p.3 say that all elements on a bitmask type have distinct values, but 28.5.2 [re.matchflag] defines regex_constants::match_default and regex_constants::format_default as elements of the bitmask type regex_constants::match_flag_type, both with value 0. This is a contradiction.
[ Resolution proposed by ballot comment: ]
One of the bitmask elements should be removed from the declaration and should be defined separately, in the same manner as ios_base::adjustfield, ios_base::basefield and ios_base::floatfield are defined by 27.5.3.1.2 [ios::fmtflags] p.2 and Table 120. These are constants of a bitmask type, but are not distinct elements, they have more than one value set in the bitmask. regex_constants::format_default should be specified as a constant with the same value as regex_constants::match_default.
[ 2010-10-31 Daniel comments: ]
Strictly speaking, a bitmask type cannot have any element of value 0 at all, because any such value would contradict the requirement expressed in 17.5.2.1.3 [bitmask.types] p. 3:
for any pair Ci and Cj, Ci & Ci is nonzero
So, actually both regex_constants::match_default and regex_constants::format_default are only constants of the type regex_constants::match_flag_type, and no bitmask elements.
[ 2010-11-03 Daniel comments and provides a proposed resolution: ]
The proposed resolution is written against N3126 and considered as a further improvement of the fixes suggested by n3110.
Add the following sentence to 28.5.2 [re.matchflag] paragraph 1:
1 The type regex_constants::match_flag_type is an implementation-defined bitmask type (17.5.2.1.3). Matching a regular expression against a sequence of characters [first,last) proceeds according to the rules of the grammar specified for the regular expression object, modified according to the effects listed in Table 136 for any bitmask elements set. Type regex_constants::match_flag_type also defines the constants regex_constants::match_default and regex_constants::format_default.
[ 2011 Bloomington ]
It appears the key problem is the phrasing of the bitmask requirements. Jeremiah supplies updated wording.
Pete Becker has also provided an alternative resolution.
Ammend 17.5.2.1.3 [bitmask.types]:
Change the list of values for "enum bit mask" in p2 from
V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 << 3, ....
to
V0 = 0, V1 = 1 << 0, V2 = 1 << 1, V3 = 1 << 2, ....
Here, the names C0, C1, etc. represent bitmask elements for this particular
bitmask type. All such non-zero elements have distinct values such that, for any pair
Ci and Cj where i != j, Ci & Ci is nonzero
and Ci & Cj is zero.
Change bullet 3 of paragraph 4:
TheA non-zero value Y is set in the object X if the expression X & Y is nonzero.
[2014-02-13 Issaquah:]
Proposed resolution:
Ammend 17.5.2.1.3 [bitmask.types] p3:
Here, the names C0, C1, etc. represent bitmask elements for this particular bitmask type. All such elements have distinct, nonzero values such that, for any pair Ci and Cj where i != j, Ci & Ci is nonzero and Ci & Cj is zero. Additionally, the value 0 is used to represent an empty bitmask, in which no bitmask elements are set.
Add the following sentence to 28.5.2 [re.matchflag] paragraph 1:
1 The type regex_constants::match_flag_type is an implementation-defined bitmask type (17.5.2.1.3). The constants of that type, except for match_default and format_default, are bitmask elements. The match_default and format_default constants are empty bitmasks. Matching a regular expression against a sequence of characters [first,last) proceeds according to the rules of the grammar specified for the regular expression object, modified according to the effects listed in Table 136 for any bitmask elements set.
Section: 28.10.4 [re.results.acc] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [re.results.acc].
View all issues with Resolved status.
Discussion:
Addresses GB-126
It's unclear how match_results should behave if it has been default-constructed. The sub_match objects returned by operator[], prefix and suffix cannot point to the end of the sequence that was searched if no search was done. The iterators held by unmatched sub_match objects might be singular.
[ Resolution proposed by ballot comment: ]
Add to match_results::operator[], match_results::prefix and match_results::suffix:
Requires: !empty()
[ 2010-10-24 Daniel adds: ]
Accepting n3158 would solve this issue.
Proposed resolution:
Addressed by paper n3158.
Section: 29 [atomics] Status: Resolved Submitter: Switzerland Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics].
View all issues with Resolved status.
Duplicate of: 1454
Discussion:
Addresses CH-22, GB-128
WG14 currently plans to introduce atomic facilities that are intended to be compatible with the facilities of clause 29. They should be compatible.
[ Resolution proposed by ballot comment ]
Make sure the headers in clause 29 are defined in a way that is compatible with the planned C standard.
[ 2010 Batavia ]
Resolved by adoption of n3193.
Proposed resolution:
Solved by n3193.
Section: 29.2 [atomics.syn] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.syn].
View all issues with Resolved status.
Discussion:
Addresses GB-130
The synopsis for the <atomic> header lists the macros ATOMIC_INTEGRAL_LOCK_FREE and ATOMIC_ADDRESS_LOCK_FREE.
The ATOMIC_INTEGRAL_LOCK_FREE macro has been replaced with a set of macros for each integral type, as listed in 29.4 [atomics.lockfree].
[Proposed resolution as of comment]
Against FCD, N3092:
In [atomics.syn], header <atomic> synopsis replace as indicated:
// 29.4, lock-free property#define ATOMIC_INTEGRAL_LOCK_FREE unspecified#define ATOMIC_CHAR_LOCK_FREE implementation-defined #define ATOMIC_CHAR16_T_LOCK_FREE implementation-defined #define ATOMIC_CHAR32_T_LOCK_FREE implementation-defined #define ATOMIC_WCHAR_T_LOCK_FREE implementation-defined #define ATOMIC_SHORT_LOCK_FREE implementation-defined #define ATOMIC_INT_LOCK_FREE implementation-defined #define ATOMIC_LONG_LOCK_FREE implementation-defined #define ATOMIC_LLONG_LOCK_FREE implementation-defined #define ATOMIC_ADDRESS_LOCK_FREE unspecified
[ 2010-10-26: Daniel adds: ]
The proposed resolution below is against the FCD working draft. After application of the editorial issues US-144 and US-146 the remaining difference against the working draft is the usage of implementation-defined instead of unspecified, effectively resulting in this delta:
// 29.4, lock-free property #define ATOMIC_CHAR_LOCK_FREEunspecifiedimplementation-defined #define ATOMIC_CHAR16_T_LOCK_FREEunspecifiedimplementation-defined #define ATOMIC_CHAR32_T_LOCK_FREEunspecifiedimplementation-defined #define ATOMIC_WCHAR_T_LOCK_FREEunspecifiedimplementation-defined #define ATOMIC_SHORT_LOCK_FREEunspecifiedimplementation-defined #define ATOMIC_INT_LOCK_FREEunspecifiedimplementation-defined #define ATOMIC_LONG_LOCK_FREEunspecifiedimplementation-defined #define ATOMIC_LLONG_LOCK_FREEunspecifiedimplementation-defined #define ATOMIC_ADDRESS_LOCK_FREE unspecified
It is my understanding that the intended wording should be unspecified as for ATOMIC_ADDRESS_LOCK_FREE but if this is right, we need to use the same wording in 29.4 [atomics.lockfree], which consequently uses the term implementation-defined. I recommend to keep 29.2 [atomics.syn] as it currently is and to fix 29.4 [atomics.lockfree] instead as indicated:
[2011-02-24 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
[2011-02-20: Daniel adapts the proposed wording to N3225 and fixes an editorial omission of applying N3193]
[2011-03-06: Daniel adapts the wording to N3242]
[Proposed Resolution]
Change 29.4 [atomics.lockfree] as indicated:
#define ATOMIC_CHAR_LOCK_FREEimplementation-definedunspecified #define ATOMIC_CHAR16_T_LOCK_FREEimplementation-definedunspecified #define ATOMIC_CHAR32_T_LOCK_FREEimplementation-definedunspecified #define ATOMIC_WCHAR_T_LOCK_FREEimplementation-definedunspecified #define ATOMIC_SHORT_LOCK_FREEimplementation-definedunspecified #define ATOMIC_INT_LOCK_FREEimplementation-definedunspecified #define ATOMIC_LONG_LOCK_FREEimplementation-definedunspecified #define ATOMIC_LLONG_LOCK_FREEimplementation-definedunspecified
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: 29.4 [atomics.lockfree] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.lockfree].
View all issues with Resolved status.
Discussion:
Addresses US-154
There is no ATOMIC_BOOL_LOCK_FREE macro.
Proposed resolution suggested by the NB comment:
Add ATOMIC_BOOL_LOCK_FREE to 29.4 [atomics.lockfree] and to 29.2 [atomics.syn]:
[..] #define ATOMIC_BOOL_LOCK_FREE unspecified #define ATOMIC_CHAR_LOCK_FREE unspecified #define ATOMIC_CHAR16_T_LOCK_FREE unspecified #define ATOMIC_CHAR32_T_LOCK_FREE unspecified [..]
[2011-03-12: Lawrence comments and drafts wording]
Point: We were missing a macro test for bool.
Comment: The atomic<bool> type is the easiest to make lock-free. There is no harm in providing a macro.
Action: Add an ATOMIC_BOOL_LOCK_FREE.
Point: We were missing a macro test for pointers.
Comment: The national body comment noting the missing macro for bool did not note the lack of a macro for pointers because ATOMIC_ADDRESS_LOCK_FREE was present at the time of the comment. Its removal appears to be an overzealous consequence of removing atomic_address.
Action: Add an ATOMIC_POINTER_LOCK_FREE.
Point: Presumably atomic_is_lock_free() will be an inline function producing a constant in those cases in which the macros are useful.
Comment: The point is technically correct, but could use some exposition. Systems providing forward binary compatibility, e.g. mainstream desktop and server systems, would likely have these functions as inline constants only when the answer is true. Otherwise, the function should defer to a platform-specific dynamic library to take advantage of future systems that do provide lock-free support.
Comment: Such functions are not useful in the preprocessor, and not portably useful in static_assert.
Action: Preserve the macros.
Point: The required explicit instantiations are atomic<X> for each of the types X in Table 145. Table 145 does not list bool, so atomic<bool> is not a required instantiation.
Comment: I think specialization was intended in the point instead of instantiation. In any event, 29.5 [atomics.types.generic] paragraph 5 does indirectly require a specialization for atomic<bool>. Confusion arises because the specialization for other integral types have a wider interface than the generic atomic<T>, but atomic<bool> does not.
Action: Add clarifying text.
Point: The name of Table 145, "atomic integral typedefs", is perhaps misleading, since the types listed do not contain all of the "integral" types.
Comment: Granted, though the table describe those with extra operations.
Action: Leave the text as is.
Point: The macros correspond to the types in Table 145, "with the signed and unsigned variants grouped together". That's a rather inartful way of saying that ATOMIC_SHORT_LOCK_FREE applies to signed short and unsigned short. Presumably this also means that ATOMIC_CHAR_LOCK_FREE applies to all three char types.
Comment: Yes, it is inartful.
Comment: Adding additional macros to distinguish signed and unsigned would provide no real additional information given the other constraints in the language.
Comment: Yes, it applies to all three char types.
Action: Leave the text as is.
Point: The standard says that "There are full specializations over the integral types (char, signed char, ...)" bool is not in the list. But this text is not normative. It simply tells you that "there are" specializations, not "there shall be" specializations, which would impose a requirement. The requirement, to the extent that there is one, is in the header synopsis, which, in N3242, sort of pulls in the list of types in Table 145.
Comment: The intent was for the specializations to be normative. Otherwise the extra member functions could not be present.
Action: Clarify the text.
[Proposed Resolution]
Edit header <atomic> synopsis 29.2 [atomics.syn]:
namespace std { // 29.3, order and consistency enum memory_order; template <class T> T kill_dependency(T y); // 29.4, lock-free property #define ATOMIC_BOOL_LOCK_FREE unspecified #define ATOMIC_CHAR_LOCK_FREE unspecified #define ATOMIC_CHAR16_T_LOCK_FREE unspecified #define ATOMIC_CHAR32_T_LOCK_FREE unspecified #define ATOMIC_WCHAR_T_LOCK_FREE unspecified #define ATOMIC_SHORT_LOCK_FREE unspecified #define ATOMIC_INT_LOCK_FREE unspecified #define ATOMIC_LONG_LOCK_FREE unspecified #define ATOMIC_LLONG_LOCK_FREE unspecified #define ATOMIC_POINTER_LOCK_FREE unspecified // 29.5, generic types template<class T> struct atomic; template<> struct atomic<integral>; template<class T> struct atomic<T*>; // 29.6.1, general operations on atomic types // In the following declarations, atomic_type is either // atomic<T> or a named base class for T from // Table 145 or inferred from // Table 146 or from bool. […] }Edit the synopsis of 29.4 [atomics.lockfree] and paragraph 1 as follows:
#define ATOMIC_BOOL_LOCK_FREE unspecified #define ATOMIC_CHAR_LOCK_FREEimplementation-definedunspecified #define ATOMIC_CHAR16_T_LOCK_FREEimplementation-definedunspecified #define ATOMIC_CHAR32_T_LOCK_FREEimplementation-definedunspecified #define ATOMIC_WCHAR_T_LOCK_FREEimplementation-definedunspecified #define ATOMIC_SHORT_LOCK_FREEimplementation-definedunspecified #define ATOMIC_INT_LOCK_FREEimplementation-definedunspecified #define ATOMIC_LONG_LOCK_FREEimplementation-definedunspecified #define ATOMIC_LLONG_LOCK_FREEimplementation-definedunspecified #define ATOMIC_POINTER_LOCK_FREE unspecified1 The ATOMIC_…_LOCK_FREE macros indicate the lock-free property of the corresponding atomic types, with the signed and unsigned variants grouped together. The properties also apply to the corresponding (partial) specializations of the atomic template. A value of 0 indicates that the types are never lock-free. A value of 1 indicates that the types are sometimes lock-free. A value of 2 indicates that the types are always lock-free.
Edit 29.5 [atomics.types.generic] paragraph 3, 4, and 6-8 as follows:
2 The semantics of the operations on specializations of atomic are defined in 29.6 [atomics.types.operations].
3 Specializations and instantiations of the atomic template shall have a deleted copy constructor, a deleted copy assignment operator, and a constexpr value constructor. 4 Thereareshall be full specializationsoverfor the integral types(char, signed char, unsigned char, short, unsigned short, int, unsigned int, long, unsigned long, long long, unsigned long long, char16_t, char32_t, and wchar_t, and any other types needed by the typedefs in the header <cstdint>)on the atomic class template. For each integral type integral, the specialization atomic<integral> provides additional atomic operations appropriate to integral types.[Editor's note: I'm guessing that this is the correct rendering of the text in the paper; if this sentence was intended to impose a requirement, rather than a description, it will have to be changed.]There shall be a specialization atomic<bool> which provides the general atomic operations as specified in 29.6.1 [atomics.types.operations.general]. 5 The atomic integral specializations and the specialization atomic<bool> shall have standard layout. They shall each have a trivial default constructor and a trivial destructor. They shall each support aggregate initialization syntax. 6 Thereareshall be pointer partial specializationsonof the atomic class template. These specializations shall have trivial default constructors and trivial destructors. 7 Thereareshall be named types corresponding to the integral specializations of atomic, as specified in Table 145. In addition, there shall be named typeatomic_bool
corresponding to the specializationatomic<bool>
. Each named type is either a typedef to the corresponding specialization or a base class of the corresponding specialization. If it is a base class, it shall support the same member functions as the corresponding specialization. 8 Thereareshall be atomic typedefs corresponding to the typedefs in the header <inttypes.h> as specified in Table 146.
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: X [atomics.types.integral] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.types.integral].
View all issues with Resolved status.
Duplicate of: 1463
Discussion:
Addresses GB-132, US-157
The atomic_itype types and atomic_address have two overloads of operator=; one is volatile qualified, and the other is not. atomic_bool only has the volatile qualified version:
bool operator=(bool) volatile;
On a non-volatile-qualified object this is ambiguous with the deleted copy-assignment operator
atomic_bool& operator=(atomic_bool const&) = delete;
due to the need for a single standard conversion in each case when assigning a bool to an atomic_bool as in:
atomic_bool b; b = true;
The conversions are:
atomic_bool& → atomic_bool volatile&
vs
bool → atomic_bool
[ Proposed resolution as of NB comment: ]
Change X [atomics.types.integral] as indicated:
namespace std { typedef struct atomic_bool { [..] bool operator=(bool) volatile; bool operator=(bool); } atomic_bool; [..] }
[ 2010-10-27 Daniel adds: ]
Accepting n3164 would solve this issue by replacing atomic_bool by atomic<bool>.
[ 2010 Batavia ]
Resolved by adoption of n3193.
Proposed resolution:
Solved by n3193.
Section: X [atomics.types.integral] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.types.integral].
View all issues with Resolved status.
Discussion:
Addresses US-160
The last sentence of X [atomics.types.integral] p.1 says:
Table 143 shows typedefs to atomic integral classes and the corresponding <cstdint> typedefs.
That's nice, but nothing says these are supposed to be part of the implementation, and they are not listed in the synopsis.
[ Proposed resolution as of NB comment ]
1 The name atomic_itype and the functions operating on it in the preceding synopsis are placeholders for a set of classes and functions. Throughout the preceding synopsis, atomic_itype should be replaced by each of the class names in Table 142 and integral should be replaced by the integral type corresponding to the class name.
Table 143 shows typedefs to atomic integral classes and the corresponding <cstdint> typedefs.
[ 2010-10-27 Daniel adds: ]
Accepting n3164 would solve this issue.
[ 2010-11 Batavia ]
Resolved by adopting n3193.
Proposed resolution:
Solved by n3193.
Section: X [atomics.types.address] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.types.address].
View all issues with Resolved status.
Discussion:
Addresses US-161
atomic_address has operator+= and operator-=, but no operator++ or operator--. The template specialization atomic<Ty*> has all of them.
[ 2010-10-27 Daniel adds: ]
Accepting n3164 would solve this issue by replacing atomic_address by atomic<void*>.
[ Resolved in Batavia by accepting n3193. ]
Proposed resolution:
Change X [atomics.types.address], class atomic_address synopsis, as indicated:
namespace std { typedef struct atomic_address { […] void* operator=(const void*) volatile; void* operator=(const void*); void* operator++(int) volatile; void* operator++(int); void* operator--(int) volatile; void* operator--(int); void* operator++() volatile; void* operator++(); void* operator--() volatile; void* operator--(); void* operator+=(ptrdiff_t) volatile; void* operator+=(ptrdiff_t); void* operator-=(ptrdiff_t) volatile; void* operator-=(ptrdiff_t); } atomic_address; […] }
Section: X [atomics.types.address] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.types.address].
View all issues with Resolved status.
Discussion:
Addresses US-162
The compare_exchange_weak and compare_exchange_strong member functions that take const void* arguments lead to a silent removal of const, because the load member function and other acessors return the stored value as a void*.
[ Proposed resolution as of NB comment: ]
Change X [atomics.types.address], class atomic_address synopsis, as indicated:
namespace std { typedef struct atomic_address { [..]bool compare_exchange_weak(const void*&, const void*, memory_order, memory_order) volatile;bool compare_exchange_weak(const void*&, const void*, memory_order, memory_order);bool compare_exchange_strong(const void*&, const void*, memory_order, memory_order) volatile;bool compare_exchange_strong(const void*&, const void*, memory_order, memory_order);bool compare_exchange_weak(const void*&, const void*, memory_order = memory_order_seq_cst) volatile;bool compare_exchange_weak(const void*&, const void*, memory_order = memory_order_seq_cst);bool compare_exchange_strong(const void*&, const void*, memory_order = memory_order_seq_cst) volatile;bool compare_exchange_strong(const void*&, const void*, memory_order = memory_order_seq_cst);[..] } atomic_address; [..] }
[ 2010-10-27 Daniel adds: ]
Accepting n3164 would solve this issue by replacing atomic_address by atomic<void*>.
[ Resolved in Batavia by accepting n3193. ]
Proposed resolution:
Solved by n3193.
Section: X [atomics.types.address] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.types.address].
View all issues with Resolved status.
Discussion:
Addresses US-163
Requiring atomic<T*> to be derived from atomic_address breaks type safety:
atomic<double*> ip; char ch; atomic_store(&ip, &ch); *ip.load() = 3.14159;
The last line overwrites ch with a value of type double.
[ 2010-10-27 Daniel adds: ]
Resolving this issue will also solve 1469
Accepting n3164 would solve this issue by removing atomic_address.
[ Resolved in Batavia by accepting n3193. ]
Proposed resolution:
namespace std { template <class T> struct atomic<T*>: atomic_address{ [..] }; [..] }
4 There are pointer partial specializations on the atomic class template.
These specializations shall be publicly derived from atomic_address.The unit of addition/subtraction for these specializations shall be the size of the referenced type. These specializations shall have trivial default constructors and trivial destructors.
Section: X [atomics.types.address] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.types.address].
View all issues with Resolved status.
Discussion:
Addresses US-164
atomic_address has member functions compare_exchange_weak and compare_exchange_strong that take arguments of type const void*, in addition to the void* versions. If these member functions survive, there should be corresponding free functions.
[ 2010-10-27 Daniel adds: ]
Accepting n3164 would solve this issue differently by removing the overloads with const void* arguments, because they break type-safety.
[ Resolved in Batavia by accepting n3193. ]
Proposed resolution:
Extend the synopsis around atomic_address in X [atomics.types.address] as indicated:
namespace std { [..] bool atomic_compare_exchange_weak(volatile atomic_address*, void**, void*); bool atomic_compare_exchange_weak(atomic_address*, void**, void*); bool atomic_compare_exchange_strong(volatile atomic_address*, void**, void*); bool atomic_compare_exchange_strong(atomic_address*, void**, void*); bool atomic_compare_exchange_weak_explicit(volatile atomic_address*, void**, void*, memory_order, memory_order); bool atomic_compare_exchange_weak_explicit(atomic_address*, void**, void*, memory_order, memory_order); bool atomic_compare_exchange_strong_explicit(volatile atomic_address*, void**, void*, memory_order, memory_order); bool atomic_compare_exchange_strong_explicit(atomic_address*, void**, void*, memory_order, memory_order); bool atomic_compare_exchange_weak(volatile atomic_address*, const void**, const void*); bool atomic_compare_exchange_weak(atomic_address*, const void**, const void*); bool atomic_compare_exchange_strong(volatile atomic_address*, const void**, const void*); bool atomic_compare_exchange_strong(atomic_address*, const void**, const void*); bool atomic_compare_exchange_weak_explicit(volatile atomic_address*, const void**, const void*, memory_order, memory_order); bool atomic_compare_exchange_weak_explicit(atomic_address*, const void**, const void*, memory_order, memory_order); bool atomic_compare_exchange_strong_explicit(volatile atomic_address*, const void**, const void*, memory_order, memory_order); bool atomic_compare_exchange_strong_explicit(volatile atomic_address*, const void**, const void*, memory_order, memory_order); bool atomic_compare_exchange_strong_explicit(atomic_address*, const void**, const void*, memory_order, memory_order); [..] }
Section: 29.5 [atomics.types.generic] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [atomics.types.generic].
View all other issues in [atomics.types.generic].
View all issues with Resolved status.
Discussion:
Addresses GB-133
The free functions that operate on atomic_address can be used to store a pointer to an unrelated type in an atomic<T*> without a cast. e.g.
int i; atomic<int*> ai(&i); string s; atomic_store(&ai,&s);
Overload the atomic_store, atomic_exchange and atomic_compare_exchange_[weak/strong] operations for atomic<T*> to allow storing only pointers to T.
[ 2010-10-27 Daniel adds: ]
Resolving this issue will also solve 1467
Accepting n3164 would solve this issue by removing atomic_address.
[Resolved in Batavia by accepting n3193. ]
Proposed resolution:
Add the following overloads to 29.5 [atomics.types.generic], the synopsis around the specialization atomic<T*>, as indicated:
namespace std { [..] template <class T> struct atomic<T*> : atomic_address { [..] }; template<typename T> void atomic_store(atomic<T*>&,T*); template<typename T> void atomic_store(atomic<T*>&,void*) = delete; template<typename T> void atomic_store_explicit(atomic<T*>&,T*,memory_order); template<typename T> void atomic_store_explicit(atomic<T*>&,void*,memory_order) = delete; template<typename T> T* atomic_exchange(atomic<T*>&,T*); template<typename T> T* atomic_exchange(atomic<T*>&,void*) = delete; template<typename T> T* atomic_exchange_explicit(atomic<T*>&,T*,memory_order); template<typename T> T* atomic_exchange_explicit(atomic<T*>&,void*,memory_order) = delete; template<typename T> T* atomic_compare_exchange_weak(atomic<T*>&,T**,T*); template<typename T> T* atomic_compare_exchange_weak(atomic<T*>&,void**,void*) = delete; template<typename T> T* atomic_compare_exchange_weak_explicit(atomic<T*>&,T**,T*,memory_order); template<typename T> T* atomic_compare_exchange_weak_explicit(atomic<T*>&,void**,void*,memory_order) = delete; template<typename T> T* atomic_compare_exchange_strong(atomic<T*>&,T**,T*); template<typename T> T* atomic_compare_exchange_strong(atomic<T*>&,void**,void*) = delete; template<typename T> T* atomic_compare_exchange_strong_explicit(atomic<T*>&,T**,T*,memory_order); template<typename T> T* atomic_compare_exchange_strong_explicit(atomic<T*>&,void**,void*,memory_order) = delete; }
Section: 29.6.5 [atomics.types.operations.req] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [atomics.types.operations.req].
View all other issues in [atomics.types.operations.req].
View all issues with C++11 status.
Duplicate of: 1470, 1475, 1476, 1477
Discussion:
Addresses US-175, US-165, CH-23, GB-135
29.6.5 [atomics.types.operations.req] p. 25: The first sentence is grammatically incorrect.
[ 2010-10-28 Daniel adds: ]
Duplicate issue 1475 also has a proposed resolution, but both issues are resolved with below proposed resolution.
[ 2011-02-15 Howard fixes numbering, Hans improves the wording ]
[2011-02-24 Reflector discussion]
Moved to Tentatively Ready after 6 votes.
Proposed resolution:
Change 29.6.5 [atomics.types.operations.req] p. 23 as indicated:
[ Note: For example, t
The effect ofthe compare-and-exchange operationsatomic_compare_exchange_strong isif (memcmp(object, expected, sizeof(*object)) == 0) memcpy(object, &desired, sizeof(*object)); else memcpy(expected, object, sizeof(*object));— end note ] [..]
Change 29.6.5 [atomics.types.operations.req] p. 25 as indicated:
25 Remark:
When a compare-and-exchange is in a loop, the weak version will yield better performance on some platforms. When a weak compare-and-exchange would require a loop and a strong one would not, the strong one is preferable. — end note ]The weak compare-and-exchange operations may fail spuriously, that is, return false while leaving the contents of memory pointed to by expected before the operation is the same that same as that of the object and the same as that of expected after the operationA weak compare-and-exchange operation may fail spuriously. That is, even when the contents of memory referred to by expected and object are equal, it may return false and store back to expected the same memory contents that were originally there.. [ Note: This spurious failure enables implementation of compare-and-exchange on a broader class of machines, e.g., loadlocked store-conditional machines. A consequence of spurious failure is that nearly all uses of weak compare-and-exchange will be in a loop.
Section: 29.6 [atomics.types.operations] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.types.operations].
View all issues with C++11 status.
Discussion:
Addresses GB-136
GB requests normative clarification in 29.6 [atomics.types.operations] p.4 that concurrent access constitutes a race, as already done on p.6 and p.7.
[ Resolution proposed in ballot comment: ]
Initialisation of atomics:
We believe the intent is that for any atomics there is a distinguished initialisation write, but that this need not happens-before all the other operations on that atomic - specifically so that the initialisation write might be non-atomic and hence give rise to a data race, and hence undefined behaviour, in examples such as this (from Hans):atomic<atomic<int> *> p f() | { atomic<int>x; | W_na x p.store(&x,mo_rlx); | W_rlx p=&x } |(where na is nonatomic and rlx is relaxed). We suspect also that no other mixed atomic/nonatomic access to the same location is intended to be permitted. Either way, a note would probably help.
[2011-02-26: Hans comments and drafts wording]
I think the important point here is to clarify that races on atomics are possible, and can be introduced as a result of non-atomic initialization operations. There are other parts of this that remain unclear to me, such as whether there are other ways to introduce data races on atomics, or whether the races with initialization also introduce undefined behavior by the 3.8 lifetime rules. But I don't think that it is necessary to resolve those issues before releasing the standard. That's particularly true since we've introduced atomic_init, which allows easier ways to construct initialization races.
[2011-03 Madrid]
Accepted to be applied immediately to the WP
Proposed resolution:
Update 29.6.5 [atomics.types.operations.req] p. 5 as follows:
constexpr A::A(C desired);5 Effects: Initializes the object with the value desired.
[ Note: Construction is not atomic. — end note ]Initialization is not an atomic operation (1.10) [intro.multithread]. [Note: It is possible to have an access to an atomic object A race with its construction, for example by communicating the address of the just-constructed object A to another thread viamemory_order_relaxed
atomic operations on a suitable atomic pointer variable, and then immediately accessing A in the receiving thread. This results in undefined behavior. — end note]
In response to the editor comment to 29.6.5 [atomics.types.operations.req] p. 8: The first Effects element is the correct and intended one:
void atomic_init(volatile A *object, C desired); void atomic_init(A *object, C desired);8 Effects: Non-atomically initializes *object with value desired. This function shall only be applied to objects that have been default constructed, and then only once. [ Note: these semantics ensure compatibility with C. — end note ] [ Note: Concurrent access from another thread, even via an atomic operation, constitutes a data race. — end note ]
[Editor's note: The preceding text is from the WD as amended by N3196. N3193 makes different changes, marked up in the paper as follows:] Effects: Dynamically initializes an atomic variable. Non-atomically That is, non-atomically assigns the value desired to *object. [ Note: this operation may need to initialize locks. — end note ] Concurrent access from another thread, even via an atomic operation, constitutes a data race.
Section: 29.8 [atomics.fences] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.fences].
View all issues with C++11 status.
Discussion:
Addresses US-179
The fence functions (29.8 [atomics.fences] p.5 + p.6) should be extern "C", for C compatibility.
[2011-02-16 Reflector discussion]
Moved to Tentatively Ready after 6 votes.
Proposed resolution:
namespace std { [..] // 29.8, fences extern "C" void atomic_thread_fence(memory_order); extern "C" void atomic_signal_fence(memory_order); }
Change 29.8 [atomics.fences], p. 5 and p. 6 as indicated:
extern "C" void atomic_thread_fence(memory_order);5 Effects: depending on the value of order, this operation: [..]
extern "C" void atomic_signal_fence(memory_order);6 Effects: equivalent to atomic_thread_fence(order), except that synchronizes with relationships are established only between a thread and a signal handler executed in the same thread.
Section: 29.8 [atomics.fences] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [atomics.fences].
View all issues with C++11 status.
Discussion:
Addresses GB-137
Thread fence not only establish synchronizes with relationships, there are semantics of fences that are expressed not in terms of synchronizes with relationships (for example see 29.3 [atomics.order] p.5). These semantics also need to apply to the use of atomic_signal_fence in a restricted way.
[Batavia: Concurrency group discussed issue, and is OK with the proposed resolution.]
[2011-02-26 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed resolution:
Change 29.8 [atomics.fences] p. 6 as indicated:
void atomic_signal_fence(memory_order);6 Effects: equivalent to atomic_thread_fence(order), except that
synchronizes with relationshipsthe resulting ordering constraints are established only between a thread and a signal handler executed in the same thread.
Section: 30.2 [thread.req] Status: Resolved Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses GB-138
The FCD combines the requirements for lockable objects with those for the standard mutex objects. These should be separate. This is LWG issue 1268.
[ Resolution proposed by ballot comment: ]
See attached Appendix 1 - Additional Details
[ 2010-11-01 Daniel comments: ]
Paper n3130 addresses this issue.
Proposed resolution:
Resolved by n3197.
Section: 30.2.4 [thread.req.timing] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [thread.req.timing].
View all issues with Resolved status.
Discussion:
Addresses US-181
The timeout operations are under-specified.
[ Resolution proposed by ballot comment: ]
Define precise semantics for timeout_until and timeout_for. See n3141 page 193 - Appendix 1 - Additional Details
[ 2010-11-01 Daniel comments: ]
Accepting n3128 would solve this issue.
Proposed resolution:
Resolved by n3191.
Section: 30.3.2 [thread.thread.this] Status: C++11 Submitter: Switzerland Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [thread.thread.this].
View all issues with C++11 status.
Discussion:
Addresses CH-25
Clock related operations are currently not required not to throw. So "Throws: Nothing." is not always true.
[ Resolution proposed by ballot comment: ]
Either require clock related operations not to throw (in 20.10) or change the Throws clauses in 30.3.2. Also possibly add a note that abs_time in the past or negative rel_time is allowed.
[2011-02-10: Howard Hinnant provides a resolution proposal]
[Previous proposed resolution:]
Change the Operational semantics of C1::now() in 20.12.3 [time.clock.req], Table 59 — Clock requirements as follows:
Table 59 — Clock requirements Expression Return type Operational semantics C1::now() C1::time_point Returns a time_point object
representing the current point in time.
Shall not throw an exception.
[2011-02-19: Daniel comments and suggests an alternative wording]
Imposing the no-throw requirement on C1::now() of any clock time is an overly radical step: It has the indirect consequences that representation types for C1::rep can never by types with dynamic memory managment, e.g. my big_int, which are currently fully supported by the time utilities. Further-on this strong constraint does not even solve the problem described in the issue, because we are still left with the fact that any of the arithmetic operations of C1::rep, C1::duration, and C1::time_point may throw exceptions.
The alternative proposal uses the following strategy: The general Clock requirements remain untouched, but we require that any functions of the library-provided clocks from sub-clause 20.12.7 [time.clock] and their associated types shall not throw exceptions. Second, we replace existing noexcept specifications of functions from Clause 30 that depend on durations, clocks, or time points by wording that clarifies that these functions can only throw, if the operations of user-provided durations, clocks, or time points used as arguments to these functions throw exceptions.
[2011-03-23 Daniel and Peter check and simplify the proposed resolution resulting in this paper]
There is an inherent problem with std::time_point that it doesn't seem to have an equivalent value for ((time_t)-1) that gets returned by C's time() function to signal a problem, e.g., because the underlying hardware is unavailable. After a lot of thinking and checks we came to the resolution that timepoint::max() should be the value to serve as a value signaling errors in cases where we prefer to stick with no-throw conditions. Of-course, user-provided representation types don't need to follow this approach if they prefer exceptions to signal such failures.
the functions now() and from_time_t() can remain noexcept with the solution to return timepoint::max() in case the current time cannot be determined or (time_t)-1 is passed in, respectively. Based on the previous proposed solution to LWG 1487 we decided that the new TrivialClock requirements should define that now() mustn't throw and return timepoint::max() to signal a problem. That is in line with the C standard where (time_t)-1 signals a problem. Together with a fix to a - we assumed - buggy specifcation in 20.11.3 p2 which uses "happens-before" relationship with something that isn't any action:2 In Table 59 C1 and C2 denote clock types. t1 and t2 are values returned by C1::now() where the call returning t1 happens before (1.10) the call returning t2 and both of these calls happen before C1::time_point::max().
[2011-03-23 Review with Concurrency group suggested further simplifications and Howard pointed out, that we do not need time_point::max() as a special value.]
also the second "happens before" will be changed to "occurs before" in the english meaning. this is to allow a steady clock to wrap.
Peter updates issue accordingly to discussion.[Note to the editor: we recommend removal of the following redundant paragraphs in 30.5.2 [thread.condition.condvarany] p. 18 to p. 21, p. 27, p. 28, p. 30, and p. 31 that are defining details for the wait functions that are given by the Effects element. ]
[Note to the editor: we recommend removal of the following redundant paragraphs in 30.5.1 [thread.condition.condvar]: p24-p26, p33-p34, and p36-p37 that are defining details for the wait_for functions. We believe these paragraphs are redundant with respect to the Effects clauses that define semantics based on wait_until. An example of such a specification is the wait() with a predicate. ]
Proposed resolution:
Change p2 in 20.11.3 [time.clock.req] as follows
2 In Table 59 C1 and C2 denote clock types. t1 and t2 are values returned by C1::now() where the call returning t1 happens before (1.10) the call returning t2 and both of these calls
happenoccur before C1::time_point::max(). [ Note: This means C1 didn't wrap around between t1 and t2 — end note ]
Add the following new requirement set at the end of sub-clause 20.12.3 [time.clock.req]: [Comment: This requirement set is intentionally incomplete. The reason for this incompleteness is the based on the fact, that if we would make it right for C++0x, we would end up defining something like a complete ArithmeticLike concept for TC::rep, TC::duration, and TC::time_point. But this looks out-of scope for C++0x to me. The effect is that we essentially do not exactly say, which arithmetic or comparison operations can be used in the time-dependent functions from Clause 30, even though I expect that all declared functions of duration and time_point are well-formed and well-defined. — end comment]
3 [ Note: the relative difference in durations between those reported by a given clock and the SI definition is a measure of the quality of implementation. — end note ]
? A type TC meets the TrivialClock requirements if:
TC satisfies the Clock requirements (20.12.3 [time.clock.req]),
the types TC::rep, TC::duration, and TC::time_point satisfy the requirements of EqualityComparable ( [equalitycomparable]), LessThanComparable ( [lessthancomparable]), DefaultConstructible ( [defaultconstructible]), CopyConstructible ( [copyconstructible]), CopyAssignable ( [copyassignable]), Destructible ( [destructible]), and of numeric types ([numeric.requirements]) [Note: This means in particular, that operations of these types will not throw exceptions — end note ],
lvalues of the types TC::rep, TC::duration, and TC::time_point are swappable (17.6.3.2 [swappable.requirements]),
the function TC::now() does not throw exceptions, and
the type TC::time_point::clock meets the TrivialClock requirements, recursively.
Modify 20.12.7 [time.clock] p. 1 as follows:
1 - The types defined in this subclause shall satisfy the TrivialClock requirements (20.11.1).
Modify 20.12.7.1 [time.clock.system] p. 1, class system_clock synopsis, as follows:
class system_clock { public: typedef see below rep; typedef ratio<unspecified , unspecified > period; typedef chrono::duration<rep, period> duration; typedef chrono::time_point<system_clock> time_point; static const bool is_monotonic is_steady = unspecified; static time_point now() noexcept; // Map to C API static time_t to_time_t (const time_point& t) noexcept; static time_point from_time_t(time_t t) noexcept; };
Modify the prototype declarations in 20.12.7.1 [time.clock.system] p. 3 + p. 4 as indicated (This edit also fixes the miss of the static specifier in these prototype declarations):
static time_t to_time_t(const time_point& t) noexcept;static time_point from_time_t(time_t t) noexcept;
Modify 20.12.7.2 [time.clock.steady] p. 1, class steady_clock synopsis, as follows:
class steady_clock { public: typedef unspecified rep; typedef ratio<unspecified , unspecified > period; typedef chrono::duration<rep, period> duration; typedef chrono::time_point<unspecified, duration> time_point; static const bool is_monotonic is_steady = true; static time_point now() noexcept; };
Modify 20.12.7.3 [time.clock.hires] p. 1, class high_resolution_clock synopsis, as follows:
class high_resolution_clock { public: typedef unspecified rep; typedef ratio<unspecified , unspecified > period; typedef chrono::duration<rep, period> duration; typedef chrono::time_point<unspecified, duration> time_point; static const bool is_monotonic is_steady = unspecified; static time_point now() noexcept; };
Add a new paragraph at the end of 30.2.4 [thread.req.timing]:
6 The resolution of timing provided by an implementation depends on both operating system and hardware. The finest resolution provided by an implementation is called the native resolution.
? Implementation-provided clocks that are used for these functions shall meet the TrivialClock requirements (20.12.3 [time.clock.req]).
Edit the synopsis of 30.3.2 [thread.thread.this] before p. 1. [Note: this duplicates edits also in D/N3267]:
template <class Clock, class Duration> void sleep_until(const chrono::time_point<Clock, Duration>& abs_time)noexcept; template <class Rep, class Period> void sleep_for(const chrono::duration<Rep, Period>& rel_time)noexcept;
Modify the prototype specifications in 30.3.2 [thread.thread.this] before p. 4 and p. 6 and re-add a Throws element following the Synchronization elements at p. 5 and p. 7:
template <class Clock, class Duration> void sleep_until(const chrono::time_point<Clock, Duration>& abs_time)noexcept;4 - [...]
5 - Synchronization: None. ? - Throws: Nothing if Clock satisfies the TrivialClock requirements (20.12.3 [time.clock.req]) and operations of Duration do not throw exceptions. [Note: Instantiations of time point types and clocks supplied by the implementation as specified in 20.12.7 [time.clock] do not throw exceptions. — end note]
template <class Rep, class Period> void sleep_for(const chrono::duration<Rep, Period>& rel_time)noexcept;6 [...]
7 Synchronization: None. ? Throws: Nothing if operations of chrono::duration<Rep, Period> do not throw exceptions. [Note: Instantiations of duration types supplied by the implementation as specified in 20.12.7 [time.clock] do not throw exceptions. — end note]
Fix a minor incorrectness in p. 5: Duration types need to compare against duration<>::zero(), not 0:
3 The expression m.try_lock_for(rel_time) shall be well-formed and have the following semantics:
[...] 5 Effects: The function attempts to obtain ownership of the mutex within the relative timeout (30.2.4) specified by rel_time. If the time specified by rel_time is less than or equal to0rel_time.zero(), the function attempts to obtain ownership without blocking (as if by calling try_lock()). The function shall return within the timeout specified by rel_time only if it has obtained ownership of the mutex object. [ Note: As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but implementations are expected to make a strong effort to do so. — end note ]
Modify the class timed_mutex synopsis in 30.4.1.3.1 [thread.timedmutex.class] as indicated: [Note: this duplicates edits also in D/N3267]:
class timed_mutex { public: [...] template <class Rep, class Period> bool try_lock_for(const chrono::duration<Rep, Period>& rel_time)noexcept; template <class Clock, class Duration> bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time)noexcept; [...] };
Modify the class recursive_timed_mutex synopsis in 30.4.1.3.2 [thread.timedmutex.recursive] as indicated: [Note: this duplicates edits also in D/N3267]:
class recursive_timed_mutex { public: [...] template <class Rep, class Period> bool try_lock_for(const chrono::duration<Rep, Period>& rel_time)noexcept; template <class Clock, class Duration> bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time)noexcept; [...] };
Modify the class template unique_lock synopsis in 30.4.2.2 [thread.lock.unique] as indicated. [Note: this duplicates edits also in D/N3267]:
template <class Mutex> class unique_lock { public: [...] template <class Clock, class Duration> unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time)noexcept; template <class Rep, class Period> unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time)noexcept; [...] };
Modify the constructor prototypes in 30.4.2.2.1 [thread.lock.unique.cons] before p. 14 and p. 17 [Note: this duplicates edits also in D/N3267]:
template <class Clock, class Duration> unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time)noexcept;
template <class Rep, class Period> unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time)noexcept;
Section: 30.4.1 [thread.mutex.requirements] Status: Resolved Submitter: Switzerland Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [thread.mutex.requirements].
View all other issues in [thread.mutex.requirements].
View all issues with Resolved status.
Discussion:
Addresses CH-27
The mutex requirements force try_lock to be noexcept(true). However, where they are used by the generic algorithms, those relax this requirement and say that try_lock may throw. This means the requirement is too stringent, also a non-throwing try_lock does not allow for a diagnostic such as system_error that lock() will give us.
[ Resolution proposed by ballot comment: ]
delete p18, adjust 30.4.4 p1 and p4 accordingly
[ 2010-11-01 Daniel comments: ]
Accepting n3130 would solve this issue.
Proposed resolution:
Resolved by n3197.
Section: 30.4.1 [thread.mutex.requirements] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [thread.mutex.requirements].
View all other issues in [thread.mutex.requirements].
View all issues with Resolved status.
Discussion:
Addresses US-186
try_lock does not provide a guarantee of forward progress because it is allowed to spuriously fail.
[ Resolution proposed by ballot comment: ]
The standard mutex types must not fail spuriously in try_lock. See n3141 page 205 - Appendix 1 - Additional Details
[ 2010-11-01 Daniel comments: ]
Paper n3152 addresses this issue.
Proposed resolution:
Resolved by n3209.
Section: 30.4.1 [thread.mutex.requirements] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [thread.mutex.requirements].
View all other issues in [thread.mutex.requirements].
View all issues with Resolved status.
Discussion:
Addresses US-188
Mutex requirements should not be bound to threads.
[ Resolution proposed by ballot comment: ]
See Appendix 1 of n3141 - Additional Details, p. 208.
[ 2010-10-24 Daniel adds: ]
Accepting n3130 would solve this issue.
Proposed resolution:
Resolved by n3197.
Section: 30.4.4.2 [thread.once.callonce] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [thread.once.callonce].
View all issues with C++11 status.
Discussion:
Addresses US-190
The term "are serialized" is never defined (30.4.4.2 [thread.once.callonce] p. 2).
[ Resolution proposed by ballot comment: ]
Remove the sentence with "are serialized" from paragraph 2. Add "Calls to call_once on the same once_flag object shall not introduce data races (17.6.4.8)." to paragraph 3.
[ 2010-11-01 Daniel translates NB comment into wording ]
[ 2011-02-17: Hans proposes an alternative resolution ]
[ 2011-02-25: Hans, Clark, and Lawrence update the suggested wording ]
[2011-02-26 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed resolution:
Change 30.4.4.2 [thread.once.callonce] p.2+3 as indicated:
template<class Callable, class ...Args> void call_once(once_flag& flag, Callable&& func, Args&&... args);[..]
2 Effects:Calls to call_once on the same once_flag object are serialized. If there has been a prior effective call to call_once on the same once_flag object, the call to call_once returns without invoking func. If there has been no prior effective call to call_once on the same once_flag object, INVOKE(decay_copy( std::forward<Callable>(func)), decay_copy(std::forward<Args>(args))...) is executed. The call to call_once is effective if and only if INVOKE(decay_copy( std::forward<Callable>(func)), decay_copy(std::forward<Args>(args))...) returns without throwing an exception. If an exception is thrown it is propagated to the caller.An execution ofcall_once
that does not call itsfunc
is a passive execution. An execution ofcall_once
that calls itsfunc
is an active execution. An active execution shall callINVOKE(decay_copy(std::forward<Callable>(func)), decay_copy(std::forward<Args>(args))...)
. If such a call tofunc
throws an exception, the execution is exceptional, otherwise it is returning. An exceptional execution shall propagate the exception to the caller ofcall_once
. Among all executions ofcall_once
for any givenonce_flag
: at most one shall be a returning execution; if there is a returning execution, it shall be the last active execution; and there are passive executions only if there is a returning execution. [Note: Passive executions allow other threads to reliably observe the results produced by the earlier returning execution. — end note] 3 Synchronization:The completion of an effective call to call_once on a once_flag object synchronizes with (1.10 [intro.multithread]) all subsequent calls to call_once on the same once_flag object.For any givenonce_flag
: all active executions occur in a total order; completion of an active execution synchronizes with (1.10 [intro.multithread]) the start of the next one in this total order; and the returning execution synchronizes with the return from all passive executions.
Section: 30.5 [thread.condition] Status: C++11 Submitter: Switzerland Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [thread.condition].
View all issues with C++11 status.
Discussion:
Addresses CH-30
If lock.lock() throws an exception, the postcondition can not be generally achieved.
[ Resolution proposed by ballot comment: ]
Either state that the postcondition might not be achieved, depending on the error condition, or state that terminate() is called in this case.
[ 2010-08-13 Peter Sommerlad comments and provides wording ]
30.5.1 [thread.condition.condvar], 30.5.2 [thread.condition.condvarany]
p. 13, last bullet, and corresponding paragraphs in all wait functions Problem:
Condition variable wait might fail, because the lock cannot be acquired when notified. CH-30 says: "If lock.lock() throws an exception, the postcondition can not be generally achieved." CH-30 proposes: "Either state that the postcondition might not be achieved, depending on the error condition, or state that terminate() is called in this case." The discussion in Rapperswil concluded that calling terminate() might be too drastic in this case and a corresponding exception should be thrown/passed on and one should use a lock type that allows querying its status, which unique_lock allows for std::condition_variable We also had some additional observations while discussing in Rapperswil:
- in 30.5.1 [thread.condition.condvar] wait with predicate and wait_until with predicate lack the precondition, postcondition and Error conditions sections. the lack of the precondition would allow to call pred() without holding the lock.
- in 30.5.1 [thread.condition.condvar] wait_until and wait_for and 30.5.2 [thread.condition.condvarany] wait_for still specify an error condition for a violated precondition. This should be removed.
and add the following proposed solution:
[2011-02-27: Daniel adapts numbering to n3225]
Proposed resolution:
void wait(unique_lock<mutex>& lock);
[..]9 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
- no other thread is waiting on this condition_variable object or
- lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting (via wait or timed_wait) threads.
[..]11 Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
template <class Predicate> void wait(unique_lock<mutex>& lock, Predicate pred);
?? Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
- no other thread is waiting on this condition_variable object or
- lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting (via wait or timed_wait) threads.
14 Effects:
while (!pred()) wait(lock);
?? Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
?? Throws: std::system_error when an exception is required (30.2.2).
?? Error conditions:
- equivalent error condition from lock.lock() or lock.unlock().
template <class Clock, class Duration> cv_status wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time);
15 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
- no other thread is waiting on this condition_variable object or
- lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting (via wait, wait_for, or wait_until) threads.
[..]
[..]17 Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
20 Error conditions:
operation_not_permitted — if the thread does not own the lock.- equivalent error condition from lock.lock() or lock.unlock().
template <class Rep, class Period> cv_status wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time);
21 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
- no other thread is waiting on this condition_variable object or
- lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting (via wait, wait_for, or wait_until) threads.
[..]
[..]24 Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
26 Error conditions:
operation_not_permitted — if the thread does not own the lock.- equivalent error condition from lock.lock() or lock.unlock().
template <class Clock, class Duration, class Predicate> bool wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);
?? Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
- no other thread is waiting on this condition_variable object or
- lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting (via wait or timed_wait) threads.
27 Effects:
while (!pred()) if (wait_until(lock, abs_time) == cv_status::timeout) return pred(); return true;
28 Returns: pred()
?? Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
29 [ Note: The returned value indicates whether the predicate evaluates to true regardless of whether the timeout was triggered. — end note ]
?? Throws: std::system_error when an exception is required (30.2.2).
?? Error conditions:
- equivalent error condition from lock.lock() or lock.unlock().
template <class Rep, class Period, class Predicate> bool wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);
30 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
- no other thread is waiting on this condition_variable object or
- lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting (via wait, wait_for, or wait_until) threads.
[..]
33 Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
[..]
37 Error conditions:
operation_not_permitted — if the thread does not own the lock.- equivalent error condition from lock.lock() or lock.unlock().
template <class Lock, class Predicate> void wait(Lock& lock, Predicate pred);
[Note: if any of the wait functions exits with an exception it is indeterminate if the Lock is held. One can use a Lock type that allows to query that, such as the unique_lock wrapper. — end note]
11 Effects:
while (!pred()) wait(lock);
[..]
31 Error conditions:
operation_not_permitted — if the thread does not own the lock.- equivalent error condition from lock.lock() or lock.unlock().
Section: 30.5 [thread.condition] Status: Resolved Submitter: Switzerland Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [thread.condition].
View all issues with Resolved status.
Discussion:
Addresses CH-29
It is unclear if a spurious wake-up during the loop and reentering of the blocked state due to a repeated execution of the loop will adjust the timer of the blocking with the respect to the previously specified rel_time value.
[ Resolution proposed by ballot comment: ]
Make it clear (e.g. by a note) that when reexecuting the loop the waiting time when blocked will be adjusted with respect to the elapsed time of the previous loop executions.
[ 2010-08-13 Peter Sommerlad comments and provides wording: ]
Problem: It is unclear if a spurious wake-up during the loop and re-entering of the blocked state due to a repeated execution of the loop will adjust the timer of the blocking with the respect to the previously specified rel_time value.
Proposed Resolution from CH29: Make it clear (e.g. by a note) that when re-executing the loop the waiting time when blocked will be adjusted with respect to the elapsed time of the previous loop executions. Discussion in Rapperswil: Assuming the introduction of a mandatory steady_clock proposed by US-181 to the FCD the specification of condition_variable::wait_for can be defined in terms of wait_until using the steady_clock. This is also interleaving with US-181, because that touches the same paragraph (30.5.1 p 25, p34 and 30.5.2 p 20, p 28 in n3092.pdf) (The "as if" in the proposed solutions should be confirmed by the standardization terminology experts)
[ 2010-11 Batavia: Resolved by applying n3191 ]
- Change 30.5.1 [thread.condition.condvar] paragraph 25, wait_for Effects as indicated:
template <class Rep, class Period> cv_status wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time);[..]
25 Effects: as ifreturn wait_until(lock, chrono::steady_clock::now() + rel_time);
Atomically calls lock.unlock() and blocks on *this.When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.The function will unblock when signaled by a call to notify_one() or a call to notify_all(), by the elapsed time rel_time passing (30.2.4), or spuriously.If the function exits via an exception, lock.lock() shall be called prior to exiting the function scope.- Change 30.5.1 [thread.condition.condvar] paragraph 34, wait_for with predicate Effects as indicated:
template <class Rep, class Period, class Predicate> bool wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);[..]
34 Effects: as ifreturn wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred));
Executes a loop: Within the loop the function first evaluates pred() and exits the loop if the result is true.Atomically calls lock.unlock() and blocks on *this.When unblocked, calls lock.lock() (possibly blocking on the lock).The function will unblock when signaled by a call to notify_one() or a call to notify_all(), by the elapsed time rel_time passing (30.2.4), or spuriously.If the function exits via an exception, lock.lock() shall be called prior to exiting the function scope.The loop terminates when pred() returns true or when the time duration specified by rel_time has elapsed.- Change 30.5.2 [thread.condition.condvarany] paragraph 20, wait_for Effects as indicated:
template <class Lock, class Rep, class Period> cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);20 Effects: as if
return wait_until(lock, chrono::steady_clock::now() + rel_time);
Atomically calls lock.unlock() and blocks on *this.When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.The function will unblock when signaled by a call to notify_one() or a call to notify_all(), by the elapsed time rel_time passing (30.2.4), or spuriously.If the function exits via an exception, lock.unlock() shall be called prior to exiting the function scope.- Change 30.5.2 [thread.condition.condvarany] paragraph 28, wait_for with predicate Effects as indicated:
template <class Lock, class Rep, class Period, class Predicate> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);28 Effects: as if
return wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred));
Executes a loop: Within the loop the function first evaluates pred() and exits the loop if the result is true.Atomically calls lock.unlock() and blocks on *this.When unblocked, calls lock.lock() (possibly blocking on the lock).The function will unblock when signaled by a call to notify_one() or a call to notify_all(), by the elapsed time rel_time passing (30.2.4), or spuriously.If the function exits via an exception, lock.unlock() shall be called prior to exiting the function scope.The loop terminates when pred() returns true or when the time duration specified by rel_time has elapsed.
Proposed resolution:
Resolved by n3191.
Section: 30.6 [futures] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [futures].
View all issues with Resolved status.
Discussion:
Addresses US-194
The specification for managing associated asynchronous state is confusing, sometimes omitted, and redundantly specified.
[ Resolution proposed by ballot comment: ]
Define terms-of-art for releasing, making ready, and abandoning an associated asynchronous state. Use those terms where appropriate. See Appendix 1 - Additional Details
Proposed resolution:
Resolved in Batavia by accepting n3192.
Section: 30.6.4 [futures.state] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [futures.state].
View all issues with Resolved status.
Discussion:
Addresses US-195
The intent and meaning of 30.6.4 [futures.state] p10 is not apparent.
10 Accesses to the same shared state conflict (1.10).
[ 2011-03-07 Jonathan Wakely adds: ]
It's not clear which paragraph this refers to, I had to go to the ballot comments where US-195 reveals it's para 8, which in the FCD (N3092) says:
Accesses to the same associated asynchronous state conflict (1.10).
This is now para 10 in N3242:
Accesses to the same shared state conflict (1.10).
[2011-03-07: Lawrence comments and drafts wording]
The intent of this paragraph is to deal with operations,
such as shared_future::get()
, that return a reference
to a value held in the shared state. User code could potentially
conflict when accessing that value.
Lawrence proposed resolution:
Modify 30.6.4 [futures.state] p10 as follows:
10
Accesses to the same shared state conflict (1.10 [intro.multithread]).Some operations, e.g.shared_future::get()
(30.6.7 [futures.shared_future]), may return a reference to a value held in their shared state. Accesses and modifications through those references by concurrent threads to the same shared state may potentially conflict (1.10 [intro.multithread]). [Note: As a consequence, accesses must either use read-only operations or provide additional synchronization. — end note]
[2011-03-19: Detlef suggests an alternative resolution, shown below.]
Proposed Resolution
Modify 30.6.4 [futures.state] p10 as follows:
10 Accesses to the same shared state conflict (1.10 [intro.multithread]). [Note: This explicitely specifies that the shared state is visible in the objects that reference this state in the sense of data race avoidance 17.6.5.9 [res.on.data.races]. — end note]
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: 30.6.5 [futures.promise] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with Resolved status.
Discussion:
Addresses US-196
The term "are serialized" is not defined (30.6.5 [futures.promise] p. 21, 25).
[ Resolution proposed by ballot comment: ]
Replace "are serialized" with "shall not introduce a data race (17.6.4.8)".
[ 2010-11-02 Daniel translates proposal into proper wording changes ]
[2011-03-19: Detlef comments]
The proposed resolution for 1507 would cover this issue as well.
[Proposed Resolution]
- Change 30.6.5 [futures.promise] p. 21 as indicated:
21 Synchronization: calls to set_value and set_exception on a single promise object
are serializedshall not introduce a data race ([res.on.data.races]). [ Note: and they synchronize and serialize with other functions through the referred associated asynchronous state. — end note ]- Change 30.6.5 [futures.promise] p. 25 as indicated:
25 Synchronization: calls to set_value and set_exception on a single promise object
are serializedshall not introduce a data race ([res.on.data.races]). [ Note: and they synchronize and serialize with other functions through the referred associated asynchronous state. — end note ]
Proposed resolution:
Resolved 2001-03 Madrid by issue 1507.
Section: 30.6.5 [futures.promise] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with Resolved status.
Discussion:
Addresses US-197
There is no defined synchronization between promise::set_value and future::get (30.6.5 [futures.promise] p. 21, 25).
[ Resolution proposed by ballot comment: ]
Replace "[Note: and they synchronize and serialize with other functions through the referred associated asynchronous state. — end note]" with the normative "They synchronize with (1.10) any operation on a future object with the same associated asynchronous state marked ready."
[ 2010-11-02 Daniel translates proposal into proper wording changes ]
[2011-03-19: Detlef comments]
The proposed resolution for 1507 would cover this issue as well. Effectively it will reject the request but a clarification is added that the normative wording is already in 30.6.4 [futures.state].
- Change 30.6.5 [futures.promise] p. 21 as indicated:
21 Synchronization: calls to set_value and set_exception on a single promise object are serialized.
[ Note: and they synchronize and serialize with other functions through the referred associated asynchronous state. — end note ]They synchronize with ([intro.multithread]) any operation on a future object with the same associated asynchronous state marked ready.- Change 30.6.5 [futures.promise] p. 25 as indicated:
25 Synchronization: calls to set_value and set_exception on a single promise object are serialized.
[ Note: and they synchronize and serialize with other functions through the referred associated asynchronous state. — end note ]They synchronize with ([intro.multithread]) any operation on a future object with the same associated asynchronous state marked ready.
Proposed resolution:
Resolved 2001-03 Madrid by issue 1507.
Section: 30.6.5 [futures.promise] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with Resolved status.
Discussion:
Addresses US-199
promise::XXX_at_thread_exit functions have no synchronization requirements. Specifying synchronization for these member functions requires coordinating with the words in 30.6.5 [futures.promise]/21 and 25, which give synchronization requirements for promise::set_value and promise::set_exception (30.6.5 [futures.promise] p. 26 ff., p. 29 ff.).
[ Resolution proposed by ballot comment: ]
Change 30.6.5 [futures.promise]/21 to mention set_value_at_thread_exit and set_exception_at_thread_exit; with this text, replace 30.6.5 [futures.promise]/25 and add two new paragraphs, after 30.6.5 [futures.promise]/28 and 30.6.5 [futures.promise]/31.
[2011-03-8: Lawrence comments and drafts wording]
This comment applies as well to other *_at_thread_exit functions. The following resolution adds synchronization paragraphs to all of them and edits a couple of related synchronization paragraphs.
[2011-03-09: Hans and Anthony add some improvements]
[2011-03-19: Detlef comments]
In regard to the suggested part:
These operations do not provide any ordering guarantees with respect to other operations, except through operations on futures that reference the same shared state.
I would like this to change to:
These operations do not provide any ordering guarantees with respect to other operations on the same promise object. [Note: They synchronize with calls to operations on objects that refer to the same shared state according to 30.6.4 [futures.state]. — end note]
The current proposed resolution has exactly the same paragraph at for places. I propose to have it only once as new paragraph 2.
This also covers 1504 (US-196) and 1505 (US-197). US-197 is essentially rejected with this resolution, but a clarification is added that the normative wording is already in 30.6.4 [futures.state].
Proposed Resolution
Edit 30.4.1.2 [thread.mutex.requirements.mutex] paragraph 5 as follows:
5 The implementation shall provide lock and unlock operations, as described below.
The implementation shall serialize those operations.For purposes of determining the existence of a data race, these behave as atomic operations (1.10 [intro.multithread]). The lock and unlock operations on a single mutex shall appear to occur in a single total order. [Note: this can be viewed as the modification order (1.10 [intro.multithread]) of the mutex. — end note] [ Note: Construction and destruction of an object of a mutex type need not be thread-safe; other synchronization should be used to ensure that mutex objects are initialized and visible to other threads. — end note ]Edit 30.5 [thread.condition] paragraphs 6-9 as follows:
void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);-6- Requires: lk is locked by the calling thread and either
- no other thread is waiting on cond, or
- lk.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting (via wait, wait_for, or wait_until) threads.
-7- Effects: transfers ownership of the lock associated with lk into internal storage and schedules cond to be notified when the current thread exits, after all objects of thread storage duration associated with the current thread have been destroyed. This notification shall be as if
lk.unlock(); cond.notify_all();-?- Synchronization: The call to
-8- Note: The supplied lock will be held until the thread exits, and care must be taken to ensure that this does not cause deadlock due to lock ordering issues. After calling notify_all_at_thread_exit it is recommended that the thread should be exited as soon as possible, and that no blocking or time-consuming tasks are run on that thread. -9- Note: It is the user's responsibility to ensure that waiting threads do not erroneously assume that the thread has finished if they experience spurious wakeups. This typically requires that the condition being waited for is satisfied while holding the lock on lk, and that this lock is not released and reacquired prior to calling notify_all_at_thread_exit.notify_all_at_thread_exit
and the completion of the destructors for all the current thread's variables of thread storage duration synchronize with (1.10 [intro.multithread]) calls to functions waiting oncond
.Edit 30.6.5 [futures.promise], paragraphs 14-27 as follows:
void promise::set_value(const R& r); void promise::set_value(R&& r); void promise<R&>::set_value(R& r); void promise<void>::set_value();-14- Effects: atomically stores the value r in the shared state and makes that state ready (30.6.4 [futures.state]).
-15- Throws:
- future_error if its shared state already has a stored value or exception, or
- for the first version, any exception thrown by the copy constructor of R, or
- for the second version, any exception thrown by the move constructor of R.
-16- Error conditions:
- promise_already_satisfied if its shared state already has a stored value or exception.
- no_state if *this has no shared state.
-17- Synchronization:
calls to set_value and set_exception on a single promise object are serialized. [ Note: And they synchronize and serialize with other functions through the referred shared state. — end note ]For purposes of determining the existence of a data race, set_value, set_exception, set_value_at_thread_exit, and set_exception_at_thread_exit behave as atomic operations (1.10 [intro.multithread]) on the memory location associated with the promise. Calls to these operations on a single promise shall appear to occur in a single total order. [Note: this can be viewed as the modification order (1.10 [intro.multithread]) of the promise. — end note] These operations do not provide any ordering guarantees with respect to other operations, except through operations on futures that reference the same shared state.void set_exception(exception_ptr p);-18- Effects: atomically stores the exception pointer p in the shared state and makes that state ready (30.6.4 [futures.state]).
-19- Throws: future_error if its shared state already has a stored value or exception.
-20- Error conditions:
- promise_already_satisfied if its shared state already has a stored value or exception.
- no_state if *this has no shared state.
-21- Synchronization:
calls to set_value and set_exception on a single promise object are serialized. [ Note: And they synchronize and serialize with other functions through the referred shared state. — end note ]For purposes of determining the existence of a data race, set_value, set_exception, set_value_at_thread_exit, and set_exception_at_thread_exit behave as atomic operations (1.10 [intro.multithread]) on the memory location associated with the promise. Calls to these operations on a single promise shall appear to occur in a single total order. [Note: this can be viewed as the modification order (1.10 [intro.multithread]) of the promise. — end note] These operations do not provide any ordering guarantees with respect to other operations, except through operations on futures that reference the same shared state.void promise::set_value_at_thread_exit(const R& r); void promise::set_value_at_thread_exit(R&& r); void promise<R&>::set_value_at_thread_exit(R& r); void promise<void>::set_value_at_thread_exit();-22- Effects: Stores the value r in the shared state without making that state ready immediately. Schedules that state to be made ready when the current thread exits, after all objects of thread storage duration associated with the current thread have been destroyed.
-23- Throws: future_error if an error condition occurs. -24- Error conditions:
- promise_already_satisfied if its shared state already has a stored value or exception.
- no_state if *this has no shared state.
-??- Synchronization: For purposes of determining the existence of a data race, set_value, set_exception, set_value_at_thread_exit, and set_exception_at_thread_exit behave as atomic operations (1.10 [intro.multithread]) on the memory location associated with the promise. Calls to these operations on a single promise shall appear to occur in a single total order. [Note: this can be viewed as the modification order (1.10 [intro.multithread]) of the promise. — end note] These operations do not provide any ordering guarantees with respect to other operations, except through operations on futures that reference the same shared state.
void promise::set_exception_at_thread_exit(exception_ptr p);-25- Effects: Stores the exception pointer p in the shared state without making that state ready immediately. Schedules that state to be made ready when the current thread exits, after all objects of thread storage duration associated with the current thread have been destroyed.
-26- Throws: future_error if an error condition occurs. -27- Error conditions:
- promise_already_satisfied if its shared state already has a stored value or exception.
- no_state if *this has no shared state.
-??- Synchronization: For purposes of determining the existence of a data race, set_value, set_exception, set_value_at_thread_exit, and set_exception_at_thread_exit behave as atomic operations (1.10 [intro.multithread]) on the memory location associated with the promise. Calls to these operations on a single promise shall appear to occur in a single total order. [Note: this can be viewed as the modification order (1.10 [intro.multithread]) of the promise. — end note] These operations do not provide any ordering guarantees with respect to other operations, except through operations on futures that reference the same shared state.
Edit 30.6.9.1 [futures.task.members], paragraph 15-21 as follows:
void operator()(ArgTypes... args);-15- Effects: INVOKE(f, t1, t2, ..., tN, R), where f is the stored task of *this and t1, t2, ..., tN are the values in args.... If the task returns normally, the return value is stored as the asynchronous result in the shared state of *this, otherwise the exception thrown by the task is stored. The shared state of *this is made ready, and any threads blocked in a function waiting for the shared state of *this to become ready are unblocked.
-16- Throws: a future_error exception object if there is no shared state or the stored task has already been invoked. -17- Error conditions:
- promise_already_satisfied if the shared state is already ready.
- no_state if *this has no shared state.
-18- Synchronization: a successful call to operator() synchronizes with (1.10 [intro.multithread]) a call to any member function of a future or shared_future object that shares the shared state of *this. The completion of the invocation of the stored task and the storage of the result (whether normal or exceptional) into the shared state synchronizes with (1.10 [intro.multithread]) the successful return from any member function that detects that the state is set to ready. [ Note: operator() synchronizes and serializes with other functions through the shared state. — end note ]
void make_ready_at_thread_exit(ArgTypes... args);-19- Effects: INVOKE(f, t1, t2, ..., tN, R), where f is the stored task and t1, t2, ..., tN are the values in args.... If the task returns normally, the return value is stored as the asynchronous result in the shared state of *this, otherwise the exception thrown by the task is stored. In either case, this shall be done without making that state ready (30.6.4 [futures.state]) immediately. Schedules the shared state to be made ready when the current thread exits, after all objects of thread storage duration associated with the current thread have been destroyed.
-20- Throws: future_error if an error condition occurs. -21- Error conditions:
- promise_already_satisfied if the shared state already has a stored value or exception.
- no_state if *this has no shared state.
-??- Synchronization: a successful call to
make_ready_at_thread_exit
synchronizes with (1.10 [intro.multithread]) a call to any member function of afuture
orshared_future
object that shares the shared state of*this
. The completion of
the invocation of the stored task and the storage of the result (whether normal or exceptional) into the shared state
the destructors for all the current thread's variables of thread storage duration
synchronize with (1.10 [intro.multithread]) the successful return from any member function that detects that the state is set to ready. [Note:
make_ready_at_thread_exit
synchronizes and serializes with other functions through the shared state. — end note]
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: 30.6.9 [futures.task] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [futures.task].
View all issues with Resolved status.
Discussion:
Addresses US-201
packaged_task provides operator bool() to check whether an object has an associated asynchronous state. The various future types provide a member function valid() that does the same thing. The names of these members should be the same.
[ Resolution proposed by ballot comment: ]
Replaced the name packaged_task::operator bool() with packaged_task::valid() in the synopsis (30.6.9 [futures.task]/2) and the member function specification (before 30.6.9.1 [futures.task.members]/15).
[ 2010-11-02 Daniel translates proposed wording changes into a proper proposed resolution and verified that no other places implicitly take advantage of packaged_task conversion to bool. ]
[Resolved in Batavia by accepting n3194. ]
Proposed resolution:
template<class R, class... ArgTypes> class packaged_task<R(ArgTypes...)> { public: typedef R result_type; [..]explicit operatorbool valid() const; [..] };
explicit operatorbool valid() const;15 Returns: true only if *this has an associated asynchronous state.
16 Throws: nothing.
Section: 30.6 [futures] Status: Resolved Submitter: Switzerland Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [futures].
View all issues with Resolved status.
Discussion:
Addresses CH-36
Providing only three different possible values for the enum launch and saying that launch::any means either launch::sync or launch::async is very restricting. This hinders future implementors to provide clever infrastructures that can simply by used by a call to async(launch::any,...). Also there is no hook for an implementation to provide additional alternatives to launch enumeration and no useful means to combine those (i.e. interpret them like flags). We believe something like async(launch::sync | launch::async, ...) should be allowed and can become especially useful if one could say also something like async(launch::any & ~launch::sync, ....) respectively. This flexibility might limit the features usable in the function called through async(), but it will allow a path to effortless profit from improved hardware/software without complicating the programming model when just using async(launch::any,...)
[ Resolution proposed by ballot comment: ]
Change in 30.6.1 [futures.overview] 'enum class launch' to allow further implementation defined values and provide the following bit-operators on the launch values (operator|, operator&, operator~ delivering a launch value).
Note: a possible implementation might use an unsigned value to represent the launch enums, but we shouldn't limit the standard to just 32 or 64 available bits in that case and also should keep the launch enums in their own enum namespace. Change [future.async] p3 according to the changes to enum launch. change --launch::any to "the implementation may choose any of the policies it provides." Note: this can mean that an implementation may restrict the called function to take all required information by copy in case it will be called in a different address space, or even, on a different processor type. To ensure that a call is either performed like launch::async or launch::sync describe one should call async(launch::sync|launch::async,...)[ 2010-11-02 Daniel comments: ]
The new paper n3113 provides concrete wording.
Proposed resolution:
Resolved by n3188.
Section: 30.6.9.1 [futures.task.members] Status: C++11 Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [futures.task.members].
View all issues with C++11 status.
Discussion:
Addresses US-207
The constructor that takes R(*)(ArgTypes...) is not needed; the constructor that takes a callable type works for this argument type. More generally, the constructors for packaged_task should parallel those for function.
[ US-207 Suggested Resolution: ]
Review the constructors for packaged_task and provide the same ones as function, except where inappropriate.
[ 2010-10-22 Howard provides wording, as requested by the LWG in Rapperswil. ]
[2011-02-10 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed resolution:
Alter the list of constructors in both 30.6.9 [futures.task] and in 30.6.9.1 [futures.task.members] as indicated:
template <class F> explicit packaged_task(F f); template <class F, class Allocator> explicit packaged_task(allocator_arg_t, const Allocator& a, F f); explicit packaged_task(R(*f)(ArgTypes...));template <class F> explicit packaged_task(F&& f); template <class F, class Allocator> explicit packaged_task(allocator_arg_t, const Allocator& a, F&& f);
Section: 30.6.9.1 [futures.task.members] Status: Resolved Submitter: INCITS Opened: 2010-08-25 Last modified: 2015-04-08
View all other issues in [futures.task.members].
View all issues with Resolved status.
Discussion:
Addresses US-208
packaged_task::make_ready_at_thread_exit has no synchronization requirements.
[ Resolution proposed by ballot comment: ]
Figure out what the synchronization requirements should be and write them.
[2011-02-09 Anthony provides a proposed resolution]
[2011-02-19 Additional edits by Hans, shown in the proposed resolution section]
[2011-02-22 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed Resolution
Add a new paragraph following 30.6.9.1 [futures.task.members] p. 19:
void make_ready_at_thread_exit(ArgTypes... args);19 - ...
?? - Synchronization: Following a successful call to make_ready_at_thread_exit, the destruction of all objects with thread storage duration associated with the current thread happens before the associated asynchronous state is made ready. The marking of the associated asynchronous state as ready synchronizes with (1.10 [intro.multithread]) the successful return from any function that detects that the state is set to ready.
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: X [depr.auto.ptr] Status: C++11 Submitter: BSI Opened: 2010-08-25 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
Addresses GB-142
auto_ptr does not appear in the <memory> synopsis and [depr.auto.ptr] doesn't say which header declares it. Conversely, the deprecated binders bind1st etc. are in the <functional> synopsis, this is inconsistent
Either auto_ptr should be declared in the <memory> synopsis, or the deprecated binders should be removed from the <functional> synopsis and appendix D should say which header declares the binders and auto_ptr.
[ Post-Rapperswil ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Add the following lines to the synopsis of header <memory>
in [memory]/1:
// [depr.auto.ptr], Class auto_ptr (deprecated): template <class X> class auto_ptr;
Section: 20.8.1.1.2 [unique.ptr.dltr.dflt] Status: C++11 Submitter: Daniel Krügler Opened: 2010-09-12 Last modified: 2015-04-08
View all other issues in [unique.ptr.dltr.dflt].
View all issues with C++11 status.
Discussion:
The current working draft does specify the default c'tor of default_delete in a manner to guarantee static initialization for default-constructed objects of static storage duration as a consequence of the acceptance of the proposal n2976 but this paper overlooked the fact that the suggested declaration does not ensure that the type will be a trivial type. The type default_delete was always considered as a simple wrapper for calling delete or delete[], respectivly and should be a trivial type.
In agreement with the new settled core language rules this easy to realize by just changing the declaration to
constexpr default_delete() = default;
This proposal also automatically solves the problem, that the semantics of the default constructor of the partial specialization default_delete<T[]> is not specified at all. By defaulting its default constructor as well, the semantics are well-defined.
[ Post-Rapperswil ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
The following wording changes are against N3126.
namespace std { template <class T> struct default_delete { constexpr default_delete() = default; template <class U> default_delete(const default_delete<U>&); void operator()(T*) const; }; }
constexpr default_delete();
1 Effects: Default constructs a default_delete object.
namespace std { template <class T> struct default_delete<T[]> { constexpr default_delete() = default; void operator()(T*) const; template <class U> void operator()(U*) const = delete; }; }
Section: 30.6 [futures] Status: C++11 Submitter: Alberto Ganesh Barbati Opened: 2010-09-14 Last modified: 2015-04-08
View all other issues in [futures].
View all issues with C++11 status.
Discussion:
The current WP N3126 contains ambiguous statements about the behaviour of functions wait_for/wait_until in case the future refers to a deferred function. Moreover, I believe it describes a disputable intent, different from the one contained in the original async proposals, that may have been introduced inadvertently during the "async cleanup" that occurred recently. Consider the following case:
int f(); future<int> x = async(launch::deferred, f); future_status s = x.wait_for(chrono::milliseconds(100));
This example raises two questions:
According to the current WP, the answer to question 1 is yes, because 30.6.9/3 says "The first call to a function waiting for the associated asynchronous state created by this async call to become ready shall invoke the deferred function in the thread that called the waiting function". The answer to question 2, however, is not as clear. According to 30.6.6/23, s should be future_status::deferred because x refers to a deferred function that is not running, but it should also be future_status::ready because after executing f (and we saw that f is always executed) the state becomes ready. By the way, the expression "deferred function that is not running" is very unfortunate in itself, because it may apply to both the case where the function hasn't yet started, as well as the case where it was executed and completed.
While we clearly have a defect in the WP answering to question 2, it is my opinion that the answer to question 1 is wrong, which is even worse. Consider that the execution of the function f can take an arbitrarily long time. Having wait_for() invoke f is a potential violation of the reasonable expectation that the execution of x.wait_for(chrono::milliseconds(100)) shall take at most 100 milliseconds plus a delay dependent on the quality of implementation and the quality of management (as described in paper N3128). In fact, previous versions of the WP clearly specified that only function wait() is required to execute the deferred function, while wait_for() and wait_until() shouldn't.
The proposed resolution captures the intent that wait_for() and wait_until() should never attempt to invoke the deferred function. In other words, the P/R provides the following answers to the two questions above:
In order to simplify the wording, the definition of deferred function has been tweaked so that the function is no longer considered deferred once its evaluation has started, as suggested by Howard.
Discussions in the reflector questioned whether wait_for() and wait_until() should return immediately or actually wait hoping for a second thread to execute the deferred function. I believe that waiting could be useful only in a very specific scenario but detrimental in the general case and would introduce another source of ambiguity: should wait_for() return future_status::deferred or future_status::timeout after the wait? Therefore the P/R specifies that wait_for/wait_until shall return immediately, which is simpler, easier to explain and more useful in the general case.
[ Post-Rapperswil ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
The proposed wording changes are relative to the Final Committee Draft, N3126.
Note to the editor: the proposed wording is meant not be in conflict with any change proposed by paper N3128 "C++ Timeout Specification". Ellipsis are deliberately used to avoid any unintended overlapping.
In [futures.unique_future] 30.6.6/22:
Effects: none if the associated asynchronous state contains a deferred function (30.6.9), otherwise blocks until the associated asynchronous state is ready or [...].
In [futures.unique_future] 30.6.6/23 first bullet:
— future_status::deferred if the associated asynchronous
state contains a deferred function that is not
running.
In [futures.unique_future] 30.6.6/25:
Effects: none if the associated asynchronous state contains a deferred function (30.6.9), otherwise blocks until the associated asynchronous state is ready or [...].
In [futures.unique_future] 30.6.6/26 first bullet:
— future_status::deferred if the associated asynchronous
state contains a deferred function that is not
running.
In [futures.shared_future] 30.6.7/27
Effects: none if the associated asynchronous state contains a deferred function (30.6.9), otherwise blocks until the associated asynchronous state is ready or [...].
In [futures.unique_future] 30.6.7/28 first bullet:
— future_status::deferred if the associated asynchronous
state contains a deferred function that is not
running.
In [futures.shared_future] 30.6.6/30:
Effects: none if the associated asynchronous state contains a deferred function (30.6.9), otherwise blocks until the associated asynchronous state is ready or [...].
In [futures.unique_future] 30.6.7/31 first bullet:
— future_status::deferred if the associated asynchronous
state contains a deferred function that is not
running.
In [futures.atomic_future] 30.6.8/23
Effects: none if the associated asynchronous state contains a deferred function (30.6.9), otherwise blocks until the associated asynchronous state is ready or [...].
In [futures.unique_future] 30.6.8/24 first bullet:
— future_status::deferred if the associated asynchronous
state contains a deferred function that is not
running.
In [futures.atomic_future] 30.6.8/27:
Effects: none if the associated asynchronous state contains a deferred function (30.6.9), otherwise blocks until the associated asynchronous state is ready or [...].
In [futures.unique_future] 30.6.8/28 first bullet:
— future_status::deferred if the associated asynchronous
state contains a deferred function that is not
running.
In [futures.async] 30.6.9/3 second bullet:
[...] The first call to a function
waitingrequiring a non-timed wait for the
associated asynchronous state created by this async call to become
ready shall invoke the deferred function in the thread that called
the waiting function; once evaluation of INVOKE(g,
xyz) begins, the function is no longer considered
deferred all other calls waiting for the same associated
asynchronous state to become ready shall block until the deferred
function has completed.
Section: 23.5.4 [unord.map], 23.5.5 [unord.multimap], 23.5.7 [unord.multiset] Status: C++11 Submitter: Nicolai Josuttis Opened: 2010-10-09 Last modified: 2015-04-08
View all other issues in [unord.map].
View all issues with C++11 status.
Discussion:
While bucket_size() is const for unordered_set, for all other unordered containers it is not defined as constant member function.
[ Post-Rapperswil ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
The wording refers to N3126.
namespace std { template <class Key, class T, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<std::pair<const Key, T> > > class unordered_map { public: [..] // bucket interface size_type bucket_count() const; size_type max_bucket_count() const; size_type bucket_size(size_type n) const; [..]
namespace std { template <class Key, class T, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<std::pair<const Key, T> > > class unordered_multimap { public: [..] // bucket interface size_type bucket_count() const; size_type max_bucket_count() const; size_type bucket_size(size_type n) const; [..]
namespace std { template <class Key, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<Key> > class unordered_multiset { public: [..] // bucket interface size_type bucket_count() const; size_type max_bucket_count() const; size_type bucket_size(size_type n) const; [..]
Section: 20.9.2 [func.require] Status: C++11 Submitter: Howard Hinnant Opened: 2010-10-10 Last modified: 2015-04-08
View other active issues in [func.require].
View all other issues in [func.require].
View all issues with C++11 status.
Discussion:
20.8.2 [func.require] p1 says:
1 Define INVOKE(f, t1, t2, ..., tN) as follows:
- (t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T and t1 is an object of type T or a reference to an object of type T or a reference to an object of a type derived from T;
- ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a class T and t1 is not one of the types described in the previous item;
- t1.*f when f is a pointer to member data of a class T and t1 is an object of type T or a reference to an object of type T or a reference to an object of a type derived from T;
- (*t1).*f when f is a pointer to member data of a class T and t1 is not one of the types described in the previous item;
- f(t1, t2, ..., tN) in all other cases.
The question is: What happens in the 3rd and 4th bullets when N > 1?
Does the presence of t2, ..., tN get ignored, or does it make the INVOKE ill formed?
Here is sample code which presents the problem in a concrete example:
#include <functional> #include <cassert> struct S { char data; }; typedef char S::*PMD; int main() { S s; PMD pmd = &S::data; std::reference_wrapper<PMD> r(pmd); r(s, 3.0) = 'a'; // well formed? assert(s.data == 'a'); }
Without the "3.0" the example is well formed.
[Note: Daniel provided wording to make it explicit that the above example is ill-formed. — end note ]
[ Post-Rapperswil ]
Moved to Tentatively Ready after 5 positive votes on c++std-lib.
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
The wording refers to N3126.
Change 20.8.2 [func.require]/1 as indicated:
1 Define INVOKE(f, t1, t2, ..., tN) as follows:
- ...
- ...
- t1.*f when N == 1 and f is a pointer to member data of a class T and t1 is an object of type T or a reference to an object of type T or a reference to an object of a type derived from T;
- (*t1).*f when N == 1 and f is a pointer to member data of a class T and t1 is not one of the types described in the previous item;
- ...
Section: 26.4.9 [cmplx.over] Status: C++11 Submitter: P.J. Plauger Opened: 2010-10-14 Last modified: 2015-04-08
View all other issues in [cmplx.over].
View all issues with C++11 status.
Discussion:
In Pittsburgh, we accepted the resolution of library issue 1137, to add a sentence 3 to [cmplx.over]:
All the specified overloads shall have a return type which is the nested value_type of the effectively cast arguments.
This was already true for four of the six functions except conj and proj. It is not completely unreasonable to make proj return the real value only, but the IEC specification does call for an imaginary part of -0 in some circumstances. The people who care about these distinctions really care, and it is required by an international standard.
Making conj return just the real part breaks it horribly, however. It is well understood in mathematics that conj(re + i*im) is (re - i*im), and it is widely used. The accepted new definition makes conj useful only for pure real operations. This botch absolutely must be fixed.
[ 2010 Batavia: The working group concurred with the issue's Proposed Resolution ]
[ Adopted at 2010-11 Batavia ]
Proposed resolution:
Remove the recently added paragraph 3 from [cmplx.over]:
3 All the specified overloads shall have a return type which is the nested value_type of the effectively cast arguments.
Section: 29 [atomics] Status: Resolved Submitter: Hans Boehm Opened: 2010-11-13 Last modified: 2015-04-08
View all other issues in [atomics].
View all issues with Resolved status.
Discussion:
Addresses GB-63 for Clause 29
Clause 29 does not specify noexcept for any of the atomic operations. It probably should, though that's not completely clear. In particular, atomics may want to throw in implementations that support transactional memory.
Proposed resolution:
Apply paper N3251, noexcept for the Atomics Library.
Section: 18.6.1.4 [new.delete.dataraces] Status: C++11 Submitter: Hans Boehm Opened: 2011-02-26 Last modified: 2015-04-08
View all other issues in [new.delete.dataraces].
View all issues with C++11 status.
Discussion:
Addresses US-34
Technical details:
When the same unit of storage is allocated and deallocated repeatedly, operations on it can't be allowed to race between the allocator and the user program. But I don't see any mention of happens-before in the descriptions of allocation and deallocation functions. Proposed resolution (not wording yet):The call to an allocation function returning a pointer P must happen-before the matching deallocation call with P as a parameter. Otherwise the behavior is undefined. I don't know whether receiving P with memory_order_consume fits this requirement. memory_order_relaxed does not.
If some memory is passed to a deallocation function, the implementation must ensure that the deallocation call happens-before any allocation call that returns the same memory address.
[2011-02-26: Hans comments and drafts wording]
The second requirement already exists, almost verbatim, as 18.6.1.4 [new.delete.dataraces] p. 1. I think this is where the statement belongs. However, this paragraph requires work to correctly address the first part of the issue.
[Adopted at Madrid, 2011-03]
Proposed resolution:
Change 18.6.1.4 [new.delete.dataraces] p. 1 as follows:
1
The library versions of operator new and operator delete, user replacement versions of global operator new and operator delete, and the C standard library functions calloc, malloc, realloc, and free shall not introduce data races (1.10 [intro.multithread]) as a result of concurrent calls from different threads.For purposes of determining the existence of data races, the library versions of operator new, user replacement versions of global operator new, and the C standard library functions calloc and malloc shall behave as though they accessed and modified only the storage referenced by the return value. The library versions of operator delete, user replacement versions of operator delete, and the C standard library function free shall behave as though they accessed and modified only the storage referenced by their first argument. The C standard library realloc function shall behave as though it accessed and modified only the storage referenced by its first argument and by its return value. Calls to these functions that allocate or deallocate a particular unit of storage shall occur in a single total order, and each such deallocation call shall happen before the next allocation (if any) in this order.
Section: 23.3.6.3 [vector.capacity] Status: C++11 Submitter: BSI Opened: 2011-03-24 Last modified: 2015-04-08
View other active issues in [vector.capacity].
View all other issues in [vector.capacity].
View all issues with C++11 status.
Discussion:
Addresses GB-117
23.3.6.3 [vector.capacity] p. 9 (Same as for 23.3.3.3 [deque.capacity] p. 1 i.e. deque::resize). There is no mention of what happens if sz==size(). While it obviously does nothing I feel a standard needs to say this explicitely.
Suggested resolution:
Append "If sz == size(), does nothing" to the effects.
[2011-03-24 Daniel comments]
During the edit of this issue some non-conflicting overlap with 2033 became obvious. CopyInsertable should be MoveInsertable and there is missing the DefaultConstructible requirements, but this should be fixed by 2033.
Proposed resolution:
Change 23.3.6.3 [vector.capacity] p. 9 as follows:
void resize(size_type sz);9 Effects: If sz <= size(), equivalent to erase(begin() + sz, end());. If size() < sz, appends sz - size() value-initialized elements to the sequence.
10 Requires: T shall be CopyInsertable into *this.
Section: 17.6.5.9 [res.on.data.races] Status: Resolved Submitter: BSI Opened: 2011-03-24 Last modified: 2015-05-22
View all issues with Resolved status.
Discussion:
Addresses GB-111
Section 17.6.5.9 [res.on.data.races], Data Race Avoidance, requires the C++ Standard Library to avoid data races that might otherwise result from two threads making calls to C++ Standard Library functions on distinct objects. The C standard library is part of the C++ Standard Library and some C++ Standary library functions (parts of the Localization library, as well as Numeric Conversions in 21.5), are specified to make use of the C standard library. Therefore, the C++ standard indirectly imposes a requirement on the thread safety of the C standard library. However, since the C standard does not address the concept of thread safety conforming C implementations exist that do no provide such guarantees. This conflict needs to be reconciled.
Suggested resolution by national body comment:
remove the requirement to make use of strtol() and sprintf() since these functions depend on the global C locale and thus cannot be made thread safe.
[2011-03-24 Madrid meeting]
Deferred
[ 2011 Bloomington ]
Alisdair: PJ, does this cause a problem in C?
PJ: Every implementation know of is thread safe.
Pete: There a couple of effects that are specified on strtol() and sprintf() which is a problem.
PJ: When C++ talks about C calls it should be "as if" calling the function.
Pete: Culprit is to string stuff. My fault.
PJ: Not your fault. You did what you were told. Distinct resolution to change wording.
Dietmar: What would we break if we change it back?
Pete: Nothing. If implemented on top of thread safe C library you are just fine.
Alisdair: Anyone want to clean up wording and put it back to what Pete gave us?
Alisdair: No volunteers. Do we want to mark as NAD? We could leave it as deferred.
Stefanus: Did original submitter care about this?
Lawrence: There is some work to make local calls thread safe. The resolution would be to call those thread safe version.
Pete: "As if called under single threaded C program"
Action Item (Alisdair): Write wording for this issue.
[2012, Kona]
Re-opened at the request of the concurrency subgroup, who feel there is an issue that needs clarifying for the (planned) 2017 standard.
Rationale:
No consensus to make a change at this time
[2012, Portland]
The concurrency subgroup decided to encourage the LWG to consider a change to 17.2 [library.c] or thereabouts to clarify that we are requiring C++-like thread-safety for setlocale, so that races are not introduced by C locale accesses, even when the C library allows it. This would require e.g. adding "and data race avoidance" at the end of 17.2 [library.c] p1:
"The C++ standard library also makes available the facilities of the C standard library, suitably adjusted to ensure static type safety and data race avoidance.",
with some further clarifications in the sections mentioned in 1526.
This seems to be consistent with existing implementations. This would technically not be constraining C implementation, but it would be further constraining C libraries used for both C and C++.
[Lenexa 2015-05-05: Move to Resolved]
JW: it's a bit odd that the issue title says sould not impose requirements on C libs, then the P/R does exactly that. Does make sense though, previously we imposed an implicit requirement which would not have been met. Now we say it explicitly and require it is met.
STL: I think this is Resolved, it has been fixed in the working paper [support.runtime]/6 is an example where we call out where things can race. That implies that for everything else they don't create races.
JW: I'm not sure, I think we still need the "and data race avoidance" to clarify that the features from C avoid races, even though C99 says no such thing.
STL: [library.c] says that something like sqrt is part of the C++ Standard LIbrary. [res.on.data.races] then applies to them. Would be OK with a note there, but am uncomfortable with "and data race avoidance" which sounds like it's making a very strong guarantee.
ACTION ITEM JW to editorially add note to [library.c] p1: "Unless otherwise specified, the C Standard Library functions shall meet the requirements for data race avoidance (xref [res.on.data.races])"
Move to Resolved?
10 in favor, 0 opposed, 3 abstentions
Proposed resolution:
This wording is relative to N3376.
Change 17.2 [library.c] p1 as indicated:
-1- The C++ standard library also makes available the facilities of the C standard library, suitably adjusted to ensure static type safety and data race avoidance.
Section: 30.6.9.2 [futures.task.nonmembers] Status: C++11 Submitter: Howard Hinnant Opened: 2010-08-29 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
[futures.task.nonmembers]/3 says:
template <class R, class Alloc> struct uses_allocator<packaged_task<R>, Alloc>;
This is a declaration, but should be a definition.
Proposed resolution:
Change [futures.task.nonmembers]/3:
template <class R, class Alloc> struct uses_allocator<packaged_task<R>, Alloc>;: true_type {};
Section: 28.8.3 [re.regex.assign] Status: C++11 Submitter: Volker Lukas Opened: 2010-10-21 Last modified: 2015-04-08
View all other issues in [re.regex.assign].
View all issues with C++11 status.
Discussion:
In working draft N3126, subclause 28.8.3 [re.regex.assign], paragraphs 12, 13 and 19, the name string_type is used. This is presumably a typedef for basic_string<value_type>, where value_type is the character type used by basic_regex. The basic_regex template however defines no such typedef, and neither does the <regex> header or the <initializer_list> header included by <regex>.
[ 2010-11-03 Daniel comments and suggests alternative wording: ]
The proposed resolution needs to use basic_string<charT> instead of basic_string<char>
Previous Proposed Resolution:
Make the following changes to [re.regex.assign]:basic_regex& assign(const charT* ptr, flag_type f = regex_constants::ECMAScript);12 Returns: assign(
string_typebasic_string<charT>(ptr), f).basic_regex& assign(const charT* ptr, size_t len, flag_type f = regex_constants::ECMAScript);13 Returns: assign(
string_typebasic_string<charT>(ptr, len), f).[..] template <class InputIterator> basic_regex& assign(InputIterator first, InputIterator last, flag_type f = regex_constants::ECMAScript);18 Requires: The type InputIterator shall satisfy the requirements for an Input Iterator (24.2.3).
19 Returns: assign(
string_typebasic_string<charT>(first, last), f).
[ 2010 Batavia ]
Unsure if we should just give basic_regex a string_type typedef. Looking for when string_type was introduced into regex. Howard to draft wording for typedef typename traits::string_type string_type, then move to Review.
[ 2011-02-16: Daniel comments and provides an alternative resolution. ]
I'm strongly in favour with the Batavia idea to provide a separate string_type within basic_regex, but it seems to me that the issue resultion should add one more important typedef, namely that of the traits type! Currently, basic_regex is the only template that does not publish the type of the associated traits type. Instead of opening a new issue, I added this suggestion as part of the proposed wording.
[2011-02-24 Reflector discussion]
Moved to Tentatively Ready after 6 votes.
Proposed resolution:
Change the class template basic_regex synopsis, 28.8 [re.regex] p. 3, as indicated:
namespace std { template <class charT, class traits = regex_traits<charT> > class basic_regex { public: // types: typedef charT value_type; typedef traits traits_type; typedef typename traits::string_type string_type; typedef regex_constants::syntax_option_type flag_type; typedef typename traits::locale_type locale_type; [..] }; }
Section: 28.10.8 [re.results.nonmember] Status: Resolved Submitter: Daniel Krügler Opened: 2010-10-24 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
The Returns element of operator== says:
true only if the two objects refer to the same match
It is not really clear what this means: The current specification would allow for an implementation to return true, only if the address values of m1 and m2 are the same. While this approach is unproblematic in terms of used operations this is also a bit unsatisfactory. With identity equality alone there seems to be no convincing reason to provide this operator at all. It could for example also refer to an comparison based on iterator values. In this case a user should better know that this will be done, because there is no guarantee at all that inter-container comparison of iterators is a feasible operation. This was a clear outcome of the resolution provided in N3066 for LWG issue 446. It could also mean that a character-based comparison of the individual sub_match elements should be done - this would be equivalent to applying operator== to the subexpressions, prefix and suffix.
Proposed resolution:
Addressed by paper n3158.
Section: 21.4.1 [string.require] Status: C++14 Submitter: José Daniel García Sánchez Opened: 2010-10-21 Last modified: 2015-04-08
View all other issues in [string.require].
View all issues with C++14 status.
Discussion:
Clause 21.4.1 [string.require]p3 states:
No erase() or pop_back() member function shall throw any exceptions.
However in 21.4.6.5 [string::erase] p2 the first version of erase has
Throws: out_of_range if pos > size().
[2011-03-24 Madrid meeting]
Beman: Don't want to just change this, can we just say "unless otherwise specified"?
Alisdair: Leave open, but update proposed resolution to say something like "unless otherwise specified". General agreement that it should be corrected but not a stop-ship. Action: Update proposed wording for issue 2003 as above, but leave Open.[2014-02-12 Issaquah meeting]
Jeffrey: Madrid meeting's proposed wording wasn't applied, and it's better than the original proposed wording. However, this sentence is only doing 3 functions' worth of work, unlike the similar paragraphs in 23.2.1 [container.requirements.general]. Suggest just putting "Throws: Nothing" on the 3 functions.
[2014-02-13 Issaquah meeting]
Move as Immmediate
Proposed resolution:
Remove [string.require]p/3:
3 No erase() or pop_back() member function shall throw any exceptions.
Add to the specifications of iterator erase(const_iterator p);, iterator erase(const_iterator first, const_iterator last);, and void pop_back(); in 21.4.6.5 [string::erase]:
Throws: Nothing
Section: 20.12.5.5 [time.duration.nonmember] Status: C++11 Submitter: P.J. Plauger Opened: 2010-10-14 Last modified: 2015-04-08
View all other issues in [time.duration.nonmember].
View all issues with C++11 status.
Discussion:
In [time] and [time.duration.nonmember] we have:
template <class Rep1, class Period, class Rep2> duration<typename common_type<Rep1, Rep2>::type, Period> operator*(const Rep1& s, const duration<Rep2, Period>& d);
Everywhere else, we always have <rep, period> in that order for a given type. But here, we have Period and Rep2 in reverse order for <Rep2, Period>. This is probably of little importance, since the template parameters are seldom spelled out for a function like this. But changing it now will eliminate a potential source of future errors and confusion.
Proposed resolution:
Change the signature in [time] and [time.duration.nonmember] to:
template <class Rep1, classPeriodRep2, classRep2Period> duration<typename common_type<Rep1, Rep2>::type, Period> operator*(const Rep1& s, const duration<Rep2, Period>& d);
Section: 23.4.4.4 [map.modifiers], 23.4.5.3 [multimap.modifiers], 23.5.4.4 [unord.map.modifiers], 23.5.5.3 [unord.multimap.modifiers] Status: C++14 Submitter: P.J. Plauger Opened: 2010-10-14 Last modified: 2015-04-08
View all other issues in [map.modifiers].
View all issues with C++14 status.
Discussion:
In [unord.map.modifiers], the signature:
template <class P> pair<iterator, bool> insert(P&& obj);
now has an added Remarks paragraph:
Remarks: This signature shall not participate in overload resolution unless P is implicitly convertible to value_type.
The same is true for unordered_multimap.
But neither map nor multimap have this constraint, even though it is a Good Thing(TM) in those cases as well.[ The submitter suggests: Add the same Remarks clause to [map.modifiers] and [multimap.modifiers]. ]
[ 2010-10-29 Daniel comments: ]
I believe both paragraphs need more cleanup: First, the current Requires element conflict with the Remark; second, it seems to me that the whole single Requires element is intended to be split into a Requires and an Effects element; third, the reference to tuple is incorrect (noticed by Paolo Carlini); fourth, it refers to some non-existing InputIterator parameter relevant for a completely different overload; sixth, the return type of the overload with hint is wrong. The following proposed resolution tries to solve these issues as well and uses similar wording as for the corresponding unordered containers. Unfortunately it has some redundancy over Table 99, but I did not remove the specification because of the more general template parameter P - the Table 99 requirements apply only for an argument identical to value_type.
Daniel's Proposed resolution (not current):
- Change 23.4.4.4 [map.modifiers] around p. 1 as indicated:
template <class P> pair<iterator, bool> insert(P&& x); template <class P>pair<iterator, bool>insert(const_iterator position, P&& x);1 Requires:
P shall be convertible tovalue_type is constructible from std::forward<P>(x)..If P is instantiated as a reference type, then the argument x is copied from. Otherwise x is considered to be an rvalue as it is converted to value_type and inserted into the map. Specifically, in such cases CopyConstructible is not required of key_type or mapped_type unless the conversion from P specifically requires it (e.g., if P is a tuple<const key_type, mapped_type>, then key_type must be CopyConstructible). The signature taking InputIterator parameters does not require CopyConstructible of either key_type or mapped_type if the dereferenced InputIterator returns a non-const rvalue pair<key_type,mapped_type>. Otherwise CopyConstructible is required for both key_type and mapped_type.
? Effects: Inserts x converted to value_type if and only if there is no element in the container with key equivalent to the key of value_type(x). For the second form, the iterator position is a hint pointing to where the search should start. ? Returns: For the first form, the bool component of the returned pair object indicates whether the insertion took place and the iterator component - or for the second form the returned iterator - points to the element with key equivalent to the key of value_type(x). ? Complexity: Logarithmic in general, but amortized constant if x is inserted right before position. ? Remarks: These signatures shall not participate in overload resolution unless P is implicitly convertible to value_type.- Change 23.4.5.3 [multimap.modifiers] around p. 1 as indicated:
template <class P> iterator insert(P&& x); template <class P> iterator insert(const_iterator position, P&& x);1 Requires:
P shall be convertible tovalue_type is constructible from std::forward<P>(x).If P is instantiated as a reference type, then the argument x is copied from. Otherwise x is considered to be an rvalue as it is converted to value_type and inserted into the map. Specifically, in such cases CopyConstructible is not required of key_type or mapped_type unless the conversion from P specifically requires it (e.g., if P is a tuple<const key_type, mapped_type>, then key_type must be CopyConstructible). The signature taking InputIterator parameters does not require CopyConstructible of either key_type or mapped_type if the dereferenced InputIterator returns a non-const rvalue pair<key_type, mapped_type>. Otherwise CopyConstructible is required for both key_type and mapped_type.
? Effects: Inserts x converted to value_type. For the second form, the iterator position is a hint pointing to where the search should start. ? Returns: An iterator that points to the element with key equivalent to the key of value_type(x). ? Complexity: Logarithmic in general, but amortized constant if x is inserted right before position. ? Remarks: These signatures shall not participate in overload resolution unless P is implicitly convertible to value_type.
[ 2010 Batavia: ]
We need is_convertible, not is_constructible, both in ordered and unordered containers.
[ 2011 Bloomington ]
The effects of these inserts can be concisely stated in terms of emplace(). Also, the correct term is "EmplaceConstructible", not "constructible".
New wording by Pablo, eliminating duplicate requirements already implied by the effects clause. Move to Review.
[ 2011-10-02 Daniel comments and refines the proposed wording ]
Unfortunately the template constraints expressed as "P is implicitly convertible to value_type" reject the intended effect to support move-only key types, which was the original intention when the library became move-enabled through the rvalue-reference proposals by Howard (This can clearly be deduced from existing carefully selected wording that emphasizes that CopyConstructible is only required for special situations involving lvalues or const rvalues as arguments). The root of the problem is based on current core rules, where an "implicitly converted" value has copy-initialization semantics. Consider a move-only key type KM, some mapped type T, and a source value p of type P equal to std::pair<KM, T>, this is equivalent to:
std::pair<const KM, T> dest = std::move(p);Now 8.5 [dcl.init] p16 b6 sb2 says that the effects of this heterogeneous copy-initialization (p has a different type than dest) are as-if a temporary of the target type std::pair<const KM, T> is produced from the rvalue p of type P (which is fine), and this temporary is used to initialize dest. This second step cannot succeed, because we cannot move from const KM to const KM. This means that std::is_convertible<P, std::pair<const KM, T>>::value is false.
But the actual code that is required (with the default allocator) is simply a direct-initialization from P to value_type, so imposing an implicit conversion is more than necessary. Therefore I strongly recommend to reduce the "overload participation" constraint to std::is_constructible<std::pair<const KM, T>, P>::value instead. This change is the only change that has been performed to the previous proposed wording from Pablo shown below.
[2012, Kona]
Moved to Tentatively Ready by the post-Kona issues processing subgroup, after much discussion on Daniel's analysis of Copy Initialization and move semantics, which we ultimately agreed with.
[2012, Portland: applied to WP]
Proposed resolution:
template <class P> pair<iterator, bool> insert(P&& x); template <class P>pair<iterator, bool>insert(const_iterator position, P&& x);1 Requires: P shall be convertible to value_type.If P is instantiated as a reference type, then the argument x is copied from. Otherwise x is considered to be an rvalue as it is converted to value_type and inserted into the map. Specifically, in such cases CopyConstructible is not required of key_type or mapped_type unless the conversion from P specifically requires it (e.g., if P is a tuple<const key_type, mapped_type>, then key_type must be CopyConstructible). The signature taking InputIterator parameters does not require CopyConstructible of either key_type or mapped_type if the dereferenced InputIterator returns a non-const rvalue pair<key_type,mapped_type>. Otherwise CopyConstructible is required for both key_type and mapped_type.
? Effects: The first form is equivalent to return emplace(std::forward<P>(x)). The second form is equivalent to return emplace_hint(position, std::forward<P>(x)). ? Remarks: These signatures shall not participate in overload resolution unless std::is_constructible<value_type, P&&>::value is true.
template <class P> iterator insert(P&& x); template <class P> iterator insert(const_iterator position, P&& x);1 Requires: P shall be convertible to value_type.If P is instantiated as a reference type, then the argument x is copied from. Otherwise x is considered to be an rvalue as it is converted to value_type and inserted into the map. Specifically, in such cases CopyConstructible is not required of key_type or mapped_type unless the conversion from P specifically requires it (e.g., if P is a tuple<const key_type, mapped_type>, then key_type must be CopyConstructible). The signature taking InputIterator parameters does not require CopyConstructible of either key_type or mapped_type if the dereferenced InputIterator returns a non-const rvalue pair<key_type, mapped_type>. Otherwise CopyConstructible is required for both key_type and mapped_type.
? Effects: The first form is equivalent to return emplace(std::forward<P>(x)). The second form is equivalent to return emplace_hint(position, std::forward<P>(x)). ? Remarks: These signatures shall not participate in overload resolution unless std::is_constructible<value_type, P&&>::value is true.
template <class P> pair<iterator, bool> insert(P&& obj);1 Requires: value_type is constructible from std::forward<P>(obj).2 Effects: equivalent to return emplace(std::forward<P>(obj)).Inserts obj converted to value_type if and only if there is no element in the container with key equivalent to the key of value_type(obj).3 Returns: The bool component of the returned pair object indicates whether the insertion took place and the iterator component points to the element with key equivalent to the key of value_type(obj).4 Complexity: Average case O(1), worst case O(size()).53 Remarks: This signature shall not participate in overload resolution unlessP is implicitly convertible to value_typestd::is_constructible<value_type, P&&>::value is true.template <class P> iterator insert(const_iterator hint, P&& obj);6 Requires: value_type is constructible from std::forward<P>(obj).7? Effects: equivalent to return emplace_hint(hint, std::forward<P>(obj)).Inserts obj converted to value_type if and only if there is no element in the container with key equivalent to the key of value_type(obj). The iterator hint is a hint pointing to where the search should start.8 Returns: An iterator that points to the element with key equivalent to the key of value_type(obj).9 Complexity: Average case O(1), worst case O(size()).10? Remarks: This signature shall not participate in overload resolution unlessP is implicitly convertible to value_typestd::is_constructible<value_type, P&&>::value is true.
template <class P> iterator insert(P&& obj);1 Requires: value_type is constructible from std::forward<P>(obj).2 Effects: equivalent to return emplace(std::forward<P>(obj)).Inserts obj converted to value_type.3 Returns: An iterator that points to the element with key equivalent to the key of value_type(obj).4 Complexity: Average case O(1), worst case O(size()).53 Remarks: This signature shall not participate in overload resolution unlessP is implicitly convertible to value_typestd::is_constructible<value_type, P&&>::value is true.template <class P> iterator insert(const_iterator hint, P&& obj);6 Requires: value_type is constructible from std::forward<P>(obj).7? Effects: equivalent to return emplace_hint(hint, std::forward<P>(obj)).Inserts obj converted to value_type. The iterator hint is a hint pointing to where the search should start.8 Returns: An iterator that points to the element with key equivalent to the key of value_type(obj).9 Complexity: Average case O(1), worst case O(size()).10? Remarks: This signature shall not participate in overload resolution unlessP is implicitly convertible to value_typestd::is_constructible<value_type, P&&>::value is true.
Section: 23.4.4.3 [map.access] Status: C++11 Submitter: Matt Austern Opened: 2010-11-01 Last modified: 2015-04-08
View all other issues in [map.access].
View all issues with C++11 status.
Discussion:
In [map.access]/9, the Returns clause for map<Key, T>::at(x) says that it returns "a reference to the element whose key is equivalent to x." That can't be right. The signature for at() says that its return type is T, but the elements of map<Key, T> have type pair<const K, T>. (I checked [unord.map.elem] and found that its specification of at() is correct. This is a problem for map only.)
Proposed resolution:
Change the wording in [map.access]/9 so it's identical to what we already say for operator[], which is unambiguous and correct.
Returns: A reference to the
element whose key is equivalentmapped_type corresponding to x in *this.
Section: 30.6.9.1 [futures.task.members] Status: C++11 Submitter: Pete Becker Opened: 2010-06-21 Last modified: 2015-04-08
View all other issues in [futures.task.members].
View all issues with C++11 status.
Discussion:
The Throws clause for packaged_task::operator() says that it throws "a future_error exception object if there is no associated asynchronous state or the stored task has already been invoked." However, the Error Conditions clause does not define an error condition when the stored task has already been invoked, only when the associated state is already ready (i.e. the invocation has completed).
[2011-02-17 Anthony provides an alternative resolution]
Previous proposed resolution:
Change the first bullet item in 30.6.9.1 [futures.task.members] /22:
void operator()(ArgTypes... args);20 ...
21 ...
22 Error conditions:
- promise_already_satisfied if
the associated asynchronous state is already readyoperator() has already been called.- no_state if *this has no associated asynchronous state.
[Adopted at Madrid, 2011-03]
Proposed resolution:
Change the first bullet item in 30.6.9.1 [futures.task.members] p. 17:
void operator()(ArgTypes... args);15 ...
16 ...
17 Error conditions:
- promise_already_satisfied if the
associated asynchronous state is already readystored task has already been invoked.- no_state if *this has no associated asynchronous state.
Change the first bullet item in 30.6.9.1 [futures.task.members] p. 21:
void make_ready_at_thread_exit(ArgTypes... args);19 ...
20 ...
21 Error conditions:
- promise_already_satisfied if the
associated asynchronous state already has a stored value or exceptionstored task has already been invoked.- no_state if *this has no associated asynchronous state.
Section: 21.5 [string.conversions] Status: C++14 Submitter: Alisdair Meredith Opened: 2010-07-19 Last modified: 2015-04-08
View all other issues in [string.conversions].
View all issues with C++14 status.
Discussion:
The functions (w)stoi and (w)stof are specified in terms of calling C library APIs for potentially wider types. The integer and floating-point versions have subtly different behaviour when reading values that are too large to convert. The floating point case will throw out_of_bound if the read value is too large to convert to the wider type used in the implementation, but behaviour is undefined if the converted value cannot narrow to a float. The integer case will throw out_of_bounds if the converted value cannot be represented in the narrower type, but throws invalid_argument, rather than out_of_range, if the conversion to the wider type fails due to overflow.
Suggest that the Throws clause for both specifications should be consistent, supporting the same set of fail-modes with the matching set of exceptions.
Proposed resolution:
21.5p3 [string.conversions]
int stoi(const string& str, size_t *idx = 0, int base = 10); long stol(const string& str, size_t *idx = 0, int base = 10); unsigned long stoul(const string& str, size_t *idx = 0, int base = 10); long long stoll(const string& str, size_t *idx = 0, int base = 10); unsigned long long stoull(const string& str, size_t *idx = 0, int base = 10);...
3 Throws: invalid_argument if strtol, strtoul, strtoll, or strtoull reports that no conversion could be performed. Throws out_of_range if strtol, strtoul, strtoll or strtoull sets errno to ERANGE, or if the converted value is outside the range of representable values for the return type.
21.5p6 [string.conversions]
float stof(const string& str, size_t *idx = 0); double stod(const string& str, size_t *idx = 0); long double stold(const string& str, size_t *idx = 0);...
6 Throws: invalid_argument if strtod or strtold reports that no conversion could be performed. Throws out_of_range if strtod or strtold sets errno to ERANGE or if the converted value is outside the range of representable values for the return type.
Section: 20.9.10.1 [func.bind.isbind] Status: C++14 Submitter: Sean Hunt Opened: 2010-07-19 Last modified: 2015-04-08
View all other issues in [func.bind.isbind].
View all issues with C++14 status.
Discussion:
20.9.10.1 [func.bind.isbind] says for is_bind_expression:
Users may specialize this template to indicate that a type should be treated as a subexpression in a bind call.
But it also says:
If T is a type returned from bind, is_bind_expression<T> shall be publicly derived from integral_constant<bool, true>, otherwise from integral_constant<bool, false>.
This means that while the user is free to specialize, any specialization would have to be false to avoid violating the second requirement. A similar problem exists for is_placeholder.
[ 2010 Batavia (post meeting session) ]
Alisdair recognises this is clearly a bug introduced by some wording he wrote, the sole purpose of this metafunction is as a customization point for users to write their own bind-expression types that participate in the standard library bind protocol. The consensus was that this should be fixed in Madrid, moved to Open.
[2011-05-13 Jonathan Wakely comments and provides proposed wording]
The requirements are that is_bind_expression<T>::value is true when T is a type returned from bind, false for any other type, except when there's a specialization involving a user-defined type (N.B. 17.6.4.2.1 [namespace.std] means we don't need to say e.g. is_bind_expression<string> is false.)
The obvious way to meet the requirements is for the primary template to derive from integral_constant<bool, false> and for implementations to provide specializations for the unspecified types returned from bind. User-defined specializations can do whatever they like, as long as is_bind_expression::value is sane. There's no reason to forbid users from defining is_bind_expression<user_defined_type>::value=false if that's what they want to do. Similar reasoning applies to is_placeholder, but a further issue is that 20.9.10.1 [func.bind.isbind] contains wording for is_placeholder but contains no definition of it and the sub-clause name only refers to is_bind_expression. The wording below proposes splitting paragraphs 3 and 4 of 20.9.10.1 [func.bind.isbind] into a new sub-clause covering is_placeholder. If the template specializations added by the proposed wording are too vague then they could be preceded by "for exposition only" comments[2011-05-18 Daniel comments and provides some refinements to the P/R]
Both bind-related type traits should take advantage of the UnaryTypeTrait requirements. Additionally, the updated wording does not imply that the implementation provides several specializations. Wording was used similar to the specification of the uses_allocator type trait (which unfortunately is not expressed in terms of BinaryTypeTrait requirements).
[Bloomington, 2011]
Move to Ready
Proposed resolution:
This wording is relative to the FDIS.
Change 20.9.10.1 [func.bind.isbind] to:
namespace std { template<class T> struct is_bind_expression; // see below: integral_constant<bool, see below> { };}-1- is_bind_expression can be used to detect function objects generated by bind. bind uses is_bind_expression to detect subexpressions.
-2-Users may specialize this template to indicate that a type should be treated as a subexpression in a bind call.If T is a type returned from bind, is_bind_expression<T> shall be publicly derived from integral_constant<bool, true>, otherwise from integral_constant<bool, false>Instantiations of the is_bind_expression template shall meet the UnaryTypeTrait requirements ([meta.rqmts]). The implementation shall provide a definition that has a BaseCharacteristic of true_type if T is a type returned from bind, otherwise it shall have a BaseCharacteristic of false_type. A program may specialize this template for a user-defined type T to have a BaseCharacteristic of true_type to indicate that T should be treated as a subexpression in a bind call..-3- is_placeholder can be used to detect the standard placeholders _1, _2, and so on. bind uses is_placeholder to detect placeholders. Users may specialize this template to indicate a placeholder type.-4- If T is the type of std::placeholders::_J, is_placeholder<T> shall be publicly derived from integral_constant<int, J>, otherwise from integral_constant<int, 0>.
Insert a new sub-clause immediately following sub-clause 20.9.10.1 [func.bind.isbind], the suggested sub-clause tag is [func.bind.isplace]:
namespace std { template<class T> struct is_placeholder; // see below }-?- is_placeholder can be used to detect the standard placeholders _1, _2, and so on. bind uses is_placeholder to detect placeholders.
-?- Instantiations of the is_placeholder template shall meet the UnaryTypeTrait requirements ([meta.rqmts]). The implementation shall provide a definition that has a BaseCharacteristic of integral_constant<int, J> if T is the type of std::placeholders::_J, otherwise it shall have a BaseCharacteristic of integral_constant<int, 0>. A program may specialize this template for a user-defined type T to have a BaseCharacteristic of integral_constant<int, N> with N > 0 to indicate that T should be treated as a placeholder type.
Section: 21.4.8.9 [string.io] Status: C++14 Submitter: James Kanze Opened: 2010-07-23 Last modified: 2015-04-08
View all other issues in [string.io].
View all issues with C++14 status.
Discussion:
What should the following code output?
#include <string> #include <iostream> #include <iomanip> int main() { std::string test("0X1Y2Z"); std::cout.fill('*'); std::cout.setf(std::ios::internal, std::ios::adjustfield); std::cout << std::setw(8) << test << std::endl; }
I would expect "**0X1Y2Z", and this is what the compilers I have access to (VC++, g++ and Sun CC) do. But according to the standard, it should be "0X**1Y2Z":
21.4.8.9 [string.io]/5:
template<class charT, class traits, class Allocator> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& os, const basic_string<charT,traits,Allocator>& str);Effects: Behaves as a formatted output function (27.7.3.6.1 [ostream.formatted.reqmts]). After constructing a sentry object, if this object returns true when converted to a value of type bool, determines padding as described in 22.4.2.2.2 [facet.num.put.virtuals], then inserts the resulting sequence of characters seq as if by calling os.rdbuf()->sputn(seq, n), where n is the larger of os.width() and str.size(); then calls os.width(0).
22.4.2.2.2 [facet.num.put.virtuals]/5:
[…]
Stage 3: A local variable is initialized as
fmtflags adjustfield= (flags & (ios_base::adjustfield));The location of any padding is determined according to Table 88.
If str.width() is nonzero and the number of charT's in the sequence after stage 2 is less than str.width(), then enough fill characters are added to the sequence at the position indicated for padding to bring the length of the sequence to str.width(). str.width(0) is called.
Table 88 — Fill padding State Location adjustfield == ios_base::left pad after adjustfield == ios_base::right pad before adjustfield == internal and a sign occurs in the representation pad after the sign adjustfield == internal and representation after stage 1 began with 0x or 0X pad after x or X otherwise pad before
Although it's not 100% clear what "the sequence after stage 2" should mean here, when there is no stage 2, the only reasonable assumption is that it is the contents of the string being output. In the above code, the string being output is "0X1Y2Z", which starts with "0X", so the padding should be inserted "after x or X", and not before the string. I believe that this is a defect in the standard, and not in the three compilers I tried.
[ 2010 Batavia (post meeting session) ]
Consensus that all known implementations are consistent, and disagree with the standard. Preference is to fix the standard before implementations start trying to conform to the current spec, as the current implementations have the preferred form. Howard volunteered to drught for Madrid, move to Open.
[2011-03-24 Madrid meeting]
Daniel Krügler volunteered to provide wording, interacting with Dietmar and Bill.
[2011-06-24 Daniel comments and provides wording]
The same problem applies to the output provided by const char* and similar character sequences as of 27.7.3.6.4 [ostream.inserters.character] p. 5. and even for single character output (!) as described in 27.7.3.6.4 [ostream.inserters.character] p. 1, just consider the character value '-' where '-' is the sign character. In this case Table 91 — "Fill padding" requires to pad after the sign, i.e. the output for the program
#include <iostream> #include <iomanip> int main() { char c = '-'; std::cout.fill('*'); std::cout.setf(std::ios::internal, std::ios::adjustfield); std::cout << std::setw(2) << c << std::endl; }
According to the current wording this program should output "-*", but all tested implementations output "*-" instead.
I suggest to replace the reference to 22.4.2.2.2 [facet.num.put.virtuals] in all three places. It is not very complicated to describe the padding rules for simple character sequences "inline". A similar approach is used as for the money_put functions.[ 2011 Bloomington ]
Move to Review, the resolution seems correct but it would be nice if some factoring of the common words were proposed.
[2012, Kona]
Moved to Tentatively Ready by the post-Kona issues processing subgroup.
While better factoring of the common words is desirable, it is also editorial and should not hold up the progress of this issue. As the edits impact two distinct clauses, it is not entirely clear what a better factoring should look like.
[2012, Portland: applied to WP]
Proposed resolution:
The new wording refers to the FDIS numbering.
Change 21.4.8.9 [string.io]/5 as indicated:
template<class charT, class traits, class Allocator> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& os, const basic_string<charT,traits,Allocator>& str);-5- Effects: Behaves as a formatted output function ([ostream.formatted.reqmts]). After constructing a sentry object, if this object returns true when converted to a value of type bool, determines padding as
described in [facet.num.put.virtuals],follows: A charT character sequence is produced, initially consisting of the elements defined by the range [str.begin(), str.end()). If str.size() is less than os.width(), then enough copies of os.fill() are added to this sequence as necessary to pad to a width of os.width() characters. If (os.flags() & ios_base::adjustfield) == ios_base::left is true, the fill characters are placed after the character sequence; otherwise, they are placed before the character sequence. Tthen inserts the resulting sequence of characters seq as if by calling os.rdbuf()->sputn(seq, n), where n is the larger of os.width() and str.size(); then calls os.width(0).
Change 27.7.3.6.4 [ostream.inserters.character]/1 as indicated (An additional editorial fix is suggested for the first prototype declaration):
template<class charT, class traits> basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out, charT c}); template<class charT, class traits> basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out, char c); // specialization template<class traits> basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out, char c); // signed and unsigned template<class traits> basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out, signed char c); template<class traits> basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out, unsigned char c);-1- Effects: Behaves like a formatted inserter (as described in [ostream.formatted.reqmts]) of out. After a sentry object is constructed it inserts characters. In case c has type char and the character type of the stream is not char, then the character to be inserted is out.widen(c); otherwise the character is c. Padding is determined as
described in [facet.num.put.virtuals]follows: A character sequence is produced, initially consisting of the insertion character. If out.width() is greater than one, then enough copies of out.fill() are added to this sequence as necessary to pad to a width of out.width() characters. If (out.flags() & ios_base::adjustfield) == ios_base::left is true, the fill characters are placed after the insertion character; otherwise, they are placed before the insertion character.width(0) is called.The insertion character and any required padding are inserted into out; then calls os.width(0).
Change 27.7.3.6.4 [ostream.inserters.character]/5 as indicated:
template<class charT, class traits> basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out, const charT* s); template<class charT, class traits> basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out, const char* s); template<class traits> basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out, const char* s); template<class traits> basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out, const signed char* s); template<class traits> basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out, const unsigned char* s);[…]
-5- Padding is determined asdescribed in [facet.num.put.virtuals]. The n characters starting at s are widened using out.widen ([basic.ios.members])follows: A character sequence is produced, initially consisting of the elements defined by the n characters starting at s widened using out.widen ([basic.ios.members]). If n is less than out.width(), then enough copies of out.fill() are added to this sequence as necessary to pad to a width of out.width() characters. If (out.flags() & ios_base::adjustfield) == ios_base::left is true, the fill characters are placed after the character sequence; otherwise, they are placed before the character sequence. The widened characters and any required padding are inserted into out. Calls width(0).
Section: 23.4 [associative] Status: Resolved Submitter: Paolo Carlini Opened: 2010-10-29 Last modified: 2015-04-08
View other active issues in [associative].
View all other issues in [associative].
View all issues with Resolved status.
Discussion:
I'm seeing something strange in the paragraphs 23.4.4.4 [map.modifiers] and 23.4.5.3 [multimap.modifiers]: they both talk about tuple<const key_type, mapped_type> but I think they should be talking about pair<const key_type, mapped_type> because, among other reasons, a tuple is not convertible to a pair. If I replace tuple with pair everything makes sense to me.
The proposed resolution is obvious.[ 2010-11-07 Daniel comments ]
This is by far not the only necessary fix within both sub-clauses. For details see the 2010-10-29 comment in 2005.
[2011-03-24 Madrid meeting]
Paolo: Don't think we can do it now.
Daniel K: Agrees.[ 2011 Bloomington ]
Consensus that this issue will be resolved by 2005, but held open until that issue is resolved.
Proposed resolution:
Apply the resolution proposed by the 2010-10-29 comment in 2005.
Section: 17.6.5.6 [constexpr.functions] Status: C++14 Submitter: Matt Austern Opened: 2010-11-12 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
Suppose that a particular function is not tagged as constexpr in the standard, but that, in some particular implementation, it is possible to write it within the constexpr constraints. If an implementer tags such a function as constexpr, is that a violation of the standard or is it a conforming extension?
There are two questions to consider. First, is this allowed under the as-if rule? Second, if it does not fall under as-if, is there (and should there be) any special license granted to implementers to do this anyway, sort of the way we allow elision of copy constructors even though it is detectable by users?
I believe that this does not fall under "as-if", so implementers probably don't have that freedom today. I suggest changing the WP to grant it. Even if we decide otherwise, however, I suggest that we make it explicit.
[ 2011 Bloomington ]
General surprise this was not already in 'Ready' status, and so moved.
[ 2012 Kona ]
Some concern expressed when presented to full committee for the vote to WP status that this issue had been resolved without sufficient thought of the consequences for diverging library implementations, as users may use SFINAE to observe different behavior from otherwise identical code. Issue moved back to Review status, and will be discussed again in Portland with a larger group. Note for Portland: John Spicer has agreed to represent Core's concerns during any such discussion within LWG.
[2013-09 Chicago]
Straw poll: LWG strongly favoured to remove from implementations the freedom to add constexpr.
Matt provides new wording.
[2013-09 Chicago]
Move to Immediate after reviewing Matt's new wording, apply the new wording to the Working Paper.
Proposed resolution:
In 17.6.5.6 [constexpr.functions], change paragraph 1 to:
This standard explicitly requires that certain standard library functions are constexpr [dcl.constexpr]. An implementation shall not declare any standard library function signature as constexpr except for those where it is explicitly required. Within any header that provides any non-defining declarations of constexpr functions or constructors an implementation shall provide corresponding definitions.
Section: 17.6.4.3.1 [macro.names] Status: C++11 Submitter: Alberto Ganesh Barbati Opened: 2010-11-16 Last modified: 2015-04-08
View all other issues in [macro.names].
View all issues with C++11 status.
Discussion:
A program is currently forbidden to use keywords as macro names. This restriction should be strengthened to include all identifiers that could be used by the library as attribute-tokens (for example noreturn, which is used by header <cstdlib>) and the special identifiers introduced recently for override control (these are not currently used in the library public interface, but could potentially be used by the implementation or in future revisions of the library).
[2011-02-10 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed resolution:
Modify 17.6.4.3.1 [macro.names] paragraph 2 as follows:
A translation unit shall not #define or #undef names lexically identical to keywords, to the identifiers listed in Table X [Identifiers with special meaning], or to the attribute-tokens described in clause 7.6 [dcl.attr].
Section: 20.10.4 [meta.unary] Status: C++14 Submitter: Nikolay Ivchenkov Opened: 2010-11-08 Last modified: 2015-04-08
View all other issues in [meta.unary].
View all issues with C++14 status.
Discussion:
According to N3126 ‑ 3.9/9,
"Scalar types, trivial class types (Clause 9), arrays of such types and cv‑qualified versions of these types (3.9.3) are collectively called trivial types."
Thus, an array (possibly of unknown bound) can be trivial type, non‑trivial type, or an array type whose triviality cannot be determined because its element type is incomplete.
According to N3126 ‑ Table 45, preconditions for std::is_trivial are defined as follows:
"T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound"
It seems that "an array of unknown bound" should be changed to "an array of unknown bound of a complete element type". Preconditions for some other templates (e.g., std::is_trivially_copyable, std::is_standard_layout, std::is_pod, and std::is_literal_type) should be changed similarly.
On the other hand, some preconditions look too restrictive. For example, std::is_empty and std::is_polymorphic might accept any incomplete non‑class type.
[2011-02-18: Daniel provides wording proposal]
While reviewing the individual preconditions I could find three different groups of either too weakening or too strengthening constraints:
is_empty/is_polymorphic/is_abstract/has_virtual_destructor:
These traits can only apply for non‑union class types, otherwise the result must always be false
is_base_of:
Similar to the previous bullet, but the current wording comes already near to that ideal, it only misses to add the non‑union aspect.
is_trivial/is_trivially_copyable/is_standard_layout/is_pod/is_literal_type:
These traits always require that std::remove_all_extents<T>::type to be cv void or a complete type.
[Bloomington, 2011]
Move to Ready
Proposed resolution:
Modify the pre-conditions of the following type traits in 20.10.4.3 [meta.unary.prop], Table 48 — Type property predicates:
Table 48 — Type property predicates Template Condition Preconditions ... template <class T>
struct is_trivial;T is a trivial type (3.9) remove_all_extents<T>::type
shall be a complete type,or (possibly
cv-qualified) void, or an array of.
unknown boundtemplate <class T>
struct is_trivially_copyable;T is a trivially copyable
type (3.9)remove_all_extents<T>::type
shall be a complete type,or (possibly
cv-qualified) void, or an array of.
unknown boundtemplate <class T>
struct is_standard_layout;T is a standard-layout
type (3.9)remove_all_extents<T>::type
shall be a complete type,or (possibly
cv-qualified) void, or an array of.
unknown boundtemplate <class T>
struct is_pod;T is a POD type (3.9) remove_all_extents<T>::type
shall be a complete type,or (possibly
cv-qualified) void, or an array of.
unknown boundtemplate <class T>
struct is_literal_type;T is a literal type (3.9) remove_all_extents<T>::type
shall be a complete type,or (possibly
cv-qualified) void, or an array of.
unknown boundtemplate <class T>
struct is_empty;T is a class type, but not a
union type, with no
non-static data members
other than bit-fields of
length 0, no virtual
member functions, no
virtual base classes, and
no base class B for which
is_empty<B>::value is
false.T shall be a complete type,If T
(possibly cv-qualified) void, or
an array of unknown bound
is a non‑union class type, T
shall be a complete type.template <class T>
struct is_polymorphic;T is a polymorphic
class (10.3)T shall be a complete type,If T
type, (possibly cv-qualified) void, or
an array of unknown bound
is a non‑union class type, T
shall be a complete type.template <class T>
struct is_abstract;T is an abstract
class (10.4)T shall be a complete type,If T
type, (possibly cv-qualified) void, or
an array of unknown bound
is a non‑union class type, T
shall be a complete type.... template <class T>
struct has_virtual_destructor;T has a virtual
destructor (12.4)T shall be a complete type,If T
(possibly cv-qualified) void, or
an array of unknown bound
is a non‑union class type, T
shall be a complete type.
Modify the pre-conditions of the following type traits in 20.10.6 [meta.rel], Table 50 — Type relationship predicates:
Table 50 — Type relationship predicates Template Condition Comments ... template <class Base, class
Derived>
struct is_base_of;Base is a base class of
Derived (10) without
regard to cv-qualifiers
or Base and Derived
are not unions and
name the same class
type without regard to
cv-qualifiersIf Base and Derived are
non‑union class types
and are different types
(ignoring possible cv-qualifiers)
then Derived shall be a complete
type. [ Note: Base classes that
are private, protected, or
ambigious are, nonetheless, base
classes. — end note ]...
Section: 17.6.3.5 [allocator.requirements] Status: WP Submitter: Daniel Krügler Opened: 2010-11-17 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with WP status.
Discussion:
During the Batavia meeting it turned out that there is a definition hole for types satisfying the Allocators requirements: The problem became obvious when it was discussed whether all swap functions of Containers with internal data handles can be safely tagged with noexcept or not. While it is correct that the implicit swap function of an allocator is required to be a no-throw operation (because move/copy-constructors and assignment operators are required to be no-throw functions), there are no such requirements for specialized swap overloads for a particular allocator.
But this requirement is essential because the Containers are required to support swappable Allocators, when the value allocator_traits<>::propagate_on_container_swap evaluates to true.[2011-02-10 Alberto, Daniel, and Pablo collaborated on the proposed wording]
The proposed resolution (based on N3225) attempts to solve the following problems:
[2011-04-08 Pablo comments]
I'm implementing a version of list now and I actually do find it impossible to write an exception-safe assignment operator unless I can assume that allocator assignment does not throw. (The problem is that I use a sentinel node and I need to allocate a new sentinel using the new allocator without destroying the old one -- then swap the allocator and sentinel pointer in atomically, without risk of an exception leaving one inconsistent with the other.
Please update the proposed resolution to add the nothrow requirement to copy-assignment.[2014-02-14 Issaquah: Move to Ready]
Fix a couple of grammar issues related to calling swap and move to Ready.
Proposed resolution:
Adapt the following three rows from Table 44 — Allocator requirements:
Table 44 — Allocator requirements Expression Return type Assertion/note
pre-/post-conditionDefault X::propagate_on_container_copy_assignment Identical to or derived from true_type
or false_typetrue_type only if an allocator of type X should be copied
when the client container is copy-assigned. See Note B, below.false_type X::propagate_on_container_move_assignment Identical to or derived from true_type
or false_typetrue_type only if an allocator of type X should be moved
when the client container is move-assigned. See Note B, below.false_type X::propagate_on_container_swap Identical to or derived from true_type
or false_typetrue_type only if an allocator of type X should be swapped
when the client container is swapped. See Note B, below.false_type
Following 17.6.3.5 [allocator.requirements] p. 3 insert a new normative paragraph:
Note B: If X::propagate_on_container_copy_assignment::value is true, X shall satisfy the CopyAssignable requirements (Table 39 [copyassignable]) and the copy operation shall not throw exceptions. If X::propagate_on_container_move_assignment::value is true, X shall satisfy the MoveAssignable requirements (Table 38 [moveassignable]) and the move operation shall not throw exceptions. If X::propagate_on_container_swap::value is true, lvalues of X shall be swappable (17.6.3.2 [swappable.requirements]) and the swap operation shall not throw exceptions.
Modify 23.2.1 [container.requirements.general] p. 8 and p. 9 as indicated:
8 - [..] The allocator may be replaced only via assignment or swap(). Allocator replacement is performed by copy assignment, move assignment, or swapping of the allocator only if allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value, allocator_traits<allocator_type>::propagate_on_container_move_assignment::value, or allocator_traits<allocator_type>::propagate_on_container_swap::value is true within the implementation of the corresponding container operation.
9 - The expression a.swap(b), for containers a and b of a standard container type other than array, shall exchange the values of a and b without invoking any move, copy, or swap operations on the individual container elements. Lvalues of aThe behavior of a call to a container's swap function is undefined unless the objects being swapped have allocators that compare equal or allocator_traits<allocator_type>::propagate_on_container_swap::value is true. In all container types defined in this Clause, the member get_allocator() returns a copy of the allocator used to construct the container or, if that allocator has been replaced, a copy of the most recent replacement.Any Compare, Pred, or Hashobjectstypes belonging to a and b shall be swappable and shall be exchanged byunqualified calls to non-membercalling swap as described in 17.6.3.2 [swappable.requirements]. If allocator_traits<allocator_type>::propagate_on_container_swap::value is true, then lvalues of allocator_type shall be swappable and the allocators of a and b shall also be exchangedusing an unqualified call to non-memberby calling swap as described in 17.6.3.2 [swappable.requirements]. Otherwise,theythe allocators shall not be swapped, and the behavior is undefined unless a.get_allocator() == b.get_allocator(). Every iterator referring to an element in one container before the swap shall refer to the same element in the other container after the swap. It is unspecified whether an iterator with value a.end() before the swap will have value b.end() after the swap.
Section: 20.9.4 [refwrap] Status: C++11 Submitter: Nikolay Ivchenkov Opened: 2010-11-15 Last modified: 2015-04-08
View all other issues in [refwrap].
View all issues with C++11 status.
Discussion:
std::reference_wrapper's function call operator uses wrong type encoding for rvalue-arguments. An rvalue-argument of type T must be encoded as T&&, not as just T.
#include <functional> #include <iostream> #include <string> #include <type_traits> #include <utility> template <class F, class... Types> typename std::result_of<F (Types...)>::type f1(F f, Types&&... params) { return f(std::forward<Types...>(params...)); } template <class F, class... Types> typename std::result_of<F (Types&&...)>::type f2(F f, Types&&... params) { return f(std::forward<Types...>(params...)); } struct Functor { template <class T> T&& operator()(T&& t) const { return static_cast<T&&>(t); } }; int main() { typedef std::string const Str; std::cout << f1(Functor(), Str("1")) << std::endl; // (1) std::cout << f2(Functor(), Str("2")) << std::endl; // (2) }
Lets consider the function template f1 (which is similar to std::reference_wrapper's function call operator). In the invocation (1) F is deduced as 'Functor' and Types is deduced as type sequence which consists of one type 'std::string const'. After the substitution we have the following equivalent:
template <> std::result_of<F (std::string const)>::type f1<Functor, std::string const>(Functor f, std::string const && params) { return f(std::forward<const std::string>(params)); }
The top-level cv-qualifier in the parameter type of 'F (std::string const)' is removed, so we have
template <> std::result_of<F (std::string)>::type f1<Functor, std::string const>(Functor f, std::string const && params) { return f(std::forward<const std::string>(params)); }
Let r be an rvalue of type 'std::string' and cr be an rvalue of type 'std::string const'. The expression Str("1") is cr. The corresponding return type for the invocation
Functor().operator()(r)
is 'std::string &&'. The corresponding return type for the invocation
Functor().operator()(cr)
is 'std::string const &&'.
std::result_of<Functor (std::string)>::type is the same type as the corresponding return type for the invocation Functor().operator()(r), i.e. it is 'std::string &&'. As a consequence, we have wrong reference binding in the return statement in f1. Now lets consider the invocation (2) of the function template f2. When the template arguments are substituted we have the following equivalent:template <> std::result_of<F (std::string const &&)>::type f2<Functor, std::string const>(Functor f, std::string const && params) { return f(std::forward<const std::string>(params)); }
std::result_of<F (std::string const &&)>::type is the same type as 'std::string const &&'. This is correct result.
[ 2010-12-07 Jonathan Wakely comments and suggests a proposed resolution ]
I agree with the analysis and I think this is a defect in the standard, it would be a shame if it can't be fixed.
In the following example one would expect f(Str("1")) and std::ref(f)(Str("2")) to be equivalent but the current wording makes the invocation through reference_wrapper ill-formed:#include <functional> #include <string> struct Functor { template <class T> T&& operator()(T&& t) const { return static_cast<T&&>(t); } }; int main() { typedef std::string const Str; Functor f; f( Str("1") ); std::ref(f)( Str("2") ); // error }
[ 2010-12-07 Daniel comments and refines the proposed resolution ]
There is one further defect in the usage of result_of within reference_wrapper's function call operator: According to 20.9.4.4 [refwrap.invoke] p. 1 the invokable entity of type T is provided as lvalue, but result_of is fed as if it were an rvalue. This does not only lead to potentially incorrect result types, but it will also have the effect that we could never use the function call operator with a function type, because the type encoding used in result_of would form an invalid function type return a function type. The following program demonstrates this problem:
#include <functional> void foo(int) {} int main() { std::ref(foo)(0); // error }
The correct solution is to ensure that T becomes T& within result_of, which solves both problems at once.
[2011-02-24 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed resolution:
Change the synopsis in 20.9.4 [refwrap] paragraph 1:
namespace std { template <class T> class reference_wrapper { public : [...] // invocation template <class... ArgTypes> typename result_of<T&(ArgTypes&&...)>::type operator() (ArgTypes&&...) const; }; }
Change the signature in 20.9.4.4 [refwrap.invoke] before paragraph 1
template <class... ArgTypes> typename result_of<T&(ArgTypes&&... )>::type operator()(ArgTypes&&... args) const;1 Returns: INVOKE(get(), std::forward<ArgTypes>(args)...). (20.8.2)
Section: 28.7 [re.traits] Status: C++14 Submitter: Jonathan Wakely Opened: 2010-11-16 Last modified: 2015-04-08
View all other issues in [re.traits].
View all issues with C++14 status.
Discussion:
Addresses GB 10
28.7 [re.traits] p. 12 says:
returns true if f bitwise or'ed with the result of calling lookup_classname with an iterator pair that designates the character sequence "w" is not equal to 0 and c == '_'
If the bitmask value corresponding to "w" has a non-zero value (which it must do) then the bitwise or with any value is also non-zero, and so isctype('_', f) returns true for any f. Obviously this is wrong, since '_' is not in every ctype category.
There's a similar problem with the following phrases discussing the "blank" char class.
[2011-05-06: Jonathan Wakely comments and provides suggested wording]
DR 2019 added isblank support to <locale> which simplifies the definition of regex_traits::isctype by removing the special case for the "blank" class.
My suggestion for 2018 is to add a new table replacing the lists of recognized names in the Remarks clause of regex_traits::lookup_classname. I then refer to that table in the Returns clause of regex_traits::isctype to expand on the "in an unspecified manner" wording which is too vague. The conversion can now be described using the "is set" term defined by 17.5.2.1.3 [bitmask.types] and the new table to convey the intented relationship between e.g. [[:digit:]] and ctype_base::digit, which is not actually stated in the FDIS. The effects of isctype can then most easily be described in code, given an "exposition only" function prototype to do the not-quite-so-unspecified conversion from char_class_type to ctype_base::mask. The core of LWG 2018 is the "bitwise or'ed" wording which gives the wrong result, always evaluating to true for all values of f. That is replaced by the condition (f&x) == x where x is the result of calling lookup_classname with "w". I believe that's necessary, because the "w" class could be implemented by an internal "underscore" class i.e. x = _Alnum|_Underscore in which case (f&x) != 0 would give the wrong result when f==_Alnum. The proposed resolution also makes use of ctype::widen which addresses the problem that the current wording only talks about "w" and '_' which assumes charT is char. There's still room for improvement here: the regex grammar in 28.13 [re.grammar] says that the class names in the table should always be recognized, implying that e.g. U"digit" should be recognized by regex_traits<char32_t>, but the specification of regex_traits::lookup_classname doesn't cover that, only mentioning char and wchar_t. Maybe the table should not distinguish narrow and wide strings, but should just have one column and add wording to say that regex_traits widens the name as if by using use_facet<ctype<charT>>::widen(). Another possible improvement would be to allow additional implementation-defined extensions in isctype. An implementation is allowed to support additional class names in lookup_classname, e.g. [[:octdigit:]] for [0-7] or [[:bindigit:]] for [01], but the current definition of isctype provides no way to use them unless ctype_base::mask also supports them.[2011-05-10: Alberto and Daniel perform minor fixes in the P/R]
[ 2011 Bloomington ]
Consensus that this looks to be a correct solution, and the presentation as a table is a big improvement.
Concern that the middle section wording is a little muddled and confusing, Stefanus volunteered to reword.
[ 2013-09 Chicago ]
Stefanus provides improved wording (replaced below)
[ 2013-09 Chicago ]
Move as Immediate after reviewing Stefanus's revised wording, apply the new wording to the Working Paper.
Proposed resolution:
This wording is relative to the FDIS.
Modify 28.7 [re.traits] p. 10 as indicated:
template <class ForwardIterator> char_class_type lookup_classname( ForwardIterator first, ForwardIterator last, bool icase = false) const;-9- Returns: an unspecified value that represents the character classification named by the character sequence designated by the iterator range [first,last). If the parameter icase is true then the returned mask identifies the character classification without regard to the case of the characters being matched, otherwise it does honor the case of the characters being matched.(footnote 335) The value returned shall be independent of the case of the characters in the character sequence. If the name is not recognized then returns a value that compares equal to 0.
-10- Remarks: For regex_traits<char>, at least thenames "d", "w", "s", "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower", "print", "punct", "space", "upper" and "xdigit"narrow character names in Table X shall be recognized. For regex_traits<wchar_t>, at least thenames L"d", L"w", L"s", L"alnum", L"alpha", L"blank", L"cntrl", L"digit", L"graph", L"lower", L"print", L"punct", L"space", L"upper" and L"xdigit"wide character names in Table X shall be recognized.
Modify 28.7 [re.traits] p. 12 as indicated:
bool isctype(charT c, char_class_type f) const;-11- Effects: Determines if the character c is a member of the character classification represented by f.
-12- Returns:Converts f into a value m of type std::ctype_base::mask in an unspecified manner, and returns true if use_facet<ctype<charT> >(getloc()).is(m, c) is true. Otherwise returns true if f bitwise or'ed with the result of calling lookup_classname with an iterator pair that designates the character sequence "w" is not equal to 0 and c == '_', or if f bitwise or'ed with the result of calling lookup_classname with an iterator pair that designates the character sequence "blank" is not equal to 0 and c is one of an implementation-defined subset of the characters for which isspace(c, getloc()) returns true, otherwise returns false.Given an exposition-only function prototypetemplate<class C> ctype_base::mask convert(typename regex_traits<C>::char_class_type f);that returns a value in which each ctype_base::mask value corresponding to a value in f named in Table X is set, then the result is determined as if by:
ctype_base::mask m = convert<charT>(f); const ctype<charT>& ct = use_facet<ctype<charT>>(getloc()); if (ct.is(m, c)) { return true; } else if (c == ct.widen('_')) { charT w[1] = { ct.widen('w') }; char_class_type x = lookup_classname(w, w+1); return (f&x) == x; } else { return false; }[Example:
regex_traits<char> t; string d("d"); string u("upper"); regex_traits<char>::char_class_type f; f = t.lookup_classname(d.begin(), d.end()); f |= t.lookup_classname(u.begin(), u.end()); ctype_base::mask m = convert<char>(f); // m == ctype_base::digit|ctype_base::upper— end example]
[Example:
regex_traits<char> t; string w("w"); regex_traits<char>::char_class_type f; f = t.lookup_classname(w.begin(), w.end()); t.isctype('A', f); // returns true t.isctype('_', f); // returns true t.isctype(' ', f); // returns false— end example]
At the end of 28.7 [re.traits] add a new "Table X — Character class names and corresponding ctype masks":
Table X — Character class names and corresponding ctype masks Narrow character name Wide character name Corresponding ctype_base::mask value "alnum" L"alnum" ctype_base::alnum "alpha" L"alpha" ctype_base::alpha "blank" L"blank" ctype_base::blank "cntrl" L"cntrl" ctype_base::cntrl "digit" L"digit" ctype_base::digit "d" L"d" ctype_base::digit "graph" L"graph" ctype_base::graph "lower" L"lower" ctype_base::lower "print" L"print" ctype_base::print "punct" L"punct" ctype_base::punct "space" L"space" ctype_base::space "s" L"s" ctype_base::space "upper" L"upper" ctype_base::upper "w" L"w" ctype_base::alnum "xdigit" L"xdigit" ctype_base::xdigit
Section: 22.3.3.1 [classification] Status: C++11 Submitter: Jonathan Wakely Opened: 2010-11-16 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
C99 added isblank and iswblank to <locale.h> but <locale> does not provide any equivalent.
[2011-02-24 Reflector discussion]
Moved to Tentatively Ready after 6 votes.
Proposed resolution:
Add to 22.3.3.1 [classification] synopsis:
template <class charT> bool isgraph (charT c, const locale& loc); template <class charT> bool isblank (charT c, const locale& loc);
Add to 22.4.1 [category.ctype] synopsis:
static const mask xdigit = 1 << 8; static const mask blank = 1 << 9; static const mask alnum = alpha | digit; static const mask graph = alnum | punct;
Section: 20.12.5.5 [time.duration.nonmember] Status: C++11 Submitter: Daniel Krügler Opened: 2010-12-06 Last modified: 2015-04-08
View all other issues in [time.duration.nonmember].
View all issues with C++11 status.
Discussion:
As of issue 1171 several time-utility functions have been marked constexpr. Alas this was done without adapting the corresponding return elements, which has the effect that none of current arithmetic functions of class template duration marked as constexpr can ever be constexpr functions (which makes them ill-formed, no diagnostics required as of recent core rules), because they invoke a non-constant expression, e.g. 20.12.5.5 [time.duration.nonmember]/2:
template <class Rep1, class Period1, class Rep2, class Period2> constexpr typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>{>}::type operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); 2 Returns: CD(lhs) += rhs.
The real problem is, that we cannot defer to as-if rules here: The returns element specifies an indirect calling contract of a potentially user-defined function. This cannot be the += assignment operator of such a user-defined type, but must be the corresponding immutable binary operator+ (unless we require that += shall be an immutable function which does not really makes sense).
[2011-02-17 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed resolution:
The suggested wording changes are against the working draft N3242. Additional to the normative wording changes some editorial fixes are suggested.
In 20.12.5.5 [time.duration.nonmember], change the following arithmetic function specifications as follows:
template <class Rep1, class Period1, class Rep2, class Period2> constexpr typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>{>}::type operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);2 Returns:
CD(lhs) += rhsCD(CD(lhs).count() + CD(rhs).count()).
template <class Rep1, class Period1, class Rep2, class Period2> constexpr typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>{>}::type operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);3 Returns:
CD(lhs) -= rhsCD(CD(lhs).count() - CD(rhs).count()).
template <class Rep1, class Period, class Rep2> constexpr duration<typename common_type<Rep1, Rep2>::type, Period> operator*(const duration<Rep1, Period>& d, const Rep2& s);4 Remarks: This operator shall not participate in overload resolution unless Rep2 is implicitly convertible to CR(Rep1, Rep2).
5 Returns:duration<CR(Rep1, Rep2), Period>(d) *= sCD(CD(d).count() * s).
[...]
template <class Rep1, class Period, class Rep2> constexpr duration<typename common_type<Rep1, Rep2>::type, Period> operator/(const duration<Rep1, Period>& d, const Rep2& s);8 Remarks: This operator shall not participate in overload resolution unless Rep2 is implicitly convertible to CR(Rep1, Rep2) and Rep2 is not an instantiation of duration.
9 Returns:duration<CR(Rep1, Rep2), Period>(d) /= sCD(CD(d).count() / s).
[...]
template <class Rep1, class Period, class Rep2> constexpr duration<typename common_type<Rep1, Rep2>::type, Period> operator%(const duration<Rep1, Period>& d, const Rep2& s);11 Remarks: This operator shall not participate in overload resolution unless Rep2 is implicitly convertible to CR(Rep1, Rep2) and Rep2 is not an instantiation of duration.
12 Returns:duration<CR(Rep1, Rep2), Period>(d) %= sCD(CD(d).count() % s)
template <class Rep1, class Period1, class Rep2, class Period2> constexpr typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>>::type operator%(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);13 Returns:
common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type(lhs) %= rhsCD(CD(lhs).count() % CD(rhs).count()).
Section: 20.9.10.3 [func.bind.bind], 30.6.1 [futures.overview], 30.6.8 [futures.async] Status: C++14 Submitter: Daniel Krügler Opened: 2010-12-07 Last modified: 2015-04-08
View all other issues in [func.bind.bind].
View all issues with C++14 status.
Discussion:
Issue 2017 points out some incorrect usages of result_of in the declaration of the function call operator overload of reference_wrapper, but there are more such specification defects:
[..] The effect of g(u1, u2, ..., uM) shall be INVOKE(fd, v1, v2, ..., vN, result_of<FD cv (V1, V2, ..., VN)>::type) [..]
but fd is defined as "an lvalue of type FD constructed from std::forward<F>(f)". This means that the above usage must refer to result_of<FD cv & (V1, V2, ..., VN)> instead.
Similar in 20.9.10.3 [func.bind.bind] p. 10 bullet 2 we have:
if the value of is_bind_expression<TiD>::value is true, the argument is tid(std::forward<Uj>(uj)...) and its type Vi is result_of<TiD cv (Uj...)>::type
Again, tid is defined as "lvalue of type TiD constructed from std::forward<Ti>(ti)". This means that the above usage must refer to result_of<TiD cv & (Uj...)> instead. We also have similar defect as in 2017 in regard to the argument types, this leads us to the further corrected form result_of<TiD cv & (Uj&&...)>. This is not the end: Since the Vi are similar sensitive to the argument problem, the last part must say:
"[..] its type Vi is result_of<TiD cv & (Uj&&...)>::type &&" (The bound arguments Vi can never be void types, therefore we don't need to use the more defensive std::add_rvalue_reference type trait)The function template async is declared as follows (the other overload has the same problem):
template <class F, class... Args> future<typename result_of<F(Args...)>::type> async(F&& f, Args&&... args);
This usage has the some same problems as we have found in reference_wrapper (2017) and more: According to the specification in 30.6.8 [futures.async] the effective result type is that of the call of
INVOKE(decay_copy(std::forward<F>(f)), decay_copy(std::forward<Args>(args))...)
First, decay_copy potentially modifies the effective types to decay<F>::type and decay<Args>::type.... Second, the current specification is not really clear, what the value category of callable type or the arguments shall be: According to the second bullet of 30.6.8 [futures.async] p. 3:
Invocation of the deferred function evaluates INVOKE(g, xyz) where g is the stored value of decay_copy(std::forward<F>(f)) and xyz is the stored copy of decay_copy(std::forward<Args>(args))....
This seems to imply that lvalues are provided in contrast to the direct call expression of 30.6.8 [futures.async] p. 2 which implies rvalues instead. The specification needs to be clarified.
[2011-06-13: Daniel comments and refines the proposed wording changes]
The feedback obtained following message c++std-lib-30745 and follow-ups point to the intention, that the implied provision of lvalues due to named variables in async should be provided as rvalues to support move-only types, but the functor type should be forwarded as lvalue in bind.
If bind were newly invented, the value strategy could be improved, because now we have a preference of ref & qualified function call operator overloads. But such a change seems to be too late now. User-code that needs to bind a callable object with an ref && qualified function call operator (or conversion function to function pointer) needs to use a corresponding wrapper similar to reference_wrapper that forwards the reference as rvalue-reference instead. The wording has been adapted to honor these observations and to fit to FDIS numbering as well.[Bloomington, 2011]
Move to Ready
Proposed resolution:
The suggested wording changes are against the FDIS.
Change 20.9.10.3 [func.bind.bind] p. 3 as indicated:
template<class F, class... BoundArgs> unspecified bind(F&& f, BoundArgs&&... bound_args);-2- Requires: is_constructible<FD, F>::value shall be true. For each Ti in BoundArgs, is_constructible<TiD, Ti>::value shall be true. INVOKE(fd, w1, w2, ..., wN) (20.8.2) shall be a valid expression for some values w1, w2, ..., wN, where N == sizeof...(bound_args).
-3- Returns: A forwarding call wrapper g with a weak result type (20.8.2). The effect of g(u1, u2, ..., uM) shall be INVOKE(fd, std::forward<V1>(v1), std::forward<V2>(v2), ..., std::forward<VN>(vN), result_of<FD cv & (V1, V2, ..., VN)>::type), where cv represents the cv-qualifiers of g and the values and types of the bound arguments v1, v2, ..., vN are determined as specified below. […]
Change 20.9.10.3 [func.bind.bind] p. 7 as indicated:
template<class R, class F, class... BoundArgs> unspecified bind(F&& f, BoundArgs&&... bound_args);-6- Requires: is_constructible<FD, F>::value shall be true. For each Ti in BoundArgs, is_constructible<TiD, Ti>::value shall be true. INVOKE(fd, w1, w2, ..., wN) shall be a valid expression for some values w1, w2, ..., wN, where N == sizeof...(bound_args).
-7- Returns: A forwarding call wrapper g with a nested type result_type defined as a synonym for R. The effect of g(u1, u2, ..., uM) shall be INVOKE(fd, std::forward<V1>(v1), std::forward<V2>(v2), ..., std::forward<VN>(vN), R), where the values and types of the bound arguments v1, v2, ..., vN are determined as specified below. […]
Change 20.9.10.3 [func.bind.bind] p. 10 as indicated:
-10- The values of the bound arguments v1, v2, ..., vN and their corresponding types V1, V2, ..., VN depend on the types TiD derived from the call to bind and the cv-qualifiers cv of the call wrapper g as follows:
- if TiD is reference_wrapper<T>, the argument is tid.get() and its type Vi is T&;
- if the value of is_bind_expression<TiD>::value is true, the argument is tid(std::forward<Uj>(uj)...) and its type Vi is result_of<TiD cv & (Uj&&...)>::type&&;
- if the value j of is_placeholder<TiD>::value is not zero, the argument is std::forward<Uj>(uj) and its type Vi is Uj&&;
- otherwise, the value is tid and its type Vi is TiD cv &.
This resolution assumes that the wording of 30.6.8 [futures.async] is intended to provide rvalues as arguments of INVOKE.
Change the function signatures in header <future> synopsis 30.6.1 [futures.overview] p. 1 and in 30.6.8 [futures.async] p. 1 as indicated:
template <class F, class... Args> future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type> async(F&& f, Args&&... args); template <class F, class... Args> future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type> async(launch policy, F&& f, Args&&... args);
Change 30.6.8 [futures.async] as indicated: (Remark: There is also a tiny editorial correction in p. 4 that completes one :: scope specifier)
-3- Effects: […]
- […]
- if policy & launch::deferred is non-zero — Stores DECAY_COPY(std::forward<F>(f)) and DECAY_COPY(std::forward<Args>(args))... in the shared state. These copies of f and args constitute a deferred function. Invocation of the deferred function evaluates INVOKE(std::move(g), std::move(xyz)) where g is the stored value of DECAY_COPY(std::forward<F>(f)) and xyz is the stored copy of DECAY_COPY(std::forward<Args>(args)).... The shared state is not made ready until the function has completed. The first call to a non-timed waiting function (30.6.4) on an asynchronous return object referring to this shared state shall invoke the deferred function in the thread that called the waiting function. Once evaluation of INVOKE(std::move(g), std::move(xyz)) begins, the function is no longer considered deferred. [ Note: If this policy is specified together with other policies, such as when using a policy value of launch::async | launch::deferred, implementations should defer invocation or the selection of the policy when no more concurrency can be effectively exploited. — end note ]
-4- Returns: an object of type future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type> that refers to the associated asynchronous state created by this call to async.
Section: 20.9.4 [refwrap] Status: C++11 Submitter: Daniel Krügler Opened: 2010-12-08 Last modified: 2015-04-08
View all other issues in [refwrap].
View all issues with C++11 status.
Discussion:
Issue 1295 correctly removed function types and references to function types from the bullet 1 of 20.9.2 [func.require] p. 3 because neither function types nor function references satisfy the requirements for a target object which is defined to be an object of a callable type. This has the effect that the reference in 20.9.4 [refwrap] p. 2
reference_wrapper has a weak result type (20.8.2).
is insufficient as a reference to define the member type result_type when the template argument T is a function type.
There are basically two approaches to solve the problem:Extend the definition of a weak result type in 20.9.2 [func.require] p. 3 to both function types and references thereof. This extension must be specified independend from the concept of a call wrapper, though.
Add one extra sentence to 20.9.4 [refwrap] p. 2 that simply defines the member type result_type for reference_wrapper<T>, when T is a function type.
I checked the current usages of weak result type to have a base to argue for one or the other approach. It turns out, that there is no further reference to this definition in regard to function types or references thereof. The only other reference can be found in 20.9.10.3 [func.bind.bind] p. 3, where g is required to be a class type.
[2011-02-23 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed resolution:
The suggested wording changes are against the working draft N3242.
Change 20.9.4 [refwrap] p. 2 as indicated:
2 reference_wrapper<T> has a weak result type (20.8.2). If T is a function type, result_type shall be a synonym for the return type of T.
Section: 30.4.2.1 [thread.lock.guard], 30.4.2.2 [thread.lock.unique] Status: Resolved Submitter: Daniel Krügler Opened: 2010-12-08 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
There are two different *Lockable requirements imposed on template arguments of the class template lock_guard as of 30.4.2.1 [thread.lock.guard] p. 1+2:
1 [..] The supplied Mutex type shall meet the BasicLockable requirements (30.2.5.2).
2 The supplied Mutex type shall meet the Lockable requirements (30.2.5.3).
The Lockable requirements include the availability of a member function try_lock(), but there is no operational semantics in the specification of lock_guard that would rely on such a function. It seems to me that paragraph 2 should be removed.
Similarly, 30.4.2.2 [thread.lock.unique] p. 1+2 refer to exactly the same two requirements. In this case it seems as if the intention was that the template arguement Mutex should always provide the try_lock() member function, because several member functions of unique_lock (unique_lock(mutex_type& m, try_to_lock_t) or bool try_lock()) take advantage of such a function without adding extra requirements for this. It seems that the requirement subset BasicLockable should be removed. I searched for further possible misusages of the *Lockable requirements, but could not find any more.[2011-02-23]
Howard suggests an alternative approach in regard to unique_lock: The current minimum requirements on its template argument should better be reduced to BasicLockable instead of the current Lockable, including ammending member-wise constraints where required. This suggestions was supported by Anthony, Daniel, and Pablo.
Daniel drafts wording that follows this separation strategy.[2011-02-24 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
The suggested wording changes are against the working draft N3242.
Remove 30.4.2.1 [thread.lock.guard] p. 2 completely:
2 The supplied Mutex type shall meet the Lockable requirements (30.2.5.3).Change 30.4.2.2 [thread.lock.unique] p. 1-3 as indicated. The intend is to make BasicLockable the fundamental requirement for unique_lock. We also update the note to reflect these changes and synchronize one remaining reference of 'mutex' by the proper term 'lockable object' in sync to the wording changes of lock_guard:
1 [..] The behavior of a program is undefined if the contained pointer pm is not null and the
mutexlockable object pointed to by pm does not exist for the entire remaining lifetime (3.8) of the unique_lock object. The supplied Mutex type shall meet the BasicLockable requirements (30.2.5.2).[Editor's note: BasicLockable is redundant, since the following additional paragraph requires Lockable.]
2 The supplied Mutex type shall meet the Lockable requirements (30.2.5.3).3 [ Note: unique_lock<Mutex> meets the BasicLockable requirements. If Mutex meets the Lockable requirements ([thread.req.lockable.req]), unique_lock<Mutex> also meets the Lockable requirements and if Mutex meets the TimedLockable requirements (30.2.5.4), unique_lock<Mutex> also meets the TimedLockable requirements. — end note ]
Modify 30.4.2.2.1 [thread.lock.unique.cons] to add the now necessary member-wise additional constraints for Lockable:
unique_lock(mutex_type& m, try_to_lock_t) noexcept;8 Requires: The supplied Mutex type shall meet the Lockable requirements ([thread.req.lockable.req]). If mutex_type is not a recursive mutex the calling thread does not own the mutex.
9 Effects: Constructs an object of type unique_lock and calls m.try_lock().Modify 30.4.2.2.2 [thread.lock.unique.locking] to add the now necessary member-wise additional constraints for Lockable:
bool try_lock();? Requires: The supplied Mutex type shall meet the Lockable requirements ([thread.req.lockable.req]).
4 Effects: pm->try_lock()
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: 29.5 [atomics.types.generic] Status: Resolved Submitter: Daniel Krügler Opened: 2010-12-08 Last modified: 2015-04-08
View other active issues in [atomics.types.generic].
View all other issues in [atomics.types.generic].
View all issues with Resolved status.
Discussion:
Paragraph 5 and 6 of 29.5 [atomics.types.generic] impose different requirements on implementations for specializations of the atomic class template for integral types and for pointer types:
5 The atomic integral specializations and the specialization atomic<bool> shall have standard layout. They shall each have a trivial default constructor and a trivial destructor. They shall each support aggregate initialization syntax.
6 There are pointer partial specializations on the atomic class template. These specializations shall have trivial default constructors and trivial destructors.
It looks like an oversight to me, that for pointer specializations the requirements for standard layout and support for aggregate initialization syntax are omitted. In fact, this been confirmed by the N3193 proposal author. I suggest to impose the same implementation requirements for pointer types as for integral types, this should not impose unrealistic requirements on implementations.
[2011-02-10 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed Resolution
The suggested wording changes are against the working draft N3242.
Change 29.5 [atomics.types.generic] p. 6 as indicated:
6 There are pointer partial specializations on the atomic class template. These specializations shall have standard layout, trivial default constructors, and trivial destructors. They shall each support aggregate initialization syntax.
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: 30.6.9.1 [futures.task.members] Status: Resolved Submitter: Daniel Krügler Opened: 2010-12-08 Last modified: 2015-04-08
View all other issues in [futures.task.members].
View all issues with Resolved status.
Discussion:
According to 30.6.9.1 [futures.task.members] p. 7 bullet 2:
packaged_task& operator=(packaged_task&& other);7 Effects:
[...]
packaged_task<R, ArgTypes...>(other).swap(*this).
The argument other given to the move constructor is an lvalue and must be converted into an rvalue via appropriate usage of std::move.
Proposed Resolution
The suggested wording changes are against the working draft N3242.
Change 30.6.9.1 [futures.task.members] p. 7 bullet 2 as indicated:
packaged_task& operator=(packaged_task&& other);7 Effects:
[...]
packaged_task(std::move(other)).swap(*this).
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: 30.6.9.1 [futures.task.members] Status: C++11 Submitter: Alberto Ganesh Barbati Opened: 2011-02-09 Last modified: 2015-04-08
View all other issues in [futures.task.members].
View all issues with C++11 status.
Discussion:
Related with LWG issue 1514.
The move constructor of packaged_task does not specify how the stored task is constructed. The obvious way is to move-construct it using the task stored in the argument. Moreover, the constructor should be provided with a throws clause similar to one used for the other constructors, as the move constructor of the stored task is not required to be nothrow.
As for the other constructors, the terms "stores a copy of f" do not reflect the intent, which is to allow f to be moved when possible.
[2011-02-25: Alberto updates wording]
[2011-02-26 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed resolution:
(wording written assuming LWG 1514 is also accepted)
Change 30.6.9.1 [futures.task.members] paragraph 3:
3 Effects: constructs a new packaged_task object with an associated asynchronous state and
stores a copy of f as the object's stored taskinitializes the object's stored task with std::forward<F>(f). The constructors that take an Allocator argument use it to allocate memory needed to store the internal data structures.
Change 30.6.9.1 [futures.task.members] paragraph 5:
5 Effects: constructs a new packaged_task object and transfers ownership of other's associated asynchronous state to *this, leaving other with no associated asynchronous state. Moves the stored task from other to *this.
Section: 22.4.7.1 [locale.messages] Status: C++14 Submitter: Howard Hinnant Opened: 2011-02-14 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
In 22.4.7.1 [locale.messages], messages_base::catalog is specified to be a typedef to int. This type is subsequently used to open, access and close catalogs.
However, an OS may have catalog/messaging services that are indexed and managed by types other than int. For example POSIX, publishes the following messaging API:
typedef unspecified nl_catd; nl_catd catopen(const char* name , int oflag); char* catgets(nl_catd catd, int set_id, int msg_id, const char* s); int catclose(nl_catd catd);
I.e., the catalog is managed with an unspecified type, not necessarily an int. Mac OS uses a void* for nl_catd (which is conforming to the POSIX standard). The current messages_base spec effectively outlaws using the built-in OS messaging service supplied for this very purpose!
[2011-02-24: Chris Jefferson updates the proposed wording, changing unspecified to unspecified signed integral type]
[2011-03-02: Daniel updates the proposed wording, changing unspecified signed integral type to unspecified signed integer type (We don't want to allow for bool or char)]
[2011-03-24 Madrid meeting]
Consensus that this resolution is the direction we would like to see.
Proposed resolution:
Modify 22.4.7.1 [locale.messages]:
namespace std { class messages_base { public: typedefintunspecified signed integer type catalog; }; ... }
Section: 28.8 [re.regex] Status: C++11 Submitter: Jonathan Wakely Opened: 2011-02-16 Last modified: 2015-04-08
View all other issues in [re.regex].
View all issues with C++11 status.
Discussion:
N3149 replaced the "Throws: nothing" clause on basic_regex::assign(basic_regex&&) with the noexcept keyword. The effects of the move-assignment operator are defined in terms of the assign() function, so the "Throws: nothing" applied there too, and a noexcept-specification should be added there too.
[2011-02-24 Reflector discussion]
Moved to Tentatively Ready after 7 votes.
Proposed resolution:
Modify the basic_regex synopsis in 28.8 [re.regex] p. 3:
namespace std { template <class charT, class traits = regex_traits<charT> > class basic_regex { public: ... basic_regex& operator=(const basic_regex&); basic_regex& operator=(basic_regex&&) noexcept; basic_regex& operator=(const charT* ptr); ... }; }
Modify 28.8.3 [re.regex.assign] p. 2:
basic_regex& operator=(basic_regex&& e) noexcept;2 Effects: returns assign(std::move(e)).
Section: 30.6.9 [futures.task] Status: C++11 Submitter: Anthony Williams Opened: 2010-11-12 Last modified: 2015-04-08
View all other issues in [futures.task].
View all issues with C++11 status.
Discussion:
packaged_task::operator() always returns void, regardless of the return type of the wrapped task. However, packaged_task::result_type is a typedef to the return type of the wrapped task. This is inconsistent with other uses of result_type in the standard, where it matches the return type of operator() (e.g. function, owner_less). This is confusing.
It also violates the TR1 result_of protocol, and thus makes packaged_task harder to use with anything that respects that protocol.
Finally, it is of little use anyway.
packaged_task::result_type should therefore be removed.
[2011-02-24 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed resolution:
Alter the class definition of packaged_task in 30.6.9 [futures.task] p. 2 as follows:
template<class R, class... ArgTypes> class packaged_task<R(ArgTypes...)> { public:typedef R result_type;[...] };
Section: 30.6.6 [futures.unique_future] Status: C++11 Submitter: Anthony Williams Opened: 2011-02-17 Last modified: 2015-04-08
View all other issues in [futures.unique_future].
View all issues with C++11 status.
Discussion:
As specified, future<>::share() has the signature
shared_future<R> share() &&;
This means that it can only be applied to rvalues. One of the key benefits of share() is that it can be used with the new auto facility:
std::promise<some_long_winded_type_name> some_promise; auto f = some_promise.get_future(); // std::future auto sf = std::move(f).share();
share() is sufficiently explicit that the move should not be required. We should be able to write:
auto sf = f.share();
[2011-02-22 Reflector discussion]
Moved to Tentatively Ready after 5 votes.
Proposed resolution:
Alter the declaration of share() to remove the "&&" rvalue qualifier in 30.6.6 [futures.unique_future] p. 3, and 30.6.6 [futures.unique_future] p. 11:
shared_future<R> share()&&;
Section: 30.6.8 [futures.async] Status: C++11 Submitter: Alberto Ganesh Barbati Opened: 2011-02-17 Last modified: 2015-04-08
View all other issues in [futures.async].
View all issues with C++11 status.
Discussion:
Clause 30.6.8 [futures.async] has undergone significant rewording in Batavia. Due to co-presence of at least three different sources of modification there is a part where changes have overlapped (marked by an Editor's note), which should be reconciled. Moreover, I believe that a few non-overlapping sentences are now incorrect and should be fixed, so the problem cannot be handled editorially. (See c++std-lib-29667.)
[Adopted in Madrid, 2011-03]
Proposed resolution:
Edit 30.6.4 [futures.state], paragraph 3 as follows.
An asynchronous return object is an object that reads results from an associated asynchronous state. A waiting function of an asynchronous return object is one that potentially blocks to wait for the associated asynchronous state to be made ready. If a waiting function can return before the state is made ready because of a timeout (30.2.5), then it is a timed waiting function, otherwise it is a non-timed waiting function.
Edit within 30.6.8 [futures.async] paragraph 3 bullet 2 as follows.
Effects: [...]
- if
policy & launch::deferred
is non-zero — [...] The associated asynchronous state is not made ready until the function has completed. The first call to a non-timed waiting function (30.6.4 [futures.state])requiring a non-timed waiton an asynchronous return object referring tothethis associated asynchronous statecreated by thisshall invoke the deferred function in the thread that called the waiting functionasync
call to become ready;.onceOnce evaluation ofINVOKE(g, xyz)
begins, the function is no longer considered deferred. [...]
Edit 30.6.8 [futures.async] paragraph 5 as follows.
Synchronization: Regardless of the provided
policy
argument,
- the invocation of
async
synchronizes with (1.10) the invocation off
. [Note: this statement applies even when the corresponding future object is moved to another thread. —end note]; and- the completion of the function
f
is sequenced before (1.10) the associated asynchronous state is made ready. [Note:f
might not be called at all, so its completion might never happen. —end note]
IfIf the implementation chooses thepolicy & launch::async
is non-zero,launch::async
policy,
- a call to a waiting function on an asynchronous return object that shares the associated asynchronous state created by this
async
call shall block until the associated thread has completed, as if joined (30.3.1.5);thethe associated thread completion synchronizes with (1.10) the return from the first function that successfully detects the ready status of the associated asynchronous state or with the return from the last function that releases the associated asynchronous statejoin()
on the created thread objectreturns, whichever happens first.[Editor's note: N3196 changes the following sentence as indicated. N3188 removes the sentence. Please pick one.] If the invocation is deferred, the completion of the invocation of the deferred function synchronizes with the successful return from a call to a waiting function on the associated asynchronous state.
Section: 23.3.6.3 [vector.capacity], 23.3.3.3 [deque.capacity] Status: C++14 Submitter: Nikolay Ivchenkov Opened: 2011-02-20 Last modified: 2015-04-08
View other active issues in [vector.capacity].
View all other issues in [vector.capacity].
View all issues with C++14 status.
Discussion:
I have several questions with regard to the working paper N3225 (C++0x working draft):
Where the working draft specifies preconditions for shrink_to_fit member function of std::vector and std::deque?
Where the working draft specifies preconditions for 'void reserve(size_type n)' member function of std::vector?
Does a call to 'void resize(size_type sz)' of std::vector require the element type to be DefaultConstructible? If yes, why such requirement is not listed in the Requires paragraph?
Does a call to 'void resize(size_type sz)' of std::vector require the element type to be MoveAssignable because the call erase(begin() + sz, end()) mentioned in the Effects paragraph would require the element type to be MoveAssignable?
Why CopyInsertable requirement is used for 'void resize(size_type sz)' of std::vector instead of MoveInsertable requirement?
[2011-06-12: Daniel comments and provides wording]
According to my understanding of the mental model of vector (and to some parts for deque) the some requirements are missing in the standard as response to above questions:
I agree that we are currently missing to specify the preconditions of the reserve function. My interpretation of the mental model of this function is that it should work for move-only types, which seems to be supported by the wording used in 23.3.6.3 [vector.capacity] p2:
[…] If an exception is thrown other than by the move constructor of a non-CopyInsertable type, there are no effects.
Given this statement, the appropriate requirement is MoveInsertable into the vector.
In addition to above mentioned items, the proposed resolution adds a linear complexity bound for shrink_to_fit and attempts to resolve the related issue 2066.
[ 2011 Bloomington ]
Move to Ready.
Note for editor: we do not normally refer to 'linear time' for complexity requirements, but there is agreement that any clean-up of such wording is editorial.
Proposed resolution:
This wording is relative to the FDIS.
Edit 23.3.3.3 [deque.capacity] as indicated [Remark: The suggested change of p4 is not redundant, because CopyInsertable is not necessarily a refinement of MoveInsertable in contrast to the fact that CopyConstructible is a refinement of MoveConstructible]:
void resize(size_type sz);-1- Effects: If sz <= size(), equivalent to
-2- Requires: T shall be MoveInsertable into *this and DefaultConstructible.erase(begin() + sz, end());calling pop_back() size() - sz times. If size() < sz, appends sz - size() value-initialized elements to the sequence.
void resize(size_type sz, const T& c);-3- Effects: If sz <= size(), equivalent to calling pop_back() size() - sz times. If size() < sz, appends sz - size() copies of c to the sequence.
if (sz > size()) insert(end(), sz-size(), c); else if (sz < size()) erase(begin()+sz, end()); else ; // do nothing-4- Requires: T shall be MoveInsertable into *this and CopyInsertable into *this.
void shrink_to_fit();-?- Requires: T shall be MoveInsertable into *this.
-?- Complexity: Takes at most linear time in the size of the sequence. -5- Remarks: shrink_to_fit is a non-binding request to reduce memory use but does not change the size of the sequence. [ Note: The request is non-binding to allow latitude for implementation-specific optimizations. — end note ]
Edit 23.3.6.3 [vector.capacity] as indicated including edits that also resolve 2066 [Remark: The combined listing of MoveInsertable and CopyInsertable before p12 is not redundant, because CopyInsertable is not necessarily a refinement of MoveInsertable in contrast to the fact that CopyConstructible is a refinement of MoveConstructible]:
[…]
void reserve(size_type n);-?- Requires: T shall be MoveInsertable into *this.
-2- Effects: A directive that informs a vector of a planned change in size, so that it can manage the storage allocation accordingly. After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens; and equal to the previous value of capacity() otherwise. Reallocation happens at this point if and only if the current capacity is less than the argument of reserve(). If an exception is thrown other than by the move constructor of a non-CopyInsertable type, there are no effects. -3- Complexity: It does not change the size of the sequence and takes at most linear time in the size of the sequence. -4- Throws: length_error if n > max_size().[footnote 266] -5- Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to reserve() until the time when an insertion would make the size of the vector greater than the value of capacity().
void shrink_to_fit();-?- Requires: T shall be MoveInsertable into *this.
-?- Complexity: Takes at most linear time in the size of the sequence. -6- Remarks: shrink_to_fit is a non-binding request to reduce capacity() to size(). [ Note: The request is non-binding to allow latitude for implementation-specific optimizations. — end note ] If an exception is thrown other than by the move constructor of a non-CopyInsertable T there are no effects.
[…]
void resize(size_type sz);-9- Effects: If sz <= size(), equivalent to
-10- Requires: T shall beerase(begin() + sz, end());calling pop_back() size() - sz times. If size() < sz, appends sz - size() value-initialized elements to the sequence.CopyMoveInsertable into *this and DefaultConstructible. -??- Remarks: If an exception is thrown other than by the move constructor of a non-CopyInsertable T there are no effects.
void resize(size_type sz, const T& c);-11- Effects: If sz <= size(), equivalent to calling pop_back() size() - sz times. If size() < sz, appends sz - size() copies of c to the sequence.
if (sz > size()) insert(end(), sz-size(), c); else if (sz < size()) erase(begin()+sz, end()); else ; // do nothing-??- Requires: T shall be MoveInsertable into *this and CopyInsertable into *this.
-12-RequiresRemarks: If an exception is thrown other than by the move constructor of a non-CopyInsertable T there are no effects.
Section: 29.3 [atomics.order] Status: Resolved Submitter: Hans Boehm Opened: 2011-02-26 Last modified: 2015-04-08
View other active issues in [atomics.order].
View all other issues in [atomics.order].
View all issues with Resolved status.
Discussion:
This violates the core intent of the memory model, as stated in the note in 1.10 [intro.multithread] p. 21.
This was discovered by Mark Batty, and pointed out in their POPL 2011 paper, "Mathematizing C++ Concurrency", section 4, "Sequential consistency of SC atomics". The problem is quite technical, but well-explained in that paper.
This particular issue was not understood at the time the FCD comments were generated. But it is closely related to a number of FCD comments. It should have arisen from US-171, though that's not the actual history.
This issue has been under discussion for several months in a group that included a half dozen or so of the most interested committee members. The P/R represents a well-considered consensus among us:
[2011-03-16: Jens updates wording]
Modify 29.3 [atomics.order] p.3, so that the normative part reads:
3 There shall be a single total order S on all memory_order_seq_cst operations, consistent with the "happens before" order and modification orders for all affected locations, such that each memory_order_seq_cst operation that loads a value observes either the last preceding modification according to this order S, A (if any), or the result of an operation X that
is notdoes not happen before A and that is not memory_order_seq_cst. [ Note: Although it is not explicitly required that S include locks, it can always be extended to an order that does include lock and unlock operations, since the ordering between those is already included in the "happens before" ordering. — end note ]
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: 29.2 [atomics.syn] Status: Resolved Submitter: Pete Becker Opened: 2011-03-01 Last modified: 2015-04-08
View all other issues in [atomics.syn].
View all issues with Resolved status.
Discussion:
In earlier specifications of atomics the template specialization atomic<integer> was derived from atomic_integer (e.g. atomic<int> was derived from atomic_int), and the working draft required free functions such as
int atomic_load(const atomic_int*)
for each of the atomic_integer types. This worked fine with normal function overloading.
For the post-Batavia working draft, N3193 removed the requirement that atomic<integer> be derived from atomic_integer and replaced the free functions taking pointers to atomic_integer with template functions taking atomic_type*, such as
template <class T> T atomic_load(const atomic_type*);
and a code comment explaining that atomic_type can be either atomic<T> or a named base class of atomic<T>. The latter possibility is supposed to allow existing implementations based on the previous specification to continue to conform.
From history, this allowance seems to imply that functions like atomic_load can be non-template free functions, as they were before. The explicit requirements do not allow this, and, by requiring that they be templates, make them far more complicated. As the specification is currently written, code that uses an implementation that uses a base class would have to provide an explicit template type:
atomic<int> my_atomic_int; atomic_load<int>(&my_atomic_int);
That type argument isn't needed when atomic_type is atomic<T>, but cautious users would always provide it to make their code portable across different implementations of the standard library.
One possibility for the implementor would be to do some template meta-programming to infer the type T when there are no function parameters of type T, but without running afoul of the prohibition on adding parameters with default values (17.6.5.4 [global.functions]/3).
So the promise that implementations of the previous specification continue to conform has not been met. The specification of these free functions should be rewritten to support library code written to the previous specification or the vacuous promise should be removed.
[2011-03-08: Lawrence comments and drafts wording:]
One of the goals is to permit atomics code to compile under both C and C++. Adding explicit template arguments would defeat that goal.
The intent was to permit the normal function overloads for atomic_int when atomic_int is distinct from atomic<int>. That intent was not reflected in the wording.Proposed Resolution
Explicitly permit free functions.
Edit within the header <atomic> synopsis 29.2 [atomics.syn] as follows:
// 29.6.1, general operations on atomic types// In the following declarations, atomic_type is either //// In the following declarations, atomic-type is either //atomic<T>
or a named base class forT
from // Table 145 or inferred from // Table 146.atomic<T>
or a named base class forT
from // Table 145 or inferred from // Table 146. // If it isatomic<T>
, then the declaration is a template // declaration prefixed withtemplate <class T>
template <class T>bool atomic_is_lock_free(const volatileatomic_typeatomic-type*);template <class T>bool atomic_is_lock_free(constatomic_typeatomic-type*);template <class T>void atomic_init(volatileatomic_typeatomic-type*, T);template <class T>void atomic_init(atomic_typeatomic-type*, T);template <class T>void atomic_store(volatileatomic_typeatomic-type*, T);template <class T>void atomic_store(atomic_typeatomic-type*, T);template <class T>void atomic_store_explicit(volatileatomic_typeatomic-type*, T, memory_order);template <class T>void atomic_store_explicit(atomic_typeatomic-type*, T, memory_order);template <class T>T atomic_load(const volatileatomic_typeatomic-type*);template <class T>T atomic_load(constatomic_typeatomic-type*);template <class T>T atomic_load_explicit(const volatileatomic_typeatomic-type*, memory_order);template <class T>T atomic_load_explicit(constatomic_typeatomic-type*, memory_order);template <class T>T atomic_exchange(volatileatomic_typeatomic-type*, T);template <class T>T atomic_exchange(atomic_typeatomic-type*, T);template <class T>T atomic_exchange_explicit(volatileatomic_typeatomic-type*, T, memory_order);template <class T>T atomic_exchange_explicit(atomic_typeatomic-type*, T, memory_order);template <class T>bool atomic_compare_exchange_weak(volatileatomic_typeatomic-type*, T*, T);template <class T>bool atomic_compare_exchange_weak(atomic_typeatomic-type*, T*, T);template <class T>bool atomic_compare_exchange_strong(volatileatomic_typeatomic-type*, T*, T);template <class T>bool atomic_compare_exchange_strong(atomic_typeatomic-type*, T*, T);template <class T>bool atomic_compare_exchange_weak_explicit(volatileatomic_typeatomic-type*, T*, T, memory_order, memory_order);template <class T>bool atomic_compare_exchange_weak_explicit(atomic_typeatomic-type*, T*, T. memory_order, memory_order);template <class T>bool atomic_compare)exchange_strong_explicit(volatileatomic_typeatomic-type*, T*, T, memory_order, memory_order);template <class T>bool atomic_compare_exchange_strong_explicit(atomic_typeatomic-type*, T*, T, memory_order, memory_order); // 29.6.2, templated operations on atomic types// In the following declarations, atomic_type is either //template <class T> T atomic_fetch_add(volatileatomic<T>
or a named base class forT
from // Table 145 or inferred from // Table 146.atomic-typeatomic<T>*, T); template <class T> T atomic_fetch_add(atomic-typeatomic<T>*, T); template <class T> T atomic_fetch_add_explicit(volatileatomic-typeatomic<T>*, T, memory_order); template <class T> T atomic_fetch_add_explicit(atomic-typeatomic<T>*, T, memory_order); template <class T> T atomic_fetch_sub(volatileatomic-typeatomic<T>*, T); template <class T> T atomic_fetch_sub(atomic-typeatomic<T>*, T); template <class T> T atomic_fetch_sub_explicit(volatileatomic-typeatomic<T>*, T, memory_order); template <class T> T atomic_fetch_sub_explicit(atomic-typeatomic<T>*, T, memory_order); template <class T> T atomic_fetch_and(volatileatomic-typeatomic<T>*, T); template <class T> T atomic_fetch_and(atomic-typeatomic<T>*, T); template <class T> T atomic_fetch_and_explicit(volatileatomic-typeatomic<T>*, T, memory_order); template <class T> T atomic_fetch_and_explicit(atomic-typeatomic<T>*, T, memory_order); template <class T> T atomic_fetch_or(volatileatomic-typeatomic<T>*, T); template <class T> T atomic_fetch_or(atomic-typeatomic<T>*, T); template <class T> T atomic_fetch_or_explicit(volatileatomic-typeatomic<T>*, T, memory_order); template <class T> T atomic_fetch_or_explicit(atomic-typeatomic<T>*, T, memory_order); template <class T> T atomic_fetch_xor(volatileatomic-typeatomic<T>*, T); template <class T> T atomic_fetch_xor(atomic-typeatomic<T>*, T); template <class T> T atomic_fetch_xor_explicit(volatileatomic-typeatomic<T>*, T, memory_order); template <class T> T atomic_fetch_xor_explicit(atomic-typeatomic<T>*, T, memory_order); // 29.6.3, arithmetic operations on atomic types // In the following declarations, atomic-integral is either //atomic<T>
or a named base class forT
from // Table 145 or inferred from // Table 146. // If it isatomic<T>
, // then the declaration is a template specialization declaration prefixed with //template <>
template <>integral atomic_fetch_add(volatile atomic-integral*, integral);template <>integral atomic_fetch_add(atomic-integral*, integral);template <>integral atomic_fetch_add_explicit(volatile atomic-integral*, integral, memory_order);template <>integral atomic_fetch_add_explicit(atomic-integral*, integral, memory_order);template <>integral atomic_fetch_sub(volatile atomic-integral*, integral);template <>integral atomic_fetch_sub(atomic-integral*, integral);template <>integral atomic_fetch_sub_explicit(volatile atomic-integral*, integral, memory_order);template <>integral atomic_fetch_sub_explicit(atomic-integral*, integral, memory_order);template <>integral atomic_fetch_and(volatile atomic-integral*, integral);template <>integral atomic_fetch_and(atomic-integral*, integral);template <>integral atomic_fetch_and_explicit(volatile atomic-integral*, integral, memory_order);template <>integral atomic_fetch_and_explicit(atomic-integral*, integral, memory_order);template <>integral atomic_fetch_or(volatile atomic-integral*, integral);template <>integral atomic_fetch_or(atomic-integral*, integral);template <>integral atomic_fetch_or_explicit(atomic-integral*, integral, memory_order);template <>integral atomic_fetch_or_explicit(atomic-integral*, integral, memory_order);template <>integral atomic_fetch_xor(volatile atomic-integral*, integral);template <>integral atomic_fetch_xor(atomic-integral*, integral);template <>integral atomic_fetch_xor_explicit(volatile atomic-integral*, integral, memory_order);template <>integral atomic_fetch_xor_explicit(atomic-integral*, integral, memory_order);Edit 29.6.1 [atomics.types.operations.general] paragraph 1+2 as follows:
-1- The implementation shall provide the functions and function templates identified as "general operations on atomic types" in 29.2 [atomics.syn].
-2- In the declarations of these functions and function templates, the name atomic-type refers to either atomic<T> or to a named base class for T from Table 145 or inferred from Table 146.In 29.6.2 [atomics.types.operations.templ] delete paragraph 2:
-1- The implementation shall declare but not define the function templates identified as "templated operations on atomic types" in 29.2 [atomics.syn].
-2- In the declarations of these templates, the name atomic-type refers to either atomic<T> or to a named base class for T from Table 145 or inferred from Table 146.Edit 29.6.3 [atomics.types.operations.arith] paragraph 1+2 as follows:
-1- The implementation shall provide the functions and function template specializations identified as "arithmetic operations on atomic types" in 29.2 [atomics.syn].
-2- In the declarations of these functions and function template specializations, the name integral refers to an integral type and the name atomic-integral refers to either atomic<integral> or to a named base class for integral from Table 145 or inferred from Table 146.
Proposed resolution:
Resolved 2011-03 Madrid meeting by paper N3278
Section: 25.3.1 [alg.copy], 25.3.10 [alg.reverse] Status: C++14 Submitter: Nikolay Ivchenkov Opened: 2011-03-02 Last modified: 2015-04-08
View other active issues in [alg.copy].
View all other issues in [alg.copy].
View all issues with C++14 status.
Discussion:
In the description of std::reverse
Effects: For each non-negative integer i <= (last - first)/2, applies iter_swap to all pairs of iterators first + i, (last - i) - 1.
should be changed to
Effects: For each non-negative integer i < (last - first)/2, applies iter_swap to all pairs of iterators first + i, (last - i) - 1.
Here i shall be strictly less than (last - first)/2.
In the description of std::copy_if Returns paragraph is missing.
[2011-03-02: Daniel drafts wording]
Proposed resolution:
Modify 25.3.10 [alg.reverse] p. 1 as indicated:
1 Effects: For each non-negative integer i <
=(last - first)/2, applies iter_swap to all pairs of iterators first + i, (last - i) - 1.
Add the following Returns element after 25.3.1 [alg.copy] p. 9:
template<class InputIterator, class OutputIterator, class Predicate> OutputIterator copy_if(InputIterator first, InputIterator last, OutputIterator result, Predicate pred);8 Requires: The ranges [first,last) and [result,result + (last - first)) shall not overlap.
9 Effects: Copies all of the elements referred to by the iterator i in the range [first,last) for which pred(*i) is true. ?? Returns: The end of the resulting range. 10 Complexity: Exactly last - first applications of the corresponding predicate. 11 Remarks: Stable.
Section: 22.4.2.1.2 [facet.num.get.virtuals] Status: C++11 Submitter: Howard Hinnant Opened: 2011-03-09 Last modified: 2015-04-08
View other active issues in [facet.num.get.virtuals].
View all other issues in [facet.num.get.virtuals].
View all issues with C++11 status.
Discussion:
num_get Stage 2 accumulation changed between C++03 and the current C++0x working draft. The sentences:
If it is not discarded, then a check is made to determine if c is allowed as the next character of an input field of the conversion specifier returned by stage 1. If so it is accumulated.
have been dropped from 22.4.2.1.2 [facet.num.get.virtuals], Stage 2, paragraph 3 that begins:
If discard is true, […]
Consider this code:
#include <sstream> #include <iostream> int main(void) { std::istringstream s("8cz"); long i = 0; char c; s >> i; if (!s.fail()) std::cout << "i = " << i << '\n'; else { std::cout << "s >> i failed\n"; s.clear(); } s >> c; if (!s.fail()) std::cout << "c = " << c << '\n'; else std::cout << "s >> c failed\n"; }
C++0x currently prints out:
s >> i failed c = z
However C++03 conforming implementations will output:
i = 8 c = c
I believe we need to restore C++03 compatibility.
Proposed resolution:
Add to 22.4.2.1.2 [facet.num.get.virtuals], Stage 2:
If discard is true, then if '.' has not yet been accumulated, then the position of the character is remembered, but the character is otherwise ignored. Otherwise, if '.' has already been accumulated, the character is discarded and Stage 2 terminates. If it is not discarded, then a check is made to determine if c is allowed as the next character of an input field of the conversion specifier returned by stage 1. If so it is accumulated.
If the character is either discarded or accumulated then in is advanced by ++in and processing returns to the beginning of stage 2.
Section: 23.3.4.3 [forwardlist.iter] Status: C++11 Submitter: Joe Gottman Opened: 2011-03-13 Last modified: 2015-04-08
View all issues with C++11 status.
Discussion:
For an object c of type forward_list<X, Alloc>, the iterators c.before_begin() and c.end() are part of the same underlying sequence, so the expression c.before_begin() == c.end() must be well-defined. But the standard says nothing about what the result of this expression should be. The forward iterator requirements says no dereferenceable iterator is equal to a non-dereferenceable iterator and that two dereferenceable iterators are equal if and only if they point to the same element. But since before_begin() and end() are both non-dereferenceable, neither of these rules applies.
Many forward_list methods, such as insert_after(), have a precondition that the iterator passed to them must not be equal to end(). Thus, user code might look like the following:
void foo(forward_list<int>& c, forward_list<int>::iterator it) { assert(it != c.end()); c.insert_after(it, 42); }
Conversely, before_begin() was specifically designed to be used with methods like insert_after(), so if c.before_begin() is passed to this function the assertion must not fail.
[2011-03-14: Daniel comments and updates the suggested wording]
The suggested wording changes are necessary but not sufficient. Since there does not exist an equivalent semantic definition of cbefore_begin() as we have for cbegin(), this still leaves the question open whether the normative remark applies to cbefore_begin() as well. A simple fix is to define the operational semantics of cbefore_begin() in terms of before_begin().
[2011-03-24 Madrid meeting]
General agreement that this is a serious bug.
Pablo: Any objections to moving 2042 to Immediate? No objections.Proposed resolution:
Add to the definition of forward_list::before_begin() 23.3.4.3 [forwardlist.iter] the following:
iterator before_begin(); const_iterator before_begin() const; const_iterator cbefore_begin() const;-1- Returns: A non-dereferenceable iterator that, when incremented, is equal to the iterator returned by begin().
-?- Effects: cbefore_begin() is equivalent to const_cast<forward_list const&>(*this).before_begin(). -?- Remarks: before_begin() == end() shall equal false.
Section: 17.6.5.7 [algorithm.stable] Status: C++14 Submitter: Pablo Halpern Opened: 2011-03-24 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
17.6.5.7 [algorithm.stable] specified the meaning of "stable" when applied to the different types of algorithms. The second bullet says:
— For the remove algorithms the relative order of the elements that are not removed is preserved.
There is no description of what "stable" means for copy algorithms, even though the term is applied to copy_if (and perhaps others now or in the future). Thus, copy_if is using the term without a precise definition.
[Bloomington, 2011]
Move to Ready
Proposed resolution:
This wording is relative to the FDIS.
In 17.6.5.7 [algorithm.stable] p. 1 change as indicated:
When the requirements for an algorithm state that it is “stable” without further elaboration, it means:
- For the sort algorithms the relative order of equivalent elements is preserved.
- For the remove and copy algorithms the relative order of the elements that are not removed is preserved.
- For the merge algorithms, for equivalent elements in the original two ranges, the elements from the first range precede the elements from the second range.
Section: 23.3.4.6 [forwardlist.ops] Status: C++14 Submitter: Pablo Halpern Opened: 2011-03-24 Last modified: 2015-04-08
View all other issues in [forwardlist.ops].
View all issues with C++14 status.
Discussion:
See also: 1215
list::merge and list::splice have the requirement that the two lists being merged or spliced must use the same allocator. Otherwise, moving list nodes from one container to the other would corrupt the data structure. The same requirement is needed for forward_list::merge and forward_list::splice_after.
[ 2011 Bloomington ]
Move to Ready.
Proposed resolution:
This wording is relative to the FDIS.
In 23.3.4.6 [forwardlist.ops] p. 1 change as indicated:
void splice_after(const_iterator position, forward_list<T,Allocator>& x); void splice_after(const_iterator position, forward_list<T,Allocator>&& x);1 - Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()). get_allocator() == x.get_allocator(). &x != this.
In 23.3.4.6 [forwardlist.ops] p. 5 change as indicated:
void splice_after(const_iterator position, forward_list<T,Allocator>& x, const_iterator i); void splice_after(const_iterator position, forward_list<T,Allocator>&& x, const_iterator i);5 - Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()). The iterator following i is a dereferenceable iterator in x. get_allocator() == x.get_allocator().
In 23.3.4.6 [forwardlist.ops] p. 9 change as indicated:
void splice_after(const_iterator position, forward_list<T,Allocator>& x, const_iterator first, const_iterator last); void splice_after(const_iterator position, forward_list<T,Allocator>&& x, const_iterator first, const_iterator last);9 - Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()). (first,last) is a valid range in x, and all iterators in the range (first,last) are dereferenceable. position is not an iterator in the range (first,last). get_allocator() == x.get_allocator().
In 23.3.4.6 [forwardlist.ops] p. 18 change as indicated:
void merge(forward_list<T,Allocator>& x); void merge(forward_list<T,Allocator>&& x); template <class Compare> void merge(forward_list<T,Allocator>& x, Compare comp); template <class Compare> void merge(forward_list<T,Allocator>&& x, Compare comp);18 - Requires: comp defines a strict weak ordering ([alg.sorting]), and *this and x are both sorted according to this ordering. get_allocator() == x.get_allocator().
Section: 20.8.1.2.3 [unique.ptr.single.asgn] Status: C++14 Submitter: Daniel Krügler Opened: 2011-04-16 Last modified: 2015-04-08
View all other issues in [unique.ptr.single.asgn].
View all issues with C++14 status.
Discussion:
The semantics described in 20.8.1.2.3 [unique.ptr.single.asgn] p. 6
Effects: Transfers ownership from u to *this as if […] followed by an assignment from std::forward<D>(u.get_deleter()).
contradicts to the pre-conditions described in p. 4:
Requires: If E is not a reference type, assignment of the deleter from an rvalue of type E shall be well-formed and shall not throw an exception. Otherwise, E is a reference type and assignment of the deleter from an lvalue of type E shall be well-formed and shall not throw an exception.
Either the pre-conditions are incorrect or the semantics should be an assignment from std::forward<E>(u.get_deleter()), instead.
It turns out that this contradiction is due to an incorrect transcription from the proposed resolution of 983 to the finally accepted proposal n3073 (see bullet 12) as confirmed by Howard Hinnant, thus the type argument provided to std::forward must be fixed as indicated.
[Bloomington, 2011]
Move to Ready
Proposed resolution:
This wording is relative to the FDIS.
Edit 20.8.1.2.3 [unique.ptr.single.asgn] p. 6 as indicated:
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;4 - Requires: If E is not a reference type, assignment of the deleter from an rvalue of type E shall be well-formed and shall not throw an exception. Otherwise, E is a reference type and assignment of the deleter from an lvalue of type E shall be well-formed and shall not throw an exception.
5 - Remarks: This operator shall not participate in overload resolution unless:
- unique_ptr<U, E>::pointer is implicitly convertible to pointer and
- U is not an array type.
6 - Effects: Transfers ownership from u to *this as if by calling reset(u.release()) followed by an assignment from std::forward<
7 - Returns: *this.DE>(u.get_deleter()).
Section: 20.9 [function.objects], 20.9.11 [func.memfn] Status: C++14 Submitter: Jonathan Wakely Opened: 2011-04-18 Last modified: 2015-04-08
View all other issues in [function.objects].
View all issues with C++14 status.
Discussion:
The mem_fn overloads for member functions are redundant and misleading and should be removed from the post-C++11 WP.
I believe the history of the overloads is as follows: In TR1 and in C++0x prior to the N2798 draft, mem_fn was specified by a single signature:template<class R, class T> unspecified mem_fn(R T::* pm);
and was accompanied by the remark "Implementations may implement mem_fn as a set of overloaded function templates." This remark predates variadic templates and was presumably to allow implementations to provide overloads for a limited number of function parameters, to meet the implementation-defined limit on numbers of template parameters.
N2770 "Concepts for the C++0x Standard Library: Utilities" added separate overloads for pointers to member functions, apparently so that function parameters would require the CopyConstructible concept (those overloads first appeared in N2322.) The overloads failed to account for varargs member functions (i.e. those declared with an ellipsis in the parameter-declaration-clause) e.g.struct S { int f(int, ...); };
Syntactically such a function would be handled by the original mem_fn(R T::* pm) signature, the only minor drawback being that there would be no CopyConstructible requirement on the parameter list. (Core DR 547 clarifies that partial specializations can be written to match cv-qualified and ref-qualified functions to support the case where R T::* matches a pointer to member function type.)
LWG issue 920 pointed out that additional overloads were missing for member functions with ref-qualifiers. These were not strictly necessary, because such functions are covered by the mem_fn(R T::* pm) signature. Concepts were removed from the draft and N3000 restored the original single signature and accompanying remark. LWG 1230 was opened to strike the remark again and to add an overload for member functions (this overload was unnecessary for syntactic reasons and insufficient as it didn't handle member functions with cv-qualifiers and/or ref-qualifiers.) 920 (and 1230) were resolved by restoring a full set of (non-concept-enabled) overloads for member functions with cv-qualifiers and ref-qualifiers, but as in the concept-enabled draft there were no overloads for member functions with an ellipsis in the parameter-declaration-clause. This is what is present in the FDIS. Following the thread beginning with message c++std-lib-30675, it is my understanding that all the mem_fn overloads for member functions are unnecessary and were only ever added to allow concept requirements. I'm not aware of any reason implementations cannot implement mem_fn as a single function template. Without concepts the overloads are redundant, and the absence of overloads for varargs functions can be interpreted to imply that varargs functions are not intended to work with mem_fn. Clarifying the intent by adding overloads for varargs functions would expand the list of 12 redundant overloads to 24, it would be much simpler to remove the 12 redundant overloads entirely.[Bloomington, 2011]
Move to Review.
The issue and resolution appear to be correct, but there is some concern that the wording of INVOKE may be different depending on whether you pass a pointer-to-member-data or pointer-to-member-function. That might make the current wording necessary after all, and then we might need to add the missing elipsis overloads.
There was some concern that the Remark confirming implementors had freedom to implement this as a set of overloaded functions may need to be restored if we delete the specification for these overloads.
[2012, Kona]
Moved to Tentatively Ready by the post-Kona issues processing subgroup.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
Change the <functional> synopsis 20.9 [function.objects] p. 2 as follows:
namespace std { […] // [func.memfn], member function adaptors: template<class R, class T> unspecified mem_fn(R T::*);template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...)); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) &); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const &); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile &); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile &); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) &&); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const &&); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile &&); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile &&);[…] }
Change 20.9.11 [func.memfn] as follows:
template<class R, class T> unspecified mem_fn(R T::*);template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...)); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) &); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const &); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile &); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile &); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) &&); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const &&); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile &&); template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile &&);
Section: 20.10.4.3 [meta.unary.prop] Status: C++14 Submitter: Daniel Krügler Opened: 2011-04-18 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with C++14 status.
Discussion:
The conditions for the type trait is_destructible to be true are described in Table 49 — Type property predicates:
For a complete type T and given
template <class U> struct test { U u; };,
test<T>::~test() is not deleted.
This specification does not say what the result would be for function types or for abstract types:
which has the same consequence as for abstract types, namely that the corresponding instantiation of test is already ill-formed and we cannot say anything about the destructor.If a declaration acquires a function type through a type dependent on a template-parameter and this causes a declaration that does not use the syntactic form of a function declarator to have function type, the program is ill-formed.
[ Example:template<class T> struct A { static T t; }; typedef int function(); A<function> a; // ill-formed: would declare A<function>::t // as a static member function— end example ]
To solve this problem, I suggest to specify function types as trivially and nothrowing destructible, because above mentioned rule is very special for templates. For non-templates, a typedef can be used to introduce a member as member function as clarified in 8.3.5 [dcl.fct] p. 10.
For abstract types, two different suggestions have been brought to my attention: Either declare them as unconditionally non-destructible or check whether the expression
std::declval<T&>().~T()
is well-formed in an unevaluated context. The first solution is very easy to specify, but the second version has the advantage for providing more information to user-code. This information could be quite useful, if generic code is supposed to invoke the destructor of a reference to a base class indirectly via a delete expression, as suggested by Howard Hinnant:
template <class T> my_pointer<T>::~my_pointer() noexcept(is_nothrow_destructible<T>::value) { delete ptr_; }
Additional to the is_destructible traits, its derived forms is_trivially_destructible and is_nothrow_destructible are similarly affected, because their wording refers to "the indicated destructor" and probably need to be adapted as well.
[ 2011 Bloomington ]
After discussion about to to handle the exceptional cases of reference types, function types (available by defererencing a function pointer) and void types, Howard supplied proposed wording.
[ 2011-08-20 Daniel comments and provides alternatives wording ]
The currently proposed wording would have the consequence that every array type is not destructible, because the pseudo-destructor requires a scalar type with the effect that the expression
std::declval<T&>().~T()
is not well-formed for e.g. T equal to int[3]. The intuitive solution to fix this problem would be to adapt the object type case to refer to the expression
std::declval<U&>().~U()
with U equal to remove_all_extents<T>::type, but that would have the effect that arrays of unknown bounds would be destructible, if the element type is destructible, which was not the case before (This was intentionally covered by the special "For a complete type T" rule in the FDIS).
Suggestion: Use the following definition instead:Let U be remove_all_extents<T>::type.
For incomplete types and function types, is_destructible<T>::value is false.
For object types, if the expression std::declval<U&>().~U() is well-formed
when treated as an unevaluated operand (Clause 5), then is_destructible<T>::value
is true, otherwise it is false.
For reference types, is_destructible<T>::value is true.
This wording also harmonizes with the "unevaluated operand" phrase used in other places, there does not exist the definition of an "unevaluated context"
Note: In the actually proposed wording this wording has been slightly reordered with the same effects.Howard's (old) proposed resolution:
Update 20.10.4.3 [meta.unary.prop], table 49:
template <class T> struct is_destructible; For a complete type T and given template <class U> struct test { U u; };, test<T>::~test() is not deleted.
For object types, if the expression: std::declval<T&>().~T() is well-formed in an unevaluated context then is_destructible<T>::value is true, otherwise it is false.
For void types, is_destructible<T>::value is false.
For reference types, is_destructible<T>::value is true.
For function types, is_destructible<T>::value is false.T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound.
[2012, Kona]
Moved to Tentatively Ready by the post-Kona issues processing subgroup.
[2012, Portland: applied to WP]
Proposed resolution:
Update 20.10.4.3 [meta.unary.prop], table 49:
template <class T> struct is_destructible; |
For reference types, is_destructible<T>::value is true. For incomplete types and function types, is_destructible<T>::value is false. For object types and given U equal to remove_all_extents<T>::type, if the expression std::declval<U&>().~U() is well-formed when treated as an unevaluated operand (Clause 5 [expr]), then is_destructible<T>::value is true, otherwise it is false. |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
Section: 23.5 [unord] Status: C++14 Submitter: Tom Zieberman Opened: 2011-04-29 Last modified: 2015-04-08
View all other issues in [unord].
View all issues with C++14 status.
Discussion:
The unordered associative containers define their member types reference, const_reference, pointer, const_pointer in terms of their template parameter Allocator (via allocator_type typedef). As a consequence, only the allocator types, that provide sufficient typedefs, are usable as allocators for unordered associative containers, while other containers do not have this deficiency. In addition to that, the definitions of said typedefs are different from ones used in the other containers. This is counterintuitive and introduces a certain level of confusion. These issues can be fixed by defining pointer and const_pointer typedefs in terms of allocator_traits<Allocator> and by defining reference and const_reference in terms of value_type as is done in the other containers.
[ 2011 Bloomington. ]
Move to Ready.
Proposed resolution:
This wording is relative to the FDIS.
Change 23.5.4.1 [unord.map.overview] paragraph 3 as indicated:
namespace std { template <class Key, class T, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Allocator = std::allocator<std::pair<const Key, T> > > class unordered_map { public: // types typedef Key key_type; typedef std::pair<const Key, T> value_type; typedef T mapped_type; typedef Hash hasher; typedef Pred key_equal; typedef Allocator allocator_type; typedef typenameallocator_typeallocator_traits<Allocator>::pointer pointer; typedef typenameallocator_typeallocator_traits<Allocator>::const_pointer const_pointer; typedeftypename allocator_type::referencevalue_type& reference; typedeftypename allocator_type::const_referenceconst value_type& const_reference; typedef implementation-defined size_type; typedef implementation-defined difference_type; […] }; }
Change 23.5.5.1 [unord.multimap.overview] paragraph 3 as indicated:
namespace std { template <class Key, class T, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Allocator = std::allocator<std::pair<const Key, T> > > class unordered_multimap { public: // types typedef Key key_type; typedef std::pair<const Key, T> value_type; typedef T mapped_type; typedef Hash hasher; typedef Pred key_equal; typedef Allocator allocator_type; typedef typenameallocator_typeallocator_traits<Allocator>::pointer pointer; typedef typenameallocator_typeallocator_traits<Allocator>::const_pointer const_pointer; typedeftypename allocator_type::referencevalue_type& reference; typedeftypename allocator_type::const_referenceconst value_type& const_reference; typedef implementation-defined size_type; typedef implementation-defined difference_type; […] }; }
Change 23.5.6.1 [unord.set.overview] paragraph 3 as indicated:
namespace std { template <class Key, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Allocator = std::allocator<Key> > class unordered_set { public: // types typedef Key key_type; typedef Key value_type; typedef Hash hasher; typedef Pred key_equal; typedef Allocator allocator_type; typedef typenameallocator_typeallocator_traits<Allocator>::pointer pointer; typedef typenameallocator_typeallocator_traits<Allocator>::const_pointer const_pointer; typedeftypename allocator_type::referencevalue_type& reference; typedeftypename allocator_type::const_referenceconst value_type& const_reference; typedef implementation-defined size_type; typedef implementation-defined difference_type; […] }; }
Change 23.5.7.1 [unord.multiset.overview] paragraph 3 as indicated:
namespace std { template <class Key, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Allocator = std::allocator<Key> > class unordered_multiset { public: // types typedef Key key_type; typedef Key value_type; typedef Hash hasher; typedef Pred key_equal; typedef Allocator allocator_type; typedef typenameallocator_typeallocator_traits<Allocator>::pointer pointer; typedef typenameallocator_typeallocator_traits<Allocator>::const_pointer const_pointer; typedeftypename allocator_type::referencevalue_type& reference; typedeftypename allocator_type::const_referenceconst value_type& const_reference; typedef implementation-defined size_type; typedef implementation-defined difference_type; […] }; }
Section: 23.2.4 [associative.reqmts] Status: Resolved Submitter: Marc Glisse Opened: 2011-05-04 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with Resolved status.
Discussion:
(this is basically reopening the first part of issue 2006, as discussed in the thread starting at c++std-lib-30698 )
Section 23.2.4 [associative.reqmts] In Table 102, several uses of T (which means mapped_type here) should be value_type instead. This is almost editorial. For instance:a_uniq.emplace(args)Requires: T shall be EmplaceConstructible into X from args.
Effects: Inserts a T object t constructed with std::forward<Args>(args)... if and only if there is no element in the container with key equivalent to the key of t. The bool component of the returned pair is true if and only if the insertion takes place, and the iterator component of the pair points to the element with key equivalent to the key of t.
[ 2011 Bloomington ]
Not even an exhaustive list of problem locations. No reason to doubt issue.
Pablo agrees to provide wording.
[ 2011-09-04 Pablo Halpern provides improved wording ]
[2014-02-15 post-Issaquah session : move to Resolved]
AJM to replace this note with a 'Resolved By...' after tracking down the exact sequence of events, but clearly resolved in C++14 DIS.
Proposed resolution:
In both section 23.2.4 [associative.reqmts] Table 102 and 23.2.5 [unord.req], Table 103, make the following text replacements:
Original text, in FDIS | Replacement text |
T is CopyInsertable into X and CopyAssignable. | value_type is CopyInsertable into X, key_type is CopyAssignable, and mapped_type is CopyAssignable (for containers having a mapped_type) |
T is CopyInsertable | value_type is CopyInsertable |
T shall be CopyInsertable | value_type shall be CopyInsertable |
T shall be MoveInsertable | value_type shall be MoveInsertable |
T shall be EmplaceConstructible | value_type shall be EmplaceConstructible |
T object | value_type object |
[ Notes to the editor: The above are carefully selected phrases that can be used for global search-and-replace within the specified sections without accidentally making changes to correct uses T. ]
Section: 28.5 [re.const] Status: C++14 Submitter: Jonathan Wakely Opened: 2011-05-09 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
When N3110 was applied to the WP some redundant "static" keywords were added and one form of initializer which isn't valid for enumeration types was replaced with another form of invalid initializer.
[ 2011 Bloomington. ]
Move to Ready.
Proposed resolution:
This wording is relative to the FDIS.
Change 28.5.1 [re.synopt] as indicated:
namespace std { namespace regex_constants { typedef T1 syntax_option_type;staticconstexpr syntax_option_type icase = unspecified ;staticconstexpr syntax_option_type nosubs = unspecified ;staticconstexpr syntax_option_type optimize = unspecified ;staticconstexpr syntax_option_type collate = unspecified ;staticconstexpr syntax_option_type ECMAScript = unspecified ;staticconstexpr syntax_option_type basic = unspecified ;staticconstexpr syntax_option_type extended = unspecified ;staticconstexpr syntax_option_type awk = unspecified ;staticconstexpr syntax_option_type grep = unspecified ;staticconstexpr syntax_option_type egrep = unspecified ; } }
Change 28.5.2 [re.matchflag] as indicated:
namespace std { namespace regex_constants { typedef T2 match_flag_type;staticconstexpr match_flag_type match_default= 0{};staticconstexpr match_flag_type match_not_bol = unspecified ;staticconstexpr match_flag_type match_not_eol = unspecified ;staticconstexpr match_flag_type match_not_bow = unspecified ;staticconstexpr match_flag_type match_not_eow = unspecified ;staticconstexpr match_flag_type match_any = unspecified ;staticconstexpr match_flag_type match_not_null = unspecified ;staticconstexpr match_flag_type match_continuous = unspecified ;staticconstexpr match_flag_type match_prev_avail = unspecified ;staticconstexpr match_flag_type format_default= 0{};staticconstexpr match_flag_type format_sed = unspecified ;staticconstexpr match_flag_type format_no_copy = unspecified ;staticconstexpr match_flag_type format_first_only = unspecified ; } }
Change 28.5.3 [re.err] as indicated:
namespace std { namespace regex_constants { typedef T3 error_type;staticconstexpr error_type error_collate = unspecified ;staticconstexpr error_type error_ctype = unspecified ;staticconstexpr error_type error_escape = unspecified ;staticconstexpr error_type error_backref = unspecified ;staticconstexpr error_type error_brack = unspecified ;staticconstexpr error_type error_paren = unspecified ;staticconstexpr error_type error_brace = unspecified ;staticconstexpr error_type error_badbrace = unspecified ;staticconstexpr error_type error_range = unspecified ;staticconstexpr error_type error_space = unspecified ;staticconstexpr error_type error_badrepeat = unspecified ;staticconstexpr error_type error_complexity = unspecified ;staticconstexpr error_type error_stack = unspecified ; } }
Section: 20.12.6 [time.point] Status: Resolved Submitter: Anthony Williams Opened: 2011-05-13 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
In 20.12.6 [time.point], time_point::min() and time_point::max() are listed as constexpr. However, time_point has no constexpr constructors, so is not a literal type, and so these functions cannot be constexpr without adding a constexpr constructor for implementation purposes.
Proposed resolution: Add constexpr to the constructors of time_point. The effects of the constructor template basically imply that the member function time_since_epoch() is intended to be constexpr as well.[2012, Portland]
Resolved by adopting paper n3469.
Proposed resolution:
This wording is relative to the FDIS.
Alter the class template definition in 20.12.6 [time.point] as follows:
template <class Clock, class Duration = typename Clock::duration> class time_point { […] public: // 20.11.6.1, construct: constexpr time_point(); // has value epoch constexpr explicit time_point(const duration& d); // same as time_point() + d template <class Duration2> constexpr time_point(const time_point<clock, Duration2>& t); // 20.11.6.2, observer: constexpr duration time_since_epoch() const; […] };
Alter the declarations in 20.12.6.1 [time.point.cons]:
constexpr time_point();-1- Effects: Constructs an object of type time_point, initializing d_ with duration::zero(). Such a time_point object represents the epoch.
constexpr explicit time_point(const duration& d);-2- Effects: Constructs an object of type time_point, initializing d_ with d. Such a time_point object represents the epoch + d.
template <class Duration2> constexpr time_point(const time_point<clock, Duration2>& t);-3- Remarks: This constructor shall not participate in overload resolution unless Duration2 is implicitly convertible to duration.
-4- Effects: Constructs an object of type time_point, initializing d_ with t.time_since_epoch().
Alter the declaration in 20.12.6.2 [time.point.observer]:
constexpr duration time_since_epoch() const;-1- Returns: d_.
Section: 30.6.1 [futures.overview] Status: C++14 Submitter: Nicolai Josuttis Opened: 2011-05-18 Last modified: 2015-04-08
View all other issues in [futures.overview].
View all issues with C++14 status.
Discussion:
In 30.6.1 [futures.overview] enum class future_errc is defined as follows:
enum class future_errc { broken_promise, future_already_retrieved, promise_already_satisfied, no_state };
With this declaration broken_promise has value 0, which means that for a future_error f with this code
f.code().operator bool()
yields false, which makes no sense. 0 has to be reserved for "no error". So, the enums defined here have to start with 1.
Howard, Anthony, and Jonathan have no objections.[Discussion in Bloomington 2011-08-16]
Previous resolution:
This wording is relative to the FDIS.
In 30.6.1 [futures.overview], header <future> synopsis, fix the declaration of future_errc as follows:
namespace std { enum class future_errc {broken_promise,future_already_retrieved = 1, promise_already_satisfied, no_state, broken_promise }; […] }
Is this resolution overspecified? These seem to be all implementation-defined. How do users add new values and not conflict with established error codes?
PJP proxy says: over-specified. boo.
Other error codes: look for is_error_code_enum specializations. Only one exists io_errc
Peter: I don't see any other parts of the standard that specify error codes where we have to do something similar.
Suggest that for every place where we add an error code, the following:
[2012, Kona]
Moved to Tentatively Ready by the post-Kona issues processing subgroup.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
In 30.6.1 [futures.overview], header <future> synopsis, fix the declaration of future_errc as follows:
namespace std { enum class future_errc { broken_promise = implementation defined, future_already_retrieved = implementation defined, promise_already_satisfied = implementation defined, no_state = implementation defined }; […] }
In 30.6.1 [futures.overview], header <future> synopsis, add a paragraph after paragraph 2 as follows:
The enum values of future_errc are distinct and not zero.Section: 20.12.6.5 [time.point.nonmember] Status: Resolved Submitter: Daniel Krügler Opened: 2011-05-21 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
It has been observed by LWG 2054 that the specification of some time_point member functions already imply that time_point needs to be a literal type and suggests to specify the constructors and the member function time_since_epoch() as constexpr functions at the minimum necessary. Adding further constexpr specifier to other operations should clearly be allowed and should probably be done as well. But to allow for further constexpr functions in the future requires that their semantics is compatible to operations allowed in constexpr functions. This is already fine for all operations, except this binary plus operator:
template <class Clock, class Duration1, class Rep2, class Period2> time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2>>::type> operator+(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);-1- Returns: CT(lhs) += rhs, where CT is the type of the return value.
for similar reasons as those mentioned in 2020. The semantics should be fixed to allow for making them constexpr. This issue should also be considered as a placeholder for a request to make the remaining time_point operations similarly constexpr as had been done for duration.
[2012, Portland]
Resolved by adopting paper n3469.
Proposed resolution:
This wording is relative to the FDIS.
In 20.12.6.5 [time.point.nonmember], p.1 change the Returns element semantics as indicated:
template <class Clock, class Duration1, class Rep2, class Period2> time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2>>::type> operator+(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);-1- Returns:
CT(lhs) += rhsCT(lhs.time_since_epoch() + rhs), where CT is the type of the return value.
Section: 26.6 [numarray] Status: C++14 Submitter: Gabriel Dos Reis Opened: 2011-05-17 Last modified: 2015-04-08
View all other issues in [numarray].
View all issues with C++14 status.
Discussion:
It was just brought to my attention that the pair of functions begin/end were added to valarray component. Those additions strike me as counter to the long standing agreement that valarray<T> is not yet another container. Valarray values are in general supposed to be treated as a whole, and as such has a loose specification allowing expression template techniques.
The addition of these functions sound to me as making it much harder (or close to impossible) to effectively use expression templates as implementation techniques, for no clear benefits. My recommendation would be to drop begin/end - or at least for the const valarray<T>& version. I strongly believe those are defects.[This issue was discussed on the library reflector starting from c++std-lib-30761. Some of the key conclusions of this discussion were:]
[ 2011 Bloomington ]
The intent of these overloads is entirely to support the new for syntax, and not to create new containers.
Stefanus provides suggested wording.
[2012, Kona]
Moved to Tenatively Ready by post-meeting issues processing group, after confirmation from Gaby.
[2012, Portland: applied to WP]
Proposed resolution:
In 26.6.1 [valarray.syn]/4, make the following insertion:
4 Implementations introducing such replacement types shall provide additional functions and operators as follows:
In 26.6.10 [valarray.range], make the following insertion:
1 In the begin and end function templates that follow, unspecified1 is a type that meets the requirements of a mutable random access iterator (24.2.7) whose value_type is the template parameter T and whose reference type is T&. unspecified2 is a type that meets the requirements of a constant random access iterator (24.2.7) whose value_type is the template parameter T and whose reference type is const T&.
2 The iterators returned by begin and end for an array are guaranteed to be valid until the member function resize(size_t, T) (26.6.2.8 [valarray.members]) is called for that array or until the lifetime of that array ends, whichever happens first.
Section: 23.4.4 [map] Status: WP Submitter: Christopher Jefferson Opened: 2011-05-18 Last modified: 2015-05-22
View all other issues in [map].
View all issues with WP status.
Discussion:
map::erase (and several related methods) took an iterator in C++03, but take a const_iterator in C++0x. This breaks code where the map's key_type has a constructor which accepts an iterator (for example a template constructor), as the compiler cannot choose between erase(const key_type&) and erase(const_iterator).
#include <map> struct X { template<typename T> X(T&) {} }; bool operator<(const X&, const X&) { return false; } void erasor(std::map<X,int>& s, X x) { std::map<X,int>::iterator it = s.find(x); if (it != s.end()) s.erase(it); }
[ 2011 Bloomington ]
This issue affects only associative container erase calls, and is not more general, as these are the only functions that are also overloaded on another single arguement that might cause confusion - the erase by key method. The complete resolution should simply restore the iterator overload in addition to the const_iterator overload for all eight associative containers.
Proposed wording supplied by Alan Talbot, and moved to Review.
[2012, Kona]
Moved back to Open by post-meeting issues processing group.
Pablo very unhappy about case of breaking code with ambiguous conversion between both iterator types.
Alisdair strongly in favor of proposed resolution, this change from C++11 bit Chris in real code, and it took a while to track down the cause.
Move to open, bring in front of a larger group
Proposed wording from Jeremiah: erase(key) shall not participate in overload resolution if iterator is convertible to key. Note that this means making erase(key) a template-method
Poll Chris to find out if he already fixed his code, or fixed his library
Jeremiah - allow both overloads, but enable_if the const_iterator form as a template, requiring is_same to match only const_iterator.
Poll PJ to see if he has already applied this fix?
[2015-02 Cologne]
AM: To summarize, we changed a signature and code broke. At what point do we stop and accept breakage in increasingly obscure code? VV: libc++ is still broken, but libstdc++ works, so they've fixed this — perhaps using this PR? [Checks] Yes, libstdc++ uses this solution, and has a comment pointing to LWG 2059. AM: This issue hasn't been looked at since Kona. In any case, we already have implementation experience now.
AM: I'd say let's ship it. We already have implementation experience (libstdc++ and MSVS). MC: And "tentatively ready" lets me try to implement this and see how it works.Proposed resolution:
Editorial note: The following things are different between 23.2.4 [associative.reqmts] p.8 and 23.2.5 [unord.req] p.10. These should probably be reconciled.
- First uses the convention "denotes"; second uses the convention "is".
- First redundantly says: "If no such element exists, returns a.end()." in erase table entry, second does not.
23.2.4 [associative.reqmts] Associative containers
8 In Table 102, X denotes an associative container class, a denotes a value of X, a_uniq denotes a value of X when X supports unique keys, a_eq denotes a value of X when X supports multiple keys, u denotes an identifier, i and j satisfy input iterator requirements and refer to elements implicitly convertible to value_type, [i,j) denotes a valid range, p denotes a valid const iterator to a, q denotes a valid dereferenceable const iterator to a, r denotes a valid dereferenceable iterator to a, [q1, q2) denotes a valid range of const iterators in a, il designates an object of type initializer_list<value_type>, t denotes a value of X::value_type, k denotes a value of X::key_type and c denotes a value of type X::key_compare. A denotes the storage allocator used by X, if any, or std::allocator<X::value_type> otherwise, and m denotes an allocator of a type convertible to A.
23.2.4 [associative.reqmts] Associative containers Table 102
Add row:
a.erase(r) | iterator | erases the element pointed to by r. Returns an iterator pointing to the element immediately following r prior to the element being erased. If no such element exists, returns a.end(). | amortized constant |
23.2.5 [unord.req] Unordered associative containers
10 In table 103: X is an unordered associative container class, a is an object of type X, b is a possibly const object of type X, a_uniq is an object of type X when X supports unique keys, a_eq is an object of type X when X supports equivalent keys, i and j are input iterators that refer to value_type, [i, j) is a valid range, p and q2 are valid const iterators to a, q and q1 are valid dereferenceable const iterators to a, r is a valid dereferenceable iterator to a, [q1,q2) is a valid range in a, il designates an object of type initializer_list<value_type>, t is a value of type X::value_type, k is a value of type key_type, hf is a possibly const value of type hasher, eq is a possibly const value of type key_equal, n is a value of type size_type, and z is a value of type float.
23.2.5 [unord.req] Unordered associative containers Table 103
Add row:
a.erase(r) | iterator | Erases the element pointed to by r. Returns the iterator immediately following r prior to the erasure. | Average case O(1), worst case O(a.size()). |
23.4.4.1 [map.overview] Class template map overview p. 2
iterator erase(iterator position); iterator erase(const_iterator position); size_type erase(const key_type& x); iterator erase(const_iterator first, const_iterator last);
23.4.5.1 [multimap.overview] Class template multimap overview p. 2
iterator erase(iterator position); iterator erase(const_iterator position); size_type erase(const key_type& x); iterator erase(const_iterator first, const_iterator last);
23.4.6.1 [set.overview] Class template set overview p. 2
iterator erase(iterator position); iterator erase(const_iterator position); size_type erase(const key_type& x); iterator erase(const_iterator first, const_iterator last);
23.4.7.1 [multiset.overview] Class template multiset overview
iterator erase(iterator position); iterator erase(const_iterator position); size_type erase(const key_type& x); iterator erase(const_iterator first, const_iterator last);
23.5.4.1 [unord.map.overview] Class template unordered_map overview p. 3
iterator erase(iterator position); iterator erase(const_iterator position); size_type erase(const key_type& x); iterator erase(const_iterator first, const_iterator last);
23.5.5.1 [unord.multimap.overview] Class template unordered_multimap overview p. 3
iterator erase(iterator position); iterator erase(const_iterator position); size_type erase(const key_type& x); iterator erase(const_iterator first, const_iterator last);
23.5.6.1 [unord.set.overview] Class template unordered_set overview p. 3
iterator erase(iterator position); iterator erase(const_iterator position); size_type erase(const key_type& x); iterator erase(const_iterator first, const_iterator last);
23.5.7.1 [unord.multiset.overview] Class template unordered_multiset overview p. 3
iterator erase(iterator position); iterator erase(const_iterator position); size_type erase(const key_type& x); iterator erase(const_iterator first, const_iterator last);
C.2.13 [diff.cpp03.containers] C.2.12 Clause 23: containers library
23.2.3, 23.2.4
Change: Signature changes: from iterator to const_iterator parameters
Rationale: Overspecification. Effects: The signatures of the following member functions changed from taking an iterator to taking a const_iterator:
Valid C++ 2003 code that uses these functions may fail to compile with this International Standard.
Section: 24.3 [iterator.synopsis], 24.5.3 [move.iterators] Status: C++14 Submitter: Marc Glisse Opened: 2011-05-28 Last modified: 2015-04-08
View all other issues in [iterator.synopsis].
View all issues with C++14 status.
Discussion:
The standard library always passes template iterators by value and never by reference, which has the nice effect that an array decays to a pointer. There is one exception: make_move_iterator.
#include <iterator> int main(){ int a[]={1,2,3,4}; std::make_move_iterator(a+4); std::make_move_iterator(a); // fails here }
[ 2011 Bloomington. ]
Move to Ready.
Proposed resolution:
This wording is relative to the FDIS.
Modify the header <iterator> synopsis in 24.3 [iterator.synopsis]:
namespace std { […] template <class Iterator> move_iterator<Iterator> make_move_iterator(const Iterator&Iterator i); […] }
Modify the class template move_iterator synopsis in 24.5.3.1 [move.iterator]:
namespace std { […] template <class Iterator> move_iterator<Iterator> make_move_iterator(const Iterator&Iterator i); }
Modify 24.5.3.3.14 [move.iter.nonmember]:
template <class Iterator> move_iterator<Iterator> make_move_iterator(const Iterator&Iterator i);-3- Returns: move_iterator<Iterator>(i).
Section: 21.4 [basic.string] Status: WP Submitter: Howard Hinnant Opened: 2011-05-29 Last modified: 2015-05-22
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with WP status.
Discussion:
21.4.1 [string.require]/p4 says that basic_string is an "allocator-aware" container and behaves as described in 23.2.1 [container.requirements.general].
23.2.1 [container.requirements.general] describes move assignment in p7 and Table 99. If allocator_traits<allocator_type>::propagate_on_container_move_assignment::value is false, and if the allocators stored in the lhs and rhs sides are not equal, then move assigning a string has the same semantics as copy assigning a string as far as resources are concerned (resources can not be transferred). And in this event, the lhs may have to acquire resources to gain sufficient capacity to store a copy of the rhs. However 21.4.2 [string.cons]/p22 says:basic_string<charT,traits,Allocator>& operator=(basic_string<charT,traits,Allocator>&& str) noexcept;Effects: If *this and str are not the same object, modifies *this as shown in Table 71. [Note: A valid implementation is swap(str). — end note ]
These two specifications for basic_string::operator=(basic_string&&) are in conflict with each other. It is not possible to implement a basic_string which satisfies both requirements.
Additionally assign from an rvalue basic_string is defined as:basic_string& assign(basic_string&& str) noexcept;Effects: The function replaces the string controlled by *this with a string of length str.size() whose elements are a copy of the string controlled by str. [ Note: A valid implementation is swap(str). — end note ]
It seems contradictory that this member can be sensitive to propagate_on_container_swap instead of propagate_on_container_move_assignment. Indeed, there is a very subtle chance for undefined behavior here: If the implementation implements this in terms of swap, and if propagate_on_container_swap is false, and if the two allocators are unequal, the behavior is undefined, and will likely lead to memory corruption. That's a lot to go wrong under a member named "assign".
[ 2011 Bloomington ]
Alisdair: Can this be conditional noexcept?
Pablo: We said we were not going to put in many conditional noexcepts. Problem is not allocator, but non-normative definition. It says swap is a valid operation which it is not.
Dave: Move assignment is not a critical method.
Alisdair: Was confusing assignment and construction.
Dave: Move construction is critical for efficiency.
Kyle: Is it possible to test for noexcept.
Alisdair: Yes, query the noexcept operator.
Alisdair: Agreed there is a problem that we cannot unconditionally mark these operations as noexcept.
Pablo: How come swap is not defined in alloc
Alisdair: It is in utility.
Pablo: Swap has a conditional noexcept. Is no throw move constructable, is no throw move assignable.
Pablo: Not critical for strings or containers.
Kyle: Why?
Pablo: They do not use the default swap.
Dave: Important for deduction in other types.
Alisdair: Would change the policy we adopted during FDIS mode.
Pablo: Keep it simple and get some vendor experience.
Alisdair: Is this wording correct? Concerned with bullet 2.
Pablo: Where does it reference containers section.
Alisdair: String is a container.
Alisdair: We should not remove redundancy piecemeal.
Pablo: I agree. This is a deviation from rest of string. Missing forward reference to containers section.
Pablo: To fix section 2. Only the note needs to be removed. The rest needs to be a forward reference to containers.
Alisdair: That is a new issue.
Pablo: Not really. Talking about adding one sentence, saying that basic string is a container.
Dave: That is not just a forward reference, it is a semantic change.
PJ: We intended to make it look like a container, but it did not satisfy all the requirements.
Pablo: Clause 1 is correct. Clause 2 is removing note and noexcept (do not remove the rest). Clause 3 is correct.
Alisdair: Not sure data() is correct (in clause 2).
Conclusion: Move to open, Alisdair and Pablo volunteered to provide wording
[ originally proposed wording: ]
This wording is relative to the FDIS.
Modify the class template basic_string synopsis in 21.4 [basic.string]:
namespace std { template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> > class basic_string { public: […] basic_string& operator=(basic_string&& str)noexcept; […] basic_string& assign(basic_string&& str)noexcept; […] }; }
Remove the definition of the basic_string move assignment operator from 21.4.2 [string.cons] entirely, including Table 71 — operator=(const basic_string<charT, traits, Allocator>&&). This is consistent with how we define move assignment for the containers in Clause 23:
basic_string<charT,traits,Allocator>& operator=(basic_string<charT,traits,Allocator>&& str) noexcept;
-22- Effects: If *this and str are not the same object, modifies *this as shown in Table 71. [ Note: A valid implementation is swap(str). — end note ]-23- If *this and str are the same object, the member has no effect.-24- Returns: *this
Table 71 — operator=(const basic_string<charT, traits, Allocator>&&)ElementValuedata()points at the array whose first element was pointed at by str.data()size()previous value of str.size()capacity()a value at least as large as size()
Modify the paragraphs prior to 21.4.6.3 [string::assign] p.3 as indicated (The first insertion recommends a separate paragraph number for the indicated paragraph):
basic_string& assign(basic_string&& str)noexcept;-?- Effects: Equivalent to *this = std::move(str).
-3- Returns: *thisThe function replaces the string controlled by *this with a string of length str.size() whose elements are a copy of the string controlled by str. [ Note: A valid implementation is swap(str). — end note ]
[ 2012-08-11 Joe Gottman observes: ]
One of the effects of basic_string's move-assignment operator (21.4.2 [string.cons], Table 71) is
Element Value data() points at the array whose first element was pointed at by str.data() If a string implementation uses the small-string optimization and the input string str is small enough to make use of it, this effect is impossible to achieve. To use the small string optimization, a string has to be implemented using something like
union { char buffer[SMALL_STRING_SIZE]; char *pdata; };When the string is small enough to fit inside buffer, the data() member function returns static_cast<const char *>(buffer), and since buffer is an array variable, there is no way to implement move so that the moved-to string's buffer member variable is equal to this->buffer.
Resolution proposal: Change Table 71 to read:
Element Value data() points at the array whose first element was pointed at by str.data()that contains the same characters in the same order as str.data() contained before operator=() was called
[2015-05-07, Lenexa]
Howard suggests improved wording
Move to ImmediateProposed resolution:
This wording is relative to N4431.
Modify the class template basic_string synopsis in 21.4 [basic.string]:
namespace std { template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> > class basic_string { public: […] basic_string& assign(basic_string&& str) noexcept( allocator_traits<Allocator>::propagate_on_container_move_assignment::value || allocator_traits<Allocator>::is_always_equal::value); […] }; }
Change 21.4.2 [string.cons]/p21-23:
basic_string& operator=(basic_string&& str) noexcept( allocator_traits<Allocator>::propagate_on_container_move_assignment::value || allocator_traits<Allocator>::is_always_equal::value);-21- Effects:
If *this and str are not the same object, modifies *this as shown in Table 71. [ Note: A valid implementation is swap(str). — end note ]Move assigns as a sequence container ([container.requirements]), except that iterators, pointers and references may be invalidated.-22- If *this and str are the same object, the member has no effect.-23- Returns: *this
Table 71 — operator=(basic_string&&) effectsElementValuedata()points at the array whose first element was pointed at by str.data()size()previous value of str.size()capacity()a value at least as large as size()
Modify the paragraphs prior to 21.4.6.3 [string::assign] p.3 as indicated
basic_string& assign(basic_string&& str) noexcept( allocator_traits<Allocator>::propagate_on_container_move_assignment::value || allocator_traits<Allocator>::is_always_equal::value);-3- Effects: Equivalent to *this = std::move(str).
-4- Returns: *thisThe function replaces the string controlled by *this with a string of length str.size() whose elements are a copy of the string controlled by str. [ Note: A valid implementation is swap(str). — end note ]
Section: 21.4 [basic.string] Status: C++14 Submitter: Howard Hinnant Opened: 2011-05-29 Last modified: 2015-04-08
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with C++14 status.
Discussion:
The following inconsistencies regarding noexcept for basic_string are noted.
Member swap is not marked noexcept:void swap(basic_string& str);
But the global swap is marked noexcept:
template<class charT, class traits, class Allocator>
void swap(basic_string<charT,traits,Allocator>& lhs,
basic_string<charT,traits,Allocator>& rhs) noexcept;
But only in the definition, not in the synopsis.
All comparison operators are marked noexcept in their definitions, but not in the synopsis. The compare function that takes a pointer:int compare(const charT *s) const;
is not marked noexcept. But some of the comparison functions which are marked noexcept (only in their definition) are specified to call the throwing compare operator:
template<class charT, class traits, class Allocator> bool operator==(const basic_string<charT,traits,Allocator>& lhs, const charT* rhs) noexcept;
Returns: lhs.compare(rhs) == 0.
All functions with a narrow contract should not be declared as noexcept according to the guidelines presented in n3279. Among these narrow contract functions are the swap functions (23.2.1 [container.requirements.general] p. 8) and functions with non-NULL const charT* parameters.
[2011-06-08 Daniel provides wording]
[Bloomington, 2011]
Move to Ready
Proposed resolution:
This wording is relative to the FDIS. Both move-assignment operator and the moving assign function are not touched by this issue, because they are handled separately by issue 2063.
Modify the header <string> synopsis in 21.3 [string.classes] as indicated (Rationale: Adding noexcept to these specific overloads is in sync with applying the same rule to specific overloads of the member functions find, compare, etc. This approach deviates from that taken in n3279, but seems more consistent given similar application for comparable member functions):
#include <initializer_list> namespace std { […] template<class charT, class traits, class Allocator> bool operator==(const basic_string<charT,traits,Allocator>& lhs, const basic_string<charT,traits,Allocator>& rhs) noexcept; […] template<class charT, class traits, class Allocator> bool operator!=(const basic_string<charT,traits,Allocator>& lhs, const basic_string<charT,traits,Allocator>& rhs) noexcept; […] template<class charT, class traits, class Allocator> bool operator<(const basic_string<charT,traits,Allocator>& lhs, const basic_string<charT,traits,Allocator>& rhs) noexcept; […] template<class charT, class traits, class Allocator> bool operator>(const basic_string<charT,traits,Allocator>& lhs, const basic_string<charT,traits,Allocator>& rhs) noexcept; […] template<class charT, class traits, class Allocator> bool operator<=(const basic_string<charT,traits,Allocator>& lhs, const basic_string<charT,traits,Allocator>& rhs) noexcept; […] template<class charT, class traits, class Allocator> bool operator>=(const basic_string<charT,traits,Allocator>& lhs, const basic_string<charT,traits,Allocator>& rhs) noexcept; […] }
Modify the class template basic_string synopsis in 21.4 [basic.string] as indicated (Remark 1: The noexcept at the move-constructor is fine, because even for a small-object optimization there is no problem here, because basic_string::value_type is required to be a non-array POD as of 21.1 [strings.general] p1, Remark 2: This proposal removes the noexcept at single character overloads of find, rfind, etc. because they are defined in terms of potentially allocating functions. It seems like an additional issue to me to change the semantics in terms of non-allocating functions and adding noexcept instead):
namespace std { template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> > class basic_string { public: […] // [string.ops], string operations: […] size_type find (charT c, size_type pos = 0) constnoexcept; […] size_type rfind(charT c, size_type pos = npos) constnoexcept; […] size_type find_first_of(charT c, size_type pos = 0) constnoexcept; […] size_type find_last_of (charT c, size_type pos = npos) constnoexcept; […] size_type find_first_not_of(charT c, size_type pos = 0) constnoexcept; […] size_type find_last_not_of (charT c, size_type pos = npos) constnoexcept; […] }; }
Modify 21.4.7.2 [string::find] before p5 and before p7 as indicated:
size_type find(const charT* s, size_type pos = 0) constnoexcept; […] size_type find(charT c, size_type pos = 0) constnoexcept;-7- Returns: find(basic_string<charT,traits,Allocator>(1,c), pos).
Modify 21.4.7.3 [string::rfind] before p7 as indicated:
size_type rfind(charT c, size_type pos = npos) constnoexcept;-7- Returns: rfind(basic_string<charT,traits,Allocator>(1,c),pos).
Modify 21.4.7.4 [string::find.first.of] before p7 as indicated:
size_type find_first_of(charT c, size_type pos = 0) constnoexcept;-7- Returns: find_first_of(basic_string<charT,traits,Allocator>(1,c), pos).
Modify 21.4.7.5 [string::find.last.of] before p7 as indicated:
size_type find_last_of(charT c, size_type pos = npos) constnoexcept;-7- Returns: find_last_of(basic_string<charT,traits,Allocator>(1,c),pos).
Modify 21.4.7.6 [string::find.first.not.of] before p7 as indicated:
size_type find_first_not_of(charT c, size_type pos = 0) constnoexcept;-7- Returns: find_first_not_of(basic_string(1, c), pos).
Modify 21.4.7.7 [string::find.last.not.of] before p7 as indicated:
size_type find_last_not_of(charT c, size_type pos = npos) constnoexcept;-7- Returns: find_last_not_of(basic_string(1, c), pos).
Modify 21.4.8.2 [string::operator==] before p2+p3 as indicated:
template<class charT, class traits, class Allocator> bool operator==(const charT* lhs, const basic_string<charT,traits,Allocator>& rhs)noexcept; […] template<class charT, class traits, class Allocator> bool operator==(const basic_string<charT,traits,Allocator>& lhs, const charT* rhs)noexcept;
Modify 21.4.8.3 [string::op!=] before p2+p3 as indicated:
template<class charT, class traits, class Allocator> bool operator!=(const charT* lhs, const basic_string<charT,traits,Allocator>& rhs)noexcept; […] template<class charT, class traits, class Allocator> bool operator!=(const basic_string<charT,traits,Allocator>& lhs, const charT* rhs)noexcept;
Modify 21.4.8.4 [string::op<] before p2+p3 as indicated:
template<class charT, class traits, class Allocator> bool operator<(const charT* lhs, const basic_string<charT,traits,Allocator>& rhs)noexcept; […] template<class charT, class traits, class Allocator> bool operator<(const basic_string<charT,traits,Allocator>& lhs, const charT* rhs)noexcept;
Modify 21.4.8.5 [string::op>] before p2+p3 as indicated:
template<class charT, class traits, class Allocator> bool operator>(const charT* lhs, const basic_string<charT,traits,Allocator>& rhs)noexcept; […] template<class charT, class traits, class Allocator> bool operator>(const basic_string<charT,traits,Allocator>& lhs, const charT* rhs)noexcept;
Modify 21.4.8.6 [string::op<=] before p2+p3 as indicated:
template<class charT, class traits, class Allocator> bool operator<=(const charT* lhs, const basic_string<charT,traits,Allocator>& rhs)noexcept; […] template<class charT, class traits, class Allocator> bool operator<=(const basic_string<charT,traits,Allocator>& lhs, const charT* rhs)noexcept;
Modify 21.4.8.7 [string::op>=] before p2+p3 as indicated:
template<class charT, class traits, class Allocator> bool operator>=(const charT* lhs, const basic_string<charT,traits,Allocator>& rhs)noexcept; […] template<class charT, class traits, class Allocator> bool operator>=(const basic_string<charT,traits,Allocator>& lhs, const charT* rhs)noexcept;
Modify 21.4.8.8 [string.special] as indicated (Remark: The change of the semantics guarantees as of 17.5.1.4 [structure.specifications] p4 that the "Throws: Nothing" element of member swap is implied):
template<class charT, class traits, class Allocator> void swap(basic_string<charT,traits,Allocator>& lhs, basic_string<charT,traits,Allocator>& rhs)noexcept;-1- Effects: Equivalent to lhs.swap(rhs);
Section: 17.6.3.5 [allocator.requirements] Status: C++14 Submitter: Jonathan Wakely Opened: 2011-06-06 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with C++14 status.
Discussion:
The example in 17.6.3.5 [allocator.requirements] says SimpleAllocator satisfies the requirements of Table 28 — Allocator requirements, but it doesn't support comparison for equality/inequality.
[Bloomington, 2011]
Move to Ready
Proposed resolution:
This wording is relative to the FDIS.
Modify the example in 17.6.3.5 [allocator.requirements] p5 as indicated:
-5- […]
[ Example: the following is an allocator class template supporting the minimal interface that satisfies the requirements of Table 28:template <class Tp> struct SimpleAllocator { typedef Tp value_type; SimpleAllocator(ctor args); template <class T> SimpleAllocator(const SimpleAllocator<T>& other); Tp *allocate(std::size_t n); void deallocate(Tp *p, std::size_t n); }; template <class T, class U> bool operator==(const SimpleAllocator<T>&, const SimpleAllocator<U>&); template <class T, class U> bool operator!=(const SimpleAllocator<T>&, const SimpleAllocator<U>&);— end example ]
Section: 23.3.6.3 [vector.capacity] Status: Resolved Submitter: Rani Sharoni Opened: 2011-03-29 Last modified: 2015-04-08
View other active issues in [vector.capacity].
View all other issues in [vector.capacity].
View all issues with Resolved status.
Discussion:
In C++1x (N3090) there are two version of vector::resize — 23.3.6.3 [vector.capacity]:
void resize(size_type sz); void resize(size_type sz, const T& c);
The text in 23.3.6.3 [vector.capacity]/12 only mentions "no effects on throw" for the two args version of resize:
Requires: If an exception is thrown other than by the move constructor of a non-CopyConstructible T there are no effects.
This seems like unintentional oversight since resize(size) is semantically the same as resize(size, T()). Additionally, the C++03 standard only specify single version of resize with default for the second argument - 23.2.4:
void resize(size_type sz, T c = T());
Therefore not requiring same guarantees for both version of resize is in fact a regression.
[2011-06-12: Daniel comments]
The proposed resolution for issue 2033 should solve this issue as well.
[ 2011 Bloomington ]
This issue will be resolved by issue 2033, and closed when this issue is applied.
[2012, Kona]
Resolved by adopting the resolution in issue 2033 at this meeting.
Proposed resolution:
Apply the proposed resolution of issue 2033
Section: 30.6.9 [futures.task] Status: C++14 Submitter: Daniel Krügler Opened: 2011-06-16 Last modified: 2015-04-08
View all other issues in [futures.task].
View all issues with C++14 status.
Discussion:
Class template packaged_task is a move-only type with the following form of the deleted copy operations:
packaged_task(packaged_task&) = delete; packaged_task& operator=(packaged_task&) = delete;
Note that the argument types are non-const. This does not look like a typo to me, this form seems to exist from the very first proposing paper on N2276. Using either of form of the copy-constructor did not make much difference before the introduction of defaulted special member functions, but it makes now an observable difference. This was brought to my attention by a question on a German C++ newsgroup where the question was raised why the following code does not compile on a recent gcc:
#include <utility>
#include <future>
#include <iostream>
#include <thread>
int main(){
std::packaged_task<void()> someTask([]{ std::cout << std::this_thread::get_id() << std::endl; });
std::thread someThread(std::move(someTask)); // Error here
// Remainder omitted
}
It turned out that the error was produced by the instantiation of some return type of std::bind which used a defaulted copy-constructor, which leads to a const declaration conflict with [class.copy] p8.
Some aspects of this problem are possibly core-language related, but I consider it more than a service to programmers, if the library would declare the usual form of the copy operations (i.e. those with const first parameter type) as deleted for packaged_task to prevent such problems. A similar problem exists for class template basic_ostream in 27.7.3.1 [ostream]:namespace std { template <class charT, class traits = char_traits<charT> > class basic_ostream : virtual public basic_ios<charT,traits> { […] // 27.7.3.3 Assign/swap basic_ostream& operator=(basic_ostream& rhs) = delete; basic_ostream& operator=(const basic_ostream&& rhs); void swap(basic_ostream& rhs); };
albeit this could be considered as an editorial swap of copy and move assignment operator, I suggest to fix this as part of this issue as well.
[ 2011 Bloomington. ]
Move to Ready.
Proposed resolution:
This wording is relative to the FDIS.
Modify the class template basic_ostream synopsis in 27.7.3.1 [ostream] as indicated (Note: The prototype signature of the move assignment operator in 27.7.3.3 [ostream.assign] is fine):
namespace std { template <class charT, class traits = char_traits<charT> > class basic_ostream : virtual public basic_ios<charT,traits> { […] // 27.7.3.3 Assign/swap basic_ostream& operator=(const basic_ostream& rhs) = delete; basic_ostream& operator=(constbasic_ostream&& rhs); void swap(basic_ostream& rhs); };
Modify the class template packaged_task synopsis in 30.6.9 [futures.task] p2 as indicated:
namespace std { template<class> class packaged_task; // undefined template<class R, class... ArgTypes> class packaged_task<R(ArgTypes...)> { public: […] // no copy packaged_task(const packaged_task&) = delete; packaged_task& operator=(const packaged_task&) = delete; […] }; […] }
Section: 21.4.2 [string.cons] Status: C++14 Submitter: Bo Persson Opened: 2011-07-01 Last modified: 2015-04-08
View all other issues in [string.cons].
View all issues with C++14 status.
Discussion:
Sub-clause 21.4.2 [string.cons] contains these constructors in paragraphs 2 and 3:
basic_string(const basic_string<charT,traits,Allocator>& str); basic_string(basic_string<charT,traits,Allocator>&& str) noexcept;[…]
-3- Throws: The second form throws nothing if the allocator's move constructor throws nothing.
How can it ever throw anything if it is marked noexcept?
[2011-07-11: Daniel comments and suggests wording changes]
Further, according to paragraph 18 of the same sub-clause:
basic_string(const basic_string& str, const Allocator& alloc); basic_string(basic_string&& str, const Allocator& alloc);[…]
-18- Throws: The second form throws nothing if alloc == str.get_allocator() unless the copy constructor for Allocator throws.
The constraint "unless the copy constructor for Allocator throws" is redundant, because according to Table 28 — Allocator requirements, the expressions
X a1(a); X a(b);
impose the requirement: "Shall not exit via an exception".
[ 2011 Bloomington. ]
Move to Ready.
Proposed resolution:
This wording is relative to the FDIS.
Change 21.4.2 [string.cons] p3 as indicated (This move constructor has a wide contract and is therefore safely marked as noexcept):
basic_string(const basic_string<charT,traits,Allocator>& str); basic_string(basic_string<charT,traits,Allocator>&& str) noexcept;-2- Effects: Constructs an object of class basic_string as indicated in Table 64. In the second form, str is left in a valid state with an unspecified value.
-3- Throws: The second form throws nothing if the allocator's move constructor throws nothing.
Change 21.4.2 [string.cons] p18 as indicated (This move-like constructor may throw, if the allocators don't compare equal, but not because of a potentially throwing allocator copy constructor, only because the allocation attempt may fail and throw an exception):
basic_string(const basic_string& str, const Allocator& alloc); basic_string(basic_string&& str, const Allocator& alloc);[…]
-18- Throws: The second form throws nothing if alloc == str.get_allocator()unless the copy constructor for Allocator throws.
Section: 26.6.2.3 [valarray.assign] Status: C++14 Submitter: Paolo Carlini Opened: 2011-05-05 Last modified: 2015-04-08
View all other issues in [valarray.assign].
View all issues with C++14 status.
Discussion:
Yesterday I noticed that the language we have in the FDIS about std::valarray move assignment is inconsistent with the resolution of LWG 675. Indeed, we guarantee constant complexity (vs linear complexity). We also want it to be noexcept, that is more subtle, but again it's at variance with all the containers.
Also, even if we suppose that LWG 675 applies only to the containers proper, I don't think the current "as if by calling resize(v.size())" is internally consistent with the noexcept requirement. So, what do we really want for std::valarray? Shall we maybe just strike or fix the as-if, consider it some sort of pasto from the copy-assignment text, thus keep the noexcept and constant complexity requirements (essentially the whole operation would boild down to a swap of POD data members). Or LWG 675 should be explicitly extended to std::valarray too? In that case both noexcept and constant complexity would go, I think, and the operation would boil down to the moral equivalent of clear() (which doesn't really exist in this case) + swap?Howard: I agree the current wording is incorrect. The complexity should be linear in size() (not v.size()) because the first thing this operator needs to do is resize(0) (or clear() as you put it).
I think we can keep the noexcept. As for proper wording, here's a first suggestion:Effects: *this obtains the value of v. The value of v after the assignment is not specified.
Complexity: linear.
See also reflector discussion starting with c++std-lib-30690.
[2012, Kona]
Move to Ready.
Some discussion on the types supported by valarray concludes that the wording is trying to say something similar to the core wording for trivial types, but significantly predates it, and does allow for types with non-trivial destructors. Howard notes that the only reason for linear complexity, rather than constant, is to support types with non-trivial destructors.
AJM suggests replacing the word 'value' with 'state', but straw poll prefers moving forward with the current wording, 5 to 2.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
In 26.6.2.3 [valarray.assign] update as follows:
valarray<T>& operator=(valarray<T>&& v) noexcept;3 Effects: *this obtains the value of v.
4 Complexity:If the length of v is not equal to the length of *this, resizes *this to make the two arrays the same length, as if by calling resize(v.size()), before performing the assignment.The value of v after the assignment is not specified.ConstantLinear.
Section: 25.3.10 [alg.reverse] Status: C++14 Submitter: Peter Miller Opened: 2011-08-17 Last modified: 2015-04-08
View all other issues in [alg.reverse].
View all issues with C++14 status.
Discussion:
The output of the program below should be:
"three two one null \n"
But when std::reverse_copy is implemented as described in N3291 25.3.10 [alg.reverse] it's:
"null three two one \n"
because there's an off by one error in 25.3.10 [alg.reverse]/4; the definition should read:
*(result + (last - first) - 1 - i) = *(first + i)
Test program:
#include <algorithm> #include <iostream> template <typename BiIterator, typename OutIterator> auto reverse_copy_as_described_in_N3291( BiIterator first, BiIterator last, OutIterator result ) -> OutIterator { // 25.3.10/4 [alg.reverse]: // "...such that for any non-negative integer i < (last - first)..." for ( unsigned i = 0; i < ( last - first ); ++i ) // "...the following assignment takes place:" *(result + (last - first) - i) = *(first + i); // 25.3.10/6 return result + (last - first); } int main() { using std::begin; using std::end; using std::cout; static const char*const in[3] { "one", "two", "three" }; const char* out[4] { "null", "null", "null", "null" }; reverse_copy_as_described_in_N3291( begin( in ), end( in ), out ); for ( auto s : out ) cout << s << ' '; cout << std::endl; return 0; }
[2012, Kona]
Move to Ready.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
Change 25.3.10 [alg.reverse] p4 as follows:
template<class BidirectionalIterator, class OutputIterator> OutputIterator reverse_copy(BidirectionalIterator first, BidirectionalIterator last, OutputIterator result);-4- Effects: Copies the range [first,last) to the range [result,result+(last-first)) such that for any non-negative integer i < (last - first) the following assignment takes place: *(result + (last - first) - 1 - i) = *(first + i).
-5- Requires: The ranges [first,last) and [result,result+(last-first)) shall not overlap. -6- Returns: result + (last - first). -7- Complexity: Exactly last - first assignments.
Section: 1.10 [intro.multithread], 29.4 [atomics.lockfree], 29.6.5 [atomics.types.operations.req] Status: Resolved Submitter: Torvald Riegel Opened: 2011-08-18 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
According to 1.10 [intro.multithread] p2:
"Implementations should ensure that all unblocked threads eventually make progress."
Which assumptions can an implementation make about the thread scheduling? This is relevant for how implementations implement compare-exchange with load-linked / store conditional (LL-SC), and atomic read-modifiy-write operations with load...compare-exchange-weak loops.
29.4 [atomics.lockfree] p2 declares the lock-free property for a particular object. However, "lock-free" is never defined, and in discussions that I had with committee members it seemed as if the standard's lock-free would be different from what lock-free means in other communities (eg, research, text books on concurrent programming, etc.).
Following 29.6.5 [atomics.types.operations.req] p7 is_lock_free() returns "true if the object is lock-free". What is returned if the object is only sometimes lock-free?
Basically, I would like to see clarifications for the progress guarantees so that users know what they can expect from implementations (and what they cannot expect!), and to give implementors a clearer understanding of which user expectations they have to implement.
Elaborate on the intentions of the progress guarantee in 1.10 [intro.multithread] p2. As I don't know about your intentions, it's hard to suggest a resolution.
Define the lock-free property. The definition should probably include the following points:
[2011-12-01: Hans comments]
1.10 [intro.multithread] p2 was an intentional compromise, and it was understood at the time that it was not a precise statement. The wording was introduced by N3209, which discusses some of the issues. There were additional reflector discussions.
This is somewhat separable from the question of what lock-free means, which is probably a more promising question to focus on.[2012, Kona]
General direction: lock-free means obstruction-free. Leave the current "should" recommendation for progress. It would take a lot of effort to try to do better.
[2012, Portland: move to Open]
The current wording of 1.10 [intro.multithread] p2 doesn't really say very much. As far as we can tell the term lock-free is nowhere defined in the standard.
James: we would prefer a different way to phrase it.
Hans: the research literature includes the term abstraction-free which might be a better fit.
Detlef: does Posix define a meaning for blocking (or locking) that we could use?
Hans: things like compare-exchange-strong can wait indefinitely.
Niklas: what about spin-locks -- still making no progress.
Hans: suspect we can only give guidance, at best. The lock-free meaning from the theoretical commmunity (forard progress will be made) is probably too strong here.
Atrur: what about livelocks?
Hans: each atomic modification completes, even if the whole thing is blocked.
Moved to open.
[2013-11-06: Jason Hearne-McGuiness comments]
Related to this issue, the wording in 29.4 [atomics.lockfree] p2,
In any given program execution, the result of the lock-free query shall be consistent for all pointers of the same type.
should be made clearer, because the object-specific (non-static) nature of the is_lock_free() functions from 29.5 [atomics.types.generic] and 29.6 [atomics.types.operations] imply that for different instances of pointers of the same type the returned value could be different.
Proposed resolution:
[2014-02-16 Issaquah: Resolved by paper n3927]
Section: 23.4.6.2 [set.cons] Status: WP Submitter: Jens Maurer Opened: 2011-08-20 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
23.4.6.2 [set.cons] paragraph 4 says:
Requires: If the iterator's dereference operator returns an lvalue or a non-const rvalue, then Key shall be CopyConstructible.
I'm confused why a "non-const rvalue" for the return value of the iterator would require CopyConstructible; isn't that exactly the situation when you'd want to apply the move constructor?
The corresponding requirement for multimap seems better in that regard ([multimap.cons] paragraph 3):Requires: If the iterator's dereference operator returns an lvalue or a const rvalue pair<key_type, mapped_type>, then both key_type and mapped_type shall be CopyConstructible.
Obviously, if I have a const rvalue, I can't apply the move constructor (which will likely attempt modify its argument).
Dave Abrahams: I think you are right. Proposed resolution: drop "non-" from 23.4.6.2 [set.cons] paragraph 3.[2012, Kona]
The wording is in this area will be affected by Pablo's paper being adopted at this meeting. Wait for that paper to be applied before visiting this issue - deliberately leave in New status until the next meeting.
Proposed resolution from Kona 2012:
This wording is relative to the FDIS.
Change 23.4.6.2 [set.cons] p3 as follows:
template <class InputIterator> set(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());-3- Effects: Constructs an empty set using the specified comparison object and allocator, and inserts elements from the range [first,last).
-4- Requires: If the iterator's dereference operator returns an lvalue or anon-const rvalue, then Key shall be CopyConstructible. -5- Complexity: Linear in N if the range [first,last) is already sorted using comp and otherwise N logN, where N is last - first.
[2014-05-18, Daniel comments]
According to Pablo, the current P/R correctly incorporates the changes from his paper (which was adopted in Kona)
[2014-06-10, STL comments and suggests better wording]
N1858 was voted into WP N2284 but was "(reworded)", introducing the "non-const" damage.
N1858 wanted to add this for map:Requires: Does not require CopyConstructible of either key_type or mapped_type if the dereferenced InputIterator returns a non-const rvalue pair<key_type, mapped_type>. Otherwise CopyConstructible is required for both key_type and mapped_type.
And this for set:
Requires: Key must be CopyConstructible only if the dereferenced InputIterator returns an lvalue or const rvalue.
(And similarly for multi.)
This was reworded to N2284 23.3.1.1 [map.cons]/3 and N2284 23.3.3.1 [set.cons]/4, and it slightly changed over the years into N3936 23.4.4.2 [map.cons]/3 and N3936 23.4.6.2 [set.cons]/4. In 2005/2007, this was the best known way to say "hey, we should try to move this stuff", as the fine-grained element requirements were taking shape. Then in 2010, N3173 was voted into WP N3225, adding the definition of EmplaceConstructible and modifying the container requirements tables to make the range constructors require EmplaceConstructible. After looking at this history and double-checking our implementation (where map/set range construction goes through emplacement, with absolutely no special-casing for map's pairs), I am convinced that N3173 superseded N1858 here. (Range-insert() and the unordered containers are unaffected.)Previous resolution [SUPERSEDED]:
This wording is relative to the N3936.
Change 23.4.6.2 [set.cons] p4 as follows:
template <class InputIterator> set(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());-3- Effects: Constructs an empty set using the specified comparison object and allocator, and inserts elements from the range [first,last).
-4- Requires: If the iterator's indirection operator returns an lvalue or anon-const rvalue, then Key shall be CopyInsertible into *this. -5- Complexity: Linear in N if the range [first,last) is already sorted using comp and otherwise N logN, where N is last - first.
[2015-02 Cologne]
GR: Do requirements supersede rather than compose [container requirements and per-function requirements]? AM: Yes, they supersede.
AM: This looks good. Ready? Agreement.Proposed resolution:
This wording is relative to the N4296.
Remove 23.4.4.2 [map.cons] p3:
template <class InputIterator> map(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());[…]
-3- Requires: If the iterator's indirection operator returns an lvalue or a const rvalue pair<key_type, mapped_type>, then both key_type and mapped_type shall be CopyInsertible into *this.
Remove 23.4.5.2 [multimap.cons] p3:
template <class InputIterator> multimap(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());[…]
-3- Requires: If the iterator's indirection operator returns an lvalue or a const rvalue pair<key_type, mapped_type>, then both key_type and mapped_type shall be CopyInsertible into *this.
Remove 23.4.6.2 [set.cons] p4:
template <class InputIterator> set(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());[…]
-4- Requires: If the iterator's indirection operator returns an lvalue or a non-const rvalue, then Key shall be CopyInsertible into *this.
Remove 23.4.7.2 [multiset.cons] p3:
template <class InputIterator> multiset(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());[…]
-3- Requires: If the iterator's indirection operator returns an lvalue or a const rvalue, then Key shall be CopyInsertible into *this.
Section: 30.6.8 [futures.async] Status: C++14 Submitter: Nicolai Josuttis Opened: 2011-08-29 Last modified: 2015-04-08
View all other issues in [futures.async].
View all issues with C++14 status.
Discussion:
The current throw specification of async() does state:
-6- Throws: system_error if policy is launch::async and the implementation is unable to start a new thread.
First it seems not clear whether this only applies if policy equals launch::async of if the async launch mode flag is set (if policy|launch::async!=0)
In the discussion Lawrence Crowl also wrote:More generally, I think what we want to say is that if the implementation cannot successfully execute on one of the policies allowed, then it must choose another. The principle would apply to implementation-defined policies as well.
Peter Sommerlad:
Should not throw. That was the intent. "is async" meat exactly.
[2012, Portland: move to Tentatively NAD Editorial]
If no launch policy, it is undefined behavior.
Agree with Lawrence, should try all the allowed policies. We will rephrase so that the policy argument should be lauch::async. Current wording seems good enough.
We believe this choice of policy statement is really an editorial issue.
[2013-09 Chicago]
If all the implementors read it and can't get it right - it is not editorial. Nico to provide wording
No objections to revised wording, so moved to Immediate.
Accept for Working Paper
Proposed resolution:
This wording is relative to N3691.
Change 30.6.8 [futures.async] p6, p7 as indicated:
-6- Throws: system_error if policy
is== launch::async and the implementation is unable to start a new thread.-7- Error conditions:
resource_unavailable_try_again — if policy
is== launch::async and the system is unable to start a new thread.
Section: 30.4.4 [thread.once] Status: C++14 Submitter: Nicolai Josuttis Opened: 2011-08-30 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
In function call_once 30.4.4.2 [thread.once.callonce] paragraph 4 and 5 specify for call_once():
Throws: system_error when an exception is required (30.2.2 [thread.req.exception]), or any exception thrown by func.
Error conditions:
- invalid_argument — if the once_flag object is no longer valid.
However, nowhere in 30.4.4 [thread.once] is specified, when a once-flag becomes invalid.
As far as I know this happens if the flag is used for different functions. So we either have to have to insert a sentence/paragraph in30.4.4.2 Function call_once [thread.once.callonce]
or
30.4.4 Call once [thread.once]
explaining when a once_flag becomes invalidated or we should state as error condition something like:
Anthony Williams:
A once_flag is invalidated if you destroy it (e.g. it is an automatic object, or heap allocated and deleted, etc.)
If the library can detect that this is the case then it will throw this exception. If it cannot detect such a case then it will never be thrown.
Jonathan Wakely:
I have also wondered how that error can happen in C++, where the type system will reject a non-callable type being passed to call_once() and should prevent a once_flag being used after its destructor runs.
If a once_flag is used after its destructor runs then it is indeed undefined behaviour, so implementations are already free to throw any exception (or set fire to a printer) without the standard saying so. My assumption was that it's an artefact of basing the API on pthreads, which says:The pthread_once() function may fail if:
[EINVAL] If either once_control or init_routine is invalid.
Pete Becker:
Yes, probably. We had to clean up several UNIXisms that were in the original design.
[2012, Kona]
Remove error conditions, move to Review.
[2012, Portland: move to Tentatively Ready]
Concurrency move to Ready, pending LWG review.
LWG did not have time to perform the final review in Portland, so moving to tentatively ready to reflect the Concurrency belief that the issue is ready, but could use a final inspection from library wordsmiths.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3337.
Change 30.4.4.2 [thread.once.callonce] as indicated:
template<class Callable, class ...Args> void call_once(once_flag& flag, Callable&& func, Args&&... args);[…]
-4- Throws: system_error when an exception is required (30.2.2), or any exception thrown by func.-5- Error conditions:
invalid_argument — if the once_flag object is no longer valid.
Section: 17.6.3.5 [allocator.requirements] Status: C++14 Submitter: Jonathan Wakely Opened: 2011-08-30 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with C++14 status.
Discussion:
As discussed in c++std-lib-31054 and c++std-lib-31059, the Allocator requirements implicitly require CopyConstructible because a.select_on_container_copy_construction() and container.get_allocator() both return a copy by value, but the requirement is not stated explicitly anywhere.
In order to clarify that allocators cannot have 'explicit' copy constructors, the requirements should include CopyConstructible.[2012, Kona]
Move to Ready.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
Change Table 28 — Allocator requirements in 17.6.3.5 [allocator.requirements]:
Expression | Return type | Assertion/note pre-/post-condition | Default |
---|---|---|---|
X a1(a); X a1 = a; |
Shall not exit via an exception. post: a1 == a |
||
… | |||
X a1(move(a)); X a1 = move(a); |
Shall not exit via an exception. post: a1 equals the prior value of a. |
Change 17.6.3.5 [allocator.requirements] paragraph 4:
An allocator type X shall satisfy the requirements of CopyConstructible (17.6.3.1 [utility.arg.requirements]). The X::pointer, X::const_pointer, X::void_pointer, and X::const_void_pointer types shall satisfy the requirements of NullablePointer (17.6.3.3 [nullablepointer.requirements]). No constructor, comparison operator, copy operation, move operation, or swap operation on these types shall exit via an exception. X::pointer and X::const_pointer shall also satisfy the requirements for a random access iterator (24.2 [iterator.requirements]).
Section: 20.8.2.3 [util.smartptr.weak], 20.8.2.3.5 [util.smartptr.weak.obs] Status: C++14 Submitter: Ai Azuma Opened: 2011-09-06 Last modified: 2015-04-08
View all other issues in [util.smartptr.weak].
View all issues with C++14 status.
Discussion:
Is there any reason why weak_ptr::owner_before member function templates are not const-qualified?
Daniel Krügler:
I don't think so. To the contrary, without these to be const member function templates, the semantics of the specializations owner_less<weak_ptr<T>> and owner_less<shared_ptr<T>> described in 20.8.2.4 [util.smartptr.ownerless] is unclear.
It is amusing to note that this miss has remain undetected from the accepted paper n2637 on. For the suggested wording changes see below.
[2012, Kona]
Move to Ready.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
Change the class template weak_ptr synopsis in 20.8.2.3 [util.smartptr.weak] as indicated:
namespace std { template<class T> class weak_ptr { public: typedef T element_type; […] template<class U> bool owner_before(shared_ptr<U> const& b) const; template<class U> bool owner_before(weak_ptr<U> const& b) const; }; […] }
Change the prototypes in 20.8.2.3.5 [util.smartptr.weak.obs] before p6 as indicated:
template<class U> bool owner_before(shared_ptr<U> const& b) const; template<class U> bool owner_before(weak_ptr<U> const& b) const;
Section: 27.7.2.3 [istream.unformatted] Status: C++14 Submitter: Krzysztof Zelechowski Opened: 2011-09-11 Last modified: 2015-04-08
View other active issues in [istream.unformatted].
View all other issues in [istream.unformatted].
View all issues with C++14 status.
Discussion:
27.7.2.3 [istream.unformatted] in N3242 currently has the following to say about the semantics of basic_istream::ignore:
[..]. Characters are extracted until any of the following occurs:
- if n != numeric_limits<streamsize>::max() (18.3.2), n characters are extracted
This statement, apart from being slightly ungrammatical, indicates that if (n == numeric_limits<streamsize>::max()), the method returns without extracting any characters.
The description intends to describe the observable behaviour of an implementation in terms of logical assertions. Logical assertions are not "bullets" that can be "entered" but need not; they are predicates that can evaluate to true or false. The description contains two predicates, either of them causes extraction to terminate. In the incriminated case, the first predicate is evaluates to true because its premise is false, therefore no characters will be extracted. The intended semantics would be described by the following statement:[..]. Characters are extracted until any of the following occurs:
- (n != numeric_limits<streamsize>::max()) (18.3.2) and (n) characters have been extracted so far.
[2013-04-20, Bristol]
Resolution: Ready.
[2013-09-29, Chicago]
Apply to Working Paper
Proposed resolution:
This wording is relative to the FDIS.
Change 27.7.2.3 [istream.unformatted] p25 as indicated:
basic_istream<charT,traits>& ignore(streamsize n = 1, int_type delim = traits::eof());-25- Effects: Behaves as an unformatted input function (as described in 27.7.2.3 [istream.unformatted], paragraph 1). After constructing a sentry object, extracts characters and discards them. Characters are extracted until any of the following occurs:
ifn != numeric_limits<streamsize>::max() (18.3.2.1 [limits.numeric]),and n charactersarehave been extracted so far- end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit), which may throw ios_base::failure (27.5.5.4 [iostate.flags]));
- traits::eq_int_type(traits::to_int_type(c), delim) for the next available input character c (in which case c is extracted).
Section: 26.8 [c.math] Status: C++14 Submitter: Daniel Krügler Opened: 2011-09-22 Last modified: 2015-04-08
View other active issues in [c.math].
View all other issues in [c.math].
View all issues with C++14 status.
Discussion:
26.8 [c.math] ends with a description of a rule set for "sufficient overloads" in p11:
Moreover, there shall be additional overloads sufficient to ensure:
- If any argument corresponding to a double parameter has type long double, then all arguments corresponding to double parameters are effectively cast to long double.
- Otherwise, if any argument corresponding to a double parameter has type double or an integer type, then all arguments corresponding to double parameters are effectively cast to double.
- Otherwise, all arguments corresponding to double parameters are effectively cast to float.
My impression is that this rule set is probably more generic as intended, my assumption is that it is written to mimic the C99/C1x rule set in 7.25 p2+3 in the "C++" way:
-2- Of the <math.h> and <complex.h> functions without an f (float) or l (long double) suffix, several have one or more parameters whose corresponding real type is double. For each such function, except modf, there is a corresponding type-generic macro. (footnote 313) The parameters whose corresponding real type is double in the function synopsis are generic parameters. Use of the macro invokes a function whose corresponding real type and type domain are determined by the arguments for the generic parameters. (footnote 314)
-3- Use of the macro invokes a function whose generic parameters have the corresponding real type determined as follows:
- First, if any argument for generic parameters has type long double, the type determined is long double.
- Otherwise, if any argument for generic parameters has type double or is of integer type, the type determined is double.
- Otherwise, the type determined is float.
where footnote 314 clarifies the intent:
If the type of the argument is not compatible with the type of the parameter for the selected function, the behavior is undefined.
The combination of the usage of the unspecific term "cast" with otherwise no further constraints (note that C constraints the valid set to types that C++ describes as arithmetic types, but see below for one important difference) has the effect that it requires the following examples to be well-formed and well-defined:
#include <cmath> enum class Ec { }; struct S { explicit operator long double(); }; void test(Ec e, S s) { std::sqrt(e); // OK, behaves like std::sqrt((float) e); std::sqrt(s); // OK, behaves like std::sqrt((float) s); }
GCC 4.7 does not accept any of these examples.
I found another example where the C++ rule differs from the C set, but in this case I'm not so sure, which direction C++ should follow. The difference is located in the fact, that in C enumerated types are integer types as described in 6.2.5 p17 (see e.g. n1569 or n1256): "The type char, the signed and unsigned integer types, and the enumerated types are collectively called integer types. The integer and real floating types are collectively called real types." This indicates that in C the following code#include <math.h> enum E { e }; void test(void) { sqrt(e); // OK, behaves like sqrt((double) e); }
seems to be well-defined and e is cast to double, but in C++ referring to
#include <cmath> enum E { e }; void test() { std::sqrt(e); // OK, behaves like sqrt((float) e); }
is also well-defined (because of our lack of constraints) but we must skip bullet 2 (because E is not an integer type) and effectively cast e to float. Accepting this, we would introduce a silent, but observable runtime difference for C and C++.
GCC 4.7 does not accept this example, but causes an ambiguity error among the three floating point overloads of sqrt. My current suggestion to fix these problems would be to constrain the valid argument types of these functions to arithmetic types.Howard provided wording to solve the issue.
[2012, Kona]
Moved to Ready. The proposed wording reflects both original intent from TR1, and current implementations.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
Change 26.8 [c.math] p11 as indicated:
Moreover, there shall be additional overloads sufficient to ensure:
- If any arithmetic argument corresponding to a double parameter has type long double, then all arithmetic arguments corresponding to double parameters are effectively cast to long double.
- Otherwise, if any arithmetic argument corresponding to a double parameter has type double or an integer type, then all arithmetic arguments corresponding to double parameters are effectively cast to double.
- Otherwise, all arithmetic arguments corresponding to double parameters
are effectively cast tohave type float.
Section: 27.5 [iostreams.base] Status: C++14 Submitter: Nicolai Josuttis Opened: 2011-09-22 Last modified: 2015-04-08
View all other issues in [iostreams.base].
View all issues with C++14 status.
Discussion:
In <system_error> we have:
const error_category& generic_category() noexcept; const error_category& system_category() noexcept;
In <future> we have:
const error_category& future_category() noexcept;
But in <ios> we have:
const error_category& iostream_category();
Is there any reason that iostream_category() is not declared with noexcept or is this an oversight?
Daniel:
This looks like an oversight to me. We made the above mentioned changes as part of noexcept-ifying the thread library but iostream_category() was skipped, so it seems to be forgotten. There should be no reason, why it cannot be noexcept. When doing so, we should also make these functions noexcept (similar to corresponding overloads):error_code make_error_code(io_errc e); error_condition make_error_condition(io_errc e);
Suggested wording provided by Daniel.
[2013-04-20, Bristol]
Unanimous.
Resolution: move to tentatively ready.[2013-09-29, Chicago]
Apply to Working Paper
Proposed resolution:
This wording is relative to the FDIS.
Change 27.5.1 [iostreams.base.overview], header <ios> synopsis as indicated:
#include <iosfwd> namespace std { […] error_code make_error_code(io_errc e) noexcept; error_condition make_error_condition(io_errc e) noexcept; const error_category& iostream_category() noexcept; }
Change the prototype declarations in 27.5.6.5 [error.reporting] as indicated:
error_code make_error_code(io_errc e) noexcept;
-1- Returns: error_code(static_cast<int>(e), iostream_category()).
error_condition make_error_condition(io_errc e) noexcept;
-2- Returns: error_condition(static_cast<int>(e), iostream_category()).
const error_category& iostream_category() noexcept;
-3- Returns: A reference to an object of a type derived from class error_category.
-4- The object’s default_error_condition and equivalent virtual functions shall behave as specified for the class error_category. The object’s name virtual function shall return a pointer to the string "iostream".
Section: 30.4.1.3 [thread.timedmutex.requirements] Status: C++14 Submitter: Pete Becker Opened: 2011-10-18 Last modified: 2015-04-08
View all other issues in [thread.timedmutex.requirements].
View all issues with C++14 status.
Discussion:
30.4.1.3 [thread.timedmutex.requirements]/4 says, in part,
"Requires: If the tick period of [the argument] is not exactly convertible … [it] shall be rounded up …"
This doesn't belong in the requires clause. It's an effect. It belongs in paragraph 5. Nitpickingly, this would be a technical change: as written it imposes an obligation on the caller, while moving it imposes an obligation on the callee. Although that's certainly not what was intended.
Peter Dimov comments: Not to mention that it should round down, not up. :-) Incidentally, I see that the wrong try_lock requirement that the caller shall not own the mutex has entered the standard, after all. Oh well. Let's hope that the real world continues to ignore it.[2012, Kona]
Remove the offending sentence from the requirements clause. Do not add it back anywhere else. The implementation already must have license to wake up late, so the rounding is invisible.
Move to Review.[2012, Portland]
Concurrency move to Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3337.
Change 30.4.1.3 [thread.timedmutex.requirements]/4 as indicated:
-3- The expression m.try_lock_for(rel_time) shall be well-formed and have the following semantics:
-4- Requires:If the tick period of rel_time is not exactly convertible to the native tick period, the duration shall be rounded up to the nearest native tick period.If m is of type std::timed_mutex, the calling thread does not own the mutex.
Section: 30.5.2 [thread.condition.condvarany] Status: C++14 Submitter: Pete Becker Opened: 2011-10-20 Last modified: 2015-04-08
View all other issues in [thread.condition.condvarany].
View all issues with C++14 status.
Discussion:
30.5.2 [thread.condition.condvarany]/4 says, in part, that condition_variable_any() throws an exception "if any native handle type manipulated is not available".
I don't know what that means. Is this intended to say something different from the analogous words for condition_variable() [30.5.1 [thread.condition.condvar]/4], "if some non-memory resource limitation prevents initialization"? If not, it should be worded the same way.[2012, Kona]
Copy the corresponding wording from the condition_variable constructor in 30.5.1 [thread.condition.condvar] p4.
Move to Review.[2012, Portland]
Concurrency move to Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3337.
Change 30.4.1.3 [thread.timedmutex.requirements]/4 as indicated:
condition_variable_any();[…]
-4- Error conditions:
- resource_unavailable_try_again —
if any native handle type manipulated is not availableif some non-memory resource limitation prevents initialization.- operation_not_permitted — if the thread does not have the privilege to perform the operation.
Section: 30.5.1 [thread.condition.condvar] Status: C++14 Submitter: Alberto Ganesh Barbati Opened: 2011-10-27 Last modified: 2015-04-08
View all other issues in [thread.condition.condvar].
View all issues with C++14 status.
Discussion:
the Throws: clause of condition_variable::wait/wait_xxx functions that take a predicate argument is:
Throws: system_error when an exception is required (30.2.2 [thread.req.exception]).
If executing the predicate throws an exception, I would expect such exception to propagate unchanged to the caller, but the throws clause seems to indicate that it gets mutated into a system_error. T hat's because of 17.5.1.4 [structure.specifications]/4:
"If F’s semantics contains a Throws:, Postconditions:, or Complexity: element, then that supersedes any occurrences of that element in the code sequence." Is my interpretation correct? Does it match the intent? Daniel comments: I don't think that this interpretation is entirely correct, the wording does not say that std::system_error or a derived class must be thrown, it simply is underspecified in this regard (The extreme interpretation is that the behaviour would be undefined, but that would be too far reaching I think). We have better wording for this in 30.4.4.2 [thread.once.callonce] p4, where it says: "Throws: system_error when an exception is required (30.2.2 [thread.req.exception]), or any exception thrown by func." or in 30.3.2 [thread.thread.this] p6/p9: "Throws: Nothing if Clock satisfies the TrivialClock requirements (20.12.3 [time.clock.req]) and operations of Duration do not throw exceptions. [ Note: instantiations of time point types and clocks supplied by the implementation as specified in 20.12.7 [time.clock] do not throw exceptions. — end note ]" So, the here discussed Throws elements should add lines along the lines of "Any exception thrown by operations of pred." and similar wording for time-related operations: "Any exception thrown by operations of Duration", "Any exception thrown by operations of chrono::duration<Rep, Period>"[2011-11-28: Ganesh comments and suggests wording]
As for the discussion about the exception thrown by the manipulation of time-related objects, I believe the argument applies to all functions declared in 30 [thread]. Therefore, instead of adding wording to each member, I would simply move those requirements from 30.3.2 [thread.thread.this] p6/p9 to a new paragraph in 30.2.4 [thread.req.timing].
As for 30.5.2 [thread.condition.condvarany], the member functions wait() and wait_until() are described only in terms of the Effects: clause (so strictly speaking, they need no changes), however, wait_for() is described with a full set of clauses including Throws: and Error conditions:. Either we should add those clauses to wait/wait_until with changes similar to the one above, or remove paragraphs 29 to 34 entirely. By the way, even paragraph 26 could be removed IMHO.[2012, Kona]
We like the idea behind the proposed resolution.
Modify the first addition to read instead: "Functions that specify a timeout, will throw if an operation on a clock, time point, or time duration throws an exception." In the note near the bottom change "even if the timeout has already expired" to "or if the timeout has already expired". (This is independent, but the original doesn't seem to make sense.) Move to Review.[2012, Portland]
Concurrency move to Ready with slightly ammended wording.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3337.
Add a new paragraph at the end of 30.2.4 [thread.req.timing]:
[…]
-6- The resolution of timing provided by an implementation depends on both operating system and hardware. The finest resolution provided by an implementation is called the native resolution. -7- Implementation-provided clocks that are used for these functions shall meet the TrivialClock requirements (20.12.3 [time.clock.req]). -?- Functions that specify a timeout, will throw if, during the execution of this function, a clock, time point, or time duration throws an exception. [ Note: instantiations of clock, time point and duration types supplied by the implementation as specified in 20.12.7 [time.clock] do not throw exceptions. — end note]
Change 30.3.2 [thread.thread.this] as indicated:
template <class Clock, class Duration> void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);;-4- Effects: Blocks the calling thread for the absolute timeout (30.2.4 [thread.req.timing]) specified by abs_time.
-5- Synchronization: None. -6- Throws: timeout-related exceptions (30.2.4 [thread.req.timing]).Nothing if Clock satisfies the TrivialClock requirements (20.12.3 [time.clock.req]) and operations of Duration do not throw exceptions. [ Note: instantiations of time point types and clocks supplied by the implementation as specified in 20.12.7 [time.clock] do not throw exceptions. — end note]
template <class Rep, class Period> void sleep_for(const chrono::duration<Rep, Period>& rel_time);;-7- Effects: Blocks the calling thread for the relative timeout (30.2.4 [thread.req.timing]) specified by rel_time.
-8- Synchronization: None. -9- Throws: timeout-related exceptions (30.2.4 [thread.req.timing]).Nothing if operations of chrono::duration<Rep, Period> do not throw exceptions. [ Note: instantiations of time point types and clocks supplied by the implementation as specified in 20.12.7 [time.clock] do not throw exceptions. — end note]
Change 30.4.1.3 [thread.timedmutex.requirements] as indicated:
-3- The expression m.try_lock_for(rel_time) shall be well-formed and have the following semantics:
[…] -5- Effects: The function attempts to obtain ownership of the mutex within the relative timeout (30.2.4 [thread.req.timing]) specified by rel_time. If the time specified by rel_time is less than or equal to rel_time.zero(), the function attempts to obtain ownership without blocking (as if by calling try_lock()). The function shall return within the timeout specified by rel_time only if it has obtained ownership of the mutex object. [Note: As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but implementations are expected to make a strong effort to do so. — end note] […] -8- Synchronization: If try_lock_for() returns true, prior unlock() operations on the same object synchronize with (1.10 [intro.multithread]) this operation. -9- Throws: timeout-related exceptions (30.2.4 [thread.req.timing]).Change 30.5.1 [thread.condition.condvar] as indicated:
template <class Predicate> void wait(unique_lock<mutex>& lock, Predicate pred);[…]
-15- Effects: Equivalent to:while (!pred()) wait(lock);[…]
-17- Throws: std::system_error when an exception is required (30.2.2 [thread.req.exception]), timeout-related exceptions (30.2.4 [thread.req.timing]), or any exception thrown by pred. […]
template <class Clock, class Duration> cv_status wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time);[…]
-23- Throws: system_error when an exception is required (30.2.2 [thread.req.exception]) or timeout-related exceptions (30.2.4 [thread.req.timing]). […]
template <class Rep, class Period> cv_status wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time);[…]
-26- Effects:as ifEquivalent to:return wait_until(lock, chrono::steady_clock::now() + rel_time);[…]
-29- Throws: system_error when an exception is required (30.2.2 [thread.req.exception]) or timeout-related exceptions (30.2.4 [thread.req.timing]). […]
template <class Clock, class Duration, class Predicate> bool wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);[…]
-32- Effects: Equivalent to:while (!pred()) if (wait_until(lock, abs_time) == cv_status::timeout) return pred(); return true;[…] -36- Throws: std::system_error when an exception is required (30.2.2 [thread.req.exception]), timeout-related exceptions (30.2.4 [thread.req.timing]), or any exception thrown by pred. […]
-33- Returns: pred()
template <class Rep, class Period, class Predicate> bool wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);[…]
-39- Effects:as ifEquivalent to:return wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred));[…]
-42- Returns: pred()[…] -44- Throws: system_error when an exception is required (30.2.2 [thread.req.exception]), timeout-related exceptions (30.2.4 [thread.req.timing]), or any exception thrown by pred. […]
Change 30.5.2 [thread.condition.condvarany] as indicated:
template <class Lock, class Predicate> void wait(Lock& lock, Predicate pred);-14- Effects: Equivalent to:
while (!pred()) wait(lock);
template <class Lock, class Clock, class Duration> cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);[…]
-18- Throws: system_error when an exception is required (30.2.2 [thread.req.exception]) or any timeout-related exceptions (30.2.4 [thread.req.timing]). […]
template <class Lock, class Rep, class Period> cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);[…]
-20- Effects:as ifEquivalent to:return wait_until(lock, chrono::steady_clock::now() + rel_time);[…]
-23- Throws: system_error when an exception is required (30.2.2 [thread.req.exception]) or any timeout-related exceptions (30.2.4 [thread.req.timing]). […]
template <class Lock, class Clock, class Duration, class Predicate> bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);-25- Effects: Equivalent to:
while (!pred()) if (wait_until(lock, abs_time) == cv_status::timeout) return pred(); return true;-26-
-27- [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the timeout was triggered. end note]Returns: pred()[Note: There is no blocking if pred() is initially true, or if the timeout has already expired. — end note]
template <class Lock, class Rep, class Period, class Predicate> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);-28- Effects:
as ifEquivalent to:return wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred));
-29- [Note: There is no blocking if pred() is initially true, even if the timeout has already expired. — end note]-30- Postcondition: lock is locked by the calling thread.-31- Returns: pred()-32- [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the timeout was triggered. — end note]-33- Throws: system_error when an exception is required (30.2.2 [thread.req.exception]).-34- Error conditions:
equivalent error condition from lock.lock() or lock.unlock().
Section: 20.12.5.1 [time.duration.cons] Status: C++14 Submitter: Vicente J. Botet Escriba Opened: 2011-10-31 Last modified: 2015-04-08
View all other issues in [time.duration.cons].
View all issues with C++14 status.
Discussion:
20.12.5.1 [time.duration.cons] says:
template <class Rep2, class Period2> constexpr duration(const duration<Rep2, Period2>& d);Remarks: This constructor shall not participate in overload resolution unless treat_as_floating_point<rep>::value is true or both ratio_divide<Period2, period>::den is 1 and treat_as_floating_point<Rep2>::value is false.
The evaluation of ratio_divide<Period2, period>::den could make ratio_divide<Period2, period>::num overflow.
This occur for example when we try to create a millisecond (period=ratio<1,1000>) from an exa-second (Period2=ratio<1018>). ratio_divide<ratio<1018>, ratio<1,1000>>::num is 1021 which overflows which makes the compiler error. If the function f is overloaded with milliseconds and secondsvoid f(milliseconds); void f(seconds);
The following fails to compile.
duration<int,exa> r(1); f(r);
While the conversion to seconds work, the conversion to milliseconds make the program fail at compile time. In my opinion, this program should be well formed and the constructor from duration<int,exa> to milliseconds shouldn't participate in overload resolution as the result can not be represented.
I think the wording of the standard can be improved so no misinterpretations are possible by adding that "no overflow is induced by the conversion".[2012, Kona]
Move to Review.
Pete: The wording is not right.
Howard: Will implement this to be sure it works.
Jeffrey: If ratio needs a new hook, should it be exposed to users for their own uses?
Pete: No.
Move to Review, Howard to implement in a way that mere mortals can understand.
[2013-04-18, Bristol]
Proposed resolution:
This wording is relative to the FDIS.
Change the following paragraphs of 20.12.5.1 [time.duration.cons] p4 indicated:
template <class Rep2, class Period2> constexpr duration(const duration<Rep2, Period2>& d);Remarks: This constructor shall not participate in overload resolution unless no overflow is induced in the conversion and treat_as_floating_point<rep>::value is true or both ratio_divide<Period2, period>::den is 1 and treat_as_floating_point<Rep2>::value is false. [ Note: This requirement prevents implicit truncation error when converting between integral-based duration types. Such a construction could easily lead to confusion about the value of the duration. — end note ]
Section: 30.6.6 [futures.unique_future] Status: C++14 Submitter: Daniel Krügler Opened: 2011-11-02 Last modified: 2015-04-08
View all other issues in [futures.unique_future].
View all issues with C++14 status.
Discussion:
30.6.6 [futures.unique_future] paragraph 15 says the following:
R future::get();
…
-15- Returns:future::get() returns the value stored in the object’s shared state. If the type of the value is MoveAssignable the returned value is moved, otherwise it is copied.
…There are some problems with the description:
"If the type of the value is MoveAssignable the returned value is moved, otherwise it is copied."The last criticism I have is about the part
"the returned value is moved, otherwise it is copied" because an implementation won't be able to recognize what the user-defined type will do during an expression that is prepared by the implementation. I think the wording is intended to allow a move by seeding with an rvalue expression via std::move (or equivalent), else the result will be an effective copy construction.[2011-11-28 Moved to Tentatively Ready after 5 positive votes on c++std-lib.]
Proposed resolution:
This wording is relative to the FDIS.
Change 30.6.6 [futures.unique_future] paragraph 15 as indicated:
R future::get();
…
-15- Returns:future::get() returns the value v stored in the object’s shared
state as std::move(v). If the type of the value is MoveAssignable
the returned value is moved, otherwise it is copied.
Section: 30.6.9.1 [futures.task.members] Status: C++14 Submitter: Jonathan Wakely Opened: 2011-11-02 Last modified: 2015-04-08
View all other issues in [futures.task.members].
View all issues with C++14 status.
Discussion:
With the proposed resolution of 2067, this no longer selects the copy constructor:
std::packaged_task<void()> p1; std::packaged_task<void()> p2(p1);
Instead this constructor is a better match:
template <class F> explicit packaged_task(F&& f);
This attempts to package a packaged_task, which internally tries to copy p2, which fails because the copy constructor is deleted. For at least one implementation the resulting error message is much less helpful than the expected "cannot call deleted function" because it happens after instantiating several more templates rather than in the context where the constructor is called.
I believe the solution is to constrain to the template constructors so the template argument F cannot be deduced as (possibly cv) packaged_task& or packaged_task. It could be argued this constraint is already implied because packaged_task is not copyable and the template constructors require that "invoking a copy of f shall behave the same as invoking f". Daniel points out that the variadic constructor of std::thread described in 30.3.1.2 [thread.thread.constr] has a similar problem and suggests a similar wording change, which has been integrated below. An alternative is to declare thread(thread&) and packaged_task(packaged_task&) as deleted.[2012, Portland]
This issue appears to be more about library specification than technical concurrency issues, so should be handled in LWG.
[2013, Chicago]
Move to Immediate resolution.
Howard volunteered existing implementation experience with the first change, and saw no issue that the second would introduce any new issue.
Proposed resolution:
This wording is relative to the FDIS.
Insert a new Remarks element to 30.3.1.2 [thread.thread.constr] around p3 as indicated:
template <class F, class ...Args> explicit thread(F&& f, Args&&... args);
-3- Requires: F and each Ti in Args shall satisfy the MoveConstructible requirements. INVOKE(DECAY_COPY ( std::forward<F>(f)), DECAY_COPY (std::forward<Args>(args))...) (20.8.2) shall be a valid expression.
-?- Remarks: This constructor shall not participate in overload resolution if decay<F>::type is the same type as std::thread.Insert a new Remarks element to 30.6.9.1 [futures.task.members] around p2 as indicated:
template <class F> packaged_task(F&& f); template <class F, class Allocator> explicit packaged_task(allocator_arg_t, const Allocator& a, F&& f);
-2- Requires: INVOKE(f, t1, t2, ..., tN, R), where t1, t2, ..., tN are values of the corresponding types in ArgTypes..., shall be a valid expression. Invoking a copy of f shall behave the same as invoking f.
-?- Remarks: These constructors shall not participate in overload resolution if decay<F>::type is the same type as std::packaged_task<R(ArgTypes...)>.Section: 30.6.5 [futures.promise] Status: C++14 Submitter: Pete Becker Opened: 2011-11-14 Last modified: 2015-04-08
View other active issues in [futures.promise].
View all other issues in [futures.promise].
View all issues with C++14 status.
Discussion:
30.6.5 [futures.promise]/16 says that promise::set_value(const R&) throws any exceptions thrown by R's copy constructor, and that promise_set_value(R&&) throws any exceptions thrown by R's move constructor.
30.6.5 [futures.promise]/22 is the Throws: clause for promise::set_value_at_thread_exit. It has no corresponding requirements, only that these functions throw "future_error if an error condition occurs." Daniel suggests wording to fix this: The approach is a bit more ambitious and also attempts to fix wording glitches of 30.6.5 [futures.promise]/16, because it would be beyond acceptable efforts of implementations to determine whether a constructor call of a user-defined type will indeed call a copy constructor or move constructor (in the first case it might be a template constructor, in the second case it might also be a copy-constructor, if the type has no move constructor).[2012, Portland: move to Review]
Moved to Review by the concurrency working group, with no further comments.
[2013-04-20, Bristol]
Accepted for the working paper
Proposed resolution:
This wording is relative to the FDIS.
Change 30.6.5 [futures.promise]/16 as indicated:
void promise::set_value(const R& r); void promise::set_value(R&& r); void promise<R&>::set_value(R& r); void promise<void>::set_value();[…]
-16- Throws:
- future_error if its shared state already has a stored value or exception, or
- for the first version, any exception thrown by the
copy constructor ofconstructor selected to copy an object of R, or- for the second version, any exception thrown by the
move constructor ofconstructor selected to move an object of R.
Change 30.6.5 [futures.promise]/22 as indicated:
void promise::set_value_at_thread_exit(const R& r); void promise::set_value_at_thread_exit(R&& r); void promise<R&>::set_value_at_thread_exit(R& r); void promise<void>::set_value_at_thread_exit();[…]
-16- Throws:future_error if an error condition occurs.
- future_error if its shared state already has a stored value or exception, or
- for the first version, any exception thrown by the constructor selected to copy an object of R, or
- for the second version, any exception thrown by the constructor selected to move an object of R.
Section: 18.10 [support.runtime] Status: C++14 Submitter: Daniel Krügler Opened: 2011-11-12 Last modified: 2015-04-08
View other active issues in [support.runtime].
View all other issues in [support.runtime].
View all issues with C++14 status.
Discussion:
In 18.10 [support.runtime] p3 we find (emphasis mine):
The restrictions that ISO C places on the second parameter to the va_start() macro in header <stdarg.h> are different in this International Standard. The parameter parmN is the identifier of the rightmost parameter in the variable parameter list of the function definition (the one just before the ...).227 If the parameter parmN is declared with a function, array, or reference type, or with a type that is not compatible with the type that results when passing an argument for which there is no parameter, the behavior is undefined.
It seems astonishing that the constraints on function types and array types imposes these on the declared parameter parmN, not to the adjusted one (which would not require this extra wording, because that is implicit). This seems to say that a function definition of the form (Thanks to Johannes Schaub for this example)
#include <stdarg.h> void f(char const paramN[], ...) { va_list ap; va_start(ap, paramN); va_end(ap); }
would produce undefined behaviour when used.
Similar wording exists in C99 and in the most recent C11 draft in 7.16.1.4 p4 In my opinion the constraints in regard to array types and function types are unnecessary and should be relaxed. Are there really implementations out in the wild that would (according to my understanding incorrectly) provide the declared and not the adjusted type of paramN as deduced type to va_start()?[2012, Kona]
Move to Ready.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
Change 18.10 [support.runtime] p3 as indicated:
The restrictions that ISO C places on the second parameter to the va_start() macro in header <stdarg.h> are different in this International Standard. The parameter parmN is the identifier of the rightmost parameter in the variable parameter list of the function definition (the one just before the ...).227 If the parameter parmN is
declared withof afunction, array, orreference type, orwithof a type that is not compatible with the type that results when passing an argument for which there is no parameter, the behavior is undefined.
Section: 30.6.8 [futures.async] Status: C++14 Submitter: Jonathan Wakely Opened: 2011-11-14 Last modified: 2015-04-08
View all other issues in [futures.async].
View all issues with C++14 status.
Discussion:
30.6.8 [futures.async] p5 says
If the implementation chooses the launch::async policy,
- a call to a waiting function on an asynchronous return object that shares the shared state created by this async call shall block until the associated thread has completed, as if joined (30.3.1.5 [thread.thread.member]);
That should say a non-timed waiting function, otherwise, calling a timed waiting function can block indefinitely waiting for the associated thread to complete, rather than timing out after the specified time.
Since std::thread does not provide a timed_join() function (nor does Pthreads, making it impossible on many platforms) there is no way for a timed waiting function to try to join but return early due to timeout, therefore timed waiting functions either cannot guarantee to timeout or cannot be used to meet the requirement to block until the thread is joined. In order to allow timed waiting functions to timeout the requirement should only apply to non-timed waiting functions.[2012, Portland: move to Review]
Detlef: Do we actually need this fix — is it detectable?
Yes — you will never get a timeout. Should we strike the whole paragraph?
Hans: issue with thread local destruction.
Niklas: I have a strong expectation that a timed wait will respect the timeout
agreed
Detlef: we want a timed wait that does not time out to return like a non-timed wait; but is this implementable?
Pablo: Could we simply append ", or else time out"
Detlef: the time out on the shared state needs implementing anyway, even if the underlying O/S does not support a timed join.
Hans: the net effect is the timeout does not cover the thread local destruction... ah, I see what you're doing
Detlef: happy with Pablo's proposal
Wording proposed is to append after the word "joined" add ", or else time out"
Moved to review with this wording.
[2013, Bristol]
"Non-timed" made the new wording redundant and the result overly weak. Remove it.
Attempted to move to add this to the working paper (Concurrency motion 2) without the addition of "non-timed". Motion was withdrawn after Jonathan Wakely expressed implementability concerns.[2013-09, Chicago]
Discussion of interaction with the absence of a Posix timed join.
Jonathan Wakely withdrew his objection, so moved to Immediate. Accept for Working PaperProposed resolution:
[This wording is relative to the FDIS.]
Change 30.6.8 [futures.async] p5 as indicated:
If the implementation chooses the launch::async policy,
- a call to a waiting function on an asynchronous return object that shares the shared state created by this async call shall block until the associated thread has completed, as if joined, or else time out (30.3.1.5 [thread.thread.member]);
Section: 30.6.1 [futures.overview] Status: C++14 Submitter: Jonathan Wakely Opened: 2011-11-20 Last modified: 2015-04-08
View all other issues in [futures.overview].
View all issues with C++14 status.
Discussion:
30.6.1 [futures.overview] says std::launch is an implementation-defined bitmask type, which would usually mean the implementation can choose whether to define an enumeration type, or a bitset, or an integer type. But in the case of std::launch it's required to be a scoped enumeration type,
enum class launch : unspecified { async = unspecified, deferred = unspecified, implementation-defined };
so what is implementation-defined about it, and what is an implementation supposed to document about its choice?
[2011-12-02 Moved to Tentatively Ready after 6 positive votes on c++std-lib.]
Proposed resolution:
This wording is relative to the FDIS.
Change 30.6.1 [futures.overview] paragraph 2 as indicated:
The enum type launch is
an implementation-defineda bitmask type (17.5.2.1.3 [bitmask.types]) with launch::async and launch::deferred denoting individual bits. [ Note: Implementations can provide bitmasks to specify restrictions on task interaction by functions launched by async() applicable to a corresponding subset of available launch policies. Implementations can extend the behavior of the first overload of async() by adding their extensions to the launch policy under the “as if” rule. — end note ]
Section: 20.7.9 [default.allocator] Status: C++14 Submitter: Ai Azuma Opened: 2011-11-08 Last modified: 2015-04-08
View all other issues in [default.allocator].
View all issues with C++14 status.
Discussion:
"std::allocator_traits<std::allocator<T>>::propagate_on_container_move_assignment::value" is specified as "false", according to (20.7.9 [default.allocator]) and (20.7.8.1 [allocator.traits.types]). However, according to (23.2.1 [container.requirements.general]), this specification leads to the unneeded requirements (MoveInsertable and MoveAssignable of the value type) on the move assignment operator of containers with the default allocator.
Proposed resolution: Either of the following two changes;Pablo prefers the first resolution.
[2011-12-02: Pablo comments]
This issue has potentially some overlap with 2108. Should the trait always_compare_equal been added, this issue's resolution should be improved based on that.
[2012, Kona]
Move to Ready.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
Change 20.7.9 [default.allocator], the class template allocator synopsis as indicated:
namespace std { template <class T> class allocator; // specialize for void: template <> class allocator<void> { public: typedef void* pointer; typedef const void* const_pointer; // reference-to-void members are impossible. typedef void value_type; template <class U> struct rebind { typedef allocator<U> other; }; }; template <class T> class allocator { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; typedef T value_type; template <class U> struct rebind { typedef allocator<U> other; }; typedef true_type propagate_on_container_move_assignment; […] }; }
Section: 30.4.2.2 [thread.lock.unique] Status: C++14 Submitter: Anthony Williams Opened: 2011-11-27 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
I just noticed that the unique_lock move-assignment operator is declared noexcept. This function may call unlock() on the wrapped mutex, which may throw.
Suggested change: remove the noexcept specification from unique_lock::operator=(unique_lock&&) in 30.4.2.2 [thread.lock.unique] and 30.4.2.2.1 [thread.lock.unique.cons]. Daniel: I think the situation is actually a bit more complex as it initially looks. First, the effects of the move-assignment operator are (emphasize mine):Effects: If owns calls pm->unlock().
Now according to the BasicLockable requirements:
m.unlock()
3 Requires: The current execution agent shall hold a lock on m. 4 Effects: Releases a lock on m held by the current execution agent. Throws: Nothing.
This shows that unlock itself is a function with narrow contract and for this reasons no unlock function of a mutex or lock itself does have a noexcept specifier according to our mental model.
Now the move-assignment operator attempts to satisfy these requirement of the function and calls it only when it assumes that the conditions are ok, so from the view-point of the caller of the move-assignment operator it looks as if the move-assignment operator would in total a function with a wide contract. The problem with this analysis so far is, that it depends on the assumed correctness of the state "owns". Looking at the construction or state-changing functions, there do exist several ones that depend on caller-code satisfying the requirements and there is one guy, who looks most suspicious:unique_lock(mutex_type& m, adopt_lock_t);
11 Requires: The calling thread own the mutex.
[…]
13 Postconditions: pm == &m and owns == true.
because this function does not even call lock() (which may, but is not required to throw an exception if the calling thread does already own the mutex). So we have in fact still a move-assignment operator that might throw an exception, if the mutex was either constructed or used (call of lock) incorrectly.
The correct fix seems to me to also add a "Throws: Nothing" element to the move-assignment operator, because using it correctly shall not throw an exception.[Issaquah 20014-10-11: Move to Immediate after SG1 review]
Proposed resolution:
This wording is relative to the FDIS.
Change 30.4.2.2 [thread.lock.unique], class template unique_lock synopsis as indicated:
namespace std { template <class Mutex> class unique_lock { public: typedef Mutex mutex_type; […] unique_lock(unique_lock&& u) noexcept; unique_lock& operator=(unique_lock&& u)noexcept; […] }; }
Change 30.4.2.2.1 [thread.lock.unique.cons] around p22 as indicated:
unique_lock& operator=(unique_lock&& u)noexcept;-22- Effects: If owns calls pm->unlock().
-23- Postconditions: pm == u_p.pm and owns == u_p.owns (where u_p is the state of u just prior to this construction), u.pm == 0 and u.owns == false. -24- [Note: With a recursive mutex it is possible for both *this and u to own the same mutex before the assignment. In this case, *this will own the mutex after the assignment and u will not. — end note] -??- Throws: Nothing.
Section: 23.2.1 [container.requirements.general] Status: C++14 Submitter: Jeffrey Yasskin Opened: 2011-11-28 Last modified: 2015-04-08
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with C++14 status.
Discussion:
In the FDIS, Table 96 specifies X::const_iterator as a "constant iterator type whose value type is T". However, Table 97 specifies X::const_reverse_iterator as an "iterator type whose value type is const T" and which is defined as reverse_iterator<const_iterator>. But reverse_iterator::value_type is just "typename iterator_traits<Iterator>::value_type" 24.5.1.1 [reverse.iterator], so const_iterator and const_reverse_iterator must have the same value_type.
The resolution to issue 322 implies that const_reverse_iterator should change.
[2012, Kona]
Move to Ready.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
Change Table 97 — "Reversible container requirements" as indicated
Expression | Return type | Assertion/note pre-/post-condition | Complexity |
---|---|---|---|
X::reverse_- iterator |
iterator type whose value type is T |
reverse_iterator<iterator> | compile time |
X::const_- reverse_- iterator |
constant iterator type whose value type is |
reverse_iterator<const_iterator> | compile time |
Section: 24.5.3 [move.iterators] Status: WP Submitter: Dave Abrahams Opened: 2011-11-30 Last modified: 2015-04-08
View all other issues in [move.iterators].
View all issues with WP status.
Discussion:
Shouldn't move_iterator be specialized so that if the iterator it wraps returns a prvalue when dereferenced, the move_iterator also returns by value? Otherwise, it creates a dangling reference.
Howard: I believe just changing move_iterator<I>::reference would do. A direction might be testing on is_reference<iterator_traits<I>::reference>, or is_reference<decltype(*declval<I>())>. Daniel: I would prefer to use a consistent style among the iterator adaptors, so I suggest to keep with the iterator_traits typedefs if possible.using reference = typename conditional< is_reference<typename iterator_traits<Iterator>::reference>::value, value_type&&, value_type >::type;
We might also want to ensure that if Iterator's reference type is a reference, the referent is equal to value_type (after removal of cv-qualifiers). In general we have no such guarantee.
Marc: In the default case where we don't return value_type&&, should we use value_type or should we keep the reference type of the wrapped iterator? Daniel: This suggestion looks appealing at first, but the problem here is that using this typedef can make it impossible for move_iterator to satisfy its contract, which means returning an rvalue of the value type (Currently it says rvalue-reference, but this must be fixed as of this issue anyway). I think that user-code can reasonably expect that when it has constructed an object m of move_iterator<It>, where It is a valid mutable iterator type, the expression
It::value_type&& rv = *m;
is well-formed.
Let's set R equal to iterator_traits<Iterator>::reference in the following. We can discuss the following situations:In regard to the first scenario I suggest that implementations are simply required to check that V2 = remove_cv<remove_reference<R>::type>::type is equal to the value type V1 as a criterion to return this reference as an xvalue, in all other cases it should return the value type directly as prvalue.
The additional advantage of this strategy is, that we always ensure that reference has the correct cv-qualification, if R is a real reference. It is possible to improve this a bit by indeed supporting reference-related types, this would require to test is_same<V1, V2>::value || is_base_of<V1, V2>::value instead. I'm unsure whether (a) this additional effort is worth it and (b) a strict reading of the forward iterator requirements seems not to allow to return a reference-related type (Whether this is a defect or not is another question).[2011-12-05: Marc Glisse comments and splits into two resolution alternatives]
I guess I am looking at the speed of:
value_type x; x = *m;
(copy construction would likely trigger copy elision and thus be neutral) instead of the validity of:
value_type&& x = *m;
In this sense, Daniels earlier proposition that ignored value_type and just did switch_lvalue_ref_to_rvalue_ref<reference> was easier to understand (and it didn't require thinking about reference related types).
The currently proposed resolution has been split into two alternatives.[2012, Kona]
Move to Review.
Alisdair: This only applies to input iterators, so keep that in mind when thinking about this.
STL: I see what B is doing, but not A.
Howard: I agree.
Alisdair: Should we use add_rvalue_reference?
STL: No, we do not want reference collapsing.
STL: Re A, messing with the CV qualification scares me.
Alisdair: Agree. That would break my intent.
STL: Actually I don't think it's actually wrong, but I still don't see what it's doing.
Alisdair: A is picking the value type, B is picking the proxy type.
Howard: I like returning the proxy type.
STL: Returning a reference (B) seems right, because the requirements say "reference". I suspect that B works correctly if you have a move iterator wrapping a move iterator wrapping a thing. I think that A would mess up the type in the middle.
Considerable discussion about which version is correct, checking various examples.
STL: Still think B is right. Still don't understand A. In A we are losing the proxyness.
Howard: Agree 100%. We don't want to lose the proxy. If it's const, so be it.
STL: B is also understandable by mortals.
Howard: Remove to review, keep A but move it out of the proposed resolution area (but keep it for rational).
Alisdair: Adding an explanatory note might be a good idea, if someone wants to write one.
Walter: Concerned about losing the word "reference" in p.1.
Howard: move_iterator will return an xvalue or a prvalue, both of which are rvalues.
[Proposed resolution A, rejected in preference to the currently proposed resolution (B)
Change 24.5.3 [move.iterators] p1 as indicated:
Class template move_iterator is an iterator adaptor with the same behavior as the underlying iterator
except that its dereference operator implicitly converts the value returned by the underlying iterator's
dereference operator to an rvalue Change 24.5.3.1 [move.iterator], class template move_iterator synopsis, as indicated: Immediately following the class template move_iterator synopsis in
24.5.3.1 [move.iterator] insert a new paragraph as indicated:
-?- Let R be iterator_traits<Iterator>::reference and
let V be iterator_traits<Iterator>::value_type. If
is_reference<R>::value is true and if
remove_cv<remove_reference<R>::type>::type is the same type as V,
the template instantiation move_iterator<Iterator> shall define the nested type
named reference as a synonym for remove_reference<R>::type&&,
otherwise as a synonym for V.
]referenceof the value type. Some generic algorithms
can be called with move iterators to replace copying with moving.
namespace std {
template <class Iterator>
class move_iterator {
public:
typedef Iterator iterator_type;
typedef typename iterator_traits<Iterator>::difference_type difference_type;
typedef Iterator pointer;
typedef typename iterator_traits<Iterator>::value_type value_type;
typedef typename iterator_traits<Iterator>::iterator_category iterator_category;
typedef
value_type&&see below reference;
[…]
};
}
[2012, Portland: Move to Tentatively Ready]
AJM wonders if the implied trait might be useful elsewhere, and worth adding to type traits as a transformation type trait.
Suspicion that the Range SG might find such a trait useful, but wait until there is clear additional use of such a trait before standardizing.
Minor wording tweak to use add_rvalue_reference rather than manually adding the &&, then move to Tentatively Ready.
[2013-01-09 Howard Hinnant comments]
I believe the P/R for LWG 2106 is incorrect (item 3). The way it currently reads, move_iterator<I>::reference is always an lvalue reference. I.e. if R is an lvalue reference type, then reference becomes add_rvalue_reference<R>::type which is just R. And if R is not a reference type, then reference becomes R (which is also just R ;-)).
I believe the correct wording is what was there previously:
-?- Let R be iterator_traits<Iterator>::reference. If is_reference<R>::value is true, the template instantiation move_iterator<Iterator> shall define the nested type named reference as a synonym for remove_reference<R>::type&&, otherwise as a synonym for R.
Additionally Marc Glisse points out that move_iterator<I>::operator*() should return static_cast<reference>(*current), not std::move(*current).
Previous resolution:
This wording is relative to the FDIS.
Change 24.5.3 [move.iterators] p1 as indicated:
Class template move_iterator is an iterator adaptor with the same behavior as the underlying iterator except that its dereference operator implicitly converts the value returned by the underlying iterator's dereference operator to an rvalue
reference. Some generic algorithms can be called with move iterators to replace copying with moving.Change 24.5.3.1 [move.iterator], class template move_iterator synopsis, as indicated:
namespace std { template <class Iterator> class move_iterator { public: typedef Iterator iterator_type; typedef typename iterator_traits<Iterator>::difference_type difference_type; typedef Iterator pointer; typedef typename iterator_traits<Iterator>::value_type value_type; typedef typename iterator_traits<Iterator>::iterator_category iterator_category; typedefvalue_type&&see below reference; […] }; }Immediately following the class template move_iterator synopsis in 24.5.3.1 [move.iterator] insert a new paragraph as indicated:
-?- Let R be iterator_traits<Iterator>::reference. If is_reference<R>::value is true, the template instantiation move_iterator<Iterator> shall define the nested type named reference as a synonym for add_rvalue_reference<R>::type, otherwise as a synonym for R.
[2014-05-19, Daniel comments]
The term instantiation has been changed to specialization in the newly added paragraph as suggested by STL and much preferred by myself.
[2014-05-19 Library reflector vote]
The issue has been identified as Tentatively Ready based on five votes in favour.
Proposed resolution:
This wording is relative to N3936.
Change 24.5.3 [move.iterators] p1 as indicated:
Class template move_iterator is an iterator adaptor with the same behavior as the underlying iterator except that its indirection operator implicitly converts the value returned by the underlying iterator's indirection operator to an rvalue
reference. Some generic algorithms can be called with move iterators to replace copying with moving.
Change 24.5.3.1 [move.iterator], class template move_iterator synopsis, as indicated:
namespace std { template <class Iterator> class move_iterator { public: typedef Iterator iterator_type; typedef typename iterator_traits<Iterator>::difference_type difference_type; typedef Iterator pointer; typedef typename iterator_traits<Iterator>::value_type value_type; typedef typename iterator_traits<Iterator>::iterator_category iterator_category; typedefvalue_type&&see below reference; […] }; }
Immediately following the class template move_iterator synopsis in 24.5.3.1 [move.iterator] insert a new paragraph as indicated:
-?- Let R be iterator_traits<Iterator>::reference. If is_reference<R>::value is true, the template specialization move_iterator<Iterator> shall define the nested type named reference as a synonym for remove_reference<R>::type&&, otherwise as a synonym for R.
Edit 24.5.3.3.4 [move.iter.op.star] p1 as indicated:
reference operator*() const;-1- Returns:
std::movestatic_cast<reference>(*current).
Section: 17.6.3.5 [allocator.requirements] Status: Resolved Submitter: Jonathan Wakely Opened: 2011-12-01 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with Resolved status.
Discussion:
Whether two allocator objects compare equal affects the complexity of container copy and move assignments and also the possibility of an exception being thrown by container move assignments. The latter point means container move assignment cannot be noexcept when propagate_on_container_move_assignment (POCMA) is false for the allocator because there is no way to detect at compile-time if two allocators will compare equal. LWG 2013 means this affects all containers using std::allocator, but even if that is resolved, this affects all stateless allocators which do not explicitly define POCMA to true_type.
One solution would be to add an "always_compare_equal" trait to allocator_traits, but that would be duplicating information that is already defined by the type's equality operator if that operator always returns true. Requiring users to write operator== that simply returns true and also explicitly override a trait to repeat the same information would be unfortunate and risk user errors that allow the trait and actual operator== to disagree. Dave Abrahams suggested a better solution in message c++std-lib-31532, namely to allow operator== to return true_type, which is convertible to bool but also detectable at compile-time. Adopting this as the recommended way to identify allocator types that always compare equal only requires a slight relaxation of the allocator requirements so that operator== is not required to return bool exactly. The allocator requirements do not make it clear that it is well-defined to compare non-const values, that should be corrected too. In message c++std-lib-31615 Pablo Halpern suggested an always_compare_equal trait that could still be defined, but with a sensible default value rather than requiring users to override it, and using that to set sensible values for other allocator traits:Do we still need always_compare_equal if we can have an operator== that returns true_type? What would its default value be? is_empty<A> || is_convertible<decltype(a == a), true_type>::value, perhaps? One benefit I see to such a definition is that stateless C++03 allocators that don't use the true_type idiom will still benefit from the new trait.
[…] One point that I want to ensure doesn't get lost is that if we adopt some sort of always_compare_equal-like trait, then propagate_on_container_swap and propagate_on_container_move_assignment should default to always_compare_equal. Doing this will eliminate unnecessary requirements on the container element type, as per [LWG 2103].
Optionally, operator== for std::allocator could be made to return true_type, however if LWG 2103 is adopted that is less important.
Alberto Ganesh Barbati: Suggest either always_compare_equal, all_objects_(are_)equivalent, or all_objects_compare_equal.[2014-11-07 Urbana]
Resolved by N4258
Proposed resolution:
This wording is relative to the FDIS.
Change Table 27 — "Descriptive variable definitions" in 17.6.3.5 [allocator.requirements]:
Variable | Definition |
---|---|
a3, a4 |
|
b | a value of (possibly const) type Y |
Change Table 28 — "Allocator requirements" in 17.6.3.5 [allocator.requirements]:
Expression | Return type | Assertion/note pre-/post-condition | Default |
---|---|---|---|
|
convertible to bool |
returns true only if storage allocated from each can be deallocated via the other. operator== shall be reflexive, symmetric, and transitive, and shall not exit via an exception. |
|
|
convertible to bool |
same as |
|
a3 == b | convertible to bool |
same as a3 == Y::rebind<T>::other(b) |
|
a3 != b | convertible to bool | same as !(a3 == b) | |
[…] | |||
a.select_on_- container_copy_- construction() |
X |
Typically returns either a or X() |
return a; |
X::always_compares_equal |
Identical to or derived from true_type or false_type |
true_type if the expression x1 == x2 is guaranteed to be true for any two (possibly const) values x1, x2 of type X, when implicitly converted to bool. See Note B, below. |
true_type, if is_empty<X>::value is true or if decltype(declval<const X&>() == declval<const X&>()) is convertible to true_type, otherwise false_type. |
[…] |
Note A: […]
Note B: If X::always_compares_equal::value or XX::always_compares_equal::value evaluate to true and an expression equivalent to x1 == x2 or x1 != x2 for any two values x1, x2 of type X evaluates to false or true, respectively, the behaviour is undefined.Change class template allocator_traits synopsis, 20.7.8 [allocator.traits] as indicated:
namespace std { template <class Alloc> struct allocator_traits { typedef Alloc allocator_type; […] typedef see below always_compares_equal; typedef see below propagate_on_container_copy_assignment; […] }; }
Insert the following between 20.7.8.1 [allocator.traits.types] p6 and p7 as indicated:
typedef see below always_compares_equal;-?- Type: Alloc::always_compares_equal if such a type exists; otherwise, true_type if is_empty<Alloc>::value is true or if decltype(declval<const Alloc&>() == declval<const Alloc&>()) is convertible to true_type; otherwise, false_type .
typedef see below propagate_on_container_copy_assignment;-7- Type: Alloc::propagate_on_container_copy_assignment if such a type exits, otherwise false_type.
Change class template allocator synopsis, 20.7.9 [default.allocator] as indicated:
namespace std { template <class T> class allocator; // specialize for void: template <> class allocator<void> { public: typedef void* pointer; typedef const void* const_pointer; // reference-to-void members are impossible. typedef void value_type; template <class U> struct rebind { typedef allocator<U> other; }; }; template <class T> class allocator { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; typedef T value_type; template <class U> struct rebind { typedef allocator<U> other; }; typedef true_type always_compares_equal; […] }; }
Section: 19.5.5 [syserr.hash], 20.8.2.7 [util.smartptr.hash], 20.9.13 [unord.hash], 20.14.1 [type.index.synopsis], 21.6 [basic.string.hash], 23.3.7 [vector.bool], 30.3.1.1 [thread.thread.id] Status: C++14 Submitter: Daniel Krügler Opened: 2011-12-04 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
20.8.2.7 [util.smartptr.hash] p2 is specified as follows:
Requires: the template specializations shall meet the requirements of class template hash (20.8.12).
The problem here is the usage of a Requires element, which is actually a pre-condition that a user of a component has to satisfy. But the intent of this wording is actually to be a requirement on implementations. The Requires element should be removed here and the wording should be improved to say what it was intended for.
We have similar situations in basically all other places where the specification of library-provided hash specializations is defined. Usually, the Requires element is incorrect. In the special case of hash<unique_ptr<T, D>> the implementation depends on the behaviour of hash specializations, that could be user-provided. In this case the specification needs to separate the requirements on these specializations and those that are imposed on the implementation.[2012, Kona]
Update wording and move to Review.
Believe a simpler formulation is to simply string the term Requires: and leave the current wording intact, rather than strike the whole clause and replace it.
[Originally proposed wording for reference
Change 19.5.5 [syserr.hash] as indicated:
-1- Change 20.6.3 [bitset.hash] as indicated:
-1- Change 20.8.2.7 [util.smartptr.hash] as indicated:
-1-
template <> struct hash<error_code>;
Requires: the template specialization shall meet the requirements
of class template hash (20.9.13 [unord.hash])The header
<system_error> provides a definition for a specialization of the
template hash<error_code>. The requirements for the members of
this specialization are given in sub-clause 20.9.13 [unord.hash].
template <size_t N> struct hash<bitset<N> >;
Requires: the template specialization shall meet the requirements
of class template hash (20.9.13 [unord.hash])The header
<bitset> provides a definition for a partial specialization of the
hash class template for specializations of class template bitset<N>.
The requirements for the members of instantiations of this specialization are given
in sub-clause 20.9.13 [unord.hash].
template <class T, class D> struct hash<unique_ptr<T, D> >;
Requires: the template specialization shall meet the requirements
of class template hash (20.9.13 [unord.hash])The header
<memory> provides a definition for a partial specialization of the
hash class template for specializations of class template unique_ptr<T, D>.
The requirements for the members of instantiations of this specialization are given
in sub-clause 20.9.13 [unord.hash]. For an object p of type
UP, where UP is unique_ptr<T, D>,
hash<UP>()(p) shall evaluate to the same value as
hash<typename UP::pointer>()(p.get()). The specialization
hash<typename UP::pointer> shall be well-formed.
template <class T> struct hash<shared_ptr<T> >;-2-
Requires: the template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash])The header <memory> provides a definition for a partial specialization of the hash class template for specializations of class template shared_ptr<T>. The requirements for the members of instantiations of this specialization are given in sub-clause 20.9.13 [unord.hash]. For an object p of type shared_ptr<T>, hash<shared_ptr<T> >()(p) shall evaluate to the same value as hash<T*>()(p.get()).
Change 20.9.13 [unord.hash] p2 as indicated: [Comment: For unknown reasons the extended integer types are not mentioned here, which looks like an oversight to me and makes also the wording more complicated. See 2119 for this part of the problem. — end comment]
template <> struct hash<bool>; template <> struct hash<char>; […] template <> struct hash<long double>; template <class T> struct hash<T*>;-2-
Requires: the template specializations shall meet the requirements of class template hash (20.9.13 [unord.hash])The header <functional> provides definitions for specializations of the hash class template for each cv-unqualified arithmetic type except for the extended integer types. This header also provides a definition for a partial specialization of the hash class template for any pointer type. The requirements for the members of these specializations are given in sub-clause 20.9.13 [unord.hash].
Change 20.14.4 [type.index.hash] p1 as indicated:
template <> struct hash<type_index>;-1-
Requires: the template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash])The header <typeindex> provides a definition for a specialization of the template hash<type_index>. The requirements for the members of this specialization are given in sub-clause 20.9.13 [unord.hash]. For an object index of type type_index, hash<type_index>()(index) shall evaluate to the same result as index.hash_code().
Change 21.6 [basic.string.hash] p1 as indicated:
template <> struct hash<string>; template <> struct hash<u16string>; template <> struct hash<u32string>; template <> struct hash<wstring>;-1-
Requires: the template specializations shall meet the requirements of class template hash (20.9.13 [unord.hash])The header <string> provides definitions for specializations of the hash class template for the types string, u16string, u32string, and wstring. The requirements for the members of these specializations are given in sub-clause 20.9.13 [unord.hash].
Change 23.3.7 [vector.bool] p7 as indicated:
template <class Allocator> struct hash<vector<bool, Allocator> >;-7-
Requires: the template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash])The header <vector> provides a definition for a partial specialization of the hash class template for specializations of class template vector<bool, Allocator>. The requirements for the members of instantiations of this specialization are given in sub-clause 20.9.13 [unord.hash].
Change 30.3.1.1 [thread.thread.id] p14 as indicated:
template <> struct hash<thread::id>;-14-
Requires: the template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash])The header <thread> provides a definition for a specialization of the template hash<thread::id>. The requirements for the members of this specialization are given in sub-clause 20.9.13 [unord.hash].
[2012, Portland: Move to Tentatively Ready]
No further wording issues, so move to Tentatively Ready (post meeting issues processing).
[2013-04-20 Bristol]
Proposed resolution:
Change 19.5.5 [syserr.hash] as indicated:
template <> struct hash<error_code>;-1-
Requires: tThe template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash].
Change 20.6.3 [bitset.hash] as indicated:
template <size_t N> struct hash<bitset<N> >;-1-
Requires: tThe template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash]).
Change 20.8.2.7 [util.smartptr.hash] as indicated:
template <class T, class D> struct hash<unique_ptr<T, D> >;-1-
-?- Requires: The specialization hash<typename UP::pointer> shall be well-formed and well-defined, and shall meet the requirements of class template hash (20.9.13 [unord.hash]).Requires: tThe template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash]). For an object p of type UP, where UP is unique_ptr<T, D>, hash<UP>()(p) shall evaluate to the same value as hash<typename UP::pointer>()(p.get()).The specialization hash<typename UP::pointer> shall be well-formed.
template <class T> struct hash<shared_ptr<T> >;-2-
Requires: tThe template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash]). For an object p of type shared_ptr<T>, hash<shared_ptr<T> >()(p) shall evaluate to the same value as hash<T*>()(p.get()).
Change 20.9.13 [unord.hash] p2 as indicated: [Comment: For unknown reasons the extended integer types are not mentioned here, which looks like an oversight to me and makes also the wording more complicated. See 2119 for this part of the problem. — end comment]
template <> struct hash<bool>; template <> struct hash<char>; […] template <> struct hash<long double>; template <class T> struct hash<T*>;-2-
Requires: tThe template specializations shall meet the requirements of class template hash (20.9.13 [unord.hash]).
Change 20.14.4 [type.index.hash] p1 as indicated:
template <> struct hash<type_index>;-1-
Requires: tThe template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash]). For an object index of type type_index, hash<type_index>()(index) shall evaluate to the same result as index.hash_code().
Change 21.6 [basic.string.hash] p1 as indicated:
template <> struct hash<string>; template <> struct hash<u16string>; template <> struct hash<u32string>; template <> struct hash<wstring>;-1-
Requires: tThe template specializations shall meet the requirements of class template hash (20.9.13 [unord.hash]).
Change 23.3.7 [vector.bool] p7 as indicated:
template <class Allocator> struct hash<vector<bool, Allocator> >;-7-
Requires: tThe template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash]).
Change 30.3.1.1 [thread.thread.id] p14 as indicated:
template <> struct hash<thread::id>;-14-
Requires: tThe template specialization shall meet the requirements of class template hash (20.9.13 [unord.hash]).
Section: 25.3.8 [alg.remove] Status: C++14 Submitter: Howard Hinnant Opened: 2011-12-07 Last modified: 2015-04-08
View all other issues in [alg.remove].
View all issues with C++14 status.
Discussion:
25.3.8 [alg.remove]/p1 says:
1 Requires: The type of *first shall satisfy the MoveAssignable requirements (Table 22).
This means that remove/remove_if can only use move assignment to permute the sequence. But then 25.3.8 [alg.remove]/p6 (non-normatively) contradicts p1:
6 Note: each element in the range [ret,last), where ret is the returned value, has a valid but unspecified state, because the algorithms can eliminate elements by swapping with or moving from elements that were originally in that range.
[2012, Kona]
Move to Ready.
Alisdair notes we could extend permission to use swap if it is available, but there is no interest. Accept the proposed resolution as written.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
Change 25.3.8 [alg.remove] as indicated:
template<class ForwardIterator, class T> ForwardIterator remove(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class Predicate> ForwardIterator remove_if(ForwardIterator first, ForwardIterator last, Predicate pred);[…]
-6-Note: each element in the range [ret,last), where ret is the returned value, has a valid but unspecified state, because the algorithms can eliminate elements byswapping with ormoving from elements that were originally in that range.
Section: 17.6.5 [conforming], 20.7.8 [allocator.traits], 20.13.1 [allocator.adaptor.syn] Status: C++14 Submitter: Daniel Krügler Opened: 2011-11-30 Last modified: 2015-04-08
View all other issues in [conforming].
View all issues with C++14 status.
Discussion:
It is a very established technique for implementations to derive internally from user-defined class types that are used to customize some library component, e.g. deleters and allocators are typical candidates. The advantage of this approach is to possibly take advantage of the empty-base-class optimization (EBCO).
Whether or whether not libraries did take advantage of such a detail didn't much matter in C++03. Even though there did exist a portable idiom to prevent that a class type could be derived from, this idiom has never reached great popularity: The technique required to introduce a virtual base class and it did not really prevent the derivation, but only any construction of such a type. Further, such types are not empty as defined by the std::is_empty trait, so could easily be detected by implementations from TR1 on. With the new C++11 feature of final classes and final member functions it is now very easy to define an empty, but not derivable from class type. From the point of the user it is quite natural to use this feature for types that he or she did not foresee to be derivable from. On the other hand, most library implementations (including third-party libraries) often take advantage of EBCO applied to user-defined types used to instantiate library templates internally. As the time of submitting this issue the following program failed to compile on all tested library implementations:
#include <memory>
struct Noop final {
template<class Ptr>
void operator()(Ptr) const {}
};
std::unique_ptr<int, Noop> up;
In addition, many std::tuple implementations with empty, final classes as element types failed as well, due to a popular inheritance-based implementation technique. EBCO has also a long tradition to be used in library containers to efficiently store potentially stateless, empty allocators.
It seems that both user and library did the best they could: None of the affected types did impose explicit requirements on the corresponding user-defined types to be derivable from (This capability was not part of the required operations), and libraries did apply EBCO whereever possible to the convenience of the customer. Nonetheless given the existence of non-derivable-from class types in C++11, libraries have to cope with failing derivations. How should that problem be solved? It would certainly be possible to add weazel wording to the allocator requirements similar to what we had in C++03, but restricted to derivation-from requirements. I consider this as the bad solution, because it would add new requirements that never had existed before in this explicit form onto types like allocators. Existing libraries presumably will need internal traits like __is_final or __is_derivable to make EBCO possible in the current form but excluding non-derivable class types. As of this writing this seems to happen already. Problem is that without a std::is_derivable trait, third-party libraries have no portable means to do the same thing as standard library implementations. This should be a good reason to make such a trait public available soon, but seems not essential to have now. Further, this issue should also be considered as a chance to recognice that EBCO has always been a very special corner case (There exist parallels to the previously existing odd core language rule that did make the interplay between std::auto_ptr and std::auto_ptr_ref possible) and that it would be better to provide explicit means for space-efficient storage, not necessarily restricted to inheritance relations, e.g. by marking data members with a special attribute. At least two descriptions in the current standard should be fixed now for better clarification:As mentioned by Ganesh, 20.7.8 [allocator.traits] p1 currently contains a (non-normative) note "Thus, it is always possible to create a derived class from an allocator." which should be removed.
As pointed out by Howard, the specification of scoped_allocator_adaptor as of 20.13.1 [allocator.adaptor.syn] already requires derivation from OuterAlloc, but only implies indirectly the same for the inner allocators due to the exposition-only description of member inner. This indirect implication should be normatively required for all participating allocators.
[2012, Kona]
What we really need is a type trait to indicate if a type can be derived from. Howard reports Clang and libc++ have had success with this approach.
Howard to provide wording, and AJM to alert Core that we may be wanting to add a new trait that requires compiler support.
[2014-02, Issaquah: Howard and Daniel comment and provide wording]
Several existing C++11 compilers do already provide an internal __is_final intrinsic (e.g. clang and gcc) and therefore we believe that this is evidence enough that this feature is implementable today.
We believe that both a simple and clear definition of the is_final query should result in a true outcome if and only if the current existing language definition holds that a complete class type (either union or non-union) has been marked with the class-virt-specifierfinal
— nothing more.
The following guidelines lead to the design decision and the wording choice given below:
It has been expressed several times that a high-level trait such as "is_derivable" would be preferred and
would be more useful for non-experts. One problem with that request is that it is astonishingly hard to find a common denominator
for what the precise definition of this trait should be, especially regarding corner-cases. Another example of getting very
differing points of view is to ask a bunch of C++ experts what the best definition of the is_empty trait
should be (which can be considered as a kind of higher-level trait).
Once we have a fundamental trait like is_final available, we can easily define higher-level traits in the future
on top of this by a proper logical combination of the low-level traits.
A critical question is whether providing such a low-level compile-time introspection might be considered as disadvantageous,
because it could constrain the freedom of existing implementations even further and whether a high-level trait would solve
this dilemma. We assert that since C++11 the static introspection capabilities are already very large and we believe that
making the presence or absence of the final keyword testable does not make the current situation worse.
Below code example demonstrates the intention and the implementability of this feature:
#include <type_traits> namespace std { template <class T> struct is_final : public integral_constant<bool, __is_final(T)> {}; } // std // test it union FinalUnion final { }; union NonFinalUnion { }; class FinalClass final { }; struct NonFinalClass { }; class Incomplete; int main() { using std::is_final; static_assert( is_final<const volatile FinalUnion>{}, ""); static_assert(!is_final<FinalUnion[]>{}, ""); static_assert(!is_final<FinalUnion[1]>{}, ""); static_assert(!is_final<NonFinalUnion>{}, ""); static_assert( is_final<FinalClass>{}, ""); static_assert(!is_final<FinalClass&>{}, ""); static_assert(!is_final<FinalClass*>{}, ""); static_assert(!is_final<NonFinalClass>{}, ""); static_assert(!is_final<void>{}, ""); static_assert(!is_final<int>{}, ""); static_assert(!is_final<Incomplete>{}, ""); // error incomplete type 'Incomplete' used in type trait expression }
[2014-02-14, Issaquah: Move to Immediate]
This is an important issue, that we really want to solve for C++14.
Move to Immediate after polling LEWG, and then the NB heads of delegation.
Proposed resolution:
This wording is relative to N3797.
Change 20.10.2 [meta.type.synop], header <type_traits> synopsis, as indicated
namespace std { […] // 20.10.4.3, type properties: […] template <class T> struct is_empty; template <class T> struct is_polymorphic; template <class T> struct is_abstract; template <class T> struct is_final; […] }
Change 20.10.4.3 [meta.unary.prop], Table 49 — Type property predicates, as indicated
Template | Condition | Preconditions |
---|---|---|
template <class T> struct is_abstract; |
[…] | […] |
template <class T> struct is_final; |
T is a class type marked with the class-virt-specifier final (9 [class]).[Note: A union is a class type that can be marked with final . — end note]
|
If T is a class type, T shall be a complete type |
After 20.10.4.3 [meta.unary.prop] p5 add one further example as indicated:
[Example:
// Given: struct P final { }; union U1 { }; union U2 final { }; // the following assertions hold: static_assert(!is_final<int>::value, "Error!"); static_assert( is_final<P>::value, "Error!"); static_assert(!is_final<U1>::value, "Error!"); static_assert( is_final<U2>::value, "Error!");— end example]
Section: 20.8.1.3 [unique.ptr.runtime] Status: Resolved Submitter: Alf P. Steinbach Opened: 2011-12-16 Last modified: 2015-04-08
View all other issues in [unique.ptr.runtime].
View all issues with Resolved status.
Discussion:
Addresses US 16
N3290 20.8.1.3.1 [unique.ptr.runtime.ctor] "unique_ptr constructors":
These constructors behave the same as in the primary template except that they do not accept pointer types which are convertible to pointer. [Note: One implementation technique is to create private templated overloads of these members. — end note]
This language excludes even pointer itself as type for the actual argument.
But of more practical concern is that both Visual C++ 10.0 and MinGW g++ 4.1.1 reject the code below, where only an implicit cv qualification is needed, which cv qualification is supported by the non-array version:
#include <memory>
using namespace std;
struct T {};
T* foo() { return new T; }
T const* bar() { return foo(); }
int main()
{
unique_ptr< T const > p1( bar() ); // OK
unique_ptr< T const [] > a1( bar() ); // OK
unique_ptr< T const > p2( foo() ); // OK
unique_ptr< T const [] > a2( foo() ); // ? this is line #15
}
The intent seems to be clearly specified in 20.8.1.3 [unique.ptr.runtime]/1 second bullet:
— Pointers to types derived from T are rejected by the constructors, and by reset.
But the following language in 20.8.1.3.1 [unique.ptr.runtime.ctor] then rejects far too much...
Proposed new wording of N3290 20.8.1.3.1 [unique.ptr.runtime.ctor] "unique_ptr constructors":These constructors behave the same as in the primary template except that actual argument pointers p to types derived from T are rejected by the constructors. [Note: One implementation technique is to create private templated overloads of these members. — end note]
This will possibly capture the intent better, and avoid the inconsistency between the non-array and array versions of unique_ptr, by using nearly the exact same phrasing as for the paragraph explaining the intent.
[2012-08-25 Geoffrey Romer comments in c++std-lib-32978]
The current P/R seems to intend to support at least two different implementation techniques — additional unusable templates that catch forbidden arguments or replacing existing constructors by templates that ensure ill-formed code inside the template body, when the requirements are not met. It seems unclear whether the current wording allows the second approach, though. It should be considered to allow both strategies or if that is not possible the note should be clearer.
The very same problem exists for the reset member function, but even worse, because the current specification is more than clear that the deleted reset function will catch all cases not equal to pointer. It seems confusing at best to have different policies for the constructor and for the reset function. In this case, the question in regard to implementation freedom mentioned above is even more important.
It's awkward to refer to "the constructors" twice in the same sentence; I suggest revising the sentence as "...except that they do not accept argument pointers p to types derived from T"
[2012-12-20: Geoffrey Romer comments and provides a revised resolution]
The array specialization of unique_ptr differs from the primary template in several ways, including the following:
unique_ptr<T[], D> cannot be constructed from a plain pointer whose type is not exactly unique_ptr<T[], D>::pointer or nullptr_t.
unique_ptr<T[], D> cannot be constructed from a unique_ptr<U[], E>&& unless U is exactly T and E is exactly D.
unique_ptr<T[], D> cannot be moveassigned from a unique_ptr<U[], E>&& unless U is exactly T and E is exactly D.
unique_ptr<T[], D>::reset cannot take an argument whose type is not exactly unique_ptr<T[], D>::pointer or nullptr_t.
default_delete<T[]> cannot be constructed from a default_delete<U[]> unless U is exactly T.
default_delete<T[]>::operator() cannot be called on a pointer whose type is not exactly T*.
The common intent of all these restrictions appears to be to disallow implicit conversions from pointer-to-derived-class to pointer-to-base-class in contexts where the pointer is known to point to an array, because such conversions are inherently unsafe; deleting or subscripting the result of such a conversion leads to undefined behavior (see also CWG 1504). However, these restrictions have the effect of disallowing all implicit conversions in those contexts, including most notably cv-qualification, but also user-defined conversions, and possibly others. This PR narrows all those restrictions, to disallow only unsafe pointer-to-derived to pointer-to-base conversions, while allowing all others.
I removed the nebulous language stating that certain functions "will not accept" certain arguments. Instead I use explicitly deleted template functions, which participate in overload resolution only for pointer-to-derived to pointer-to-base conversions. This is more consistent with the existing text and easier to express correctly than an approach based on declaring certain types of calls to be ill-formed, but may produce inferior compiler diagnostics. Wherever possible, this PR defines the semantics of template specializations in terms of their differences from the primary template. This improves clarity and minimizes the risk of unintended differences (e.g. LWG 2169, which this PR also fixes). This PR also makes it explicit that the specialization inherits the description of all members, not just member functions, from the primary template and, in passing, clarifies the default definition of pointer in the specialization. This resolution only disallows pointer-to-derived to pointer-to-base conversions between ordinary pointer types; if user-defined pointer types provide comparable conversions, it is their responsibility to ensure they are safe. This is consistent with C++'s general preference for expressive power over safety, and for assuming the user knows what they're doing; furthermore, enforcing such a restriction on user-defined types appears to be impractical without cooperation from the user. The "base class without regard to cv-qualifiers" language is intended to parallel the specification of std::is_base_of. Jonathan Wakely has a working implementation of this PR patched into libstdc++.Previous resolution:
This wording is relative to the FDIS.
Change 20.8.1.3.1 [unique.ptr.runtime.ctor] as indicated:
explicit unique_ptr(pointer p) noexcept; unique_ptr(pointer p, see below d) noexcept; unique_ptr(pointer p, see below d) noexcept;These constructors behave the same as in the primary template except that
they do not accept pointer types which are convertible to pointerargument pointers p to types derived from T are rejected by the constructors. [Note: One implementation technique is to create private templated overloads of these members. — end note]
[2014-02, Issaquah]
GR: want to prevent unsafe conversions. Standard is inconsistent how it does this. for reset() has deleted function template capturing everything except the known-safe cases. Other functions use SFINAE. Main reason this is hard is that unique_ptr supports fancy pointers. Have to figure out how to handle them and what requirements to put on them. Requirements are minimal, not even required to work with pointer_traits.
STL surprised pointer_traits doesn't work GR: ways to get fancy pointers to work is to delegate responsibility for preventing unsafe conversions to the fancy pointers themselves. Howard doesn't like that, he wants even fancy pointers to be prevented from doing unsafe conversions in unique_ptr contexts. AM: Howard says unique_ptr was meant to be very very safe under all conditions, this open a hole in that. Howard wants to eke forward and support more, but not if we open any holes in type safety. GR: do we need to be typesafe even for fancy types with incorrect pointer_traits? AM: that would mean it's only unsafe for people who lie by providing a broken specialization of pointer_traits GR: probably can't continue with ambiguity between using SFINAE and ill-formedness. Would appreciate guidance on direction used for that. STL: difference is observable in convertibility using type traits. STL: for reset() which doesn't affect convertibility ill-formed allows static_assert, better diagnostic. For assignment it's detectable and has traits, constraining them is better. EN: I strongly prefer constraints than static_asserts STL: if we could rely on pointer_traits that might be good. Alternatively could we add more machinery to deleter? make deleter say conversions are allowed, otherwise we lock down all conversions. basically want to know if converting U to T is safe.Previous resolution [SUPERSEDED]:
This wording is relative to N3485.
Revise 20.8.1.1.3 [unique.ptr.dltr.dflt1] as follows
namespace std { template <class T> struct default_delete<T[]> { constexpr default_delete() noexcept = default; template <class U> default_delete(const default_delete<U>&) noexcept; void operator()(T*) const; template <class U> void operator()(U*) const = delete; }; }-?- Descriptions are provided below only for member functions that have behavior different from the primary template.
template <class U> default_delete(const default_delete<U>&) noexcept;-?- This constructor behaves the same as in the primary template except that it shall not participate in overload resolution unless:
U is an array type, and
V* is implicitly convertible to T*, and
T is not a base class of V (without regard to cv-qualifiers),
where V is the array element type of U.
void operator()(T* ptr) const;-1- Effects: calls delete[] on ptr.
-2- Remarks: If T is an incomplete type, the program is ill-formed.template <class U> void operator()(U*) const = delete;-?- Remarks: This function shall not participate in overload resolution unless T is a base class of U (without regard to cv-qualifiers).
Revise 20.8.1.2 [unique.ptr.single]/3 as follows:
If the type remove_reference<D>::type::pointer exists, then unique_ptr<T, D>::pointer shall be a synonym for remove_reference<D>::type::pointer. Otherwise unique_ptr<T, D>::pointer shall be a synonym for
Telement_type*. The type unique_ptr<T, D>::pointer shall satisfy the requirements of NullablePointer (17.6.3.3 [nullablepointer.requirements]).Revise 20.8.1.3 [unique.ptr.runtime] as follows:
namespace std { template <class T, class D> class unique_ptr<T[], D> { public: typedef see below pointer; typedef T element_type; typedef D deleter_type; // 20.7.1.3.1, constructors constexpr unique_ptr() noexcept; explicit unique_ptr(pointer p) noexcept; template <class U> explicit unique_ptr(U* p) = delete; unique_ptr(pointer p, see below d) noexcept; template <class U> unique_ptr(U* p, see below d) = delete; unique_ptr(pointer p, see below d) noexcept; template <class U> unique_ptr(U* p, see below d) = delete; unique_ptr(unique_ptr&& u) noexcept; constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { } template <class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept; // destructor ~unique_ptr(); // assignment unique_ptr& operator=(unique_ptr&& u) noexcept; template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept; unique_ptr& operator=(nullptr_t) noexcept; // 20.7.1.3.2, observers T& operator[](size_t i) const; pointer get() const noexcept; deleter_type& get_deleter() noexcept; const deleter_type& get_deleter() const noexcept; explicit operator bool() const noexcept; // 20.7.1.3.3 modifiers pointer release() noexcept; void reset(pointer p = pointer()) noexcept;void reset(nullptr_t) noexcept;template <class U> void reset(U*) = delete; void swap(unique_ptr& u) noexcept; // disable copy from lvalue unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; }; }-1- A specialization for array types is provided with a slightly altered interface.
Conversions
between different types of unique_ptr<T[], D>from unique_ptr<Derived[]> to unique_ptr<Base[]>, where Base is a base class of Derived, from auto_ptr, or to or from the non-array forms of unique_ptr produce an ill-formed program.Pointers to types derived from T are rejected by the constructors, and by reset.
The observers operator* and operator-> are not provided.
The indexing observer operator[] is provided.
The default deleter will call delete[].
-2- Descriptions are provided below only for
-3- The template argument T shall be a complete type.member functions that have behavior differentmembers that differ from the primary template.Revise 20.8.1.3.1 [unique.ptr.runtime.ctor] as follows:
explicit unique_ptr(pointer p) noexcept; unique_ptr(pointer p, see below d) noexcept; unique_ptr(pointer p, see below d) noexcept;template <class U> explicit unique_ptr(U* p) = delete; template <class U> unique_ptr(U* p, see below d) = delete; template <class U> unique_ptr(U* p, see below d) = delete;
These constructors behave the same as in the primary template except that they do not accept pointer types which are convertible to pointer. [Note: One implementation technique is to create private templated overloads of these members. — end note]These constructors shall not participate in overload resolution unless:
pointer is a pointer type, and
U* is implicitly convertible to pointer, and
T is a base class of U (without regard to cv-qualifiers).
The type of d is determined as in the corresponding non-deleted constructors.
template <class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept;-?- This constructor behaves the same as in the primary template, except that it shall not participate in overload resolution unless:
unique_ptr<U, E>::pointer is implicitly convertible to pointer, and
U is an array type, and
either D is a reference type and E is the same type as D, or D is not a reference type and E is implicitly convertible to D, and
either at least one of pointer and unique_ptr<U, E>::pointer is not a pointer type, or T is not a base class of the array element type of U (without regard to cv-qualifiers).
Insert a new sub-clause following 20.8.1.3.1 [unique.ptr.runtime.ctor] as follows:
?? unique_ptr assignment [unique.ptr.runtime.asgn]
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;-?- This operator behaves the same as in the primary template, except that it shall not participate in overload resolution unless:
unique_ptr<U, E>::pointer is implicitly convertible to pointer, and
U is an array type, and
either D is a reference type and E is the same type as D, or D is not a reference type and E is implicitly convertible to D, and
either at least one of pointer and unique_ptr<U, E>::pointer is not a pointer type, or T is not a base class of the array element type of U (without regard to cv-qualifiers).
Revise 20.8.1.3.4 [unique.ptr.runtime.modifiers] as follows:
void reset(pointer p = pointer()) noexcept; void reset(nullptr_t p) noexcept;template <class U> void reset(U*) = delete;
-1- Effects: If get() == nullptr there are no effects. Otherwise get_deleter()(get()).-2- Postcondition: get() == p.-?- This function shall not participate in overload resolution unless:
pointer is a pointer type, and
U* is implicitly convertible to pointer, and
T is a base class of U (without regard to cv-qualifiers).
[2014-06 Rapperswil]
Discussion of N4042 and general agreement that this paper resolves the substance of this issue and should be adopted with minor edits. Geoffrey Romer will provide an updated paper.
[2014-06 post-Rapperswil]
As described in N4089.
[2014-11-07 Urbana]
Resolved by N4089
Proposed resolution:
See proposed wording in N4089.
Section: 30.6.8 [futures.async] Status: C++14 Submitter: Jonathan Wakely Opened: 2012-01-01 Last modified: 2015-04-08
View all other issues in [futures.async].
View all issues with C++14 status.
Discussion:
Implementations already disagree, one returns an invalid future with no shared state, one chooses policy == async and one chooses policy == deferred, see c++std-lib-30839, c++std-lib-30840 and c++std-lib-30844. It's not clear if returning an invalid future is allowed by the current wording.
If the intention is to allow an empty future to be returned, then 30.6.8 [futures.async] p3 and p4 should be adjusted to clarify that a shared state might not be created and an invalid future might be returned.
If the intention is that a valid future is always returned, p3 should say something about the case where none of the conditions applies.
[2012, Portland: move to Review]
We could make it undefined if no launch policy is defined.
Hans: If no launch policy is specified the behaviour is undefined
Artur: or implementation defined?
Hans: no: we don't want people to do this
[Proposed wording]
This wording is relative to N3376
Add a third bullet to the end of the list in 30.6.8p3
"if no valid launch policy is provided the behaviour is undefined"
Moved to review
[2013-04-19, Bristol]
Detlef provides new wording
Previous wording:
[This wording is relative to N3376]
Add a third bullet to the end of the list in 30.6.8 [futures.async]p3
– if no valid launch policy is provided the behaviour is undefined
[2013-09 Chicago]
If no policy is given, it should be undefined, so moved to Immediate.
Accept for Working Paper
Proposed resolution:
[This wording is relative to N3485]
Add a third bullet to the end of the list in 30.6.8 [futures.async]p3
– If no value is set in the launch policy, or a value is set that is neither specified in this International Standard or by the implementation, the behaviour is undefined.
Section: 23.3.5.5 [list.ops], 23.3.4.6 [forwardlist.ops] Status: C++14 Submitter: Nicolai Josuttis Opened: 2012-01-15 Last modified: 2015-04-08
View all other issues in [list.ops].
View all issues with C++14 status.
Discussion:
forward_list::merge() is specified in 23.3.4.6 [forwardlist.ops], p19 as follows:
This operation shall be stable: for equivalent elements in the two lists, the elements from *this shall always precede the elements from x.
But list::merge() is only specified in 23.3.5.5 [list.ops], p24 as follows:
Remarks: Stable.
Note that in general we define "stable" only for algorithms (see 17.3 [defns.stable] and 17.6.5.7 [algorithm.stable]) so for member function we should explain it everywhere we use it.
Thus for lists we have to add:Stable: for equivalent elements in the two lists, the elements from the list always precede the elements from the argument list.
This, BTW, was the specification we had with C++03.
In addition, I wonder whether we also have some guarantees regarding stability saying that the order of equivalent elements of each list merged remains stable (which would be my interpretation of just saying "stable", BTW). Thus, I'd expect that for equivalent elements we guarantee that[2012, Kona]
Move to Open.
STL says we need to fix up 17.6.5.7 to be stronger, and then the remarks for merge should just say "Remarks: Stable (see 17.6.5.7)"
Assigned to STL for word-smithing.
[ 2013-04-14 STL provides rationale and improved wording ]
Step 1: Centralize all specifications of stability to 17.6.5.7 [algorithm.stable].
Step 2: 17.3 [defns.stable] and 17.6.5.7 [algorithm.stable] talk about "algorithms", without mentioning "container member functions". There's almost no potential for confusion here, but there's a simple way to increase clarity without increasing verbosity: make the container member functions explicitly cite 17.6.5.7 [algorithm.stable]. For consistency, we can also update the non-member functions.
Step 3: Fix the "so obvious, we forgot to say it" bug in 17.6.5.7 [algorithm.stable]: a "stable" merge of equivalent elements A B C D and W X Y Z produces A B C D W X Y Z, never D C B A X W Z Y.
Step 3.1: Say "(preserving their original order)" to be consistent with "the relative order [...] is preserved" in 17.6.5.7 [algorithm.stable]'s other bullet points.
Step 4: Copy part of list::merge()'s wording to forward_list::merge(), in order to properly connect with 17.6.5.7 [algorithm.stable]'s "first range" and "second range".
[2013-04-18, Bristol]
Original wording saved here:
This wording is relative to the FDIS.
Change 23.3.5.5 [list.ops] as indicated:
void merge(list<T,Allocator>& x); void merge(list<T,Allocator>&& x); template <class Compare> void merge(list<T,Allocator>& x, Compare comp); template <class Compare> void merge(list<T,Allocator>&& x, Compare comp);[…]
-24- Remarks:StableThis operation shall be stable: for equivalent elements in the two lists, the elements from *this shall always precede the elements from x and the order of equivalent elements of *this and x remains stable. If (&x != this) the range [x.begin(), x.end()) is empty after the merge. No elements are copied by this operation. The behavior is undefined if this->get_allocator() != x.get_allocator().Change 23.3.4.6 [forwardlist.ops] as indicated:
void merge(forward_list<T,Allocator>& x); void merge(forward_list<T,Allocator>&& x); template <class Compare> void merge(forward_list<T,Allocator>& x, Compare comp); template <class Compare> void merge(forward_list<T,Allocator>&& x, Compare comp);[…]
-19- Effects: Merges x into *this. This operation shall be stable: for equivalent elements in the two lists, the elements from *this shall always precede the elements from x and the order of equivalent elements of *this and x remains stable. x is empty after the merge. If an exception is thrown other than by a comparison there are no effects. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
Proposed resolution:
This wording is relative to the N3485.
Change 17.6.5.7 [algorithm.stable]/1 as indicated:
When the requirements for an algorithm state that it is “stable” without further elaboration, it means:
[…]
- For the merge algorithms, for equivalent elements in the original two ranges, the elements from the first range (preserving their original order) precede the elements from the second range (preserving their original order).
Change 23.3.4.6 [forwardlist.ops] as indicated:
void remove(const T& value); template <class Predicate> void remove_if(Predicate pred);-12- Effects: Erases all the elements in the list referred by a list iterator i for which the following conditions hold: *i == value (for remove()), pred(*i) is true (for remove_if()).
-13- Throws: Nothing unless an exception is thrown by the equality comparison or the predicate. -??- Remarks: Stable (17.6.5.7 [algorithm.stable]). […]This operation shall be stable: the relative order of the elements that are not removed is the same as their relative order in the original list.Invalidates only the iterators and references to the erased elements.void merge(forward_list& x); void merge(forward_list&& x); template <class Compare> void merge(forward_list& x, Compare comp) template <class Compare> void merge(forward_list&& x, Compare comp)[…]
-19- Effects: Mergesx into *thisthe two sorted ranges [begin(), end()) and [x.begin(), x.end()).This operation shall be stable: for equivalent elements in the two lists, the elements from *this shall always precede the elements from x.x is empty after the merge. If an exception is thrown other than by a comparison there are no effects. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x. -20- Remarks: Stable (17.6.5.7 [algorithm.stable]). The behavior is undefined if this->get_allocator() != x.get_allocator(). […]void sort(); template <class Compare> void sort(Compare comp);[…]
-23- Effects: Sorts the list according to the operator< or the comp function object.This operation shall be stable: the relative order of the equivalent elements is preserved.If an exception is thrown the order of the elements in *this is unspecified. Does not affect the validity of iterators and references. -??- Remarks: Stable (17.6.5.7 [algorithm.stable]). […]
Change 23.3.5.5 [list.ops] as indicated:
void remove(const T& value); template <class Predicate> void remove_if(Predicate pred);[…]
-17- Remarks: Stable (17.6.5.7 [algorithm.stable]). […]void merge(list& x); void merge(list&& x); template <class Compare> void merge(list& x, Compare comp) template <class Compare> void merge(list&& x, Compare comp)[…]
-24- Remarks: Stable (17.6.5.7 [algorithm.stable]). […] […]void sort(); template <class Compare> void sort(Compare comp);[…]
-30- Remarks: Stable (17.6.5.7 [algorithm.stable]). […]
Change 25.3.1 [alg.copy]/12 as indicated:
template<class InputIterator, class OutputIterator, class Predicate> OutputIterator copy_if(InputIterator first, InputIterator last, OutputIterator result, Predicate pred);[…]
-12- Remarks: Stable (17.6.5.7 [algorithm.stable]).
Change 25.3.8 [alg.remove] as indicated:
template<class ForwardIterator, class T> ForwardIterator remove(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class Predicate> ForwardIterator remove_if(ForwardIterator first, ForwardIterator last, Predicate pred);[…]
-4- Remarks: Stable (17.6.5.7 [algorithm.stable]). […]template<class InputIterator, class OutputIterator, class T> OutputIterator remove_copy(InputIterator first, InputIterator last, OutputIterator result, const T& value); template<class InputIterator, class OutputIterator, class Predicate> OutputIterator remove_copy_if(InputIterator first, InputIterator last, OutputIterator result, Predicate pred);[…]
-11- Remarks: Stable (17.6.5.7 [algorithm.stable]).
Change 25.4.1.2 [stable.sort]/4 as indicated:
template<class RandomAccessIterator> void stable_sort(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void stable_sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp);[…]
-4- Remarks: Stable (17.6.5.7 [algorithm.stable]).
Change 25.4.4 [alg.merge] as indicated:
template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp);[…]
-5- Remarks: Stable (17.6.5.7 [algorithm.stable]). […]template<class BidirectionalIterator> void inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last); template<class BidirectionalIterator, class Compare> void inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last, Compare comp);[…]
-9- Remarks: Stable (17.6.5.7 [algorithm.stable]).
Section: 23.3.4.6 [forwardlist.ops] Status: C++14 Submitter: Nicolai Josuttis Opened: 2012-01-15 Last modified: 2015-04-08
View all other issues in [forwardlist.ops].
View all issues with C++14 status.
Discussion:
Sub-clause 23.3.5.5 [list.ops], p24 states for lists:
The behavior is undefined if this->get_allocator() != x.get_allocator().
But there is nothing like that for forward lists in 23.3.4.6 [forwardlist.ops], although I would expect the same undefined behavior there.
[2012, Kona]
Move to Ready.
[2012, Portland: applied to WP]
Proposed resolution:
This wording is relative to the FDIS.
Add a new paragraph after 23.3.4.6 [forwardlist.ops] p19 as indicated:
void merge(forward_list<T,Allocator>& x); void merge(forward_list<T,Allocator>&& x); template <class Compare> void merge(forward_list<T,Allocator>& x, Compare comp); template <class Compare> void merge(forward_list<T,Allocator>&& x, Compare comp);[…]
-19- Effects: […] -?- Remarks: The behavior is undefined if this->get_allocator() != x.get_allocator().
Section: 24.3 [iterator.synopsis], 24.7 [iterator.range] Status: C++14 Submitter: Dmitry Polukhin Opened: 2012-01-23 Last modified: 2015-04-08
View all other issues in [iterator.synopsis].
View all issues with C++14 status.
Discussion:
All standard containers support cbegin/cend member functions but corresponding global functions are missing. Proposed resolution it to add global cbegin/cend functions by analogy with global begin/end functions. This addition will unify things for users.
[2012, Kona]
STL: Range-based for loops do not use global begin/end (anymore).
Alisdair: We will have to make sure these will be available through many headers.
STL: Do this, including r and cr. This won't add any additional work.
Matt: Users will find it strange if these are not all available.
Alisdair: Should we have these available everywhere begin/end are available?
Marshall: Yes. Not any extra work.
Howard: Adding all of these means we need all of <iterator>.
STL: We already need it all.
Matt: We have to be careful what we are requiring if we include the r versions.
Jeffrey: If we include r, should they adapt if the container does not define reverse iteration?
STL: No. No special behavior. Should fail to compile. Up to user to add the reverse code--it's easy.
Howard: Anyway it will SFINAE out.
Alisdair: Error messages due to SFINAE are harder to understand than simple failure to compile.
STL: Agrees that SFINAE makes error messages much worse.
Action: STL to provide additional wording for the r variants. Move to Review once that wording is availalbe.
[ 2013-04-14 STL provides rationale and improved wording ]
Step 1: Implement std::cbegin/cend() by calling std::begin/end(). This has numerous advantages:
Step 2: Like std::begin/end(), implement std::rbegin/rend() by calling c.rbegin/rend(). Note that C++98/03 had the Reversible Container Requirements.
Step 3: Also like std::begin/end(), provide overloads of std::rbegin/rend() for arrays.
Step 4: Provide overloads of std::rbegin/rend() for initializer_list, because it lacks rbegin/rend() members. These overloads follow 18.9.3 [support.initlist.range]'s signatures. Note that because these overloads return reverse_iterator, they aren't being specified in <initializer_list>.
Step 5: Like Step 1, implement std::crbegin/crend() by calling std::rbegin/rend().
Original wording saved here:
This wording is relative to N3337.
In 24.3 [iterator.synopsis], header iterator synopsis, add the following declarations:
namespace std { […] // 24.6.5, range access: template <class C> auto begin(C& c) -> decltype(c.begin()); template <class C> auto begin(const C& c) -> decltype(c.begin()); template <class C> auto end(C& c) -> decltype(c.end()); template <class C> auto end(const C& c) -> decltype(c.end()); template <class C> auto cbegin(const C& c) -> decltype(c.cbegin()); template <class C> auto cend(const C& c) -> decltype(c.cend()); template <class T, size_t N> T* begin(T (&array)[N]); template <class T, size_t N> T* end(T (&array)[N]); template <class T, size_t N> const T* cbegin(T (&array)[N]); template <class T, size_t N> const T* cend(T (&array)[N]); }In 24.7 [iterator.range] after p5 add the following series of paragraphs:
template <class C> auto cbegin(const C& c) -> decltype(c.cbegin());-?- Returns: c.cbegin().
template <class C> auto cend(const C& c) -> decltype(c.cend());-?- Returns: c.cend().
template <class T, size_t N> const T* cbegin(T (&array)[N]);-?- Returns: array.
template <class T, size_t N> const T* cend(T (&array)[N]);-?- Returns: array + N.
[2013-04-18, Bristol]
Proposed resolution:
This wording is relative to N3485.
In 24.3 [iterator.synopsis], header iterator synopsis, add the following declarations:
namespace std { […] // 24.6.5, range access: template <class C> auto begin(C& c) -> decltype(c.begin()); template <class C> auto begin(const C& c) -> decltype(c.begin()); template <class C> auto end(C& c) -> decltype(c.end()); template <class C> auto end(const C& c) -> decltype(c.end()); template <class T, size_t N> T* begin(T (&array)[N]); template <class T, size_t N> T* end(T (&array)[N]); template <class C> auto cbegin(const C& c) -> decltype(std::begin(c)); template <class C> auto cend(const C& c) -> decltype(std::end(c)); template <class C> auto rbegin(C& c) -> decltype(c.rbegin()); template <class C> auto rbegin(const C& c) -> decltype(c.rbegin()); template <class C> auto rend(C& c) -> decltype(c.rend()); template <class C> auto rend(const C& c) -> decltype(c.rend()); template <class T, size_t N> reverse_iterator<T*> rbegin(T (&array)[N]); template <class T, size_t N> reverse_iterator<T*> rend(T (&array)[N]); template <class E> reverse_iterator<const E*> rbegin(initializer_list<E> il); template <class E> reverse_iterator<const E*> rend(initializer_list<E> il); template <class C> auto crbegin(const C& c) -> decltype(std::rbegin(c)); template <class C> auto crend(const C& c) -> decltype(std::rend(c)); }
At the end of 24.7 [iterator.range], add:
template <class C> auto cbegin(const C& c) -> decltype(std::begin(c));-?- Returns: std::begin(c).
template <class C> auto cend(const C& c) -> decltype(std::end(c));-?- Returns: std::end(c).
template <class C> auto rbegin(C& c) -> decltype(c.rbegin()); template <class C> auto rbegin(const C& c) -> decltype(c.rbegin());-?- Returns: c.rbegin().
template <class C> auto rend(C& c) -> decltype(c.rend()); template <class C> auto rend(const C& c) -> decltype(c.rend());-?- Returns: c.rend().
template <class T, size_t N> reverse_iterator<T*> rbegin(T (&array)[N]);-?- Returns: reverse_iterator<T*>(array + N).
template <class T, size_t N> reverse_iterator<T*> rend(T (&array)[N]);-?- Returns: reverse_iterator<T*>(array).
template <class E> reverse_iterator<const E*> rbegin(initializer_list<E> il);-?- Returns: reverse_iterator<const E*>(il.end()).
template <class E> reverse_iterator<const E*> rend(initializer_list<E> il);-?- Returns: reverse_iterator<const E*>(il.begin()).
template <class C> auto crbegin(const C& c) -> decltype(std::rbegin(c));-?- Returns: std::rbegin(c).
template <class C> auto crend(const C& c) -> decltype(std::rend(c));-?- Returns: std::rend(c).
Section: 17.6.4.2.1 [namespace.std], 18.9 [support.initlist] Status: WP Submitter: Richard Smith Opened: 2012-01-18 Last modified: 2015-04-08
View all other issues in [namespace.std].
View all issues with WP status.
Discussion:
Since the implementation is intended to magically synthesize instances of std::initializer_list (rather than by a constructor call, for instance), user specializations of this type can't generally be made to work. I can't find any wording which makes such specializations ill-formed, though, which leads me to suspect that they're technically legal under the provisions of 17.6.4.2.1 [namespace.std] p1.
[2012, Kona]
This sounds correct, but we need wording for a resolution.
Marshall Clow volunteers to produce wording.
[2014-02-19, Jonathan Wakely provides proposed wording]
[2014-03-27, Library reflector vote]
The issue has been identified as Tentatively Ready based on six votes in favour.
Proposed resolution:
This wording is relative to N3936.
Add new new paragraph below 18.9 [support.initlist] p2:
-2- An object of type initializer_list<E> provides access to an array of objects of type const E. […]
-?- If an explicit specialization or partial specialization of initializer_list is declared, the program is ill-formed.
Section: 29.3 [atomics.order] Status: C++14 Submitter: Mark Batty Opened: 2012-02-22 Last modified: 2015-04-08
View other active issues in [atomics.order].
View all other issues in [atomics.order].
View all issues with C++14 status.
Discussion:
C11 issue 407
It seems that both C11 and C++11 are missing the following two derivatives of this rule:
For atomic modifications A and B of an atomic object M, if there is a memory_order_seq_cst fence X such that A is sequenced before X, and X precedes B in S, then B occurs later than A in the modification order of M.
For atomic modifications A and B of an atomic object M, if there is a memory_order_seq_cst fence Y such that Y is sequenced before B, and A precedes Y in S, then B occurs later than A in the modification order of M.
Above wording has been suggested for the Technical Corrigendum of C11 via issue 407, details can be found here.
[2012-03-19: Daniel proposes a slightly condensed form to reduce wording duplications]
[2012-03-20: Hans comments]
The usage of the term atomic operations in 29.3 [atomics.order] p7 is actually incorrect and should better be replaced by atomic modifications as used in the C11 407 wording.
There seems to be a similar wording incorrectness used in 1.10 [intro.multithread] p17 which should be corrected as well.[2012, Portland: move to Review]
Olivier: does the fence really participate in the modifications?
Hans: S is the total set of all sequentially consistent operations, and sequentially consistent fences are in S.
Olivier: this sort of combination of a pair of half-open rules seems to imply the write must make it to main memory
But not all implementations treat a fence as a memory operation; cannot observe the half-open rule.
Hans: not sure this is actually prevented here. You could defer until the next load. What the wording doesn't quite show is that the third bullet in the new wording is already in the standard.
Hans: it is the interaction between fences on one side and other memory modifications on the other that is being defined here.
Pablo: S is not directly observable; it is a hypothetic ordering.
Moved to review
Hans: to alert C liaison
[2013-04-20, Bristol]
Accepted for the working paper
Proposed resolution:
This wording is relative to N3376.
[Drafting note: The project editor is kindly asked to consider to replace in 1.10 [intro.multithread] p17 the phrase "before an operation B on M" by "before a modification B of M".]
Change 29.3 [atomics.order] paragraph 7 as indicated: [Drafting note: Note that the wording change intentionally does also replace the term atomic operation by atomic modification]
-7- For atomic operations A and B on an atomic object M, if there are
memory_order_seq_cst fences X and Y such that A is sequenced before X,
Y is sequenced before B, and X precedes Y in S, then B
occurs later than A in the modification order of M.
For atomic modifications A and B of an atomic object M, B occurs
later than A in the modification order of M if:
Section: 20.9.12.2.1 [func.wrap.func.con] Status: C++14 Submitter: Ville Voutilainen Opened: 2012-02-28 Last modified: 2015-04-08
View all other issues in [func.wrap.func.con].
View all issues with C++14 status.
Discussion:
Consider the following:
#include <functional> void f(std::function<void()>) {} void f(std::function<void(int)>) {} int main() { f([]{}); f([](int){}); }
The calls to f in main are ambiguous. Apparently because the conversion sequences to std::function from the lambdas are identical. The standard specifies that the function object given to std::function "shall be Callable (20.8.11.2) for argument types ArgTypes and return type R." It doesn't say that if this is not the case, the constructor isn't part of the overload set.
Daniel: During the preparation of N3123 it turned out that there are no longer reasons to refer to INVOKE as a conceptually entity alone, its real implementation as a function template invoke is possible but was deferred for a later point in time. Defining a type trait for the Callable requirement would also be possible, so there seem to be no technical reasons why the template constructor of std::function should not be constrained. The below suggested wording does this without introducing a special trait for this. This corresponds to the way that has been used to specify the result_of trait. Note that the definition of the Callable requirement is perfectly suitable for this, because it is a pure syntactically based requirement and can be directly transformed into a constrained template. The suggested resolution also applies such wording to the "perfectly forwarding" assignment operatortemplate<class F> function& operator=(F&&);
The positive side-effect of this is that it automatically implements a solution to a problem similar to that mentioned in issue 1234.
It would be possible to apply similar constraints to the member signaturestemplate<class F> function& operator=(reference_wrapper<F>); template<class F, class A> void assign(F&&, const A&);
as well. At this point there does not seem to be a pestering reason to do so.
[2012-10 Portland: Move to Review]
STL: This is a real issue, but does not like a resolution relying on a SFINAEable metafunction that is not specified and available to the users.
packaged_task has the same issue.
STL strongly wants to see an is_callable type trait to clarify the proposed wording.
Jeremiah concerned about holding up what appears to be a correct resolution for a hypothetical better one later - the issue is real.
Why must f by CopyConstructible? Surely MoveConstructible would be sufficient?
Answer: because function is CopyConstructible, and the bound functor is type-erased so must support all the properties of function itself.
Replace various applications of declval in the proposed resolution with simply using the passed functor object, f.
Alisdair to apply similar changes to packaged_task.
[2012-11-09, Vicente J. Botet Escriba provides another example]
Consider the following:
class AThreadWrapper { public: explicit operator std::thread(); ... }; std::thread th = std::thread(AThreadWrapper); // call to conversion operator intended
The call to the conversion operator is overloaded with the thread constructor. But thread constructor requirement makes it fail as AThreadWrapper is not a Callable and the compiler tries to instantiate the thread constructor and fails.
[2014-02-14 Issaquah meeting: Move to Immediate]
Proposed resolution:
This wording is relative to N3376.
Change the following paragraphs in 20.9.12.2.1 [func.wrap.func.con]: [Editorial comment: The removal of the seemingly additional no-throw requirements of copy constructor and destructor of A is recommended, because they are already part of the Allocator requirements. Similar clean-up has been suggested by 2070 — end comment]
template<class F> function(F f); template<class F, class A> function(allocator_arg_t, const A& a, F f);-7- Requires: F shall be CopyConstructible.
-?- Remarks: These constructors shall not participate in overload resolution unless f is Callable (20.9.12.2 [func.wrap.func]) for argument types ArgTypes... and return type R.f shall be Callable (20.9.12.2 [func.wrap.func]) for argument types ArgTypes and return type R. The copy constructor and destructor of A shall not throw exceptions.[…]
template<class F> function& operator=(F&& f);-18- Effects: function(std::forward<F>(f)).swap(*this);
-19- Returns: *this -?- Remarks: This assignment operator shall not participate in overload resolution unless declval<typename decay<F>::type&>() is Callable (20.9.12.2 [func.wrap.func]) for argument types ArgTypes... and return type R.
Section: 30.5.1 [thread.condition.condvar], 30.5.2 [thread.condition.condvarany] Status: C++14 Submitter: Pete Becker Opened: 2012-03-06 Last modified: 2015-04-08
View all other issues in [thread.condition.condvar].
View all issues with C++14 status.
Discussion:
condition_varible::wait() (and, presumably, condition_variable_any::wait(), although I haven't looked at it) says that it calls lock.unlock(), and if condition_variable::wait() exits by an exception it calls lock.lock() on the way out. But if the initial call to lock.unlock() threw an exception, does it make sense to call lock.lock()? We simply don't know the state of that lock object, and it's probably better not to touch it.
That aside, once the wait() call has been unblocked, it calls lock.lock(). If lock.lock() throws an exception, what happens? The requirement is:If the function exits via an exception, lock.lock() shall be called prior to exiting the function scope.
That can be read in two different ways. One way is as if it said "lock.lock() shall have been called …", i.e. the original, failed, call to lock.lock() is all that's required. But a more natural reading is that wait has to call lock.lock() again, even though it already failed.
I think this wording suffers from being too general. There are two possible exception sources: the initial call to lock.unlock() and the final call to lock.lock(). Each one should have its own requirement. Lumping them together muddles things.[2012, Portland: move to Open]
Pablo: unlock failing is easy -- the call leaves it locked. The second case, trying to lock fails -- what can you do? This is an odd state as we had it locked before was called wait. Maybe we should call terminate as we cannot meet the post-conditions. We could throw a different exception.
Hans: calling terminate makes sense as we're likely to call it soon anyway and at least we have some context.
Detlef: what kind of locks might be being used?
Pablo: condition variables are 'our' locks so this is less of a problem. condition_variable_any might be more problematic.
The general direction is to call terminate if the lock cannot be reacquired.
Pablo: Can we change the wording to 'leaves the mutex locked' ?
Hans: so if the unlock throws we simply propagate the exception.
Move the issue to open and add some formal wording at a later time.
[2013-09 Chicago: Resolved]
Detlef improves wording. Daniel suggests to introduce a Remarks element for the special "If the function fails to meet the postcondition..." wording and applies this to the proposed wording.
Proposed resolution:
This wording is relative to N3691.
Edit 30.5.1 [thread.condition.condvar] as indicated:
void wait(unique_lock<mutex>& lock);[…]
-10- Effects:
Atomically calls lock.unlock() and blocks on *this.
When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.
The function will unblock when signaled by a call to notify_one() or a call to notify_all(), or spuriously.
If the function exits via an exception, lock.lock() shall be called prior to exiting the function scope.-?- Remarks: If the function fails to meet the postcondition, std::terminate() shall be called (15.5.1 [except.terminate]). [Note: This can happen if the re-locking of the mutex throws an exception. — end note]
-11- Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread. -12- Throws: Nothingsystem_error when an exception is required (30.2.2).-13- Error conditions:
equivalent error condition from lock.lock() or lock.unlock().template <class Predicate> void wait(unique_lock<mutex>& lock, Predicate pred);[…]
-?- Remarks: If the function fails to meet the postcondition, std::terminate() shall be called (15.5.1 [except.terminate]). [Note: This can happen if the re-locking of the mutex throws an exception. — end note] -16- Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread. -17- Throws:system_error when an exception is required (30.2.2),timeout-related exceptions (30.2.4),or any exception thrown by pred.-18- Error conditions:
equivalent error condition from lock.lock() or lock.unlock().template <class Clock, class Duration> cv_status wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time);[…]
-20- Effects:
[…]
If the function exits via an exception, lock.lock() shall be called prior to exiting the function
scope.-?- Remarks: If the function fails to meet the postcondition, std::terminate() shall be called (15.5.1 [except.terminate]). [Note: This can happen if the re-locking of the mutex throws an exception. — end note]
-21- Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread. […] -23- Throws:system_error when an exception is required (30.2.2) ortimeout-related exceptions (30.2.4).-24- Error conditions:
equivalent error condition from lock.lock() or lock.unlock().template <class Rep, class Period> cv_status wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time);[…]
-?- Remarks: If the function fails to meet the postcondition, std::terminate() shall be called (15.5.1 [except.terminate]). [Note: This can happen if the re-locking of the mutex throws an exception. — end note] -28- Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread. […] -29- Throws:system_error when an exception is required (30.2.2) ortimeout-related exceptions (30.2.4).-30- Error conditions:
equivalent error condition from lock.lock() or lock.unlock().template <class Clock, class Duration, class Predicate> bool wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);[…]
-?- Remarks: If the function fails to meet the postcondition, std::terminate() shall be called (15.5.1 [except.terminate]). [Note: This can happen if the re-locking of the mutex throws an exception. — end note] -33- Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread. […] -35- Throws:system_error when an exception is required (30.2.2),timeout-related exceptions (30.2.4),or any exception thrown by pred.-36- Error conditions:
equivalent error condition from lock.lock() or lock.unlock().template <class Rep, class Period, class Predicate> bool wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);[…]
-?- Remarks: If the function fails to meet the postcondition, std::terminate() shall be called (15.5.1 [except.terminate]). [Note: This can happen if the re-locking of the mutex throws an exception. — end note] -40- Postcondition: lock.owns_lock() is true and lock.mutex() is locked by the calling thread. […] -42- Throws:system_error when an exception is required (30.2.2),timeout-related exceptions (30.2.4),or any exception thrown by pred.-43- Error conditions:
equivalent error condition from lock.lock() or lock.unlock().
Edit 30.5.2 [thread.condition.condvarany] as indicated:
template<class Lock> void wait(Lock& lock);[…]
-10- Effects:
Atomically calls lock.unlock() and blocks on *this.
When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.
The function will unblock when signaled by a call to notify_one(), a call to notify_all(), or spuriously.
If the function exits via an exception, lock.lock() shall be called prior to exiting the function scope.-?- Remarks: If the function fails to meet the postcondition, std::terminate() shall be called (15.5.1 [except.terminate]). [Note: This can happen if the re-locking of the mutex throws an exception. — end note]
-11- Postcondition: lock is locked by the calling thread. -12- Throws: Nothingsystem_error when an exception is required (30.2.2).-13- Error conditions:
equivalent error condition from lock.lock() or lock.unlock().template <class Lock, class Clock, class Duration> cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);[…]
-15- Effects:
[…]
If the function exits via an exception, lock.lock() shall be called prior to exiting the function
scope.-?- Remarks: If the function fails to meet the postcondition, std::terminate() shall be called (15.5.1 [except.terminate]). [Note: This can happen if the re-locking of the mutex throws an exception. — end note]
-16- Postcondition: lock is locked by the calling thread. […] -18- Throws:system_error when an exception is required (30.2.2) ortimeout-related exceptions (30.2.4).-19- Error conditions:
equivalent error condition from lock.lock() or lock.unlock().template <class Lock, class Rep, class Period> cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);[…]
-?- Remarks: If the function fails to meet the postcondition, std::terminate() shall be called (15.5.1 [except.terminate]). [Note: This can happen if the re-locking of the mutex throws an exception. — end note] -22- Postcondition: lock is locked by the calling thread. […] -23- Throws:system_error when an exception is required (30.2.2) ortimeout-related exceptions (30.2.4).-24- Error conditions:
equivalent error condition from lock.lock() or lock.unlock().
Section: 29.7 [atomics.flag] Status: C++14 Submitter: Ben Viglietta Opened: 2012-03-08 Last modified: 2015-04-08
View all other issues in [atomics.flag].
View all issues with C++14 status.
Discussion:
N3376 29.7 [atomics.flag]/7 says this about atomic_flag::clear:
Requires: The order argument shall not be memory_order_acquire or memory_order_acq_rel.
In addition, memory_order_consume should be disallowed, since it doesn't meaningfully apply to store operations. It's already disallowed on the analogous atomic<T>::store. The proposed updated text would be:
Requires: The order argument shall not be memory_order_consume, memory_order_acquire, or memory_order_acq_rel.
[2012, Portland: move to Review]
Hans: this is a clear oversight.
Moved to review
[2013-04-20, Bristol]
Accepted for the working paper
Proposed resolution:
[This wording is relative to N3376.]
void atomic_flag_clear(volatile atomic_flag *object) noexcept; void atomic_flag_clear(atomic_flag *object) noexcept; void atomic_flag_clear_explicit(volatile atomic_flag *object, memory_order order) noexcept; void atomic_flag_clear_explicit(atomic_flag *object, memory_order order) noexcept; void atomic_flag::clear(memory_order order = memory_order_seq_cst) volatile noexcept; void atomic_flag::clear(memory_order order = memory_order_seq_cst) noexcept;-7- Requires: The order argument shall not be memory_order_consume, memory_order_acquire, or memory_order_acq_rel.
-8- Effects: Atomically sets the value pointed to by object or by this to false. Memory is affected according to the value of order.
Section: 30.5 [thread.condition] Status: C++14 Submitter: Pete Becker Opened: 2012-03-06 Last modified: 2015-04-08
View all other issues in [thread.condition].
View all issues with C++14 status.
Discussion:
notify_all_at_thread_exit has the following synchronization requirement:
Synchronization: The call to notify_all_at_thread_exit and the completion of the destructors for all the current thread's variables of thread storage duration synchronize with (1.10 [intro.multithread]) calls to functions waiting on cond.
The functions waiting on cond have already been called, otherwise they wouldn't be waiting. So how can a subsequent call to notify_all_at_thread_exit synchronize with them?
Also, "synchronizes with" is a relationship between library calls (1.10 [intro.multithread]/8), so it's not meaningful for completion of destructors for non-library objects. Presumably the intention wasn't so make library destructors special here.[2012-03-09 Jeffrey Yasskin comments:]
I think the text should say that "notify_all_at_thread_exit and destructor calls are sequenced before the lk.unlock()", and leave it at that, unless there's a funny implementation I haven't thought of.
[2012-03-19 Hans Boehm comments:]
I think the synchronization clause should just be replaced with (modulo wording tweaks):
"The implied lk.unlock() call is sequenced after the destruction of all objects with thread storage duration associated with the current thread." as Jeffrey suggested. To use this correctly, the notifying thread has to essentially acquire the lock, set a variable indicating it's done, call notify_all_at_thread_exit(), while the waiting thread acquires the lock, and repeatedly waits on the cv until the variable is set, and then releases the lock. That ensures that we have the proper synchronizes with relationship as a result of the lock.[2012, Portland: move to Review]
The lk.unlock() refers back to the wording the previous paragraph.
Moved to review
[2013-04-20, Bristol]
Accepted for the working paper
Proposed resolution:
This wording is relative to N3376.
Modify 30.5 [thread.condition] p8 as indicated:
void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);[…]
-8- Synchronization:The call to notify_all_at_thread_exit and the completion of the destructors for all the current thread's variables of thread storage duration synchronize with (1.10 [intro.multithread]) calls to functions waiting on condThe implied lk.unlock() call is sequenced after the destruction of all objects with thread storage duration associated with the current thread.
Section: 20.10.7.6 [meta.trans.other] Status: C++14 Submitter: Doug Gregor Opened: 2012-03-11 Last modified: 2015-04-08
View other active issues in [meta.trans.other].
View all other issues in [meta.trans.other].
View all issues with C++14 status.
Discussion:
The type computation of the common_type type trait is defined as
template <class T, class U> struct common_type<T, U> { typedef decltype(true ? declval<T>() : declval<U>()) type; };
This means that common_type<int, int>::type is int&&, because
Users of common_type do not expect to get a reference type as the result; the expectation is that common_type will return a non-reference type to which all of the types can be converted.
Daniel: In addition to that it should be noted that without such a fix the definition of std::unique_ptr's operator< in 20.8.1.5 [unique.ptr.special] (around p4) is also broken: In the most typical case (with default deleter), the determination of the common pointer type CT will instantiate std::less<CT> which can now be std::less<T*&&>, which will not be the specialization of pointer types that guarantess a total order. Given the historic constext of common_type original specification, the proper resolution to me seems to be using std::decay instead of std::remove_reference:template <class T, class U> struct common_type<T, U> { typedef typename decay<decltype(true ? declval<T>() : declval<U>())>::type type; };
At that time rvalues had no identity in this construct and rvalues of non-class types have no cv-qualification. With this change we would ensure that
common_type<int, int>::type == common_type<const int, const int>::type == int
Note that this harmonizes with the corresponding heterogenous case, which has already the exact same effect:
common_type<int, long>::type == common_type<const int, const long>::type == long
[2012-10-11 Daniel comments]
While testing the effects of applying the proposed resolution I noticed that this will have the effect that the unary form of common_type, like
common_type<int>
is not symmetric to the n-ary form (n > 1). This is unfortunate, because this difference comes especially to effect when common_type is used with variadic templates. As an example consider the following make_array template:
#include <array>
#include <type_traits>
#include <utility>
template<class... Args>
std::array<typename std::common_type<Args...>::type, sizeof...(Args)>
make_array(Args&&... args)
{
typedef typename std::common_type<Args...>::type CT;
return std::array<CT, sizeof...(Args)>{static_cast<CT>(std::forward<Args>(args))...};
}
int main()
{
auto a1 = make_array(0); // OK: std::array<int, 1>
auto a2 = make_array(0, 1.2); // OK: std::array<double, 2>
auto a3 = make_array(5, true, 3.1415f, 'c'); // OK: std::array<float, 4>
int i = 0;
auto a1b = make_array(i); // Error, attempt to form std::array<int&, 1>
auto a2b = make_array(i, 1.2); // OK: std::array<double, 2>
auto a2c = make_array(i, 0); // OK: std::array<int, 2>
}
The error for a1b only happens in the unary case and it is easy that it remains unnoticed during tests. You cannot explain that reasonably to the user here.
Of-course it is possible to fix that in this example by applying std::decay to the result of the std::common_type deduction. But if this is necessary here, I wonder why it should also be applied to the binary case, where it gives the wrong illusion of a complete type decay? The other way around: Why is std::decay not also applied to the unary case as well? This problem is not completely new and was already observed for the original std::common_type specification. At this time the decltype rules had a similar asymmetric effect when comparingstd::common_type<const int, const int>::type (equal to 'int' at this time)
with:
std::common_type<const int>::type (equal to 'const int')
and I wondered whether the unary form shouldn't also perform the same "decay" as the n-ary form.
This problem makes me think that the current resolution proposal might not be ideal and I expect differences in implementations (for those who consider to apply this proposed resolution already). I see at least three reasonable options:Accept the current wording suggestion for LWG 2141 as it is and explain that to users.
Keep std::common_type as currently specified in the Standard and tell users to use std::decay where needed. Also fix other places in the library, e.g. the comparison functions of std::unique_ptr or a most of the time library functions.
Apply std::decay also in the unary specialization of std::common_type with the effect that std::common_type<const int&>::type returns int.
[2012-10-11 Marc Glisse comments]
If we are going with decay everywhere, I wonder whether we should also decay in the 2-argument version before and not only after. So if I specialize common_type<mytype, double>, common_type<const mytype, volatile double&> would automatically work.
[2012-10-11 Daniel provides wording for bullet 3 of his list:]
Change 20.10.7.6 [meta.trans.other] p3 as indicated:
template <class T> struct common_type<T> { typedef typename decay<T>::type type; }; template <class T, class U> struct common_type<T, U> { typedef typename decay<decltype(true ? declval<T>() : declval<U>())>::type type; };
[2013-03-15 Issues Teleconference]
Moved to Review.
Want to carefully consider the effect of decay vs. remove_reference with respect to constness before adopting, although this proposed resolution stands for review in Bristol.
[2013-04-18, Bristol meeting]
Previous wording:
This wording is relative to N3376.
In 20.10.7.6 [meta.trans.other] p3, change the common_type definition to
template <class T, class U> struct common_type<T, U> { typedef typename decay<decltype(true ? declval<T>() : declval<U>())>::type type; };
[2013-04-18, Bristol]
Move to Ready
[2013-09-29, Chicago]
Accepted for the working paper
Proposed resolution:
This wording is relative to N3485.
Change 20.10.7.6 [meta.trans.other] p3 as indicated:
template <class T> struct common_type<T> { typedef typename decay<T>::type type; }; template <class T, class U> struct common_type<T, U> { typedef typename decay<decltype(true ? declval<T>() : declval<U>())>::type type; };
Section: 30.6.9.1 [futures.task.members] Status: C++14 Submitter: Pete Becker Opened: 2012-03-12 Last modified: 2015-04-08
View all other issues in [futures.task.members].
View all issues with C++14 status.
Discussion:
According to 30.6.9.1 [futures.task.members] p.18:
[A] successful call to [packaged_task::]operator() synchronizes with a call to any member function of a future or shared_future object that shares the shared state of *this.
This requires that the call to operator() synchronizes with calls to future::wait_for, future::wait_until, shared_future::wait_for, and shared_future::wait_until, even when these functions return because of a timeout.
[2012, Portland: move to Open]
If it said "a successful return from" (or "a return from" to cover exceptions) the problem would be more obvious.
Detlef: will ask Anthony Williams to draft some wording.
Moved to open (Anthony drafted to draft)
[2013-09, Chicago: move to Ready]
Anthony's conclusion is that the offending paragraph is not needed. Already included in the statement that the state is made ready.
Recommendation: Remove 30.6.9.1 [futures.task.members] p18 (the synchronization clause). Redundant because of 30.6.4 [futures.state] p9.Moved to Ready
Proposed resolution:
This wording is relative to N3691.
Remove 30.6.9.1 [futures.task.members] p18 as indicated:
void operator()(ArgTypes... args);[…]
-18- Synchronization: a successful call to operator() synchronizes with (1.10) a call to any member function of a future or shared_future object that shares the shared state of *this. The completion of the invocation of the stored task and the storage of the result (whether normal or exceptional) into the shared state synchronizes with (1.10) the successful return from any member function that detects that the state is set to ready. [Note: operator() synchronizes and serializes with other functions through the shared state. — end note]
Section: 27.5.3 [ios.base] Status: C++14 Submitter: Alberto Ganesh Barbati Opened: 2012-03-14 Last modified: 2015-04-08
View all other issues in [ios.base].
View all issues with C++14 status.
Discussion:
The static function ios_base::xalloc() could be called from multiple threads and is not covered by 17.6.4.10 [res.on.objects] and 17.6.5.9 [res.on.data.races]. Adding a thread-safety requirement should not impose a significant burden on implementations, as the function can be easily implemented with hopefully lock-free atomics.
[2013-04-20, Bristol]
Unanimous.
Resolution: move tentatively ready. (Inform Bill about this issue.)[2013-09-29, Chicago]
Apply to Working Paper
Proposed resolution:
This wording is relative to N3376.
In 27.5.3.5 [ios.base.storage] add a new paragraph after paragraph 1:
static int xalloc();-1- Returns: index ++.
-?- Remarks: Concurrent access to this function by multiple threads shall not result in a data race (1.10 [intro.multithread]).
Section: 20.14 [type.index] Status: C++14 Submitter: Daniel Krügler Opened: 2012-03-18 Last modified: 2015-04-08
View all other issues in [type.index].
View all issues with C++14 status.
Discussion:
The class type type_index is a thin wrapper of type_info to adapt it as a valid associative container element. Similar to type_info, all member functions have an effective noexcept(true) specification, with the exception of hash_code() and name(). The actual effects of these functions is a direct call to type_info's hash_code() and name function, but according to 18.7 [support.rtti] these are both noexcept functions, so there is no reason for not declaring them as noexcept, too. In fact, one of the suggested changes of the original proposing paper N2530 specifically was to ensure that type_info would get a hash_code() function that guarantees not to throw exceptions (during that time the hash requirements did not allow to exit with an exception). From this we can conclude that type_index::hash_code() was intended to be nothrow.
It seems both consistent and technically simply to require these functions to be noexcept.[2013-03-15 Issues Teleconference]
Moved to Tentatively Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Modify the class type_index synopsis, 20.14.2 [type.index.overview] as indicated:
namespace std { class type_index { public: type_index(const type_info& rhs) noexcept; bool operator==(const type_index& rhs) const noexcept; bool operator!=(const type_index& rhs) const noexcept; bool operator< (const type_index& rhs) const noexcept; bool operator<= (const type_index& rhs) const noexcept; bool operator> (const type_index& rhs) const noexcept; bool operator>= (const type_index& rhs) const noexcept; size_t hash_code() const noexcept; const char* name() const noexcept; private: const type_info* target; // exposition only // Note that the use of a pointer here, rather than a reference, // means that the default copy/move constructor and assignment // operators will be provided and work as expected. }; }
Modify the prototype definitions in 20.14.3 [type.index.members] as indicated:
size_t hash_code() const noexcept;-8- Returns: target->hash_code()
const char* name() const noexcept;-9- Returns: target->name()
Section: 19.5.1 [syserr.errcat] Status: C++14 Submitter: Howard Hinnant Opened: 2012-03-21 Last modified: 2015-04-08
View all other issues in [syserr.errcat].
View all issues with C++14 status.
Discussion:
Should error_category have a default constructor?
If you look at the synopsis in 19.5.1.1 [syserr.errcat.overview], it appears the answer is no. There is no default constructor declared and there is another constructor declared (which should inhibit a default constructor). However in paragraph 1 of the same section, descriptive text says:Classes may be derived from error_category to support categories of errors in addition to those defined in this International Standard.
How shall classes derived from error_category construct their base?
Jonathan Wakely: In N2066 error_category was default-constructible. That is still the case in N2241, because no other constructor is declared. Then later N2422 (issue 6) declares the copy constructor as deleted, but doesn't add a default constructor, causing it to be no longer default-constructible. That looks like an oversight to me, and I think there should be a public default constructor. Daniel: A default-constructor indeed should be provided to allow user-derived classes as described by the standard. I suggest this one to be both noexcept and constexpr. The latter allows user-derived non-abstract classes to take advantage of the special constant initialization rule of 3.6.2 [basic.start.init] p2 b2 for objects with static (or thread) storage duration in namespace scope. Note that a constexpr constructor is feasible here, even though there exists a non-trivial destructor and even though error_category is not a literal type (see std::mutex for a similar design choice). In addition to that the proposed resolution fixes another minor glitch: According to 17.5.2.2 [functions.within.classes] virtual destructors require a semantics description. Alberto Ganesh Barbati: I would suggest to remove =default from the constructor instead. Please consider that defaulting a constructor or destructor may actually define them as deleted under certain conditions (see 12.1 [class.ctor]/5 and 12.4 [class.dtor]/5). Removing =default is easier than providing wording to ensures that such conditions do not occur.[2012-10 Portland: move to Ready]
The issue is real and the resolution looks good.
Are there similar issues elsewhere in this clause?
Potential to add constexpr to more constructors, but clearly a separable issue.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Modify the class error_category synopsis, 19.5.1.1 [syserr.errcat.overview] as indicated: [Drafting note: According to the general noexcept library guidelines destructors should not have any explicit exception specification. This destructor was overlooked during the paper analysis — end note]
namespace std { class error_category { public: constexpr error_category() noexcept; virtual ~error_category()noexcept; error_category(const error_category&) = delete; error_category& operator=(const error_category&) = delete; virtual const char* name() const noexcept = 0; virtual error_condition default_error_condition(int ev) const noexcept; virtual bool equivalent(int code, const error_condition& condition) const noexcept; virtual bool equivalent(const error_code& code, int condition) const noexcept; virtual string message(int ev) const = 0; bool operator==(const error_category& rhs) const noexcept; bool operator!=(const error_category& rhs) const noexcept; bool operator<(const error_category& rhs) const noexcept; }; }
Before 19.5.1.2 [syserr.errcat.virtuals] p1 insert a new prototype description as indicated:
virtual ~error_category();-?- Effects: Destroys an object of class error_category.
Before 19.5.1.3 [syserr.errcat.nonvirtuals] p1 insert a new prototype description as indicated:
constexpr error_category() noexcept;-?- Effects: Constructs an object of class error_category.
Section: 17.6.3.5 [allocator.requirements] Status: C++14 Submitter: Daniel Krügler Opened: 2012-03-05 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with C++14 status.
Discussion:
According to Table 28 — "Allocator requirements", the expression
a.allocate(n, u)
expects as second argument a value u that is described in Table 27 as:
a value of type YY::const_pointer obtained by calling YY::allocate, or else nullptr.
This description leaves it open, whether or whether not a value of type YY::const_void_pointer is valid or not. The corresponding wording in C++03 is nearly the same, but in C++03 there did not exist the concept of a general void_pointer for allocators. There is some evidence for support of void pointers because the general allocator_traits template declares
static pointer allocate(Alloc& a, size_type n, const_void_pointer hint);
and the corresponding function for std::allocator<T> is declared as:
pointer allocate(size_type, allocator<void>::const_pointer hint = 0);
As an additional minor wording glitch (especially when comparing with the NullablePointer requirements imposed on const_pointer and const_void_pointer), the wording seems to exclude lvalues of type std::nullptr_t, which looks like an unwanted artifact to me.
[ 2012-10 Portland: Move to Ready ]
No strong feeling that this is a big issue, but consensus that the proposed resolution is strictly better than the current wording, so move to Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Change Table 27 — "Descriptive variable definitions" in 17.6.3.5 [allocator.requirements]:
Variable | Definition |
---|---|
u |
a value of type |
Section: 20.9.13 [unord.hash] Status: C++14 Submitter: Ville Voutilainen Opened: 2012-04-10 Last modified: 2015-04-08
View other active issues in [unord.hash].
View all other issues in [unord.hash].
View all issues with C++14 status.
Discussion:
The paper proposes various hashing improvements. What it doesn't mention is hashing of enums; enums are integral types, and users expect them to have built-in hashing support, rather than having to convert enums to ints for uses with unordered containers and other uses of hashes. Daniel Krügler explains in c++std-lib-32412 that this is not achievable with a SFINAEd hash specialization because it would require a partial specialization with a type parameter and a non-type parameter with a default argument, which is currently not allowed, and hence the fixes in N3333 should be adopted instead.
[2012-10 Portland: Move to Open]
We agree this is a real issue that should be resolved, by specifying such a hash.
It is not clear that we should specify this as calling hash on the underlying_type, or whether that is overspecification and we merely require that the hash be supplied.
STL already has shipped an implementation, and is keen to provide wording.
[ 2013-04-14 STL provides rationale and improved wording ]
Rationale:
This can be achieved by inserting a very small tweak to the Standardese. We merely have to require that hash<Key> be valid when Key is an "enumeration type" (which includes both scoped and unscoped enums). This permits, but does not require, hash<Enum> to behave identically to hash<underlying_type<Enum>::type>, following existing precedent — note that when unsigned int and unsigned long are the same size, hash<unsigned int> is permitted-but-not-required to behave identically to hash<unsigned long>.
This proposed resolution doesn't specify anything else about the primary template, allowing implementations to do whatever they want for non-enums: static_assert nicely, explode horribly at compiletime or runtime, etc. While we're in the neighborhood, this proposed resolution contains an editorial fix. The 20.9 [function.objects] synopsis says "base template", which doesn't appear anywhere else in the Standard, and could confuse users into thinking that they need to derive from it. The proper phrase is "primary template".[2013-04-18, Bristol]
Proposed resolution:
This wording is relative to N3485.
In 20.9 [function.objects], header functional synopsis, edit as indicated:
namespace std { […] // 20.8.12, hash functionbaseprimary template: template <class T> struct hash; […] }
In 20.9.13 [unord.hash]/1 edit as indicated:
-1- The unordered associative containers defined in 23.5 [unord] use specializations of the class template hash as the default hash function. For all object types Key for which there exists a specialization hash<Key>, and for all enumeration types (7.2 [dcl.enum]) Key, the instantiation hash<Key> shall: […]
Section: 20.9 [function.objects] Status: C++14 Submitter: Scott Meyers Opened: 2012-02-15 Last modified: 2015-04-08
View all other issues in [function.objects].
View all issues with C++14 status.
Discussion:
20.9 [function.objects] p5 says:
To enable adaptors and other components to manipulate function objects that take one or two arguments it is required that the function objects correspondingly provide typedefs argument_type and result_type for function objects that take one argument and first_argument_type, second_argument_type, and result_type for function objects that take two arguments.
I have two concerns about this paragraph. First, the wording appears to prescribe a requirement for all function objects in valid C++ programs, but it seems unlikely that that is the intent. As such, the scope of the requirement is unclear. For example, there is no mention of these typedefs in the specification for closures (5.1.2), and Daniel Krügler has explained in the thread at http://tinyurl.com/856plkn that conforming implementations can detect the difference between closures with and without these typedefs. (Neither gcc 4.6 nor VC10 appear to define typedefs such as result_type for closure types. I have not tested other compilers.)
Second, the requirement appears to be unimplementable in some cases, notably for function objects returned from std::bind, as Howard Hinnant explains in the thread at http://tinyurl.com/6q5bos4. From what I can tell, the standard already defines which adaptability typedefs must be provided by various kinds of function objects in the specifications for those objects. Examples include the function objects specified in 20.9.4 [refwrap]-20.9.9 [negators]. I therefore suggest that 20.9 [function.objects]/5 simply be removed from the standard. I don't think it adds anything except opportunities for confusion.[2012-10 Portland: Move to Open]
This wording caused confusion earlier in the week when reviewing Stefan's paper on greater<>.
This phrasing sounds normative, but is actually descriptive but uses unfortunate wording.
The main reason this wording exists is to document the protocol required to support the legacy binders in Annex D.
Stefan points out that unary_negate and binary_negate have not been deprecated and rely on this. He plans a paper to remove this dependency.
Consensus that this wording is inadequate, confusing, and probably should be removed. However, that leaves a big hole in the specification for the legacy binders, that needs filling.
While not opposed to striking this paragraph, we will need the additional wording to fix the openning hole before this issue can move forward.
[ 2013-04-14 STL provides rationale ]
Rationale:
I've concluded that Scott's original proposed resolution was correct and complete. There are two sides to this story: the producers and the consumers of these typedefs.
Producers: As Scott noted, the Standard clearly documents which function objects must provide these typedefs. Some function objects must provide them unconditionally (e.g. plus<T> (for T != void), 20.9.5 [arithmetic.operations]/1), some conditionally (e.g. reference_wrapper<T>, 20.9.4 [refwrap]/2-4), and some don't have to provide them at all (e.g. lambdas, 5.1.2 [expr.prim.lambda]). These requirements are clear, so we shouldn't change them or even add informative notes. Furthermore, because these typedefs aren't needed in the C++11 world with decltype/perfect forwarding/etc., we shouldn't add more requirements to provide them.
Consumers: This is what we were concerned about at Portland. However, the consumers also clearly document their requirements in the existing text. For example, reference_wrapper<T> is also a conditional consumer, and 20.9.4 [refwrap] explains what typedefs it's looking for. We were especially concerned about the old negators and the deprecated binders, but they're okay too. 20.9.9 [negators] clearly says that unary_negate<Predicate> requires Predicate::argument_type to be a type, and binary_negate<Predicate> requires Predicate::first_argument_type and Predicate::second_argument_type to be types. (unary_negate/binary_negate provide result_type but they don't consume it.) X [depr.lib.binders] behaves the same way with Fn::first_argument_type, Fn::second_argument_type, and Fn::result_type. No additional wording is necessary.
A careful reading of 20.9 [function.objects]/5 reveals that it wasn't talking about anything beyond the mere existence of the mentioned typedefs — for example, it didn't mention that the function object's return type should be result_type, or even convertible to result_type. As the producers and consumers are certainly talking about the existence of the typedefs (in addition to clearly implying semantic requirements), we lose nothing by deleting the unnecessary paragraph.
[2013-04-18, Bristol]
Previous wording:
Remove 20.9 [function.objects] p5:
To enable adaptors and other components to manipulate function objects that take one or two arguments it is required that the function objects correspondingly provide typedefs argument_type and result_type for function objects that take one argument and first_argument_type, second_argument_type, and result_type for function objects that take two arguments.
Proposed resolution:
This wording is relative to N3485.
Edit 20.9 [function.objects] p5:
[Note:To enable adaptors and other components to manipulate function objects that take one or two arguments
it is required that the function objectsmany of the function objects in this clause correspondingly provide typedefs argument_type and result_type for function objects that take one argument and first_argument_type, second_argument_type, and result_type for function objects that take two arguments.— end note]
Section: 25.2.6 [alg.find.end] Status: C++14 Submitter: Andrew Koenig Opened: 2012-03-28 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
25.2.6 [alg.find.end] describes the behavior of find_end as returning:
The last iterator i in the range [first1,last1 - (last2 - first2)) such that for any nonnegative integer n < (last2 - first2), the following corresponding conditions hold: *(i + n) == *(first2 + n), pred(*(i + n), *(first2 + n)) != false.
Does "for any" here mean "for every" or "there exists a"? I think it means the former, but it could be interpreted either way.
Daniel: The same problem exists for the following specifications from Clause 25 [algorithms]:[2013-04-20, Bristol]
Unanimous agreement on the wording.
Resolution: move to tentatively ready[2013-09-29, Chicago]
Apply to Working Paper
Proposed resolution:
This wording is relative to N3376.
Change 25.2.6 [alg.find.end] p2 as indicated:
template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);[…]
-2- Returns: The last iterator i in the range [first1,last1 - (last2 - first2)) such that foranyevery nonnegative integer n < (last2 - first2), the following corresponding conditions hold: *(i + n) == *(first2 + n), pred(*(i + n), *(first2 + n)) != false. Returns last1 if [first2,last2) is empty or if no such iterator is found.
Change 25.2.13 [alg.search] p2 and p6 as indicated:
template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);[…]
-2- Returns: The first iterator i in the range [first1,last1 - (last2-first2)) such that foranyevery nonnegative integer n less than last2 - first2 the following corresponding conditions hold: *(i + n) == *(first2 + n), pred(*(i + n), *(first2 + n)) != false. Returns first1 if [first2,last2) is empty, otherwise returns last1 if no such iterator is found.
[…]
template<class ForwardIterator, class Size, class T> ForwardIterator search_n(ForwardIterator first, ForwardIterator last, Size count, const T& value); template<class ForwardIterator, class Size, class T, class BinaryPredicate> ForwardIterator search_n(ForwardIterator first, ForwardIterator last, Size count, const T& value, BinaryPredicate pred);[…]
-6- Returns: The first iterator i in the range [first,last-count) such that foranyevery non-negative integer n less than count the following corresponding conditions hold: *(i + n) == value, pred(*(i + n),value) != false. Returns last if no such iterator is found.
Change 25.3.10 [alg.reverse] p4 as indicated:
template<class BidirectionalIterator, class OutputIterator> OutputIterator reverse_copy(BidirectionalIterator first, BidirectionalIterator last, OutputIterator result);[…]
-4- Effects: Copies the range [first,last) to the range [result,result+(last-first)) such that foranyevery non-negative integer i < (last - first) the following assignment takes place: *(result + (last - first) - i) = *(first + i).
Change 25.3.13 [alg.partitions] p5 and p9 as indicated:
template<class ForwardIterator, class Predicate> ForwardIterator partition(ForwardIterator first, ForwardIterator last, Predicate pred);[…]
-5- Returns: An iterator i such that foranyevery iterator j in the range [first,i) pred(*j) != false, and foranyevery iterator k in the range [i,last), pred(*k) == false.
[…]
template<class BidirectionalIterator, class Predicate> BidirectionalIterator stable_partition(BidirectionalIterator first, BidirectionalIterator last, Predicate pred);[…]
-9- Returns: An iterator i such that foranyevery iterator j in the range [first,i), pred(*j) != false, and foranyevery iterator k in the range [i,last), pred(*k) == false. The relative order of the elements in both groups is preserved.
Change 25.4 [alg.sorting] p5 as indicated:
-5- A sequence is sorted with respect to a comparator comp if for
anyevery iterator i pointing to the sequence andanyevery non-negative integer n such that i + n is a valid iterator pointing to an element of the sequence, comp(*(i + n), *i) == false.
Change 25.4.2 [alg.nth.element] p1 as indicated:
template<class RandomAccessIterator> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last, Compare comp);-1- After nth_element the element in the position pointed to by nth is the element that would be in that position if the whole range were sorted. Also for
anyevery iterator i in the range [first,nth) andanyevery iterator j in the range [nth,last) it holds that: !(*i > *j) or comp(*j, *i) == false.
Change 25.4.3.1 [lower.bound] p2 as indicated:
template<lass ForwardIterator, class T> ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp);[…]
-2- Returns: The furthermost iterator i in the range [first,last] such that foranyevery iterator j in the range [first,i) the following corresponding conditions hold: *j < value or comp(*j, value) != false.
Change 25.4.3.2 [upper.bound] p2 as indicated:
template<lass ForwardIterator, class T> ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp);[…]
-2- Returns: The furthermost iterator i in the range [first,last] such that foranyevery iterator j in the range [first,i) the following corresponding conditions hold: !(value < *j) or comp(value, *j) == false.
Change 25.4.7 [alg.min.max] p21 and p23 as indicated:
template<class ForwardIterator> ForwardIterator min_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> ForwardIterator min_element(ForwardIterator first, ForwardIterator last, Compare comp);-21- Returns: The first iterator i in the range [first,last) such that for
anyevery iterator j in the range [first,last) the following corresponding conditions hold: !(*j < *i) or comp(*j, *i) == false. Returns last if first == last.
[…]
template<class ForwardIterator> ForwardIterator max_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> ForwardIterator max_element(ForwardIterator first, ForwardIterator last, Compare comp);-23- Returns: The first iterator i in the range [first,last) such that for
anyevery iterator j in the range [first,last) the following corresponding conditions hold: !(*i < *j) or comp(*i, *j) == false. Returns last if first == last.
Section: 29.7 [atomics.flag] Status: C++14 Submitter: Alberto Ganesh Barbati Opened: 2012-05-24 Last modified: 2015-04-08
View all other issues in [atomics.flag].
View all issues with C++14 status.
Discussion:
29.7 [atomics.flag]/4 describes the ATOMIC_FLAG_INIT, but it's not quite clear about a couple of points:
it's said that ATOMIC_FLAG_INIT "can be used to initialize an object of type atomic_flag" and the following example:
std::atomic_flag guard = ATOMIC_FLAG_INIT;
is presented. It's not clear whether the macro can also be used in the other initialization contexts:
std::atomic_flag guard ATOMIC_FLAG_INIT; std::atomic_flag guard {ATOMIC_FLAG_INIT}; struct A { std::atomic_flag flag; A(); }; A::A() : flag (ATOMIC_FLAG_INIT); A::A() : flag {ATOMIC_FLAG_INIT};
Please also note that examples are non-normative, according to the ISO directives, meaning that the wording presents no normative way to use the macro.
it's said that "It is unspecified whether an uninitialized atomic_flag object has an initial state of set or clear.". I believe the use of "uninitialized" is inappropriate. First of all, if an object is uninitialized it is obvious that we cannot assert anything about its state. Secondly, it doesn't address the following cases:
std::atomic_flag a; // object is "initialized" by trivial default constructor std::atomic_flag a {}; // object is value-initialized static std::atomic_flag a; // object is zero-initialized
strictly speaking a trivial constructor "initializes" the object, although it doesn't actually initialize the sub-objects.
it's said that "For a static-duration object, that initialization shall be static.". Considering the following example:
struct A { A(); // user-provided, not constexpr std::atomic_flag flag = ATOMIC_FLAG_INIT; // possibly other non-static data members }; static A a;
The object a.flag (as a sub-object of the object a) has static-duration, yet the initialization has to be dynamic because A::A is not constexpr.
[2012, Portland]
We would like to be able to allow more initialisation contexts for example:
However we need further input from experts with implementation specific knowledge to identify which additional contexts (if any) would be universally valid.
Moved to open
[2013, Chicago]
Move to Immediate, following review.
Some discussion over the explicit use of only copy initialization, and not direct initialization. This is necessary to allow the implementation of atomic_flag as an aggregate, and may be further reviewed in the future.
Accept for Working Paper
Proposed resolution:
[This wording is relative to N3376.]
Change 29.7 [atomics.flag]/4 as follows:
The macro ATOMIC_FLAG_INIT shall be defined in such a way that it can be used to initialize an object of type atomic_flag to the clear state. The macro can be used in the form:
atomic_flag guard = ATOMIC_FLAG_INIT;It is unspecified whether the macro can be used in other initialization contexts. For a complete static-duration object, that initialization shall be static.
It is unspecified whether an uninitializedUnless initialized with ATOMIC_FLAG_INIT, it is unspecified whether an atomic_flag object has an initial state of set or clear.[ Example:atomic_flag guard = ATOMIC_FLAG_INIT;
— end example ]
Section: 23.3.6.3 [vector.capacity] Status: WP Submitter: Daniel Krügler Opened: 2012-06-07 Last modified: 2015-05-22
View other active issues in [vector.capacity].
View all other issues in [vector.capacity].
View all issues with WP status.
Discussion:
As part of resolving LWG issue 2033 a wording change was done for resize() to respect the problem mentioned in the question:
Does a call to 'void resize(size_type sz)' of std::vector require the element type to be MoveAssignable because the call erase(begin() + sz, end()) mentioned in the Effects paragraph would require the element type to be MoveAssignable?
The wording change was to replace in 23.3.3.3 [deque.capacity] and 23.3.6.3 [vector.capacity]:
-1- Effects: If sz <= size(), equivalent to erase(begin() + sz, end()); […]
by:
-1- Effects: If sz <= size(), equivalent to calling pop_back() size() - sz times. […]
The overlooked side-effect of this wording change is that this implies a destruction order of the removed elements to be in reverse order of construction, but the previous version did not impose any specific destruction order due to the way how the semantics of erase is specified in Table 100.
Given the program:
#include <vector>
#include <iostream>
struct Probe {
int value;
Probe() : value(0) {}
Probe(int value) : value(value) {}
~Probe() { std::cout << "~Probe() of " << value << std::endl; }
};
int main() {
std::vector<Probe> v;
v.push_back(Probe(1));
v.push_back(Probe(2));
v.push_back(Probe(3));
std::cout << "---" << std::endl;
v.resize(0);
}
the last three lines of the output for every compiler I tested was:
~Probe() of 1 ~Probe() of 2 ~Probe() of 3
but a conforming implementation would now need to change this order to
~Probe() of 3 ~Probe() of 2 ~Probe() of 1
This possible stringent interpretation makes sense, because one can argue that sequence containers (or at least std::vector) should have the same required destruction order of it's elements, as elements of a C array or controlled by memory deallocated with an array delete have. I also learned that libc++ does indeed implement std::vector::resize in a way that the second output form is observed.
While I agree that required reverse-destruction would better mimic the natural behaviour of std::vector this was not required in C++03 and this request may be too strong. My current suggestion would be to restore the effects of the previous wording in regard to the destruction order, because otherwise several currently existing implementations would be broken just because of this additional requirement.[2013-03-15 Issues Teleconference]
Moved to Open.
Jonathan says that he believes this is a valid issue.
Walter wonders if this was intended when we made the previous change - if so, this would be NAD.
Jonathan said that Issue 2033 doesn't mention ordering.
Walter then asked if anyone is really unhappy that we're destroying items in reverse order of construction.
Jonathan points out that this conflicts with existing practice (libstc++, but not libc++).
Jonathan asked for clarification as to whether this change was intended by 2033.
[2014-06 Rapperswil]
Daniel points out that the ordering change was not intended.
General agreement that implementations should not be required to change.[2014-06-28 Daniel provides alternative wording]
[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
This wording is relative to N3936.
Change 23.3.3.3 [deque.capacity] as indicated: [Drafting note: The chosen wording form is similar to that for forward_list. Note that the existing Requires element already specifies the necessary operational requirements on the value type. — end drafting note]
void resize(size_type sz);-1- Effects: If sz <
[…]=size(), erases the last size() - sz elements from the sequenceequivalent to calling pop_back() size() - sz times. OtherwiseIf size() <= sz, appends sz - size() default-inserted elements to the sequence.void resize(size_type sz, const T& c);-3- Effects: If sz <
[…]=size(), erases the last size() - sz elements from the sequenceequivalent to calling pop_back() size() - sz times. OtherwiseIf size() < sz, appends sz - size() copies of c to the sequence.
Change 23.3.6.3 [vector.capacity] as indicated: [Drafting note: See deque for the rationale of the used wording. — end drafting note]
void resize(size_type sz);-12- Effects: If sz <
[…]=size(), erases the last size() - sz elements from the sequenceequivalent to calling pop_back() size() - sz times. OtherwiseIf size() < sz, appends sz - size() default-inserted elements to the sequence.void resize(size_type sz, const T& c);-15- Effects: If sz <
[…]=size(), erases the last size() - sz elements from the sequenceequivalent to calling pop_back() size() - sz times. OtherwiseIf size() < sz, appends sz - size() copies of c to the sequence.
Section: 17.6.3.5 [allocator.requirements], 20.7.8.2 [allocator.traits.members], 20.7.8 [allocator.traits] Status: C++14 Submitter: Bo Persson Opened: 2012-07-03 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with C++14 status.
Discussion:
N3376 describes in 20.7.8.2 [allocator.traits.members]/7
static size_type max_size(Alloc& a);Returns: a.max_size() if that expression is well-formed; otherwise, numeric_limits<size_type>::max().
The max_size function is supposed to call one of two functions that are both noexcept. To make this intermediate function useful for containers, it should preserve the noexcept attribute.
Proposed changes: In 20.7.8 [allocator.traits] and 20.7.8.2 [allocator.traits.members]/7, change the function signature tostatic size_type max_size(Alloc& a) noexcept;
[2012-08-05 Daniel comments]
On the first sight this does not seem like a defect of the specification, because the Allocator requirements in 17.6.3.5 [allocator.requirements] (Table 28) do not impose a no-throw requirement onto max_size(); the table just describes the fall-back implementation for max_size() if a given allocator does not provide such a function.
std::allocator as a special model of this concept and is allowed to increase the exception-guarantees for max_size(), but this does not imply a corresponding rules for other allocators. Furthermore, max_size() of Containers is not specified in terms of Allocator::max_size(), so again this is not a real contradiction. Nonetheless I think that the following stronger decision should be considered:Require that for all Allocators (as specified in 17.6.3.5 [allocator.requirements]) max_size() never throws an exception. This would it make much more useful to call this function in situations where no exception should leave the context.
Require that for all Allocators (as specified in 17.6.3.5 [allocator.requirements]) max_size() can be called on const allocator object. Together with the previous item this would allow an implementation of a container's max_size() function to delegate to the allocator's max_size() function.
In regard to the second statement it should be mentioned that there are two current specification deviations from that in the draft:
The synopsis of 20.7.8 [allocator.traits] uses a const allocator argument as part of the signature of the max_size function.
Both the synopsis of 20.13.1 [allocator.adaptor.syn] and the member specification in 20.13.4 [allocator.adaptor.members] p8 declare scoped_allocator_adaptor::max_size as const member function, but this function delegates to
allocator_traits<OuterAlloc>::max_size(outer_allocator())
where outer_allocator() resolves to the member function overload returning a const outer_allocator_type&.
The question arises whether these current defects actually point to a defect in the Allocator requirements and should be fixed there.
[ 2012-10 Portland: Move to Review ]
Consensus that the change seems reasonable, and that for any given type the template is intantiated with the contract should be 'wide' so this meets the guidelines we agreed in Madrid for C++11.
Some mild concern that while we don't imagine many allocator implementations throwing on this method, it is technically permited by current code that we would not be breaking, by turning throw expressions into disguised terminate calls. In this case, an example might be an instrumented 'logging' allocator that writes every function call to a log file or database, and might throw if that connection/file were no longer available.
Another option would be to make exception spefication a conditional no-except, much like we do for some swap functions and assignment operators. However, this goes against the intent of the Madrid adoption of noexcept which is that vendors are free to add such extensions, but we look for a clear line in the library specification, and do not want to introduce conditional-noexcept piecemeal. A change in our conventions here would require a paper addressing the library specification as a whole.
Consensus was to move forward, but move the issue only to Review rather than Ready to allow time for further comments. This issue should be considered 'Ready' next time it is reviewed unless we get such comments in the meantime.
[2013-04-18, Bristol]
Proposed resolution:
In 20.7.8 [allocator.traits] and 20.7.8.2 [allocator.traits.members]/7, change the function signature to
static size_type max_size(Alloc& a) noexcept;
Section: 25.4.2 [alg.nth.element] Status: C++14 Submitter: Peter Sommerlad Opened: 2012-07-06 Last modified: 2015-04-08
View all other issues in [alg.nth.element].
View all issues with C++14 status.
Discussion:
The specification of nth_element refers to operator< whereas all sorting without a compare function is based on operator<. While it is true that for all regular types both operators should be defined accordingly, all other sorting algorithms only rely on existence of operator<. So I guess the paragraph p1
After nth_element the element in the position pointed to by nth is the element that would be in that position if the whole range were sorted. Also for any iterator i in the range [first,nth) and any iterator j in the range [nth,last) it holds that: !(*i > *j) or comp(*j, *i) == false.
should read
After nth_element the element in the position pointed to by nth is the element that would be in that position if the whole range were sorted. Also for any iterator i in the range [first,nth) and any iterator j in the range [nth,last) it holds that: !(*j < *i) or comp(*j, *i) == false.
Note only "!(*i > *j)" was changed to "!(*j < *i)" and it would be more symmetric with comp(*j, *i) as well.
In theory this might be a semantic change to the spec, but I believe the mistake is unintended.[ 2012-10 Portland: Move to Ready ]
This is clearly correct by inspection, moved to Ready by unanimous consent.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Change 25.4.2 [alg.nth.element] p1 as indicated:
template<class RandomAccessIterator> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last, Compare comp);-1- After nth_element the element in the position pointed to by nth is the element that would be in that position if the whole range were sorted. Also for any iterator i in the range [first,nth) and any iterator j in the range [nth,last) it holds that:
!(*i > *j)!(*j < *i) or comp(*j, *i) == false.
Section: 26.5.8.2.2 [rand.dist.uni.real] Status: WP Submitter: Marshall Clow Opened: 2012-07-14 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
uniform_real says in 26.5.8.2.2 [rand.dist.uni.real] p1:
A uniform_real_distribution random number distribution produces random numbers x, a ≤ x < b,
but also that (26.5.8.2.2 [rand.dist.uni.real] p2):
explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);-2- Requires: a ≤ b and b - a ≤ numeric_limits<RealType>::max().
If you construct a uniform_real_distribution<RealType>(a, b) where there are no representable numbers between 'a' and 'b' (using RealType's representation) then you cannot satisfy 26.5.8.2.2 [rand.dist.uni.real].
An obvious example is when a == b.[2014-11-04 Urbana]
Jonathan provides wording.
[2014-11-08 Urbana]
Moved to Ready with the note.
There remains concern that the constructors are permitting values that may (or may not) be strictly outside the domain of the function, but that is a concern that affects the design of the random number facility as a whole, and should be addressed by a paper reviewing and addressing the whole clause, not picked up in the issues list one distribution at a time. It is still not clear that such a paper would be uncontroversial.
Proposed resolution:
This wording is relative to N4140.
Add a note after paragraph 1 before the synopsis in 26.5.8.2.2 [rand.dist.uni.real]:
-1- A uniform_real_distribution random number distribution produces random numbers , , distributed according to the constant probability density function
.
[Note: This implies that is undefined when a == b. — end note]
Drafting note: should be in math font, and a == b should be in code font.
Section: 20.8.1.3.4 [unique.ptr.runtime.modifiers] Status: C++14 Submitter: Geoffrey Romer Opened: 2012-07-16 Last modified: 2015-04-08
View all other issues in [unique.ptr.runtime.modifiers].
View all issues with C++14 status.
Discussion:
In 20.8.1.3.4 [unique.ptr.runtime.modifiers]/p1-2 of N3376, the description of reset() in the array specialization of unique_ptr partially duplicates the description of the base template method (as specified in 20.8.1.2.5 [unique.ptr.single.modifiers]/p3-5), but lacks some significant requirements. Specifically, the text introduced in LWG 998, and item 13 of LWG 762, is present only in the base template, not the specialization.
This gives the appearance that these requirements specifically do not apply to the specialization, which I don't believe is correct or intended: the issue of reset() operation order addressed by LWG 998 applies just as much to the derived template as to the base template, and the derived template has just as much need to rely on get_deleter()(get()) being well-defined, well-formed, and not throwing exceptions (arguably some of those properties follow from the fact that T is required to be a complete type, but not all). Assuming the derived template's reset() semantics are intended to be identical to the base template's, there is no need to explicitly specify the semantics of reset(pointer p) at all (since 20.8.1.3 [unique.ptr.runtime]/3 specifies "Descriptions are provided below only for member functions that have behavior different from the primary template."), and reset(nullptr_t p) can be specified by reference to the 'pointer' overload. This is more concise, and eliminates any ambiguity about intentional vs. accidental discrepancies.[2012-10 Portland: Move to Ready]
This resolution looks blatantly wrong, as it seems to do nothing but defer to primary template
where we should describe the contract here.
Ongoing discussion points out that the primary template has a far more carefully worded semantic for reset(p) that we would want to copy here.
STL points out that we need the nullptr overload for this dynamic-array form, as there is a deleted member function template that exists to steal overloads of pointer-to-derived, avoiding undifined behavior, so we need the extra overload.
Finally notice that there is blanket wording further up the clause saying we describe only changes from the primary template, so the proposed wording is in fact exactly correct. Move to Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Change 20.8.1.3.4 [unique.ptr.runtime.modifiers] as indicated:
void reset(pointer p = pointer()) noexcept;void reset(nullptr_t p) noexcept;-1- Effects:
If get() == nullptr there are no effects. Otherwise get_deleter()(get())Equivalent to reset(pointer()).-2- Postcondition: get() == p.
Section: 17.6.3.1 [utility.arg.requirements] Status: WP Submitter: Daniel Krügler Opened: 2012-07-19 Last modified: 2015-04-08
View all other issues in [utility.arg.requirements].
View all issues with WP status.
Discussion:
The lack of the definition of the DefaultConstructible requirements in C++03 was fixed by LWG 724 at a time where the core rules of list-initialization were slightly different than today, at that time value-initialization (shortly) was the primary rule for class types, i.e. just before applying CWG 1301, CWG 1324, and CWG 1368.
The order in 8.5.4 [dcl.init.list] p3 was changed to respect aggregate initialization, but that had the side-effect that formally aggregate types cannot satisfy the DefaultConstructible requirements anymore, because we require thatT u{};
value-initializes the object u.
Of-course exclusion of aggregates was not intended, therefore I suggest to extend the requirements in Table 19 (17.6.3.1 [utility.arg.requirements]) for empty aggregate-initialization as well.[ 2012-10 Portland: Move to Core ]
We are not qualified to pick apart the Core rules quickly at this point, but the consensus is that if the core language has changed in this manner, then the fix should similarly be applied in Core - this is not something that we want users of the language to have to say every time they want to Value initialize (or aggregate initialize) an object.
More to Open until we get a clear response from Core, Alisdair to file an issue with Mike.
[2013-04 Bristol: Back to Library]
The Core Working group opened, discussed, and resolved CWG 1578 as NAD for this library-related problem: Empty aggregate initialization and value-initialization are different core language concepts, and this difference can be observed (e.g. for a type with a deleted default-constructor).
[2014-02-15 Issaquah: Move to Ready]
AM: core says still LWG issue, wording has been non-controversial, move to ready?
NJ: what about durations? think they are ok
Ville: pair and a few other have value initialize
AM: look at core 1578
AM: value initialize would require (), remove braces from third row?
STL: no
PH: core has new issue on aggregates and non-aggregates.
AM: right, they said does not affect this issue
NJ: why ok with pair and tuple?
STL: will use (), tuple of aggregates with deleted constructor is ill-formed
Ville: aggregate with reference can't have ()
STL: {} would be an issue too
Ville: aggregate with reference will have () deleted implicitly
Move to Ready.
Proposed resolution:
This wording is relative to N3691.
Change Table 19 in 17.6.3.1 [utility.arg.requirements] as indicated:
Expression | Post-condition |
---|---|
T t; | object t is default-initialized |
T u{}; | object u is value-initialized or aggregate-initialized |
T() T{} |
a temporary object of type T is value-initialized or aggregate-initialized |
Section: 20.8.2.6 [util.smartptr.shared.atomic] Status: C++14 Submitter: Howard Hinnant Opened: 2012-07-28 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.atomic].
View all issues with C++14 status.
Discussion:
Looking at 20.8.2.6 [util.smartptr.shared.atomic]/p31
template<class T> bool atomic_compare_exchange_strong_explicit(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure);-31- Requires: p shall not be null.
What about v? Can it be null? And if so, what happens?
This looks closely related to C++11 issue LWG 1030, where we gave every signature in this section a:Requires: p shall not be null.
It looks like a simple oversight to me that we did not add for the atomic_compare_exchange_*:
Requires: p shall not be null and v shall not be null.
[2012-10 Portland: Move to Ready]
This is clearly the right thing to do, and Lawrence concurs.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Change 20.8.2.6 [util.smartptr.shared.atomic] as indicated:
template<class T> bool atomic_compare_exchange_weak( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);-27- Requires: p shall not be null and v shall not be null.
[…]template<class T> bool atomic_compare_exchange_weak_explicit( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); template<class T> bool atomic_compare_exchange_strong_explicit( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure);-31- Requires: p shall not be null and v shall not be null.
[…]
Section: 22.3.3.2.2 [conversions.string] Status: C++14 Submitter: Jonathan Wakely Opened: 2012-08-02 Last modified: 2015-04-08
View other active issues in [conversions.string].
View all other issues in [conversions.string].
View all issues with C++14 status.
Discussion:
There is no reason wstring_convert::converted() shouldn't be noexcept.
It might be possible for wstring_convert::state() and wbuffer_convert::state() to be noexcept too, depending on the requirements on mbstate_t.[2013-03-15 Issues Teleconference]
Moved to Tentatively Ready.
Defer the separate discsussion of state() to another issue, if anyone is ever motivated to file one.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Edit in the class template wstring_convert synopsis 22.3.3.2.2 [conversions.string] p2:
size_t converted() const noexcept;
Edit the signature before 22.3.3.2.2 [conversions.string] p6:
size_t converted() const noexcept;
Section: 22.3.3.2.2 [conversions.string], 22.3.3.2.3 [conversions.buffer] Status: C++14 Submitter: Jonathan Wakely Opened: 2012-08-02 Last modified: 2015-04-08
View other active issues in [conversions.string].
View all other issues in [conversions.string].
View all issues with C++14 status.
Discussion:
See discussion following c++std-lib-32710.
It's not specified what happens if wstring_convert and wbuffer_convert objects are constructed with null Codecvt pointers. Should the constructors have preconditions that the pointers are not null? If not, are conversions expected to fail, or is it undefined to attempt conversions if the pointers are null? There are no observer functions to check whether objects were constructed with valid Codecvt pointers. If the types are made movable such observers would be necessary even if the constructors require non-null pointers (see also LWG 2176).[2013-03-15 Issues Teleconference]
Moved to Tentatively Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Insert a new paragraph before 22.3.3.2.2 [conversions.string] paragraph 16:
wstring_convert(Codecvt *pcvt = new Codecvt); wstring_convert(Codecvt *pcvt, state_type state); wstring_convert(const byte_string& byte_err, const wide_string& wide_err = wide_string());-?- Requires: For the first and second constructors pcvt != nullptr.
-16- Effects: The first constructor shall store pcvt in cvtptr and default values in cvtstate, byte_err_string, and wide_err_string. The second constructor shall store pcvt in cvtptr, state in cvtstate, and default values in byte_err_string and wide_err_string; moreover the stored state shall be retained between calls to from_bytes and to_bytes. The third constructor shall store new Codecvt in cvtptr, state_type() in cvtstate, byte_err in byte_err_string, and wide_err in wide_err_string.
Insert a new paragraph before 22.3.3.2.3 [conversions.buffer] paragraph 10:
wbuffer_convert(std::streambuf *bytebuf = 0, Codecvt *pcvt = new Codecvt, state_type state = state_type());-?- Requires: pcvt != nullptr.
-10- Effects: The constructor constructs a stream buffer object, initializes bufptr to bytebuf, initializes cvtptr to pcvt, and initializes cvtstate to state.
Section: 22.3.3.2.2 [conversions.string], 22.3.3.2.3 [conversions.buffer] Status: C++14 Submitter: Jonathan Wakely Opened: 2012-08-02 Last modified: 2015-04-08
View other active issues in [conversions.string].
View all other issues in [conversions.string].
View all issues with C++14 status.
Discussion:
See discussion following c++std-lib-32699.
The constructors for wstring_convert and wbuffer_convert should be explicit, to avoid implicit conversions which take ownership of a Codecvt pointer and delete it unexpectedly. Secondly, 22.3.3.2.3 [conversions.buffer] p11 describes a destructor which is not declared in the class synopsis in p2. Finally, and most importantly, the definitions in 22.3.3.2.2 [conversions.string] and 22.3.3.2.3 [conversions.buffer] imply implicitly-defined copy constructors and assignment operators, which would do shallow copies of the owned Codecvt objects and result in undefined behaviour in the destructors. Codecvt is not required to be CopyConstructible, so deep copies are not possible. The wstring_convert and wstring_buffer types could be made move-only, but the proposed resolution below doesn't do so because of the lack of preconditions regarding null Codecvt pointers and the absence of observer functions that would allow users to check preconditions (see also LWG 2175).[2013-03-15 Issues Teleconference]
Moved to Review.
Jonathan pointed out that you can have an implicit constructor that takes ownership of a heap reference, which would result an unexpected deletion.
No-one really likes the 'naked new' in the interface here, either.
[2013-04-18, Bristol]
Proposed resolution:
This wording is relative to N3376.
Edit the class template wstring_convert synopsis in 22.3.3.2.2 [conversions.string] p2:
explicit wstring_convert(Codecvt *pcvt = new Codecvt); wstring_convert(Codecvt *pcvt, state_type state); explicit wstring_convert(const byte_string& byte_err, const wide_string& wide_err = wide_string()); ~wstring_convert(); wstring_convert(const wstring_convert&) = delete; wstring_convert& operator=(const wstring_convert&) = delete;
Edit the signatures before 22.3.3.2.2 [conversions.string] p16:
explicit wstring_convert(Codecvt *pcvt = new Codecvt); wstring_convert(Codecvt *pcvt, state_type state); explicit wstring_convert(const byte_string& byte_err, const wide_string& wide_err = wide_string());
Edit the class template wbuffer_convert synopsis in 22.3.3.2.3 [conversions.buffer] p2:
explicit wbuffer_convert(std::streambuf *bytebuf = 0, Codecvt *pcvt = new Codecvt, state_type state = state_type()); ~wbuffer_convert(); wbuffer_convert(const wbuffer_convert&) = delete; wbuffer_convert& operator=(const wbuffer_convert&) = delete;
Edit the signature before 22.3.3.2.3 [conversions.buffer] p10:
explicit wbuffer_convert(std::streambuf *bytebuf = 0, Codecvt *pcvt = new Codecvt, state_type state = state_type());
Section: 23.2.1 [container.requirements.general] Status: C++14 Submitter: Loïc Joly Opened: 2012-08-10 Last modified: 2015-04-08
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with C++14 status.
Discussion:
See also discussion following c++std-lib-32883 and c++std-lib-32897.
The requirements on CopyInsertable and MoveInsertable are either incomplete, or complete but hard to figure out. From e-mail c++std-lib-32897: Pablo Halpern: I agree that we need semantic requirements for all of the *Insertable concepts analogous to the requirements we have on similar concepts. Howard Hinnant: I've come to believe that the standard is actually correct as written in this area. But it is really hard to read. I would have no objection whatsoever to clarifications to CopyInsertable as you suggest (such as the post-conditions on v). And I do agree with you that the correct approach to the clarifications is to confirm that CopyInsertable implies MoveInsertable.[2012, Portland: Move to Tentatively Ready]
Move to Tentatively Ready by unanimous consent.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Edit 23.2.1 [container.requirements.general] p13 as indicated:
-13- […] Given a container type X having an allocator_type identical to A and a value_type identical to T and given an lvalue m of type A, a pointer p of type T*, an expression v of type (possibly const) T, and an rvalue rv of type T, the following terms are defined. If X is not allocator-aware, the terms below are defined as if A were std::allocator<T> — no allocator object needs to be created and user specializations of std::allocator<T> are not instantiated:
T is DefaultInsertable into X means that the following expression is well-formed:
allocator_traits<A>::construct(m, p);An element of X is default-inserted if it is initialized by evaluation of the expression
allocator_traits<A>::construct(m, p);where p is the address of the uninitialized storage for the element allocated within X.
T is
CopyMoveInsertable into X means that the following expression is well-formed:allocator_traits<A>::construct(m, p, rv);and when evaluated the following postconditions hold: The value of *p is equivalent to the value of rv before the evaluation. [Note: rv remains a valid object. Its state is unspecified — end note]
T is
MoveCopyInsertable into X means that, in addition to satisfying the MoveInsertable requirements, the following expression is well-formed:allocator_traits<A>::construct(m, p,rv);and when evaluated the following postconditions hold: The value of v is unchanged and is equivalent to *p.
T is EmplaceConstructible into X from args, for zero or more arguments args, means that the following expression is well-formed:
allocator_traits<A>::construct(m, p, args);T is Erasable from X means that the following expression is well-formed:
allocator_traits<A>::destroy(m, p);[Note: A container calls allocator_traits<A>::construct(m, p, args) to construct an element at p using args. The default construct in std::allocator will call ::new((void*)p) T(args), but specialized allocators may choose a different definition. — end note]
Section: 26.5.7.1 [rand.util.seedseq] Status: C++14 Submitter: Daniel Krügler Opened: 2012-08-18 Last modified: 2015-04-08
View all other issues in [rand.util.seedseq].
View all issues with C++14 status.
Discussion:
26.5.7.1 [rand.util.seedseq] p1 says upfront:
No function described in this section 26.5.7.1 [rand.util.seedseq] throws an exception.
This constraint seems non-implementable to me when looking especially at the members
template<class T> seed_seq(initializer_list<T> il); template<class InputIterator> seed_seq(InputIterator begin, InputIterator end);
which have the effect of invoking v.push_back() for the exposition-only member of type std::vector (or its equivalent) over all elements of the provided range, so out-of-memory exceptions are always possible and the seed_seq object doesn't seem to be constructible this way.
In addition to the potential lack-of-resources problem, the operations of InputIterator might also throw exceptions. Aside to that it should me mentioned, that a default constructor of vector<uint_least32_t> in theory can also throw exceptions, even though this seems less of a problem to me in this context, because such an implementation could easily use a different internal container in seed_seq that can hold this no-throw exception guarantee. Secondly, a slightly different problem category related to exceptions occurs for the member templatestemplate<class RandomAccessIterator> void generate(RandomAccessIterator begin, RandomAccessIterator end); template<class OutputIterator> void param(OutputIterator dest) const;
where the actual operations performed by the implementation would never need to throw, but since they invoke operations of a user-provided customization point, the overall operation, like for example
copy(v.begin(), v.end(), dest);
could also throw exceptions. In this particular example we can just think of a std::back_insert_iterator applied to a container that needs to allocate its elements used as the type for OutputIterator.
Even though Clause 26 [numerics] has mostly stronger exception constraints than other parts of the library the here discussed are overrestrictive, especially since no operation of std::seed_seq except the template generate is actually needed within the library implementation, as mentioned in the discussion of LWG 2124. I suggest to remove the general no-exception constraints for operations of std::seed_seq except for member size() and the default constructor and to provide specific wording for generate() and param() to ensure that the algorithm itself is a nothrow operation, which is especially for generate() important, because the templates specified in 26.5.3 [rand.eng] and 26.5.4 [rand.adapt] also depend on this property indirectly, which is further discussed in LWG 2181. Howard: I suggest to use a different form for the exception specification, something similar to 20.9.10.3 [func.bind.bind] p4:Throws: Nothing unless an operation on RandomAccessIterator throws an exception.
Daniel:
The currently suggested "what and when" form seems a bit more specific and harmonizes with the form used for function template generate_canonical from 26.5.7.2 [rand.util.canonical].[2013-04-20, Bristol]
Open an editorial issue on the exception wording ("Throws: What and when").
Solution: move to tentatively ready.[2013-09-29, Chicago]
Apply to Working Paper
Proposed resolution:
This wording is relative to N3376.
Edit 26.5.7.1 [rand.util.seedseq] p1 as indicated:
-1- No function described in this section 26.5.7.1 [rand.util.seedseq] throws an exception.
Edit 26.5.7.1 [rand.util.seedseq] around p2 as indicated:
seed_seq();-2- Effects: Constructs a seed_seq object as if by default-constructing its member v.
-?- Throws: Nothing.
Edit 26.5.7.1 [rand.util.seedseq] around p7 as indicated:
template<class RandomAccessIterator> void generate(RandomAccessIterator begin, RandomAccessIterator end);-7- Requires: RandomAccessIterator shall meet the requirements of a mutable random access iterator (Table 111) type. Moreover, iterator_traits<class RandomAccessIterator>::value_type shall denote an unsigned integer type capable of accommodating 32-bit quantities.
-8- Effects: Does nothing if begin == end. Otherwise, with s = v.size() and n = end - begin, fills the supplied range [begin, end) according to the following algorithm […] -?- Throws: What and when RandomAccessIterator operations of begin and end throw.
Edit 26.5.7.1 [rand.util.seedseq] around p9 as indicated:
size_t size() const;-9- Returns: The number of 32-bit units that would be returned by a call to param().
-??- Throws: Nothing. -10- Complexity: constant time.
Edit 26.5.7.1 [rand.util.seedseq] around p11 as indicated:
template<class OutputIterator> void param(OutputIterator dest) const;-11- Requires: OutputIterator shall satisfy the requirements of an output iterator (Table 108) type. Moreover, the expression *dest = rt shall be valid for a value rt of type result_type.
-12- Effects: Copies the sequence of prepared 32-bit units to the given destination, as if by executing the following statement:copy(v.begin(), v.end(), dest);-??- Throws: What and when OutputIterator operations of dest throw.
Section: 23.2.1 [container.requirements.general] Status: C++14 Submitter: Daniel Krügler Opened: 2012-08-20 Last modified: 2015-04-08
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with C++14 status.
Discussion:
According to Table 96 (Container requirements) the return type of X::reference and X::const_reference is "lvalue of T" and "const lvalue of T", respectively. This does not make much sense, because an lvalue is an expression category, not a type. It could also refer to an expression that has a type, but this doesn't make sense either in this context, because obviously X::[const_]reference are intended to refer to types.
Given the fact that vector<bool> has no real reference type for X::[const_]reference and this definition presumably is intended to cover such situations as well, one might think that the wording is just a sloppy form of "type that represents a [const] lvalue of T". But this is also problematic, because basically all proxy reference expressions are rvalues. It is unclear what the intention is. A straightward way of fixing this wording could make X::[const_]reference identical to [const] T&. This holds for all Library containers except for vector<bool>. Another way of solving this definition problem would be to impose a requirement that holds for both references and reference-like proxies. Both X::reference and X::const_reference would need to be convertible to const T&. Additionally X::reference would need to support for a mutable container an assignment expression of the form declval<X::reference>() = declval<T>() (this presentation intentionally does not require declval<X::reference&>() = declval<T>()). Further, the Table 96 does not impose any relations between X::reference and X::const_reference. It seems that at least X::reference needs to be convertible to X::const_reference. A related question is whether X::reference is supposed to be a mutable reference-like type, irrespective of whether the container is an immutable container or not. The way, type match_results defines reference identical to const_reference indicates one specific interpretation (similarly, the initializer_list template also defines member type reference equal to const value_type&). Note that this can be a different decision as that for iterator and const_iterator, e.g. for sets the type X::reference still is a mutable reference, even though iterator is described as constant iterator. The proposed resolution is incomplete in regard to the last question.[2013-03-15 Issues Teleconference]
Moved to Review.
Alisdair notes that this looks like wording in the right direction. Wonders about congruence of these typedefs and the similar ones for iterators.
[2013-09 Chicago]
Moved to Ready.
Consensus that the requirements should require real references, just like iterators, as containers are required to support at least ForwardIterators, which have the same restriction on references.
Matt will file a new issue for some additional concerns with regex match_results.
[2014-02-10, Daniel comments]
The new issue opened by Matt is LWG 2306.
[Issaquah 20014-10-11: Move to Immediate]
Issue should have been Ready in pre-meeting mailing.
Proposed resolution:
This wording is relative to N3376.
Change Table 96 — "Container requirements" as indicated:
Expression | Return type | Operational Semantics |
Assertion/note pre-/post-condition |
Complexity |
---|---|---|---|---|
X::reference |
|
compile time | ||
X::const_reference |
|
compile time |
Section: 30.6.6 [futures.unique_future], 30.6.7 [futures.shared_future] Status: C++14 Submitter: Vicente J. Botet Escriba Opened: 2012-09-20 Last modified: 2015-04-08
View all other issues in [futures.unique_future].
View all issues with C++14 status.
Discussion:
The functions future::wait_for, future::wait_until, shared_future::wait_for, and shared_future::wait_for can throw any timeout-related exceptions. It would be better if the wording could be more explicit. This is in line with the changes proposed in LWG 2093's Throws element of condition_variable::wait with predicate.
[2012, Portland: move to Review]
The phrase timeout-related exception does not exist.
2093 was put in review, and there is some dependency here with this issue.
If you provide a user-defined clock that throws, we need to put back an exception to allow that to be done.
We will put this in review and say that this cannot go in before 2093.
[2013-04-20, Bristol]
Accepted for the working paper
Proposed resolution:
[This resolution should not be adopted before resolving 2093]
[This wording is relative to N3376.]
Change 30.6.6 [futures.unique_future] as indicated:
template <class Rep, class Period> future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;-21- Effects: none if the shared state contains a deferred function (30.6.8 [futures.async]), otherwise blocks until the shared state is ready or until the relative timeout (30.2.4 [thread.req.timing]) specified by rel_time has expired.
-22- Returns: […] -??- Throws: timeout-related exceptions (30.2.4 [thread.req.timing]).template <class Clock, class Duration> future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;-23- Effects: none if the shared state contains a deferred function (30.6.8 [futures.async]), otherwise blocks until the shared state is ready or until the absolute timeout (30.2.4 [thread.req.timing]) specified by abs_time has expired.
-24- Returns: […] -??- Throws: timeout-related exceptions (30.2.4 [thread.req.timing]).
Change 30.6.7 [futures.shared_future] as indicated:
template <class Rep, class Period> future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;-23- Effects: none if the shared state contains a deferred function (30.6.8 [futures.async]), otherwise blocks until the shared state is ready or until the relative timeout (30.2.4 [thread.req.timing]) specified by rel_time has expired.
-24- Returns: […] -??- Throws: timeout-related exceptions (30.2.4 [thread.req.timing]).template <class Clock, class Duration> future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;-25- Effects: none if the shared state contains a deferred function (30.6.8 [futures.async]), otherwise blocks until the shared state is ready or until the absolute timeout (30.2.4 [thread.req.timing]) specified by abs_time has expired.
-26- Returns: […] -??- Throws: timeout-related exceptions (30.2.4 [thread.req.timing]).
Section: 30.6.8 [futures.async] Status: C++14 Submitter: Vicente J. Botet Escriba Opened: 2012-09-20 Last modified: 2015-04-08
View all other issues in [futures.async].
View all issues with C++14 status.
Discussion:
The description of the effects of async when the launch policy is launch::deferred doesn't state what is done with the result of the deferred function invocation and the possible exceptions as it is done for the asynchronous function when the policy is launch::async.
[2012, Portland: move to Open]
Detlef: agree with the problem but not with the resolution. The wording should be applied to all launch policies rather than having to be separately specified for each one.
Hans: we should redraft to factor out the proposed text outside the two bullets. Needs to be carefully worded to be compatible with the resolution of 2120 (see above).
Moved to open
[Issaquah 20014-10-11: Move to Immediate after SG1 review]
Proposed resolution:
[This wording is relative to N3376.]
Change 30.6.8 [futures.async] p3 bullet 2 as indicated:
template <class F, class... Args> future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type> async(F&& f, Args&&... args); template <class F, class... Args> future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type> async(launch policy, F&& f, Args&&... args);-2- Requires: […]
-3- Effects:: The first function behaves the same as a call to the second function with a policy argument of launch::async | launch::deferred and the same arguments for F and Args. […] The further behavior of the second function depends on the policy argument as follows (if more than one of these conditions applies, the implementation may choose any of the corresponding policies):
if policy & launch::async is non-zero […]
if policy & launch::deferred is non-zero — Stores DECAY_COPY(std::forward<F>(f)) and DECAY_COPY(std::forward<Args>(args))... in the shared state. These copies of f and args constitute a deferred function. Invocation of the deferred function evaluates INVOKE(std::move(g), std::move(xyz)) where g is the stored value of DECAY_COPY(std::forward<F>(f)) and xyz is the stored copy of DECAY_COPY(std::forward<Args>(args)).... Any return value is stored as the result in the shared state. Any exception propagated from the execution of the deferred function is stored as the exceptional result in the shared state. The shared state is not made ready until the function has completed. The first call to a non-timed waiting function (30.6.4 [futures.state]) on an asynchronous return object referring to this shared state shall invoke the deferred function in the thread that called the waiting function. Once evaluation of INVOKE(std::move(g), std::move(xyz)) begins, the function is no longer considered deferred. [Note: If this policy is specified together with other policies, such as when using a policy value of launch::async | launch::deferred, implementations should defer invocation or the selection of the policy when no more concurrency can be effectively exploited. — end note]
Section: 23.3.7 [vector.bool] Status: C++14 Submitter: Nevin Liber Opened: 2012-09-21 Last modified: 2015-04-08
View all other issues in [vector.bool].
View all issues with C++14 status.
Discussion:
It should have them so that it more closely matches the vector<T> interface, as this helps when writing generic code.
[2012, Portland: Move to Tentatively Ready]
Question on whether the variadic template is really needed, but it turns out to be needed to support emplace of no arguments.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Change the class template vector<bool> synopsis, 23.3.7 [vector.bool] p1, as indicated:
namespace std { template <class Allocator> class vector<bool, Allocator> { public: […] // modifiers: template <class... Args> void emplace_back(Args&&... args); void push_back(const bool& x); void pop_back(); template <class... Args> iterator emplace(const_iterator position, Args&&... args); iterator insert(const_iterator position, const bool& x); […] }; }
Section: 24.5.1.3.5 [reverse.iter.opref] Status: C++14 Submitter: Alisdair Meredith Opened: 2012-09-23 Last modified: 2015-04-08
View all other issues in [reverse.iter.opref].
View all issues with C++14 status.
Discussion:
The specification for reverse_iterator::operator-> returns the address of the object yielded by dereferencing with operator*, but does not have the usual wording about returning the true address of the object. As reverse_iterator requires the adapted iterator have at least the bidirectional iterator category, we know that the returned reference is a true reference, and not a proxy, hence we can use std::addressof on the reference to get the right answer.
This will most likely show itself as an issue with a list or vector of a type with such an overloaded operator, where algorithms are likely to work with a forward iteration, but not with reverse iteration.
[2013-04-20, Bristol]
Resolution: Goes to open now and move to review as soon as Daniel proposes a new wording.
[2014-02-12 Issaquah meeting]
Use std::addressof as the library uses elsewhere, then move as Immediate.
Proposed resolution:
Revise 24.5.1.3.5 [reverse.iter.opref] p1, as indicated:
Returns: addressof&(operator*()).
Section: 30.5 [thread.condition] Status: C++14 Submitter: Hans Boehm Opened: 2012-09-25 Last modified: 2015-04-08
View all other issues in [thread.condition].
View all issues with C++14 status.
Discussion:
The condition variable specification possibly leaves it unclear whether the effect of a notify_one() call can effectively be delayed, so that a call unblocks a wait() call that happens after the notify_one call. (For notify_all() this is not detectable, since it only results in spurious wake-ups.) Although this may at first glance seem like a contrived interpretation, it gains relevance since glibc in fact allows the analogous behavior (see here) and it is currently controversial whether this is correct and the Posix specification allows it (see here).
The following proposed resolution disallows the glibc implementation, remaining consistent with the believed intent of C++11. To make that clear, we require that the "unspecified total order" O from 30.5 [thread.condition] p4 be consistent with happens-before. We also intend that the 3 components of a wait occur in order in O, but stating that explicitly seems too pedantic. Since they are numbered, it appears clear enough that they are sequenced one after the other.
Another uncertainty with the current phrasing is whether there is a single total order that includes all c.v. accesses, or one total order per c.v. We believe it actually doesn't matter, because there is no way to tell the difference, but this requires a bit more thought. We resolved it one way, just to remove the potential ambiguity.
[2012, Portland: Move to Review]
This is linked to a glibc issue, and a POSIX specification issue.
We believe the proposed wording fixes the ambiguity in C++ and is compatible with the proposed resolution for Posix (which confirms the glibc behaviour as illegal).
Moved to review (Detlef hopes to send some improved wording to the reflector).
[2013-04-20, Bristol]
Accepted for the working paper
Proposed resolution:
This wording is relative to N3376.
Change 30.5 [thread.condition] p4 as indicated:
-4- The implementation shall behave as if all executions of notify_one, notify_all, and each part of the wait, wait_for, and wait_until executions are executed in
somea single unspecified total order consistent with the "happens before" order.
Section: 23 [containers] Status: C++14 Submitter: Richard Smith Opened: 2012-10-04 Last modified: 2015-04-08
View other active issues in [containers].
View all other issues in [containers].
View all issues with C++14 status.
Discussion:
Most (all?) of the standard library containers have explicit default constructors. Consequently:
std::set<int> s1 = { 1, 2 }; // ok std::set<int> s2 = { 1 }; // ok std::set<int> s3 = {}; // ill-formed, copy-list-initialization selected an explicit constructor
Note that Clang + libc++ rejects the declaration of s3 for this reason. This cannot possibly match the intent.
Suggested fix: apply this transformation throughout the standard library:
set() : set(Compare()) {} explicit set(const Compare& comp= Compare(), const Allocator& = Allocator());
[ 2012-10-06: Daniel adds concrete wording. ]
[2012, Portland: Move to Open]
This may be an issue better solved by a core language tweak. Throw the issue over to EWG and see whether they believe the issue is better resolved in Core or Library.
AJM suggest we spawn a new status of 'EWG' to handle such issues - and will move this issue appropriately when the software can record such resolutions.
[2013-08-27, Joaquín M López Muñoz comments:]
For the record, I'd like to point out that the resolution proposed by the submitter, namely replacing
explicit basic_string(const Allocator& a = Allocator());
by
basic_string() : basic_string(Allocator()) {} explicit basic_string(const Allocator& a);
(and similarly for other container and container-like classes) might introduce a potential backwards-compatibility problem related with explicit instantiation. Consider for instance
struct my_allocator { my_allocator(...); // no default ctor ... }; template class std::basic_string<char, std::char_traits<char>, my_allocator<char>>;
This (which I understand is currently a valid explicit instantiation of std::basic_string) will break if std::basic_string ctors are modified as proposed by this issue, since my_allocator doesn't have a default ctor.
[2013-10-06, Daniel comments:]
Issue 2303 describes the more general problem related to explicit instantiation requests in the current library and may help to solve this problem here as well.
[2014-02-13, Issaquah, Jonathan revises wording]
Previous resolution from Daniel [SUPERSEDED]:
This wording is relative to N3376.
The more general criterion for performing the suggested transformation was: Any type with an initializer-list constructor that also has an explicit default constructor.
Change class template basic_string synopsis, 21.4 [basic.string] p5 as indicated:
basic_string() : basic_string(Allocator()) {} explicit basic_string(const Allocator& a= Allocator());Change 21.4.2 [string.cons] before p1 as indicated:
explicit basic_string(const Allocator& a= Allocator());Change class template deque synopsis, 23.3.3.1 [deque.overview] p2 as indicated:
deque() : deque(Allocator()) {} explicit deque(const Allocator&= Allocator());Change 23.3.3.2 [deque.cons] before p1 as indicated:
explicit deque(const Allocator&= Allocator());Change class template forward_list synopsis, 23.3.4.1 [forwardlist.overview] p3 as indicated:
forward_list() : forward_list(Allocator()) {} explicit forward_list(const Allocator&= Allocator());Change 23.3.4.2 [forwardlist.cons] before p1 as indicated:
explicit forward_list(const Allocator&= Allocator());Change class template list synopsis, 23.3.5.1 [list.overview] p2 as indicated:
list() : list(Allocator()) {} explicit list(const Allocator&= Allocator());Change 23.3.5.2 [list.cons] before p1 as indicated:
explicit list(const Allocator&= Allocator());Change class template vector synopsis, 23.3.6.1 [vector.overview] p2 as indicated:
vector() : vector(Allocator()) {} explicit vector(const Allocator&= Allocator());Change 23.3.6.2 [vector.cons] before p1 as indicated:
explicit vector(const Allocator&= Allocator());Change class template specialization vector<bool> synopsis, 23.3.7 [vector.bool] p1 as indicated:
vector() : vector(Allocator()) {} explicit vector(const Allocator&= Allocator());Change class template map synopsis, 23.4.4.1 [map.overview] p2 as indicated:
map() : map(Compare()) {} explicit map(const Compare& comp= Compare(), const Allocator& = Allocator());Change 23.4.4.2 [map.cons] before p1 as indicated:
explicit map(const Compare& comp= Compare(), const Allocator& = Allocator());Change class template multimap synopsis, 23.4.5.1 [multimap.overview] p2 as indicated:
multimap() : multimap(Compare()) {} explicit multimap(const Compare& comp= Compare(), const Allocator& = Allocator());Change 23.4.5.2 [multimap.cons] before p1 as indicated:
explicit multimap(const Compare& comp= Compare(), const Allocator& = Allocator());Change class template set synopsis, 23.4.6.1 [set.overview] p2 as indicated:
set() : set(Compare()) {} explicit set(const Compare& comp= Compare(), const Allocator& = Allocator());Change 23.4.6.2 [set.cons] before p1 as indicated:
explicit set(const Compare& comp= Compare(), const Allocator& = Allocator());Change class template multiset synopsis, 23.4.7.1 [multiset.overview] p2 as indicated:
multiset() : multiset(Compare()) {} explicit multiset(const Compare& comp= Compare(), const Allocator& = Allocator());Change 23.4.7.2 [multiset.cons] before p1 as indicated:
explicit multiset(const Compare& comp= Compare(), const Allocator& = Allocator());Change class template unordered_map synopsis, 23.5.4.1 [unord.map.overview] p3 as indicated:
unordered_map() : unordered_map(see below) {} explicit unordered_map(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());Change 23.5.4.2 [unord.map.cnstr] before p1 as indicated:
unordered_map() : unordered_map(see below) {} explicit unordered_map(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());Change class template unordered_multimap synopsis, 23.5.5.1 [unord.multimap.overview] p3 as indicated:
unordered_multimap() : unordered_multimap(see below) {} explicit unordered_multimap(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());Change 23.5.5.2 [unord.multimap.cnstr] before p1 as indicated:
unordered_multimap() : unordered_multimap(see below) {} explicit unordered_multimap(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());Change class template unordered_set synopsis, 23.5.6.1 [unord.set.overview] p3 as indicated:
unordered_set() : unordered_set(see below) {} explicit unordered_set(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());Change 23.5.6.2 [unord.set.cnstr] before p1 as indicated:
unordered_set() : unordered_set(see below) {} explicit unordered_set(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());Change class template unordered_multiset synopsis, 23.5.7.1 [unord.multiset.overview] p3 as indicated:
unordered_multiset() : unordered_multiset(see below) {} explicit unordered_multiset(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());Change 23.5.7.2 [unord.multiset.cnstr] before p1 as indicated:
unordered_multiset() : unordered_multiset(see below) {} explicit unordered_multiset(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());
[Issaquah 20014-10-11: Move to Immediate after final review]
Proposed resolution:
This wording is relative to N3376.
The more general criterion for performing the suggested transformation was: Any type with an initializer-list constructor that also has an explicit default constructor.
Change class template basic_string synopsis, 21.4 [basic.string] p5 as indicated:
basic_string() : basic_string(Allocator()) { } explicit basic_string(const Allocator& a= Allocator());
Change 21.4.2 [string.cons] before p1 as indicated:
explicit basic_string(const Allocator& a= Allocator());
Change class template deque synopsis, 23.3.3.1 [deque.overview] p2 as indicated:
deque() : deque(Allocator()) { } explicit deque(const Allocator&= Allocator());
Change 23.3.3.2 [deque.cons] before p1 as indicated:
explicit deque(const Allocator&= Allocator());
Change class template forward_list synopsis, 23.3.4.1 [forwardlist.overview] p3 as indicated:
forward_list() : forward_list(Allocator()) { } explicit forward_list(const Allocator&= Allocator());
Change 23.3.4.2 [forwardlist.cons] before p1 as indicated:
explicit forward_list(const Allocator&= Allocator());
Change class template list synopsis, 23.3.5.1 [list.overview] p2 as indicated:
list() : list(Allocator()) { } explicit list(const Allocator&= Allocator());
Change 23.3.5.2 [list.cons] before p1 as indicated:
explicit list(const Allocator&= Allocator());
Change class template vector synopsis, 23.3.6.1 [vector.overview] p2 as indicated:
vector() : vector(Allocator()) { } explicit vector(const Allocator&= Allocator());
Change 23.3.6.2 [vector.cons] before p1 as indicated:
explicit vector(const Allocator&= Allocator());
Change class template specialization vector<bool> synopsis, 23.3.7 [vector.bool] p1 as indicated:
vector() : vector(Allocator()) { } explicit vector(const Allocator&= Allocator());
Change class template map synopsis, 23.4.4.1 [map.overview] p2 as indicated:
map() : map(Compare()) { } explicit map(const Compare& comp= Compare(), const Allocator& = Allocator());
Change 23.4.4.2 [map.cons] before p1 as indicated:
explicit map(const Compare& comp= Compare(), const Allocator& = Allocator());
Change class template multimap synopsis, 23.4.5.1 [multimap.overview] p2 as indicated:
multimap() : multimap(Compare()) { } explicit multimap(const Compare& comp= Compare(), const Allocator& = Allocator());
Change 23.4.5.2 [multimap.cons] before p1 as indicated:
explicit multimap(const Compare& comp= Compare(), const Allocator& = Allocator());
Change class template set synopsis, 23.4.6.1 [set.overview] p2 as indicated:
set() : set(Compare()) { } explicit set(const Compare& comp= Compare(), const Allocator& = Allocator());
Change 23.4.6.2 [set.cons] before p1 as indicated:
explicit set(const Compare& comp= Compare(), const Allocator& = Allocator());
Change class template multiset synopsis, 23.4.7.1 [multiset.overview] p2 as indicated:
multiset() : multiset(Compare()) { } explicit multiset(const Compare& comp= Compare(), const Allocator& = Allocator());
Change 23.4.7.2 [multiset.cons] before p1 as indicated:
explicit multiset(const Compare& comp= Compare(), const Allocator& = Allocator());
Change class template unordered_map synopsis, 23.5.4.1 [unord.map.overview] p3 as indicated:
unordered_map(); explicit unordered_map(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());
Change 23.5.4.2 [unord.map.cnstr] before p1 as indicated:
unordered_map() : unordered_map(size_type(see below)) { } explicit unordered_map(size_type n-1- Effects: Constructs an empty= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());unordered_map
using the specified hash function, key equality func-
tion, and allocator, and using at least n buckets.If n is not provided,For the default constructor
the number of buckets is implementation-defined.max_load_factor()
returns 1.0.
Change class template unordered_multimap synopsis, 23.5.5.1 [unord.multimap.overview] p3 as indicated:
unordered_multimap(); explicit unordered_multimap(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());
Change 23.5.5.2 [unord.multimap.cnstr] before p1 as indicated:
unordered_multimap() : unordered_multimap(size_type(see below)) { } explicit unordered_multimap(size_type n-1- Effects: Constructs an empty= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());unordered_multimap
using the specified hash function, key equality
function, and allocator, and using at least n buckets.If n is not provided,For the default constructor
the number of buckets is implementation-defined.max_load_factor()
returns 1.0.
Change class template unordered_set synopsis, 23.5.6.1 [unord.set.overview] p3 as indicated:
unordered_set(); explicit unordered_set(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());
Change 23.5.6.2 [unord.set.cnstr] before p1 as indicated:
unordered_set() : unordered_set(size_type(see below)) { } explicit unordered_set(size_type n-1- Effects: Constructs an empty= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());unordered_set
using the specified hash function, key equality func-
tion, and allocator, and using at least n buckets.If n is not provided,For the default constructor
the number of buckets is implementation-defined.max_load_factor()
returns 1.0.
Change class template unordered_multiset synopsis, 23.5.7.1 [unord.multiset.overview] p3 as indicated:
unordered_multiset(); explicit unordered_multiset(size_type n= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());
Change 23.5.7.2 [unord.multiset.cnstr] before p1 as indicated:
unordered_multiset() : unordered_multiset(size_type(see below)) { } explicit unordered_multiset(size_type n-1- Effects: Constructs an empty= see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());unordered_multiset
using the specified hash function, key equality
function, and allocator, and using at least n buckets.If n is not provided,For the default constructor
the number of buckets is implementation-defined.max_load_factor()
returns 1.0.
Section: 23.6 [container.adaptors] Status: C++14 Submitter: Sebastian Mach Opened: 2012-10-05 Last modified: 2015-04-08
View all other issues in [container.adaptors].
View all issues with C++14 status.
Discussion:
The stack class template does not have an member type iterator, and therefore instantiations do not meet the general container requirements as described in 23.2.1 [container.requirements.general]. But 23.6.1 [container.adaptors.general] p1 says:
The headers <queue> and <stack> define the container adaptors queue, priority_queue, and stack. These container adaptors meet the requirements for sequence containers.
Since sequence containers is a subset of general containers, this imposes requirements on the container adaptors that are not satisfied.
Daniel Krügler: The wording change was performed as an editorial reorganization as requested by GB 116 occuring first in N3242, as a side-effect it does now make the previous implicit C++03 classification to [lib.sequences]/1 more obvious. As the NB comment noticed, the adaptors really are not sequences nor containers, so this wording needs to be fixed. The most simple way to realize that is to strike the offending sentence.
[ Daniel adds concrete wording. ]
[2013-04-20, Bristol]
Unanimous consensus that queue and stack are not meant to be sequences.
Decision: move to tentatively ready[2013-09-29, Chicago]
Apply to Working Paper
Proposed resolution:
This wording is relative to N3376.
Change 23.6.1 [container.adaptors.general] p1 as indicated:
-1- The headers <queue> and <stack> define the container adaptors queue, priority_queue, and stack.
These container adaptors meet the requirements for sequence containers.
Section: 20.10.4.3 [meta.unary.prop] Status: C++14 Submitter: Daniel Krügler Opened: 2012-10-06 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with C++14 status.
Discussion:
The pre-conditions for the type is_copy_constructible allow for template argument types were the language forbids forming a reference, namely void types and function types that have cv-qualifiers or a ref-qualifier.
But the current wording in Table 49 defining the predicate condition,is_constructible<T, const T&>::value is true.
leaves it open whether such argument types would (a) create a well-formed instantiation of the trait template or if so (b) what the outcome of the trait evaluation would be, as an example consider std::is_copy_constructible<void>.
Current implementations differ, e.g. gcc accepts the instantiation and returns a false result, VS 2012 also accepts the instantiation but returns true. I would suggest that the wording clarifies that the instantiation would be valid for these types and I also would strongly prefer the outcome that the trait would always return false for these types. The latter seems rather natural to me, because there is no way to define a variable of void type or of function type at all, so it would be surprising to return a positive result for copy or move construction if no other construction could succeed. It is also not possible to assign to a any of these values (because there is no way to form lvalues of them), so the same argumentation can be applied to the is_copy/move_assignable traits as well. To reduce the amount of wording changes and repetitions, I suggest to define the term referenceable type in sub-clause 17.3 [definitions] or alternatively in the core language to describe types to which references can be created via a typedef name. This definition corresponds to what the support concept ReferentType intended to describe during concept time. In addition, LWG issue 2101 can also take advantage of the definition of a referenceable type. If the proposed resolution for LWG issue 2101 would be accepted, there is an alternative solution possible with the same effects. Now we would be able to use the now always well-formed instantiation of std::add_lvalue_reference to modify the current definition of is_copy_constructible tois_constructible<T,
typename add_lvalue_reference<
typename add_const<T>::type>::type>::value is true.
and similar changes for the other affected traits.
[2012-10 Portland: Move to Open]
Referencable-type should be defined as "something that can be bound into a reference" or similar, rather than a list of types where that is true today. We can then provide the list of known types that cannot be bound as examples that do not qualify in a note.
Otherwise we are happy with the wording. AJM to redraft the definition and move to Review.
[2013-04-18, Bristol]
Proposed resolution:
This wording is relative to N3376.
Add the following new definition to 17.3 [definitions] as indicated:
referenceable type [defns.referenceable]
An object type, a function type that does not have cv-qualifiers or a ref-qualifier, or a reference type. [Note: The term describes a type to which a reference can be created, including reference types. — end note]
Change Table 49 as indicated:
Template | Condition | Preconditions |
---|---|---|
template <class T> struct is_copy_constructible; |
For a referenceable type T, the same result as is_constructible<T, const T&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
template <class T> struct is_move_constructible; |
For a referenceable type T, the same result as is_constructible<T, T&&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
… | ||
template <class T> struct is_copy_assignable; |
For a referenceable type T, the same result as is_assignable<T&, const T&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
template <class T> struct is_move_assignable; |
For a referenceable type T, the same result as is_assignable<T&, T&&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
… | ||
template <class T> struct is_trivially_copy_constructible; |
For a referenceable type T, the same result as is_trivially_constructible<T, const T&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
template <class T> struct is_trivially_move_constructible; |
For a referenceable type T, the same result as is_trivially_constructible<T, T&&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
… | ||
template <class T> struct is_trivially_copy_assignable; |
For a referenceable type T, the same result as is_trivially_assignable<T&, const T&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
template <class T> struct is_trivially_move_assignable; |
For a referenceable type T, the same result as is_trivially_assignable<T&, T&&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
… | ||
template <class T> struct is_nothrow_copy_constructible; |
For a referenceable type T, the same result as is_nothrow_constructible<T, const T&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
template <class T> struct is_nothrow_move_constructible; |
For a referenceable type T, the same result as is_nothrow_constructible<T, T&&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
… | ||
template <class T> struct is_nothrow_copy_assignable; |
For a referenceable type T, the same result as is_nothrow_assignable<T&, const T&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
template <class T> struct is_nothrow_move_assignable; |
For a referenceable type T, the same result as is_nothrow_assignable<T&, T&&>::value |
T shall be a complete type, (possibly cv-qualified) void, or an array of unknown bound. |
Section: 20.10.4.3 [meta.unary.prop] Status: C++14 Submitter: Daniel Krügler Opened: 2012-10-07 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with C++14 status.
Discussion:
The pre-conditions for the trait is_signed allow for any types as template arguments, including non-arithmetic ones.
But the current wording in Table 49 defining the predicate condition,is_arithmetic<T>::value && T(-1) < T(0)
looks like real code and so leaves it open whether such argument types would create a well-formed instantiation of the trait template or not. As written this definition would lead to a hard instantiation error for a non-arithmetic type like e.g.
struct S {};
I would suggest that the wording clarifies that the instantiation would be valid for such types as well, by means of a specification that is not an exact code pattern. This also reflects how existing implementations behave.
[2013-03-15 Issues Teleconference]
Moved to Tentatively Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Change Table 49 as indicated:
Template | Condition | Preconditions |
---|---|---|
template <class T> struct is_signed; |
If is_arithmetic<T>::value integral_constant<bool, T(-1) < T(0)>::value; otherwise, false. |
|
template <class T> struct is_unsigned; |
If is_arithmetic<T>::value integral_constant<bool, T(0) < T(-1)>::value; otherwise, false. |
Section: 23.2.2 [container.requirements.dataraces] Status: C++14 Submitter: Jonathan Wakely Opened: 2012-10-17 Last modified: 2015-04-08
View all other issues in [container.requirements.dataraces].
View all issues with C++14 status.
Discussion:
23.2.2 [container.requirements.dataraces]/2 says "[…] implementations are required to avoid data races when the contents of the contained object in different elements in the same sequence, excepting vector<bool>, are modified concurrently."
This should say "same container" instead of "same sequence", to avoid the interpretation that it only applies to sequence containers.
[2013-03-15 Issues Teleconference]
Moved to Tentatively Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Change 23.2.2 [container.requirements.dataraces]/2 as indicated:
-2- Notwithstanding (17.6.5.9 [res.on.data.races]), implementations are required to avoid data races when the contents of the contained object in different elements in the same
-3- [Note: For a vector<int> x with a size greater than one, x[1] = 5 and *x.begin() = 10 can be executed concurrently without a data race, but x[0] = 5 and *x.begin() = 10 executed concurrently may result in a data race. As an exception to the general rule, for a vector<bool> y, y[0] = true may race with y[1] = true. — end note ]sequencecontainer, excepting vector<bool>, are modified concurrently.
Section: 20.13.4 [allocator.adaptor.members] Status: C++14 Submitter: Jonathan Wakely Opened: 2012-10-19 Last modified: 2015-04-08
View all other issues in [allocator.adaptor.members].
View all issues with C++14 status.
Discussion:
In 20.13.4 [allocator.adaptor.members] paragraph 11 the effects clause says a tuple should be constructed with inner_allocator_type(), but that creates an rvalue which cannot bind to inner_allocator_type&, and would also be wrong if this->inner_allocator() != inner_allocator_type(). This could be considered editorial, since the current wording doesn't even compile.
Secondly, in the same paragraph, the tuple objects xprime and yprime seem to be lvalues and might be constructed by copying x and y. This prevents using scoped_allocator to construct pairs from arguments of move-only types. I believe the tuple_cast() expressions should use std::move(x) and std::move(y) to move from the incoming arguments (which are passed by value to candidates for moving) and the final sentence of the paragraph should be:
then calls OUTERMOST_ALLOC_TRAITS(*this)::construct(OUTERMOST (*this), p, piecewise_construct, std::move(xprime), std::move(yprime)).
so that the objects are passed to std::pair's piecewise constructor as rvalues and are eligible for moving into the constructor arguments. This could also be considered editorial, as the current wording prevents certain uses which were intended to be supported.
I've implemented these changes and can confirm they allow code to work that can't be compiled according to the current wording.[2013-03-15 Issues Teleconference]
Moved to Review.
The resolution looks good, with wording provided by a recent implementer. However, it will take more time than the telecon allows to review with confidence, and we would like Pablo to at least take a look over the resolution and confirm that it matches the design intent.
[2013-04-18, Bristol]
Proposed resolution:
This wording is relative to N3376.
Change 20.13.4 [allocator.adaptor.members] paragraph 11 as indicated:
-11- Effects: Constructs a tuple object xprime from x by the following rules:
If uses_allocator<T1, inner_allocator_type>::value is false and is_constructible<T1, Args1...>::value is true, then xprime is x.
Otherwise, if uses_allocator<T1, inner_allocator_type>::value is true and is_constructible<T1, allocator_arg_t, inner_allocator_type, Args1...>::value is true, then xprime is tuple_cat(tuple<allocator_arg_t, inner_allocator_type&>( allocator_arg, inner_allocator
_type()), std::move(x)).Otherwise, if uses_allocator<T1, inner_allocator_type>::value is true and is_constructible<T1, Args1..., inner_allocator_type>::value is true, then xprime is tuple_cat(std::move(x), tuple<inner_allocator_type&>(inner_allocator
_type())).Otherwise, the program is ill-formed.
and constructs a tuple object yprime from y by the following rules:
If uses_allocator<T2, inner_allocator_type>::value is false and is_constructible<T2, Args2...>::value is true, then yprime is y.
Otherwise, if uses_allocator<T2, inner_allocator_type>::value is true and is_constructible<T2, allocator_arg_t, inner_allocator_type, Args2...>::value is true, then yprime is tuple_cat(tuple<allocator_arg_t, inner_allocator_type&>( allocator_arg, inner_allocator
_type()), std::move(y)).Otherwise, if uses_allocator<T2, inner_allocator_type>::value is true and is_constructible<T2, Args2..., inner_allocator_type>::value is true, then yprime is tuple_cat(std::move(y), tuple<inner_allocator_type&>(inner_allocator
_type())).Otherwise, the program is ill-formed.
then calls OUTERMOST_ALLOC_TRAITS(*this)::construct(OUTERMOST(*this), p, piecewise_construct, std::move(xprime), std::move(yprime)).
Section: 28.11.2 [re.alg.match], 28.11.3 [re.alg.search] Status: C++14 Submitter: Pete Becker Opened: 2012-10-24 Last modified: 2015-04-08
View all other issues in [re.alg.match].
View all issues with C++14 status.
Discussion:
Table 142 lists post-conditions on the match_results object when a call to regex_match succeeds. regex_match is required to match the entire target sequence. The post-condition for m[0].matched is "true if a full match was found." Since these are conditions for a successful search which is, by definition, a full match, the post-condition should be simply "true".
There's an analogous probem in Table 143: the condition for m[0].matched is "true if a match was found, false otherwise." But Table 143 gives post-conditions for a successful match, so the condition should be simply "true".
Furthermore, they have explicit requirements for m[0].first, m[0].second, and m[0].matched. They also have requirements for the other elements of m, described as m[n].first, m[n].second, and m[n].matched, in each case qualifying the value of n as "for n < m.size()". Since there is an explicit description for n == 0, this qualification should be "for 0 < n < m.size()" in all 6 places.
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3376.
Change Table 142 as indicated:
Element | Value |
---|---|
… | |
m[0].first | first |
m[0].second | last |
m[0].matched |
true |
m[n].first |
For all integers 0 < n < m.size(), the start of the sequence
that matched sub-expression n. Alternatively, if subexpression n did not participate in the match, then last. |
m[n].second |
For all integers 0 < n < m.size(), the end of the sequence that
matched sub-expression n. Alternatively, if sub-expression n did not participate in the match, then last. |
m[n].matched | For all integers 0 < n < m.size(), true if sub-expression n participated in the match, false otherwise. |
Change Table 143 as indicated:
Element | Value |
---|---|
… | |
m[0].first | The start of the sequence of characters that matched the regular expression |
m[0].second | The end of the sequence of characters that matched the regular expression |
m[0].matched |
true |
m[n].first |
For all integers 0 < n < m.size(), the start of the sequence
that matched sub-expression n. Alternatively, if subexpression n did not participate in the match, then last. |
m[n].second |
For all integers 0 < n < m.size(), the end of the sequence that
matched sub-expression n. Alternatively, if sub-expression n did not participate in the match, then last. |
m[n].matched | For all integers 0 < n < m.size(), true if sub-expression n participated in the match, false otherwise. |
Section: 21.4.5 [string.access] Status: C++14 Submitter: Nevin Liber Opened: 2012-10-26 Last modified: 2015-04-08
View all other issues in [string.access].
View all issues with C++14 status.
Discussion:
basic_string::at() has a wide contract and should not have a "Requires" clause on it.
[2013-01-17, Juan Soulie comments]
This issue would also apply to every member function of basic_string that throws out_of_range, and to some cases where a length_error can be thrown.
[2013-03-15 Issues Teleconference]
Moved to Review.
While this could simply move to Ready on inspection, there is concern that this will not be the only such case. Alisdair volunteers to review clause 21/23 for more of such issues for Bristol, and update the proposed resolution as necessary.
[2013-04-18, Bristol]
Proposed resolution:
This wording is relative to N3376.
Remove 21.4.5 [string.access] p5:
const_reference at(size_type pos) const; reference at(size_type pos);-6- Throws: out_of_range if pos >= size(). -7- Returns: operator[](pos).
-5- Requires: pos < size()
Section: 23.3 [sequences] Status: C++14 Submitter: Jonathan Wakely Opened: 2012-10-31 Last modified: 2015-04-08
View all other issues in [sequences].
View all issues with C++14 status.
Discussion:
DR 704 ensures allocator-aware containers can reuse existing elements during copy/move assignment, and sequence containers can do the same for assign().
But apart from std::list (which was changed by DR 320) the sequence containers define the Effects of assign() in terms of clear() followed by insert. A user-defined allocator can easily tell whether all old elements are cleared and then new elements inserted or whether existing elements are assigned to, so those Effects clauses cannot be ignored via the as-if rule. The descriptions of the assign() members for deque, forward_list and vector should be removed. Their intended effects are entirely described by the sequence container requirements table, and the specific definitions of them are worse than redundant, they're contradictory (if the operations are defined in terms of erase and insert then there's no need for elements to be assignable.) The descriptions of assign() for list are correct but redundant, so should be removed too.[2013-03-15 Issues Teleconference]
Moved to Tentatively Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3376.
Edit 23.3.3.2 [deque.cons] to remove everything after paragraph 10:
template <class InputIterator> void assign(InputIterator first, InputIterator last);
-11- Effects:erase(begin(), end()); insert(begin(), first, last);void assign(size_type n, const T& t);
-12- Effects:erase(begin(), end()); insert(begin(), n, t);
Edit 23.3.4.2 [forwardlist.cons] to remove everything after paragraph 10:
template <class InputIterator> void assign(InputIterator first, InputIterator last);
-11- Effects: clear(); insert_after(before_begin(), first, last);void assign(size_type n, const T& t);
-12- Effects: clear(); insert_after(before_begin(), n, t);
Edit 23.3.5.2 [list.cons] to remove everything after paragraph 10:
template <class InputIterator> void assign(InputIterator first, InputIterator last);
-11- Effects: Replaces the contents of the list with the range [first, last).void assign(size_type n, const T& t);
-12- Effects: Replaces the contents of the list with n copies of t.
Edit 23.3.6.2 [vector.cons] to remove everything after paragraph 10:
template <class InputIterator> void assign(InputIterator first, InputIterator last);
-11- Effects:erase(begin(), end()); insert(begin(), first, last);void assign(size_type n, const T& t);
-12- Effects:erase(begin(), end()); insert(begin(), n, t);
Section: 23.3 [sequences], 23.4 [associative], 23.5 [unord] Status: C++14 Submitter: Jonathan Wakely Opened: 2012-11-01 Last modified: 2015-04-08
View all other issues in [sequences].
View all issues with C++14 status.
Discussion:
The forward_list(size_type) constructor has no allocator-extended equivalent, preventing the following code from compiling:
#include <forward_list> #include <vector> #include <scoped_allocator> using namespace std; int main() { using list = forward_list<int>; vector<list, scoped_allocator_adaptor<list::allocator_type>> v; v.emplace_back(1u); }
The very same problem exists for all allocator-aware sequence containers.
In addition it exists for associative containers. For example, it's possible to construct std::set<int>{0, 1, 2} but not std::set<int>{{0, 1, 2}, alloc}, and possible to construct std::set<int>{begin, end} but not std::set<int>{begin, end, alloc}. This makes the following program fail when SCOPED is defined:#include <set> #include <vector> #include <scoped_allocator> #if SCOPED using A = std::scoped_allocator_adaptor<std::allocator<int>>; #else using A = std::allocator<int>; #endif int main() { int values[] = {0, 1, 2}; std::vector<std::set<int>, A> v; v.emplace_back(std::begin(values), std::end(values)); }
[2013-03-15 Issues Teleconference]
Moved to Review.
Jonathan: There are lots of places where this is missing.
Howard: We should ping Pablo, this might be a deliberate design decision.
[2013-04-18, Bristol]
Proposed resolution:
This wording is relative to N3485.
Edit the synopsis in 23.3.3.1 [deque.overview]/2:
namespace std { template <class T, class Allocator = allocator<T> > class deque { public: […] explicit deque(const Allocator& = Allocator()); explicit deque(size_type n, const Allocator& = Allocator()); […] }; }
Edit 23.3.3.2 [deque.cons]/2:
explicit deque(size_type n, const Allocator& = Allocator());-3- Effects: Constructs a deque with n default-inserted elements using the specified allocator.
Edit the synopsis in 23.3.4.1 [forwardlist.overview]/3:
namespace std { template <class T, class Allocator = allocator<T> > class forward_list { public: […] explicit forward_list(const Allocator& = Allocator()); explicit forward_list(size_type n, const Allocator& = Allocator()); […] }; }
Edit 23.3.4.2 [forwardlist.cons]/3:
explicit forward_list(size_type n, const Allocator& = Allocator());-3- Effects: Constructs a forward_list object with n default-inserted elements using the specified allocator.
Edit the synopsis in 23.3.5.1 [list.overview]/2:
namespace std { template <class T, class Allocator = allocator<T> > class list { public: […] explicit list(const Allocator& = Allocator()); explicit list(size_type n, const Allocator& = Allocator()); […] }; }
Edit 23.3.5.2 [list.cons]/3:
explicit list(size_type n, const Allocator& = Allocator());-3- Effects: Constructs a list with n default-inserted elements using the specified allocator.
Edit the synopsis in 23.3.6.1 [vector.overview]/2:
namespace std { template <class T, class Allocator = allocator<T> > class vector { public: […] explicit vector(const Allocator& = Allocator()); explicit vector(size_type n, const Allocator& = Allocator()); […] }; }
Edit 23.3.6.2 [vector.cons]/3:
explicit vector(size_type n, const Allocator& = Allocator());-3- Effects: Constructs a vector with n default-inserted elements using the specified allocator.
Edit the synopsis in 23.3.7 [vector.bool]/1:
namespace std { template <class Allocator> class vector<bool, Allocator> { class vector { public: […] explicit vector(const Allocator& = Allocator()); explicit vector(size_type n, const Allocator& = Allocator());explicitvector(size_type n, const bool& value= bool(), const Allocator& = Allocator()); […] }; }
Add to the synopsis in 23.4.4.1 [map.overview] p2:
namespace std { template <class Key, class T, class Compare = less<Key>, class Allocator = allocator<pair<const Key, T> > > { class map { public: […] map(initializer_list<value_type>, const Compare& = Compare(), const Allocator& = Allocator()); template <class InputIterator> map(InputIterator first, InputIterator last, const Allocator& a) : map(first, last, Compare(), a) { } map(initializer_list<value_type> il, const Allocator& a) : map(il, Compare(), a) { } ~map(); […] }; }
Add to the synopsis in 23.4.5.1 [multimap.overview] p2:
namespace std { template <class Key, class T, class Compare = less<Key>, class Allocator = allocator<pair<const Key, T> > > { class multimap { public: […] multimap(initializer_list<value_type>, const Compare& = Compare(), const Allocator& = Allocator()); template <class InputIterator> multimap(InputIterator first, InputIterator last, const Allocator& a) : multimap(first, last, Compare(), a) { } multimap(initializer_list<value_type> il, const Allocator& a) : multimap(il, Compare(), a) { } ~multimap(); […] }; }
Add to the synopsis in 23.4.6.1 [set.overview] p2:
namespace std { template <class Key, class Compare = less<Key>, class Allocator = allocator<Key> > { class set { public: […] set(initializer_list<value_type>, const Compare& = Compare(), const Allocator& = Allocator()); template <class InputIterator> set(InputIterator first, InputIterator last, const Allocator& a) : set(first, last, Compare(), a) { } set(initializer_list<value_type> il, const Allocator& a) : set(il, Compare(), a) { } ~set(); […] }; }
Add to the synopsis in 23.4.7.1 [multiset.overview] p2:
namespace std { template <class Key, class Compare = less<Key>, class Allocator = allocator<Key> > { class multiset { public: […] multiset(initializer_list<value_type>, const Compare& = Compare(), const Allocator& = Allocator()); template <class InputIterator> multiset(InputIterator first, InputIterator last, const Allocator& a) : multiset(first, last, Compare(), a) { } multiset(initializer_list<value_type> il, const Allocator& a) : multiset(il, Compare(), a) { } ~multiset(); […] }; }
Add to the synopsis in 23.5.4.1 [unord.map.overview] p3:
namespace std { template <class Key, class T, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Allocator = std::allocator<std::pair<const Key, T> > > { class unordered_map { public: […] unordered_map(initializer_list<value_type>, size_type = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_map(size_type n, const allocator_type& a) : unordered_map(n, hasher(), key_equal(), a) { } unordered_map(size_type n, const hasher& hf, const allocator_type& a) : unordered_map(n, hf, key_equal(), a) { } template <class InputIterator> unordered_map(InputIterator f, InputIterator l, size_type n, const allocator_type& a) : unordered_map(f, l, n, hasher(), key_equal(), a) { } template <class InputIterator> unordered_map(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a) : unordered_map(f, l, n, hf, key_equal(), a) { } unordered_map(initializer_list<value_type> il, size_type n, const allocator_type& a) : unordered_map(il, n, hasher(), key_equal(), a) { } unordered_map(initializer_list<value_type> il, size_type n, const hasher& hf, const allocator_type& a) : unordered_map(il, n, hf, key_equal(), a) { } ~unordered_map(); […] }; }
Add to the synopsis in 23.5.5.1 [unord.multimap.overview] p3:
namespace std { template <class Key, class T, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Allocator = std::allocator<std::pair<const Key, T> > > { class unordered_multimap { public: […] unordered_multimap(initializer_list<value_type>, size_type = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_multimap(size_type n, const allocator_type& a) : unordered_multimap(n, hasher(), key_equal(), a) { } unordered_multimap(size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(n, hf, key_equal(), a) { } template <class InputIterator> unordered_multimap(InputIterator f, InputIterator l, size_type n, const allocator_type& a) : unordered_multimap(f, l, n, hasher(), key_equal(), a) { } template <class InputIterator> unordered_multimap(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(f, l, n, hf, key_equal(), a) { } unordered_multimap(initializer_list<value_type> il, size_type n, const allocator_type& a) : unordered_multimap(il, n, hasher(), key_equal(), a) { } unordered_multimap(initializer_list<value_type> il, size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(il, n, hf, key_equal(), a) { } ~unordered_multimap(); […] }; }
Add to the synopsis in 23.5.6.1 [unord.set.overview] p3:
namespace std { template <class Key, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Allocator = std::allocator<Key> > { class unordered_set { public: […] unordered_set(initializer_list<value_type>, size_type = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_set(size_type n, const allocator_type& a) : unordered_set(n, hasher(), key_equal(), a) { } unordered_set(size_type n, const hasher& hf, const allocator_type& a) : unordered_set(n, hf, key_equal(), a) { } template <class InputIterator> unordered_set(InputIterator f, InputIterator l, size_type n, const allocator_type& a) : unordered_set(f, l, n, hasher(), key_equal(), a) { } template <class InputIterator> unordered_set(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a) : unordered_set(f, l, n, hf, key_equal(), a) { } unordered_set(initializer_list<value_type> il, size_type n, const allocator_type& a) : unordered_set(il, n, hasher(), key_equal(), a) { } unordered_set(initializer_list<value_type> il, size_type n, const hasher& hf, const allocator_type& a) : unordered_set(il, n, hf, key_equal(), a) { } ~unordered_set(); […] }; }
Add to the synopsis in 23.5.7.1 [unord.multiset.overview] p3:
namespace std { template <class Key, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Allocator = std::allocator<Key> > { class unordered_multiset { public: […] unordered_multiset(initializer_list<value_type>, size_type = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_multiset(size_type n, const allocator_type& a) : unordered_multiset(n, hasher(), key_equal(), a) { } unordered_multiset(size_type n, const hasher& hf, const allocator_type& a) : unordered_multiset(n, hf, key_equal(), a) { } template <class InputIterator> unordered_multiset(InputIterator f, InputIterator l, size_type n, const allocator_type& a) : unordered_multiset(f, l, n, hasher(), key_equal(), a) { } template <class InputIterator> unordered_multiset(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a) : unordered_multiset(f, l, n, hf, key_equal(), a) { } unordered_multiset(initializer_list<value_type> il, size_type n, const allocator_type& a) : unordered_multiset(il, n, hasher(), key_equal(), a) { } unordered_multiset(initializer_list<value_type> il, size_type n, const hasher& hf, const allocator_type& a) : unordered_multiset(il, n, hf, key_equal(), a) { } ~unordered_multiset(); […] }; }
Section: 23.2.1 [container.requirements.general] Status: C++14 Submitter: Jonathan Wakely Opened: 2012-11-07 Last modified: 2015-04-08
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with C++14 status.
Discussion:
23.2.1 [container.requirements.general]/7 says:
All other constructors for these container types take an Allocator& argument (17.6.3.5 [allocator.requirements]), an allocator whose value type is the same as the container's value type.
This is a strange place to state the requirement on the allocator's value_type, because the allocator is a property (and template parameter) of the container type not of some of its constructors. It's also unclear whether "Allocator&" refers to the concept (as implied by the cross-reference to the allocator requirements in Clause 17) or to the container's template parameter (as implied by the fact it's shown as an lvalue-reference type.) I believe the latter is intended, because those constructors can't take any model of the allocator concept, they can only take the container's allocator_type.
I think it would be clearer to remove the value type requirement earlier in the paragraph (Table 99 already imposes that requirement) and to make it clear the constructor arguments are the container's allocator_type. There is already a cross-reference to the allocator requirements earlier in the paragraph, so it doesn't need to be repeated in another place where it causes confusion.[2013-03-15 Issues Teleconference]
Moved to Tentatively Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3485.
Edit 23.2.1 [container.requirements.general] paragraph 7:
Unless otherwise specified, all containers defined in this clause obtain memory using an allocator (see 17.6.3.5 [allocator.requirements]). Copy constructors for these container types obtain an allocator by calling allocator_traits<allocator_type>::select_on_container_copy_construction on their first parameters. Move constructors obtain an allocator by move construction from the allocator belonging to the container being moved. Such move construction of the allocator shall not exit via an exception. All other constructors for these container types take
an Allocator& argument (17.6.3.5 [allocator.requirements]), an allocator whose value type is the same as the container's value typea const allocator_type& argument. [Note: If an invocation of a constructor uses the default value of an optional allocator argument, then the Allocator type must support value initialization. — end note] A copy of this allocator is used for any memory allocation performed, by these constructors and by all member functions, during the lifetime of each container object or until the allocator is replaced. […]
Section: 20.2 [utility] Status: WP Submitter: Alisdair Meredith Opened: 2012-11-09 Last modified: 2015-04-08
View other active issues in [utility].
View all other issues in [utility].
View all issues with WP status.
Discussion:
The <utility> header declares sufficient of the tuple API to specialize the necessary templates for pair, notably tuple_size and tuple_element. However, it does not make available the partial specializations that support cv-qualified template arguments, so while I can write the following after including only <utility>:
#include <utility> using TestType = std::pair<int, int>; static_assert(2 == std::tuple_size<TestType>(), "Pairs have two elements"); std::tuple_element<0, TestType>::type var{1};
the following may fail to compile unless I also include <tuple>:
#include <utility> using TestType = const std::pair<int, int>; static_assert(2 == std::tuple_size<TestType>(), "Pairs have two elements"); std::tuple_element<0, TestType>::type var{1};
Note, however, that the latter may compile with some standard library implementations but not others, leading to subtle portability issues.
[2013-03-15 Issues Teleconference]
Moved to Open.
Howard notes that we have the same issue with array, so any resolution should apply to that header too.
[2013-10-18 Daniel provides wording]
The suggested wording uses a similar approach as we already have in 24.7 [iterator.range] to ensure that the range access templates are available when at least one of an enumerated list of header files is included.
I also think that the restricted focus on tuple_size of this issue is too narrow and should be extended to the similar partial template specializations of tuple_element as well. Therefore the suggested wording ensures this as well.[2014-03-27 Library reflector vote]
The issue has been identified as Tentatively Ready based on eight votes in favour.
Proposed resolution:
This wording is relative to N3936.
Change 20.4.2.5 [tuple.helper] as indicated:
template <class T> class tuple_size<const T>; template <class T> class tuple_size<volatile T>; template <class T> class tuple_size<const volatile T>;-3- Let TS denote tuple_size<T> of the cv-unqualified type T. Then each of the three templates shall meet the UnaryTypeTrait requirements (20.10.1) with a BaseCharacteristic of
integral_constant<size_t, TS::value>-?- In addition to being available via inclusion of the <tuple> header, each of the three templates are available when any of the headers <array> or <utility> are included.
template <size_t I, class T> class tuple_element<I, const T>; template <size_t I, class T> class tuple_element<I, volatile T>; template <size_t I, class T> class tuple_element<I, const volatile T>;-?- Let TE denote tuple_element<I, T> of the cv-unqualified type T. Then each of the three templates shall meet the TransformationTrait requirements (20.10.1) with a member typedef type that names the following type:
for the first specialization, add_const<TE::type>::type,
for the second specialization, add_volatile<TE::type>::type, and
for the third specialization, add_cv<TE::type>::type.
-?- In addition to being available via inclusion of the <tuple> header, each of the three templates are available when any of the headers <array> or <utility> are included.
Section: 28.11.4 [re.alg.replace] Status: C++14 Submitter: Pete Becker Opened: 2012-11-08 Last modified: 2015-04-08
View all other issues in [re.alg.replace].
View all issues with C++14 status.
Discussion:
In 28.11.4 [re.alg.replace], the first two variants of std::regex_replace take an output iterator named "out" as their first argument. Paragraph 2 of that section says that the functions return "out". When I first implemented this, many years ago, I wrote it to return the value of the output iterator after all the insertions (cf. std::copy), which seems like the most useful behavior. But looking at the requirement now, it like the functions should return the original value of "out" (i.e. they have to keep a copy of the iterator for no reason except to return it). Is that really what was intended?
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3485.
Edit 28.11.4 [re.alg.replace] as indicated:
template <class OutputIterator, class BidirectionalIterator, class traits, class charT, class ST, class SA> OutputIterator regex_replace(OutputIterator out, BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, const basic_string<charT, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template <class OutputIterator, class BidirectionalIterator, class traits, class charT> OutputIterator regex_replace(OutputIterator out, BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, const charT* fmt, regex_constants::match_flag_type flags = regex_constants::match_default);-1- Effects: Constructs a regex_iterator object i as if by regex_iterator<BidirectionalIterator, charT, traits> i(first, last, e, flags), and uses i to enumerate through all of the matches m of type match_results<BidirectionalIterator> that occur within the sequence [first, last). If no such matches are found and !(flags & regex_constants ::format_no_copy) then calls out = std::copy(first, last, out). If any matches are found then, for each such match, if !(flags & regex_constants::format_no_copy), calls out = std::copy(m.prefix().first, m.prefix().second, out), and then calls out = m.format(out, fmt, flags) for the first form of the function and out = m.format(out, fmt, fmt + char_traits<charT>::length(fmt), flags) for the second. Finally, if such a match is found and !(flags & regex_constants ::format_no_copy), calls out = std::copy(last_m.suffix().first, last_m.suffix().second, out) where last_m is a copy of the last match found. If flags & regex_constants::format_first_only is non-zero then only the first match found is replaced.
-2- Returns: out.
Section: 28.9.2 [re.submatch.op] Status: WP Submitter: Jeffrey Yasskin Opened: 2012-11-26 Last modified: 2015-04-08
View all other issues in [re.submatch.op].
View all issues with WP status.
Discussion:
template <class BiIter, class ST, class SA> bool operator==( const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& lhs, const sub_match<BiIter>& rhs);
is specified as:
Returns: rhs.compare(lhs.c_str()) == 0.
This is odd because sub_match::compare(basic_string) is defined to honor embedded '\0' characters. This could allow a sub_match to == or != a std::string unexpectedly.
[Daniel:]
This wording change was done intentionally as of LWG 1181, but the here mentioned slicing effect was not considered at that time. It seems best to use another overload of compare to fix this problem:
Returns: rhs.str().compare(0, rhs.length(), lhs.data(), lhs.size()) == 0.
or
Returns: rhs.compare(sub_match<BiIter>::string_type(lhs.data(), lhs.size())) == 0.
[2013-10-17: Daniel provides concrete wording]
The original wording was suggested to reduce the need to allocate memory during comparisons. The specification would be very much easier, if sub_match would provide an additional compare overload of the form:
int compare(const value_type* s, size_t n) const;
But given the fact that currently all of basic_string's compare overloads are defined in terms of temporary string constructions, the following proposed wording does follow the same string-construction route as basic_string does (where needed to fix the embedded zeros issue) and to hope that existing implementations ignore to interpret this semantics in the literal sense.
I decided to use the second replacement formReturns: rhs.compare(sub_match<BiIter>::string_type(lhs.data(), lhs.size())) == 0.
because it already reflects the existing style used in 28.9.2 [re.submatch.op] p31.
[2014-02-15 post-Issaquah session : move to Tentatively Ready]
Proposed resolution:
This wording is relative to N3691.
Change 28.9.2 [re.submatch.op] as indicated:
template <class BiIter, class ST, class SA> bool operator==( const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& lhs, const sub_match<BiIter>& rhs);-7- Returns: rhs.compare(
lhs.c_str()typename sub_match<BiIter>::string_type(lhs.data(), lhs.size())) == 0.
[…]
template <class BiIter, class ST, class SA> bool operator<( const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& lhs, const sub_match<BiIter>& rhs);-9- Returns: rhs.compare(
lhs.c_str()typename sub_match<BiIter>::string_type(lhs.data(), lhs.size())) > 0.
[…]
template <class BiIter, class ST, class SA> bool operator==(const sub_match<BiIter>& lhs, const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);-13- Returns: lhs.compare(
rhs.c_str()typename sub_match<BiIter>::string_type(rhs.data(), rhs.size())) == 0.
[…]
template <class BiIter, class ST, class SA> bool operator<(const sub_match<BiIter>& lhs, const basic_string< typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);-15- Returns: lhs.compare(
rhs.c_str()typename sub_match<BiIter>::string_type(rhs.data(), rhs.size())) < 0.
Section: 23.3.4.6 [forwardlist.ops] Status: C++14 Submitter: Edward Catmur Opened: 2012-12-11 Last modified: 2015-04-08
View all other issues in [forwardlist.ops].
View all issues with C++14 status.
Discussion:
23.3.4.6 [forwardlist.ops] p6 has
void splice_after(const_iterator position, forward_list& x, const_iterator i); void splice_after(const_iterator position, forward_list&& x, const_iterator i);Effects: Inserts the element following i into *this, following position, and removes it from x. The result is unchanged if position == i or position == ++i. Pointers and references to *i continue to refer to the same element but as a member of *this. Iterators to *i (including i itself) continue to refer to the same element, but now behave as iterators into *this, not into x.
This overload splices the element following i from x to *this, so the language in the two latter sentences should refer to ++i:
Pointers and references to *++i continue to refer to the same element but as a member of *this. Iterators to *++i continue to refer to the same element, but now behave as iterators into *this, not into x.
[2013-03-15 Issues Teleconference]
Moved to Tentatively Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3485.
Edit 23.3.4.6 [forwardlist.ops] p6 as indicated:
void splice_after(const_iterator position, forward_list& x, const_iterator i); void splice_after(const_iterator position, forward_list&& x, const_iterator i);-5- Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()). The iterator following i is a dereferenceable iterator in x. get_allocator() == x.get_allocator().
-6- Effects: Inserts the element following i into *this, following position, and removes it from x. The result is unchanged if position == i or position == ++i. Pointers and references to *++i continue to refer to the same element but as a member of *this. Iterators to *++i(including i itself)continue to refer to the same element, but now behave as iterators into *this, not into x.
Section: 17.6.2.2 [using.headers] Status: C++14 Submitter: Richard Smith Opened: 2012-12-18 Last modified: 2015-04-08
View all other issues in [using.headers].
View all issues with C++14 status.
Discussion:
17.6.2.2 [using.headers]/3 says:
A translation unit shall include a header only outside of any external declaration or definition, and shall include the header lexically before the first reference in that translation unit to any of the entities declared in that header. Per 1.4 [intro.compliance]/1, programs which violate this rule are ill-formed, and a conforming implementation is required to produce a diagnostic. This does not seem to match reality. Presumably, this paragraph is missing a "no diagnostic is required".[2013-03-15 Issues Teleconference]
Moved to Tentatively Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3485.
Edit 17.6.2.2 [using.headers] p3 as indicated:
-3- A translation unit shall include a header only outside of any external declaration or definition, and shall include the header lexically before the first reference in that translation unit to any of the entities declared in that header. No diagnostic is required.
Section: 20.8.1.2.3 [unique.ptr.single.asgn] Status: Resolved Submitter: Geoffrey Romer Opened: 2012-12-20 Last modified: 2015-05-06
View all other issues in [unique.ptr.single.asgn].
View all issues with Resolved status.
Discussion:
20.8.1.2.3 [unique.ptr.single.asgn]/5 permits unique_ptr's templated assignment operator to participate in overload resolution even when incompatibilities between D and E will render the result ill-formed, but the corresponding templated copy constructor is removed from the overload set in those situations (see the third bullet point of 20.8.1.2.1 [unique.ptr.single.ctor]/19). This asymmetry is confusing, and presumably unintended; it may lead to situations where constructing one unique_ptr from another is well-formed, but assigning from the same unique_ptr would be ill-formed.
There is a slight coupling between this and LWG 2118, in that my PR for LWG 2118 incorporates equivalent wording in the specification of the templated assignment operator for the array specialization; the two PRs are logically independent, but if my PR for 2118 is accepted but the above PR is not, the discrepancy between the base template and the specialization could be confusing.Previous resolution [SUPERSEDED]:
This wording is relative to N3485.
Revise 20.8.1.2.3 [unique.ptr.single.asgn] p5 as follows:
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;-4- Requires: If E is not a reference type, assignment of the deleter from an rvalue of type E shall be well-formed and shall not throw an exception. Otherwise, E is a reference type and assignment of the deleter from an lvalue of type E shall be well-formed and shall not throw an exception.
-5- Remarks: This operator shall not participate in overload resolution unless:
unique_ptr<U, E>::pointer is implicitly convertible to pointer and
U is not an array type
., andeither D is a reference type and E is the same type as D, or D is not a reference type and E is implicitly convertible to D.
-6- Effects: Transfers ownership from u to *this as if by calling reset(u.release()) followed by an assignment from std::forward<E>(u.get_deleter()).
-7- Returns: *this.
[2013-03-15 Issues Teleconference]
Moved to Review.
The wording looks good, but we want a little more time than the telecon permits to be truly comfortable. We expect this issue to resolve fairly easily in Bristol.
[2015-05-18, Howard comments]
Updated proposed wording has been provided in N4366.
[2015-05, Lenexa]
Straw poll: send N4366 to full committee, with both fixes from the sections "What is the correct fix?" and "unique_ptr<T[]> needs the correct fix too"
Proposed resolution:
Resolved by accepting N4366.
Section: 22.5 [locale.stdcvt] Status: C++14 Submitter: Beman Dawes Opened: 2012-12-30 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
The only specification for the non-inherited members of classes codecvt_utf8, codecvt_utf16, and codecvt_utf8_utf16 is a comment line in the synopsis that says // unspecified. There is no further indication of functionality, so a user does not know if one of these classes can be constructed or destroyed.
The proposed resolution adds a constructor that mimics the class codecvt constructor, and also adds a destructor. Following the practice of class codecvt, the semantics are not specified.
The only existing implementation I could find was libc++, and it does supply the proposed constructor and destructor for each of the three classes.
[2013-03-15 Issues Teleconference]
Moved to Review.
There was concern about the unspecified semantics - but that matches what is done in codecvt.
Jonathan: Should these constructor/destructors be public? Proposed wording is private. Base class constructor is public.
Howard noted that other facets do not have specified constructors.
Alisdair noted that this whole section was new in C++11.
Howard suggested looking at section 22.3.1.1.2 [locale.facet]p2/p3 for more info.
[2013-04-18, Bristol]
Proposed resolution:
In [locale.stdcvt] paragraph 2, Header codecvt synopsis:
template<class Elem, unsigned long Maxcode = 0x10ffff, codecvt_mode Mode = (codecvt_mode)0> class codecvt_utf8 : public codecvt<Elem, char, mbstate_t> {// unspecifiedpublic: explicit codecvt_utf8(size_t refs = 0); ~codecvt_utf8(); }; template<class Elem, unsigned long Maxcode = 0x10ffff, codecvt_mode Mode = (codecvt_mode)0> class codecvt_utf16 : public codecvt<Elem, char, mbstate_t> {// unspecifiedpublic: explicit codecvt_utf16(size_t refs = 0); ~codecvt_utf16(); }; template<class Elem, unsigned long Maxcode = 0x10ffff, codecvt_mode Mode = (codecvt_mode)0> class codecvt_utf8_utf16 : public codecvt<Elem, char, mbstate_t> {// unspecifiedpublic: explicit codecvt_utf8_utf16(size_t refs = 0); ~codecvt_utf8_utf16(); };
Section: 23.5 [unord] Status: WP Submitter: Jonathan Wakely Opened: 2013-01-06 Last modified: 2015-04-08
View all other issues in [unord].
View all issues with WP status.
Discussion:
The unordered_map class definition in 23.5.4.1 [unord.map.overview] declares an initializer-list constructor that says "see below":
unordered_map(initializer_list<value_type>, size_type = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());
But that constructor isn't defined below. The same problem exists for the other unordered associative containers.
[2013-09 Chicago]
STL: ordered are also missing declarations, but issue is forthcoming
Walter: how does adding a signature address issue? — nevermind Jayson: in his wording, isn't he just dropping the size_type? Walter: partial fix is to introduce the name Stefanus: explanation of requiring name because of n buckets STL: solution for his issue satisfies both ordered and unordered and is simplier than provided wording STL: patches general table instead STL: proposes adding extra rows instead of extra declarations Stefanus: clarify n in the synopsis Walter: general rule, name is optional in declaration Stefanus: how to proceed Walter: significant overlap with forthcoming issue, suggestion to defer[2014-02-20 Re-open Deferred issues as Priority 4]
[2014-03-27 Jonathan improves proposed wording]
[2014-05-20 STL and Jonathan communicate]
STL: With 2322 resolved, is there anything left for this issue to fix?
Jonathan: The synopsis still says "see below" and it's not immediately clear that "see below" means "see the definition of a different constructor, which defines the behaviour of this one due to a table defined much earlier".[2014-05-23 Library reflector vote]
The issue has been identified as Tentatively Ready based on five votes in favour.
Proposed resolution:
This wording is relative to N3936.
Edit 23.5.4.1 [unord.map.overview], class template unordered_map synopsis, as follows:
[…] unordered_map(initializer_list<value_type> il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); […]
Edit 23.5.4.2 [unord.map.cnstr] as follows:
template <class InputIterator> unordered_map(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_map(initializer_list<value_type> il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());-3- Effects: Constructs an empty unordered_map using the specified hash function, key equality function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined. Then inserts elements from the range [f, l) for the first form, or from the range [il.begin(), il.end()) for the second form. max_load_factor() returns 1.0.
Edit 23.5.5.1 [unord.multimap.overview], class template unordered_multimap synopsis, as follows:
[…] unordered_multimap(initializer_list<value_type> il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); […]
Edit 23.5.5.2 [unord.multimap.cnstr] as follows:
template <class InputIterator> unordered_multimap(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_multimap(initializer_list<value_type> il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());-3- Effects: Constructs an empty unordered_multimap using the specified hash function, key equality function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined. Then inserts elements from the range [f, l) for the first form, or from the range [il.begin(), il.end()) for the second form. max_load_factor() returns 1.0.
Edit 23.5.6.1 [unord.set.overview], class template unordered_set synopsis, as follows:
[…] unordered_set(initializer_list<value_type> il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); […]
Edit 23.5.6.2 [unord.set.cnstr] as follows:
template <class InputIterator> unordered_set(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_set(initializer_list<value_type> il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());-3- Effects: Constructs an empty unordered_set using the specified hash function, key equality function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined. Then inserts elements from the range [f, l) for the first form, or from the range [il.begin(), il.end()) for the second form. max_load_factor() returns 1.0.
Edit 23.5.7.1 [unord.multiset.overview], class template unordered_multiset synopsis, as follows:
[…] unordered_multiset(initializer_list<value_type> il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); […]
Edit 23.5.7.2 [unord.multiset.cnstr] as follows:
template <class InputIterator> unordered_multiset(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_multiset(initializer_list<value_type> il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());-3- Effects: Constructs an empty unordered_multiset using the specified hash function, key equality function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined. Then inserts elements from the range [f, l) for the first form, or from the range [il.begin(), il.end()) for the second form. max_load_factor() returns 1.0.
Section: 23.2.3 [sequence.reqmts] Status: C++14 Submitter: Jonathan Wakely Opened: 2012-12-30 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with C++14 status.
Discussion:
From the question at stackoverflow.
Were we aware that the resolution to LWG 704 means there is no complexity guarantee for clear() on most sequence containers? Previously it was implied by defining it in terms of erase(begin(), end()) but we no longer do that.
There are explicit complexity requirements for std::list::clear(), but not the other sequence containers.
Daniel:
The idea was that the notion of "destroys all elements in a" would imply a linear complexity, but the wording needs to be clearer, because this doesn't say that this step is the actual complexity bound.
[2013-03-15 Issues Teleconference]
Moved to Tentatively Ready.
[2013-04-20 Bristol]
Proposed resolution:
This wording is relative to N3485.
Change Table 100 as indicated:
Table 100 — Sequence container requirements (in addition to container) (continued) Expression Return type Assertion/note pre-/post-condition … a.clear() void Destroys all elements in a. Invalidates all
references, pointers, and iterators referring to
the elements of a and may invalidate the
past-the-end iterator.
post: a.empty() returns true
complexity: linear…
Section: 20.9.12.1 [func.wrap.badcall] Status: WP Submitter: Jonathan Wakely Opened: 2013-01-05 Last modified: 2015-04-08
View all issues with WP status.
Discussion:
A strict reading of the standard implies std::bad_function_call{}.what() returns the same string as std::exception{}.what() which doesn't help to know what happened if you catch an exception by reference to std::exception.
For consistency with bad_weak_ptr::what() it should return "bad_function_call".
See c++std-lib-33515 for other details.
There was a considerable support on the reflector to instead change the specification of both bad_weak_ptr::what() and bad_function_call::what() to return an implementation-defined string instead.
[2013-03-15 Issues Teleconference]
Moved to Open.
Consensus that we want consistency in how this is treated. Less consensus on what the common direction should be.
Alisdair to provide wording proposing that all string literals held by standard exception objects are either unspecified, or implmentation defined.
[2014-02-15 Issauqah]
STL: I think it should be an implementation-defined NTBS, same on bad_weak_ptr. I will write a PR.
[2014-03-27, STL provides improved wording]
The new wording reflects better the general agreement of the committee, see also issue 2376 for similar wording.
[2014-03-28 Library reflector vote]
The issue has been identified as Tentatively Ready based on five votes in favour.
Proposed resolution:
This wording is relative to N3936.
Edit 20.9.12.1.1 [func.wrap.badcall.const]:
bad_function_call() noexcept;-1- Effects: constructs a bad_function_call object.
-?- Postconditions: what() returns an implementation-defined NTBS.
Section: 21.4.2 [string.cons] Status: C++14 Submitter: Juan Soulie Opened: 2013-01-17 Last modified: 2015-04-08
View all other issues in [string.cons].
View all issues with C++14 status.
Discussion:
In 21.4.2 [string.cons], I believe tighter requirements should be imposed on basic_string's constructors taking an s argument (or, a behavior should be provided for the undefined cases). These requirements are properly stated in the other members functions taking s arguments (append, assign, insert,...).
basic_string(const charT* s, size_type n, const Allocator& a = Allocator());
Relative to N3485, 21.4.2 [string.cons]/6 says "Requires: s shall not be a null pointer and n < npos", where it should say: "Requires: s points to an array of at least n elements of charT"
basic_string(const charT* s, const Allocator& a = Allocator());
21.4.2 [string.cons]/8 says "Requires: s shall not be a null pointer.", where it should say: "Requires: s points to an array of at least traits::length(s) + 1 elements of charT"
Daniel:
I think that 17.6.4.9 [res.on.arguments] p1 b2 basically requires this already, but the wording is indeed worth improving it.
[2013-03-15 Issues Teleconference]
Moved to Review.
The resolution could be worded more cleanly, and there is some concern about redundancy between Requirements and Effects clauses. Consensus that we do want to say something like this for the Requirements though.
[2013-04-18, Bristol]
Move to Ready
[2013-09-29, Bristol]
Apply to the Working Paper
Proposed resolution:
This wording is relative to N3485.
Change 21.4.2 [string.cons]/6 as indicated:
basic_string(const charT* s, size_type n, const Allocator& a = Allocator());-6- Requires: s
shall not be a null pointer and n < npospoints to an array of at least n elements of charT.
Change 21.4.2 [string.cons]/8 as indicated:
basic_string(const charT* s, const Allocator& a = Allocator());-8- Requires: s
shall not be a null pointerpoints to an array of at least traits::length(s) + 1 elements of charT.
Section: 25.4.7 [alg.min.max] Status: WP Submitter: Juan Soulie Opened: 2013-01-26 Last modified: 2015-05-22
View all other issues in [alg.min.max].
View all issues with WP status.
Discussion:
25.4.7 [alg.min.max] requires type T in min, max, and minmax to be LessThanComparable, but I don't believe this should be required for the versions that take a Compare argument.
Paragraphs 1 to 4 of 25.4 [alg.sorting] should apply anyway, although I'm not sure about Compare being required to induce a strict weak ordering here. Further, min and max also lack formal complexity guarantees.[2014-06-07 Daniel comments and provides wording]
Certainly, the functions with Compare should not impose LessThanComparable requirements.
In regard to the question whether a strict weak ordering should be required as implied by the Compare requirements, I would like to point out that this is requirement is in fact needed, because the specification of the normative Remarks elements (e.g. "Returns the first argument when the arguments are equivalent.") do depend on the existence of a equivalence relation that can be relied on and this is also consistent with the same strict weak ordering requirement that is indirectly imposed by the LessThanComparable requirement set for functions referring to operator< (Let me note that the very same StrictWeakOrder language concept had intentionally been required for similar reasons during "concept-time" in N2914).[2015-02 Cologne]
JY: We have library-wide requirements that Comp induce a strict weak ordering.
JY/MC: The un-marked-up "Complexity" (p16) is wrong. DK: I'll fix that. DK will update the wording for Lenexa.[2015-03-30 Daniel comments]
The Complexity element of p16 is correct, but some others involving initializer_list arguments are wrong.
[2015-04-02 Library reflector vote]
The issue has been identified as Tentatively Ready based on six votes in favour.
Proposed resolution:
This wording is relative to N4296.
Change 25.4.7 [alg.min.max] as indicated:
template<class T> constexpr const T& min(const T& a, const T& b); template<class T, class Compare> constexpr const T& min(const T& a, const T& b, Compare comp);-1- Requires: For the first form, type T shall be
-2- Returns: The smaller value. -3- Remarks: Returns the first argument when the arguments are equivalent. -?- Complexity: Exactly one comparison.Type T isLessThanComparable (Table 18).template<class T> constexpr T min(initializer_list<T> t); template<class T, class Compare> constexpr T min(initializer_list<T> t, Compare comp);-4- Requires: T
-5- Returns: […] -6- Remarks: […] -?- Complexity: Exactly t.size() - 1 comparisons.is LessThanComparable andshall be CopyConstructible and t.size() > 0. For the first form, type T shall be LessThanComparable.template<class T> constexpr const T& max(const T& a, const T& b); template<class T, class Compare> constexpr const T& max(const T& a, const T& b, Compare comp);-7- Requires: For the first form, type T shall be
-8- Returns: […] -9- Remarks: […] -?- Complexity: Exactly one comparison.Type T isLessThanComparable (Table 18).template<class T> constexpr T max(initializer_list<T> t); template<class T, class Compare> constexpr T max(initializer_list<T> t, Compare comp);-10- Requires: T
-11- Returns: […] -12- Remarks: […] -?- Complexity: Exactly t.size() - 1 comparisons.is LessThanComparable andshall be CopyConstructible and t.size() > 0. For the first form, type T shall be LessThanComparable.template<class T> constexpr pair<const T&, const T&> minmax(const T& a, const T& b); template<class T, class Compare> constexpr pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);-13- Requires: For the first form, t
-14- Returns: […] -15- Remarks: […] -16- Complexity: Exactly one comparison.Type T shall be LessThanComparable (Table 18).template<class T> constexpr pair<T, T> minmax(initializer_list<T> t); template<class T, class Compare> constexpr pair<T, T> minmax(initializer_list<T> t, Compare comp);-17- Requires: T
-18- Returns: […] -19- Remarks: […] -20- Complexity: At most (3/2) * t.size() applications of the corresponding predicate.is LessThanComparable andshall be CopyConstructible and t.size() > 0. For the first form, type T shall be LessThanComparable.
Section: 30.5.1 [thread.condition.condvar], 30.5.2 [thread.condition.condvarany] Status: Resolved Submitter: FrankHB1989 Opened: 2013-02-03 Last modified: 2015-04-08
View all other issues in [thread.condition.condvar].
View all issues with Resolved status.
Discussion:
All usages of "function scope" in 30.5.1 [thread.condition.condvar] and 30.5.2 [thread.condition.condvarany], such as 30.5.1 [thread.condition.condvar] p10 b4:
If the function exits via an exception, lock.lock() shall be called prior to exiting the function scope.
seem to be inappropriate compared to the actual core language definition of 3.3.5 [basic.funscope]:
Labels (6.1) have function scope and may be used anywhere in the function in which they are declared. Only labels have function scope.
Probably the intended meaning is "outermost block scope of the function".
[2013-09 Chicago: Resolved by proposed resolution of LWG 2135]
Proposed resolution:
Resolved by proposed resolution of LWG 2135.
Section: 20.8.1.2.3 [unique.ptr.single.asgn] Status: C++14 Submitter: Jonathan Wakely Opened: 2013-03-13 Last modified: 2015-04-08
View all other issues in [unique.ptr.single.asgn].
View all issues with C++14 status.
Discussion:
The Effects clauses for unique_ptr assignment don't make sense, what is the target of "an assignment from std::forward<D>(u.get_deleter())"?
Obviously it's intended to be the deleter, but that isn't stated clearly.[2013-04-20, Bristol]
Move to Ready
[2013-09-29, Chicago]
Apply to Working Paper
Proposed resolution:
This wording is relative to N3485.
Edit 20.8.1.2.3 [unique.ptr.single.asgn] paragraph 2:
unique_ptr& operator=(unique_ptr&& u) noexcept;[…]
-2- Effects: Transfers ownership from u to *this as if by calling reset(u.release()) followed byan assignment fromget_deleter() = std::forward<D>(u.get_deleter()).
Edit 20.8.1.2.3 [unique.ptr.single.asgn] paragraph 6:
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;[…]
-6- Effects: Transfers ownership from u to *this as if by calling reset(u.release()) followed byan assignment fromget_deleter() = std::forward<E>(u.get_deleter()).
Section: 20.10.4.1 [meta.unary.cat] Status: C++14 Submitter: Joe Gottman Opened: 2013-03-15 Last modified: 2015-05-22
View all issues with C++14 status.
Discussion:
According to 20.10.4.1 [meta.unary.cat], for every type T, exactly one of the primary type traits is true. So which is true for the type std::nullptr_t? By 2.13.7 [lex.nullptr] std::nullptr_t is not a pointer type or a pointer-to-member type, so is_pointer, is_member_object_pointer and is_member_function_pointer can't be true for std::nullptr_t, and none of the other primary type traits seem to apply.
[2013-04-20, Bristol]
Rename to is_null_pointer, move to Ready
Previous wording:
This wording is relative to N3485.
Edit 20.10.2 [meta.type.synop], header <type_traits> synopsis:
namespace std { […] // 20.9.4.1, primary type categories: template <class T> struct is_void; template <class T> struct is_nullptr; template <class T> struct is_integral; template <class T> struct is_floating_point; […] }Edit Table 47 — "Primary type category predicates" as indicated:
Table 47 — Primary type category predicates Template Condition Comments … template <class T>
struct is_nullptr;T is std::nullptr_t ([basic.fundamental]) …
[2013-09-29, Chicago]
Apply to the Working Paper
Proposed resolution:
This wording is relative to N3485.
Edit 20.10.2 [meta.type.synop], header <type_traits> synopsis:
namespace std { […] // 20.9.4.1, primary type categories: template <class T> struct is_void; template <class T> struct is_null_pointer; template <class T> struct is_integral; template <class T> struct is_floating_point; […] }
Edit Table 47 — "Primary type category predicates" as indicated:
Table 47 — Primary type category predicates Template Condition Comments … template <class T>
struct is_null_pointer;T is std::nullptr_t ([basic.fundamental]) …
Section: 27.9.2 [c.files] Status: Resolved Submitter: Jonathan Wakely Opened: 2013-04-17 Last modified: 2015-04-08
View all other issues in [c.files].
View all issues with Resolved status.
Discussion:
Addresses GB 9
In 27.9.2 [c.files] the current C++ standard claims that <cstdio> defines a function called "gets" but it has no declaration or semantics, because it was removed from C11, having been deprecated since C99. We should remove it for C++14.
[2013-09 Chicago]
Will resolve with the wording in the NB comment.
Proposed resolution:
Resolved by resolution as suggested by NB comment GB 9
Section: 23.3.6.5 [vector.modifiers] Status: C++14 Submitter: Nicolai Josuttis Opened: 2013-04-21 Last modified: 2015-04-08
View other active issues in [vector.modifiers].
View all other issues in [vector.modifiers].
View all issues with C++14 status.
Discussion:
According to my understanding, the strong guarantee of push_back() led to the introduction of noexcept and to the typical implementation that vectors usually copy their elements on reallocation unless the move operations of their element type guarantees not to throw.
However, if I read the standard correctly, we still don't give the strong guarantee any more: Yes, 23.2.1 [container.requirements.general]/10 specifies:Unless otherwise specified (see 23.2.4.1, 23.2.5.1, 23.3.3.4, and 23.3.6.5) all container types defined in this Clause meet the following additional requirements:
- […]
- if an exception is thrown by a push_back() or push_front() function, that function has no effects.
However, 23.3.6.5 [vector.modifiers] specifies for vector modifiers, including push_back():
If an exception is thrown other than by the copy constructor, move constructor, assignment operator, or move assignment operator of T or by any InputIterator operation there are no effects. If an exception is thrown by the move constructor of a non-CopyInsertable T, the effects are unspecified.
I would interpret this as an "otherwise specified" behavior for push_back(), saying that the strong guarantee is only given if constructors and assignments do not throw.
That means, the strong guarantee of C++03 is broken with C++11. In addition to all that 23.2.1 [container.requirements.general] p10 b2 doesn't mention the corresponding functions emplace_back() and emplace_front(). These are similar single-element additions and should provide the same strong guarantee. Daniel adds: It seems the error came in when N2350 and N2345 became accepted and where integrated into the working draft N2369. The merge resulted in a form that changed the previous meaning and as far as I understand it, this effect was not intended.[2013-09-16, Nico provides concrete wording]
[2013-09-26, Nico improves wording]
The new proposed resolution is driven as follows:
In the container requirements section, there shall be general statements that single element insertions and push_back(), pop_back, emplace_front(), and emplace_back() have no effect on any exception.
That is: we extend the first two statements by adding emplace_front() and emplace_back(), which are missing.Formulate only the exceptions from that (or where other general statements might lead to the impression, that the blanket statement no longer applies):
remove the statement in list::push_back() saying again that exceptions have to effect.
Clarify that all single-element insertions at either end of a deque have the strong guarantee.
Clarify that all single-element insertions at the end of a vector have the strong guarantee.
Proposed resolution:
This wording is relative to N3691.
Edit 23.2.1 [container.requirements.general] p10 b2 as indicated:
if an exception is thrown by an insert() or emplace() function while inserting a single element, that function has no effects.
if an exception is thrown by a push_back() or, push_front(), emplace_back(), or
emplace_front() function, that function has no effects.
Edit 23.3.3.4 [deque.modifiers] as indicated:
iterator insert(const_iterator position, const T& x); iterator insert(const_iterator position, T&& x); iterator insert(const_iterator position, size_type n, const T& x); template <class InputIterator> iterator insert(const_iterator position, InputIterator first, InputIterator last); iterator insert(const_iterator position, initializer_list<T>); template <class... Args> void emplace_front(Args&&... args); template <class... Args> void emplace_back(Args&&... args); template <class... Args> iterator emplace(const_iterator position, Args&&... args); void push_front(const T& x); void push_front(T&& x); void push_back(const T& x); void push_back(T&& x);-1- Effects: An insertion in the middle of the deque invalidates all the iterators and references to elements of the deque. An insertion at either end of the deque invalidates all the iterators to the deque, but has no effect on the validity of references to elements of the deque.
-2- Remarks: If an exception is thrown other than by the copy constructor, move constructor, assignment operator, or move assignment operator of T there are no effects. If an exception is thrown while inserting a single element at either end, there are no effects.
IfOtherwise, if an exception is thrown by the move constructor of a non-CopyInsertable T, the effects are unspecified.-3- Complexity: The complexity is linear in the number of elements inserted plus the lesser of the distances to the beginning and end of the deque. Inserting a single element either at the beginning or end of a deque always takes constant time and causes a single call to a constructor of T.
Edit 23.3.6.5 [vector.modifiers] as indicated:
iterator insert(const_iterator position, const T& x); iterator insert(const_iterator position, T&& x); iterator insert(const_iterator position, size_type n, const T& x); template <class InputIterator> iterator insert(const_iterator position, InputIterator first, InputIterator last); iterator insert(const_iterator position, initializer_list<T>); template <class... Args> void emplace_back(Args&&... args); template <class... Args> iterator emplace(const_iterator position, Args&&... args); void push_back(const T& x); void push_back(T&& x);-1- Remarks: Causes reallocation if the new size is greater than the old capacity. If no reallocation happens, all the iterators and references before the insertion point remain valid. If an exception is thrown other than by the copy constructor, move constructor, assignment operator, or move assignment operator of T or by any InputIterator operation there are no effects. If an exception is thrown while inserting a single element at the end and T is CopyInsertable or is_nothrow_move_constructible<T>::value is true, there are no effects.
IfOtherwise, if an exception is thrown by the move constructor of a non-CopyInsertable T, the effects are unspecified.-2- Complexity: The complexity is linear in the number of elements inserted plus the distance to the end of the vector.
Section: 23.2.1 [container.requirements.general] Status: C++14 Submitter: Marshall Clow Opened: 2013-05-29 Last modified: 2015-04-08
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with C++14 status.
Discussion:
Currently (n3690) Table 96 says, in the row for "a == b", that the Operational semantics are:
== is an equivalence relation.
distance(a.begin(), a.end()) == distance(b.begin(), b.end()) && equal(a.begin(), a.end(),b.begin())
Given the extension of equal for C++14, this can be simplified to:
== is an equivalence relation.
equal(a.begin(), a.end(), b.begin(), b.end())
[ Alisdair notes that a similar edit would apply to the unordered containers requirements. ]
Previous resolution from Marshall Clow:
Ammend the Operational Semantics for 23.2.1 [container.requirements.general], Table 96, row "a == b"
== is an equivalence relation.
distance(a.begin(), a.end()) == distance(b.begin(), b.end()) &&equal(a.begin(), a.end(), b.begin(), b.end())Ammend 23.2.5 [unord.req] p12:
Two unordered containers a and b compare equal if a.size() == b.size() and, for every equivalent-key group [Ea1,Ea2) obtained from a.equal_range(Ea1), there exists an equivalent-key group [Eb1,Eb2) obtained from b.equal_range(Ea1), such thatdistance(Ea1, Ea2) == distance(Eb1, Eb2) andis_permutation(Ea1, Ea2, Eb1, Eb2) returns true. For ...
[2013-09 Chicago]
Marshall improves wording
[2013-09 Chicago (evening issues)]
Moved to ready, after confirming latest wording reflects the discussion earlier in the day.
Proposed resolution:
Ammend 23.2.1 [container.requirements.general], Table 96 as indicated:
Table 96 — Container requirements (continued) Expression Return type Operational
semanticsAssertion/note
pre-/post-conditionComplexity … a == b convertible to bool == is an equivalence relation.
distance(a.begin(),
a.end()) ==
distance(b.begin(),
b.end()) &&
equal(a.begin(),
a.end(),
b.begin(), b.end())Requires: T is
EqualityComparableConstant if a.size() != b.size(), linear otherwise …
Ammend 23.2.5 [unord.req] p12:
Two unordered containers a and b compare equal if a.size() == b.size() and, for every equivalent-key group [Ea1,Ea2) obtained from a.equal_range(Ea1), there exists an equivalent-key group [Eb1,Eb2) obtained from b.equal_range(Ea1), such thatdistance(Ea1, Ea2) == distance(Eb1, Eb2) andis_permutation(Ea1, Ea2, Eb1, Eb2) returns true. For […]
Amend 23.3.4.1 [forwardlist.overview] p2:
-2- A forward_list satisfies all of the requirements of a container (Table 96), except that the size() member function is not provided and operator== has linear complexity. […]
Section: 23.2.4 [associative.reqmts] Status: C++14 Submitter: Geoff Alexander Opened: 2013-05-11 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with C++14 status.
Discussion:
Section 23.2.4 [associative.reqmts], Table 102, page 743 of the C++ 2011 Standard states that a.erase(q1, q2) returns q2. The problem is that a.erase(q1, q2) cannot directly return q2 as the return type, iterator, differs from that of q2, const_iterator.
[2013-09 Chicago (evening issues group)]
The wording looks good, but is worded slightly differently to how we say the same for sequence containers, and for unordered associative containers. We should apply consistent wording in all three cases.
Alisdair to provide the wording.
[2014-02-12 Issaquah meeting]
Move a Immediate.
Proposed resolution:
In the specification of a.erase(q1, q2) in sub-clause 23.2.4 [associative.reqmts], Table 102 change as indicated:
Table 102 — Associative container requirements (in addition to container) (continued) Expression Return type Assertion/note pre-/post-condition Complexity … a.erase(q1, q2) iterator erases all the elements in the range [q1,q2). Returns q2an iterator pointing to the element pointed to by q2 prior to any elements being erased. If no such element exists, a.end() is returned.log(a.size()) + N where N has the value distance(q1, q2). …
Section: 17.6.3.5 [allocator.requirements], 23.2 [container.requirements] Status: C++14 Submitter: Howard Hinnant Opened: 2013-06-25 Last modified: 2015-04-08
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with C++14 status.
Discussion:
This ancient issue 179 says one ought to be able to compare iterators with const_iterators from any given container. I'm having trouble finding words that guarantee this in C++11. This impacts not only a container's iterators, but also the allocator requirements in allocator.requirements] surrounding pointer, const_pointer, void_pointer and const_void_pointer. E.g. can one compare a pointer with a const_pointer?
Since allocator::pointer and const_pointer are required to be random access iterators, one could expect that the 179 guarantees apply for them as well.[ Daniel comments: ]
The wording for 179 was part of several working drafts (e.g. also in N3092) over some time and suddenly got lost in N3242, presumably by accident. Whatever we decide for allocator pointers, I expect that we need to restore the 179 wording as part of the overall resolution:
Reinsert after 23.2 [container.requirements] p6:
-6- begin() returns an iterator referring to the first element in the container. end() returns an iterator which is the past-the-end value for the container. If the container is empty, then begin() == end();
-?- In the expressionsi == j i != j i < j i <= j i >= j i > j i - jwhere i and j denote objects of a container's iterator type, either or both may be replaced by an object of the container's const_iterator type referring to the same element with no change in semantics.
[2014-02-13 Issaquah, Daniel comments and suggests wording]
First, I didn't originally move the seemingly lost wording to the resolution section because I wanted to ensure that the committee double-checks the reason of this loss.
Second, albeit restoring this wording will restore the comparability of const_iterator and iterator of containers specified in Clause 23, but this alone would not imply that this guarantee automatically extends to all other iterators, simply because there is no fundamental relation between a mutable iterator and a constant iterator by itself. This relation only exists under specific conditions, for example for containers which provide two such typedefs of that kind. Thus the wording restoration would not ensure that allocator pointer and const_pointer would be comparable with each other. To realize that, we would need additional guarantees added to the allocator requirements. In fact, it is crucial to separate these things, because allocators are not restricted to be used within containers, they have their own legitimate use for other places as well (albeit containers presumably belong to the most important use-cases), and this is also stated in the introduction of 17.6.3.5 [allocator.requirements], where it says:All of the string types (Clause 21), containers (Clause 23) (except array), string buffers and string streams (Clause 27), and match_results (Clause 28) are parameterized in terms of allocators.
[2014-02-12 Issaquah meeting]
Move a Immediate.
Proposed resolution:
Insert after 17.6.3.5 [allocator.requirements] p4 as indicated:
-4- An allocator type X shall satisfy the requirements of CopyConstructible (17.6.3.1). The X::pointer, X::const_pointer, X::void_pointer, and X::const_void_pointer types shall satisfy the requirements of NullablePointer (17.6.3.3). No constructor, comparison operator, copy operation, move operation, or swap operation on these types shall exit via an exception. X::pointer and X::const_pointer shall also satisfy the requirements for a random access iterator (24.2).
-?- Let x1 and x2 denote objects of (possibly different) types X::void_pointer, X::const_void_pointer, X::pointer, or X::const_pointer. Then, x1 and x2 are equivalently-valued pointer values, if and only if both x1 and x2 can be explicitly converted to the two corresponding objects px1 and px2 of type X::const_pointer, using a sequence of static_casts using only these four types, and the expression px1 == px2 evaluates to true.Drafting note: This wording uses the seemingly complicated route via X::const_pointer, because these are (contrary to X::const_void_pointer) random access iterators and we can rely here for dereferenceable values on the fundamental pointee equivalence of 24.2.5 [forward.iterators] p6:
If a and b are both dereferenceable, then a == b if and only if *a and *b are bound to the same object.
while for null pointer values we can rely on the special equality relation induced by 17.6.3.3 [nullablepointer.requirements].
-?- Let w1 and w2 denote objects of type X::void_pointer. Then for the expressions
w1 == w2 w1 != w2either or both objects may be replaced by an equivalently-valued object of type X::const_void_pointer with no change in semantics.
-?- Let p1 and p2 denote objects of type X::pointer. Then for the expressionsp1 == p2 p1 != p2 p1 < p2 p1 <= p2 p1 >= p2 p1 > p2 p1 - p2either or both objects may be replaced by an equivalently-valued object of type X::const_pointer with no change in semantics.
Reinsert after 23.2 [container.requirements] p6:
-6- begin() returns an iterator referring to the first element in the container. end() returns an iterator which is the past-the-end value for the container. If the container is empty, then begin() == end();
-?- In the expressionsi == j i != j i < j i <= j i >= j i > j i - jwhere i and j denote objects of a container's iterator type, either or both may be replaced by an object of the container's const_iterator type referring to the same element with no change in semantics.
Section: 23.2.3 [sequence.reqmts] Status: WP Submitter: Ahmed Charles Opened: 2013-05-17 Last modified: 2015-04-08
View all other issues in [sequence.reqmts].
View all issues with WP status.
Discussion:
According to Table 100 in n3485 23.2.3 [sequence.reqmts]/4 the notes for the expression a.insert(p,i,j) say:
Requires: T shall be EmplaceConstructible into X from *i. For vector, if the iterator does not meet the forward iterator requirements (24.2.5), T shall also be MoveInsertable into X and MoveAssignable.
Each iterator in the range [i,j) shall be dereferenced exactly once. pre: i and j are not iterators into a. Inserts copies of elements in [i, j) before p
There are two problems with that wording: First, the special constraints for vector, that are expressed to be valid for forward iterators only, are necessary for all iterator categories. Second, the same special constraints are needed for deque, too.
[2013-10-05, Stephan T. Lavavej comments and provides alternative wording]
In Chicago, we determined that the original proposed resolution was correct, except that it needed additional requirements. When vector insert(p, i, j) is called with input-only iterators, it can't know how many elements will be inserted, which is obviously problematic for insertion anywhere other than at the end. Therefore, implementations typically append elements (geometrically reallocating), followed by rotate(). Given forward+ iterators, some implementations append and rotate() when they determine that there is sufficient capacity. Additionally, deque insert(p, i, j) is typically implemented with prepending/appending, with a possible call to reverse(), followed by a call to rotate(). Note that rotate()'s requirements are strictly stronger than reverse()'s.
Therefore, when patching Table 100, we need to add rotate()'s requirements. Note that this does not physically affect code (implementations were already calling rotate() here), and even in Standardese terms it is barely noticeable — if an element is MoveInsertable and MoveAssignable then it is almost certainly MoveConstructible and swappable. However, this patch is necessary to be strictly correct.Previous resolution from Ahmed Charles:
Change Table 100 as indicated:
Table 100 — Sequence container requirements (in addition to container) (continued) Expression Return type Assertion/note pre-/post-condition … a.insert(p,i,j) iterator Requires: T shall be EmplaceConstructible into X from *i. For vector and deque, if the iterator does not meet the forward iterator requirements (24.2.5),T shall also be MoveInsertable into X and MoveAssignable.
Each iterator in the range [i,j) shall be dereferenced exactly once.
pre: i and j are not iterators into a.
Inserts copies of elements in [i, j) before p…
[2014-02-15 post-Issaquah session : move to Tentatively Ready]
Pablo: We might have gone too far with the fine-grained requirements. Typically these things come in groups.
Alisdair: I think the concepts folks assumed we would take their guidance.
Move to Tentatively Ready.
Proposed resolution:
Change Table 100 as indicated:
Table 100 — Sequence container requirements (in addition to container) (continued) Expression Return type Assertion/note pre-/post-condition … a.insert(p,i,j) iterator Requires: T shall be EmplaceConstructible into X
from *i. For vector and deque,if the iterator
does not meet the forward iterator requirements (24.2.5),T shall also be
MoveInsertable into X, MoveConstructible,
andMoveAssignable, and swappable (17.6.3.2 [swappable.requirements]).
Each iterator in the range [i,j) shall be dereferenced exactly once.
pre: i and j are not iterators into a.
Inserts copies of elements in [i, j) before p…
Section: 21.4 [basic.string] Status: C++14 Submitter: Vladimir Grigoriev Opened: 2013-06-26 Last modified: 2015-04-08
View other active issues in [basic.string].
View all other issues in [basic.string].
View all issues with C++14 status.
Discussion:
Constructors and member functions assign of class std::basic_string have one to one relation (except the explicit constructor that creates an empty string). The following list shows this relation:
explicit basic_string(const Allocator& a = Allocator()); basic_string(const basic_string& str); basic_string& assign(const basic_string& str); basic_string(basic_string&& str) noexcept; basic_string& assign(basic_string&& str) noexcept; basic_string(const basic_string& str, size_type pos, size_type n = npos, const Allocator& a = Allocator()); basic_string& assign(const basic_string& str, size_type pos, size_type n); basic_string(const charT* s, size_type n, const Allocator& a = Allocator()); basic_string& assign(const charT* s, size_type n); basic_string(const charT* s, const Allocator& a = Allocator()); basic_string& assign(const charT* s); basic_string(size_type n, charT c, const Allocator& a = Allocator()); basic_string& assign(size_type n, charT c); template<class InputIterator> basic_string(InputIterator begin, InputIterator end, const Allocator& a = Allocator()); template<class InputIterator> basic_string& assign(InputIterator first, InputIterator last); basic_string(initializer_list<charT>, const Allocator& = Allocator()); basic_string& assign(initializer_list<charT>);
So in fact any creating of an object of type std::basic_string using any of the above constructors except the explicit constructor can be substituted for creating a (possibly non-empty) string and then applying to it the corresponding method assign.
For example these two code snippets give the same result:std::string s("Hello World");
and
std::string s; s.assign("Hello World");
However there is one exception that has no a logical support. It is the pair of the following constructor and member function assign
basic_string(const basic_string& str, size_type pos, size_type n = npos, const Allocator& a = Allocator()); basic_string& assign(const basic_string& str, size_type pos, size_type n);
The third parameter of the constructor has a default argument while in the assign function it is absent. So it is impossible one to one to substitute the following code snippet
std::string s("Hello World"); std::string t(s, 6);
by
std::string s("Hello World"); std::string t; t.assign(s, 6); // error: no such function
To get an equivalent result using the assign function the programmer has to complicate the code that is error-prone
std::string s("Hello World"); std::string t; t.assign(s, 6, s.size() - 6);
To fix that, the declaration of the member function assign should be changed in such a way that its declaration would be fully compatible with the declaration of the corresponding constructor, that is to specify the same default argument for the third parameter of the assign.
The assign function is not the only function that requires to be revised.
Now let include in the list of pairs constructor-assign with the modified method assign one more member function append. We will get:explicit basic_string(const Allocator& a = Allocator()); basic_string(const basic_string& str); basic_string& assign(const basic_string& str); basic_string& append(const basic_string& str); basic_string(basic_string&& str) noexcept; basic_string& assign(basic_string&& str) noexcept; basic_string(const basic_string& str, size_type pos, size_type n = npos, const Allocator& a = Allocator()); basic_string& assign(const basic_string& str, size_type pos, size_type n); basic_string& append(const basic_string& str, size_type pos, size_type n); basic_string(const charT* s, size_type n, const Allocator& a = Allocator()); basic_string& assign(const charT* s, size_type n); basic_string& append(const charT* s, size_type n); basic_string(const charT* s, const Allocator& a = Allocator()); basic_string& assign(const charT* s); basic_string& append(const charT* s); basic_string(size_type n, charT c, const Allocator& a = Allocator()); basic_string& assign(size_type n, charT c); basic_string& append(size_type n, charT c); template<class InputIterator> basic_string(InputIterator begin, InputIterator end, const Allocator& a = Allocator()); template<class InputIterator> basic_string& assign(InputIterator first, InputIterator last); template<class InputIterator> basic_string& append(InputIterator first, InputIterator last); basic_string(initializer_list<charT>, const Allocator& = Allocator()); basic_string& assign(initializer_list<charT>); basic_string& append(initializer_list<charT>);
As it seen from this record:
basic_string(const basic_string& str, size_type pos, size_type n = npos,
const Allocator& a = Allocator());
basic_string& assign(const basic_string& str, size_type pos,
size_type n);
basic_string& append(const basic_string& str, size_type pos,
size_type n);
it is obvious that the function append also should have the default argument that is that it should be declared as:
basic_string& append(const basic_string& str, size_type pos, size_type n = npos);
In fact there is no a great difference in using assign or append especially when the string is empty:
std::string s("Hello World"); std::string t; t.assign(s, 6); std::string s("Hello World"); std::string t; t.append(s, 6);
In both cases the result will be the same. So the assign and append will be interchangeable from the point of view of used arguments.
There are another three member functions in class std::basic_string that could be brought in conformity with considered above functions. They are member functions insert, replace, and compare. So it is suggested to substitute the following declarations of insert, replace, and compare:basic_string& insert(size_type pos1, const basic_string& str, size_type pos2, size_type n); basic_string& replace(size_type pos1, size_type n1, const basic_string& str, size_type pos2, size_type n2); int compare(size_type pos1, size_type n1, const basic_string& str, size_type pos2, size_type n2) const;
by the declarations:
basic_string& insert(size_type pos1, const basic_string& str, size_type pos2, size_type n = npos); basic_string& replace(size_type pos1, size_type n1, const basic_string& str, size_type pos2, size_type n2 = npos); int compare(size_type pos1, size_type n1, const basic_string& str, size_type pos2, size_type n2 = npos) const;
[2013-09 Chicago]
Howard: Are we positive this won't conflict with any other overloads?
They all appear to be unambiguous. Alisdair: Ok, move to Ready.Proposed resolution:
Change class template basic_string synopsis, 21.4 [basic.string] p5, as indicated:
namespace std { template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> > class basic_string { public: […] basic_string& append(const basic_string& str, size_type pos, size_type n = npos); […] basic_string& assign(const basic_string& str, size_type pos, size_type n = npos); […] basic_string& insert(size_type pos1, const basic_string& str, size_type pos2, size_type n = npos); […] basic_string& replace(size_type pos1, size_type n1, const basic_string& str, size_type pos2, size_type n2 = npos); […] int compare(size_type pos1, size_type n1, const basic_string& str, size_type pos2, size_type n2 = npos) const; […] }; }
Change 21.4.6.2 [string::append] before p3 as indicated:
basic_string& append(const basic_string& str, size_type pos, size_type n = npos);
Change 21.4.6.3 [string::assign] before p4 as indicated:
basic_string& assign(const basic_string& str, size_type pos, size_type n = npos);
Change 21.4.6.4 [string::insert] before p5 as indicated:
basic_string& insert(size_type pos1, const basic_string& str, size_type pos2, size_type n = npos);
Change 21.4.6.6 [string::replace] before p5 as indicated:
basic_string& replace(size_type pos1, size_type n1, const basic_string& str, size_type pos2, size_type n2 = npos);
Change 21.4.7.9 [string::compare] before p4 as indicated:
int compare(size_type pos1, size_type n1, const basic_string& str, size_type pos2, size_type n2 = npos) const;
Section: 28.7 [re.traits] Status: C++14 Submitter: Jonathan Wakely Opened: 2013-07-02 Last modified: 2015-04-08
View all other issues in [re.traits].
View all issues with C++14 status.
Discussion:
28.7 [re.traits] p9 says that regex_traits::lookup_classname should return a value that compares equal to 0, but there is no requirement that a bitmask type is equality comparable with 0, e.g. 17.5.2.1.3 [bitmask.types] says bitmask types can be implemented using std::bitset.
Either there should be an additional requirement on the type or the function definition should be fixed.[2013-09 Chicago]
Stefanus: Resolution looks good, doesn't seem to need fixing anywhere else from a quick look through the draft.
Any objection to Ready? No objection. Action: Move to Ready.Proposed resolution:
This wording is relative to N3691.
Edit 28.7 [re.traits] p9:
template <class ForwardIterator> char_class_type lookup_classname( ForwardIterator first, ForwardIterator last, bool icase = false) const;-9- Returns: an unspecified value that represents the character classification named by the character sequence designated by the iterator range [first,last). If the parameter icase is true then the returned mask identifies the character classification without regard to the case of the characters being matched, otherwise it does honor the case of the characters being matched. The value returned shall be independent of the case of the characters in the character sequence. If the name is not recognized then returns
a value that compares equal to 0char_class_type().
Section: 27.7.6 [quoted.manip] Status: C++14 Submitter: Marshall Clow Opened: 2013-07-12 Last modified: 2015-04-08
View all other issues in [quoted.manip].
View all issues with C++14 status.
Discussion:
In 27.7.6 [quoted.manip] p2 b2:
— Each character in s. If the character to be output is equal to escape or delim, as determined by operator==, first output escape.
In 27.7.6 [quoted.manip] p3 b1 sb1:
— If the first character extracted is equal to delim, as determined by operator==, […]
these should both use traits::eq.
Also, I believe that 27.7.6 [quoted.manip] p3 implies that:
std::ostream _stream; std::string _string; _stream << _string; _stream << quoted(_string);
should both compile, or both fail to compile, based on whether or not their char_traits match. But I believe that the standard should say that explicitly.
[ 2013-09 Chicago ]
Marshall Clow improved the wording with support from Stefanus.
[ 2013-09 Chicago (late night issues) ]
Moved to Ready, after confirming wording correctly reflects discussion earlier in the day.
Proposed resolution:
This wording is relative to N3691.
Change 27.7.6 [quoted.manip] p2+3 as indicated:
template <class charT> unspecified quoted(const charT* s, charT delim=charT('"'), charT escape=charT('\\')); template <class charT, class traits, class Allocator> unspecified quoted(const basic_string<charT, traits, Allocator>& s, charT delim=charT('"'), charT escape=charT('\\'));-2- Returns: An object of unspecified type such that if out is an instance of basic_ostream with member type char_type the same as charT and with member type traits_type, which in the second form is the same as traits, then the expression out << quoted(s, delim, escape) behaves as if it inserts the following characters into out using character inserter function templates (27.7.3.6.4), which may throw ios_base::failure (27.5.3.1.1):
delim
Each character in s. If the character to be output is equal to escape or delim, as determined by
operator==traits_type::eq, first output escape.delim
template <class charT, class traits, class Allocator> unspecified quoted(basic_string<charT, traits, Allocator>& s, charT delim=charT('"'), charT escape=charT('\\'));-3- Returns: An object of unspecified type such that:
If in is an instance of basic_istream with member types char_type and traits_type the same as charT and traits, respectively, then the expression in >> quoted(s, delim, escape) behaves as if it extracts the following characters from in using basic_istream::operator>> (27.7.2.2.3) which may throw ios_base::failure (27.5.3.1.1):
If the first character extracted is equal to delim, as determined by
operator==traits_type::eq, then: […]If out is an instance of basic_ostream with member types char_type and traits_type the same as charT and traits, respectively, then the expression out << quoted(s, delim, escape) behaves as specified for the const basic_string<charT, traits, Allocator>& overload of the quoted function.
Section: 23.4.4.3 [map.access], 23.5.4.3 [unord.map.elem] Status: Resolved Submitter: Andrzej Krzemieński Opened: 2013-07-16 Last modified: 2015-05-22
View all other issues in [map.access].
View all issues with Resolved status.
Discussion:
Suppose that I provide a custom allocator for type int, that renders value 1 rather than 0 in default-insertion:
struct Allocator1 : std::allocator<int> { using super = std::allocator<int>; template<typename Up, typename... Args> void construct(Up* p, Args&&... args) { super::construct(p, std::forward<Args>(args)...); } template<typename Up> void construct(Up* p) { ::new((void*)p) Up(1); } };
Now, if I use this allocator with std::map, and I use operator[] to access a not-yet-existent value, what value of the mapped_type should be created? 0 (value-initialization) or 1 (default-insertion):
map<string, int, less<string>, Allocator1> map; cout << map["cat"];
N3960 is not very clear. 23.4.4.3 [map.access] in para 1 says:
"If there is no key equivalent to x in the map, inserts value_type(x, T()) into the map."
So, it requires value-initialization.
But para 2 says:"mapped_type shall be DefaultInsertable into *this."
This implies default-insertion, because if not, why the requirement. Also similar functions like vector::resize already require default-insertion wherever they put DefaultInsertable requirements.
Not to mention that default-insertion is more useful, because it allows custom allocators to "override" the default value of mapped_type.[2013-09 Chicago]
Alisdair: Matters only for POD or trivial types
Marshall: issue might show up elsewhere other than map<> Alisdair: initialize elements in any containers — by calling construct on allocator traits Marshall: existing wording is clear Alisdair: main concern is difference in wording, discusses default initialization Nico: different requirement needed Alisdair: gut is issue is NAD, brings up DefaultInsertable definition — discusses definition Nico: why do we have the requirement? Alisdair: other containers have this requirement Marshall: this applies to many other containers Nico: deque<> in particular Alisdair: discusses allocator construct Alisdair: wording raises concerns that aren't said in existing standard Nico: sees no benefit to change Marshall: leery of change Alisdair: can be made clearer; might need to add note to DefaultInsertable; borderline editorial, comfortable without note, willing to wait until other issues arise. close issue as NAD[2015-01-20: Tomasz Kamiński comments]
With the addition of the try_emplace method the behavior of the operator[] for the maps, may be defined as follows:
T& operator[](const key_type& x);Effects: Equivalent to: try_emplace(x).first->second;
T& operator[](key_type&& x);Effects: Equivalent to try_emplace(std::move(x)).first->second;
This would simplify the wording and also after resolution of the issue 2464, this wording would also address this issue.
[2015-02 Cologne]
Wait until 2464 and 2469 are in, which solve this.
[2015-05-06 Lenexa: This is resolved by 2469.]
Proposed resolution:
This wording is relative to N3691.
Change 23.4.4.3 [map.access] p1+p5 as indicated:
T& operator[](const key_type& x);-1- Effects: If there is no key equivalent to x in the map, inserts
-2- Requires: key_type shall be CopyInsertable and mapped_type shall be DefaultInsertable into *this. […]value_type(x, T()) into the mapinto the map a value with key_type initialized using expression x and mapped_type initialized by default-insertion.T& operator[](key_type&& x);-5- Effects: If there is no key equivalent to x in the map, inserts
-6- Requires: mapped_type shall be DefaultInsertable into *this.value_type(std::move(x), T()) into the mapinto the map a value with key_type initialized using expression std::move(x) and mapped_type initialized by default-insertion.
Change 23.5.4.3 [unord.map.elem] p2 as indicated:
mapped_type& operator[](const key_type& k); mapped_type& operator[](key_type&& k);-1- Requires: mapped_type shall be DefaultInsertable into *this. For the first operator, key_type shall be CopyInsertable into *this. For the second operator, key_type shall be MoveConstructible.
-2- Effects: If the unordered_map does not already contain an element whose key is equivalent to k, the first operator insertsthe value value_type(k, mapped_type())a value with key_type initialized using expression x and mapped_type initialized by default-insertion and the second operator insertsthe value value_type(std::move(k), mapped_type())a value with key_type initialized using expression std::move(x) and mapped_type initialized by default-insertion.
Section: 20.4.2.4 [tuple.creation] Status: C++14 Submitter: Marshall Clow Opened: 2013-07-30 Last modified: 2015-04-08
View all other issues in [tuple.creation].
View all issues with C++14 status.
Discussion:
Addresses ES 11
In n3471, a bunch of routines from header <tuple> were made constexpr.
make_tuple/tuple_cat/get<>(tuple)/relational operators — all these were "constexpr-ified". But not forward_as_tuple. Why not? This was discussed in Portland, and STL opined that this was "an omission" (along with tuple_cat, which was added) In discussion on c++std-lib@accu.org list, Pablo agreed that forward_as_tuple should be constexpr.[2013-09 Chicago]
Moved to Immediate, this directly addresses an NB comment and the wording is non-controversial.
Accept for Working Paper
Proposed resolution:
This wording is relative to N3691.
Change header <tuple> synopsis, 20.4.1 [tuple.general] as indicated:
template <class... Types> constexpr tuple<Types&&...> forward_as_tuple(Types&&...) noexcept;
Change 20.4.2.4 [tuple.creation] before p5 as indicated:
template <class... Types> constexpr tuple<Types&&...> forward_as_tuple(Types&&... t) noexcept;
Section: 20.12.2 [time.syn], 21.3 [string.classes] Status: C++14 Submitter: Howard Hinnant Opened: 2013-07-22 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
This paper adds user-defined literals for string, complex and chrono types. It puts each new literal signature in an inline namespace inside of std. Section 3.1 of the paper gives the rationale for doing this:
As a common schema this paper proposes to put all suffixes for user defined literals in separate inline namespaces that are below the inline namespace std::literals. [Note: This allows a user either to do a using namespace std::literals; to import all literal operators from the standard available through header file inclusion, or to use using namespace std::string_literals; to just obtain the literals operators for a specific type. — end note]
This isn't how inline namespaces work.
7.3.1 [namespace.def]/p8 says in part:
Members of an inline namespace can be used in most respects as though they were members of the enclosing namespace. Specifically, the inline namespace and its enclosing namespace are both added to the set of associated namespaces used in argument-dependent lookup (3.4.2) whenever one of them is, and a using- directive (7.3.4) that names the inline namespace is implicitly inserted into the enclosing namespace as for an unnamed namespace (7.3.1.1). […]
I.e. these literals will appear to the client to already be imported into namespace std. The rationale in the paper appears to indicate that this is not the intended behavior, and that instead the intended behavior is to require the user to say:
using namespace std::literals;
or:
using namespace std::literals::string_literals;
prior to use. To get this behavior non-inlined (normal) namespaces must be used.
Originally proposed resolution:
Strike the use of "inline" from each use associated with literals, string_literals, chrono_literals. My opinion is that this must be done prior to publishing C++14, otherwise we are stuck with this (apparently unwanted) decision forever. Marshall Clow:The rationale that I recall was that:
Users could write "using namespace std::literals;" to get all the literal suffixes, or
Users could write "using namespace std::literals::string_literals;" or "using namespace std::literals::chrono_literals;" to get a subset of the suffixes.
To accomplish that, I believe that:
Namespace "std::literals" should not be inline
Namespaces "std::literals::string_literals" and "std::literals::chrono_literals" should be inline
Further details see also reflector message c++std-lib-34256.
Previous resolution from Marshall Clow:
Modify header <chrono> synopsis, 20.12.2 [time.syn], as indicated:
namespace std { namespace chrono { […] } // namespace chronoinlinenamespace literals { inline namespace chrono_literals { […] } // namespace chrono_literals } // namespace literals } // namespace stdModify header <string> synopsis, 21.3 [string.classes] p1, as indicated:
#include <initializer_list> namespace std { […]inlinenamespace literals { inline namespace string_literals { […] } } }
[2013-09 Chicago]
After a discussion about intent, the conclusion was that if you hoist a type with a "using" directive, then you should also get the associated literal suffixes with the type.
This is accomplished by marking namespace std::literals as inline, but for types in their own namespace inside std, then they will need to do this as well. The only case in the current library is chrono.Marshall Clow provides alternative wording.
[2013-09 Chicago (late night issues)]
Moved to Ready, after confirming wording reflects the intent of the earlier discussion.
Proposed resolution:
This wording is relative to N3691.
Modify header <chrono> synopsis, 20.12.2 [time.syn], as indicated:
namespace std { […] inline namespace literals { inline namespace chrono_literals { […] constexpr chrono::duration<unspecified , nano> operator "" ns(long double); } // namespace chrono_literals } // namespace literals namespace chrono { using namespace literals::chrono_literals; } // namespace chrono } // namespace std
Section: 24.7 [iterator.range] Status: C++14 Submitter: Andy Sawyer Opened: 2013-08-22 Last modified: 2015-04-08
View other active issues in [iterator.range].
View all other issues in [iterator.range].
View all issues with C++14 status.
Discussion:
The array forms of std::begin and std::end should be constexpr and noexcept.
Previous resolution from Andy Sawyer:
Edit header <iterator> synopsis, 24.3 [iterator.synopsis] as indicated:
[…] template <class T, size_t N> constexpr T* begin(T (&array)[N]) noexcept; template <class T, size_t N> constexpr T* end(T (&array)[N]) noexcept; template <class C> constexpr auto cbegin(const C& c) -> decltype(std::begin(c)); template <class C> constexpr auto cend(const C& c) -> decltype(std::end(c)); […]Edit 24.7 [iterator.range] before p4+5 as indicated:
template <class T, size_t N> constexpr T* begin(T (&array)[N]) noexcept;-4- Returns: array.
template <class T, size_t N> constexpr T* end(T (&array)[N]) noexcept;-5- Returns: array + N.
template <class C> constexpr auto cbegin(const C& c) -> decltype(std::begin(c));-6- Returns: std::begin(c).
template <class C> constexpr auto cend(const C& c) -> decltype(std::end(c));-7- Returns: std::end(c).
[2013-09 Chicago]
Add noexcept(noexcept(std::begin/end(c))) to cbegin and cend, move to ready
Proposed resolution:
This wording is relative to N3797.
Edit header <iterator> synopsis, 24.3 [iterator.synopsis] as indicated:
[…] template <class T, size_t N> constexpr T* begin(T (&array)[N]) noexcept; template <class T, size_t N> constexpr T* end(T (&array)[N]) noexcept; template <class C> constexpr auto cbegin(const C& c) noexcept(noexcept(std::begin(c))) -> decltype(std::begin(c)); template <class C> constexpr auto cend(const C& c) noexcept(noexcept(std::end(c))) -> decltype(std::end(c)); […]
Edit 24.7 [iterator.range] before p4+5 as indicated:
template <class T, size_t N> constexpr T* begin(T (&array)[N]) noexcept;-4- Returns: array.
template <class T, size_t N> constexpr T* end(T (&array)[N]) noexcept;-5- Returns: array + N.
template <class C> constexpr auto cbegin(const C& c) noexcept(noexcept(std::begin(c))) -> decltype(std::begin(c));-6- Returns: std::begin(c).
template <class C> constexpr auto cend(const C& c) noexcept(noexcept(std::end(c))) -> decltype(std::end(c));-7- Returns: std::end(c).
Section: X [optional.object.assign] Status: Resolved Submitter: Howard Hinnant Opened: 2013-08-25 Last modified: 2015-04-08
View all other issues in [optional.object.assign].
View all issues with Resolved status.
Discussion:
Addresses: fund.ts
Minor wording nit in X [optional.object.assign]/p15:
template <class U> optional<T>& operator=(U&& v);-15- Requires: is_constructible<T, U>::value is true and is_assignable<U, T>::value is true.
Should be:
template <class U> optional<T>& operator=(U&& v);-15- Requires: is_constructible<T, U>::value is true and is_assignable<T&, U>::value is true.
[2013-09 Chicago:]
Move to Deferred. This feature will ship after C++14 and should be revisited then.
[2014-06-06 pre-Rapperswill]
This issue has been reopened as fundamentals-ts.
[2014-06-07 Daniel comments]
This issue should be set to Resolved, because the wording fix is already applied in the last fundamentals working draft.
[2014-06-16 Rapperswill]
Confirmed that this issue is resolved in the current Library Fundamentals working paper.
Proposed resolution:
This wording is relative to N3691.
Edit X [optional.object.assign] p15 as indicated:
template <class U> optional<T>& operator=(U&& v);-15- Requires: is_constructible<T, U>::value is true and is_assignable<
U, TT&, U>::value is true.
Section: X [optional.comp_with_t] Status: Resolved Submitter: Howard Hinnant Opened: 2013-08-26 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses: fund.ts
In [optional.syn] there is:
template <class T> constexpr bool operator<(const T&, const optional<T>&);
But I can find no definition for this signature.
[2013-09 Chicago:]
Move to Deferred. This feature will ship after C++14 and should be revisited then.
[2014-06-06 pre-Rapperswill]
This issue has been reopened as fundamentals-ts.
[2014-06-07 Daniel comments]
This issue should be set to Resolved, because the wording fix is already applied in the last fundamentals working draft.
[2014-06-16 Rapperswill]
Confirmed that this issue is resolved in the current Library Fundamentals working paper.
Proposed resolution:
This wording is relative to N3691.
Add to X [optional.comp_with_t]:
template <class T> constexpr bool operator<(const T& v, const optional<T>& x);-?- Returns: bool(x) ? less<T>{}(v, *x) : false.
Section: 20.7.8 [allocator.traits] Status: C++14 Submitter: Marshall Clow Opened: 2013-08-27 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
Section 20.7.8 [allocator.traits] says:
static size_type max_size(const Alloc& a) noexcept;
Section 20.7.8.2 [allocator.traits.members] says:
static size_type max_size(Alloc& a) noexcept;
These should be the same.
Discussion:
Pablo (who I believe wrote the allocator_traits proposal) says "The function should take a const reference."
[2013-09 Chicago]
No objections, so moved to Immediate.
Accept for Working Paper
Proposed resolution:
This wording is relative to N3691.
Change 20.7.8.2 [allocator.traits.members] as follows:
static size_type max_size(const Alloc& a) noexcept;
Section: 24.5.1 [reverse.iterators] Status: C++14 Submitter: Zhihao Yuan Opened: 2013-08-27 Last modified: 2015-04-08
View all other issues in [reverse.iterators].
View all issues with C++14 status.
Discussion:
We have make_move_iterator, but not make_reverse_iterator, which is also useful when dealing with some types without an rbegin/rend support (like, C strings).
[2013-09 Chicago]
Billy: reviewed it last night STL: has suggested prior, but denied for complexity
Billy: Alisdair wanted to review for reverse(reverse()); STL: likes the issue, was like him Stefanus: likes definitions, places where things should be STL: for consistency with make_move_iterator Stefanus: minor editorial issue - subdivision in these 2 sections is different from [move.iter]. See 24.5.3.3.14 [move.iter.nonmember] STL: motion to move to Ready Move to ReadyProposed resolution:
This wording is relative to N3691.
Change header <iterator> synopsis, 24.3 [iterator.synopsis] as indicated:
namespace std { […] template <class Iterator> reverse_iterator<Iterator> operator+( typename reverse_iterator<Iterator>::difference_type n, const reverse_iterator<Iterator>& x); template <class Iterator> reverse_iterator<Iterator> make_reverse_iterator(Iterator i); }
Change class template reverse_iterator synopsis, 24.5.1.1 [reverse.iterator] as indicated:
namespace std { […] template <class Iterator> reverse_iterator<Iterator> operator+( typename reverse_iterator<Iterator>::difference_type n, const reverse_iterator<Iterator>& x); template <class Iterator> reverse_iterator<Iterator> make_reverse_iterator(Iterator i); }
After 24.5.1.3.20 [reverse.iter.opsum] add the following new sub-clause to 24.5.1.3 [reverse.iter.ops]:
template <class Iterator> reverse_iterator<Iterator> make_reverse_iterator(Iterator i);-?- Returns: reverse_iterator<Iterator>(i).
Section: X [optional.object.assign] Status: Resolved Submitter: Howard Hinnant Opened: 2013-08-16 Last modified: 2015-04-08
View all other issues in [optional.object.assign].
View all issues with Resolved status.
Discussion:
Addresses: fund.ts
The Exception safety paragraph of X [optional.object.assign] calls out T's copy constructor when it should refer to T's copy assignment operator.
[2013-09 Chicago:]
Move to Deferred. This feature will ship after C++14 and should be revisited then.
[2014-06-06 pre-Rapperswill]
This issue has been reopened as fundamentals-ts.
[2014-06-07 Daniel comments]
This issue should be set to Resolved, because the wording fix is already applied in the last fundamentals working draft.
[2014-06-16 Rapperswill]
Confirmed that this issue is resolved in the current Library Fundamentals working paper.
Proposed resolution:
This wording is relative to N3691.
Change X [optional.object.assign] as indicated:
optional<T>& operator=(const optional<T>& rhs);[…]
-8- Exception safety: If any exception is thrown, the values of init and rhs.init remain unchanged. If an exception is thrown during the call to T's copy constructor, no effect. If an exception is thrown during the call to T's copy assignment, the state of its contained value is as defined by the exception safety guarantee of T's copyconstructorassignment.
Section: 30.4.1.4 [thread.sharedmutex.requirements] Status: C++14 Submitter: Daniel Krügler Opened: 2013-08-30 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
Albeit shared mutex types refine timed mutex types, the requirements imposed on the corresponding required member function expressions are inconsistent in several aspects, most probably because failing synchronisation with wording changes for timed mutexes applied by some issues:
Due to acceptance of N3568 a wording phrase came in 30.4.1.4 [thread.sharedmutex.requirements] p26,
Effects: If the tick period of rel_time is not exactly convertible to the native tick period, the duration shall be rounded up to the nearest native tick period. […]
while a very similar one had been removed for 30.4.1.3 [thread.timedmutex.requirements] by LWG 2091.
Having this guaranteed effect for try_lock_shared_for but not for try_lock_for seems inconsistent and astonishing. If the actual intended restriction imposed onto the implementation is to forbid early wakeups here, we should ensure that to hold for timed mutex's try_lock_for as well. Note that the rationale provided for LWG 2091 was a potential late wakeup situation, but it seems that there is no implementation restriction that prevents early wakeups.The shared-lock requirements for any *lock*() functions don't provide the guarantee that "If an exception is thrown then a lock shall not have been acquired for the current execution agent.". For other mutex types this guarantee can be derived from the corresponding TimedLockable requirements, but there are no SharedLockable requirements.
The shared-lock requirements for *lock_for/_until() functions require "Throws: Nothing." instead of "Throws: Timeout-related exceptions (30.2.4)." which had been added by LWG 2093, because user-provided clocks, durations, or time points may throw exceptions.
With the addition of std::shared_mutex, the explicit lists of 30.4.1.2 [thread.mutex.requirements.mutex] p7+15,
Requires: If m is of type std::mutex or std::timed_mutex, the calling thread does not own the mutex.
and of 30.4.1.3 [thread.timedmutex.requirements] p4+11,
Requires: If m is of type std::timed_mutex, the calling thread does not own the mutex.
are incomplete and should add the non-recursive std::shared_mutex as well.
[2014-02-16: Moved as Immediate]
Proposed resolution:
This wording is relative to N3691.
Change 30.4.1.2 [thread.mutex.requirements.mutex] p7+15 as indicated:
-6- The expression m.lock() shall be well-formed and have the following semantics:
-7- Requires: If m is of type std::mutex
or, std::timed_mutex, or std::shared_mutex, the calling thread does not own the mutex.[…]
-14- The expression m.try_lock() shall be well-formed and have the following semantics:
-15- Requires: If m is of type std::mutex
or, std::timed_mutex, or std::shared_mutex, the calling thread does not own the mutex.
Change 30.4.1.3 [thread.timedmutex.requirements] p4+11 as indicated:
-3- The expression m.try_lock_for(rel_time) shall be well-formed and have the following semantics:
-4- Requires: If m is of type std::timed_mutex or std::shared_mutex, the calling thread does not own the mutex.
[…]
-10- The expression m.try_lock_until(abs_time) shall be well-formed and have the following semantics:
-11- Requires: If m is of type std::timed_mutex or std::shared_mutex, the calling thread does not own the mutex.
Change 30.4.1.4 [thread.sharedmutex.requirements] as indicated:
-3- The expression m.lock_shared() shall be well-formed and have the following semantics:
-4- Requires: The calling thread has no ownership of the mutex.
-5- Effects: Blocks the calling thread until shared ownership of the mutex can be obtained for the calling thread. If an exception is thrown then a shared lock shall not have been acquired for the current thread. […]-24- The expression m.try_lock_shared_for(rel_time) shall be well-formed and have the following semantics:
-25- Requires: The calling thread has no ownership of the mutex.
-26- Effects:If the tick period of rel_time is not exactly convertible to the native tick period, the duration shall be rounded up to the nearest native tick period.Attempts to obtain shared lock ownership for the calling thread within the relative timeout (30.2.4) specified by rel_time. If the time specified by rel_time is less than or equal to rel_time.zero(), the function attempts to obtain ownership without blocking (as if by calling try_lock_shared()). The function shall return within the timeout specified by rel_time only if it has obtained shared ownership of the mutex object. [Note: As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but implementations are expected to make a strong effort to do so. — end note] If an exception is thrown then a shared lock shall not have been acquired for the current thread. […] -30- Throws:NothingTimeout-related exceptions (30.2.4 [thread.req.timing]).-31- The expression m.try_lock_shared_until(abs_time) shall be well-formed and have the following semantics:
-32- Requires: The calling thread has no ownership of the mutex.
-33- Effects: The function attempts to obtain shared ownership of the mutex. If abs_time has already passed, the function attempts to obtain shared ownership without blocking (as if by calling try_lock_shared()). The function shall return before the absolute timeout (30.2.4) specified by abs_time only if it has obtained shared ownership of the mutex object. [Note: As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but implementations are expected to make a strong effort to do so. — end note] If an exception is thrown then a shared lock shall not have been acquired for the current thread. […] -37- Throws:NothingTimeout-related exceptions (30.2.4 [thread.req.timing]).
Section: 17.6.3.4 [hash.requirements] Status: C++14 Submitter: Zhihao Yuan Opened: 2013-09-02 Last modified: 2015-04-08
View all other issues in [hash.requirements].
View all issues with C++14 status.
Discussion:
For a non-cryptographic hash function, it's possible to pre-calculate massive inputs with the same hashed value to algorithmically slow down the unordered containers, and results in a denial-of-service attack. Many languages with built-in hash table support have fixed this issue. For example, Perl has universal hashing, Python 3 uses salted hashes.
However, for C++, in 17.6.3.4 [hash.requirements] p2, Table 26:The value returned shall depend only on the argument k. [Note: Thus all evaluations of the expression h(k) with the same value for k yield the same result. — end note]
The wording is not clear here: does that mean all the standard library implementations must use the same hash function for a same type? Or it is not allowed for an implementation to change its hash function?
I suggest to explicitly allow the salted hash functions.[2013-09 Chicago]
Moved to Ready.
There is some concern that the issue of better hashing, especially standardizing any kind of secure hashing, is a feature that deserves attention in LEWG
The proposed resolution is much simpler than the larger issue though, merely clarifying a permission that many implementers believe they already have, without mandating a change to more straight forward implementations.
Move to Ready, rather than Immediate, as even the permission has been contentious in reflector discussion, although the consensus in Chicago is to accept as written unless we hear a further strong objection.
Proposed resolution:
This wording is relative to N3691.
Edit 17.6.3.4 [hash.requirements] p2, Table 26, as indicated: [Editorial note: We can consider adding some additional guideline here. Unlike N3333, this proposed change makes the hashing per-execution instead of per-process. The standard does not discuss OS processes. And, practically, a per-process hashing makes a program unable to share an unordered container to a child process. — end note ]
Table 26 — Hash requirements [hash] Expression Return type Requirement h(k) size_t The value returned shall depend only on the argument k
for the duration of the program.
[Note: Thus all evaluations of the expression h(k) with the
same value for k yield the same result for a given
execution of the program. — end note]
…
Section: 22.4.2.2.2 [facet.num.put.virtuals] Status: C++14 Submitter: Juan Soulie Opened: 2013-09-04 Last modified: 2015-04-08
View all other issues in [facet.num.put.virtuals].
View all issues with C++14 status.
Discussion:
At the end of 22.4.2.2.2 [facet.num.put.virtuals] (in p6), the return value is said to be obtained by calling truename or falsename on the wrong facet: ctype should be replaced by numpunct.
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Edit 22.4.2.2.2 [facet.num.put.virtuals] p6 as indicated:
-6- Returns: If (str.flags() & ios_base::boolalpha) == 0 returns do_put(out, str, fill, (int)val), otherwise obtains a string s as if by
string_type s = val ? use_facet<ctypenumpunct<charT> >(loc).truename() : use_facet<ctypenumpunct<charT> >(loc).falsename();and then inserts each character c of s into out via *out++ = c and returns out.
Section: 20.10.4.3 [meta.unary.prop] Status: C++14 Submitter: Daniel Krügler Opened: 2013-09-24 Last modified: 2015-04-08
View other active issues in [meta.unary.prop].
View all other issues in [meta.unary.prop].
View all issues with C++14 status.
Discussion:
Addresses US 18
The trait is_constructible<T, Args...> is defined in terms of a helper template, create<>, that is identical to std::declval<> except for the latter's noexcept clause.
If the absence of noexcept is critical to this definition, insert a Note of explanation; otherwise, excise create<> and reformulate in terms of declval<> the definition of is_constructible.[2013-09-24 Daniel comments and provides resolution suggestion]
Replacing create<> by std::declval<> would make the situation worse, because the definition of is_constructible is based on a well-formed variable definition and there is no way to specify a variable definition without odr-using its initializer arguments. It should also be added, that there is another problem with the specification of all existing is_trivially_* traits, because neither create<> nor std::declval<> are considered as trivial functions, but this should be solved by a different issue.
[2013-09-26 Nico improves wording]
The additional change is just to keep both places were create() is defined consistent.
[2013-09 Chicago]
No objections, so moved to Immediate.
Accept for Working Paper
Proposed resolution:
This wording is relative to N3691.
Change 20.10.4.3 [meta.unary.prop] around p6 as indicated:
-6- Given the following function prototype:
template <class T> typename add_rvalue_reference<T>::type create() noexcept;the predicate condition for a template specialization is_constructible<T, Args...> shall be satisfied if and only if the following variable definition would be well-formed for some invented variable t:
T t(create<Args>()...);[…]
Change 20.10.4.3 [meta.unary.prop] around p4 as indicated:
-4- Given the following function prototype:
template <class T> typename add_rvalue_reference<T>::type create() noexcept;the predicate condition for a template specialization is_convertible<From, To> shall be satisfied if and only if the return expression in the following code would be well-formed, including any implicit conversions to the return type of the function:
To test() { return create<From>(); }[…]
Section: 23.2.4 [associative.reqmts] Status: C++14 Submitter: Daniel Krügler Opened: 2013-09-24 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with C++14 status.
Discussion:
Addresses ES 16
The condition "X::key_compare::is_transparent exists" does not specify that the type be publicly accessible.
Consider the public accessibility of X::key_compare::is_transparent and whether its potential inaccessibility should be banned for a compliant key_compare type.[2013-09-24 Daniel provides resolution suggestion]
[2013-09-25 Chicago]
Daniel's wording is good, advance to Immediate to respond to NB comment.
[2013-09-26 Chicago]
Moved back to Review as Daniel would like another look at the words, and to confirm implementability.
Previous resolution from Daniel [SUPERSEDED]:
Change 23.2.4 [associative.reqmts] p8 as indicated:
-8- In Table 102, X denotes an associative container class, a denotes a value of X, a_uniq denotes a value of X when X supports unique keys, a_eq denotes a value of X when X supports multiple keys, a_tran denotes a value of X when
thea publicly accessible type X::key_compare::is_transparent exists whose name is unambiguous and not hidden, […]Change 23.2.4 [associative.reqmts] p13 as indicated:
The member function templates find, count, lower_bound, upper_bound, and equal_range shall not participate in overload resolution unless
thea publicly accessible type Compare::is_transparent exists whose name is unambiguous and not hidden.
[2014-02-10 Daniel comments provides alternative wording]
I could confirm that my previous concerns were unwarranted, because they turned out to be due to a compiler-bug. Nonetheless I would suggest to replace the previously suggested replication of core-wording situations (access, ambiguity, hidden) by a single more robust phrase based on "valid type".
[2014-02-12 Issaquah: Move to Immediate]
STL: This uses "valid type", which is a Phrase Of Power in Core, and Daniel has a citation for the term.
Jonathan: It's nice to rely on Core.
Proposed resolution:
This wording is relative to N3797.
Change 23.2.4 [associative.reqmts] p8 as indicated:
-8- In Table 102, X denotes an associative container class, a denotes a value of X, a_uniq denotes a value of X when X supports unique keys, a_eq denotes a value of X when X supports multiple keys, a_tran denotes a value of X when the
typequalified-id X::key_compare::is_transparentexistsis valid and denotes a type (14.8.2 [temp.deduct]), […]
Change 23.2.4 [associative.reqmts] p13 as indicated:
The member function templates find, count, lower_bound, upper_bound, and equal_range shall not participate in overload resolution unless the
typequalified-id Compare::is_transparentexistsis valid and denotes a type (14.8.2 [temp.deduct]).
Section: X [map.ops], X [multimap.ops] Status: C++14 Submitter: Daniel Krügler Opened: 2013-09-25 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
Addresses ES 17
Sections are redundant with general associative container requirements at 23.2.4 [associative.reqmts], Table 102.
Suggested action: Delete sections.[2013-09-25 Daniel provides resolution suggestion]
[2013-09-25 Chicago]
Daniel's wording is good, move to Immediate to resolve NB comment.
[2013-09-29 Chicago]
Accept for Working Paper
Proposed resolution:
This wording is relative to N3691.
Change the header <map> synopsis, 23.4.4.1 [map.overview] p2 as indicated:
//23.4.4.5,map operations: iterator find(const key_type& x); const_iterator find(const key_type& x) const; template <class K> iterator find(const K& x); template <class K> const_iterator find(const K& x) const;
Delete the complete sub-clause X [map.ops]:
23.4.4.5 map operations [map.ops]
iterator find(const key_type& x); const_iterator find(const key_type& x) const; iterator lower_bound(const key_type& x); const_iterator lower_bound(const key_type& x) const; iterator upper_bound(const key_type& x); const_iterator upper_bound(const key_type &x) const; pair<iterator, iterator> equal_range(const key_type &x); pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
-1- The find, lower_bound, upper_bound and equal_range member functions each have two versions, one const and the other non-const. In each case the behavior of the two functions is identical except that the const version returns a const_iterator and the non-const version an iterator (23.2.4).
Delete the complete sub-clause X [multimap.ops]:
23.4.5.4 multimap operations [multimap.ops]
iterator find(const key_type &x); const_iterator find(const key_type& x) const; iterator lower_bound(const key_type& x); const_iterator lower_bound(const key_type& x) const; pair<iterator, iterator> equal_range(const key_type &x); pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
-1- The find, lower_bound, upper_bound and equal_range member functions each have two versions, one const and one non-const. In each case the behavior of the two versions is identical except that the const version returns a const_iterator and the non-const version an iterator (23.2.4).
Section: 20.4.2.4 [tuple.creation] Status: C++14 Submitter: Rein Halbersma Opened: 2013-09-11 Last modified: 2015-04-08
View all other issues in [tuple.creation].
View all issues with C++14 status.
Discussion:
In N3471, a bunch of routines from header <tuple> were made constexpr.
make_tuple/tuple_cat/get<>(tuple)/relational operators — all these were "constexpr-ified". But not tie. This is similar to Issue 2275, where the same observation was made about forward_as_tuple.[2014-02-13 Issaquah: Move as Immediate]
Proposed resolution:
This wording is relative to N3691.
Change the header <tuple> synopsis, 20.4.1 [tuple.general] p2 as indicated:
template<class... Types> constexpr tuple<Types&...> tie(Types&...) noexcept;
Change 20.4.2.4 [tuple.creation] around p7 as indicated:
template<class... Types> constexpr tuple<Types&...> tie(Types&... t) noexcept;
Section: 23.2.5 [unord.req] Status: C++14 Submitter: Joaquín M López Muñoz Opened: 2013-09-20 Last modified: 2015-04-08
View other active issues in [unord.req].
View all other issues in [unord.req].
View all issues with C++14 status.
Discussion:
Table 103 in 23.2.5 [unord.req] states that the complexity of b.count(k) is average case 𝒪(1) rather than linear with the number of equivalent elements, which seems to be a typo as this requires holding an internal count of elements in each group of equivalent keys, something which hardly looks the intent of the standard and no (known by the submitter) stdlib implementation is currently doing.
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Change Table 103 as indicated:
Table 103 — Unordered associative container requirements (in addition to container) Expression Return type Assertion/note pre-/post-condition Complexity … b.count(k) size_type Returns the number of elements with key equivalent to k. Average case 𝒪( 1b.count(k)), worst case 𝒪(b.size()).…
Section: 28.10 [re.results] Status: C++14 Submitter: Matt Austern Opened: 2013-09-25 Last modified: 2015-04-08
View all other issues in [re.results].
View all issues with C++14 status.
Discussion:
The match_results class synopsis has
typedef const value_type& const_reference; typedef const_reference reference;
We're getting too enthusiastic about types here by insisting that reference is a const reference, even though match_results is a read-only container. In the container requirements table (Table 96, in section 23.2.1 [container.requirements.general] we say that Container::reference is "lvalue of T" and Container::const_reference is "const lvalue of T".
That phrasing in the container requirements table is admittedly a little fuzzy and ought to be clarified (as discussed in lwg issue 2182), but in context it's clear that Container::reference ought to be a T& even for constant containers. In the rest of Clause 23 we see that Container::reference is T&, not const T&, even for const-qualified containers and that it's T&, not const T&, even for containers like set and unordered_set that provide const iterators only.
The way we handle const containers is just that in the case of a const-qualified container (including match_results) there are no operations that return Container::reference. That's already the case, so this issue is complaining about an unused typedef.[2013-10-17: Daniel comments]
The std::initializer_list synopsis, 18.9 [support.initlist] shows a similar problem:
template<class E> class initializer_list { public: typedef E value_type; typedef const E& reference; typedef const E& const_reference; […] }
Given the fact that std::initializer_list doesn't meet the container requirements anyway (and is such a core-language related type) I recommend to stick with the current state.
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Change the class template match_results header synopsis, 28.10 [re.results] p4 as indicated:
typedef const value_type& const_reference; typedefconst_referencevalue_type& reference;
Section: 23.2.1 [container.requirements.general] Status: C++14 Submitter: Jonathan Wakely Opened: 2013-09-26 Last modified: 2015-04-08
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with C++14 status.
Discussion:
It has been suggested that Table 96 — "Container requirements" makes confusing requirements for the destructor of std::array:
"note: the destructor is applied to every element of a; all the memory is deallocated." Since std::array obtains no memory, there is none to deallocate, arguably making it unclear what the requirement means for std::array::~array().[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Change in 23.2.1 [container.requirements.general], Table 96 — "Container requirements", the "Assertion/note/pre-/post-condition" for the expression "(&a)->~X()" as indicated:
note: the destructor is applied to every element of a;
all theany memory obtained is deallocated.
Section: 20.4.2.5 [tuple.helper] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View all other issues in [tuple.helper].
View all issues with C++14 status.
Discussion:
In 20.4.2.5 [tuple.helper], the "primary template" is depicted as:
template <class... Types> class tuple_size<tuple<Types...> > : public integral_constant<size_t, sizeof...(Types)> { };
However, 20.3.4 [pair.astuple]/1-2 and 23.3.2.9 [array.tuple]/1-2 are underspecified, saying:
tuple_size<pair<T1, T2> >::valueReturns: Integral constant expression.
Value: 2.
tuple_size<array<T, N> >::valueReturn type: integral constant expression.
Value: N
They should be required to behave like the "primary template". This is more than a stylistic decision — it allows tuple_size to be passed to a function taking integral_constant.
LWG 1118 noticed this underspecification, but instead of correcting it, the resolution changed 20.4.2.5 [tuple.helper]/3 to require tuple_size<cv T> to derive from integral_constant<remove_cv<decltype(TS::value)>::type, TS::value>. This is unnecessarily overgeneralized. tuple_size is primarily for tuples, where it is required to be size_t, and it has been extended to handle pairs and arrays, which (as explained above) should also be guaranteed to be size_t. tuple_size<cv T> works with cv-qualified tuples, pairs, arrays, and user-defined types that also want to participate in the tuple_size system. It would be far simpler and perfectly reasonable to expect that user-defined types supporting the "tuple-like protocol" should have tuple_sizes of size_t.[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Edit 20.3.4 [pair.astuple]/1-2 as indicated:
tuple_size<pair<T1, T2> >::valuetemplate <class T1, class T2> struct tuple_size<pair<T1, T2>> : integral_constant<size_t, 2> { };
-1- Returns: Integral constant expression.-2- Value: 2.
Edit 23.3.2.9 [array.tuple]/1-2 as indicated:
tuple_size<array<T, N> >::valuetemplate <class T, size_t N> struct tuple_size<array<T, N>> : integral_constant<size_t, N> { };
-1- Returns: Integral constant expression.-2- Value: N.
Edit 20.4.2.5 [tuple.helper]/p1-p3 as indicated:
template <class T> struct tuple_size;-?- Remarks: All specializations of tuple_size<T> shall meet the UnaryTypeTrait requirements (20.10.1 [meta.rqmts]) with a BaseCharacteristic of integral_constant<size_t, N> for some N.
template <class... Types> struct tuple_size<tuple<Types...> > : integral_constant<size_t, sizeof...(Types)> { }; template <size_t I, class... Types> class tuple_element<I, tuple<Types...> > { public: typedef TI type; };-1- Requires: I < sizeof...(Types). The program is ill-formed if I is out of bounds.
[…]
template <class T> class tuple_size<const T>; template <class T> class tuple_size<volatile T>; template <class T> class tuple_size<const volatile T>;-3- Let TS denote tuple_size<T> of the cv-unqualified type T. Then each of the three templates shall meet the UnaryTypeTrait requirements (20.10.1 [meta.rqmts]) with a BaseCharacteristic of
integral_constant<remove_cv<decltype(TS::value)>::typesize_t, TS::value>
Section: 20.5.1 [intseq.general] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
The example in 20.5.1 [intseq.general]/2 depicts apply_impl() and apply() as returning auto. This is incorrect because it will trigger decay and will not preserve F's return type. For example, if invoking the functor returns const int&, apply_impl() and apply() will return int. decltype(auto) should be used for "perfect returning".
Additionally, this depicts apply() as taking Tuple&&, then saying "std::tuple_size<Tuple>::value". This is incorrect because when apply() is called with lvalue tuples, perfect forwarding will deduce Tuple to be cv tuple&, but 20.4.2.5 [tuple.helper] says that tuple_size handles only cv tuple, not references to tuples. Using remove_reference_t would avoid this problem, but so would decay_t, which has a significantly shorter name. (The additional transformations that decay_t does are neither beneficial nor harmful here.)
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Edit the example code in 20.5.1 [intseq.general]/2 as indicated:
template<class F, class Tuple, std::size_t... I>autodecltype(auto) apply_impl(F&& f, Tuple&& t, index_sequence<I...>) { return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); } template<class F, class Tuple>autodecltype(auto) apply(F&& f, Tuple&& t) { using Indices = make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>; return apply_impl(std::forward<F>(f), std::forward<Tuple>(t), Indices()); }
Section: 20.8.2.3 [util.smartptr.weak] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View all other issues in [util.smartptr.weak].
View all issues with C++14 status.
Discussion:
Like shared_ptr, weak_ptr should be movable to avoid unnecessary atomic increments/decrements of the weak refcount.
[2014-02-13 Issaquah: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Edit 20.8.2.3 [util.smartptr.weak]/1, class template weak_ptr synopsis, as indicated:
namespace std { template<class T> class weak_ptr { public: typedef T element_type; // 20.9.2.3.1, constructors constexpr weak_ptr() noexcept; template<class Y> weak_ptr(shared_ptr<Y> const& r) noexcept; weak_ptr(weak_ptr const& r) noexcept; template<class Y> weak_ptr(weak_ptr<Y> const& r) noexcept; weak_ptr(weak_ptr&& r) noexcept; template<class Y> weak_ptr(weak_ptr<Y>&& r) noexcept; […] // 20.9.2.3.3, assignment weak_ptr& operator=(weak_ptr const& r) noexcept; template<class Y> weak_ptr& operator=(weak_ptr<Y> const& r) noexcept; template<class Y> weak_ptr& operator=(shared_ptr<Y> const& r) noexcept; weak_ptr& operator=(weak_ptr&& r) noexcept; template<class Y> weak_ptr& operator=(weak_ptr<Y>&& r) noexcept; }; }
Add the following new paragraphs at the end of sub-clause 20.8.2.3.1 [util.smartptr.weak.const]:
weak_ptr(weak_ptr&& r) noexcept; template<class Y> weak_ptr(weak_ptr<Y>&& r) noexcept;-?- Remark: The second constructor shall not participate in overload resolution unless Y* is implicitly convertible to T*.
-?- Effects: Move-constructs a weak_ptr instance from r. -?- Postconditions: *this shall contain the old value of r. r shall be empty. r.use_count() == 0.
Edit 20.8.2.3.3 [util.smartptr.weak.assign] as indicated:
weak_ptr& operator=(const weak_ptr& r) noexcept; template<class Y> weak_ptr& operator=(const weak_ptr<Y>& r) noexcept; template<class Y> weak_ptr& operator=(const shared_ptr<Y>& r) noexcept;-1- Effects: […]
-2- Remarks: […] -?- Returns: *this.
weak_ptr& operator=(weak_ptr&& r) noexcept; template<class Y> weak_ptr& operator=(weak_ptr<Y>&& r) noexcept;-?- Effects: Equivalent to weak_ptr(std::move(r)).swap(*this).
-?- Returns: *this.
Section: 20.8.2.3.5 [util.smartptr.weak.obs] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View all other issues in [util.smartptr.weak.obs].
View all issues with C++14 status.
Discussion:
20.8.2.2 [util.smartptr.shared]/4 says: "For purposes of determining the presence of a data race, member functions shall access and modify only the shared_ptr and weak_ptr objects themselves and not objects they refer to. Changes in use_count() do not reflect modifications that can introduce data races." This requires shared_ptr/weak_ptr implementations to protect their strong and weak refcounts with atomic operations, without the Standardese having to say this elsewhere. However, 20.8.2.3.5 [util.smartptr.weak.obs]/5 describes weak_ptr::lock() with "Returns: expired() ? shared_ptr<T>() : shared_ptr<T>(*this)." Even after considering the blanket wording about data races, this specification is insufficient. If this conditional expression were literally implemented, the use_count() could change from nonzero to zero after testing expired(), causing shared_ptr<T>(*this) to throw bad_weak_ptr when the intention is for weak_ptr::lock() to return empty or nonempty without throwing — indeed, weak_ptr::lock() is marked as noexcept.
We all know what weak_ptr::lock() should do, the Standardese just doesn't say it. shared_ptr(const weak_ptr<Y>&)'s specification is not really affected because 20.8.2.2.1 [util.smartptr.shared.const]/23-27 describes the behavior with English instead of code.
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Edit 20.8.2.3.5 [util.smartptr.weak.obs]/5 as indicated:
shared_ptr<T> lock() const noexcept;-5- Returns: expired() ? shared_ptr<T>() : shared_ptr<T>(*this), executed atomically.
Section: 20.10.5 [meta.unary.prop.query] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
The sibling sections 20.10.4 [meta.unary], 20.10.6 [meta.rel], and 20.10.7 [meta.trans] respectively specify UnaryTypeTraits, BinaryTypeTraits, and TransformationTraits, as stated by each /2 paragraph. However, 20.10.5 [meta.unary.prop.query] is underspecified. alignment_of, rank, and extent are said to produce "Values", but the type of that Value is not specified, and the struct templates are not required to derive from integral_constant. Such derivation is more than stylistic — it allows the structs to be passed to functions taking integral_constant.
alignment_of returns alignof(T) which is size_t (5.3.6 [expr.alignof]/2). extent returns an array bound, which is clearly size_t. rank returns "the number of dimensions" of an array, so any type could be chosen, with size_t being a reasonable choice. (Another choice would be unsigned int, to match extent's template parameter I.)[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Following 20.10.5 [meta.unary.prop.query]/1 add a new paragraph as indicated:
Each of these templates shall be a UnaryTypeTrait (20.10.1 [meta.rqmts]) with a BaseCharacteristic of integral_constant<size_t, Value>.
Section: 21.4.2 [string.cons] Status: Resolved Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View all other issues in [string.cons].
View all issues with Resolved status.
Discussion:
In debugging implementations, containers (including basic_string) may need to own dynamically allocated helper objects at all times, including in their default-constructed and moved-from states. This means that their default constructors and move constructors may throw exceptions. Therefore, the Standard should not mark them as noexcept. (Other implementations will still be permitted to add noexcept.)
[2014-02, Issaquah : move to Ready]
The issue discussion was highly controversial: The arguments in favour was that implementations exist that always need to allocate memory even for the move operations (similar as for some other containers) and that this cleans up an inconsistency between std::string and other container types. Counter arguments were that potentially throwing move operations reduce much of the advantages of move-support, e.g. in vector<string>.
straw poll: accept wording in the issue
SF 4 WF 4 N 0 WA 1 SA 1
straw poll: 14 or 17?
C++14: 4 C++17: 4
Move to Ready for C++17, as too close to 14 DIS without strong consensus.
It was suggested to introduce a special library vocabulary that specifies a "normative encouragement to not throw exceptions" for functions like these.
NJ: I offer to write a proposal to add encouragement for not throwing ... "noexcept in italics means should not throw"
[2014/11 Urbana]
Resolved by paper N4258
Proposed resolution:
This wording is relative to N3691.
In 21.4 [basic.string]/5, class template basic_string synopsis, and 21.4.2 [string.cons]/2 change as indicated:
basic_string(basic_string&& str)noexcept;
Edit 21.4.2 [string.cons]/17 as indicated:
basic_string(const basic_string& str, const Allocator& alloc); basic_string(basic_string&& str, const Allocator& alloc);[…]
-17- Throws: The second form throws nothing if alloc == str.get_allocator()..
Section: 23.2.1 [container.requirements.general] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with C++14 status.
Discussion:
23.2.1 [container.requirements.general]/7 says "Copy constructors for these container types obtain an allocator by calling allocator_traits<allocator_type>::select_on_container_copy_construction on their first parameters." However, 20.7.8.2 [allocator.traits.members]/8 says that this takes const Alloc&, not a container. 23.2.1 [container.requirements.general]/7 goes on to say "Move constructors obtain an allocator by move construction from the allocator belonging to the container being moved." so we can follow that wording.
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
In 23.2.1 [container.requirements.general]/7 change as indicated:
-7- Unless otherwise specified, all containers defined in this clause obtain memory using an allocator (see 17.6.3.5). Copy constructors for these container types obtain an allocator by calling allocator_traits<allocator_type>::select_on_container_copy_construction on
their first parametersthe allocator belonging to the container being copied. Move constructors obtain an allocator by move construction from the allocator belonging to the container being moved. […]
Section: 23.2.4 [associative.reqmts], 23.2.5 [unord.req] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View other active issues in [associative.reqmts].
View all other issues in [associative.reqmts].
View all issues with C++14 status.
Discussion:
23.2.4 [associative.reqmts] specifies both X(i,j) and X(i,j,c), but only X(il). 23.4.4.1 [map.overview] declares "map(initializer_list<value_type>, const Compare& = Compare(), const Allocator& = Allocator());" but 23.4.4.2 [map.cons] intentionally doesn't explain it, relying on the big table's requirements. As a result, map(il, c)'s behavior is not actually specified by the Standard. (All of the other ordered associative containers also provide such constructors.)
The unordered associative containers are similarly affected, although they have more arguments. (Again, the actual containers are correctly depicted with the desired constructors, their behavior just isn't specified.)[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Edit 23.2.4 [associative.reqmts], Table 102 — "Associative container requirements", as indicated:
Table 102 — Associative container requirements (in addition to container) (continued) Expression Return type Assertion/note pre-/post-condition Complexity … X(il); Same as X(il.begin(), il.end()). sSame as X(il.begin(), il.end()).X(il, c); Same as X(il.begin(), il.end(), c). Same as X(il.begin(), il.end(), c). …
Edit 23.2.5 [unord.req], Table 103 "Unordered associative container requirements", as indicated:
Table 103 — Unordered associative container requirements (in addition to container) Expression Return type Assertion/note pre-/post-condition Complexity … X(il) X Same as X(il.begin(), il.end()). Same as X(il.begin(), il.end()). X(il, n) X Same as X(il.begin(), il.end(), n). Same as X(il.begin(), il.end(), n). X(il, n, hf) X Same as X(il.begin(), il.end(), n, hf). Same as X(il.begin(), il.end(), n, hf). X(il, n, hf, eq) X Same as X(il.begin(), il.end(), n, hf, eq). Same as X(il.begin(), il.end(), n, hf, eq). …
Section: 23.3.6.3 [vector.capacity], 23.3.3.3 [deque.capacity] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View other active issues in [vector.capacity].
View all other issues in [vector.capacity].
View all issues with C++14 status.
Discussion:
First, 23.3.3.3 [deque.capacity]/4 and 23.3.6.3 [vector.capacity]/16 say that resize(size_type sz, const T& c) "Requires: T shall be MoveInsertable into *this and CopyInsertable into *this." The CopyInsertable requirement is correct (because sz might be size() + 2 or more), but the MoveInsertable requirement is redundant due to 23.2.1 [container.requirements.general]/13: "T is CopyInsertable into X means that, in addition to T being MoveInsertable into X, the [...]". (LWG 2033's resolution said that this was "not redundant, because CopyInsertable is not necessarily a refinement of MoveInsertable" which was true at the time, but then LWG 2177's resolution made it a refinement.)
Second, 23.3.6.3 [vector.capacity]/17 says "Remarks: If an exception is thrown other than by the move constructor of a non-CopyInsertable T there are no effects." This is confusing because T is required to be CopyInsertable. (/14 says the same thing for resize(size_type sz), where it is correct because that overload requires only MoveInsertable and DefaultInsertable.)[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Edit 23.3.3.3 [deque.capacity]/4 as indicated:
void resize(size_type sz, const T& c);[…]
-4- Requires: T shall beMoveInsertable into *this andCopyInsertable into *this.
Edit 23.3.6.3 [vector.capacity]/16+17 as indicated:
void resize(size_type sz, const T& c);[…]
-16- Requires: T shall beMoveInsertable into *this andCopyInsertable into *this. -17- Remarks: If an exception is thrownother than by the move constructor of a non-CopyInsertable Tthere are no effects.
Section: 24.5.2.2.1 [back.insert.iter.cons], 24.5.2.4.1 [front.insert.iter.cons], 24.5.2.6.1 [insert.iter.cons] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
24.5.2.2.1 [back.insert.iter.cons]/1, 24.5.2.4.1 [front.insert.iter.cons]/1, and 24.5.2.6.1 [insert.iter.cons]/1 say "Initializes container with &x", which doesn't defend against containers overloading operator&(). Containers are now required to have such defenses for their elements, so we may as well be consistent here.
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Edit 24.5.2.2.1 [back.insert.iter.cons]/1 as indicated:
explicit back_insert_iterator(Container& x);-1- Effects: Initializes container with
&xstd::addressof(x).
Edit 24.5.2.4.1 [front.insert.iter.cons]/1 as indicated:
explicit front_insert_iterator(Container& x);-1- Effects: Initializes container with
&xstd::addressof(x).
Edit 24.5.2.6.1 [insert.iter.cons]/1 as indicated:
insert_iterator(Container& x, typename Container::iterator i);-1- Effects: Initializes container with
&xstd::addressof(x) and iter with i.
Section: 25.4.7 [alg.min.max] Status: WP Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View all other issues in [alg.min.max].
View all issues with WP status.
Discussion:
25.4.7 [alg.min.max]/23 says that max_element() finds the first biggest element, while /25 says that minmax_element() finds the last biggest element. This significant difference is unusual — it means that minmax_element(args) is not equivalent to make_pair(min_element(args), max_element(args)), whereas the other major "two for one" algorithm equal_range(args) is equivalent to make_pair(lower_bound(args), upper_bound(args)). minmax_element()'s behavior is intentional — it is a fundamental consequence of the 3N/2 algorithm — but the Standardese does not draw attention to this in any way. This wording came from LWG 715's resolution (which changed the semantics but didn't mention it), citing CLRS for the algorithm — but CLRS doesn't mention the behavior for equivalent elements! The wording here deeply confused me (as an STL maintainer fixing an incorrect implementation) until I walked through the algorithm by hand and figured out the fundamental reason. It would be really nice for the Standard to provide a hint that something magical is happening here.
[2014-06-06 Library reflector vote]
The issue has been identified as Tentatively Ready based on six votes in favour.
Proposed resolution:
This wording is relative to N3691.
Add a footnote to 25.4.7 [alg.min.max]/25 as indicated:
template<class ForwardIterator> pair<ForwardIterator, ForwardIterator> minmax_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> pair<ForwardIterator, ForwardIterator> minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);-25- Returns: make_pair(first, first) if [first,last) is empty, otherwise make_pair(m, M), where m is the first iterator in [first,last) such that no iterator in the range refers to a smaller element, and where M is the last iterator [Footnote: This behavior intentionally differs from max_element().] in [first,last) such that no iterator in the range refers to a larger element.
Section: 28.4 [re.syn] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View all other issues in [re.syn].
View all issues with C++14 status.
Discussion:
Consider the following code:
const regex r(R"(meow(\d+)\.txt)"); smatch m; if (regex_match(dir_iter->path().filename().string(), m, r)) { DoSomethingWith(m[1]); }
This occasionally crashes. The problem is that dir_iter->path().filename().string() returns a temporary string, so the match_results contains invalidated iterators into a destroyed temporary string.
It's fine for regex_match/regex_search(str, reg) to accept temporary strings, because they just return bool. However, the overloads taking match_results should forbid temporary strings.[2014-02-13 Issaquah: Move as Immediate]
Proposed resolution:
This wording is relative to N3691.
Edit 28.4 [re.syn], header <regex> synopsis, as indicated:
#include <initializer_list> namespace std { […] // 28.11.2, function template regex_match: […] template <class ST, class SA, class Allocator, class charT, class traits> bool regex_match(const basic_string<charT, ST, SA>&&, match_results< typename basic_string<charT, ST, SA>::const_iterator, Allocator>&, const basic_regex<charT, traits>&, regex_constants::match_flag_type = regex_constants::match_default) = delete; // 28.11.3, function template regex_search: […] template <class ST, class SA, class Allocator, class charT, class traits> bool regex_search(const basic_string<charT, ST, SA>&&, match_results< typename basic_string<charT, ST, SA>::const_iterator, Allocator>&, const basic_regex<charT, traits>&, regex_constants::match_flag_type = regex_constants::match_default) = delete; […] }
Section: 28.5.1 [re.synopt] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View other active issues in [re.synopt].
View all other issues in [re.synopt].
View all issues with C++14 status.
Discussion:
28.5.1 [re.synopt]/1 says "A valid value of type syntax_option_type shall have exactly one of the elements ECMAScript, basic, extended, awk, grep, egrep, set."
This "exactly one" wording technically forbids passing icase by itself! Users should not be required to pass regex::ECMAScript | regex::icase. (Note that the cost of an additional check for no grammar being explicitly requested is completely irrelevant, as regex construction is so much more expensive.)[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Edit 28.5.1 [re.synopt] as indicated:
-1- The type syntax_option_type is an implementation-defined bitmask type (17.5.2.1.3). Setting its elements has the effects listed in table 138. A valid value of type syntax_option_type shall have
exactlyat most one of the grammar elements ECMAScript, basic, extended, awk, grep, egrep, set. If no grammar element is set, the default grammar is ECMAScript.
Section: 28.12 [re.iter] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-09-21 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
Users can write "for(sregex_iterator i(s.begin(), s.end(), regex("meow")), end; i != end; ++i)", binding a temporary regex to const regex& and storing a pointer to it. This will compile silently, triggering undefined behavior at runtime. We now have the technology to prevent this from compiling, like how reference_wrapper refuses to bind to temporaries.
[2014-02-14 Issaquah meeting: Move to Immediate]
Proposed resolution:
This wording is relative to N3691.
Change 28.12.1 [re.regiter]/1, class template regex_iterator synopsis, as indicated:
regex_iterator(); regex_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, regex_constants::match_flag_type m = regex_constants::match_default); regex_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type&& re, regex_constants::match_flag_type m = regex_constants::match_default) = delete;
Change 28.12.2 [re.tokiter]/6, class template regex_token_iterator synopsis, as indicated:
regex_token_iterator(); regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, int submatch = 0, regex_constants::match_flag_type m = regex_constants::match_default); regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, const std::vector<int>& submatches, regex_constants::match_flag_type m = regex_constants::match_default); regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, initializer_list<int> submatches, regex_constants::match_flag_type m = regex_constants::match_default); template <std::size_t N> regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, const int (&submatches)[N], regex_constants::match_flag_type m = regex_constants::match_default); regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type&& re, int submatch = 0, regex_constants::match_flag_type m = regex_constants::match_default) = delete; regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type&& re, const std::vector<int>& submatches, regex_constants::match_flag_type m = regex_constants::match_default) = delete; regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type&& re, initializer_list<int> submatches, regex_constants::match_flag_type m = regex_constants::match_default) = delete; template <std::size_t N> regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type&& re, const int (&submatches)[N], regex_constants::match_flag_type m = regex_constants::match_default) = delete;
Section: X [optional.hash] Status: Resolved Submitter: Jonathan Wakely Opened: 2013-10-03 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses: fund.ts
The spec for hash<optional<T>> doesn't say anything about disengaged objects, so 1.3 [defns.undefined] would imply it's undefined behaviour, but that's very unhelpful to users.
If hashing disengaged optional objects is undefined there should be a Requires, otherwise there should be some statement saying it's OK. It would be possible to specify the value, e.g. saying it returns the same value as something like std::hash<void*>()(nullptr), but leaving it unspecified would permit users to specialize hash<optional<UserDefinedType>> so that the hash value for a disengaged object is distinct from any value returned by hash<UserDefinedType>.[2014-06-06 pre-Rapperswill]
This issue has been reopened as fundamentals-ts.
[2014-06-07 Daniel comments]
This issue should be set to Resolved, because the wording fix is already applied in the last fundamentals working draft.
[2014-06-16 Rapperswill]
Confirmed that this issue is resolved in the current Library Fundamentals working paper.
Proposed resolution:
This wording is relative to N3691.
Add to X [optional.hash]/3
template <class T> struct hash<optional<T>>;[…]
-3- For an object o of type optional<T>, if bool(o) == true, hash<optional<T>>()(o) shall evaluate to the same value as hash<T>()(*o) otherwise it evaluates to an unspecified value.
Section: 25.4.2 [alg.nth.element] Status: C++14 Submitter: Christopher Jefferson Opened: 2013-10-19 Last modified: 2015-04-08
View all other issues in [alg.nth.element].
View all issues with C++14 status.
Discussion:
The wording of nth_element says:
template<class RandomAccessIterator> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last);After nth_element the element in the position pointed to by nth is the element that would be in that position if the whole range were sorted. Also for every iterator i in the range [first,nth) and every iterator j in the range [nth,last) it holds that: !(*j < *i) or comp(*j, *i) == false.
That wording, to me, implies that there must be an element at 'nth'. However, gcc at least accepts nth == last, and returns without effect (which seems like the sensible option).
Is it intended to accept nth == last? If so, then I would suggest adding this to the wording explicitly, say:After nth_element the element in the position pointed to by nth, if any, is the element that would be in that position if the whole range were sorted. Also for every iterator i in the range [first,nth) and every iterator j in the range [nth,last) it holds that: !(*j < *i) or comp(*j, *i) == false.
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3797.
Modify 25.4.2 [alg.nth.element]/1 as indicated:
template<class RandomAccessIterator> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last, Compare comp);-1- After nth_element the element in the position pointed to by nth is the element that would be in that position if the whole range were sorted, unless nth == last. Also for every iterator i in the range [first,nth) and every iterator j in the range [nth,last) it holds that: !(*j < *i) or comp(*j, *i) == false.
Section: 17.6.4.6 [replacement.functions] Status: WP Submitter: David Majnemer Opened: 2013-10-20 Last modified: 2015-04-08
View all other issues in [replacement.functions].
View all issues with WP status.
Discussion:
N3290 17.6.4.6 [replacement.functions]/p3 says:
The program's definitions shall not be specified as inline.
This seems to permit declarations of replacement allocation functions that are specified as inline so long as they aren't used. This behavior seems more like a bug than a feature, I propose that we do the following:
The program's
definitionsdeclarations shall not be specified as inline.
[2014-02-15 Issaquah : Move to Ready]
Proposed resolution:
This wording is relative to N3797.
Modify 17.6.4.6 [replacement.functions]/3 as indicated:
-3- The program's definitions are used instead of the default versions supplied by the implementation (18.6). Such replacement occurs prior to program startup (3.2, 3.6). The program's
definitionsdeclarations shall not be specified as inline. No diagnostic is required.
Section: 27.7.3.5 [ostream.seeks] Status: C++14 Submitter: Marshall Clow Opened: 2013-10-21 Last modified: 2015-04-08
View all issues with C++14 status.
Discussion:
In 27.7.3.5 [ostream.seeks], we have:
basic_ostream<charT,traits>& seekp(pos_type pos);-3- Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::out). In case of failure, the function calls setstate(failbit) (which may throw ios_base::failure).
-4- Returns: *this.
basic_ostream<charT,traits>& seekp(off_type off, ios_base::seekdir dir);-5- Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::out).
-6- Returns: *this.
The first call is required to set the failbit on failure, but the second is not
So (given two ostreams, os1 and os2) the following code (confusingly) works:os1.seekp(-1); assert(os1.fail()); os2.seekp(-1, std::ios_base::beg); assert(os2.good());
Note that the description of basic_istream<charT,traits>& seekg(off_type off, ios_base::seekdir dir) in 27.7.2.3 [istream.unformatted] p43 does require setting failbit.
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3797.
Modify 27.7.3.5 [ostream.seeks]p5 as indicated:
basic_ostream<charT,traits>& seekp(off_type off, ios_base::seekdir dir);-5- Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::out). In case of failure, the function calls setstate(failbit) (which may throw ios_base::failure).
-6- Returns: *this.
Section: 27.7.6 [quoted.manip] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-11-01 Last modified: 2015-04-08
View all other issues in [quoted.manip].
View all issues with C++14 status.
Discussion:
Given this code:
cout << "[" << left << setfill('x') << setw(20) << R"("AB \"CD\" EF")" << "]" << endl; cout << "[" << left << setfill('y') << setw(20) << quoted(R"(GH "IJ" KL)") << "]" << endl;
The first line prints ["AB \"CD\" EF"xxxxxx]. The second line should probably print ["GH \"IJ\" KL"yyyyyy], but 27.7.6 [quoted.manip]/2 doesn't say whether or how quoted() should interact with padding. All it says is that
"out << quoted(s, delim, escape) behaves as if it inserts the following characters into out using character inserter function templates (27.7.3.6.4)".
27.7.3.6.4 [ostream.inserters.character] specifies both single-character and null-terminated inserters, both referring to 27.7.3.6.1 [ostream.formatted.reqmts]/3 for padding. Literally implementing quoted() with single-character inserters would result in padding being emitted after the first character, with undesirable effects for ios_base::left.
It appears that 21.4.8.9 [string.io]/5 has the appropriate incantations to follow here. It says that os << str"Behaves as a formatted output function (27.7.3.6.1) of os. Forms a character sequence seq, initially consisting of the elements defined by the range [str.begin(), str.end()). Determines padding for seq as described in 27.7.3.6.1. Then inserts seq as if by calling os.rdbuf()->sputn(seq, n), where n is the larger of os.width() and str.size(); then calls os.width(0)."
Additionally, saying that it's a "formatted output function" activates 27.7.3.6.1 [ostream.formatted.reqmts]/1's wording for sentry objects.
[2014-02-14 Issaquah meeting: Move to Immediate]
Proposed resolution:
This wording is relative to N3797.
Edit 27.7.6 [quoted.manip] as follows:
template <class charT> unspecified quoted(const charT* s, charT delim=charT('"'), charT escape=charT('\\')); template <class charT, class traits, class Allocator> unspecified quoted(const basic_string<charT, traits, Allocator>& s, charT delim=charT('"'), charT escape=charT('\\'));-2- Returns: An object of unspecified type such that if out is an instance of basic_ostream with member type char_type the same as charT, then the expression out << quoted(s, delim, escape) behaves as
if it inserts the following characters into out using character inserter function templates (27.7.3.6.4), which may throw ios_base::failure (27.5.3.1.1)a formatted output function (27.7.3.6.1 [ostream.formatted.reqmts]) of out. This forms a character sequence seq, initially consisting of the following elements:
delim.
Each character in s. If the character to be output is equal to escape or delim, as determined by operator==, first output escape.
delim.
Let x be the number of elements initially in seq. Then padding is determined for seq as described in 27.7.3.6.1 [ostream.formatted.reqmts], seq is inserted as if by calling out.rdbuf()->sputn(seq, n), where n is the larger of out.width() and x, and out.width(0) is called. The expression out << quoted(s, delim, escape) shall have type basic_ostream<charT, traits>& and value out.
Section: 20.10.3 [meta.help] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2013-11-05 Last modified: 2015-04-08
View all other issues in [meta.help].
View all issues with C++14 status.
Discussion:
Obvious.
[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3797.
Edit 20.10.3 [meta.help] as indicated:
namespace std { template<class T, T v> struct integral_constant { static constexpr T value = v; typedef T value_type; typedef integral_constant<T,v> type; constexpr operator value_type() const noexcept { return value; } constexpr value_type operator()() const noexcept { return value; } }; […] }
Section: 25.4.7 [alg.min.max] Status: C++14 Submitter: Ville Voutilainen Opened: 2013-12-15 Last modified: 2015-04-08
View all other issues in [alg.min.max].
View all issues with C++14 status.
Discussion:
Having min, max, and minmax constexpr was a large part of the motivation to allow reference-to-const arguments for constexpr functions as per N3039. Furthermore, initializer_lists are immutable and not-movable-from for large part in order to allow using them in constexpr contexts and other hoisting-optimizations. In N3797 version of the draft none of these functions are constexpr, and they should be made constexpr.
Proposed resolution:
This wording is relative to N3797.
In 25.1 [algorithms.general], header <algorithm> synopsis, and 25.4.7 [alg.min.max], change as indicated (add constexpr to every signature before min_element):
template<class T> constexpr const T& min(const T& a, const T& b); template<class T, class Compare> constexpr const T& min(const T& a, const T& b, Compare comp); […] template<class T> constexpr T min(initializer_list<T> t); template<class T, class Compare> constexpr T min(initializer_list<T> t, Compare comp); […] template<class T> constexpr const T& max(const T& a, const T& b); template<class T, class Compare> constexpr const T& max(const T& a, const T& b, Compare comp); […] template<class T> constexpr T max(initializer_list<T> t); template<class T, class Compare> constexpr T max(initializer_list<T> t, Compare comp); […] template<class T> constexpr pair<const T&, const T&> minmax(const T& a, const T& b); template<class T, class Compare> constexpr pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp); […] template<class T> constexpr pair<T, T> minmax(initializer_list<T> t); template<class T, class Compare> constexpr pair<T, T> minmax(initializer_list<T> t, Compare comp);
Section: 23.4.4.1 [map.overview], 23.4.5.1 [multimap.overview], 23.5.4.1 [unord.map.overview], 23.5.5.1 [unord.multimap.overview] Status: WP Submitter: Geoffrey Romer Opened: 2014-01-08 Last modified: 2015-04-08
View all issues with WP status.
Discussion:
The rvalue-reference insert() members of map, multimap, unordered_map, and unordered_multimap are specified as function templates, where the rvalue-reference parameter type depends on the template parameter. As a consequence, these overloads cannot be invoked via braced-initializer syntax (e.g. my_map.insert({key, value})), because the template argument cannot be deduced from a braced-init-list. Such calls instead resolve to the const lvalue reference overload, which forces a non-elidable copy of the argument, despite the fact that the argument is an rvalue, and so should be eligible for moving and copy elision.
This leads to sub-optimal performance for copyable values, and makes this syntax unusable with noncopyable values. This is particularly problematic because sources such as Josuttis's "C++ Standard Library" recommend this syntax as the preferred way to insert into a map in C++11. I think this can be fixed by adding an equivalent non-template value_type&& overload for each affected member template. Simply declaring these members in the class synopses should be sufficient; their semantics are already dictated by the container concepts (c.f. the corresponding lvalue-reference overloads, which have no additional discussion beyond being listed in the synopsis).[2012-02-13 Issaquah]
AJM: Is this not better solved by emplace?
Nico: emplace was a mistake, it breaks a uniform pattern designed into the STL. Hence, this fix is important, it should be the preferred way to do this.
JonW: emplace is still more efficient, as this form must make a non-elidable copy.
GeoffR: Also, cannot move from a const key, must always make a copy.
Poll for adopting the proposed wording:
SF: 1 WF: 4 N: 4 WA: 1 SA: 0Move to Ready, pending implementation experience.
Proposed resolution:
This wording is relative to N3797.
Change 23.4.4.1 [map.overview], class template map synopsis, as indicated:
[…] pair<iterator, bool> insert(const value_type& x); pair<iterator, bool> insert(value_type&& x); template <class P> pair<iterator, bool> insert(P&& x); iterator insert(const_iterator position, const value_type& x); iterator insert(const_iterator position, value_type&& x); template <class P> iterator insert(const_iterator position, P&&); […]
Change 23.4.5.1 [multimap.overview], class template multimap synopsis, as indicated:
[…] iterator insert(const value_type& x); iterator insert(value_type&& x); template <class P> iterator insert(P&& x); iterator insert(const_iterator position, const value_type& x); iterator insert(const_iterator position, value_type&& x); template <class P> iterator insert(const_iterator position, P&& x); […]
Change 23.5.4.1 [unord.map.overview], class template unordered_map synopsis, as indicated:
[…] pair<iterator, bool> insert(const value_type& obj); pair<iterator, bool> insert(value_type&& obj); template <class P> pair<iterator, bool> insert(P&& obj); iterator insert(const_iterator hint, const value_type& obj); iterator insert(const_iterator hint, value_type&& obj); template <class P> iterator insert(const_iterator hint, P&& obj); […]
Change 23.5.5.1 [unord.multimap.overview], class template unordered_multimap synopsis, as indicated:
[…] iterator insert(const value_type& obj); iterator insert(value_type&& obj); template <class P> iterator insert(P&& obj); iterator insert(const_iterator hint, const value_type& obj); iterator insert(const_iterator hint, value_type&& obj); template <class P> iterator insert(const_iterator hint, P&& obj); […]
Section: 23.2.5 [unord.req] Status: C++14 Submitter: Joaquín M López Muñoz Opened: 2014-01-21 Last modified: 2015-04-08
View other active issues in [unord.req].
View all other issues in [unord.req].
View all issues with C++14 status.
Discussion:
Issue 518 resolution for unordered associative containers, modelled after that of issue 371, which is related to associative containers, states that insertion, erasure and rehashing preserve the relative ordering of equivalent elements. Unfortunately, this is not sufficient to guarantee the validity of code such as this:
std::unordered_multimap<int, int> m; auto i = m.begin(); while (i != m.end()) { if (pred(i)) m.erase(i++); else ++i; }
(which is a direct translation from multimap to unordered_multimap of the motivating example in 371), or even this:
std::unordered_multimap<int, int> m; auto p = m.equal_range(k); while (p.first != p.second) { if (pred(p.first)) m.erase((p.first)++); else ++(p.first); }
because the relative ordering of non-equivalent elements elements could potentially change after erasure (not that any actual implementation does that, anyway). Such an underspecification does not happen for regular associative containers, where the relative ordering of non-equivalent elements is kept by design.
[2014-02-13 Issaquah: Move to Immediate]
Proposed resolution:
This wording is relative to N3797.
Modify 23.2.5 [unord.req], p14 as indicated:
-14- The insert and emplace members shall not affect the validity of references to container elements, but may invalidate all iterators to the container. The erase members shall invalidate only iterators and references to the erased elements, and preserve the relative order of the elements that are not erased.
Section: 25.3.13 [alg.partitions] Status: C++14 Submitter: Daniel Krügler Opened: 2014-02-01 Last modified: 2015-04-08
View all other issues in [alg.partitions].
View all issues with C++14 status.
Discussion:
The Requires element of partition_copy says (emphasis mine):
Requires: InputIterator's value type shall be Assignable, and …
The C++03 term Assignable was replaced by CopyAssignable, remaining cleanups happened via LWG issue 972, but algorithm partition_copy was not affected at that time (during that time the requirements of partition_copy didn't mention writable nor assignable, but I cannot track down at the moment where these requirements had been added). Presumably this requirement should be corrected similarly to the approach used in 972.
Another question is whether a CopyAssignable is needed here, given the fact that we already require "writable to" an OutputIterator which is defined in 24.2.1 [iterator.requirements.general] and does already impose the necessary statement*out = *in;
Given the fact that partition_copy never touches any input value twice, there is no reason why anything more than writable to should be necessary.
The below suggested primary resolution does not respond to the second part of this question.[Issaquah 20014-10-11: Move to Immediate]
Proposed resolution:
This wording is relative to N3797.
Modify 25.3.13 [alg.partitions], p12 as indicated:
-12- Requires: InputIterator's value type shall be CopyAssignable, and shall be writable to the out_true and out_false OutputIterators, and shall be convertible to Predicate's argument type. The input range shall not overlap with either of the output ranges.
Section: 28.5.1 [re.synopt] Status: C++14 Submitter: Jonathan Wakely Opened: 2014-02-01 Last modified: 2015-04-08
View other active issues in [re.synopt].
View all other issues in [re.synopt].
View all issues with C++14 status.
Discussion:
As discussed in c++std-lib-35399 and its replies, I can see two possible interpretations of the effects of regex_constants::nosubs:
The effect of nosubs only applies during matching. Parentheses are still recognized as marking a sub-expression by the basic_regex compiler, and basic_regex::mark_count() still returns the number of marked sub-expressions, but anything they match is not stored in the results. This means it is not always true that results.size() == r.mark_count() + 1 for a successful match.
nosubs affects how a regular expression is compiled, altering the state of the std::basic_regex object so that mark_count() returns zero. This also affects any subsequent matching.
The definition of nosubs should make this clear.
The wording in 28.5.1 [re.synopt]/1 seems to imply that nosubs only has effects during matching, which is (1), but all known implementations do (2). John Maddock confirmed that (2) was intended.[Issaquah 2014-02-12: Move to Immediate]
Proposed resolution:
This wording is relative to N3797.
Apply the following edit to the table in 28.5.1 [re.synopt]/1
Specifies that no sub-expressions shall be considered to be marked, so that when a regular expression is matched against a character container sequence, no sub-expression matches shall be stored in the supplied match_results structure.
Section: 24.5.1.1 [reverse.iterator] Status: C++14 Submitter: Stephan T. Lavavej Opened: 2014-02-07 Last modified: 2015-04-08
View all other issues in [reverse.iterator].
View all issues with C++14 status.
Discussion:
Previously, C++03 24.4.1.3.3 [lib.reverse.iter.op.star] required:
reference operator*() const;Effects:
Iterator tmp = current; return *--tmp;
Now, N3797 24.5.1.1 [reverse.iterator] depicts:
private: Iterator deref_tmp; // exposition only };
And 24.5.1.3.4 [reverse.iter.op.star] requires:
reference operator*() const;Effects:
deref_tmp = current; --deref_tmp; return *deref_tmp;[Note: This operation must use an auxiliary member variable rather than a temporary variable to avoid returning a reference that persists beyond the lifetime of its associated iterator. (See 24.2.) — end note]
As written, this won't compile, because operator*() is const yet it's modifying (via assignment and decrement) the deref_tmp data member. So what happens if you say "mutable Iterator deref_tmp;"?
DANGER: WARP CORE BREACH IMMINENT. The Standard requires const member functions to be callable from multiple threads simultaneously. This is 17.6.5.9 [res.on.data.races]/3: "A C++ standard library function shall not directly or indirectly modify objects (1.10) accessible by threads other than the current thread unless the objects are accessed directly or indirectly via the function's non-const arguments, including this." Multiple threads simultaneously modifying deref_tmp will trigger data races, so both mutable and some form of synchronization (e.g. mutex or atomic) are actually necessary! Here's what implementations currently do: Dinkumware/VC follows C++03 and doesn't use deref_tmp (attempting to implement it is what led me to file this issue). According to Jonathan Wakely, libstdc++ also follows C++03 (see PR51823 which is suspended until LWG 2204 is resolved). According to Marshall Clow, libc++ uses deref_tmp with mutable but without synchronization, so it can trigger data races. This deref_tmp Standardese was added by LWG 198 "Validity of pointers and references unspecified after iterator destruction" and is present in Working Papers going back to N1638 on April 11, 2004, long before C++ recognized the existence of multithreading and developed the "const means simultaneously readable" convention. A related issue is LWG 1052 "reverse_iterator::operator-> should also support smart pointers" which mentioned the need to depict mutable in the Standardese, but it was resolved NAD Future and no change was made. Finally, LWG 2204 "reverse_iterator should not require a second copy of the base iterator" talked about removing deref_tmp, but without considering multithreading. I argue that deref_tmp must be removed. Its existence has highly undesirable consequences: either no synchronization is used, violating the Standard's usual multithreading guarantees, or synchronization is used, adding further costs for all users that benefit almost no iterators. deref_tmp is attempting to handle iterators that return references to things "inside themselves", which I usually call "stashing iterators" (as they have a secret stash). Note that these are very unusual, and are different from proxy iterators like vector<bool>::iterator. While vector<bool>::iterator's operator*() does not return a true reference, it refers to a bit that is unrelated to the iterator's lifetime.[2014-02-14 Issaquah meeting: Move to Immediate]
Strike superfluous note to avoid potential confusion, and move to Immediate.
Proposed resolution:
This wording is relative to N3797.
Change class template reverse_iterator synopsis, 24.5.1.1 [reverse.iterator], as indicated:
[…] protected: Iterator current;private: Iterator deref_tmp; // exposition only};
Change 24.5.1.3.4 [reverse.iter.op.star] as indicated:
reference operator*() const;-1- Effects:
deref_tmp = current; --deref_tmp; return *deref_tmp;Iterator tmp = current; return *--tmp;
-2- [Note: This operation must use an auxiliary member variable rather than a temporary variable to avoid returning a reference that persists beyond the lifetime of its associated iterator. (See 24.2.) — end note]
Section: 20.8.1.2 [unique.ptr.single], 20.7.3.1 [pointer.traits.types], 20.7.7.1 [allocator.uses.trait], 20.7.8.1 [allocator.traits.types], 23.2.3 [sequence.reqmts] Status: WP Submitter: Jonathan Wakely Opened: 2014-02-14 Last modified: 2015-04-08
View all other issues in [unique.ptr.single].
View all issues with WP status.
Discussion:
LWG 2299 addressed a N.B. comment pointing out that recently added wording about a type existing was not clear what happens if the type exists but is inaccessible. There are 16 pre-existing uses of the same language in the library that should use the same wording used to resolve 2299.
The relevant paragraphs are:
20.8.1.2 [unique.ptr.single]
20.7.3.1 [pointer.traits.types] 20.7.7.1 [allocator.uses.trait] 20.7.8.1 [allocator.traits.types] 23.2.3 [sequence.reqmts][2014-05-16, Daniel provides wording]
[2014-05-18 Library reflector vote]
The issue has been identified as Tentatively Ready based on six votes in favour.
Proposed resolution:
This wording is relative to N3936.
Change 20.7.3.1 [pointer.traits.types] as indicated:
typedef see below element_type;-1- Type: Ptr::element_type if
such a type existsthe qualified-id Ptr::element_type is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, T if Ptr is a class template instantiation of the form SomePointer<T, Args>, where Args is zero or more type arguments; otherwise, the specialization is ill-formed.typedef see below difference_type;-2- Type: Ptr::difference_type if
such a type existsthe qualified-id Ptr::difference_type is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, std::ptrdiff_t.template <class U> using rebind = see below;-3- Alias template: Ptr::rebind<U> if
such a type existsthe qualified-id Ptr::rebind<U> is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, SomePointer<U, Args> if Ptr is a class template instantiation of the form SomePointer<T, Args>, where Args is zero or more type arguments; otherwise, the instantiation of rebind is ill-formed.
Change 20.7.7.1 [allocator.uses.trait] p1 as indicated:
template <class T, class Alloc> struct uses_allocator;-1- Remarks: automatically detects whether T has a nested allocator_type that is convertible from Alloc. Meets the BinaryTypeTrait requirements (20.10.1). The implementation shall provide a definition that is derived from true_type if
a typethe qualified-id T::allocator_typeexistsis valid and denotes a type (14.8.2 [temp.deduct]) and is_convertible<Alloc, T::allocator_type>::value != false, otherwise it shall be derived from false_type. […]
Change 20.7.8.1 [allocator.traits.types] as indicated:
typedef see below pointer;-1- Type: Alloc::pointer if
such a type existsthe qualified-id Alloc::pointer is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, value_type*.typedef see below const_pointer;-2- Type: Alloc::const_pointer if
such a type existsthe qualified-id Alloc::const_pointer is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, pointer_traits<pointer>::rebind<const value_type>.typedef see below void_pointer;-3- Type: Alloc::void_pointer if
such a type existsthe qualified-id Alloc::void_pointer is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, pointer_traits<pointer>::rebind<void>.typedef see below const_void_pointer;-4- Type: Alloc::const_void_pointer if
such a type existsthe qualified-id Alloc::const_void_pointer is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, pointer_traits<pointer>::rebind<const void>.typedef see below difference_type;-5- Type: Alloc::difference_type if
such a type existsthe qualified-id Alloc::difference_type is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, pointer_traits<pointer>::difference_type.typedef see below size_type;-6- Type: Alloc::size_type if
such a type existsthe qualified-id Alloc::size_type is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, make_unsigned_t<difference_type>.typedef see below propagate_on_container_copy_assignment;-7- Type: Alloc::propagate_on_container_copy_assignment if
such a type existsthe qualified-id Alloc::propagate_on_container_copy_assignment is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, false_type.typedef see below propagate_on_container_move_assignment;-8- Type: Alloc::propagate_on_container_move_assignment if
such a type existsthe qualified-id Alloc::propagate_on_container_move_assignment is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, false_type.typedef see below propagate_on_container_swap;-9- Type: Alloc::propagate_on_container_swap if
such a type existsthe qualified-id Alloc::propagate_on_container_swap is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, false_type.template <class T> using rebind_alloc = see below;-10- Alias template: Alloc::rebind<T>::other if
such a type existsthe qualified-id Alloc::rebind<T>::other is valid and denotes a type (14.8.2 [temp.deduct]); otherwise, Alloc<T, Args> if Alloc is a class template instantiation of the form Alloc<U, Args>, where Args is zero or more type arguments; otherwise, the instantiation of rebind_alloc is ill-formed.
Change 20.8.1.2 [unique.ptr.single] p3 as indicated:
-3- If the
typequalified-id remove_reference_t<D>::pointerexistsis valid and denotes a type (14.8.2 [temp.deduct]), then unique_ptr<T, D>::pointer shall be a synonym for remove_reference_t<D>::pointer. […]
Change 23.2.3 [sequence.reqmts] p3 as indicated:
-3- In Tables 100 and 101, X denotes a sequence container class, a denotes a value of X containing elements of type T, A denotes X::allocator_type if
it existsthe qualified-id X::allocator_type is valid and denotes a type (14.8.2 [temp.deduct]) and std::allocator<T> if it doesn't, […]
Section: 23.3.3.4 [deque.modifiers], 23.3.6.5 [vector.modifiers] Status: WP Submitter: Deskin Miller Opened: 2014-02-17 Last modified: 2015-05-22
View all other issues in [deque.modifiers].
View all issues with WP status.
Discussion:
I think it's obvious that vector::pop_back invalidates the path-the-end iterator, but I cannot find language that says so to my satisfaction in the Standard. N3797 23.2.3 [sequence.reqmts] Table 101 lists a.pop_back() semantics as "Destroys the last element", but nowhere do I see this required to invalidate the end iterator (or iterators previously referring to the last element). [container.reqmts.general]/11 states "Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a container member function or passing a container as an argument to a library function shall not invalidate iterators to, or change the values of, objects within that container." 23.3.6.5 [vector.modifiers]/3 says that each flavor of vector::erase "Invalidates iterators and references at or after the point of the erase", but pop_back isn't discussed, and it wasn't specified in terms of erase.
Similarly for std::deque, 23.2.3 [sequence.reqmts] Table 101 and [container.reqmts.general]/11 both apply. Yet 23.3.3.4 [deque.modifiers] likewise doesn't discuss pop_back nor pop_front. Furthermore paragraph 4 fails to specify the iterator-invalidation guarantees when erasing the first element but not the last.
Both std::vector and std::deque are in contrast to std::list, which says in 23.3.5.4 [list.modifiers]/3 regarding pop_back (as well as all forms of erase, pop_front, and clear) "Effects: Invalidates only the iterators and references to the erased elements."[2014-06-16 Jonathan comments and improves wording]
I believe this reflects our preferred form discussed earlier, specifically putting the signatures with the erase signatures, so that the full specification of erase() applies to the pop_xxx() functions. This covers the case for deque where pop_front() erases the only element (which is both the first and last element).
Open question: the "erase" wording talks about "An erase operation" — are pop_front and pop_back clearly covered by "erase operations"? I believe so, as 23.3.3.1 [deque.overview]/1 and other places talk about "insert and erase operations" which covers push/pop functions too. I've added a note which could be used to clarify that if desired. Previous resolution [SUPERSEDED]:This wording is relative to N3936.
Change 23.3.3.4 [deque.modifiers] as indicated:
iterator erase(const_iterator position); iterator erase(const_iterator first, const_iterator last);-4- Effects: An erase operation that erases the last element of a deque invalidates only the past-the-end iterator and all iterators and references to the erased elements. An erase operation that erases the first element of a deque but not the last element invalidates only iterators and references to the erased elements. An erase operation that erases neither the first element nor the last element of a deque invalidates the past-the-end iterator and all iterators and references to all the elements of the deque.
-5- […] -6- […]void pop_front(); void pop_back();-?- Effects: pop_front invalidates iterators and references to the first element of the deque. pop_back invalidates the past-the-end iterator, and all iterators and references to the last element of the deque.
Change 23.3.6.5 [vector.modifiers] as indicated:
-5- […]
void pop_back();-?- Effects: Invalidates the past-the-end iterator, and iterators and references to the last element of the vector.
[2014-06-21 Rapperswil]
Tony van Eerd: Would be good to define "an erase operation is ..." somewhere.
AM: The containers clause is known to be suboptimal in many ways. Looks good[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
This wording is relative to N3936.
Change 23.3.3.4 [deque.modifiers] as indicated:
iterator erase(const_iterator position); iterator erase(const_iterator first, const_iterator last); void pop_front(); void pop_back();-4- Effects: An erase operation that erases the last element of a deque invalidates only the past-the-end iterator and all iterators and references to the erased elements. An erase operation that erases the first element of a deque but not the last element invalidates only iterators and references to the erased elements. An erase operation that erases neither the first element nor the last element of a deque invalidates the past-the-end iterator and all iterators and references to all the elements of the deque. [Note: pop_front and pop_back are erase operations — end note]
Change 23.3.6.5 [vector.modifiers] as indicated:
iterator erase(const_iterator position); iterator erase(const_iterator first, const_iterator last); void pop_back();-3- Effects: Invalidates iterators and references at or after the point of the erase.
Section: 20.8.2.2 [util.smartptr.shared] Status: WP Submitter: Cassio Neri Opened: 2014-02-13 Last modified: 2015-04-08
View other active issues in [util.smartptr.shared].
View all other issues in [util.smartptr.shared].
View all issues with WP status.
Discussion:
The declaration and definition of shared_ptr::shared_ptr(nullptr_t), given in 20.8.2.2 [util.smartptr.shared], is
constexpr shared_ptr(nullptr_t) : shared_ptr() { }
The intention seems clear: this constructor should have the same semantics of the default constructor. However, contrarily to the default constructor, this one is not noexcept. In contrast, unique_ptr::unique_ptr(nullptr_t) is noexcept, as per 20.8.1.2 [unique.ptr.single]:
constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { }
Both libstdc++ and libc++ have added noexcept to shared_ptr::shared_ptr(nullptr_t). Microsoft's STL has not.
[2014-03-26 Library reflector vote]
The issue has been identified as Tentatively Ready based on six votes in favour.
Proposed resolution:
This wording is relative to N3936.
Change class template shared_ptr synopsis, 20.8.2.2 [util.smartptr.shared], as indicated:
constexpr shared_ptr(nullptr_t) noexcept : shared_ptr() { }
Section: 25.4.7 [alg.min.max] Status: WP Submitter: Marc Glisse Opened: 2014-02-21 Last modified: 2015-05-22
View all other issues in [alg.min.max].
View all issues with WP status.
Discussion:
As part of the resolution for LWG issue 2350, max(initializer_list) was marked as constexpr. Looking at two implementations of this function (libstdc++ and libc++), both implement it in terms of max_element, which is not marked as constexpr. This is inconsistent and forces some small amount of code duplication in the implementation. Unless we remove constexpr from this overload of max, I believe we should add constexpr to max_element.
[2015-02 Cologne]
AM: Can we implement this with the C++14 constexpr rules? JM: Yes. AM: Ready? [Yes]
Accepted.Proposed resolution:
This wording is relative to N3936.
In 25.1 [algorithms.general], header <algorithm> synopsis, and 25.4.7 [alg.min.max], change as indicated (add constexpr to every signature from the first min_element to the second minmax_element)::
template<class ForwardIterator> constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last, Compare comp); […] template<class ForwardIterator> constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last, Compare comp); […] template<class ForwardIterator> constexpr pair<ForwardIterator, ForwardIterator> minmax_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> constexpr pair<ForwardIterator, ForwardIterator> minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);
Section: 20.10.2 [meta.type.synop] Status: WP Submitter: Joe Gottman Opened: 2014-03-07 Last modified: 2015-04-08
View all issues with WP status.
Discussion:
Addresses: fund.ts
The library fundamentals specification defines two new type trait template classes: invocation_type and raw_invocation_type. But it does not define the corresponding template aliases. Note that both of these classes define a member typedef type and no other public members, so according to the argument in N3887 the template aliases should be defined.
[2013-06-21 Rapperswil]
Accept for Library Fundamentals TS Working Paper
Proposed resolution:
This wording is relative to N3908.
Add the following to section 3.3.1[meta.type.synop] of the Library Fundamentals specification as indicated:
namespace std { namespace experimental { inline namespace fundamentals_v1 { […] // 3.3.2, Other type transformations template <class> class invocation_type; // not defined template <class F, class... ArgTypes> class invocation_type<F(ArgTypes...)>; template <class> class raw_invocation_type; // not defined template <class F, class... ArgTypes> class raw_invocation_type<F(ArgTypes...)>; template <class T> using invocation_type_t = typename invocation_type<T>::type; template <class T> using raw_invocation_type_t = typename raw_invocation_type<T>::type; } // namespace fundamentals_v1 } // namespace experimental } // namespace std
Section: X [optional.object.observe] Status: WP Submitter: Jonathan Wakely Opened: 2014-03-25 Last modified: 2015-04-08
View all issues with WP status.
Discussion:
Addresses: fund.ts
In Bristol I think I claimed that the remarks for optional::to_value() were unimplementable and the function could only be constexpr if both constructors that could be called were constexpr, but I was wrong. The remarks should be reverted to the original pre-n3793 form.
[2013-06-21 Rapperswil]
Accept for Library Fundamentals TS Working Paper
Proposed resolution:
This wording is relative to N3908.
Change [optional.object.observe] p23 of the Library Fundamentals specification as indicated:
template <class U> constexpr T value_or(U&& v) const &;[…]
-23- Remarks: Ifboth constructors of T which could be selected are constexpr constructorsthe selected constructor of T is a constexpr constructor, this function shall be a constexpr function.
Section: 20.8.2.1 [util.smartptr.weakptr] Status: WP Submitter: Jonathan Wakely Opened: 2014-03-27 Last modified: 2015-04-08
View all issues with WP status.
Discussion:
20.8.2.1 [util.smartptr.weakptr] p2 requires bad_weak_ptr to return precisely the string "bad_weak_ptr".
There was general agreement on the reflector and at the Issaquah meeting that this is over-constrained and implementation should be free to return something more descriptive if desired. The proposed resolution makes bad_weak_ptr consistent with other exception types such as bad_alloc and bad_cast. If accepted, the P/R for issue 2233, which currently uses similar wording to bad_weak_ptr, could be updated appropriately.[2014-03-27 Library reflector vote]
The issue has been identified as Tentatively Ready based on six votes in favour.
Proposed resolution:
This wording is relative to N3936.
Edit 20.8.2.1 [util.smartptr.weakptr]:
bad_weak_ptr() noexcept;-2- Postconditions: what() returns
"bad_weak_ptr"an implementation-defined NTBS.
Section: 20.7.5 [ptr.align] Status: WP Submitter: Peter Dimov Opened: 2014-03-30 Last modified: 2015-04-08
View all other issues in [ptr.align].
View all issues with WP status.
Discussion:
std::align requires that its alignment argument shall be "a fundamental alignment value or an extended alignment value supported by the implementation in this context".
This requirement is overly strict. There are use cases that require a buffer aligned at values that are not tied to the C++ implementation, such as page size, cache line size, sector size. These come from the hardware or the OS and are generally not known until run time. The implementation of std::align does not depend on the requirement that alignment be a fundamental or an extended alignment value; any power of two would be handled the same way. In addition, it is not possible for the user to even determine whether a value is "a fundamental alignment value or an extended alignment value supported by the implementation in this context". One would expect values coming from alignof to be fine, but I'm not sure whether even that is guaranteed in the presence of alignas. Therefore, I propose thatRequires:
alignment shall be a fundamental alignment value or an extended alignment value supported by the implementation in this context
be changed to
Requires:
alignment shall be a power of two
[2014-06-16 Rapperswil]
Move to Ready
Proposed resolution:
This wording is relative to N3936.
Edit 20.7.5 [ptr.align] p2 as indicated:
void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space);-1- […]
-2- Requires:
alignment shall be a
fundamental alignment value or an extended alignment value supported by the implementation in this contextpower of two
Section: 18.6.2.1 [bad.alloc], 18.6.2.2 [new.badlength], 18.7.2 [bad.cast], 18.7.3 [bad.typeid], 18.8.2 [bad.exception] Status: WP Submitter: Andy Sawyer Opened: 2014-03-31 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
I think we have an issue with the specification of some of the standard exception types. In particular, several of them have default constructors with remarks to the effect that "The result of calling what() on the newly constructed object is implementation-defined". (In some cases this is contradictory to a further specification of what(), which is specified to return an implementation-defined NTBS.)
Previous resolution from Andy [SUPERSEDED]:
This wording is relative to N3936.
Edit 18.6.2.1 [bad.alloc] p3 as indicated:
bad_alloc() noexcept;[…]
-3- Remarks:The result of calling what() on the newly constructed object is implementation-definedwhat() returns an implementation-defined NTBS.Edit 18.6.2.2 [new.badlength] p3 as indicated: [Drafting note: Added the Postcondition, since we don't say anything else about bad_array_new_length::what() — end of note]
bad_array_new_length() noexcept;[…]
-3-RemarksPostcondition:The result of calling what() on the newly constructed object is implementation-definedwhat() returns an implementation-defined NTBS.Edit 18.7.2 [bad.cast] p3 as indicated:
bad_cast() noexcept;[…]
-3- Remarks: The result of calling what() on the newly constructed object is implementation-defined..Edit 18.7.3 [bad.typeid] p3 as indicated:
bad_typeid() noexcept;[…]
-3- Remarks: The result of calling what() on the newly constructed object is implementation-defined..Edit 18.8.2 [bad.exception] p3 as indicated:
bad_exception() noexcept;[…]
-3- Remarks: The result of calling what() on the newly constructed object is implementation-defined..
[2014-06-17, Rapperswil]
Jonathan provides alternative wording.
[2015-02, Cologne]
NJ: I don't know why we need the explict statement about what() here, since bad_array_new_length
already derives.
AM: yes.
NJ: Then "what()" is missing from the synopsis.
AM: Yes, that's an error and it needs to be added.
Proposed resolution:
This wording is relative to N4296.
Edit 18.6.2.1 [bad.alloc] p3 as indicated:
bad_alloc() noexcept;[…]
-3- Remarks: The result of calling what() on the newly constructed object is implementation-defined.
Edit 18.6.2.1 [bad.alloc] p5 as indicated:
virtual const char* what() const noexcept;-5- Returns: An implementation-defined NTBS.
-?- Remarks: The message may be a null-terminated multibyte string (17.5.2.1.4.2), suitable for conversion and display as a wstring (21.3, 22.4.1.4).
Edit class bad_array_new_length synopsis 18.6.2.2 [new.badlength] as indicated:
namespace std { class bad_array_new_length : public bad_alloc { public: bad_array_new_length() noexcept; virtual const char* what() const noexcept; }; }
Edit 18.6.2.2 [new.badlength] as indicated:
bad_array_new_length() noexcept;[…]
-3- Remarks: The result of calling what() on the newly constructed object is implementation-defined.virtual const char* what() const noexcept;-?- Returns: An implementation-defined NTBS.
-?- Remarks: The message may be a null-terminated multibyte string (17.5.2.1.4.2), suitable for conversion and display as a wstring (21.3, 22.4.1.4).
Edit 18.7.2 [bad.cast] p3 as indicated:
bad_cast() noexcept;[…]
-3- Remarks: The result of calling what() on the newly constructed object is implementation-defined..
Edit 18.7.3 [bad.typeid] p3 as indicated:
bad_typeid() noexcept;[…]
-3- Remarks: The result of calling what() on the newly constructed object is implementation-defined..
Edit 18.8.2 [bad.exception] p3 as indicated:
bad_exception() noexcept;[…]
-3- Remarks: The result of calling what() on the newly constructed object is implementation-defined..
Section: 20.9.2 [func.require], 20.9.4 [refwrap] Status: WP Submitter: Jonathan Wakely Opened: 2014-05-23 Last modified: 2015-04-08
View other active issues in [func.require].
View all other issues in [func.require].
View all issues with WP status.
Discussion:
Further to 2299 and 2361, 20.9.2 [func.require] p3 and 20.9.4 [refwrap] p3 and p4 talk about member types without any mention of being accessible and unambiguous.
[2014-06-05 Daniel provides wording]
[2014-06-06 Library reflector vote]
The issue has been identified as Tentatively Ready based on six votes in favour.
Proposed resolution:
This wording is relative to N3936.
Change 20.9.2 [func.require] p3 as indicated:
-3- If a call wrapper (20.9.1) has a weak result type the type of its member type result_type is based on the type T of the wrapper's target object (20.9.1):
if T is a pointer to function type, result_type shall be a synonym for the return type of T;
if T is a pointer to member function, result_type shall be a synonym for the return type of T;
if T is a class type and the qualified-id T::result_type is valid and denotes a type (14.8.2 [temp.deduct])
with a member type result_type, then result_type shall be a synonym for T::result_type;otherwise result_type shall not be defined.
Change 20.9.4 [refwrap] p3+p4 as indicated:
-3- The template instantiation reference_wrapper<T> shall define a nested type named argument_type as a synonym for T1 only if the type T is any of the following:
a function type or a pointer to function type taking one argument of type T1
a pointer to member function R T0::f cv (where cv represents the member function_s cv-qualifiers); the type T1 is cv T0*
a class type where the qualified-id T::argument_type is valid and denotes a type (14.8.2 [temp.deduct])
with a member type argument_type; the type T1 is T::argument_type.-4- The template instantiation reference_wrapper<T> shall define two nested types named first_argument_type and second_argument_type as synonyms for T1 and T2, respectively, only if the type T is any of the following:
a function type or a pointer to function type taking two arguments of types T1 and T2
a pointer to member function R T0::f(T2) cv (where cv represents the member function's cv-qualifiers); the type T1 is cv T0*
a class type where the qualified-ids T::first_argument_type and T::second_argument_type are both valid and both denote types (14.8.2 [temp.deduct])
with member types first_argument_type and second_argument_type; the type T1 is T::first_argument_type.and the type T2 is T::second_argument_type.
Section: X [mods.func.wrap] Status: WP Submitter: Pablo Halpern Opened: 2014-05-23 Last modified: 2015-04-08
View all other issues in [mods.func.wrap].
View all issues with WP status.
Discussion:
Addresses: fund.ts
This issue against the TS is similar to LWG 2386, which is against the standard. The Effects clauses for the assignment operator for class template function are written as code that constructs a temporary function and then swaps it with *this. The intention appears to be that assignment should have the strong exception guarantee, i.e., *this is not modified if an exception is thrown. The description in the standard is incorrect when *this was originally constructed using an allocator. The TS attempts to correct the problem, but the correction is incomplete.
The wording in the TS uses get_memory_resource() to construct a temporary function object with the same allocator as the left-hand size (lhs) of the assignment. The intended result of using this pattern was that the allocator for *this would be unchanged, but it doesn't quite work. The problem is that the allocator returned by get_memory_resource() is not the same type as the type-erased allocator used to construct the function object, but rather a type-erased distillation of that type that is insufficient for making a true copy of the allocator. The rules for type-erased allocators in the TS ([memory.type.erased.allocator]) specify that the lifetime of the object returned by get_memory_resource() is sometimes tied to the lifetime of *this, which might cause the (single copy of) the allocator to be destroyed if the swap operation destroys and reconstructs *this, as some implementations do (and are allowed to do). The desired behavior is that assignment would leave the allocator of the lhs unchanged. The way to achieve this behavior is to construct the temporary function using the original allocator. Unfortunately, we cannot describe the desired behavior in pure code, because get_memory_resource() does not really name the type-erased allocator, as mentioned above. The PR below, therefore, uses pseudo-code, inventing a fictitious ALLOCATOR_OF(f) expression that evaluates to the actual allocator type, even if that allocator was type erased. I have implemented this PR successfully.[2014-06-21, Rapperswil]
Apply to Library Fundamentals TS (after removing the previous "Throws: Nothing" element to prevent an editorial conflict with 2401).
Proposed resolution:
This wording is relative to N3908.
Change in [mods.func.wrap] in the Library TS as indicated:
In the following descriptions, let ALLOCATOR_OF(f) be the allocator specified in the construction of function f, or allocator<char>() if no allocator was specified.
function& operator=(const function& f);-5- Effects: function(allocator_arg,
[…]get_memory_resource()ALLOCATOR_OF(*this), f).swap(*this);function& operator=(function&& f);-8- Effects: function(allocator_arg,
[…]get_memory_resource()ALLOCATOR_OF(*this), std::move(f)).swap(*this);function& operator=(nullptr_t);-11- Effects: If *this != NULL, destroys the target of this.
-12- Postconditions: !(*this). The memory resource returned by get_memory_resource() after the assignment is equivalent to the memory resource before the assignment. [Note: the address returned by get_memory_resource() might change — end note] -13- Returns: *thistemplate<class F> function& operator=(F&& f);-15- Effects: function(allocator_arg,
[…]get_memory_resource()ALLOCATOR_OF(*this), std::forward<F>(f)).swap(*this);template<class F> function& operator=(reference_wrapper<F> f);-18- Effects: function(allocator_arg,
[…]get_memory_resource()ALLOCATOR_OF(*this), f).swap(*this);
Section: X [mods.func.wrap] Status: WP Submitter: Michael Spertus Opened: 2014-05-26 Last modified: 2015-04-08
View all other issues in [mods.func.wrap].
View all issues with WP status.
Discussion:
Addresses: fund.ts
invocation_type falls short of its stated goals in the following case. Using the notation of Invocation type traits, consider
void f(int const& i); more_perfect_forwarding_async(f, int(7)); // Oops. Dangling reference because rvalue gone when async runs
This was always the advertised intent of the proposal, but while the language reflects this for the first parameter in the case of a member pointer, it failed to include corresponding language for other parameters.
[2014-06-18, Rapperswil]
Mike Spertus, Richard Smith, Jonathan Wakely, and Jeffrey Yasskin suggest improved wording.
Previous resolution [SUPERSEDED]:This wording is relative to N3908.
Change Table 3, [meta.trans.other] in the Library TS as indicated:
Table 3 — Other type transformations Template Condition Comments … template <class Fn, class... ArgTypes>
struct invocation_type<Fn(ArgTypes...)>;Fn and all types in the parameter pack ArgTypes
shall be complete types, (possibly cv-qualified) void,
or arrays of unknown bound.If A1, A2,... denotes ArgTypes... and
raw_invocation_type<Fn(ArgTypes...)>::type
is the function type R(T1, T2, ...) then let Ui be
decay<Ai>::type if Ai is an rvalue otherwise Ti.
IfandFn is a pointer to member type and T1 is
an rvalue reference, then let U1 beR(decay<T1>::type,.
T2, ...)
Otherwise, raw_invocation_type<Fn(ArgTypes...)>::type
The member typedef type shall equal R(U1, U2, ...).
[2013-06-21 Rapperswil]
Accept for Fundamentals TS Working Paper
Proposed resolution:
This wording is relative to N4023.
Change Table 3, [meta.trans.other] in the Library TS as indicated:
Table 3 — Other type transformations Template Condition Comments … template <class Fn, class... ArgTypes>
struct invocation_type<Fn(ArgTypes...)>;Fn and all types in the parameter pack ArgTypes
shall be complete types, (possibly cv-qualified) void,
or arrays of unknown bound.The nested typedef invocation_type<Fn(ArgTypes...)>::type
shall be defined as follows. If
raw_invocation_type<Fn(ArgTypes...)>::type
does not exist, there shall be no member typedef type. Otherwise:
Let A1, A2, … denote ArgTypes...
Let R(T1, T2, …) denote
raw_invocation_type_t<Fn(ArgTypes...)>Then the member typedef type shall name the function
type R(U1, U2, …) where Ui is decay_t<Ai>
if declval<Ai>() is an rvalue otherwise Ti.If raw_invocation_type<Fn(ArgTypes...)>::type
is the function type R(T1, T2, …)
and Fn is a pointer to member type and T1 is
an rvalue reference, then R(decay<T1>::type,
T2, …).
Otherwise, raw_invocation_type<Fn(ArgTypes...)>::type.
Section: X [mods.func.wrap], X [memory.resource.priv], X [memory.polymorphic.allocator.ctor], X [memory.polymorphic.allocator.mem], X [memory.resource.pool.ctor], X [memory.resource.monotonic.buffer.ctor] Status: WP Submitter: Zhihao Yuan Opened: 2014-06-09 Last modified: 2015-04-08
View all other issues in [mods.func.wrap].
View all issues with WP status.
Discussion:
Addresses: fund.ts
This element has been introduced by N3916, but the standard does not define it. The standard defines Requires: to indicate a precondition (17.5.1.4 [structure.specifications] p3).
Proposed wording: Substitute all Preconditions: with Requires:.[2013-06-21 Rapperswil]
Accept for Fundamentals TS Working Paper
Proposed resolution:
This wording is relative to N4023.
Substitute all Preconditions: with Requires:.
Section: 20.10.7.6 [meta.trans.other] Status: WP Submitter: Richard Smith Opened: 2014-06-12 Last modified: 2015-04-08
View other active issues in [meta.trans.other].
View all other issues in [meta.trans.other].
View all issues with WP status.
Discussion:
Consider:
enum E { e = std::underlying_type<E>::type(1) };
Clearly this should be ill-formed, but the library section doesn't appear to ban it. Suggestion:
Change in 20.10.7.6 [meta.trans.other] Table 57:Template: template<class T> struct underlying_type;
Condition: T shall be a completeanenumeration type (7.2) Comments: […]
[2014-06-16 Rapperswil]
Move to Ready
Proposed resolution:
This wording is relative to N3936.
Change Table 57 — "Other transformations" as indicated:
Table 3 — Other type transformations Template Condition Comments … template <class T>
struct underlying_type;T shall be a complete anenumeration type (7.2)[…]
Section: 20.10.7.6 [meta.trans.other] Status: Resolved Submitter: Peter Dimov Opened: 2014-06-12 Last modified: 2015-05-05
View other active issues in [meta.trans.other].
View all other issues in [meta.trans.other].
View all issues with Resolved status.
Discussion:
Please consider the following example:
#include <map> #include <atomic> int main() { std::map<int, std::atomic<int>> map_; map_.emplace(1, 0); // fail map_.emplace(1); // fail map_.emplace(1, {}); // fail map_.emplace(std::piecewise_construct, std::tuple<int>(1), std::tuple<>()); // OK }
The first three calls represent attempts by an ordinary programmer (in which role I appear today) to construct a map element. Since std::atomic<int> is non-copyable and immovable, I was naturally drawn to emplace() because it constructs in-place and hence doesn't need to copy or move. The logic behind the attempts was that K=int would be constructed from '1', and V=std::atomic<int> would be (directly) constructed by '0', default constructed, or constructed by '{}'.
Yet none of the obvious attempts worked. I submit that at least two of the three ought to have worked, and that we have therefore a defect in either map::emplace or pair. Ville: There exists a related EWG issue for this. Daniel: If the proposal N4387 would be accepted, it would solve the first problem mentioned above.[2015-02, Cologne]
AM: I think Peter's expectation is misguided that the second and third "//fail" cases should work.
DK: Howard's paper [note: which hasn't been written yet] will make the second case work... AM: ...but
the third one will never work without core changes.
[2015-05, Lenexa]
STL: think this is covered with N4387
MC: this was accepted in Cologne
STL: only want to fix the first emplace
MC: leave alone and mark as closed by N4387
Proposed resolution:
Resolved by acceptance of N4387.
Section: 20.8.2.2.1 [util.smartptr.shared.const] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-06-14 Last modified: 2015-04-08
View all other issues in [util.smartptr.shared.const].
View all issues with WP status.
Discussion:
Consider the following code:
#include <iostream> #include <memory> #include <string> using namespace std; void meow(const shared_ptr<int>& sp) { cout << "int: " << *sp << endl; } void meow(const shared_ptr<string>& sp) { cout << "string: " << *sp << endl; } int main() { meow(make_unique<int>(1729)); meow(make_unique<string>("kitty")); }
This fails to compile due to ambiguous overload resolution, but we can easily make this work. (Note: shared_ptr's constructor from auto_ptr is also affected, but I believe that it's time to remove auto_ptr completely.)
[2014-06-16 Rapperswil]
Move to Ready
Proposed resolution:
This wording is relative to N3936.
Change 20.8.2.2.1 [util.smartptr.shared.const] around p33 as indicated:
template <class Y, class D> shared_ptr(unique_ptr<Y, D>&& r);-?- Remark: This constructor shall not participate in overload resolution unless unique_ptr<Y, D>::pointer is convertible to T*.
-33- Effects: Equivalent to shared_ptr(r.release(), r.get_deleter()) when D is not a reference type, otherwise shared_ptr(r.release(), ref(r.get_deleter())).
Section: 20.8.2.2.10 [util.smartptr.getdeleter] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-06-14 Last modified: 2015-04-08
View all other issues in [util.smartptr.getdeleter].
View all issues with WP status.
Discussion:
The Standard Library should consistently use addressof() to defend itself against overloaded operator&().
While we're in the neighbourhood, we should editorially change 0 to nullptr.[2014-06-16 Rapperswil]
Move to Ready
Proposed resolution:
This wording is relative to N3936.
Change 20.8.2.2.10 [util.smartptr.getdeleter] as indicated:
template <class D, class T> get_deleter(const shared_ptr<T>& p) noexcept;-1- Returns: If p owns a deleter d of type cv-unqualified D, returns
&std::addressof(d); otherwise returns0nullptr. […]
Section: 20.9.12.2 [func.wrap.func] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-06-14 Last modified: 2015-04-08
View other active issues in [func.wrap.func].
View all other issues in [func.wrap.func].
View all issues with WP status.
Discussion:
There are two issues here:
std::function's constructor from nullptr_t is marked as noexcept, but its assignment operator from nullptr_t isn't. This assignment can and should be marked as noexcept.
std::function's comparisons with nullptr_t are marked as noexcept in two out of three places.
[2014-06-16 Rapperswil]
Move to Ready
Proposed resolution:
This wording is relative to N3936.
Change 20.9 [function.objects] p2, header <functional> synopsis, as indicated:
namespace std { […] // 20.9.11 polymorphic function wrappers: […] template<class R, class... ArgTypes> bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept; template<class R, class... ArgTypes> bool operator==(nullptr_t, const function<R(ArgTypes...)>&) noexcept; template<class R, class... ArgTypes> bool operator!=(const function<R(ArgTypes...)>&, nullptr_t) noexcept; template<class R, class... ArgTypes> bool operator!=(nullptr_t, const function<R(ArgTypes...)>&) noexcept; […] }
Change 20.9.12.2 [func.wrap.func], class template function synopsis, as indicated:
[…] // 20.9.11.2.1, construct/copy/destroy: […] function& operator=(nullptr_t) noexcept; […]
Change 20.9.12.2.1 [func.wrap.func.con] before p16 as indicated:
function& operator=(nullptr_t) noexcept;
Section: 21.5 [string.conversions] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-06-14 Last modified: 2015-05-22
View all other issues in [string.conversions].
View all issues with WP status.
Discussion:
stof() is currently specified to call strtod()/wcstod() (which converts the given string to double) and then it's specified to convert that double to float. This performs rounding twice, which introduces error. Here's an example written up by James McNellis:
Consider the following number X:1.999999821186065729339276231257827021181583404541015625 (X)
This number is exactly representable in binary as:
1.111111111111111111111101000000000000000000000000000001 * ^1st ^23rd ^52nd
I've marked the 23rd and 52nd fractional bits. These are the least significant bits for float and double, respectively.
If we convert this number directly to float, we take the 23 most significant bits:1.11111111111111111111110
The next bit is a one and the tail is nonzero (the 54th fractional bit is a one), so we round up. This gives us the correctly rounded result:
1.11111111111111111111111
So far so good. But... If we convert X to double, we take the 52 most significant bits:
1.1111111111111111111111010000000000000000000000000000 (Y)
The next bit is a zero, so we round down (truncating the value). If we then convert Y to float, we take its 23 most significant bits:
1.11111111111111111111110
The next bit is a one and the tail is zero, so we round to even (leaving the value unchanged). This is off by 1ulp from the correctly rounded result.
[2014-06 Rapperswil]
Marshall Clow will look at this.
[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
This wording is relative to N3936.
Change 21.5 [string.conversions] p4+p6 as indicated:
float stof(const string& str, size_t* idx = 0); double stod(const string& str, size_t* idx = 0); long double stold(const string& str, size_t* idx = 0);-4- Effects:
[…] -6- Throws: invalid_argument if strtof, strtod, or strtold reports that no conversion could be performed. Throws out_of_range if strtof, strtod, or strtold sets errno to ERANGE or if the converted value is outside the range of representable values for the return type.the first twoThese functions call strtof(str.c_str(), ptr), strtod(str.c_str(), ptr), andthe third function callsstrtold(str.c_str(), ptr), respectively. Each function returns the converted result, if any. […]
Change 21.5 [string.conversions] p11+p13 as indicated:
float stof(const wstring& str, size_t* idx = 0); double stod(const wstring& str, size_t* idx = 0); long double stold(const wstring& str, size_t* idx = 0);-11- Effects:
[…] -13- Throws: invalid_argument if wcstof, wcstod, or wcstold reports that no conversion could be performed. Throws out_of_range if wcstof, wcstod, or wcstold sets errno to ERANGE.the first twoThese functions call wcstof(str.c_str(), ptr), wcstod(str.c_str(), ptr), andthe third function callswcstold(str.c_str(), ptr), respectively. Each function returns the converted result, if any. […]
Section: 25.2.10 [mismatch] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-06-14 Last modified: 2015-04-08
View all issues with WP status.
Discussion:
N3671 updated the complexities of equal() and is_permutation(), but not mismatch().
[2014-06-16 Rapperswil]
Move to Ready
Proposed resolution:
This wording is relative to N3936.
Change 25.2.10 [mismatch] p3 as indicated:
-3- Complexity: At most min(last1 - first1, last2 - first2) applications of the corresponding predicate.
Section: 26.5.8.3.4 [rand.dist.bern.negbin] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-06-14 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
26.5.8.3.4 [rand.dist.bern.negbin] p2 requires "0 < p <= 1". Consider what happens when p == 1. The discrete probability function specified by p1 involves "* p^k * (1 - p)^i". For p == 1, this is "* 1^k * 0^i", so every integer i >= 0 is produced with zero probability. (Let's avoid thinking about 0^0.)
Wikipedia states that p must be within (0, 1), exclusive on both sides. Previous resolution [SUPERSEDED]:
Change 26.5.8.3.4 [rand.dist.bern.negbin] p2 as indicated: [Drafting note: This should be read as: Replace the symbol "≤" by "<" — end drafting note]
explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);-2- Requires: 0 < p
≤< 1 and 0 < k.
[2014-11 Urbana]
SG6 suggests better wording.
[2014-11-08 Urbana]
Moved to Ready with the node.
There remains concern that the constructors are permitting values that may (or may not) be strictly outside the domain of the function, but that is a concern that affects the design of the random number facility as a whole, and should be addressed by a paper reviewing and addressing the whole clause, not picked up in the issues list one distribution at a time. It is still not clear that such a paper would be uncontroversial.
Proposed resolution:
This wording is relative to N4140.
Add a note after paragraph 1 before the synopsis in 26.5.8.3.4 [rand.dist.bern.negbin]:
A negative_binomial_distribution random number distribution produces random integers distributed according to the discrete probability function
.
[Note: This implies that is undefined when p == 1. — end note]
Drafting note: should be in math font, and p == 1 should be in code font.
Section: 30.6.9.1 [futures.task.members] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-06-14 Last modified: 2015-05-22
View all other issues in [futures.task.members].
View all issues with WP status.
Discussion:
LWG 2097's resolution was slightly too aggressive. It constrained packaged_task(allocator_arg_t, const Allocator&, F&&), but that's unnecessary because packaged_task doesn't have any other three-argument constructors. Additionally, it's marked as explicit (going back to WP N2798 when packaged_task first appeared) which is unnecessary.
[2015-02 Cologne]
Handed over to SG1.
[2015-05 Lenexa, SG1 response]
Back to LWG; not an SG1 issue.
[2015-05 Lenexa]
STL improves proposed wording by restoring the constraint again.
Proposed resolution:
This wording is relative to N3936.
Change 30.6.9 [futures.task] p2, class template packaged_task as indicated:
template <class F> explicit packaged_task(F&& f); template <class F, class Allocator>explicitpackaged_task(allocator_arg_t, const Allocator& a, F&& f);
Change 30.6.9.1 [futures.task.members] as indicated:
template <class F> packaged_task(F&& f); template <class F, class Allocator>explicitpackaged_task(allocator_arg_t, const Allocator& a, F&& f);[…]
-3- Remarks: These constructors shall not participate in overload resolution if decay_t<F> is the same type as std::packaged_task<R(ArgTypes...)>.
Section: 20.10.7.6 [meta.trans.other], 24.4.1 [iterator.traits] Status: WP Submitter: Daniel Krügler Opened: 2014-06-19 Last modified: 2015-04-08
View other active issues in [meta.trans.other].
View all other issues in [meta.trans.other].
View all issues with WP status.
Discussion:
During the Rapperswil meeting the proposal N4041 had been discussed and there seemed to be strong consensus to apply the SFINAE-friendly definitions that currently exist within the fundamentals-ts to the C++ Standard working draft. This issue requests this change to happen.
Proposed resolution:
This wording is relative to N3936.
Change 20.10.7.6 [meta.trans.other] p3 as indicated:
-3- For the common_type trait applied to a parameter pack T of types, the member type shall be either defined or not present as follows:
If sizeof...(T) is zero, there shall be no member type.
If sizeof...(T) is one, let T0 denote the sole type comprising T. The member typedef type shall denote the same type as decay_t<T0>.
If sizeof...(T) is greater than one, let T1, T2, and R, respectively, denote the first, second, and (pack of) remaining types comprising T. [Note: sizeof...(R) may be zero. — end note] Finally, let C denote the type, if any, of an unevaluated conditional expression (5.16 [expr.cond]) whose first operand is an arbitrary value of type bool, whose second operand is an xvalue of type T1, and whose third operand is an xvalue of type T2. If there is such a type C, the member typedef type shall denote the same type, if any, as common_type_t<C,R...>. Otherwise, there shall be no member type.
The nested typedef common_type::type shall be defined as follows:template <class ...T> struct common_type; template <class T> struct common_type<T> { typedef decay_t<T> type; }; template <class T, class U> struct common_type<T, U> { typedef decay_t<decltype(true ? declval<T>() : declval<U>())> type; }; template <class T, class U, class... V> struct common_type<T, U, V...> { typedef common_type_t<common_type_t<T, U>, V...> type; };
Change 24.4.1 [iterator.traits] p2 as indicated:
-2- The template iterator_traits<Iterator>
is defined asshall have the following as publicly accessible members, and have no other members, if and only if Iterator has valid (14.8.2 [temp.deduct]) member types difference_type, value_type, pointer, reference, and iterator_category; otherwise, the template shall have no members:namespace std { template<class Iterator> struct iterator_traits {typedef typename Iterator::difference_type difference_type; typedef typename Iterator::value_type value_type; typedef typename Iterator::pointer pointer; typedef typename Iterator::reference reference; typedef typename Iterator::iterator_category iterator_category;}; }
Section: X [mods.meta.trans.other], X [mods.iterator.traits] Status: WP Submitter: Daniel Krügler Opened: 2014-06-19 Last modified: 2015-04-08
View all issues with WP status.
Discussion:
Addresses: fund.ts
During the Rapperswil meeting the proposal N4041 had been discussed and there seemed to be strong consensus to apply the SFINAE-friendly definitions that currently exist within the fundamentals-ts to the C++17 working draft. If this happens, the fundamentals-ts needs to remove its own specification regarding these templates. This issue requests this change to happen.
[2013-06-21 Rapperswil]
Accept for Fundamentals TS Working Paper
Proposed resolution:
This wording is relative to N4023 in regard to fundamental-ts changes.
In fundamental-ts, change Table 2 — "Significant features in this technical specification" as indicated:
Table 2 — Significant features in this technical specification Doc.
No.Title Primary
SectionMacro Name Suffix Value Header … N3843
A SFINAE-
Friendly
common_type2.4 [mods.meta.trans.other]
common_type_sfinae201402<type_traits>
N3843
A SFINAE-
Friendly
iterator_traits2.5 [mods.iterator.traits]
iterator_traits_sfinae201402<iterator>
…
In fundamental-ts, remove the existing sub-clause 2.4 [mods.meta.trans.other] in its entirety:
2.4 Changes to std::common_type [mods.meta.trans.other]
-1- […]
In fundamental-ts, remove the existing sub-clause 2.5 [mods.iterator.traits] in its entirety:
2.5 Changes to std::iterator_traits [mods.iterator.traits]
-1- […]
Section: X [mods.util.smartptr.shared.const] Status: WP Submitter: Jeffrey Yasskin Opened: 2014-06-16 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
Addresses: fund.ts
The proposed resolution for LWG 2399 doesn't apply cleanly to the Fundamentals TS, but the issue is still present.
[2015-02, Cologne]
Unanimous consent.
Proposed resolution:
This wording is relative to N4023 in regard to fundamental-ts changes.
In fundamental-ts, change [mods.util.smartptr.shared.const] p34 as indicated:
template <class Y, class D> shared_ptr(unique_ptr<Y, D>&& r);-34-
-35- Effects: Equivalent to shared_ptr(r.release(), r.get_deleter()) when D is not a reference type, otherwise shared_ptr(r.release(), ref(r.get_deleter())). -36- Exception safety: If an exception is thrown, the constructor has no effect.RequiresRemarks: This constructor shall not participate in overload resolution unless Y*shall beis compatible with T*.
Section: 20.8.2.2 [util.smartptr.shared] Status: WP Submitter: Jonathan Wakely Opened: 2014-06-21 Last modified: 2015-05-22
View other active issues in [util.smartptr.shared].
View all other issues in [util.smartptr.shared].
View all issues with WP status.
Discussion:
N3920 made this edit, which is correct but unrelated to the support for arrays:
Change 20.7.2.2 [util.smartptr.shared] p2 as follows:
Specializations of shared_ptr shall be CopyConstructible, CopyAssignable, and LessThanComparable, allowing their use in standard containers. Specializations of shared_ptr shall be contextually convertible to bool, allowing their use in boolean expressions and declarations in conditions. […]
That change is actually fixing a defect in the current wording and should be applied directly to the working paper, not just to the Library Fundamentals TS. The declarations of the conversion operator in 20.8.2.2 [util.smartptr.shared] and 20.8.2.2.5 [util.smartptr.shared.obs] are explicit which contradicts the "convertible to bool" statement. The intention is definitely for shared_ptr to only be contextually convertible to bool.
[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
This wording is relative to N3936.
Change 20.8.2.2 [util.smartptr.shared] p2 as indicated:
-2- Specializations of shared_ptr shall be CopyConstructible, CopyAssignable, and LessThanComparable, allowing their use in standard containers. Specializations of shared_ptr shall be contextually convertible to bool, allowing their use in boolean expressions and declarations in conditions. The template parameter T of shared_ptr may be an incomplete type.
Section: 20.8.2.2.1 [util.smartptr.shared.const] Status: WP Submitter: Jonathan Wakely Opened: 2014-07-03 Last modified: 2015-05-22
View all other issues in [util.smartptr.shared.const].
View all issues with WP status.
Discussion:
unique_ptr guarantees that it will not invoke its deleter if it stores a null pointer, which is useful for deleters that must not be called with a null pointer e.g.
unique_ptr<FILE, int(*)(FILE*)> fptr(file, &::fclose);
However, shared_ptr does invoke the deleter if it owns a null pointer, which is a silent change in behaviour when transferring ownership from unique_ptr to shared_ptr. That means the following leads to undefined behaviour:
std:shared_ptr<FILE> fp = std::move(fptr);
Peter Dimov's suggested fix is to construct an empty shared_ptr from a unique_ptr that contains a null pointer.
[2015-01-18 Library reflector vote]
The issue has been identified as Tentatively Ready based on eight votes in favour.
Proposed resolution:
This wording is relative to N4296.
Change 20.8.2.2.1 [util.smartptr.shared.const] p29 as indicated:
template <class Y, class D> shared_ptr(unique_ptr<Y, D>&& r);[…]
-29- Effects: If r.get() == nullptr, equivalent to shared_ptr(). Otherwise, if D is not a reference type, equivalent to shared_ptr(r.release(), r.get_deleter()). Otherwise, equivalent to shared_ptr(r.release(), ref(r.get_deleter()))Equivalent to shared_ptr(r.release(), r.get_deleter()) when D is not a reference type, otherwise shared_ptr(r.release(), ref(r.get_deleter())).
Section: X [any.class] Status: Resolved Submitter: Jonathan Wakely Opened: 2014-06-16 Last modified: 2015-04-08
View all issues with Resolved status.
Discussion:
Addresses: fund.ts
The allocator-extended copy constructor for any requires an arbitrary template parameter to be available in a type-erased context where the dynamic type of the contained object is known. This is not believed to be possible in C++.
If the allocator-extended copy constructor cannot be defined it questions the usefulness of the other allocator-extended constructors.[Urbana, 2014-11]
Resolved by paper N4270.
Proposed resolution:
Section: X [tuple.apply] Status: WP Submitter: Zhihao Yuan Opened: 2014-07-08 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
Addresses: fund.ts
The definition of apply present in §3.2.2 [tuple.apply] prevents this function template to be used with pointer to members type passed as the first argument.
Effects: […] return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
This makes this utility inconsistent with other standard library components and limits its usability.
We propose to define its functionally in terms of INVOKE.[2015-02, Cologne]
DK: We should use the new std::invoke.
TK: Is this a defect?
AM: std::invoke goes into C++17, and this is a defect against a TS based on C++14. We can change this later,
but now leave it as INVOKE.
GR: The TS lets you have Editor's Notes, so leave a note to make that change for C++17.
Proposed resolution:
This wording is relative to N4081 in regard to fundamental-ts changes.
Edit §3.2.2 [tuple.apply] paragraph 2:
template <class F, class Tuple> constexpr decltype(auto) apply(F&& f, Tuple&& t);-2- Effects: Given the exposition only function
template <class F, class Tuple, size_t... I> constexpr decltype(auto) apply_impl( // exposition only F&& f, Tuple&& t, index_sequence<I...>) { return INVOKE(std::forward<F>(f)(, std::get<I>(std::forward<Tuple>(t))...); }[…]
Section: 20.9.12.2 [func.wrap.func] Status: WP Submitter: Agustín Bergé Opened: 2014-07-12 Last modified: 2015-05-22
View other active issues in [func.wrap.func].
View all other issues in [func.wrap.func].
View all issues with WP status.
Discussion:
function<void(ArgTypes...)> should discard the return value of the target object. This behavior was in the original proposal, and it was removed (accidentally?) by the resolution of LWG 870.
Previous resolution [SUPERSEDED]:
Edit 20.9.12.2 [func.wrap.func] paragraph 2:
A callable object f of type F is Callable for argument types ArgTypes and return type R if the expression INVOKE(f, declval<ArgTypes>()...
, R), considered as an unevaluated operand (Clause 5), is well formed (20.9.2 [func.require]) and, if R is not void, implicitly convertible to R.
[2014-10-05 Daniel comments]
This side-effect was indeed not intended by 870.
[2015-05, Lenexa]
STL provides improved wording. It replaces the current PR, and intentionally leaves 20.9.12.2 [func.wrap.func] unchanged.
Due to 5 [expr]/6, static_cast<void> is correct even when R is const void.Proposed resolution:
This wording is relative to N4431.
Edit 20.9.2 [func.require] as depicted:
-2- Define INVOKE(f, t1, t2, ..., tN, R) as static_cast<void>(INVOKE(f, t1, t2, ..., tN)) if R is cv void, otherwise INVOKE(f, t1, t2, ..., tN) implicitly converted to R.
Change 20.9.12.2.4 [func.wrap.func.inv] as depicted:
R operator()(ArgTypes... args) const;-1-
EffectsReturns: INVOKE(f, std::forward<ArgTypes>(args)..., R) (20.9.2), where f is the target object (20.9.1) of *this.-2- Returns: Nothing if R is void, otherwise the return value of INVOKE(f, std::forward<ArgTypes>(args)..., R).
Section: 18.6.1 [new.delete] Status: WP Submitter: Richard Smith Opened: 2014-08-29 Last modified: 2015-05-22
View all other issues in [new.delete].
View all issues with WP status.
Discussion:
18.6.1.1 [new.delete.single]/12 says:
Requires: ptr shall be a null pointer or its value shall be a value returned by an earlier call to the (possibly replaced) operator new(std::size_t) or operator new(std::size_t,const std::nothrow_t&) which has not been invalidated by an intervening call to operator delete(void*).
This should say:
[…] by an intervening call to operator delete(void*) or operator delete(void*, std::size_t).
Likewise at the end of 18.6.1.2 [new.delete.array]/11, operator delete[](void*, std::size_t).
[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
Change 18.6.1.1 [new.delete.single]p12 as indicated:
-12- Requires: ptr shall be a null pointer or its value shall be a value returned by an earlier call to the (possibly replaced) operator new(std::size_t) or operator new(std::size_t,const std::nothrow_t&) which has not been invalidated by an intervening call to operator delete(void*) or operator delete(void*, std::size_t).
Change 18.6.1.2 [new.delete.array]p11 as indicated:
-11- Requires: ptr shall be a null pointer or its value shall be the value returned by an earlier call to operator new[](std::size_t) or operator new[](std::size_t,const std::nothrow_t&) which has not been invalidated by an intervening call to operator delete[](void*) or operator delete[](void*, std::size_t).
Section: 23.3.1 [sequences.general] Status: WP Submitter: Tim Song Opened: 2014-08-29 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
LWG 2194 removed "These container adaptors meet the requirements for sequence containers." from 23.6.1 [container.adaptors.general].
However, N3936 23.3.1 [sequences.general]/p2 still says "The headers <queue> and <stack> define container adaptors (23.6) that also meet the requirements for sequence containers." I assume this is just an oversight.[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
Delete paragraph 2 of 23.3.1 [sequences.general] as indicated:
-2- The headers <queue> and <stack> define container adaptors (23.6) that also meet the requirements for sequence containers.
Section: 17.6.2.2 [using.headers] Status: WP Submitter: Tim Song Opened: 2014-09-03 Last modified: 2015-05-22
View all other issues in [using.headers].
View all issues with WP status.
Discussion:
17.6.2.2 [using.headers]/3 says
A translation unit shall include a header only outside of any external declaration or definition […]
This wording appears to be borrowed from the C standard. However, the term "external declaration" is not defined in the C++ standard, and in fact is only used here as far as I can tell, so it is unclear what it means. The C standard does define external declarations as (WG14 N1570 6.9 External definitions/4-5):
As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which consists of a sequence of external declarations. These are described as "external" because they appear outside any function (and hence have file scope). [...] An external definition is an external declaration that is also a definition of a function (other than an inline definition) or an object.
The corresponding description of a translation unit in C++ is "A translation unit consists of a sequence of declarations." (3.5 [basic.link]/3).
So it appears that the C++ counterpart of "external declaration" in C is simply a "declaration" at file scope. There is no need to specifically limit the statement in 17.6.2.2 [using.headers]/3 to file-scope declarations, however, since every non-file-scope declaration is necessarily inside a file-scope declaration, so banning including a header inside file-scope declarations necessarily bans including one inside non-file-scope declarations as well.[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
This wording is relative to N3936.
Edit 17.6.2.2 [using.headers] as indicated:
A translation unit shall include a header only outside of any
externaldeclaration or definition, and shall include the header lexically before the first reference in that translation unit to any of the entities declared in that header. No diagnostic is required.
Section: 20.7.12 [specialized.algorithms] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-10-01 Last modified: 2015-05-22
View all other issues in [specialized.algorithms].
View all issues with WP status.
Discussion:
This restriction isn't necessary anymore. In fact, this is the section that defines addressof().
(Editorial note: We can depict these algorithms as calling addressof() instead of std::addressof() thanks to 17.6.1.1 [contents]/3 "Whenever a name x defined in the standard library is mentioned, the name x is assumed to be fully qualified as ::std::x, unless explicitly described otherwise.")
[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
This wording is relative to N3936.
Change 20.7.12 [specialized.algorithms] p1 as depicted:
-1-
All the iterators that are used as formal template parameters in the following algorithms are required to have their operator* return an object for which operator& is defined and returns a pointer to T.In the algorithm uninitialized_copy, the formal template parameter InputIterator is required to satisfy the requirements of an input iterator (24.2.3). In all of the following algorithms, the formal template parameter ForwardIterator is required to satisfy the requirements of a forward iterator (24.2.5), and is required to have the property that no exceptions are thrown from increment, assignment, comparison, or indirection through valid iterators. In the following algorithms, if an exception is thrown there are no effects.
Change 20.7.12.2 [uninitialized.copy] p1 as depicted:
-1- Effects:
for (; first != last; ++result, ++first) ::new (static_cast<void*>(addressof(&*result))) typename iterator_traits<ForwardIterator>::value_type(*first);
Change 20.7.12.2 [uninitialized.copy] p3 as depicted:
-3- Effects:
for (; n > 0; ++result, ++first, --n) { ::new (static_cast<void*>(addressof(&*result))) typename iterator_traits<ForwardIterator>::value_type(*first); }
Change 20.7.12.3 [uninitialized.fill] p1 as depicted:
-1- Effects:
for (; first != last; ++first) ::new (static_cast<void*>(addressof(&*first))) typename iterator_traits<ForwardIterator>::value_type(x);
Change 20.7.12.4 [uninitialized.fill.n] p1 as depicted:
-1- Effects:
for (; n--; ++first) ::new (static_cast<void*>(addressof(&*first))) typename iterator_traits<ForwardIterator>::value_type(x); return first;
Section: 20.8.2.2.5 [util.smartptr.shared.obs] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-10-01 Last modified: 2015-05-22
View all other issues in [util.smartptr.shared.obs].
View all issues with WP status.
Discussion:
shared_ptr and weak_ptr have Notes that their use_count() might be inefficient. This is an attempt to acknowledge reflinked implementations (which can be used by Loki smart pointers, for example). However, there aren't any shared_ptr implementations that use reflinking, especially after C++11 recognized the existence of multithreading. Everyone uses atomic refcounts, so use_count() is just an atomic load.
[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
This wording is relative to N3936.
Change 20.8.2.2.5 [util.smartptr.shared.obs] p7-p10 as depicted:
long use_count() const noexcept;-7- Returns: the number of shared_ptr objects, *this included, that share ownership with *this, or 0 when *this is empty.
-8- [Note: use_count() is not necessarily efficient. — end note]bool unique() const noexcept;-9- Returns: use_count() == 1.
-10- [Note:unique() may be faster than use_count().If you are using unique() to implement copy on write, do not rely on a specific value when get() == 0. — end note]
Change 20.8.2.3.5 [util.smartptr.weak.obs] p1-p4 as depicted:
long use_count() const noexcept;-1- Returns: 0 if *this is empty; otherwise, the number of shared_ptr instances that share ownership with *this.
-2- [Note: use_count() is not necessarily efficient. — end note]bool expired() const noexcept;-3- Returns: use_count() == 0.
-4- [Note: expired() may be faster than use_count(). — end note]
Section: 24.2.2 [iterator.iterators] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-10-01 Last modified: 2015-05-22
View all other issues in [iterator.iterators].
View all issues with WP status.
Discussion:
24.2.2 [iterator.iterators]/2 requires an Iterator's *r to return reference, i.e. iterator_traits<X>::reference according to 24.2.1 [iterator.requirements.general]/11.
24.2.4 [output.iterators]/1 requires an OutputIterator's *r = o to do its job, so *r clearly can't return void. 24.4.1 [iterator.traits]/1 says: "In the case of an output iterator, the typesiterator_traits<Iterator>::difference_type iterator_traits<Iterator>::value_type iterator_traits<Iterator>::reference iterator_traits<Iterator>::pointer
may be defined as void."
This is contradictory. I suggest fixing this by moving the offending requirement down from Iterator to InputIterator, and making Iterator say that *r returns an unspecified type. This will have the following effects:Output-only iterators will inherit Iterator's "*r returns unspecified" requirement, while 24.4.1 [iterator.traits]/1 clearly permits reference/etc. to be void.
Input-or-stronger iterators (whether constant or mutable) are unaffected — they still have to satisfy "*r returns reference", they're just getting that requirement from InputIterator instead of Iterator.
[2015-02 Cologne]
EF: This is related to 2438. MC: I'd like to take up 2438 right after this.
AM: Does anyone think this is wrong? GR: Why do we give output iterators to have reference type void? AM: we've mandated that certain output iterators define it as void since 1998. GR: Oh OK, I'm satisfied. Accepted. And 2438 is already Ready.Proposed resolution:
This wording is relative to N3936.
In 24.2.2 [iterator.iterators] Table 106 "Iterator requirements" change as indicated:
Table 106 — Iterator requirements Expression Return type Operational
semanticsAssertion/note pre-/post-condition *r referenceunspecifiedpre: r is dereferenceable. …
In 24.2.3 [input.iterators] Table 107 "Input iterator requirements" change as indicated:
Table 107 — Input iterator requirements (in addition to Iterator) Expression Return type Operational
semanticsAssertion/note pre-/post-condition … *a reference, convertible to T […] …
Section: 24.4.2 [iterator.basic] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-10-01 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
For LWG convenience, nine STL iterators are depicted as deriving from std::iterator to get their iterator_category/etc. typedefs. Unfortunately (and unintentionally), this also mandates the inheritance, which is observable (not just through is_base_of, but also overload resolution). This is unfortunate because it confuses users, who can be misled into thinking that their own iterators must derive from std::iterator, or that overloading functions to take std::iterator is somehow meaningful. This is also unintentional because the STL's most important iterators, the container iterators, aren't required to derive from std::iterator. (Some are even allowed to be raw pointers.) Finally, this unnecessarily constrains implementers, who may not want to derive from std::iterator. (For example, to simplify debugger views.)
We could add wording to 24.4.2 [iterator.basic] saying that any depicted inheritance is for exposition only, but that wouldn't really solve reader confusion. Replacing the depicted inheritance with direct typedefs will prevent confusion. Note that implementers won't be required to change their code — they are free to continue deriving from std::iterator if they want. (Editorial note: The order of the typedefs follows the order of std::iterator's template parameters.)[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
This wording is relative to N3936.
Change 20.7.10 [storage.iterator], class template raw_storage_iterator synopsis, as depicted:
template <class OutputIterator, class T> class raw_storage_iterator: public iterator<output_iterator_tag,void,void,void,void>{ public: typedef output_iterator_tag iterator_category; typedef void value_type; typedef void difference_type; typedef void pointer; typedef void reference; explicit raw_storage_iterator(OutputIterator x); […] };
Change 24.5.1.1 [reverse.iterator], class template reverse_iterator synopsis, as depicted (editorial note: this reorders "reference, pointer" to "pointer, reference" and aligns whitespace):
template <class Iterator> class reverse_iterator: public iterator<typename iterator_traits<Iterator>::iterator_category, typename iterator_traits<Iterator>::value_type, typename iterator_traits<Iterator>::difference_type, typename iterator_traits<Iterator>::pointer, typename iterator_traits<Iterator>::reference>{ public:typedef Iterator iterator_type; typedef typename iterator_traits<Iterator>::difference_type difference_type; typedef typename iterator_traits<Iterator>::reference reference; typedef typename iterator_traits<Iterator>::pointer pointer;typedef Iterator iterator_type; typedef typename iterator_traits<Iterator>::iterator_category iterator_category; typedef typename iterator_traits<Iterator>::value_type value_type; typedef typename iterator_traits<Iterator>::difference_type difference_type; typedef typename iterator_traits<Iterator>::pointer pointer; typedef typename iterator_traits<Iterator>::reference reference; reverse_iterator(); […] };
Change 24.5.2.1 [back.insert.iterator], class template back_insert_iterator synopsis, as depicted:
template <class Container> class back_insert_iterator: public iterator<output_iterator_tag,void,void,void,void>{ protected: Container* container; public: typedef output_iterator_tag iterator_category; typedef void value_type; typedef void difference_type; typedef void pointer; typedef void reference; typedef Container container_type; explicit back_insert_iterator(Container& x); […] };
Change 24.5.2.3 [front.insert.iterator], class template front_insert_iterator synopsis, as depicted:
template <class Container> class front_insert_iterator: public iterator<output_iterator_tag,void,void,void,void>{ protected: Container* container; public: typedef output_iterator_tag iterator_category; typedef void value_type; typedef void difference_type; typedef void pointer; typedef void reference; typedef Container container_type; explicit front_insert_iterator(Container& x); […] };
Change 24.5.2.5 [insert.iterator], class template insert_iterator synopsis, as depicted:
template <class Container> class insert_iterator: public iterator<output_iterator_tag,void,void,void,void>{ protected: Container* container; typename Container::iterator iter; public: typedef output_iterator_tag iterator_category; typedef void value_type; typedef void difference_type; typedef void pointer; typedef void reference; typedef Container container_type; insert_iterator(Container& x, typename Container::iterator i); […] };
Change 24.6.1 [istream.iterator], class template istream_iterator synopsis, as depicted:
template <class T, class charT = char, class traits = char_traits<charT>, class Distance = ptrdiff_t> class istream_iterator: public iterator<input_iterator_tag, T, Distance, const T*, const T&>{ public: typedef input_iterator_tag iterator_category; typedef T value_type; typedef Distance difference_type; typedef const T* pointer; typedef const T& reference; […] };
Change 24.6.2 [ostream.iterator], class template ostream_iterator synopsis, as depicted:
template <class T, class charT = char, class traits = char_traits<charT>> class ostream_iterator: public iterator<output_iterator_tag, void, void, void, void>{ public: typedef output_iterator_tag iterator_category; typedef void value_type; typedef void difference_type; typedef void pointer; typedef void reference; […] };
Change 24.6.3 [istreambuf.iterator], class template istreambuf_iterator synopsis, as depicted:
template <class charT = char, class traits = char_traits<charT> > class istreambuf_iterator: public iterator<input_iterator_tag, charT, typename traits::off_type, unspecified, charT>{ public: typedef input_iterator_tag iterator_category; typedef charT value_type; typedef typename traits::off_type difference_type; typedef unspecified pointer; typedef charT reference; […] };
Change 24.6.4 [ostreambuf.iterator], class template ostreambuf_iterator synopsis, as depicted (editorial note: this removes a redundant "public:"):
template <class charT = char, class traits = char_traits<charT>> class ostreambuf_iterator: public iterator<output_iterator_tag, void, void, void, void>{ public: typedef output_iterator_tag iterator_category; typedef void value_type; typedef void difference_type; typedef void pointer; typedef void reference; […]public:[…] };
Section: 25.3.9 [alg.unique] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-10-01 Last modified: 2015-05-22
View all other issues in [alg.unique].
View all issues with WP status.
Discussion:
unique_copy()'s wording says that if it's given input-only and output-only iterators, it needs the input's value type to be copyable. This is correct, because in this case the algorithm must have a local element copy in order to detect duplicates.
The wording also says that if it's given an InputIterator that's forward or stronger, the input's value type doesn't have to be copyable. This is also correct, because in this case the algorithm can reread the input in order to detect duplicates. Finally, the wording says that if it's given an input-only iterator with an OutputIterator that's forward or stronger, the input's value type doesn't have to be copyable. This is telling the algorithm to compare its input to its output in order to detect duplicates, but that isn't always possible! If the input and output have the same value type, then they can be compared (as long as *result = *first behaves sanely; see below). If they have different value types, then we can't compare them. This could be resolved by requiring heterogeneous value types to be comparable in this situation, but that would be extremely tricky to wordsmith (as it would challenge the concept of "group of equal elements" used by the Effects). It will be vastly simpler and more effective to extend the "local element copy" requirement to this scenario. Note that the input-only, output forward-or-stronger, identical value types scenario needs a bit of work too. We always require *result = *first to be "valid", but in this case we need to additionally require that the assignment actually transfers the value. (Otherwise, we'd be allowing an op=() that ignores *first and always sets *result to zero, or other unacceptable behavior.) This is just CopyAssignable. (What happens when unique_copy() is given a move_iterator is a separate issue.) To summarize:input forward+: no additional requirements
input-only, output forward+, same value types: needs CopyAssignable input-only, output forward+, different value types: needs CopyConstructible and CopyAssignable input-only, output-only: needs CopyConstructible and CopyAssignable
[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
This wording is relative to N3936.
Change 25.3.9 [alg.unique] p5, as depicted:
template<class InputIterator, class OutputIterator> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result); template<class InputIterator, class OutputIterator, class BinaryPredicate> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result, BinaryPredicate pred);-5- Requires: The comparison function shall be an equivalence relation. The ranges [first,last) and [result,result+(last-first)) shall not overlap. The expression *result = *first shall be valid.
If neither InputIterator nor OutputIterator meets the requirements of forward iterator then the value type of InputIterator shall be CopyConstructible (Table 21) and CopyAssignable (Table 23). Otherwise CopyConstructible is not required.Let T be the value type of InputIterator. If InputIterator meets the forward iterator requirements, then there are no additional requirements for T. Otherwise, if OutputIterator meets the forward iterator requirements and its value type is the same as T, then T shall be CopyAssignable (Table 23). Otherwise, T shall be both CopyConstructible (Table 21) and CopyAssignable.
Section: 26.5.7.1 [rand.util.seedseq] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-10-01 Last modified: 2015-05-22
View all other issues in [rand.util.seedseq].
View all issues with WP status.
Discussion:
Obvious.
[Urbana 2014-11-07: Move to Ready]
Proposed resolution:
This wording is relative to N3936.
Change 26.5.7.1 [rand.util.seedseq], class seed_seq synopsis, as depicted:
class seed_seq { public: […] size_t size() const noexcept; […] };
Change 26.5.7.1 [rand.util.seedseq] around p10, as depicted:
size_t size() const noexcept;-10- Returns: The number of 32-bit units that would be returned by a call to param().
-11- Throws: Nothing.-12- Complexity: Constant time.
Section: 30.4.4.2 [thread.once.callonce] Status: WP Submitter: Stephan T. Lavavej Opened: 2014-10-01 Last modified: 2015-05-22
View all other issues in [thread.once.callonce].
View all issues with WP status.
Discussion:
When LWG 891 overhauled call_once()'s specification, it used decay_copy(), following LWG 929's overhaul of thread's constructor.
In thread's constructor, this is necessary and critically important. 30.3.1.2 [thread.thread.constr]/5 "The new thread of execution executes INVOKE(DECAY_COPY(std::forward<F>(f)), DECAY_COPY(std::forward<Args>(args))...) with the calls to DECAY_COPY being evaluated in the constructing thread." requires the parent thread to copy arguments for the child thread to access. In call_once(), this is unnecessary and harmful. It's unnecessary because call_once() doesn't transfer arguments between threads. It's harmful because:decay_copy() returns a prvalue. Given meow(int&), meow(i) can be called directly, but call_once(flag, meow, i) won't compile.
decay_copy() moves from modifiable rvalues. Given purr(const unique_ptr<int>&), purr(move(up)) won't modify up. (This is observable, because moved-from unique_ptrs are guaranteed empty.) However, call_once(flag, purr, move(up)) will leave up empty after the first active execution. Observe the behavioral difference — if purr() is directly called like this repeatedly until it doesn't throw an exception, each call will observe up unchanged. With call_once(), the second active execution will observe up to be empty.
call_once() should use perfect forwarding without decay_copy(), in order to avoid interfering with the call like this.
[2015-02 Cologne]
Handed over to SG1.
[2015-05 Lenexa, SG1 response]
Looks good to us, but this is really an LWG issue.
[2015-05-07 Lenexa: Move Immediate]
LWG 2442 call_once shouldn't decay_copy
STL summarizes the SG1 minutes.
Marshall: Jonathan updated all the issues with SG1 status last night. Except this one.
STL summarizes the issue.
Dietmar: Of course, call_once has become useless.
STL: With magic statics.
Jonathan: Magic statics can't be per object, which I use in future.
Marshall: I see why you are removing the MoveConstructible on the arguments, but what about Callable?
STL: That's a type named Callable, which we will no longer decay_copy. We're still requiring the INVOKE expression to be valid.
Marshall: Okay. Basically, ripping the decay_copy out of here.
STL: I recall searching the Standard for other occurrences and I believe this is the only inappropriate use of decay_copy.
Marshall: We do the decay_copy.
Jonathan: Us too.
Marshall: What do people think?
Jonathan: I think STL's right. In the use I was mentioning inside futures, I actually pass them by reference_wrapper and pointers, to avoid the decay causing problems. Inside the call_once, I then extract the args. So I've had to work around this and didn't realize it was a defect.
Marshall: What do people think is the right resolution?
STL: I would like to see Immediate.
Hwrd: No objections to Immediate.
Marshall: Bill is nodding.
PJP: He said it. Everything STL says applies to our other customers.
Marshall: Any objections to Immediate?
Jonathan: I can't see any funky implementations where a decay_copy would be necessary?
Marshall: 6 votes for Immediate, 0 opposed, 0 abstaining.
Proposed resolution:
This wording is relative to N3936.
Change 30.4.4.2 [thread.once.callonce] p1+p2 as depicted:
template<class Callable, class ...Args> void call_once(once_flag& flag, Callable&& func, Args&&... args);-1- Requires:
-2- Effects; […] An active execution shall call INVOKE(Callable and each Ti in Args shall satisfy the MoveConstructible requirements.INVOKE(DECAY_COPY(std::forward<Callable>(func)),DECAY_COPY(std::forward<Args>(args))...) (20.9.2) shall be a valid expression.DECAY_COPY(std::forward<Callable>(func)),DECAY_COPY(std::forward<Args>(args))...). […]
Section: 23.2.1 [container.requirements.general] Status: WP Submitter: Daniel Krügler Opened: 2014-10-18 Last modified: 2015-05-22
View other active issues in [container.requirements.general].
View all other issues in [container.requirements.general].
View all issues with WP status.
Discussion:
According to Table 96 — "Container requirements" the specification:
note: the destructor is applied to every element of a; any memory obtained is deallocated.
The initial "note:" can be read as if that part of the specification would not be normative (This note form differs from footnotes in tables, which have normative meaning).
It seems that this initial part of the specification exists since C++98. But comparing with the similar SGI Container specification there is no evidence for that being intended to be non-normative.[2015-02, Cologne]
NJ: If we fix this, we should also fix it elsewhere. Oh, this is the only place?
GR: If this is intended to be different from elsewhere, we should make sure.
AM: valarray specifies this without the "note:".
DK: valarray requires trivially destructible types!
GR: That's good enough for me.
NJ: First time valarray has been useful for something!
Proposed resolution:
This wording is relative to N4140.
Change 23.2.1 [container.requirements.general], Table 96 — "Container requirements", as indicated:
Table 96 — Container requirements Expression Return type Operational
semanticsAssertion/note
pre-/post-conditionComplexity … (&a)->~X() void note:the destructor
is applied to every
element of a; any
memory obtained is deallocated.linear …
Section: 20.7.10 [storage.iterator] Status: WP Submitter: Jonathan Wakely Opened: 2014-11-11 Last modified: 2015-05-22
View all other issues in [storage.iterator].
View all issues with WP status.
Discussion:
Eric Niebler pointed out that raw_storage_iterator should give access to the OutputIterator it wraps.
This helps alleviate the exception-safety issue pointed out in the discussion of LWG 2127, as an exception can be caught and then destructors can be run for the constructed elements in the range [begin, raw.base())[2015-02 Cologne]
NJ: Is this "const" correct [in "base()"]? DK: Yes, we always do that. NJ: And the output iterator is not qualifying in any way? AM/DK: That wouldn't make sense. NJ: OK.
VV: What did LEWG say about this feature request? In other words, why is this a library issue? AM: LEWG/JY thought this wouldn't be a contentious issue. NJ: I really hope the split of LEWG and LWG will be fixed soon, since it's only wasting time. VV: So you want to spend even more of your time on discussions that LEWG has? AM: I think this specified correctly. I'm not wild about it. But no longer bothered to stand in its way. GR: Why do we need to repeat the type in "Returns" even though it's part of the synopsis? AM: Good point, but not worth fixing. NJ: Why is "base()" for reverse_iterator commented with "// explicit"? AM: I guess in 1998 that was the only way to say this. AM: So, it's tentatively ready.Proposed resolution:
This wording is relative to N4140.
Add a new function to the synopsis in 20.7.10 [storage.iterator] p1:
namespace std { template <class OutputIterator, class T> class raw_storage_iterator : public iterator<output_iterator_tag,void,void,void,void> { public: explicit raw_storage_iterator(OutputIterator x); raw_storage_iterator<OutputIterator,T>& operator*(); raw_storage_iterator<OutputIterator,T>& operator=(const T& element); raw_storage_iterator<OutputIterator,T>& operator++(); raw_storage_iterator<OutputIterator,T> operator++(int); OutputIterator base() const; }; }
Insert the new function and a new paragraph series after p7:
OutputIterator base() const;-?- Returns: An iterator of type OutputIterator that points to the same value as *this points to.
Section: 17.6.3.5 [allocator.requirements] Status: WP Submitter: Pablo Halpern Opened: 2014-11-11 Last modified: 2015-05-22
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with WP status.
Discussion:
17.6.3.5 [allocator.requirements]/4 in the 2014-10 WP (N4140), says:
An allocator type X shall satisfy the requirements of CopyConstructible (17.6.3.1). The X::pointer, X::const_pointer, X::void_pointer, and X::const_void_pointer types shall satisfy the requirements of NullablePointer (17.6.3.3). No constructor, comparison operator, copy operation, move operation, or swap operation on these types shall exit via an exception. X::pointer and X::const_pointer shall also satisfy the requirements for a random access iterator (24.2).
The words "these types" would normally apply only to the previous sentence only, i.e., only to the pointer types. However, an alternative reading would be that the allocator constructors themselves cannot throw. The change to the vector and string default constructors, making them unconditionally noexcept depends on this alternative reading.
I believe that the wording in the standard is not intended to forbid throwing default constructors for allocators. Indeed, I believe that allocators do not require default constructors and that if they provide a default constructor they should be allowed to throw. In addition, the noexcept specifications for the string and vector default constructors should be changed to make them conditional.[2015-01-18 Library reflector vote]
The issue has been identified as Tentatively Ready based on six votes in favour.
Proposed resolution:
Change 17.6.3.5 [allocator.requirements] p4 as indicated:
An allocator type X shall satisfy the requirements of CopyConstructible (17.6.3.1). The X::pointer, X::const_pointer, X::void_pointer, and X::const_void_pointer types shall satisfy the requirements of NullablePointer (17.6.3.3). No constructor, comparison operator, copy operation, move operation, or swap operation on these pointer types shall exit via an exception. X::pointer and X::const_pointer shall also satisfy the requirements for a random access iterator (24.2).
Change 21.4 [basic.string] following p5, class template basic_string synopsis, as indicated: (This change assumes that N4258 has been applied, as voted on in Urbana on 2014-11-08)
// 21.4.2, construct/copy/destroy: basic_string() noexcept(noexcept(Allocator())) : basic_string(Allocator()) { }
An alternative formulation of the above would be:
// 21.4.2, construct/copy/destroy: basic_string() noexcept(is_nothrow_default_constructible<Allocator>{}) : basic_string(Allocator()) { }
Change 23.3.6.1 [vector.overview] following p2, class template vector synopsis, as indicated: (This change assumes that N4258 has been applied, as voted on in Urbana on 2014-11-08)
// 23.3.6.2, construct/copy/destroy: vector() noexcept(noexcept(Allocator())) : vector(Allocator()) { }
An alternative formulation of the above would be:
// 23.3.6.2, construct/copy/destroy: vector() noexcept(is_nothrow_default_constructible<Allocator>{}) : vector(Allocator()) { }
Section: 18.6 [support.dynamic], 18.6.1.1 [new.delete.single], 18.6.1.2 [new.delete.array] Status: WP Submitter: Richard Smith Opened: 2014-11-23 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
N3778 added the following sized deallocation signatures to the library:
void operator delete(void* ptr, std::size_t size) noexcept; void operator delete[](void* ptr, std::size_t size) noexcept; void operator delete(void* ptr, std::size_t size, const std::nothrow_t&) noexcept; void operator delete[](void* ptr, std::size_t size, const std::nothrow_t&) noexcept;
The former two are an essential part of the proposal. The latter two seem spurious — they are not called when new (std::nothrow) X fails due to X::X() throwing, because the core language rules for selecting a placement deallocation function do not consider passing a size argument. Instead, the above would be the matching deallocation functions for:
void *operator new(std::size_t size, std::size_t size_again, const std::nothrow_t&) noexcept; void *operator new[](std::size_t size, std::size_t size_again, const std::nothrow_t&) noexcept;
... which don't exist.
Since they're not implicitly called, the only other possible use for those functions would be to perform an explicitly non-throwing deallocation. But... the first two overloads are already explicitly non-throwing and are required to be semantically identical to the second two. So there's no point in making an explicit call to the second pair of functions either. It seems to me that we should remove the (void*, size_t, nothrow_t) overloads, because the core working group decided during the Urbana 2014 meeting, that no change to the core language was warranted.[2014-11-23, Daniel suggests concrete wording changes]
[2015-02 Cologne]
Nobody can call those overloads, since the nothrow allocation functions cannot throw. JY: Ship it. GR: Should we do due diligence and make sure we're deleting what we mean to be deleting? [Some checking, everything looks good.]
Accepted.Proposed resolution:
This wording is relative to N4140.
Change 18.6 [support.dynamic], header <new> synopsis, as indicated:
[…] void operator delete(void* ptr, std::size_t size) noexcept;void operator delete(void* ptr, std::size_t size, const std::nothrow_t&) noexcept;[…] void operator delete[](void* ptr, std::size_t size) noexcept;void operator delete[](void* ptr, std::size_t size, const std::nothrow_t&) noexcept;[…]
Change 18.6.1.1 [new.delete.single], starting before p19, as indicated:
void operator delete(void* ptr, const std::nothrow_t&) noexcept;void operator delete(void* ptr, std::size_t size, const std::nothrow_t&) noexcept;[…]
-20- Replaceable: a C++ program may define a function with signature void operator delete(void* ptr, const std::nothrow_t&) noexcept that displaces the default version defined by the C++ standard library.If this function (without size parameter) is defined, the program should also define void operator delete(void* ptr, std::size_t size, const std::nothrow_t&) noexcept. If this function with size parameter is defined, the program shall also define the version without the size parameter. [Note: The default behavior below may change in the future, which will require replacing both deallocation functions when replacing the allocation function. — end note][…]-22- Requires: If present, the std::size_t size argument must equal the size argument passed to the allocation function that returned ptr.-23- Required behavior: Calls to operator delete(void* ptr, std::size_t size, const std::nothrow_t&) may be changed to calls to operator delete(void* ptr, const std::nothrow_t&) without affecting memory allocation. [Note: A conforming implementation is for operator delete(void* ptr, std::size_t size, const std::nothrow_t&) to simply call operator delete(void* ptr, const std::nothrow_t&). — end note]-24- Default behavior:operator delete(void* ptr, std::size_t size, const std::nothrow_t&) calls operator delete(ptr, std::nothrow), andoperator delete(void* ptr, const std::nothrow_t&) calls operator delete(ptr).
Change 18.6.1.2 [new.delete.array], starting before p16, as indicated:
void operator delete[](void* ptr, const std::nothrow_t&) noexcept;void operator delete[](void* ptr, std::size_t size, const std::nothrow_t&) noexcept;[…]
-17- Replaceable: a C++ program may define a function with signature void operator delete[](void* ptr, const std::nothrow_t&) noexcept that displaces the default version defined by the C++ standard library.If this function (without size parameter) is defined, the program should also define void operator delete[](void* ptr, std::size_t size, const std::nothrow_t&) noexcept. If this function with size parameter is defined, the program shall also define the version without the size parameter. [Note: The default behavior below may change in the future, which will require replacing both deallocation functions when replacing the allocation function. — end note][…]-19- Requires: If present, the std::size_t size argument must equal the size argument passed to the allocation function that returned ptr.-20- Required behavior: Calls to operator delete[](void* ptr, std::size_t size, const std::nothrow_t&) may be changed to calls to operator delete[](void* ptr, const std::nothrow_t&) without affecting memory allocation. [Note: A conforming implementation is for operator delete[](void* ptr, std::size_t size, const std::nothrow_t&) to simply call operator delete[](void* ptr, const std::nothrow_t&). — end note]-21- Default behavior:operator delete[](void* ptr, std::size_t size, const std::nothrow_t&) calls operator delete[](ptr, std::nothrow), andoperator delete[](void* ptr, const std::nothrow_t&) calls operator delete[](ptr).
Section: 26.4.7 [complex.value.ops] Status: WP Submitter: Marshall Clow Opened: 2014-10-22 Last modified: 2015-05-22
View all other issues in [complex.value.ops].
View all issues with WP status.
Discussion:
Different implementations give different answers for the following code:
#include <iostream> #include <complex> int main () { std::cout << std::polar(-1.0, -1.0) << '\n'; return 0; }
One implementation prints:
(nan, nan)
Another:
(-0.243068, 0.243068)
Which is correct? Or neither?
In this list, Howard Hinnant wrote:I've read this over several times. I've consulted C++11, C11, and IEC 10967-3. [snip]
I'm finding:
The magnitude of a complex number == abs(c) == hypot(c.real(), c.imag()) and is always non-negative (by all three of the above standards).
Therefore no complex number exists for which abs(c) < 0.
Therefore when the first argument to std::polar (which is called rho) is negative, no complex number can be formed which meets the post-conidtion that abs(c) == rho.
One could argue that this is already covered in 26.4 [complex.numbers]/3, but I think it's worth making explicit.
[2015-02, Cologne]
Discussion on whether theta should also be constrained.
TK: infinite theta doesn't make sense, whereas infinite rho does (theta is on a compact domain, rho is on a non-compact domain).
AM: We already have a narrow contract, so I don't mind adding further requirements. Any objections to requiring that theta be finite?
Some more discussion, but general consensus. Agreement that if someone finds the restrictions problematic, they should write
a proper paper to address how std::polar should behave. For now, we allow infinite rho (but not NaN and not negative),
and require finite theta.
Proposed resolution:
This wording is relative to N4296.
Change 26.4.7 [complex.value.ops] around p9 as indicated
template<class T> complex<T> polar(const T& rho, const T& theta = 0);-?- Requires: rho shall be non-negative and non-NaN. theta shall be finite.
-9- Returns: The complex value corresponding to a complex number whose magnitude is rho and whose phase angle is theta.
Section: X [alg.random.sample] Status: WP Submitter: Joe Gottman Opened: 2014-12-17 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
Addresses: fund.ts
According to paragraph 10.1 of the Library Fundamentals 1 draft, the complexity of the new std::experimental::sample template function is O(n). Note that n is actually a parameter of this function, corresponding to the sample size. But both common algorithms for sampling, the selection algorithm and the reservoir algorithm, are linear with respect to the population size, which is often many orders of magnitude bigger than the sample size.
[2015-02, Cologne]
AM: I suggest we make this a DR against the Fundamentals TS.
GR: Agreed, this is a no-brainer.
Proposed resolution:
This wording is relative to N4335 in regard to fundamental-ts changes.
Change X [alg.random.sample] p5 to read:
-5- Complexity: O(
nlast - first).
Section: 23.4.4.4 [map.modifiers], 23.5.4.4 [unord.map.modifiers] Status: WP Submitter: Thomas Koeppe Opened: 2014-12-17 Last modified: 2015-05-22
View all other issues in [map.modifiers].
View all issues with WP status.
Discussion:
The specification of the try_emplace and insert_or_assign member functions in N4279 contains the following errors and omissions:
In insert_or_assign, each occurrence of std::forward<Args>(args)... should be std::forward<M>(obj); this is was a mistake introduced in editing.
In try_emplace, the construction of the value_type is misspecified, which is a mistake that was introduced during the evolution from a one-parameter to a variadic form. As written, value_type(k, std::forward<Args>(args)...) does not do the right thing; it can only be used with a single argument, which moreover must be convertible to a mapped_type. The intention is to allow direct-initialization from an argument pack, and the correct constructor should be value_type(piecewise_construct, forward_as_tuple(k), forward_as_tuple(std::forward<Args>(args)...).
Both try_emplace and insert_or_assign are missing requirements on the argument types. Since the semantics of these functions are specified independent of other functions, they need to include their requirements.
[2015-02, Cologne]
This issue is related to 2469.
AM: The repeated references to "first and third forms" and "second and fourth forms" is a bit cumbersome. Maybe split the four functions?[2015-03-26, Thomas provides improved wording]
The approach is to split the descriptions of the various blocks of four functions into two blocks each so as to make the wording easier to follow.
Previous resolution [SUPERSEDED]:This wording is relative to N4296.
Apply the following changes to section 23.4.4.4 [map.modifiers] p3:
template <class... Args> pair<iterator, bool> try_emplace(const key_type& k, Args&&... args); template <class... Args> pair<iterator, bool> try_emplace(key_type&& k, Args&&... args); template <class... Args> iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); template <class... Args> iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);-?- Requires: For the first and third forms, value_type shall be EmplaceConstructible into map from piecewise_construct, forward_as_tuple(k), forward_as_tuple(forward<Args>(args)...). For the second and fourth forms, value_type shall be EmplaceConstructible into map from piecewise_construct, forward_as_tuple(move(k)), forward_as_tuple(forward<Args>(args)...).
-3- Effects:If the key k already exists in the map, there is no effect. Otherwise, inserts an element into the map. In the first and third forms, the element is constructed from the arguments as value_type(k, std::forward<Args>(args)...). In the second and fourth forms, the element is constructed from the arguments as value_type(std::move(k), std::forward<Args>(args)...). In the first two overloads, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the element of the map whose key is equivalent to kIf the map does already contain an element whose key is equivalent to k, there is no effect. Otherwise for the first and third forms inserts a value_type object t constructed with piecewise_construct, forward_as_tuple(k), forward_as_tuple(forward<Args>(args)...), for the second and fourth forms inserts a value_type object t constructed with piecewise_construct, forward_as_tuple(move(k)), forward_as_tuple(forward<Args>(args)...). -?- Returns: In the first two overloads, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to k.Apply the following changes to section 23.4.4.4 [map.modifiers] p5:
template <class M> pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj); template <class M> pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj); template <class M> iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); template <class M> iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);-?- Requires: is_assignable<mapped_type&, M&&>::value shall be true. For the first and third forms, value_type shall be EmplaceConstructible into map from k, forward<M>(obj). For the second and fourth forms, value_type shall be EmplaceConstructible into map from move(k), forward<M>(obj).
-5- Effects:If the key k does not exist in the map, inserts an element into the map. In the first and third forms, the element is constructed from the arguments as value_type(k, std::forward<Args>(args)...). In the second and fourth forms, the element is constructed from the arguments as value_type(std::move(k), std::forward<Args>(args)...). If the key already exists, std::forward<M>(obj) is assigned to the mapped_type corresponding to the key. In the first two overloads, the bool component of the returned value is true if and only if the insertion took place. The returned iterator points to the element that was inserted or updatedIf the map does already contain an element whose key is equivalent to k, forward<M>(obj) is assigned to the mapped_type corresponding to the key. Otherwise the first and third forms inserts a value_type object t constructed with k, forward<M>(obj), the second and fourth forms inserts a value_type object t constructed with move(k), forward<M>(obj). -?- Returns: In the first two overloads, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the element of the map whose key is equivalent to k.Apply the following changes to section 23.5.4.4 [unord.map.modifiers] p5:
template <class... Args> pair<iterator, bool> try_emplace(const key_type& k, Args&&... args); template <class... Args> pair<iterator, bool> try_emplace(key_type&& k, Args&&... args); template <class... Args> iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); template <class... Args> iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);-?- Requires: For the first and third forms, value_type shall be EmplaceConstructible into unordered_map from piecewise_construct, forward_as_tuple(k), forward_as_tuple(forward<Args>(args)...). For the second and fourth forms, value_type shall be EmplaceConstructible into unordered_map from piecewise_construct, forward_as_tuple(move(k)), forward_as_tuple(forward<Args>(args)...).
-5- Effects:If the key k already exists in the map, there is no effect. Otherwise, inserts an element into the map. In the first and third forms, the element is constructed from the arguments as value_type(k, std::forward<Args>(args)...). In the second and fourth forms, the element is constructed from the arguments as value_type(std::move(k), std::forward<Args>(args)...). In the first two overloads, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the element of the map whose key is equivalent to kIf the unordered_map does already contain an element whose key is equivalent to k, there is no effect. Otherwise for the first and third forms inserts a value_type object t constructed with piecewise_construct, forward_as_tuple(k), forward_as_tuple(forward<Args>(args)...), for the second and fourth forms inserts a value_type object t constructed with piecewise_construct, forward_as_tuple(move(k)), forward_as_tuple(forward<Args>(args)...). -?- Returns: In the first two overloads, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the element of the unordered_map whose key is equivalent to k.Apply the following changes to section 23.5.4.4 [unord.map.modifiers] p7:
template <class M> pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj); template <class M> pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj); template <class M> iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); template <class M> iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);-?- Requires: is_assignable<mapped_type&, M&&>::value shall be true. For the first and third forms, value_type shall be EmplaceConstructible into unordered_map from k, forward<M>(obj). For the second and fourth forms, value_type shall be EmplaceConstructible into unordered_map from move(k), forward<M>(obj).
-7- Effects:If the key k does not exist in the map, inserts an element into the map. In the first and third forms, the element is constructed from the arguments as value_type(k, std::forward<Args>(args)...). In the second and fourth forms, the element is constructed from the arguments as value_type(std::move(k), std::forward<Args>(args)...). If the key already exists, std::forward<M>(obj) is assigned to the mapped_type corresponding to the key. In the first two overloads, the bool component of the returned value is true if and only if the insertion took place. The returned iterator points to the element that was inserted or updatedIf the unordered_map does already contain an element whose key is equivalent to k, forward<M>(obj) is assigned to the mapped_type corresponding to the key. Otherwise the first and third forms inserts a value_type object t constructed with k, forward<M>(obj), the second and fourth forms inserts a value_type object t constructed with move(k), forward<M>(obj). -?- Returns: In the first two overloads, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the element of the unordered_map whose key is equivalent to k.
[2015-05, Lenexa]
STL: existing wording is horrible, this is Thomas' wording and his issue
STL: already implemented the piecewise part
MC: ok with changes
STL: changes are mechanical
STL: believe this is P1, it must be fixed, we have wording
PJP: functions are sensible
STL: has been implemented
MC: consensus is to move to ready
Proposed resolution:
This wording is relative to N4296.
Apply the following changes to 23.4.4.4 [map.modifiers] p3+p4:
template <class... Args> pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);template <class... Args> pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);template <class... Args> iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);template <class... Args> iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);-?- Requires: value_type shall be EmplaceConstructible into map from piecewise_construct, forward_as_tuple(k), forward_as_tuple(forward<Args>(args)...).
-3- Effects:If the key k already exists in the map, there is no effect. Otherwise, inserts an element into the map. In the first and third forms, the element is constructed from the arguments as value_type(k, std::forward<Args>(args)...). In the second and fourth forms, the element is constructed from the arguments as value_type(std::move(k), std::forward<Args>(args)...). In the first two overloads, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the element of the map whose key is equivalent to kIf the map already contains an element whose key is equivalent to k, there is no effect. Otherwise inserts an object of type value_type constructed with piecewise_construct, forward_as_tuple(k), forward_as_tuple(forward<Args>(args)...). -?- Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to k. -4- Complexity: The same as emplace and emplace_hint, respectively.template <class... Args> pair<iterator, bool> try_emplace(key_type&& k, Args&&... args); template <class... Args> iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);-?- Requires: value_type shall be EmplaceConstructible into map from piecewise_construct, forward_as_tuple(move(k)), forward_as_tuple(forward<Args>(args)...).
-?- Effects: If the map already contains an element whose key is equivalent to k, there is no effect. Otherwise inserts an object of type value_type constructed with piecewise_construct, forward_as_tuple(move(k)), forward_as_tuple(forward<Args>(args)...). -?- Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to k. -?- Complexity: The same as emplace and emplace_hint, respectively.
Apply the following changes to 23.4.4.4 [map.modifiers] p5+p6:
template <class M> pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);template <class M> pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);template <class M> iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);template <class M> iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);-?- Requires: is_assignable<mapped_type&, M&&>::value shall be true. value_type shall be EmplaceConstructible into map from k, forward<M>(obj).
-5- Effects:If the key k does not exist in the map, inserts an element into the map. In the first and third forms, the element is constructed from the arguments as value_type(k, std::forward<Args>(args)...). In the second and fourth forms, the element is constructed from the arguments as value_type(std::move(k), std::forward<Args>(args)...). If the key already exists, std::forward<M>(obj) is assigned to the mapped_type corresponding to the key. In the first two overloads, the bool component of the returned value is true if and only if the insertion took place. The returned iterator points to the element that was inserted or updatedIf the map already contains an element e whose key is equivalent to k, assigns forward<M>(obj) to e.second. Otherwise inserts an object of type value_type constructed with k, forward<M>(obj). -?- Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to k. -6- Complexity: The same as emplace and emplace_hint, respectively.template <class M> pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj); template <class M> iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);-?- Requires: is_assignable<mapped_type&, M&&>::value shall be true. value_type shall be EmplaceConstructible into map from move(k), forward<M>(obj).
-?- Effects: If the map already contains an element e whose key is equivalent to k, assigns forward<M>(obj) to e.second. Otherwise inserts an object of type value_type constructed with move(k), forward<M>(obj). -?- Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to k. -?- Complexity: The same as emplace and emplace_hint, respectively.
Apply the following changes to 23.5.4.4 [unord.map.modifiers] p5+p6:
template <class... Args> pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);template <class... Args> pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);template <class... Args> iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);template <class... Args> iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);-?- Requires: value_type shall be EmplaceConstructible into unordered_map from piecewise_construct, forward_as_tuple(k), forward_as_tuple(forward<Args>(args)...).
-5- Effects:If the key k already exists in the map, there is no effect. Otherwise, inserts an element into the map. In the first and third forms, the element is constructed from the arguments as value_type(k, std::forward<Args>(args)...). In the second and fourth forms, the element is constructed from the arguments as value_type(std::move(k), std::forward<Args>(args)...). In the first two overloads, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the element of the map whose key is equivalent to kIf the map already contains an element whose key is equivalent to k, there is no effect. Otherwise inserts an object of type value_type constructed with piecewise_construct, forward_as_tuple(k), forward_as_tuple(forward<Args>(args)...). -?- Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to k. -6- Complexity: The same as emplace and emplace_hint, respectively.template <class... Args> pair<iterator, bool> try_emplace(key_type&& k, Args&&... args); template <class... Args> iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);-?- Requires: value_type shall be EmplaceConstructible into unordered_map from piecewise_construct, forward_as_tuple(move(k)), forward_as_tuple(forward<Args>(args)...).
-?- Effects: If the map already contains an element whose key is equivalent to k, there is no effect. Otherwise inserts an object of type value_type constructed with piecewise_construct, forward_as_tuple(move(k)), forward_as_tuple(forward<Args>(args)...). -?- Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to k. -?- Complexity: The same as emplace and emplace_hint, respectively.
Apply the following changes to 23.5.4.4 [unord.map.modifiers] p7+p8:
template <class M> pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);template <class M> pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);template <class M> iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);template <class M> iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);-?- Requires: is_assignable<mapped_type&, M&&>::value shall be true. value_type shall be EmplaceConstructible into unordered_map from k, forward<M>(obj).
-7- Effects:If the key k does not exist in the map, inserts an element into the map. In the first and third forms, the element is constructed from the arguments as value_type(k, std::forward<Args>(args)...). In the second and fourth forms, the element is constructed from the arguments as value_type(std::move(k), std::forward<Args>(args)...). If the key already exists, std::forward<M>(obj) is assigned to the mapped_type corresponding to the key. In the first two overloads, the bool component of the returned value is true if and only if the insertion took place. The returned iterator points to the element that was inserted or updatedIf the map already contains an element e whose key is equivalent to k, assigns forward<M>(obj) to e.second. Otherwise inserts an object of type value_type constructed with k, forward<M>(obj). -?- Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to k. -8- Complexity: The same as emplace and emplace_hint, respectively.template <class M> pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj); template <class M> iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);-?- Requires: is_assignable<mapped_type&, M&&>::value shall be true. value_type shall be EmplaceConstructible into unordered_map from move(k), forward<M>(obj).
-?- Effects: If the map already contains an element e whose key is equivalent to k, assigns forward<M>(obj) to e.second. Otherwise inserts an object of type value_type constructed with move(k), forward<M>(obj). -?- Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to k. -?- Complexity: The same as emplace and emplace_hint, respectively.
Section: 17.6.3.5 [allocator.requirements], 20.7.8.1 [allocator.traits.types] Status: WP Submitter: Howard Hinnant Opened: 2015-01-18 Last modified: 2015-05-22
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with WP status.
Discussion:
Table 28 — "Allocator requirements" says that X::is_always_equal has a default value of is_empty<X>, and this is consistent with the return type description:
Identical to or derived from true_type or false_type
is_empty<X> is guaranteed to be derived from either true_type or false_type. So far so good.
20.7.8.1 [allocator.traits.types]/p10 says:typedef see below is_always_equal;Type: Alloc::is_always_equal if the qualified-id Alloc::is_always_equal is valid and denotes a type (14.8.2); otherwise is_empty<Alloc>::type.
This is subtly different than what Table 28 says is the default: is_empty<Alloc>::type is not is_empty<Alloc>, but is rather one of true_type or false_type.
There are two ways to fix this:Change Table 28 to say: is_empty<X>::type.
orChange 20.7.8.1 [allocator.traits.types]/p10:
Type: Alloc::is_always_equal if the qualified-id Alloc::is_always_equal is valid and denotes a type (14.8.2); otherwise is_empty<Alloc>
::type.
Both options are correct, and I see no reason to prefer one fix over the other. But Table 28 and 20.7.8.1 [allocator.traits.types]/p10 should be consistent with one another.
[2015-02 Cologne]
DK: We should accept the first bullet. GR: Why does is_empty even have a type member? AM: All type traits have a type member. I agree with DK's preference for the first type.
Proposed resolution:
This wording is relative to N4296.
Change 17.6.3.5 [allocator.requirements], Table 28 — "Allocator requirements" as presented:
Table 28 — Allocator requirements Expression Return type Assertion/note
pre-/post-conditionDefault … X::is_always_equal Identical to or derived
from true_type or
false_type[…] is_empty<X>::type …
Section: 17.6.3.5 [allocator.requirements] Status: WP Submitter: Daniel Krügler Opened: 2015-03-22 Last modified: 2015-05-22
View other active issues in [allocator.requirements].
View all other issues in [allocator.requirements].
View all issues with WP status.
Discussion:
This issue is a spin-off of issue LWG 2447: It focuses on the observation that 17.6.3.5 [allocator.requirements] p9 (based on the numbering of working draft N4296) gives the template member construct more relaxations than the template member destroy:
An allocator may constrain the types on which it can be instantiated and the arguments for which its construct member may be called. If a type cannot be used with a particular allocator, the allocator class or the call to construct may fail to instantiate.
Construction and destruction of a type T are usually intimately related to each other, so it seems similarly useful to allow the destroy member to fail to instantiate for a possible sub-set of instantiation types.
[2015-04-01 Library reflector vote]
The issue has been identified as Tentatively Ready based on six votes in favour.
Proposed resolution:
This wording is relative to N4296.
Change 17.6.3.5 [allocator.requirements] p9 as indicated:
-8- An allocator may constrain the types on which it can be instantiated and the arguments for which its construct or destroy members may be called. If a type cannot be used with a particular allocator, the allocator class or the call to construct or destroy may fail to instantiate.
Section: 21.8 [c.strings] Status: WP Submitter: S. B.Tam Opened: 2015-01-18 Last modified: 2015-05-22
View other active issues in [c.strings].
View all other issues in [c.strings].
View all issues with WP status.
Discussion:
N4296 Table 73 mentions the functions mbsrtowc and wcsrtomb, which are not defined in ISO C or ISO C++. Presumably they should be mbsrtowcs and wcsrtombs instead.
[2015-04-02 Library reflector vote]
The issue has been identified as Tentatively Ready based on six votes in favour.
Proposed resolution:
This wording is relative to N4296.
Table 33 — Potential mbstate_t data races mbrlen mbrtowc mbsrtowcs mbtowc wcrtomb wcsrtombs wctomb
Section: 20.9.10.4 [func.bind.place] Status: WP Submitter: Stephan T. Lavavej Opened: 2015-03-27 Last modified: 2015-05-22
View all issues with WP status.
Discussion:
piecewise_construct (20.3.5 [pair.piecewise]), allocator_arg (20.7.6 [allocator.tag]), and adopt_lock/defer_lock/try_to_lock (30.4.2 [thread.lock]) are all required to be constexpr with internal linkage. bind()'s placeholders should be allowed to follow this modern practice, for increased consistency and reduced implementer headaches (header-only is easier than separately-compiled).
[2015-05-07 Lenexa: Move to Immediate]
STL: I'd like this one immediate.
Jonathan: I want to think about forcing constexpr, but the current issue, I have no objections. I'd say ready, but I won't object to immediate if STL wants it.
Marshall: You should report in Kona how it worked out.
STL: We went around a bit on the reflector about how to phrase the encouragement.
Jonathan: I think the shall may be not quite right.
Marshall: I see, you can change your implementation, but you don't.
Jonathan: There's precedent for the shall, but it's wrong, see editorial issue 493.
STL: I would prefer not to ask Daniel to reword, and 493 can fix it later.
Marshall: I remove my objection to immediate because it doesn't force implementations to change.
Marshall: Any other discussion?
Marshall: Immediate vote: 6. Opposed, 0. Abstain, 1.
Proposed resolution:
This wording is relative to N4296.
Change 20.9 [function.objects] p2 "Header <functional> synopsis" as depicted:
namespace placeholders { // M is the implementation-defined number of placeholders see belowextern unspecified_1; see belowextern unspecified_2; ... see belowextern unspecified_M; }
Change 20.9.10.4 [func.bind.place] p2 as depicted:
namespace std::placeholders { // M is the implementation-defined number of placeholders see belowextern unspecified_1; see belowextern unspecified_2; . . . see belowextern unspecified_M; }-1- All placeholder types shall be DefaultConstructible and CopyConstructible, and their default constructors and copy/move constructors shall not throw exceptions. It is implementation-defined whether placeholder types are CopyAssignable. CopyAssignable placeholders' copy assignment operators shall not throw exceptions.
-?- Placeholders should be defined as:constexpr unspecified _1{};If they are not, they shall be declared as:
extern unspecified _1;