Proposal for C2Y

WG14 N3732

Title: Floating expressions evaluated in translation
Author, affiliation: C FP group

Date: 2025-10-07

Proposal category: Editorial

Reference: N3447,N3685

Background

6.6.1 #14 says
If a floating expression is evaluated in the translation environment, the arithmetic
range and precision shall be at least as great as if the expression were being
evaluated in the execution environment.

In sorting ghost-UB from material-UB, N3447 says

e The case that floating range and precision for the determined value during

translation fits the execution environment is not detectable at translation time and
gives thus rise to material-UB.

and proposes a new entry in J.2 to cover that case.

Clause 4 says

In this document, "shall" is to be interpreted as a requirement on an implementation
or on a program; conversely, "shall not" is to be interpreted as a prohibition.

If a "shall" or "shall not" requirement that appears outside of a constraint or
runtime-constraint is violated, the behavior is undefined. ...

The suggested change below eliminates the UB in 6.6.1 #15 by avoiding use of “shall”.

The UB in the current C draft allows a conforming implementation to violate the
requirement. We are unaware of any implementation where the translation environment
cannot determine bounds on the range and precision for evaluation in the execution
environment, though such an implementation is conceivable.

This proposal does not address the issue of whether it is desirable for a violation of a “shall”
requirement by the implementation (vs the program) to result in UB.



Suggested Changes

In 6.6.1 #14 change:

to:

range-and-preecision-shall-be at least as great as if the expression were being

evaluated in the execution environment.122

... A floating expression evaluated in the translation environment is evaluated with
arithmetic range and precision at least as great as if the expression were being
evaluated in the execution environment.122



