Integer Sets, v4

WG14 N 3727

Title:

Author, affiliation:

Date:

Proposal category:

Target audience:
Abstract:

Prior art:

Robert C. Seacord,
Woven by Toyota,
I I mail.com

2025-9-2

Defect

Implementers, users
Reorganize integer sets

C++

mailto:rcseacord@gmail.com

Integer Sets, v4

Reply-to: Robert C. Seacord (rcseacord@gmail.com)
Document No: N 3727

Reference Document: N3550

Date: 2025-10-3

This proposal aligns the definition of integer sets with C++.

Change Log
2025-6-16:

e Initial version 1.0.0
2025-7-5:

Fixed intro text

Allow for BitInt (1)

Clarified meaning of blue arrows

Clarified underlying type for enumerations
Fixed descriptions of basic type

2025-9-2:

integer values
e Repaired language for bit manipulation functions

2025-10-3:

Removed new paragraph 20 after subclause “6.2.5 Types”

Deleted “(the least significant bit)” and split paragraph into two paragraphs

Simplified “6.7.3.2 Structure and union specifiers”, paragraph 12

Eliminated UB for Rotate Left and Rotate Right type-generic functions WRT to negative signed

e Removed "which has the same representation as a signed integer type of width N"
e Removed the "for" clauses that were needed when BitInt andunsigned BitInt were

handled differently

Table of Contents

WG14 N 3727
Change Log
Table of Contents

1 Problem Description
1.1 C Integer Types
1.2 Bit-precise Integers
1.3 Preserve Existing Language with New Meaning

2 Proposal

3 Proposed Text

4 Prior Art

5 Acknowledgements

0O NOOoO P~ PEPON=

-—
N N

1 Problem Description

C++ groups integers into sets as follows:
There are five standard signed integer types: “signed char”, “short int”, “int”, “long int”, and “long long int”.

For each of the standard signed integer types, there exists a corresponding (but different) standard
unsigned integer type : “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”, and
“unsigned long long int”.

Type bool is a distinct type that has the same object representation, value representation, and
alignment requirements as an implementation-defined unsigned integer type.

C on the other hand groups integers into sets in “Subclause 6.2.5 Types” as:

There are five standard signed integer types, designated as signed char, short int, int, long int, and long
long int.

There may also be implementation-defined extended signed integer types.31) The standard signed
integer types, bit-precise signed integer types, and extended signed integer types are collectively
called signed integer types.32)

For each of the signed integer types, there is a corresponding (but different) unsigned integer type

The type bool and the unsigned integer types that correspond to the standard signed integer types are
the standard unsigned integer types.

This means that in C bool is a standard unsigned integer type while in C++ it is not. This is very confusing for
anyone including implementers, programmers, or educators when dealing with integer behavior where people
assume similar if not identical behaviors. Furthermore, calling bool an unsigned type is misleading because it
doesn't wrap around and has special conversion rules. For example, as an unsigned type you would expect
(bool) 4 to be 0 not 1.

Another problem with the existing text is that the term “unsigned integer type(s)” is used before it is defined, and
when it is defined it has a different meaning.

Because this proposal addresses many defects where the term unsigned integer type was incorrectly used to
apply to the boo1 type, this proposal changed the semantics from C23.

1.1 C Integer Types

N3550 working draft subclause 6.2.5 Types paragraph 4 through 8 define the following terms and relationships:

https://eel.is/c++draft/basic.fundamental#def:type,standard_signed_integer

I signed integer types I

i
| |

standard signed integer types I I bit-precise signed integer types I I extended signed integertypes

I unsigned integer types I I unsigned BitInt(1) I

unsigned integer types I I bool I I
I ¥ ! bit-precise unsigned
standard unsigned integer types I integer types I extended unsigned integer types

I unsigned integer types I

The blue arrows in the diagram mean “that correspond to”.

Paragraph 9 adds the following terms and relationships:

standard integer types

F
|]

standard signed integer types standard unsigned integer types

bit-precise integer types

*
I |

bit-precise signed integer types bit-precise unsigned integer types

extended integer types

*
| I

extended signed integer types extended unsigned integer types

Paragraph 18 adds the following terms and relationships:

basic types

1
I I I I

char signed integer types unsigned integer types floating types

Paragraph 20 adds the following terms and relationships:

character types

r

I I
char signed char || unsigned char

Paragraph 22 adds the following terms and relationships:

integer types

r

enumerated types char signed integer types unsigned integer types

1.2 Bit-precise Integers

The user community has provided feedback that they would like signed BitiInt (1) to behave the
same way as struct S { signed int i : 1; }; works -- so it can hold the values 0 and -1. This is
a more feasible approach now that C23 only supports two's complement. In two's complement, the
most-significant bit (MSB) is a value bit with a negative weight, so an BitInt (1) can have two

values: -1 and 0.
One example of an application is splitting a wide product as a sum of multiple subproducts.
If we take the example of a product between two 33 bits signed integers a and b, on an FPGA that has

a digital signal processor (DSP) able to compute 32x32 products, the product can be computed as
follows:

Each input is split between its MSB (a2 h and b _h), and the remaining 32 low bits (= 1 and b 1).
Theresultis ((a h x b h) << 64) + ((ahxb 1l +bhxal) <<32) +alxbl

e This computation uses only one DSP fora 1 x b 1, the three other products are done
inexpensively on FPGA logic.

Both 2 h and b h are conceptually BitInt (1) (one-bit integers that can be either 0 or -1). There is
no difference with the unsigned case for the 1x1 product, but in the case of non-square products such
asa h x b_1,itis important that the product gives -b 1 when the a_h bit is set, otherwise the result is

false.

This example is in the case of a full square product and can look a bit artificial, but when computed
truncated product (which makes sense on FPGA, as it is less expensive than computing the full
product) the case of subproducts involving a 1-bit signed integer can also appear.

1.3 Preserve Existing Language with New Meaning

Generally speaking, the use of the term unsigned integer type used throughout the standard predates the
introduction of the boo1 type and is not meant to apply to the bool type.
In subclause “5.3.5.3.2 Characteristics of integer types <1imits.h> and <stdint.h>”" paragraph 2, the bool
type is included:

For all unsigned integer types for which <1imits.h> or <stdint.h> define a macro with suffix

_WIDTH holding its width N, there is a macro with suffix _MAX holding the maximal value 2" - 1 that

is representable by the type and that has the same type as would an expression that is an object of

the corresponding type converted according to the integer promotions.

Subclause 6.2.6.2 paragraph 1 states that “The type bool has one value bit and (sizeof (bool) *CHAR BIT)
- 1 padding bits”. The width of an unsigned type is the number of value bits. For the boo1 type, this is
always one. Consequently, the specification of a _WIDTH for the boo1 type has dubious value, but is not wrong.
Conceptually, a Boolean does not have a maximal value as it only stores the values false and true. The
specification of a _MAX macro for the boo1l type is conceptually incorrect.

Removing bool from the set of unsigned integer types eliminates the requirement to provide the BOOL_MAX
macro without changing subclause 5.3.5.3.2. To retain this requirement, bool will need to be explicitly added.

In C++, there is no concept of a BOOL_MAX constant for the bool data type, unlike integer types which have
INT_MAX, LONG_MAX, etc., defined in <climits>.

While true and false can be implicitly converted to integer values (where true becomes 1 and false becomes 0),
bool does not have a maximum numerical value in the same sense that an integer type does. Its range is simply
limited to these two distinct logical states.

Removing BOOL_MAX from C2Y doesn’t mean that implementations could no longer define this macro.
According to subclase “7.35.15 Integer types <stdint.h>":

Macro names beginning with INT or UINT and ending with _MAX, _MIN, _WIDTH, or _C are potentially reserved
identifiers and may be added to the macros defined in the <stdint.h> header.

This paper introduces the necessary changes to preserve the BOOL_MAX macro, largely for backwards
compatibility.

Subclause 6.7.3.3 “Enumeration specifiers” paragraph 2 states:

If it is not explicitly specified, the underlying type is the enumeration’s compatible type, which is either
char or a standard or extended signed or unsigned integer type.

However, bool is unnecessarily prohibited by paragraph 13 because it is no longer a member of the set of
unsigned types:

For all enumerations without a fixed underlying type, each enumerated type shall be compatible with
char or a signed or an unsigned integer type that is not bool or a bit-precise integer type.

So this paragraph is modified by the proposed wording.

In subclause “7.18.3 Count Leading Zeros” paragraph 2, the boo1 type is included:

The generic_return_type type shall be a suitably large unsigned integer type capable of
representing the computed result.

However, because the input type has at least width 8, the return type can never be bool. Consequently,
removing bool from the set of unsigned integer types does not alter the semantics and the text can remain
unchanged.

2 Proposal

This paper proposes removing the type bool from the set of unsigned integer types and from the set of standard
unsigned integer types and adding the type bool to the set of basic types and the set of integer types.

The type unsigned BitInt (1) is eliminated as a separate type and is now simply treated as one of the
bit-precise unsigned integer types.

The relationship between signed and unsigned integer types is therefore greatly simplified:

‘ signed integertypes ‘
?

[
standard signed integer types ‘ ‘ bit-precise standard signed integer types ‘ ‘ extended signed integertypes ‘

standard unsigned bit-precise standard
integer types unsigned integer types ‘ extended unsigned integer types ‘
I [
v

unsigned integer types ‘

The blue arrows in the diagram mean “that correspond to”.

The type bool is added to the set of basic types.

basic types

A

I I
| bool I | char | I signed integertypes | | unsigned integer types I I floating types

The type bool is added to the set of integer types.

‘ integer types |
T

[|
I enumerated types I I bool I I char I I signed integertypes I I unsigned integer types

3 Proposed Text

Text in green is added to the C2Y working draft n3467. Fextin+ed that has been struck through is
removed from the C2Y working draft n3467.

Modify subclause “5.3.5.3.2 Characteristics of integer types <limits.h> and <stdint.h>", paragraph 2:
For the type bool and all unsigned integer types for which <1imits.h> or <stdint.h> define a macro with
suffix _WIDTH holding its width N, there is a macro with suffix _MAX holding the maximal value 2" - 1 that is
representable by the type and that has the same type as would an expression that is an object of the
corresponding type converted according to the integer promotions. If the value is in the range of the type

uintmax_t (7.23.2.6) the macro is suitable for use in conditional expression inclusion preprocessing directives.

Modify subclause “6.2.5 Types”, paragraph 5:

A bit-precise signed integer type is designated as _BitInt(N) where N is an integer constant
expression that specifies the number of bits that are used to represent the typerinctudingthe
stgrabit. Each value of N designates a distinct type.

Modify subclause “6.2.5 Types”, paragraph 8:

For each of the signed integer types, there is a corresponding (but different) unsigned integer type
(designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The #ype-beetand-the unsigned irteger
types that correspond to the standard signed integer types are the standard unsigned integer types.
The unsigned irteger types that correspond to the extended signed integer types are the extended

unsigned integer types. H-additiento-the-tnsigrecHntegertypes-thatcorrespondte-the-bitp

type—Coltectivelyunsigred—DBittattH-and—+t The unsigned irteger types that correspond to the bit-precise
signed integer types are the bit-precise unsigned integer types. The standard unsigned integer
types, bit-precise unsigned integer types, and extended unsigned integer types are collectively called

unsigned integer types.3¥

The type-boeland-the unsigned integer types that correspond to the standard signed integer types are the
standard unsigned integer types.

Modify subclause “6.2.5 Types”, paragraph 11:

The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same.*® The range of
representable values for the unsigned integer types is 0 to 2V - 1 (inclusive). A computation involving
unsigned operands can never produce an overflow, because arithmetic for the unsigned integer types is

performed modulo 2V,
Modify subclause “6.2.5 Types”, paragraph 18:
The type bool, the type char, the signed and unsigned integer types, and the floating types are collectively

called the basic types. The basic types are complete object types. Even if the implementation defines two or

more basic types to have the same representation, they are nevertheless distinct types.

Modify subclause “6.2.5 Types”, paragraph 22:

The type bool, the type char, the signed and unsigned integer types, and the enumerated types are collectively

called integer types. The integer and real floating types are collectively called real types.

Split subclause “6.2.6.2 Integer types”, paragraph 1 into two paragraphs:

1 For unsigned integer types the bits of the object representation shall be divided into two groups: value bits and
padding bits. If there are N value bits, each bit shall represent a different power of 2 between 1 and 2"-1, so that
objects of that type shall be capable of representing values from 0 to 2N — 1 using a pure binary representation;
this shall be known as the value representation. The values of any padding bits are unspecified. The number of

value bits N is called the width of the unsigned integer type.

2 The type bool shall have one value bit and (sizeof(bool)*CHAR_BIT) - 1 padding bits. Otherwise, there is no

requirement to have any padding bits; unsigned char shall not have any padding bits.

Modify subclause “6.3.2.1 Boolean, characters, and integers”, paragraph 1:

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer type;
iFary.
— The rank of type bool shall be less than the rank of all other standard integer types.

Modify subclause “6.4.5.2 Integer literals”, paragraph 7:

wb or WB _BitInt(N) where-the-width N is the _BitInt(N) where the-width N is the
smallest width N greaterthan—= which | smallest width N greaterthar—+ which
can accommodate the signed value can accommodate the signed value and

bo sianbit. be siarbit.

Both uor U unsigned _BitInt(N) where the-width | unsigned _BitIint(N) where the-width N

and wb or WB | Nis the smallest width N greater is the smallest width N greaterthano
thar-8 which can accommodate the which can accommodate the unsigned
unsigned value. value.

Replace subclause “6.4.5.2 Integer literals”, paragraph 9 with:

EXAMPLE 2 The wb suffix results in an _BitInt which can accommodate the signed value of binary,
octal, decimal, or hexadecimal literals.

Owb /* Yields a BitInt(l) with the value 0 */
lwb /* Yields a BitInt(2) */
-lwb /* Yields a _BitInt(2) that is arithmetically negated *x/

~0wb /* Yields a BitInt(l) that has the value -1 */

-3wb /* Yields a _BitInt(3) that is arithmetically negated */
-0x3wb /* Yields a _BitInt(3) that is arithmetically negated */
3wb /* Yields a BitInt(3) */

3uwb /* Yields an unsigned BitInt(2) */

-3uwb /* Yields an unsigned BitInt(2) that is arithmetically
negated, resulting in wraparound */

-4wb /* Yields an _BitInt(4) that is arithmetically negated */

Modify subclause “6.7.3.1 General”, paragraph 4:

The parenthesized constant expression that follows the _BitInt keyword shall be an integer constant
expression N that specifies the width (6.2.6.2) of the type. The value of N ferunsigred—Bitirt shall be
greater than or equal to 1—Fhe-vatve-ef NHfor—Bitlnt-shalt-be-greaterthan-orequa-to2—Fthe-value-of-
shaltbe and less than or equal to the value of BITINT_MAXWIDTH (see 5.3.5.3.2).

Modify subclause “6.7.3.2 Structure and union specifiers”, paragraph 12:

A bit-field is interpreted as having a signed or unsigned integer type consisting of the specified number
of bits.™" i

shall-cempare-—equatte-the-valuestered:a A nonzero width bool bit-field has the semantics of a bool.

A bool bit-field occupies the given number of bits.

Modify subclause “6.7.3.3 Enumeration specifiers”, paragraph 2:

If it is not explicitly specified, the underlying type is the enumeration’s compatible type;which-is-either

Modify subclause “6.7.3.3 Enumeration specifiers”, paragraph 13:

For all enumerations without a fixed underlying type, each enumerated type shall be compatible with
char, er a signed integer type, or an unsigned integer type thatis but is not compatible with beet-er a
bit-precise integer type. The choice of type is implementation-defined,'*? but shall be capable of

representing the values of all the members of the enumeration.’*®

Modify subclause “7.18.3 Count Leading Zeros”, paragraph 2:

The type-generic function stdc leading zeros (marked by its generic_value_type argument) returns
the appropriate value based on the type of the input value, seHerg-as provided that it is-a:

— a standard unsigned integer typerexeluding-besl;

— an extended unsigned integer type; or

— o a bit-precise unsigned integer type whose width matches a standard or extended integer type;
exelucing-boot.
Modify subclause “7.18.4 Count Leading Ones”, paragraph 2:

The type-generic function stdc leading ones (marked by its generic_value_type argument) returns
the appropriate value based on the type of the input value, seHerg-as provided that it is-a:

— a standard unsigned integer typerexetuding-bost;

— an extended unsigned integer type; or

— of; a bit-precise unsigned integer type whose width matches a standard or extended integer type;
excluding-boot.
Modify subclause “7.18.5 Count Trailing Zeros”, paragraph 2:

The type-generic function stdc_trailing zeros “rarked-by-ts-generie—value—type-argurment) returns
the appropriate value based on the type of the input value, seHeng-as provided that it is-a:

— a standard unsigned integer type;-exetuding-bost;

— an extended unsigned integer type; or

— of; a bit-precise unsigned integer type whose width matches a standard or extended integer type;
excluding-bost.
Modify subclause “7.18.6 Count Trailing Ones”, paragraph 2:

The type-generic function stdc trailing ones +rarked-by-its-generie—value—type-argument) returns the
appropriate value based on the type of the input value, seteng-as provided that it is-a:

— a standard unsigned integer type;-exetuding-bosot;
— an extended unsigned integer type; or

— of; a bit-precise unsigned integer type whose width matches a standard or extended integer type;
excluding-bost.
Modify subclause “7.18.7 First Leading Zero”, paragraph 2:

The type-generic function stdc_first_leading _zero {rarked-by-its-genrerie—valve—type-argument)
returns the appropriate value based on the type of the input value, seHerg-as provided that it is-a:

— a standard unsigned integer typerexeluding-besl;

— an extended unsigned integer type; or

— o a bit-precise unsigned integer type whose width matches a standard or extended integer type;
exelucing-boot.
Modify subclause “7.18.8 First Leading One”, paragraph 2:

The type-generic function stdc _first leading one {rmarked-by-ts-generie—vatve—type-argument) returns
the appropriate value based on the type of the input value, seerng-as provided that it is-a:

— a standard unsigned integer typerexetuding-bost;

— an extended unsigned integer type; or

— of; a bit-precise unsigned integer type whose width matches a standard or extended integer type;
excluding-boot.
Modify subclause “7.18.9 First Trailing Zero”, paragraph 2:

The type-generic function stdc first trailing zero “rarked-by-ts-generie—vatue—type-argument)
returns the appropriate value based on the type of the input value, sederg-as provided that it is-a:

— a standard unsigned integer type;-exetuding-bost;

— an extended unsigned integer type; or

— of; a bit-precise unsigned integer type whose width matches a standard or extended integer type;
excluding-bost.
Modify subclause “7.18.10 First Trailing One”, paragraph 2:

The type-generic function stdc first trailing one +rarked-by-its-generie—value—type-argument) returns
the appropriate value based on the type of the input value, setong-as provided that it is-a:

— a standard unsigned integer type;-exetuding-bosot;

— an extended unsigned integer type; or

— of; a bit-precise unsigned integer type whose width matches a standard or extended integer type;
excluding-bost.
Modify subclause “7.18.11 Count Zeros”, paragraph 2:

The type-generic function stdc _count zeros {marked-by-its-genrerie—value—type-argument) returns the
previously described result for a given input value sedeng-as provided that the type of the

generic_value_type argument is -a:

— a standard unsigned integer typerexeluding-besl;

— an extended unsigned integer type; or

— o a bit-precise unsigned integer type whose width matches a standard or extended integer type;
exelucing-boot.
Modify subclause “7.18.12 Count Ones”, paragraph 2:

The type-generic function stdc_count_ones {marked-by-its-genrerie—valve—type-argument) returns the
previously described result for a given input value seHdeng-as provided that the type of the

generic_value_type argument is -a:

— a standard unsigned integer typerexetuding-bost,

— an extended unsigned integer type; or

— of; a bit-precise unsigned integer type whose width matches a standard or extended integer type;
escetuding-boeh
Modify subclause “7.18.13 Single-bit Check”, paragraph 2:

The type-generic function stdc_has_single_bit {rarked-by-its-gererie—value—type-argument) returns
the previously described result for a given input value seHerg-as provided that the type of the

generic_value_type argument is -a:

— a standard unsigned integer typeexctudingboot;

— an extended unsigned integer type; or

— of; a bit-precise unsigned integer type whose width matches a standard or extended integer type;
excluding-boeol.
Modify subclause “7.18.14 Bit Width”, paragraph 2:

The type-generic function stdc_bit width {marked-by-its-generie—value—type-argument) returns the
previously described result for a given input value sedeng-as provided that the type of the
generic_value_type argument is -a:

— a standard unsigned integer type,-exeluding-best;
— an extended unsigned integer type; or

— o a bit-precise unsigned integer type whose width matches a standard or extended integer type;
exetudirg-boot.

Modify subclause “7.18.15 Bit Floor”, paragraph 2:

The type-generic function stdc_bit_floor {rarked-by-is-generie—value—type-argument) returns the
previously described result for a given input value sedeng-as provided that the type of the

generic_value_type argument is -a:

— a standard unsigned integer typerexetuding-bost;

— an extended unsigned integer type; or

— of; a bit-precise unsigned integer type whose width matches a standard or extended integer type;
excluding-boel.
Modify subclause “7.18.16 Bit Ceiling”, paragraph 2:

The type-generic function stdc_bit_cell {marked-by-ts-genere—value—type-argument) returns the
previously described result for a given input value seteng-as provided that the type of the

generic_value_type argument is -a:

— a standard unsigned integer typer-exetuding-beset;

— an extended unsigned integer type; or

— o a bit-precise unsigned integer type whose width matches a standard or extended integer type;

exetuding-boet.

Modify subclause “7.18.17 Rotate Left”, paragraph 4:

The type-generic function stdc rotate left {markedbyits-generie—vatue—type-argument)
returns the previously abeve described result for a given input value seHeng-as provided that the type
of the generic_value_type argument is:

— a standard unsigned integer typerexetuding-bost;

— an extended unsigned integer type; or

— ef a bit-precise unsigned integer type whose width matches any standard or extended integer type;

exeluding-boet.

The generie—eoeunt—type count argument to the type-generic function stdc rotate left
function shall be a rern-regative value of signed or unsigned integer type, or char.

Modify subclause “7.18.18 Rotate Right”, paragraph 4:

The type-generic function stdc_rotate right fmarked-by-s-gerere—vatbe—type-argament) returns the
previously abeve described result for a given input value sederg-as provided that the type of the

generic_value_type argument is:

— a standard unsigned integer typerexeluding-best,

— an extended unsigned integer type; or

— e a bit-precise unsigned integer type whose width matches any standard or extended integer type;

exeluding-bosot.

The-generie—eeunt—type count argument to the type-generic function stdc rotate left
shall be a rer-regative value of signed or unsigned integer type, or char.

Modify subclause “7.25.2.8 The strtol, strtoll, strtoul, and strtoull functions”, paragraph 5:

If the subject sequence begins with a minus sign, the resulting value is the negative of the converted

value; for the strtoul and strtoull functions whese+returr-type-is-an-unsigred-ntegertype this action is

performed in the return type.

Modify subclause “7.33.1 Introduction”, paragraph 4:

The macros defined are NULL (described in 7.22); WCHAR_MIN, WCHAR_MAX, and WCHAR_WIDTH
(described in 7.23);

WCHAR_UTF8
WCHAR_UTF16
WCHAR_UTF32

which expand to an expression of sigred-erunsigred integer type (that is potentially not an integer
constant expression) whose value is nonzero if:

— the wide execution encoding (6.2.9) is capable of representing every character in the required
Unicode set;

— the width of wchar tis atleast 8, 16, or 32 for UTF-8, UTF-16, or UTF-32, respectively;

— and, the values of a sequence of wchar t objects consumed and produced by related character
functions have a values consistent with a sequence of code units of the UTF-8, UTF-16, or

UTF-32 encodings, respectively;

MB_UTF8

MB_UTF16

MB_UTF32

which expand to an expression of sigred-erunsigred integer type (that is potentially not an integer
constant expression) whose value is nonzero if:

Modify subclause “7.33.4.2.4 The wcstol, wcstoll, westoul, and wcstoull functions”, para. 5:

If the subject sequence begins with a minus sign, the resulting value is the negative of the converted

value; for the wcstoul and westoull functions whese-retara-type-is-an-dnsigree-ntegertype this action

is performed in the return type.

4 Prior Art

These definitions more closely align the integer type system in C with C++.

5 Acknowledgements

I would like to recognize the following people for their help with this work: Aaron Ballman, Joseph
Myers, JeanHeyd Meneide, Carlos Ramirez, Charles Hussong, Karsten Fischer, Vincent Mailhol, and Jens
Gustedt.

	Integer Sets, v4
	WG14 N 3727
	
	Integer Sets, v4
	Change Log
	
	Table of Contents

	
	1 Problem Description
	1.1 C Integer Types
	1.2 Bit-precise Integers
	1.3 Preserve Existing Language with New Meaning

	2 Proposal
	3 Proposed Text
	4 Prior Art
	5 Acknowledgements

