N3285: stdarg.h wording. . .

stdarg.h, especially in C2x, is byzantine.
Modernising the language can alleviate this.

Hao, seb

N3285: stdarg.h wording. . .

stdarg.h, especially in C2x, is byzantine.
Modernising the language can alleviate this.

Hao, seb
Document #: 3285
Date: 2024-06-21
Project: Programming Language C
Reply-to: Hab <nabijaczleweli @nabijaczleweli.xyz>

1. Casus belli

seb <@sebastian @jittr.click> had identified a series of inconsistencies both in the wording of stdarg.h in the
current draft C2X standard N3220 and in compilers’ interpretations thereof. These have been refined in subse-
quent discussion, this paper presents a summary of diffs, along with rationales.

2. Proposed wording

2.1 716.1

Il The va_start and va_arg macros described in this subclause shall be implemented as macros, not
functions. It is unspecified whether va_copy and va_end are macros or identifiers declared with
external linkage. If a macro definition is suppressed to access an actual function, or a program
defines an external identifier with the same name, the behavior is undefined. Each invocation of
the va_start and va_copy macros shall be matched by a corresponding invocation of the va_end
macro in the same function.

Append or add footnote:

I For conciseness only, this section refers to va_copy and va_end just as “macros”. This is to be under-

stood as a short-hand, not as constraining only one of the possible implementations.

2.1.1. Rationale

Kinda odd that it says these can be macros or symbols but then it calls them macros, innit. If it said “the va_end
macro or symbol” then that would be worse though.

2.2. 716

Y The type declared is
va_list
which is a complete object type suitable for holding information needed by the macros va_start,
va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function
shall declare an object (generally referred to as ap in this subclause) having type va_1list. The object
ap may be passed as an argument to another function; if that function invokes the va_arg macro
with parameter ap, the representation of ap in the calling function is indeterminate and shall be
passed to the va_end macro prior to any further reference to ap.?>
Replace

I va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function

shall declare an object (generally referred to as ap in this subclause) having type va_1list.

mailto:nabijaczleweli@nabijaczleweli.xyz
https://jittr.click/@sebastian
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n3220.pdf

Hab, seb N3285: STDARG.H WORDING. . .

with
I va_arg, va_end, and va_copy to access the varying arguments. Objects of type va_list are gener-
ally referred to as ap in this subclause.

and replace
The object
ap may be passed as an argument to another function; if that function invokes the va_arg macro
with parameter ap, the representation of ap in the calling function is indeterminate and shall be
passed to the va_end macro prior to any further reference to ap.295)
with
If an initialised-with-va_start ap object is passed as an argument to another function and that function
invokes the va_arg macro on ap then the representation of ap in the calling function is indeterminate and
ap must be passed to the va_end macro before being passed to any other va_... macros.
2.2.1. Rationale
Beside updating the ancient-style wording (“if ... is desired, the function ... shall”), it hinted at a restrixion of
where va_1lists may be created. There are none such.
“reference to” is clarified to be w.r.t. the other va_... macros exclusively. It’s still a valid object.
If ap was never initialised with va_start, then mandating the use of va_end is obviously incorrect.

2.3. 716.14

b The va_start macro shall be invoked before any access to the unnamed arguments.
replace with
IZ The va_start macro may only be invoked in the function scope of a function whose parameter type list
ends with an ellipsis.

2.3.1. Rationale

There is no other way to access the unnamed arguments (pt. 3 defines the way va_start facilitates this) anyway,
so this can be deleted.

Currently, the way this limits where the standard allows va_start to be invoked is strictly by domain error of
the counterfactual (if there are no unnamed arguments). Can you use va_start if there is an ellipsis but no
unnamed arguments were given? Yes. Does the current wording allow it? No, for the same reason.

Even then, this allows

void f(va_list ap, int [(va_start(ap), 1)], ...) { va_end(ap); 1}
which makes little sense, and yet GCC allows it, while Clang refuses it (va_start’ cannot be used

outside a function). This limits va_start to the scopes where it’s meaningful.

3. Further issues

The section refers to the same concept ad lib as “varying arguments” and “unnamed arguments”, i.a. compound
nouns thereof; similarly with functions that accept such. It would benefit from globally normalising to a single
spelling.

4. References
The seminal post: https://jittr.click/ @sebastian/statuses/0lHY Y TSHPDNAFDNQSTXVXYSAY2

https://jittr.click/@sebastian/statuses/01HYYTSHPDNAFDNQSTXVXYSAY2

Contents

LoCasus DLl . ..ottt e e
2. Proposed wording

2.1. 716.1

2.3. 716.1.4
2.3.1. Rationale

3. FUITNET ISSUCS .« . ot e e e e e e e e e e e
4. RETEIENCES . . ottt

	Title Page: N3285: stdarg.h wording...
	N3285: stdarg.h wording...
	1. Casus belli
	2. Proposed wording
	2.1. 7.16.1
	2.1.1. Rationale

	2.2. 7.16
	2.2.1. Rationale

	2.3. 7.16.1.4
	2.3.1. Rationale

	3. Further issues
	4. References
	Contents

