
P1003.1d Draft 14

STANDARDS PROJECT
Information Technology—Portable

Operating System Interface (POSIX)—
Part 1:

System Application Program Interface
(API)—Amendment x:

Additional Realtime Extensions [C Language]

Sponsor
Portable Application Standards Committee

of the
IEEE Computer Society

Work Item Number: JTC1 22.40

Abstract: (IEEE Std P1003.1d-199x) is part of the POSIX series of standards for
applications and user interfaces to open systems. It defines the applications inter-
face to system services for spawning a process, timeouts for blocking services,
sporadic server scheduling, execution time clocks and timers, and advisory infor-
mation for file management. This standard is stated in terms of its C binding.

Keywords: API, application portability, C (programming language), data process-
ing, open systems, operating system, portable application, POSIX, realtime.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

P1003.1d / D14
July 1999

Copyright  1999 by the Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street

New York, NY 10017, USA
All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change. Permission
is hereby granted for IEEE Standards Committee participants to reproduce
this document for purposes of IEEE standardization activities. Permission

is also granted for member bodies and technical committees of ISO and IEC
to reproduce this document for purposes of developing a national position.

Other entities seeking permission to reproduce this document for
standardization or other activities, or to reproduce portions of this
document for these or other uses, must contact the IEEE Standards

Department for the appropriate license. Use of information contained in
this unapproved draft is at your own risk.

IEEE Standards Department
Copyright and Permissions
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA
+1 (732) 562-3800
+1 (732) 562-1571 [FAX]
July 1999 SH XXXXX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Editor’s Notes
In addition to your paper ballot, you are also asked to e-mail any bal-
loting comments: please read the balloting instructions and the
cover letter for the ballot that accompanied this draft.

This section will not appear in the final document. It is used for introductory edi-
torial comments concerning this draft. Additional Editor’s Notes are scattered
throughout the document.

This draft uses small numbers or letters in the right margin in lieu of change
bars. ‘‘E’’ denotes changes from Draft 13 to Draft 14. Trivial informative (i.e.,
non-normative) changes and purely editorial changes such as grammar, spelling,
or cross references are not diff-marked. Changes of function names are not diff-
marked either. Since this is a recirculation draft, only normative text marked
with ‘‘E’’ is open for comments in this ballot. Revision indicators prior to ‘‘C’’ have
been removed from this draft.

Since 1998 there is a new backwards compatibility requirement on the amend-
ments to the base POSIX.1 standard, which states that the base standard will not
be changed in such a way as to cause implementations or strictly conforming
applications to no longer conform. The implications of this requirement are that
no new interface specifications can be included that are not under an option; and
that names for new interfaces must begin or end with one of the reserved prefixes
or suffixes, including those defined in POSIX.1a. This standard incorporates the
required changes since Draft 11.

Until draft 12, the rationale text for most of the sections had been temporarily
moved from Annex B and interspersed with the appropriate sections. This co-
location of rationale with its accompanying text was done to encourage the Techni-
cal Reviewers to maintain the rationale text, as well as provide explanations to the
reviewers and balloters. However, for the last recirculations, since draft 13 all
rationale subclauses have be moved back to Annex B.

Please report typographical errors to:

Michael González Harbour
Dpto. de Electrónica y Computadores
Universidad de Cantabria
Avenida de los Castros s/n
39005 - Santander
SPAIN
TEL: +34 942 201483
FAX: +34 942 201402
Email: mgh@ctr.unican.es

(Electronic mail is preferred.)

The copying and distribution of IEEE balloting drafts is accomplished by the Stan-
dards Office. To report problems with reproduction of your copy, or to request
additional copies of this draft, contact:

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Tracy Woods
IEEE Computer Society,
1730 Massachusetts Avenue, NW,
Washington DC 20036-1992.
Phone: +1-202-371-1013
Fax: +1-202-728-0884
E-mail: twoods@computer.org
Web page: http://www.computer.org/standard/draftstd.htm

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX.1d Change History
This section is provided to track major changes between drafts.

Draft 14 [July 1999] Third recirculation of new ballot.

— Only editorial changes have been introduced. The main
change was to align the text used for optional features with
the text used in POSIX.1b and POSIX.1c.

Draft 13 [April 1999] Second recirculation of new ballot.

— Annex I (Device Control) and Annex K (Balloting Instruc-
tions) were removed from the draft.

— Moved the ‘‘Conventions’’ and ‘‘Normative References ’’ sub-
clauses into these editor’s notes, because no amendement to
the equivalent subclauses in POSIX.1 was intended.

— The posix_spawn() functions now use a special value as the
exit code to indicate that a child process had been created, but
the spawn operation was unsuccessful.

— The spawn attributes datatype was changed from a structure
to an opaque type with associated functions to initialize and
destroy the object, and to set and get each individual attri-
bute.

Draft 12 [January 1999] First recirculation of new ballot.

— Annex J, Interrupt control was removed from the draft.

— Removed the CPU-clock-requirement thread creation
attribute.

— Removed the timeout-allowed mutex creation attribute.

— Moved Section 20 into Section 14, Clocks and Timers, as a
new subsection.

— Converted timeouts to absolute values, instead of relative
intervals.

— Better description of optional features to follow the new back-
wards compatibility requirement.

— Changed the posix_spawn() interface to better match the
POSIX.5 POSIX_Process_Primitives.Start_Process

— Made posix_fallocate() be able to change the size of the file.

Draft 11 [May 1998] New Ballot

— A new ballot group was formed and a new ballot process was
started. This implied removing annexes G and H, which were
associated with the previous ballot process.

— Many function and structure names were changed according
to the new backwards compatibility requirement.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

— All the text related to interrupt control and device control was
moved to the appropriate annexes.

— The annex on performance metrics was removed, because it
was outdated.

— A new mutex creation attribute was added to enable or dis-
able the use of the timed wait operation on individual
mutexes.

— The functions to spawn a process were aligned to the similar
procedure for starting a process in IEEE 1003.5:1992.

Draft 10.0 [January 1997] Final re-circulation.

— Minor clean-up.

— Former Section 23 renumbered to Section 21.

— Added Annex G (Unresolved Objections).

— Added Annex H (Objection Status).

Draft 9.0 [September 1996] Internal re-circulation.

— Move Section 21 (Device Control) to Annex C.

— Move Section 22 (Interrupt Control) to Annex D.

— Addition of stubs.

Draft 8.06 [July 1995] Internal re-circulation.

— Changes resulting from ballot resolution.

— Dropping of Section 22.

Draft 8 [September 1993] First Ballot

— Editorial changes from review of Draft 7.5.

Draft 7.5 [August 1993] Second Mock Ballot

— Document converted from LIS & C Binding to ‘Thick’ C as a
result of working group decision to drop LIS work.

— Document put into amendment form for merged 9945-1,
POSIX.1b & POSIX.1c.

Draft 7 [June 1993]

— Removal of both LIS and C binding Test Assertions from the
document. These sections have been archived for future use.

— This draft has been reorganized into functional groupings,
following the reorganization of P1003.1(LIS).

— Performance metrics were moved to Annex G.

— Changes as a result of mock ballot of draft 6 were incor-
porated and reviewed by the working group.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Draft 6 [February 1993] Mock Ballot

— The Process Primitives (C) & (LIS) sections were updated.
Rationale from previous ‘thick’ C section was inserted.

— Additional Test Assertion text was added; however there is
more work to be done.

Draft 5 [December 1992]

— Interrupt Control (LIS) and (C Binding) sections were added.

— Test Assertion text was added to sections 5, 6, 9, and 17.

— The document was restructured to provide sections for LIS, C
Bindings, Test Assertions (LIS) and Test Assertions (C Bind-
ings).

__
Draft 5 Draft 4 Section Name__

1 1 General
2 2 Terminology and General Requirements
3 3 Process Primitives(LIS)
4 — Process Primitives(C)
5 — Process Primitives Test Assertions(LIS)
6 — Process Primitives Test Assertions(C)
7 5 Timeouts for Blocking Services(LIS)
8 6 Timeouts for Blocking Services(C)
9 — Timeouts for Blocking Services Test Assertions(LIS)
10 — Timeouts for Blocking Services Test Assertions(C)
11 7 Execution Time Monitoring(LIS)
12 8 Execution Time Monitoring(C)
13 — Execution Time Monitoring Test Assertions(LIS)
14 — Execution Time Monitoring Test Assertions(C)
15 9 Sporadic Server(LIS)
16 10 Sporadic Server(C)
17 — Sporadic Server Test Assertions(LIS)
18 — Sporadic Server Test Assertions(C)
19 11 Device Control(LIS)
20 12 Device Control(C)
21 — Device Control Test Assertions(LIS)
22 — Device Control Test Assertions(C)
23 — Interrupt Control(LIS)
24 — Interrupt Control(C)
25 — Interrupt Control Test Assertions(LIS)
26 — Interrupt Control Test Assertions(C)__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Draft 4 [September 1992]

— Signal disposition parameters were added to the "Process
Primitives" section (4).

— The "Timeouts On Blocking Services" section was replaced
with a Language-independent section (5) and a C Binding sec-
tion (6).

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

— The "Execution Time Monitoring" section was replaced with a
Language-independent section (7) and a C Binding section
(8).

— The "Sporadic Server" section was replaced with a
Language-independent section (9) and a C Binding section
(10).

— A new Language-independent version of "Device Control" was
added as section (11).

— A new C Binding version of "Device Control" was added as
section (12).

— Test Assertions are still to be added.

Draft 3 [May 1992]

— Corrections and editorial changes were made to the Process
Primitives section (3).

— The CPU Time Clock section (5) was added.

— The Sporadic Server section (6) was added.

— Due to a system crash, some of the updates to sections for this
draft may have been lost. If discrepancies are noted please
contact the editor.

Draft 2 [February 1992]

— The Process Primitives section was moved from Annex A to
Section 3.

— The Timeout Facilities section was moved from Annex B to
Section 4.

— Section 4 was cleaned up.

Draft 1 [November 1991]

— The first draft of the posix_spawn() function was added to the
draft as Annex A.

— The first draft of the timeout facilities was added to the
draft as Annex B.

Normative References

NOTE: This standard does not amend subclause 1.2, Normative References, of ISO/IEC 9945-
1:1996. However, the Normative References of ISO/IEC 9945-1:1996 are repeated here for informa-
tion. In addition, since IEEE P1003.1d modifies ISO/IEC 9945-1:1996, we have included the latter
among this informal list of references.

The following standards contain provisions which, through references in this text,
constitute provisions of this standard. At the time of publication, the editions
indicated were valid. All standards are subject to revision, and parties to agree-
ments based on this part of this International Standard are encouraged to investi-
gate the possibility of applying the most recent editions of the standards listed

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

below. Members of IEC and ISO maintain registers of currently valid Interna-
tional Standards.

{1} ISO/IEC 9899: 19951), Information processing systems—Programming
languages—C.

{2} ISO/IEC 9945-1: 1996 (IEEE Std 1003.1-1996), Information technology— C

Portable operating system interface (POSIX)—Part 1: System application
program interface (API) [C Language].

{3} IEEE Std 610-1990, IEEE Standard Computer Dictionary — A Compilation
of IEEE Standard Computer Glossaries

Conventions

NOTE: This standard does not amend subclause 2.1, Conventions, of ISO/IEC 9945-1:1996. How-
ever, we repeat this subclause here for information.

This document uses the following typographic conventions:

(1) The italic font is used for:

— Cross references to defined terms within 2.2.1 and 2.2.2; symbolic
parameters that are generally substituted with real values by the
application

— C language data types and function names (except in function
Synopsis subclauses)

— Global external variable names

— Function families; references to groups of closely related functions
(such as directory (), exec (), etc.)

(2) The bold font is used with a word in all capital letters, such as

PATH

to represent an environment variable. It is also used for the term ‘‘NULL
pointer.’’

(3) The constant-width (Courier) font is used:

— For C language data types and function names within function
Synopsis subclauses

— To illustrate examples of system input or output where exact usage is
depicted

— For references to utility names and C language headers

1) ISO/IEC documents can be obtained from the ISO office, 1, rue de Varembé, Case Postale 56, CH-
1211, Genève 20, Switzerland/Suisse. ISO publications are also available in the United States
from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th
Floor, New York, NY 10036, USA.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

— For names of attributes in attributes objects

(4) Symbolic constants returned by many functions as error numbers are
represented as:

[ERRNO]

See 2.4.

(5) Symbolic constants or limits defined in certain headers are represented
as

{OPEN_MAX}

See 2.8 and 2.9.

In some cases tabular information is presented ‘‘inline’’; in others it is presented in
a separately labeled table. This arrangement was employed purely for ease of
typesetting and there is no normative difference between these two cases.

The conventions listed previously are for ease of reading only. Editorial incon-
sistencies in the use of typography are unintentional and have no normative
meaning in this standard.

NOTEs provided as parts of labeled tables and figures are integral parts of this
standard (normative). Footnotes and notes within the body of the text are for
information only (informative).

Numerical quantities are presented in international style: comma is used as a
decimal sign and units are from the International System (SI).

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX.1d Ballot Coordinator
The ballot coordinator for POSIX.1d is Jim Oblinger. During balloting he is the
person who coordinates the resolution process and resolves procedural issues.

POSIX.1d Technical Reviewers
The individuals denoted in Table i are the Technical Reviewers for this draft. Dur-
ing balloting they are the subject matter experts who coordinate the resolution
process for specific sections, as shown.

Table i — POSIX.1j Technical Reviewers
__

Section Description Reviewer___

Ballot Coordinator Jim Oblinger
3 Spawn a Process Frank Prindle

6,11,15 Timeouts Michael González
13 Sporadic Server Scheduling Michael González

14,16,20 Execution Time Monitoring Michael González
21 Advisory Information Karen Gordon

__

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Contents

PAGE

Introduction . v

Section 1: General . 1
1.1 Scope . 1
1.3 Conformance 3

Section 2: Terminology and General Requirements 5
2.2 Definitions 5
2.3 General Concepts 6
2.7 C Language Definitions 7
2.8 Numerical Limits 8
2.9 Symbolic Constants 10

Section 3: Process Management 13
3.1 Process Creation and Execution 13

3.1.1 Process Creation 13
3.1.2 Execute a File 13
3.1.4 Spawn File Actions 14
3.1.5 Spawn Attributes 16
3.1.6 Spawn a Process 21

3.2 Process Termination 26
3.2.1 Wait for Process Termination 26

Section 4: Process Environment 27
4.8 Configurable System Variables 27

4.8.1 Get Configurable System Variables 27

Section 5: Files and Directories 29
5.7 Configurable Pathname Variables 29

5.7.1 Get Configurable Pathname Variables 29

Section 6: Input and Output Primitives 31
6.7 Asynchronous Input and Output 31

6.7.1 Data Definitions for Asynchronous Input and Output . . 31

Section 11: Synchronization 33
11.2 Semaphore Functions 33

11.2.6 Lock a Semaphore 33
11.2.7 Unlock a Semaphore 35

11.3 Mutexes . 35
11.3.3 Locking and Unlocking a Mutex 35

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

ii

Section 13: Execution Scheduling 39
13.1 Scheduling Parameters 39
13.2 Scheduling Policies 39

13.2.3 SCHED_OTHER 40
13.2.4 SCHED_SPORADIC 40

13.3 Process Scheduling Functions 42
13.3.1 Set Scheduling Parameters 42
13.3.3 Set Scheduling Policy and Scheduling Parameters . . . 43

13.4 Thread Scheduling 43
13.4.1 Thread Scheduling Attributes 43
13.4.3 Scheduling Allocation Domain 44
13.4.4 Scheduling Documentation 44

13.5 Thread Scheduling Functions 44
13.5.1 Thread Creation Scheduling Attributes 44
13.5.2 Dynamic Thread Scheduling Parameters Access 45

Section 14: Clocks and Timers 47
14.2 Clock and Timer Functions 47

14.2.1 Clocks 47
14.2.2 Create a Per-Process Timer 48

14.3 Execution Time Monitoring 48
14.3.1 CPU-time Clock Characteristics 49
14.3.2 Accessing a Process CPU-time Clock 49
14.3.3 Accessing a Thread CPU-time Clock 50

Section 15: Message Passing 53
15.2 Message Passing Functions 53

15.2.4 Send a Message to a Message Queue 53
15.2.5 Receive a Message from a Message Queue 55

Section 16: Thread Management 59
16.1 Threads . 59

16.2.2 Thread Creation 59

Section 18: Thread Cancellation 61
18.1 Thread Cancellation Overview 61

18.1.2 Cancellation Points 61

Section 20: Advisory Information 63
20.1 I/O Advisory Information and Space Control 63

20.1.1 File Advisory Information 63
20.1.2 File Space Control 64

20.2 Memory Advisory Information and Alignment Control 66
20.2.1 Memory Advisory Information 66
20.2.2 Aligned Memory Allocation 68

Annex A (informative) Bibliography 71
A.2 Other Standards 71
A.3 Historical Documentation and Introductory Texts 71

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

iii

Annex B (informative) Rationale and Notes 73
B.2 Definitions and General Requirements 73
B.3 Process Primitives 73
B.13 Execution Scheduling 89
B.14 Clocks and Timers 93
B.20 Advisory Information 106

Identifier Index . 109

Alphabetic Topical Index 111

FIGURES

Figure B-1 −− posix_spawn() Equivalent 89
Figure B-2 −− I/O Redirection with posix_spawn() 89
Figure B-3 −− Spawning a new Userid Process 89
Figure B-4 −− Spinlock Implementation 100
Figure B-5 −− Condition Wait Implementation 101
Figure B-6 −− pthread_join() with timeout 105

TABLES

Table 2-4 −− Optional Minimum Values 8
Table 2-6 −− Optional Run-Time Invariant Values (Possibly Indeterm.) . 9
Table 2-7 −− Optional Pathname Variable Values 10
Table 2-11 −− Versioned Compile-Time Symbolic Constants 11
Table 4-3 −− Optional Configurable System Variables 27
Table 5-3 −− Optional Configurable Pathname Variables 29

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

iv

Introduction

(This introduction is not a normative part of P1003.1d, Draft Standard for Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System Application Program
Interface (API)—Amendment x: Additional Realtime Extensions [C Language], but is included for
information only.)

1 Editor’s Note: This Introduction consists of material that will eventually be integrated into the
base2 POSIX.1 standard’s introduction (and the portion of Annex B that contains general rationale
about3 the standard). The Introduction contains text that was previously held in either the Fore-
word4 or Scope. As this portion of the standard is for information only (nonnormative), specific
details5 of the integration with POSIX.1 are left as an editorial exercise. The Section and Subsection
structure6 of this document follows that of ISO/IEC 9945-1:1996. Sections that are not amended by
this7 standard are omitted.

8 The purpose of this document is to supplement the base standard with interfaces
and9 functionality for applications having realtime requirements.

This10 standard defines systems interfaces to support the source portability of appli-
cations11 with realtime requirements. The system interfaces are all extensions of or
additions12 to Portable Operating System Interface for Computer Environments

13 (ISO/IEC 9945-1: 1990), as amended by IEEE-1003.1b, IEEE-1003.1c, and IEEE-
1003.1i.14 Although rooted in the culture defined by ISO/IEC 9945-1: 1990, they are
focused15 upon the realtime application requirements, which were beyond its scope.
The16 interfaces included in this standard are additions to the set required to make

17 ISO/IEC 9945-1: 1990 minimally usable to realtime applications on single processor
s18 ystems.

The19 definition of realtime used in defining the scope of this standard is:

20 Realtime in operating systems: the ability of the operating system to provide
21 a required level of service in a bounded response time.

The22 key elements of defining the scope are a) defining a sufficient set of functional-
ity23 to cover the realtime application program domain in the areas not covered by

24 IEEE-1003.1b, and IEEE-1003.1c; b) defining sufficient performance constraints
and25 performance-related functions to allow a realtime application to achieve
deterministic26 response from the system; and c) specifying changes or additions to
improve27 or complete the definition of the facilities specified in the previous real-
time28 or threads extensions IEEE-1003.1b, and IEEE-1003.1c.

Wherever29 possible, the requirements of other application environments were
included30 in the interface definition. The specific areas are noted in the scope over-
views31 of each of the interface areas given below.

The32 specific functional areas included in this standard and their scope include:

33 • Spawn a Process: new system services to spawn the execution of a new pro-
34 cess in an efficient manner.

35 • Timeouts for some blocking services: additional services that provide a
36 timeout capability to system services already defined in POSIX.1b and

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction v

37 POSIX.1c, thus allowing the application to include better error detection
38 and recovery capabilities.

39 • Sporadic Server Scheduling: the addition of a new scheduling policy
40 appropriate for scheduling aperiodic processes or threads in hard realtime
41 applications.

42 • Execution Time Clocks and Timers: the addition of new clocks that meas-
43 ure the execution times of processes or threads, and the possibility to create
44 timers based upon these clocks, for runtime detection (and treatment) of
45 execution time overruns.

46 • Advisory Information for File Management: addition of services that allow
47 the application to specify advisory information that can be used by the sys-
48 tem to achieve better or even deterministic response times in file manage-
49 ment or input&output operations.

There50 are two other functional areas that were included in the scope of this stan- C

51 dard, but the Ballot Group considered that they were not ready yet for standardi- C

52 zation: C

53 • Device Control: a new service to pass control information and commands
54 between the application and device drivers.

55 • Interrupt Control: new services that allow the application to directly han-
56 dle hardware interrupts.

This57 standard has been defined exclusively at the source code level, for the C pro-
gramming58 language. Although the interfaces will be portable, some of the parame-
ters59 used by an implementation may have hardware or configuration dependen-
cies.60

61 Related Standards Activities

62 Activities to extend this standard to address additional requirements are in pro-
gress,63 and similar efforts can be anticipated in the future.

The64 following areas are under active consideration at this time, or are expected to
become65 active in the near future:2)

66 (1) Additional System Application Program Interfaces in C Language

67 (2) Ada, and FORTRAN language bindings to (1)

68 (3) Shell and utility facilities

69 (4) Verification testing methods

70 ________________

2)71 A Standards Status Report that lists all current IEEE Computer Society standards projects is
72 available from the IEEE Computer Society, 1730 Massachusetts Avenue NW, Washington, DC
73 20036-1903; Telephone: +1 202 371-0101; FAX: +1 202 728-9614. Working drafts of POSIX
74 standards under development are also available from this office.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

vi Introduction

75 (5) Realtime facilities

76 (6) Tracing facilities

77 (7) Fault tolerance

78 (8) Checkpoint/restart facilities

79 (9) Resource limiting facilities

80 (10) Network interface facilities

81 (11) System administration

82 (12) Profiles describing application- or user-specific combinations of Open Sys-
83 tems standards

84 (13) An overall guide to POSIX-based or related Open Systems standards and
85 profiles

Extensions86 are approved as ‘‘amendments’’ or ‘‘revisions’’ to this document, follow-
ing87 the IEEE and ISO/IEC Procedures.

Approved88 amendments are published separately until the full document is
reprinted89 and such amendments are incorporated in their proper positions.

If90 you have interest in participating in the PASC working groups addressing these
issues,91 please send your name, address, and phone number to the:

92 Secretary, IEEE Standards Board,
93 Institute of Electrical and Electronics Engineers, Inc.,
94 P.O. Box 1331,
95 445 Hoes Lane,
96 Piscataway, NJ 08855-1331,

and97 ask to have this forwarded to the chairperson of the appropriate PASC work-
ing98 group. If you have interest in participating in this work at the international
level,99 contact your ISO/IEC national body.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction vii

P1003.1d100 was prepared by the System Services Working Group—Realtime, spon-
sored101 by the Portable Application Standards Committee of the IEEE Computer
Society.102 At the time this standard was approved, the membership of the System
Services103 Working Group—Realtime was as follows:

104 Portable Application Standards Committee

105 Chair: Lowell Johnson
106 Vice Chair: Joe Gwinn
107 Treasurer: Curtis Royster
108 Secretary: Nick Stoughton

109 System Services Working Group

110 Chair: Jason Zions
111 Vice Chair: Joe Gwinn

112 System Services Working Group—Realtime

113 Chair: Joe Gwinn
114 Bill Corwin (until 1995)
115 Editor: Michael González
116 Bob Luken (until 1997)
117 Secretary: Karen Gordon
118 Lee Schemerhorn (until 1995)

119 Ballot Coordinator

120 Jim Oblinger
121 Duane Hughes (until 1996)

122 Technical Reviewers

123 Frank Prindle Michael González Karen Gordon
124 Joe Gwinn Peter Dibble Steve Brosky
125 Duane Hughes

126 Working Group

127 to be supplied to be supplied to be supplied

128 The following persons were members of the 1003.1d Balloting Group that
approved129 the standard for submission to the IEEE Standards Board:

130 Institutional Representatives <To be filled in>

131 Individual Balloters <To be filled in>

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

viii Introduction

132 When the IEEE Standards Board approved this standard on <date to be pro-
vided>133 , it had the following membership:

134 (to be pasted in by IEEE)

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction ix

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

x Introduction

Information Technology—Portable
Operating System Interface (POSIX)—Part
1: System Application Program Interface
(API)—Amendment x: Additional Realtime
Extensions [C Language]

Section 1: General

1 1.1 Scope

2 This standard defines realtime extensions to a standard operating system inter-
face3 and environment to support application portability at the source-code level. It
is4 intended to be used by both application developers and system implementers.

This5 standard will not change the base standard which it amends (including any
existing6 amendments) in such a way as to cause implementations or strictly con-
forming7 applications to no longer conform.

The8 scope is to take existing realtime operating system practice and add it to the
base9 standard. The definition of realtime used in defining the scope of this stan-
dard10 is:

11 ‘‘Realtime in operating systems: the ability of the operating system to provide
12 a required level of service in a bounded response time’’

The13 key elements of defining the scope are:

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1.1 Scope 1

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

14 (1) defining a sufficient set of functionality to cover a significant part of the
15 realtime application programming domain, and

16 (2) defining sufficient performance constraints and performance related func-
17 tions to allow a realtime application to achieve deterministic response
18 from the system.

Speci19 fically within the scope is to define interfaces which do not preclude high per-
formance20 implementations on traditional uniprocessor realtime systems. Wher-
ever21 possible, the requirements of other application environments were included
in22 the interface definition. The specific functional areas included in this document
and23 their scope include:

24 • Spawn: A process creation primitive useful for systems that have difficulty
25 with fork() and as an efficient replacement for fork()/ exec.

26 • Timeouts: Alternatives to blocking primitives that provide a timeout
27 parameter to be specified.

28 • Execution Time Monitoring: A set of execution time monitoring primitives
29 that allow on-line measuring of thread and process execution times.

30 • Sporadic Server: A scheduling policy for threads and processes that
31 reserves a certain amount of execution capacity for processing aperiodic
32 events at a given priority level.

33 • Advisory Information: An interface that advises the implementation on
34 (portable) application behavior so that it can optimize the system.

There35 are two other functional areas that were included in the scope of this stan- C

36 dard, but the Ballot Group considered that they were not ready yet for standardi- C

37 zation: C

38 • Device Control: A portable application interface to non-portable special dev-
39 ices.

40 • Interrupt Control: An interface that allows a process or thread to capture
41 an interrupt, to block awaiting the arrival of an interrupt, and to protect
42 critical sections of code which are contended for by a user-written interrupt
43 service routine.

 44 D

45 This standard has been defined exclusively at the source code level. Additionally,
although46 the interfaces will be portable, some of the numeric parameters used by
an47 implementation may have hardware dependencies.
 48 D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2 1 General

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

49 1.3 Conformance

50 1.3.1 Implementation Conformance

51 ⇒⇒ 1.3.1.3 Conforming Implementation Options Add the following to the
52 table of implementation options that warrant requirement by applications or in
53 specifications:

54 {_POSIX_ADVISORY_INFO} CAdvisory Information option (in 2.9.3)
55 {_POSIX_CPUTIME} CProcess CPU-Time Clocks option (in 2.9.3)
56 {_POSIX_SPAWN} CSpawn option (in 2.9.3)
57 {_POSIX_SPORADIC_SERVER} CProcess Sporadic Server option (in 2.9.3)
58 {_POSIX_THREAD_CPUTIME} CThread CPU-Time Clocks option (in 2.9.3)
59 {_POSIX_THREAD_SPORADIC_SERVER} CThread Sporadic Server option (in 2.9.3)
60 {_POSIX_TIMEOUTS} CTimeouts option (in 2.9.3)

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1.3 Conformance 3

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4 1 General

P1003.1d/D14

Section 2: Terminology and General Requirements

1 D

2 2.2 Definitions

3 2.2.2 General Terms

4 ⇒⇒ 2.2.2 General Terms Modify the contents of subclause 2.2.2, General Terms,
5 to add the following definitions in the correct sorted order [disregarding the
6 subclause numbers shown here].

7 2.2.2.1 CPU time [execution time]: The time spent executing a process or C

8 thread, including the time spent executing system services on behalf of that pro-
cess9 or thread. If the Threads option is supported, then the value of the CPU-time
clock10 for a process is implementation defined. Notice that with this definition the C

11 sum of all the execution times of all the threads in a process might not equal the C

12 process execution time, even in a single-threaded process. This need not always be C

13 the case because implementations may differ in how they account for time during C

14 context switches or for other reasons. C

15 2.2.2.2 CPU-time clock: A clock that measures the execution time of a particu-
lar16 process or thread.

17 2.2.2.3 CPU-time timer: A timer attached to a CPU-time clock.

18 2.2.2.4 execution time: See CPU time in 2.2.2.1. C

19 2.2.3 Abbreviations

20 For the purposes of this standard, the following abbreviations apply:

21 2.2.3.1 C Standard: ISO/IEC 9899, Information technology—Programming
languages22 —C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2.2 Definitions 5

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

23 2.2.3.2 POSIX.1: ISO/IEC 9945-1: 1996, (IEEE Std 1003.1-1996), Information
T24 echnology-Portable Operating System Interface (POSIX)-Part 1: System Applica-
tion25 Program Interface (API) [C Language]

26 2.2.3.3 POSIX.1b: IEEE Std. 1003.1b:1993, Information Technology — Portable
Operating27 System Interface (POSIX) — Part 1: System Application Program Inter-
face28 (API) — Amendment b: Realtime Extensions [C Language], as amended by

29 IEEE Std. 1003.1i:1995, Information Technology — Portable Operating System
Interface30 (POSIX) — Part 1: System Application Program Interface (API) —
Amendment31 i: Technical Corrigenda to Realtime Extension [C Language].

32 2.2.3.4 POSIX.1c: IEEE Std. 1003.1c:1995, Information Technology — Portable
Operating33 System Interface (POSIX) — Part 1: System Application Program Inter-
face34 (API) — Amendment c: Threads Extension [C Language]

35 2.2.3.5 POSIX.1d: IEEE P1003.1d, This standard.

36 NOTE: The above reference will be changed to reflect the final POSIX.1d standard. C

37 2.2.3.6 POSIX.5 ISO/IEC 14519:1998 {B1}, POSIX Ada Language Interfaces— C

38 Binding for System Application Program Interfaces (API) including Realtime C

39 Extensions. (this standard includes IEEE Std. 1003.5-1992 and IEEE Std. C

40 1003.5b-1996). C

41 2.3 General Concepts

42 ⇒⇒ 2.3 General Concepts — measurement of execution time: Add the fol-
43 lowing subclause, in the proper order, to the existing General Concept items:

44 2.3.1 measurement of execution time:

45 The mechanism used to measure execution time shall be implementation defined.
The46 implementation shall also define to whom the CPU time that is consumed by
interrupt47 handlers and system services on behalf of the operating system will be
charged.48 Execution or CPU time is defined in 2.2.2.1 C

49 C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6 2 Terminology and General Requirements

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

50 2.7 C Language Definitions

51 C

52 2.7.3 Headers and Function Prototypes

53 ⇒⇒ 2.7.3 Headers and Function Prototypes Add the following text after the C

54 sentence ‘‘For other functions in this part of ISO/IEC 9945, the prototypes or C

55 declarations shall appear in the headers listed below.’’: C

56 Presence of some prototypes or declarations is dependent on implementation C

57 options. Where an implementation option is not supported, the prototype or C

58 declaration need not be found in the header. C

59 ⇒⇒ 2.7.3 Headers and Function Prototypes Modify the contents of subclause C

60 2.7.3 to add the following optional headers and functions, at the end of the C

61 current list of headers and functions. C

62 If the Advisory Information option is supported: C

63 <fcntl.h> posix_fadvise(), posix_madvise(), posix_fallocate() C

64 If the Message Passing option and the Timeouts option are supported: C

65 <mqueue.h> mq_timedsend (), mq_timedreceive()

66 If the Thread CPU-Time Clocks option is supported: C

67 <pthread.h> pthread_getcpuclockid() C

68 If the Threads option and the Timeouts option are supported: C

69 <pthread.h> pthread_mutex_timedlock() C

70 If the Semaphores option and the Timeouts option are supported: C

71 <semaphore.h> sem_timedwait()

72 If the Spawn option is supported: C

73 <spawn.h> posix_spawn(), posix_spawnp(), C

74 posix_spawn_file_actions_init(), C

75 posix_spawn_file_actions_destroy(), C

76 posix_spawn_file_actions_addclose(), C

77 posix_spawn_file_actions_adddup2(), C

78 posix_spawn_file_actions_addopen(), C

79 posix_spawnattr_init(), posix_spawnattr_destroy(), D

80 posix_spawnattr_getflags(), posix_spawnattr_setflags(), D

81 posix_spawnattr_getpgroup(), D

82 posix_spawnattr_setpgroup(), D

83 posix_spawnattr_getsigmask(), D

84 posix_spawnattr_setsigmask(), D

85 posix_spawnattr_getsigdefault(), D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2.7 C Language Definitions 7

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

86 posix_spawnattr_setsigdefault() D

87 If the Spawn option and the Process Scheduling option are supported: D

88 <spawn.h> posix_spawnattr_getschedpolicy(), D

89 posix_spawnattr_setschedpolicy(), D

90 posix_spawnattr_getschedparam(), D

91 posix_spawnattr_setschedparam() D

92 If the Advisory Information option is supported:

93 <stdlib.h> posix_memalign()

94 If the Process CPU-Time Clocks option is supported: C

95 <time.h> clock_getcpuclockid()

96 2.8 Numerical Limits

97 2.8.2 Minimum Values

98 ⇒⇒ 2.8.2 Minimum Values Add the following text after the sentence starting C

99 ‘‘The symbols in Table 2-3 shall be defined in... ’’ C

100 The symbols in Table 2-4 shall be defined in <limits.h> with the values C

101 shown if the associated option is supported. C

102 ⇒⇒ 2.8.2 Minimum Values Add Table 2-4, described below, after Table 2-3 and C

103 renumber other tables in this section accordingly. C

104 Table 2-4 −− Optional Minimum Values C__
105 Name Description Value Option C__
106 {_POSIX_SS_REPL_MAX} CThe number of replenish-
107 ment operations that may be C
108 simultaneously pending for C
109 a particular sporadic server C
110 scheduler. C

4 Process Sporadic
Server or Thread
Sporadic Server

__L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

111 2.8.4 Run-Time Invariant Values (Possibly Indeterminate)

112 D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8 2 Terminology and General Requirements

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

113 ⇒⇒ 2.8.4 Run-Time Invariant Values (Possibly Indeterminate) Replace the C

114 whole subclause by the following text: C

115 The symbols that appear in Table 2-5 that have determinate values shall be C

116 defined in <limits.h> . The symbols that appear in Table 2-6 that have deter- C

117 minate values shall be defined in <limits.h> if the associated option is sup- C

118 ported. If any of the values in Table 2-5 or Table 2-6 have a value that is C

119 greater than or equal to the stated minimum, but is indeterminate, a definition C

120 for that value shall not be defined in <limits.h> . C

121 This might depend on the amount of available memory space on a specific C

122 instance of a specific implementation. For the values defined in Table 2-5, the C

123 actual value supported by a specific instance shall be provided by the sysconf () C

124 function. For the values defined in Table 2-6, the actual value supported by a C

125 specific instance shall be provided by the sysconf () function if the associated C

126 option is supported. C

127 ⇒⇒ 2.8.4 Run-Time Invariant Values (Possibly Indeterminate) Add C

128 Table 2-6, described next, after Table 2-5, and renumber other tables in this C

129 Section accordingly. C

130 Table 2-6 −− Optional Run-Time Invariant Values (Possibly Indeterm.) C___
131 Name Description Minimum Value Option C__
132 {SS_REPL_MAX} CThe maximum number
133 of replenishment opera- C
134 tions that may be simul- C
135 taneously pending for a C
136 particular sporadic C
137 server scheduler. C

{_POSIX_SS_-
REPL_MAX}

Process Sporadic
Server or Thread
Sporadic Server

___L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

138 2.8.5 Pathname Variable Values

139 ⇒⇒ 2.8.5 Pathname Variable Values Replace the reference to Table 2-6 in the C

140 first paragraph of this subclause by: C

141 Table 2-6 or Table 2-7 C

142 ⇒⇒ 2.8.5 Pathname Variable Values Replace the sentence ‘‘The actual value D

143 supported for a specific pathname shall be provided by the pathconf() function ’’ C

144 with the following text: C

145 For the values defined in Table 2-6, the actual value supported for a specific C

146 pathname shall be provided by the pathconf() function. For the values defined C

147 in Table 2-7, the actual value supported for a specific pathname shall be pro- C

148 vided by the pathconf() function if the associated option is supported. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2.8 Numerical Limits 9

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

149 ⇒⇒ 2.8.5 Pathname Variable Values Add Table 2-7, described next, after Table C

150 2-6, and renumber other tables in this Section accordingly: C

151 Table 2-7 −− Optional Pathname Variable Values C__
152 Name Description Minimum Values Option C__
153 {POSIX_REC_INCR_XFER_SIZE} CRecommended increment
154 for file transfer sizes C
155 between the {POSIX_- C
156 REC_MIN_XFER_SIZE} C
157 and {POSIX_REC_MAX_- C
158 XFER_SIZE} values. C

not specified Advisory Informa-
tion

159 {POSIX_ALLOC_SIZE_MIN} CMinimum number of
160 bytes of storage actually C
161 allocated for any portion C
162 of a file. C

not specified Advisory Informa-
tion

163 {POSIX_REC_MAX_XFER_SIZE} CMaximum recommended
164 file transfer size. C

not specified Advisory Informa-
tion

165 {POSIX_REC_MIN_XFER_SIZE} CMinimum recommended
166 file transfer size. C

not specified Advisory Informa-
tion

167 {POSIX_REC_XFER_ALIGN} CRecommended file
168 transfer buffer align- C
169 ment. C

not specified Advisory Informa-
tion

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

170 2.9 Symbolic Constants

171 2.9.3 Compile-Time Symbolic Constants for Portability Specifications

172 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications C

173 Change the first words in the first paragraph, currently saying ‘‘The constants C

174 in Table 2-10 may be used... ’’ to the following: C

175 The constants in Table 2-10 and Table 2-11 may be used... C

176 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications C

177 Add the following sentence at the end of the first paragraph: C

178 If any of the constants in Table 2-11 is defined, it shall be defined with the C

179 value shown in that Table. This value represents the version of the associated C

180 option that is supported by the implementation. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

10 2 Terminology and General Requirements

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

181 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications C

182 Add Table 2-11, shown below, after Table 2-10 renumbering all subsequent C

183 tables accordingly. C

184 Table 2-11 −− Versioned Compile-Time Symbolic Constants C___
185 Name Value Description C___
186 {_POSIX_ADVISORY_INFO} C199ymmL If this symbol is defined, the imple-
187 mentation supports the Advisory C
188 Information option. C

189 {_POSIX_CPUTIME} C199ymmL If this symbol is defined, the imple-
190 mentation supports the Process CPU- C
191 Time Clocks option. C

192 {_POSIX_SPAWN} C199ymmL If this symbol is defined, the imple-
193 mentation supports the Spawn C
194 option. C

195 {_POSIX_SPORADIC_SERVER} C199ymmL If this symbol is defined, the imple-
196 mentation supports the Process C
197 Sporadic Server option. C

198 {_POSIX_THREAD_CPUTIME} C199ymmL If this symbol is defined, the imple-
199 mentation supports the Thread CPU- C
200 Time Clocks option. C

201 {_POSIX_THREAD_SPORADIC_SERVER} C199ymmL If this symbol is defined, the imple-
202 mentation supports the Thread C
203 Sporadic Server option. C

204 {_POSIX_TIMEOUTS} C199ymmL If this symbol is defined, the imple-
205 mentation supports the Timeouts C
206 option. C

___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

207 NOTE: (Editor’s note) The value 199ymmL corresponds to the date of approval of POSIX.1d. C

208 C

209 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
210 Add the following paragraphs:

211 If the symbol {_POSIX_SPORADIC_SERVER} is defined, then the symbol
212 {_POSIX_PRIORITY_SCHEDULING} shall also be defined. If the symbol
213 {_POSIX_THREAD_SPORADIC_SERVER} is defined, then the symbol {_POSIX_-
214 THREAD_PRIORITY_SCHEDULING} shall also be defined.

215 If the symbol {_POSIX_CPUTIME} is defined, then the symbol {_POSIX_TIMERS}
216 shall also be defined. If the symbol {_POSIX_THREAD_CPUTIME} is defined,
217 then the symbol {_POSIX_TIMERS} shall also be defined.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2.9 Symbolic Constants 11

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12 2 Terminology and General Requirements

P1003.1d/D14

Section 3: Process Management

1 3.1 Process Creation and Execution

2 3.1.1 Process Creation

33 .1.1.2 Description

4 ⇒⇒ 3.1.1.2 Process Creation — Description Add the following paragraphs to
5 the description of the fork() function:

6 If {_POSIX_CPUTIME} is defined: E

7 The initial value of the CPU-time clock of the child process shall be set to
8 zero.

9 If {_POSIX_THREAD_CPUTIME} is defined: E

10 The initial value of the CPU-time clock of the single thread of the child C

11 process shall be set to zero. C

12 3.1.2 Execute a File

313 .1.2.2 Description

14 ⇒⇒ 3.1.2.2 Execute a File — Description Add the following paragraph to the
15 description of the family of exec functions.

16 If {_POSIX_CPUTIME} is defined: E

17 The new process image shall inherit the CPU-time clock of the calling C

18 process image. This means that the process CPU-time clock of the pro- C

19 cess being execed shall not be reinitialized or altered as a result of the C

20 exec function other than to reflect the time spent by the process execut- C

21 ing the exec function itself. C

22 If {_POSIX_THREAD_CPUTIME} is defined: E

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.1 Process Creation and Execution 13

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

23 The initial value of the CPU-time clock of the initial thread of the new C

24 process image shall be set to zero. C

25 ⇒⇒ 3.1 Process Creation Add the following subclauses:

26 3.1.4 Spawn File Actions C

27 Functions: posix_spawn_file_actions_init(), posix_spawn_file_actions_destroy(), C

28 posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(), C

29 posix_spawn_file_actions_addopen(). C

30 3.1.4.1 Synopsis C

31 #include <sys/types.h> C
32 #include <spawn.h> C

33 int posix_spawn_file_actions_init(C
34 posix_spawn_file_actions_t ∗file_actions); C

35 int posix_spawn_file_actions_destroy(C
36 posix_spawn_file_actions_t ∗file_actions); C

37 int posix_spawn_file_actions_addclose(C
38 posix_spawn_file_actions_t ∗file_actions, C
39 int fildes); C

40 int posix_spawn_file_actions_adddup2(C
41 posix_spawn_file_actions_t ∗file_actions, C
42 int fildes, int newfildes); C

43 int posix_spawn_file_actions_addopen(C
44 posix_spawn_file_actions_t ∗file_actions, C
45 int fildes, const char ∗path, C
46 int oflag, mode_t mode); C

47 3.1.4.2 Description C

48 If {_POSIX_SPAWN} is defined: E

49 A spawn file actions object is of type posix_spawn_file_actions_t (defined in C

50 <spawn.h>) and is used to specify a series of actions to be performed by a C

51 posix_spawn() or posix_spawnp() operation in order to arrive at the set of C

52 open file descriptors for the child process given the set of open file descrip- C

53 tors of the parent. This standard does not define comparison or assignment E

54 operators for the type posix_spawn_file_actions_t. C

55 The posix_spawn_file_actions_init() function initializes the object refer- C

56 enced by file_actions to contain no file actions for posix_spawn() or C

57 posix_spawnp() to perform. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

14 3 Process Management

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

58 The effect of initializing an already initialized spawn file actions object is C

59 undefined. C

60 The posix_spawn_file_actions_destroy() function destroys the object refer- C

61 enced by file_actions; the object becomes, in effect, uninitialized. An imple- C

62 mentation may cause posix_spawn_file_actions_destroy() to set the object C

63 referenced by file_actions to an invalid value. A destroyed spawn file actions C

64 object can be reinitialized using posix_spawn_file_actions_init(); the results C

65 of otherwise referencing the object after it has been destroyed are C

66 undefined. C

67 The posix_spawn_file_actions_addclose() function adds a close action to the C

68 object referenced by file_actions that will cause the file descriptor fildes to C

69 be closed (as if close(fildes) had been called) when a new process is spawned C

70 using this file actions object. C

71 The posix_spawn_file_actions_adddup2() function adds a dup2 action to the C

72 object referenced by file_actions that will cause the file descriptor fildes to C

73 be duplicated as newfildes (as if dup2(fildes, newfildes) had been called) C

74 when a new process is spawned using this file actions object. C

75 The posix_spawn_file_actions_addopen() function adds an open action to C

76 the object referenced by file_actions that will cause the file named by path C

77 to be opened (as if open(path, oflag, mode) had been called, and the returned C

78 file descriptor, if not fildes, had been changed to fildes) when a new process C

79 is spawned using this file actions object. If fildes was already an open file C

80 descriptor, it shall be closed before the new file is opened. C

81 A spawn file actions object, when passed to posix_spawn() or D

82 posix_spawnp(), shall specify how the set of open file descriptors in the cal- D

83 ling process is transformed into a set of potentially open file descriptors for D

84 the spawned process. This transformation shall be as if the specified D

85 sequence of actions was performed exactly once, in the context of the D

86 spawned process (prior to execution of the new process image), in the order D

87 in which the actions were added to the object; additionally, when the new D

88 process image is executed, any file descriptor (from this new set) which has D

89 its FD_CLOEXEC flag set will be closed (see 3.1.6). D

90 Otherwise : C

91 Either the implementation shall support the C

92 posix_spawn_file_actions_init(), posix_spawn_file_actions_destroy(), C

93 posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(), C

94 and posix_spawn_file_actions_addopen() functions as described above, or C

95 these functions shall not be provided. C

96 3.1.4.3 Returns C

97 Upon successful completion, the posix_spawn_file_actions_init(), C

98 posix_spawn_file_actions_destroy(), posix_spawn_file_actions_addclose(), C

99 posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen() C

100 operation shall return zero. Otherwise an error number shall be returned to C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.1 Process Creation and Execution 15

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

101 indicate the error. C

102 3.1.4.4 Errors C

103 For each of the following conditions, if the condition is detected, the C

104 posix_spawn_file_actions_init(), posix_spawn_file_actions_addclose(), C

105 posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen() func- C

106 tion shall return the corresponding error number: C

107 [ENOMEM] Insufficient memory exists to initialize or add to the spawn file C

108 actions object. C

109 For each of the following conditions, if the condition is detected, the C

110 posix_spawn_file_actions_destroy(), posix_spawn_file_actions_addclose(), C

111 posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen() func- C

112 tion shall return the corresponding error number: C

113 [EINVAL] The value specified by file_actions is invalid. C

114 For each of the following conditions, the posix_spawn_file_actions_addclose(), D

115 posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen() func- D

116 tion shall return the corresponding error number: D

117 [EBADF] The value specified by fildes is negative or greater than or equal D

118 to {OPEN_MAX}. D

119 It shall not be considered an error for the fildes argument passed to the D

120 posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(), or D

121 posix_spawn_file_actions_addopen() functions to specify a file descriptor for which D

122 the specified operation could not be performed at the time of the call. Any such D

123 error will be detected when the associated file actions object is later used during a D

124 posix_spawn() or posix_spawnp() operation. D

125 3.1.4.5 Cross-References C

126 close (), 6.3.1; dup2(), 6.2.1; open(), 5.3.1; posix_spawn(), 3.1.6; posix_spawnp(), C

127 3.1.6; C

128 3.1.5 Spawn Attributes D

129 Functions: posix_spawnattr_init(), posix_spawnattr_destroy(), D

130 posix_spawnattr_getflags(), posix_spawnattr_setflags(), D

131 posix_spawnattr_getpgroup(), posix_spawnattr_setpgroup(), D

132 posix_spawnattr_getschedpolicy(), posix_spawnattr_setschedpolicy(), D

133 posix_spawnattr_getschedparam(), posix_spawnattr_setschedparam(), D

134 posix_spawnattr_getsigmask(), posix_spawnattr_setsigmask(), D

135 posix_spawnattr_getsigdefault(), posix_spawnattr_setsigdefault(). D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

16 3 Process Management

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

136 3.1.5.1 Synopsis D

137 #include <sys/types.h> D
138 #include <signal.h> D
139 #include <spawn.h> D

140 int posix_spawnattr_init (posix_spawnattr_t ∗attr); D

141 int posix_spawnattr_destroy (posix_spawnattr_t ∗attr); D

142 int posix_spawnattr_getflags (const posix_spawnattr_t ∗attr, D
143 short ∗flags); D

144 int posix_spawnattr_setflags (posix_spawnattr_t ∗attr, D
145 short flags); D

146 int posix_spawnattr_getpgroup (const posix_spawnattr_t ∗attr, D
147 pid_t ∗pgroup); D

148 int posix_spawnattr_setpgroup (posix_spawnattr_t ∗attr, D
149 pid_t pgroup); D

150 int posix_spawnattr_getsigmask (const posix_spawnattr_t ∗attr, D
151 sigset_t ∗sigmask); D

152 int posix_spawnattr_setsigmask (posix_spawnattr_t ∗attr, D
153 const sigset_t ∗sigmask); D

154 int posix_spawnattr_getdefault (const posix_spawnattr_t ∗attr, D
155 sigset_t ∗sigdefault); D

156 int posix_spawnattr_setdefault (posix_spawnattr_t ∗attr, D
157 const sigset_t ∗sigdefault); D

158 #include <sched.h> D

159 int posix_spawnattr_getschedpolicy (const posix_spawnattr_t ∗attr, D
160 int ∗schedpolicy); D

161 int posix_spawnattr_setschedpolicy (posix_spawnattr_t ∗attr, D
162 int schedpolicy); D

163 int posix_spawnattr_getschedparam (const posix_spawnattr_t ∗attr, D
164 struct sched_param ∗schedparam); D

165 int posix_spawnattr_setschedparam (posix_spawnattr_t ∗attr, D
166 const struct sched_param ∗schedparam); D

167 3.1.5.2 Description D

168 If {_POSIX_SPAWN} is defined: E

169 A spawn attributes object is of type posix_spawnattr_t (defined in D

170 <spawn.h>) and is used to specify the inheritance of process attributes D

171 across a spawn operation. This standard does not define comparison or E

172 assignment operators for the type posix_spawnattr_t. D

173 The function posix_spawnattr_init() initializes a spawn attributes object D

174 attr with the default value for all of the individual attributes used by the D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.1 Process Creation and Execution 17

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

175 implementation. D

176 Each implementation shall document the individual attributes it uses and D

177 their default values unless these values are defined by this standard. D

178 The resulting spawn attributes object (possibly modified by setting indivi- D

179 dual attribute values), is used to modify the behavior of posix_spawn() or D

180 posix_spawnp() (see 3.1.6). After a spawn attributes object has been used to D

181 spawn a process by a call to a posix_spawn() or posix_spawnp(), any func- D

182 tion affecting the attributes object (including destruction) does not affect D

183 any process that has been spawned in this way. D

184 The posix_spawnattr_destroy() function destroys a spawn attributes object. D

185 The effect of subsequent use of the object is undefined until the object is re- D

186 initialized by another call to posix_spawnattr_init(). An implementation D

187 may cause posix_spawnattr_destroy() to set the object referenced by attr to D

188 an invalid value. D

189 The spawn-flags attribute is used to indicate which process attributes D

190 are to be changed in the new process image when invoking posix_spawn() D

191 or posix_spawnp(). It is the inclusive OR of zero or more of the flags D

192 POSIX_SPAWN_SETPGROUP, POSIX_SPAWN_RESETIDS, D

193 POSIX_SPAWN_SETSIGMASK, and POSIX_SPAWN_SETSIGDEF. In addition, D

194 if the Process Scheduling option is supported, the flags D

195 POSIX_SPAWN_SETSCHEDULER and POSIX_SPAWN_SETSCHEDPARAM D

196 shall also be supported. These flags are defined in <spawn.h> . The default D

197 value of this attribute shall be with no flags set. D

198 The posix_spawnattr_setflags() function is used to set the spawn-flags D

199 attribute in an initialized attributes object referenced by attr. The D

200 posix_spawnattr_getflags() function obtains the value of the spawn-flags D

201 attribute from the attributes object referenced by attr. D

202 The spawn-pgroup attribute represents the process group to be joined by D

203 the new process image in a spawn operation (if POSIX_SPAWN_SETPGROUP D

204 is set in the spawn-flags attribute). The default value of this attribute D

205 shall be zero. D

206 The posix_spawnattr_setpgroup() function is used to set the spawn- D

207 pgroup attribute in an initialized attributes object referenced by attr. The D

208 posix_spawnattr_getpgroup() function obtains the value of the spawn- D

209 pgroup attribute from the attributes object referenced by attr. D

210 The spawn-sigmask attribute represents the signal mask in effect in the D

211 new process image of a spawn operation (if POSIX_SPAWN_SETSIGMASK is D

212 set in the spawn-flags attribute). The default value of this attribute is D

213 unspecified. D

214 The posix_spawnattr_setsigmask() function is used to set the spawn- D

215 sigmask attribute in an initialized attributes object referenced by attr. The D

216 posix_spawnattr_getsigmask() function obtains the value of the spawn- D

217 sigmask attribute from the attributes object referenced by attr. D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

18 3 Process Management

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

218 The spawn-sigdefault attribute represents the set of signals to be forced D

219 to default signal handling in the new process image (if D

220 POSIX_SPAWN_SETSIGDEF is set in the spawn-flags attribute). The D

221 default value of this attribute shall be an empty signal set. D

222 The posix_spawnattr_setsigdefault() function is used to set the spawn- D

223 sigdefault attribute in an initialized attributes object referenced by attr. D

224 The posix_spawnattr_getsigdefault() function obtains the value of the D

225 spawn-sigdefault attribute from the attributes object referenced by attr. D

226 Otherwise: D

227 Either the implementation shall support the posix_spawnattr_init(), D

228 posix_spawnattr_destroy(), posix_spawnattr_getflags(), D

229 posix_spawnattr_setflags(), posix_spawnattr_getpgroup(), D

230 posix_spawnattr_setpgroup(), posix_spawnattr_getsigmask(), D

231 posix_spawnattr_setsigmask(), posix_spawnattr_getsigdefault(), and D

232 posix_spawnattr_setsigdefault() functions as described above or these func- D

233 tions shall not be provided. D

234 If {_POSIX_SPAWN} and {_POSIX_PRIORITY_SCHEDULING} are both defined: E

235 The spawn-schedpolicy attribute represents the scheduling policy to be D

236 assigned to the new process image in a spawn operation (if D

237 POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute). The D

238 default value of this attribute is unspecified. D

239 The posix_spawnattr_setschedpolicy() function is used to set the spawn- D

240 schedpolicy attribute in an initialized attributes object referenced by D

241 attr. The posix_spawnattr_getschedpolicy() function obtains the value of the D

242 spawn-schedpolicy attribute from the attributes object referenced by D

243 attr. D

244 The spawn-schedparam attribute represents the scheduling parameters D

245 to be assigned to the new process image in a spawn operation (if D

246 POSIX_SPAWN_SETSCHEDULER or POSIX_SPAWN_SETSCHEDPARAM is set D

247 in the spawn-flags attribute). The default value of this attribute is D

248 unspecified. D

249 The posix_spawnattr_setschedparam() function is used to set the spawn- D

250 schedparam attribute in an initialized attributes object referenced by attr. D

251 The posix_spawnattr_getschedparam() function obtains the value of the D

252 spawn-schedparam attribute from the attributes object referenced by attr. D

253 Otherwise: D

254 Either the implementation shall support the D

255 posix_spawnattr_getschedpolicy(), posix_spawnattr_setschedpolicy(), D

256 posix_spawnattr_getschedparam(), and posix_spawnattr_setschedparam() D

257 functions as described above or these functions shall not be provided. D

258 Additional attributes, their default values, and the names of the associated func- D

259 tions to get and set those attribute values are implementation defined. D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.1 Process Creation and Execution 19

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

260 3.1.5.3 Returns D

261 If successful, the posix_spawnattr_init(), posix_spawnattr_destroy(), D

262 posix_spawnattr_setflags(), posix_spawnattr_setpgroup(), D

263 posix_spawnattr_setschedpolicy(), posix_spawnattr_setschedparam(), D

264 posix_spawnattr_setsigmask(), and posix_spawnattr_setsigdefault() functions D

265 shall return zero. Otherwise, an error number shall be returned to indicate the D

266 error. D

267 If successful, the posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), D

268 posix_spawnattr_getschedpolicy(), posix_spawnattr_getschedparam(), D

269 posix_spawnattr_getsigmask(), and posix_spawnattr_getsigdefault() functions D

270 shall return zero and respectively store the value of the spawn-flags , spawn- D

271 pgroup , spawn-schedpolicy , spawn-schedparam , spawn-sigmask , or D

272 spawn-sigdefault , attribute of attr into the object referenced by the flags, D

273 pgroup, schedpolicy, schedparam, sigmask or sigdefault parameter, respectively. D

274 Otherwise, an error number shall be returned to indicate the error. D

275 3.1.5.4 Errors D

276 If any of the following conditions occur, the posix_spawnattr_init() function shall D

277 return the corresponding error value: D

278 [ENOMEM] Insufficient memory exists to initialize the spawn attributes D

279 object. D

280 For each of the following conditions, if the condition is detected, the D

281 posix_spawnattr_destroy(), posix_spawnattr_getflags(), D

282 posix_spawnattr_setflags(), posix_spawnattr_getpgroup(), D

283 posix_spawnattr_setpgroup(), posix_spawnattr_getschedpolicy(), D

284 posix_spawnattr_setschedpolicy(), posix_spawnattr_getschedparam(), D

285 posix_spawnattr_setschedparam(), posix_spawnattr_getsigmask(), D

286 posix_spawnattr_setsigmask(), posix_spawnattr_getsigdefault(), and D

287 posix_spawnattr_setsigdefault() functions shall return the corresponding error D

288 value: D

289 [EINVAL] The value specified by attr is invalid. D

290 For each of the following conditions, if the condition is detected, the D

291 posix_spawnattr_setflags(), posix_spawnattr_setpgroup(), D

292 posix_spawnattr_setschedpolicy(), posix_spawnattr_setschedparam(), D

293 posix_spawnattr_setsigmask(), and posix_spawnattr_setsigdefault() functions D

294 shall return the corresponding error value: D

295 [EINVAL] The value of the attribute being set is not valid. D

296 3.1.5.5 Cross-References D

297 posix_spawn(), 3.1.6; posix_spawnp(), 3.1.6. D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

20 3 Process Management

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

298 3.1.6 Spawn a Process

299 Functions: posix_spawn(), posix_spawnp().

300 3.1.6.1 Synopsis

301 #include <sys/types.h> C
302 #include <spawn.h>

int303 posix_spawn(pid_t ∗pid,
304 const char ∗path,
305 const posix_spawn_file_actions_t ∗file_actions, C
306 const posix_spawnattr_t ∗attrp, D
307 char ∗ const argv[],
308 char ∗ const envp[]);

int309 posix_spawnp(pid_t ∗pid,
310 const char ∗file,
311 const posix_spawn_file_actions_t ∗file_actions, C
312 const posix_spawnattr_t ∗attrp, D
313 char ∗ const argv[],
314 char ∗ const envp[]);

315 3.1.6.2 Description

316 If {_POSIX_SPAWN} is defined: E

317 The posix_spawn() and posix_spawnp() functions shall create a new process C

318 (child process) from the specified process image. The new process image is
319 constructed from a regular executable file called the new process image file.

320 When a C program is executed as the result of this call, it shall be entered
321 as a C language function call as follows:

322 int main (int argc, char ∗argv[]);

323 Where argc is the argument count and argv is an array of character
324 pointers to the arguments themselves. In addition, the following variable:

325 extern char ∗∗environ;

326 is initialized as a pointer to an array of character pointers to the environ-
327 ment strings.
328 C

329 The argument argv is an array of character pointers to null-terminated C

330 strings. The last member of this array shall be a NULL pointer (this NULL C

331 pointer is not counted in argc). These strings constitute the argument list C

332 available to the new process image. The value in argv[0] should point to a C

333 filename that is associated with the process image being started by the C

334 posix_spawn() or posix_spawnp() function. C

335 The argument envp is an array of character pointers to null-terminated C

336 strings. These strings constitute the environment for the new process C

337 image. The environment array is terminated by a NULL pointer. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.1 Process Creation and Execution 21

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

338 The number of bytes available for the child process’s combined argument
339 and environment lists is {ARG_MAX}. The implementation shall specify in
340 the system documentation (see 1.3.1) whether any list overhead, such as D

341 length words, null terminators, pointers, or alignment bytes, is included in
342 this total.

343 The path argument to posix_spawn() is a pathname that identifies the new
344 process image file to execute.

345 The file parameter to posix_spawnp() shall be used to construct a pathname
346 that identifies the new process image file. If the file parameter contains a
347 slash character, the file parameter shall be used as the pathname for the
348 new process image file. Otherwise, the path prefix for this file shall be
349 obtained by a search of the directories passed as the environment variable
350 PATH (see 2.6). If this environment variable is not defined, the results of D

351 the search are implementation defined.

352 C

353 If file_actions is a NULL pointer, then file descriptors open in the calling C

354 process shall remain open in the child process, except for those whose C

355 close-on-exec flag FD_CLOEXEC is set (see 6.5.2 and 6.5.1). For those file C

356 descriptors that remain open, all attributes of the corresponding open file C

357 descriptions, including file locks (see 6.5.2), shall remain unchanged. C

358 If file_actions is not NULL, then the file descriptors open in the child pro- C

359 cess shall be those open in the calling process process as modified by the C

360 spawn file actions object pointed to by file_actions and the FD_CLOEXEC C

361 flag of each remaining open file descriptor after the spawn file actions have C

362 been processed. The effective order of processing the spawn file actions C

363 shall be: C

364 1. The set of open file descriptors for the child process shall initially be C

365 the same set as is open for the calling process. All attributes of the C

366 corresponding open file descriptions, including file locks (see 6.5.2), C

367 shall remain unchanged. C

368 2. The signal mask and the effective user and group IDs for the child pro- C

369 cess shall be changed as specified in the attributes object referenced D

370 by attrp. D

371 3. The file actions specified by the spawn file actions object shall be per- C

372 formed in the order in which they were added to the spawn file actions C

373 object. C

374 4. Any file descriptor which has its FD_CLOEXEC flag set (see 6.5.2) shall C

375 be closed. C

376 The posix_spawnattr_t spawn attributes object type is defined in D

377 <spawn.h> . It shall contain at least the attributes described in 3.1.5. D

378 If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute D

379 of the object referenced by attrp, and the spawn-pgroup attribute of the D

380 same object is non zero, then the child’s process group shall be as specified D

381 in the spawn-pgroup attribute of the object referenced by attrp. D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22 3 Process Management

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

382 As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the D

383 spawn-flags attribute of the object referenced by attrp, and the spawn- D

384 pgroup attribute of the same object is set to 0, then the child shall be in a D

385 new process group with a process group ID equal to its process ID. D

386 If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attri- D

387 bute of the object referenced by attrp, the new child process shall inherit D

388 the parent’s process group. D

389 If {_POSIX_PRIORITY_SCHEDULING} is defined, and the E

390 POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute D

391 of the object referenced by attrp, but POSIX_SPAWN_SETSCHEDULER is not D

392 set, the new process image shall initially have the scheduling policy of the D

393 calling process with the scheduling parameters specified in the spawn- D

394 schedparam attribute of the object referenced by attrp. D

395 If {_POSIX_PRIORITY_SCHEDULING} is defined, and the E

396 POSIX_SPAWN_SETSCHEDULER flag is set in spawn-flags attribute of D

397 the object referenced by attrp (regardless of the setting of the D

398 POSIX_SPAWN_SETSCHEDPARAM flag), the new process image shall ini- D

399 tially have the scheduling policy specified in the spawn-schedpolicy D

400 attribute of the object referenced by attrp and the scheduling parameters D

401 specified in the spawn-schedparam attribute of the same object. D

402 The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the D

403 object referenced by attrp governs the effective user ID of the child process: C

404 If this flag is not set, the child process inherits the parent process’s effective C

405 user ID; If this flag is set, the child process’s effective user ID is reset to the C

406 parent’s real user ID. In either case, if the set-user-ID mode bit of the new C

407 process image file is set, the effective user ID of the child process will C

408 become that file’s owner ID before the new process image begins execution. C

409 The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the D

410 object referenced by attrp also governs the effective group ID of the child C

411 process: If this flag is not set, the child process inherits the parent process’s C

412 effective group ID; If this flag is set, the child process’s effective group ID is C

413 reset to the parent’s real group ID. In either case, if the set-group-ID mode C

414 bit of the new process image file is set, the effective group ID of the child C

415 process will become that file’s group ID before the new process image begins C

416 execution. C

417 If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attri- D

418 bute of the object referenced by attrp, the child process shall initially have D

419 the signal mask specified in the spawn-sigmask attribute of the object D

420 referenced by attrp. D

421 If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute D

422 of the object referenced by attrp, the signals specified in the spawn- D

423 sigdefault attribute of the same object shall be set to their default
424 actions in the child process. Signals set to the default action in the parent
425 process shall be set to the default action in the child process.

426 Signals set to be caught by the calling process shall be set to the default
427 action in the child process.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.1 Process Creation and Execution 23

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

428 Signals set to be ignored by the calling process image shall be set to be
429 ignored by the child process, unless otherwise specified by the
430 POSIX_SPAWN_SETSIGDEF flag being set in the spawn-flags attribute of D

431 the object referenced by attrp and the signals being indicated in the D

432 spawn-sigdefault attribute of the object referenced by attrp. D

433 If the value of the attrp pointer is NULL, then the default values are used. D

434 C

435 All process attributes, other than those influenced by the attributes set in D

436 the object referenced by attrp as specified above or by the file descriptor C

437 manipulations specified in file_actions, shall appear in the new process C

438 image as though fork() had been called to create a child process and then a C

439 member of the exec family of functions had been called by the child process C

440 to execute the new process image. C

441 If the Threads option is supported, then it is implementation defined
442 whether the fork handlers are run when posix_spawn() or posix_spawnp() C

443 is called. C

444 C

445 Otherwise :

446 Either the implementation shall support the posix_spawn() and
447 posix_spawnp() functions as described above, or these functions shall not be
448 provided.

449 3.1.6.3 Returns

450 Upon successful completion, the posix_spawn() or posix_spawnp() operation shall
return451 the process ID of the child process to the parent process, in the variable
pointed452 to by a non-NULL pid argument, and shall return zero as the function C

453 return value. Otherwise, no child process shall be created, the value stored into C

454 the variable pointed to by a non-NULL pid is unspecified, and the corresponding C

455 error value shall be returned as the function return value. If the pid argument is C

456 the NULL pointer, the process ID of the child is not returned to the caller. C

457 3.1.6.4 Errors

458 C

459 For each of the following conditions, if the condition is detected, the posix_spawn() C

460 or posix_spawnp() function shall fail and post the corresponding status value or, if C

461 the error occurs after the calling process successfully returns from the C

462 posix_spawn() or posix_spawnp() function, shall cause the child process to exit D

463 with exit status 127: D

464 [EINVAL] The value specified by file_actions or attrp is invalid. D

465 If posix_spawn() or posix_spawnp() fails for any of the reasons that would cause C

466 fork() or one of the exec family of functions to fail, an error value shall be returned C

467 (or, if the error occurs after the calling process successfully returns, the child pro- C

468 cess exits with exit status 127) as described by fork() and exec respectively. D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

24 3 Process Management

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

469 If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object D

470 referenced by attrp, and posix_spawn() or posix_spawnp() fails while changing the C

471 child’s process group, an error value shall be returned (or, if the error occurs after C

472 the calling process successfully returns, the child process exits with exit status D

473 127) as described by setpgid(). D

474 If {_POSIX_PRIORITY_SCHEDULING} is defined, and E

475 POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is D

476 not set in the spawn-flags attribute of the object referenced by attrp, then if D

477 posix_spawn() or posix_spawnp() fails for any of the reasons that would cause C

478 sched_setparam() to fail, an error value shall be returned (or, if the error occurs C

479 after the calling process successfully returns, the child process exits with exit D

480 status 127) as described by sched_setparam(). D

481 If {_POSIX_PRIORITY_SCHEDULING} is defined, and E

482 POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object D

483 referenced by attrp, then if posix_spawn() or posix_spawnp() fails for any of the D

484 reasons that would cause sched_setscheduler() to fail, an error value shall be C

485 returned (or, if the error occurs after the calling process successfully returns, the C

486 child process exits with exit status 127) as described by sched_setscheduler(). D

487 If the file_actions argument is not NULL, and specifies any close, dup2, or open C

488 actions to be performed, and posix_spawn() or posix_spawnp() fails for any of the C

489 reasons that would cause close (), dup2(), or open() to fail, an error value shall be C

490 returned (or, if the error occurs after the calling process successfully returns, the C

491 child process exits with exit status 127) as described by close (), dup2(), and open() D

492 respectively. An open file action may, by itself, result in any of the errors C

493 described by close () or dup2(), in addition to those described by open(). C

494 3.1.6.5 Cross-References

495 alarm(), 3.4.1; chmod(), 5.6.4; close (), 6.3.1; dup2(), 6.2.1; exec, 3.1.2; _exit(), 3.2.2; C

496 fcntl(), 6.5.2; fork(), 3.1.1; kill(), 3.3.2; open(), 5.3.1; C

497 posix_spawn_file_actions_init(), 3.1.4; posix_spawn_file_actions_destroy(), 3.1.4; C

498 posix_spawn_file_actions_addclose(), 3.1.4; posix_spawn_file_actions_adddup2(), C

499 3.1.4; posix_spawn_file_actions_addopen(), 3.1.4; posix_spawnattr_init(), 3.1.5; D

500 posix_spawnattr_destroy(), 3.1.5; posix_spawnattr_getflags(), 3.1.5; D

501 posix_spawnattr_setflags(), 3.1.5; posix_spawnattr_getpgroup(), 3.1.5; D

502 posix_spawnattr_setpgroup(), 3.1.5; posix_spawnattr_getschedpolicy(), 3.1.5; D

503 posix_spawnattr_setschedpolicy(), 3.1.5; posix_spawnattr_getschedparam(), 3.1.5; D

504 posix_spawnattr_setschedparam(), 3.1.5; posix_spawnattr_getsigmask(), 3.1.5; D

505 posix_spawnattr_setsigmask(), 3.1.5; posix_spawnattr_getsigdefault(), 3.1.5; D

506 posix_spawnattr_setsigdefault(), 3.1.5; sched_setparam(), 13.3.1; D

507 sched_setscheduler(), 13.3.3; setpgid(), 4.3.3; setuid (), 4.2.2; stat (), 5.6.2; times (), C

508 4.5.2; wait, 3.2.1. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.1 Process Creation and Execution 25

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

509 3.2 Process Termination

510 3.2.1 Wait for Process Termination

3511 .2.1.2 Wait for Process Termination — Description

512 C

513 ⇒⇒ 3.2.1.2 Wait for Process Termination — Description Add the following
514 paragraphs after the definition of the WSTOPSIG(stat_val) macro: C

515 It is unspecified whether the status value returned by calls to wait() or wait-
516 pid() for processes created by posix_spawn() or posix_spawnp() may indicate a
517 WIFSTOPPED(stat_val) before subsequent calls to wait() or waitpid() indicate C

518 WIFEXITED(stat_val) as the result of an error detected before the new process C

519 image starts executing. C

520 It is unspecified whether the status value returned by calls to wait() or wait-
521 pid() for processes created by posix_spawn() or posix_spawnp() may indicate a
522 WIFSIGNALED(stat_val) if a signal is sent to the parent’s process group after
523 posix_spawn() or posix_spawnp() is called. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26 3 Process Management

P1003.1d/D14

Section 4: Process Environment

1 4.8 Configurable System Variables

2 4.8.1 Get Configurable System Variables

3 ⇒⇒ 4.8.1.2 Get Configurable System Variables— Description Add the follow- C

4 ing text after the sentence ‘‘The implementation shall support all of the vari- C

5 ables listed in Table 4-2 and may support others ’’, in the second paragraph: C

6 Support for some configuration variables is dependent on implementation C

7 options (see Table 4-3). Where an implementation option is not supported, the C

8 variable need not be supported. C

9 ⇒⇒ 4.8.1.2 Get Configurable System Variables— Description In the second C

10 paragraph, replace the text ‘‘The variables in Table 4-2 come from ... ’’ by the C

11 following: C

12 ‘‘The variables in Table 4-2 and Table 4-3 come from ...’’ C

13 ⇒⇒ 4.8.1.2 Get Configurable System Variables— Description Add the follow- C

14 ing table: C

15 Table 4-3 −− Optional Configurable System Variables C

16 __ C

17 Variable name Value Required Option C__
18 {_POSIX_SPAWN} _SC_SPAWN Spawn C
19 {_POSIX_TIMEOUTS} _SC_TIMEOUTS Timeouts C
20 {_POSIX_CPUTIME} _SC_CPUTIME Process CPU-Time Clocks C
21 {_POSIX_THREAD_CPUTIME} _SC_THREAD_CPUTIME Thread CPU-Time Clocks C
22 {_POSIX_SPORADIC_SERVER} _SC_SPORADIC_SERVER Process Sporadic Server C
23 {_POSIX_THREAD_SPORADIC_SERVER} _SC_THREAD_SPORADIC_SERVER Thread Sporadic Server C
24 {_POSIX_ADVISORY_INFO} _SC_ADVISORY_INFO Advisory Information C__LL

L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4.8 Configurable System Variables 27

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

28 4 Process Environment

P1003.1d/D14

Section 5: Files and Directories

1 5.7 Configurable Pathname Variables C

2 5.7.1 Get Configurable Pathname Variables C

3 ⇒⇒ 5.7.1.2 Get Configurable Pathname Variables— Description Add the fol- C

4 lowing text after the sentence ‘‘The implementation shall support all of the C

5 variables listed in Table 5-2 and may support others ’’, in the third paragraph: C

6 Support for some pathname configuration variables is dependent on implemen- C

7 tation options (see Table 5-3). Where an implementation option is not sup- C

8 ported, the variable need not be supported. C

9 ⇒⇒ 5.7.1.2 Get Configurable Pathname Variables— Description In the third C

10 paragraph, replace the text ‘‘The variables in Table 5-2 come from ... ’’ by the C

11 following: C

12 ‘‘The variables in Table 5-2 and Table 5-3 come from ...’’ C

13 ⇒⇒ 5.7.1.2 Get Configurable Pathname Variables— Description Add the fol- C

14 lowing table: C

15 Table 5-3 −− Optional Configurable Pathname Variables C

16 __ C

17 Variable name Value Required Option C__
18 {POSIX_REC_INCR_XFER_SIZE} _PC_REC_INCR_XFER_SIZE Advisory Information C
19 {POSIX_ALLOC_SIZE_MIN} _PC_ALLOC_SIZE_MIN Advisory Information C
20 {POSIX_REC_MAX_XFER_SIZE} _PC_REC_MAX_XFER_SIZE Advisory Information C
21 {POSIX_REC_MIN_XFER_SIZE} _PC_REC_MIN_XFER_SIZE Advisory Information C
22 {POSIX_REC_XFER_ALIGN} _PC_REC_XFER_ALIGN Advisory Information C__LL

L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

5.7 Configurable Pathname Variables 29

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

30 5 Files and Directories

P1003.1d/D14

Section 6: Input and Output Primitives

1 6.7 Asynchronous Input and Output

2 6.7.1 Data Definitions for Asynchronous Input and Output

3 ⇒⇒ 6.7.1.1 Asynchronous I/O Control Block Change the sentence, beginning
4 with ‘‘The order of processing of requests submitted by processes whose
5 schedulers . . . ’’ to the following:

6 Unless both {_POSIX_PRIORITIZED_IO} and {_POSIX_PRIORITY_SCHEDULING} E

7 are defined, the order of processing asynchronous I/O requests is unspecified. E

8 When both {_POSIX_PRIORITIZED_IO} and {_POSIX_PRIORITY_SCHEDULING} E

9 are defined, the order of processing of requests submitted by processes whose E

10 schedulers are not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is
11 unspecified.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.7 Asynchronous Input and Output 31

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

32 6 Input and Output Primitives

P1003.1d/D14

Section 11: Synchronization

1 11.2 Semaphore Functions

2 11.2.6 Lock a Semaphore

3 ⇒⇒ 11.2.6 Lock a Semaphore Add the following function to the list:

4 sem_timedwait().

5 11.2.6.1 Synopsis

6 ⇒⇒ 11.2.6.1 Lock a Semaphore — Synopsis Add the following #include and
7 prototype to the synopsis:

8 #include <time.h>

9 int sem_timedwait(sem_t ∗sem,
10 const struct timespec ∗abs_timeout); C

11 11.2.6.2 Description

12 ⇒⇒ 11.2.6.2 Lock a Semaphore — Description Add the following text to the
13 description:

14 If {_POSIX_SEMAPHORES} and {_POSIX_TIMEOUTS} are both defined: E

15 The sem_timedwait() function locks the semaphore referenced by sem as
16 in the sem_wait() function. However, if the semaphore cannot be locked
17 without waiting for another process or thread to unlock the semaphore
18 by performing a sem_post () function, this wait shall be terminated when
19 the specified timeout expires.

20 The timeout expires when the absolute time specified by abs_timeout C

21 passes, as measured by the clock on which timeouts are based (that is, C

22 when the value of that clock equals or exceeds abs_timeout), or if the C

23 absolute time specified by abs_timeout has already been passed at the C

24 time of the call. If the Timers option is supported, the timeout is based C

25 on the CLOCK_REALTIME clock; if the Timers option is not supported,
26 the timeout is based on the system clock as returned by the time()

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.2 Semaphore Functions 33

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

27 function. The resolution of the timeout is the resolution of the clock on
28 which it is based. The timespec datatype is defined as a structure in the C

29 header <time.h> . C

30 Under no circumstance will the function fail with a timeout if the sema- C

31 phore can be locked immediately. The validity of the abs_timeout argu-
32 ment need not be checked if the semaphore can be locked immediately.

33 Otherwise:

34 Either the implementation shall support the sem_timedwait() function
35 as described above or this function shall not be provided.

36 11.2.6.3 Returns

37 ⇒⇒ 11.2.6.3 Lock a Semaphore — Returns Add the function sem_timedwait()
38 to the list of functions.

39 11.2.6.4 Errors

40 ⇒⇒ 11.2.6.4 Lock a Semaphore — Errors Make the following changes to the
41 discussion of error conditions:

42 Add sem_timedwait() to the list of functions for both the standard error condi-
43 tions and the "if detected" error conditions.

44 Add an [ETIMEDOUT] error value with the following reason, to the list of E

45 errors that must be detected: E

46 The semaphore could not be locked before the specified timeout expired.

47 To the [EINVAL] error description, add the following reason:

48 The thread would have blocked, and the abs_timeout parameter
49 specified a nanoseconds field value less than zero or greater than or
50 equal to 1000 million.

51 11.2.6.5 Cross-References

52 ⇒⇒ 11.2.6.5 Lock a Semaphore — Cross-References Add the following items
53 to the cross-references:

54 time(), 4.5.1; <time.h> , 14.1.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

34 11 Synchronization

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

55 11.2.7 Unlock a Semaphore

56 ⇒⇒ 11.2.7.2 Unlock a Semaphore — Description (The following change is
57 made in a context where the Process Scheduling option is supported.) Change
58 the sentence, beginning with ‘‘In the case of the schedulers . . . ’’ to the follow-
59 ing:

60 In the case of the schedulers {SCHED_FIFO}, {SCHED_RR}, and {SCHED_-
61 SPORADIC}, the highest priority waiting thread shall be unblocked, and if there
62 is more than one highest-priority thread blocked waiting for the semaphore,
63 then the highest-priority thread that has been waiting the longest shall be
64 unblocked.

65 11.3 Mutexes

66 C

67 11.3.3 Locking and Unlocking a Mutex

68 ⇒⇒ 11.3.3 Locking and Unlocking a Mutex Add the following function to the
69 list:

70 pthread_mutex_timedlock().

71 11.3.3.1 Synopsis

72 ⇒⇒ 11.3.3.1 Locking and Unlocking a Mutex — Synopsis Add the following
73 #include and prototype to the synopsis:

74 #include <time.h>

75 int pthread_mutex_timedlock(pthread_mutex_t ∗mutex,
76 const struct timespec ∗abs_timeout); C

77 11.3.3.2 Description

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.3 Mutexes 35

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

78 ⇒⇒ 11.3.3.2 Locking and Unlocking a Mutex — Description Add the follow-
79 ing text to the description:

80 If {_POSIX_THREADS} and {_POSIX_TIMEOUTS} are both defined: E

81 The pthread_mutex_timedlock() function is called to lock the mutex C

82 object referenced by mutex. If the mutex is already locked, the calling C

83 thread blocks until the mutex becomes available as in the
84 pthread_mutex_lock() function. If the mutex cannot be locked without
85 waiting for another thread to unlock the mutex, this wait shall be ter-
86 minated when the specified timeout expires.

87 The timeout expires when the absolute time specified by abs_timeout C

88 passes, as measured by the clock on which timeouts are based (that is, C

89 when the value of that clock equals or exceeds abs_timeout), or if the C

90 absolute time specified by abs_timeout has already been passed at the C

91 time of the call. If the Timers option is supported, the timeout is based C

92 on the CLOCK_REALTIME clock; if the Timers option is not supported,
93 the timeout is based on the system clock as returned by the time() func-
94 tion. The resolution of the timeout is the resolution of the clock on
95 which it is based. The timespec datatype is defined as a structure in the C

96 header <time.h> . C

97 Under no circumstance will the function fail with a timeout if the mutex C

98 can be locked immediately. The validity of the abs_timeout parameter
99 need not be checked if the mutex can be locked immediately.

100 As a consequence of the priority inheritance rules (for mutexes initial-
101 ized with the PRIO_INHERIT protocol), if a timed mutex wait is ter-
102 minated because its timeout expires, the priority of the owner of the
103 mutex will be adjusted as necessary to reflect the fact that this thread is
104 no longer among the threads waiting for the mutex.

105 C

106 Otherwise:

107 Either the implementation shall support the pthread_mutex_timedlock()
108 function as described above or the function shall not be provided.

109 11.3.3.3 Returns

110 ⇒⇒ 11.3.3.3 Locking and Unlocking a Mutex — Returns Add the function
111 pthread_mutex_timedlock() to the list of functions.

112 11.3.3.4 Errors

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

36 11 Synchronization

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

113 ⇒⇒ 11.3.3.4 Locking and Unlocking a Mutex — Errors Make the following
114 changes to the discussion of error conditions:

115 Add pthread_mutex_timedlock() to the list of functions for the [EINVAL] and
116 [EDEADLK] conditions.

117 To the [EINVAL] error description, add the following reason:

118 The process or thread would have blocked, and the abs_timeout parame-
119 ter specified a nanoseconds field value less than zero or greater than or
120 equal to 1000 million.

121 New paragraph with one error condition: If the following conditions occur, the
122 pthread_mutex_timedlock() function shall return the corresponding error
123 number:

124 [ETIMEDOUT] The mutex could not be locked before the specified timeout
125 expired.

126 C

127 11.3.3.5 Cross-References

128 ⇒⇒ 11.3.3.5 Locking and Unlocking a Mutex — Cross-References Add the
129 following items to the cross-references:

130 time(), 4.5.1; <time.h> , 14.1. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.3 Mutexes 37

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

38 11 Synchronization

P1003.1d/D14

Section 13: Execution Scheduling

1 This section describes the extension to the system interfaces to support the
sporadic2 server scheduling policy.

3 13.1 Scheduling Parameters

4 ⇒⇒ 13.1 Scheduling Parameters Add the following paragraph:

5 In addition, if {_POSIX_SPORADIC_SERVER} is defined or {_POSIX_THREAD_- E

6 SPORADIC_SERVER} is defined, the sched_param structure defined in E

7 <sched.h> shall contain the following members in addition to those specified
8 above:

9 Member Member
10 Type Name Description

__
11 int sched_ss_low_priority Low scheduling priority for sporadic server.
12 timespec sched_ss_repl_period Replenishment period for sporadic server.
13 timespec sched_ss_init_budget Initial budget for sporadic server.
14 int sched_ss_max_repl Maximum pending replenishments for sporadic server.

15 13.2 Scheduling Policies

16 ⇒⇒ 13.2 Scheduling Policies Add the following after the unnumbered table with C

17 the scheduling policies that shall be defined in <sched.h> : C

18 If {_POSIX_SPORADIC_SERVER} is defined or {_POSIX_THREAD_SPORADIC_- E

19 SERVER} is defined, then the following scheduling policy is provided in E

20 <sched.h> : C

21 Symbol Description__
22 SCHED_SPORADIC Sporadic server scheduling policy.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

13.2 Scheduling Policies 39

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

23 13.2.3 SCHED_OTHER

24 ⇒⇒ 13.2.3 SCHED_OTHER Change the sentence, beginning with ‘‘The effect of
25 scheduling threads with the . . . ’’ to the following:

26 The effect of scheduling threads with the SCHED_OTHER policy in a system in
27 which other threads are executing under SCHED_FIFO, SCHED_RR, or
28 SCHED_SPORADIC shall thus be implementation defined.

29 13.2.4 SCHED_SPORADIC

30 ⇒⇒ 13.2.4 SCHED_SPORADIC

31 Add the following subclause to the Execution Scheduling section:

32 If {_POSIX_SPORADIC_SERVER} is defined or {_POSIX_THREAD_SPORADIC_- E

33 SERVER} is defined, the implementation shall include a scheduling policy E

34 identified by the value SCHED_SPORADIC.

35 The sporadic server policy is based primarily on two parameters: the replenish- C

36 ment period and the available execution capacity. The replenishment period is
37 given by the sched_ss_repl_period member of the sched_param structure. The C

38 available execution capacity is initialized to the value given by the
39 sched_ss_init_budget member of the same parameter. The sporadic server pol-
40 icy is identical to the SCHED_FIFO policy with some additional conditions that
41 cause the thread’s assigned priority to be switched between the values specified
42 by the sched_priority and sched_ss_low_priority members of the sched_param C

43 structure. C

44 The priority assigned to a thread using the sporadic server scheduling policy is
45 determined in the following manner: if the available execution capacity is
46 greater than zero and the number of pending replenishment operations is
47 strictly less than sched_ss_max_repl, the thread is assigned the priority
48 specified by sched_priority; otherwise, the assigned priority shall be
49 sched_ss_low_priority. If the value of sched_priority is less than or equal to the C

50 value of sched_ss_low_priority, the results are undefined. When active, the C

51 thread shall belong to the thread list corresponding to its assigned priority C

52 level, according to the mentioned priority assignment. The modification of the
53 available execution capacity and, consequently of the assigned priority, is done
54 as follows:

55 (1) When the thread at the head of the sched_priority list becomes a running
56 thread, its execution time shall be limited to at most its available execu-
57 tion capacity, plus the resolution of the execution time clock used for this C

58 scheduling policy. This resolution shall be implementation defined. C

59 (2) Each time the thread is inserted at the tail of the list associated with
60 sched_priority — because as a blocked thread it became runnable with
61 priority sched_priority or because a replenishment operation was

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

40 13 Execution Scheduling

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

62 performed — the time at which this operation is done is posted as the
63 activation_time.

64 (3) When the running thread with assigned priority equal to sched_priority
65 becomes a preempted thread, it becomes the head of the thread list for its
66 priority, and the execution time consumed is subtracted from the avail-
67 able execution capacity. If the available execution capacity would become C

68 negative by this operation, it shall be set to zero. D

69 (4) When the running thread with assigned priority equal to sched_priority
70 becomes a blocked thread, the execution time consumed is subtracted
71 from the available execution capacity, and a replenishment operation is
72 scheduled, as described below. If the available execution capacity would C

73 become negative by this operation, it shall be set to zero. D

74 (5) When the running thread with assigned priority equal to sched_priority
75 reaches the limit imposed on its execution time, it becomes the tail of the
76 thread list for sched_ss_low_priority, the execution time consumed is sub-
77 tracted from the available execution capacity (which becomes zero), and a
78 replenishment operation is scheduled, as described below.

79 (6) Each time a replenishment operation is scheduled, the amount of execu-
80 tion capacity to be replenished, replenish_amount, is set equal to the exe-
81 cution time consumed by the thread since the activation_time. The
82 replenishment is scheduled to occur at activation_time plus
83 sched_ss_repl_period. If the scheduled time obtained is before the current
84 time, the replenishment operation is carried out immediately. Notice
85 that there may be several replenishment operations pending at the same
86 time, each of which will be serviced at its respective scheduled time.
87 Notice also that with the above rules, the number of replenishment
88 operations simultaneously pending for a given thread that is scheduled
89 under the sporadic server policy shall not be greater than
90 sched_ss_max_repl.

91 (7) A replenishment operation consists of adding the corresponding
92 replenish_amount to the available execution capacity at the scheduled
93 time. If as a consequence of this operation the execution capacity would C

94 become larger than sched_ss_initial_budget, it shall be rounded down to a C

95 value equal to sched_ss_initial_budget. Additionally, if the thread was C

96 runnable or running, and with assigned priority equal to
97 sched_ss_low_priority, then it becomes the tail of the thread list for
98 sched_priority.

Execution99 time is defined in 2.2.2.

F100 or this policy, changing the value of a CPU-time clock via clock_settime() shall D

101 have no effect on its behavior. D

102 For this policy, valid priorities shall be within the range returned by the functions
103 sched_get_priority_min() and sched_get_priority_max() when SCHED_SPORADIC
104 is provided as the parameter. Conforming implementations shall provide a prior-

ity105 range of at least 32 distinct priorities for this policy. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

13.2 Scheduling Policies 41

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

106 13.3 Process Scheduling Functions

107 13.3.1 Set Scheduling Parameters

108 ⇒⇒ 13.3.1.2 Set Scheduling Parameters — Description Add the following
109 paragraphs to the description of the function sched_setparam():

110 If {_POSIX_SPORADIC_SERVER} is defined: E

111 If the scheduling policy of the target process is SCHED_SPORADIC, the
112 value specified by the sched_ss_low_priority member of the param argu-
113 ment shall be any integer within the inclusive priority range for the
114 sporadic server policy. The sched_ss_repl_period and
115 sched_ss_init_budget members of the param argument shall represent
116 the time parameters to be used by the sporadic server scheduling policy
117 for the target process. The sched_ss_max_repl member of the param
118 argument shall represent the maximum number of replenishments that
119 are allowed to be pending simultaneously for the process scheduled
120 under this scheduling policy.

121 The specified sched_ss_repl_period must be greater than or equal to the
122 specified sched_ss_init_budget for the function to succeed; if it is not,
123 then the function shall fail.

124 The value of sched_ss_max_repl shall be within the inclusive range [1,
125 {SS_REPL_MAX}] for the function to succeed; if not, the function shall
126 fail.

127 If the scheduling policy of the target process is either SCHED_FIFO or
128 SCHED_RR, the sched_ss_low_priority, sched_ss_repl_period and
129 sched_ss_init_budget members of the param argument shall have no
130 effect on the scheduling behavior. If the scheduling policy of this process
131 is not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, including
132 SCHED_OTHER, the effects of these members shall be implementation
133 defined.

134 ⇒⇒ 13.3.1.2 Set Scheduling Parameters — Description Add the C

135 SCHED_SPORADIC policy to the last paragraph, that describes the cases in
136 which the result of this function is implementation defined. The new para-
137 graph shall be:

138 If the current scheduling policy for the process specified by pid is not
139 SCHED_FIFO, SCHED_RR or SCHED_SPORADIC, the result is implemen-
140 tation defined; this includes the SCHED_OTHER policy.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

42 13 Execution Scheduling

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

141 13.3.3 Set Scheduling Policy and Scheduling Parameters

142 ⇒⇒ 13.3.3.2 Set Scheduling Policy and Scheduling Parameters — Descrip-
143 tion Add the following paragraphs to the description of the function
144 sched_setscheduler():

145 If {_POSIX_SPORADIC_SERVER} is defined: E

146 If the scheduling policy specified by policy is SCHED_SPORADIC, the
147 value specified by the sched_ss_low_priority member of the param argu-
148 ment shall be any integer within the inclusive priority range for the
149 sporadic server policy. The sched_ss_repl_period and
150 sched_ss_init_budget members of the param argument shall represent
151 the time parameters used by the sporadic server scheduling policy for
152 the target process. The sched_ss_max_repl member of the param argu-
153 ment shall represent the maximum number of replenishments that are
154 allowed to be pending simultaneously for the process scheduled under
155 this scheduling policy.

156 The specified sched_ss_repl_period must be greater than or equal to the
157 specified sched_ss_init_budget for the function to succeed; if it is not,
158 then the function shall fail.

159 The value of sched_ss_max_repl shall be within the inclusive range [1,
160 {SS_REPL_MAX}] for the function to succeed; if not, the function shall
161 fail.

162 If the scheduling policy specified by policy is either SCHED_FIFO or
163 SCHED_RR, the sched_ss_low_priority, sched_ss_repl_period and
164 sched_ss_init_budget members of the param argument shall have no
165 effect on the scheduling behavior. C

166 13.4 Thread Scheduling

167 13.4.1 Thread Scheduling Attributes

168 ⇒⇒ 13.4.1 Thread Scheduling Attributes Add the following paragraph after
169 the paragraph that begins with ‘‘If the
170 {_POSIX_THREAD_PRIORITY_SCHEDULING} option is defined, ... ’’:

171 If {_POSIX_THREAD_SPORADIC_SERVER} is defined, the schedparam E

172 attribute supports four new members that are used for the sporadic
173 server scheduling policy. These members are sched_ss_low_priority,
174 sched_ss_repl_period, sched_ss_init_budget, and sched_ss_max_repl.
175 The meaning of these attributes is the same as in the definitions that
176 appear under Process Scheduling Attributes.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

13.4 Thread Scheduling 43

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

177 13.4.3 Scheduling Allocation Domain

178 ⇒⇒ 13.4.3 Scheduling Allocation Domain
179 Add the following paragraph after the fourth paragraph in 13.4.3: C

180 If {_POSIX_THREAD_SPORADIC_SERVER} is defined, the rules defined E

181 for SCHED_SPORADIC in 13.2 shall be used in an implementation- C

182 defined manner for application threads whose scheduling allocation C

183 domain size is greater than one. C

184 ⇒⇒ 13.4.3 Scheduling Allocation Domain Change the first sentence of the
185 fourth paragraph, currently reading ‘‘For application threads whose scheduling
186 allocation domain size is greater than one, the rules defined for SCHED_FIFO
187 and SCHED_RR in 13.2 shall be used in an implementation-defined manner. ’’ to
188 the following:

189 For application threads whose scheduling allocation domain size is
190 greater than one, the rules defined for SCHED_FIFO, SCHED_RR, and
191 SCHED_SPORADIC in 13.2 shall be used in an implementation-defined
192 manner.

193 13.4.4 Scheduling Documentation

194 ⇒⇒ 13.4.4 Scheduling Documentation Change the sentence, beginning with ‘‘If
195 {_POSIX_PRIORITY_SCHEDULING} is defined, then . . . ’’ and ending with ‘‘ . . .
196 such a policy, are implementation defined.’’ to the following:

197 If {_POSIX_PRIORITY_SCHEDULING} is defined, then any scheduling policies E

198 beyond SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC, as
199 well as the effects of the scheduling policies indicated by these other values,
200 and the attributes required in order to support such a policy, are implementa-
201 tion defined.

202 13.5 Thread Scheduling Functions

203 13.5.1 Thread Creation Scheduling Attributes

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

44 13 Execution Scheduling

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

204 ⇒⇒ 13.5.1.2 Thread Creation Scheduling Attributes — Description Add the
205 following paragraph to the description of functions
206 pthread_attr_setschedpolicy() and pthread_attr_getschedpolicy():

207 In addition, if {_POSIX_THREAD_SPORADIC_SERVER} is defined, the E

208 value of policy may be SCHED_SPORADIC.

209 Also, add the following sentences at the end of the paragraph that describes the
210 functions pthread_attr_setschedparam() and pthread_attr_getschedparam():

211 For the SCHED_SPORADIC policy, the required members of the param
212 structure are sched_priority, sched_ss_low_priority,
213 sched_ss_repl_period, sched_ss_init_budget, and sched_ss_max_repl.
214 The specified sched_ss_repl_period must be greater than or equal to the
215 specified sched_ss_init_budget for the function to succeed; if it is not,
216 then the function shall fail. The value of sched_ss_max_repl shall be
217 within the inclusive range [1, {SS_REPL_MAX}] for the function to
218 succeed; if not, the function shall fail.

219 13.5.2 Dynamic Thread Scheduling Parameters Access

220 ⇒⇒ 13.5.2.2 Dynamic Thread Scheduling Parameters Access — Descrip-
221 tion Add the following paragraph to the description of the functions
222 pthread_setschedparam() and pthread_getschedparam():

223 If {_POSIX_THREAD_SPORADIC_SERVER} is defined, then the policy argument E

224 may have the value SCHED_SPORADIC, with the exception for the
225 pthread_setschedparam() function that if the scheduling policy was not
226 SCHED_SPORADIC at the time of the call, it is implementation defined whether
227 the function is supported; this means that the implementation need not allow
228 the application to dynamically change the scheduling policy to
229 SCHED_SPORADIC. The sporadic server scheduling policy has the associated
230 parameters sched_ss_low_priority, sched_ss_repl_period, sched_ss_init_budget,
231 sched_priority, and sched_ss_max_repl. The specified sched_ss_repl_period
232 must be greater than or equal to the specified sched_ss_init_budget for the
233 function to succeed; if it is not, then the function shall fail. The value of
234 sched_ss_max_repl shall be within the inclusive range [1, {SS_REPL_MAX}] for
235 the function to succeed; if not, the function shall fail.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

13.5 Thread Scheduling Functions 45

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

236 ⇒⇒ 13.5.2.4 Dynamic Thread Scheduling Parameters Access — Errors Add
237 the following error status value in the "if detected" section of the C

238 pthread_setschedparam() function: C

239 [ENOTSUP] An attempt was made to dynamically change the scheduling
240 policy to SCHED_SPORADIC, and the implementation does not support
241 this change.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

46 13 Execution Scheduling

P1003.1d/D14

Section 14: Clocks and Timers

1 14.2 Clock and Timer Functions

2 14.2.1 Clocks

13 4.2.1.2 Description

4 ⇒⇒ 14.2.1.2 Clock and Timer Functions — Description Add the following
5 paragraphs to the description of the functions clock_settime(), clock_gettime(),
6 clock_getres():

7 If {_POSIX_CPUTIME} is defined, implementations shall support clock ID values E

8 obtained by invoking clock_getcpuclockid(), which represent the CPU-time
9 clock of a given process. Implementations shall also support the special
10 clockid_t value CLOCK_PROCESS_CPUTIME_ID, which represents the
11 CPU-time clock of the calling process when invoking one of the clock or timer
12 functions. For these clock IDs, the values returned by clock_gettime() and
13 specified by clock_settime() represent the amount of execution time of the pro-
14 cess associated with the clock. Changing the value of a CPU-time clock via C

15 clock_settime() shall have no effect on the behavior of the sporadic server C

16 scheduling policy (see 13.2.4). C

17 If {_POSIX_THREAD_CPUTIME} is defined, implementations shall support clock E

18 ID values obtained by invoking pthread_getcpuclockid(), which represent the
19 CPU-time clock of a given thread. Implementations shall also support the spe- C

20 cial clockid_t value CLOCK_THREAD_CPUTIME_ID, which represents the
21 CPU-time clock of the calling thread when invoking one of the clock or timer
22 functions. For these clock IDs, the values returned by clock_gettime() and
23 specified by clock_settime() represent the amount of execution time of the
24 thread associated with the clock. Changing the value of a CPU-time clock via C

25 clock_settime() shall have no effect on the behavior of the sporadic server C

26 scheduling policy (see 13.2.4). C

27 C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

14.2 Clock and Timer Functions 47

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

28 14.2.2 Create a Per-Process Timer

129 4.2.2.2 Description

30 ⇒⇒ 14.2.2.2 Create a Per-Process Timer — Description Add the following
31 paragraphs to the description of the function timer_create().

32 If {_POSIX_CPUTIME} is defined, implementations shall support clock_id values E

33 representing the CPU-time clock of the calling process.

34 If {_POSIX_THREAD_CPUTIME} is defined, implementations shall support E

35 clock_id values representing the CPU-time clock of the calling thread. C

36 It is implementation defined whether a timer_create () call will succeed if the
37 value defined by clock_id corresponds to the CPU-time clock of a process or
38 thread different from the process or thread invoking the function.

39 14.2.2.4 Errors

40 ⇒⇒ 14.2.2.4 Create a Per-Process Timer — Errors Add the following error
41 condition to the description of the function timer_create():

42 C

43 [ENOTSUP]
44 The implementation does not support the creation of a timer attached
45 to the CPU-time clock which is specified by clock_id and associated
46 with a process or thread different from the process or thread invoking
47 timer_create ().

48 C

49 ⇒⇒ 14 Clocks and Timers Add the following section. C

50 14.3 Execution Time Monitoring

51 This subclause describes extensions to system interfaces to support monitoring
and52 limitation of the execution time of processes and threads.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

48 14 Clocks and Timers

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

53 14.3.1 CPU-time Clock Characteristics

54 If {_POSIX_CPUTIME} is defined, process CPU-time clocks shall be supported in E

55 addition to the clocks described in 14.1.4.

If56 {_POSIX_THREAD_CPUTIME} is defined, thread CPU-time clocks shall be sup- E

57 ported.

58 CPU-time clocks measure execution or CPU time, which is defined in 2.2.2. The C

59 mechanism used to measure execution time is described in 2.3.1. C

60 C

61 If {_POSIX_CPUTIME} is defined, the following constant of the type clockid_t shall E

62 be defined in <time.h> :

63 CLOCK_PROCESS_CPUTIME_ID
64 When this value of the type clockid_t is used in a clock or timer function
65 call, it is interpreted as the identifier of the CPU-time clock associated
66 with the process making the function call.

If67 {_POSIX_THREAD_CPUTIME} is defined, the following constant of the type E

68 clockid_t shall be defined in <time.h> :

69 CLOCK_THREAD_CPUTIME_ID
70 When this value of the type clockid_t is used in a clock or timer function
71 call, it is interpreted as the identifier of the CPU-time clock associated
72 with the thread making the function call.

73 14.3.2 Accessing a Process CPU-time Clock

74 Function: clock_getcpuclockid().

75 14.3.2.1 Synopsis

76 #include <sys/types.h> C
77 #include <time.h>

int78 clock_getcpuclockid (pid_t pid, clockid_t ∗clock_id);

79 14.3.2.2 Description

80 If {_POSIX_CPUTIME} is defined: E

81 The clock_getcpuclockid() function shall return the clock ID of the CPU-time
82 clock of the process specified by pid. If the process described by pid exists
83 and the calling process has permission, the clock ID of this clock shall be
84 returned in clock_id.

85 If pid is zero, the clock_getcpuclockid() function shall return the clock ID of
86 the CPU-time clock of the process making the call, in clock_id.

87 The conditions under which one process has permission to obtain the
88 CPU-time clock ID of other processes are implementation defined.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

14.3 Execution Time Monitoring 49

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

89 Otherwise:

90 Either the implementation shall support the clock_getcpuclockid() function
91 as described above or this function shall not be provided.

92 14.3.2.3 Returns

93 Upon successful completion, clock_getcpuclockid() shall return zero. Otherwise,
the94 corresponding error value shall be returned.

95 14.3.2.4 Errors

96 If the following conditions occur, the clock_getcpuclockid() function shall return
the97 corresponding error number:

98 [EPERM]
99 The requesting process does not have permission to access the CPU-time
100 clock for the process.

If101 the following condition is detected, the clock_getcpuclockid() function shall
return102 the corresponding error number:

103 [ESRCH]
104 No process can be found corresponding to that specified by pid.

105 14.3.2.5 Cross-References

106 clock_gettime (), 14.2.1; clock_settime(), 14.2.1; clock_getres (), 14.2.1;
107 timer_create (), 14.2.2.

108 14.3.3 Accessing a Thread CPU-time Clock

109 Function: pthread_getcpuclockid().

110 14.3.3.1 Synopsis

111 #include <sys/types.h> C
112 #include <time.h> C
113 #include <pthread.h>

int114 pthread_getcpuclockid (pthread_t thread_id, clockid_t ∗clock_id);

115 14.3.3.2 Description

116 If {_POSIX_THREAD_CPUTIME} is defined: E

117 The pthread_getcpuclockid() function shall return in clock_id the clock ID
118 of the CPU-time clock of the thread specified by thread_id, if the thread
119 specified by thread_id exists. C

120 C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

50 14 Clocks and Timers

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

121 Otherwise:

122 Either the implementation shall support the pthread_getcpuclockid() func-
123 tion as described above or this function shall not be provided.

124 14.3.3.3 Returns

125 Upon successful completion, pthread_getcpuclockid() shall return zero. Otherwise
the126 corresponding error number shall be returned.

127 14.3.3.4 Errors

128 C

129 If the following condition is detected, the pthread_getcpuclockid() function shall
return130 the corresponding error number:

131 [ESRCH]
132 The value specified by thread_id does not refer to an existing thread.

133 14.3.3.5 Cross-References

134 clock_gettime (), 14.2.1; clock_settime(), 14.2.1; clock_getres (), 14.2.1; C

135 clock_getcpuclockid(), 14.3.2; timer_create (), 14.2.2; C

136 C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

14.3 Execution Time Monitoring 51

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

52 14 Clocks and Timers

P1003.1d/D14

Section 15: Message Passing

1 15.2 Message Passing Functions

2 15.2.4 Send a Message to a Message Queue

3 ⇒⇒ 15.2.4 Send a Message to a Message Queue Add the following function to
4 the list and change Function to Functions:

5 Function: mq_timedsend ()

6 15.2.4.1 Synopsis

7 ⇒⇒ 15.2.4.1 Send a Message to a Message Queue — Synopsis
8 Add the following #include and prototype to the end of the synopsis: C

9 #include <time.h>

10 int mq_timedsend(mqd_t mqdes,
11 const char ∗msg_ptr,
12 size_t msg_len,
13 unsigned int msg_prio,
14 const struct timespec ∗abs_timeout); C

15 15.2.4.2 Description

16 ⇒⇒ 15.2.4.2 Send a Message to a Message Queue — Description Add the fol-
17 lowing text to the description:

18 If {_POSIX_MESSAGE_PASSING} and {_POSIX_TIMEOUTS} are both defined: E

19 The mq_timedsend () function adds a message to the message queue
20 specified by mqdes in the manner defined for the mq_send() function.
21 However, if the specified message queue is full and O_NONBLOCK is not
22 set in the message queue description associated with mqdes, the wait for
23 sufficient room in the queue shall be terminated when the specified
24 timeout expires. If O_NONBLOCK is set in the message queue descrip-
25 tion, this function shall behave identically to mq_send().

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

15.2 Message Passing Functions 53

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

26 The timeout expires when the absolute time specified by abs_timeout C

27 passes, as measured by the clock on which timeouts are based (that is, C

28 when the value of that clock equals or exceeds abs_timeout), or if the C

29 absolute time specified by abs_timeout has already been passed at the C

30 time of the call. If the Timers option is supported, the timeout is based C

31 on the CLOCK_REALTIME clock; if the Timers option is not supported,
32 the timeout is based on the system clock as returned by the time() func-
33 tion. The resolution of the timeout is the resolution of the clock on
34 which it is based. The timespec argument is defined as a structure in
35 the header <time.h> .

36 Under no circumstance shall the operation fail with a timeout if there is C

37 sufficient room in the queue to add the message immediately. The vali-
38 dity of the abs_timeout parameter need not be checked when there is
39 sufficient room in the queue.

40 Otherwise:

41 Either the implementation shall support the mq_timedsend () function
42 as described above or this function shall not be provided.

43 15.2.4.3 Returns

44 ⇒⇒ 15.2.4.3 Send a Message to a Message Queue — Returns Add the func-
45 tion mq_timedsend() to the list of functions.

46 15.2.4.4 Errors

47 ⇒⇒ 15.2.4.4 Send a Message to a Message Queue — Errors Make the follow-
48 ing changes to the discussion of error conditions:

49 Add mq_timedsend () to the list of functions to which the error conditions
50 apply.

51 Add an [ETIMEDOUT] error value with the following reason:

52 The O_NONBLOCK flag was not set when the message queue was
53 opened, but the timeout expired before the message could be enqueued.

54 To the [EINVAL] error description, add the following reason:

55 The thread would have blocked, and the abs_timeout parameter C

56 specified a nanoseconds field value less than zero or greater than or
57 equal to 1000 million.

58 C

59 Add mq_timedsend () to the list of functions returning [EINTR].

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

54 15 Message Passing

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

60 15.2.4.5 Cross-References

61 ⇒⇒ 15.2.4.5 Send a Message to a Message Queue — Cross-References

62 Add the following cross references to the list:

63 mq_open(), 15.2.1; time() 4.5.1; <time.h> , 14.1.

64 15.2.5 Receive a Message from a Message Queue

65 ⇒⇒ 15.2.5 Receive a Message from a Message Queue Add the following func-
66 tion to the list and change Function to Functions:

67 Function: mq_timedreceive()

68 15.2.5.1 Synopsis

69 ⇒⇒ 15.2.5.1 Receive a Message from a Message Queue — Synopsis
70 Add the following #include and prototype to the end of the synopsis: C

71 #include <time.h>

72 int mq_timedreceive(mqd_t mqdes,
73 char ∗msg_ptr,
74 size_t msg_len,
75 unsigned int ∗msg_prio,
76 const struct timespec ∗abs_timeout); C

77 15.2.5.2 Description

78 ⇒⇒ 15.2.5.2 Receive a Message from a Message Queue — Description Add
79 the following text to the description:

80 If {_POSIX_MESSAGE_PASSING} and {_POSIX_TIMEOUTS} are both defined: E

81 The mq_timedreceive() function is used to receive the oldest of the
82 highest priority messages from the message queue specified by mqdes as
83 in the mq_receive () function. However, if O_NONBLOCK was not
84 specified when the message queue was opened via the mq_open() func-
85 tion, and no message exists on the queue to satisfy the receive, the wait
86 for such a message will be terminated when the specified timeout
87 expires. If O_NONBLOCK is set, this function shall behave identically to
88 mq_receive ().

89 The timeout expires when the absolute time specified by abs_timeout C

90 passes, as measured by the clock on which timeouts are based (that is, C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

15.2 Message Passing Functions 55

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

91 when the value of that clock equals or exceeds abs_timeout), or if the C

92 absolute time specified by abs_timeout has already been passed at the C

93 time of the call. If the Timers option is supported, the timeout is based C

94 on the CLOCK_REALTIME clock; if the Timers option is not supported,
95 the timeout is based on the system clock as returned by the time() func-
96 tion. The resolution of the timeout is the resolution of the clock on
97 which it is based. The timespec argument is defined as a structure in
98 the header <time.h> .

99 Under no circumstance shall the operation fail with a timeout if a mes- C

100 sage can be removed from the message queue immediately. The validity
101 of the abs_timeout parameter need not be checked if a message can be
102 removed from the message queue immediately.

103 Otherwise:

104 Either the implementation shall support the mq_timedreceive() function
105 as described above or this function shall not be provided.

106 15.2.5.3 Returns

107 ⇒⇒ 15.2.5.3 Receive a Message from a Message Queue — Returns Add the
108 mq_timedreceive() to the list of functions.

109 15.2.5.4 Errors

110 ⇒⇒ 15.2.5.4 Receive a Message from a Message Queue — Errors Make the
111 following changes to the discussion of error conditions:

112 Add mq_timedreceive() to the list of functions for both the "if occurs" error con- C

113 ditions and the "if detected" error conditions. C

114 Add an [ETIMEDOUT] error value to the "if occurs" error conditions, with the C

115 following reason: C

116 The O_NONBLOCK flag was not set when the message queue was
117 opened, but no message arrived on the queue before the specified
118 timeout expired.

119 Add an [EINVAL] error value to the "if occurs" error conditions, with the follow- C

120 ing reason: C

121 The thread would have blocked, and the abs_timeout parameter C

122 specified a nanoseconds field value less than zero or greater than or
123 equal to 1000 million.

124 C

125 Add mq_timedreceive() to the list of functions returning [EINTR].

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

56 15 Message Passing

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

126 15.2.5.5 Cross-References

127 ⇒⇒ 15.2.5.5 Receive a Message from a Message Queue — Cross-References
128 Add the following cross-references:

129 mq_open(), 15.2.1; time(), 4.5.1; <time.h> , 14.1.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

15.2 Message Passing Functions 57

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

58 15 Message Passing

P1003.1d/D14

Section 16: Thread Management

1 16.1 Threads

2 16.2.2 Thread Creation

13 6.2.2.2 Description

4 ⇒⇒ 16.2.2.2 Thread Creation — Description Add the following paragraph to
5 the description of the pthread_create() function:

6 If {_POSIX_THREAD_CPUTIME} is defined, the new thread shall have a E

7 CPU-time clock accessible, and the initial value of this clock shall be set
8 to zero.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

16.1 Threads 59

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

60 16 Thread Management

P1003.1d/D14

Section 18: Thread Cancellation

1 18.1 Thread Cancellation Overview

2 18.1.2 Cancellation Points

3 ⇒⇒ 18.1.2 Cancellation Points Add the following functions to the list of func-
4 tions for which a cancellation point shall occur:

5 mq_timedsend (), mq_timedreceive(), sem_timedwait().

6 ⇒⇒ 18.1.2 Cancellation Points Add the following functions to the list of func-
7 tions for which a cancellation point may also occur:

8 posix_fadvise(), posix_fallocate(), posix_madvise(), posix_spawn(), C

9 posix_spawnp(). C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

18.1 Thread Cancellation Overview 61

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

62 18 Thread Cancellation

P1003.1d/D14

Section 20: Advisory Information

1 NOTE: When this standard is approved, the section number of this chapter will be changed to
make2 it consistent with the base standard and all its approved amendments.

3 ⇒⇒ 20 Advisory Information Add the following section.

4 20.1 I/O Advisory Information and Space Control

5 20.1.1 File Advisory Information

6 Function: posix_fadvise().

7 20.1.1.1 Synopsis

8 #include <sys/types.h> C
9 #include <fcntl.h>

int10 posix_fadvise(int fd, off_t offset,
11 size_t len, int advice);

12 20.1.1.2 Description

13 If {_POSIX_ADVISORY_INFO} is defined: E

14 The posix_fadvise() function provides advice to the implementation on the
15 expected behavior of the application with respect to the data in the file asso-
16 ciated with the open file descriptor, fd, starting at offset and continuing for
17 len bytes. The specified range need not currently exist in the file. If len is
18 zero, all data following offset is specified. The implementation may use this
19 information to optimize handling of the specified data. The posix_fadvise()
20 function has no effect on the semantics of other operations on the specified
21 data though it may affect the performance of other operations.

22 The advice to be applied to the data is specified by the advice parameter
23 and may be one of the following values:
24 C

25 POSIX_FADV_NORMALspecifies that the application has no advice to give
26 on its behavior with respect to the specified data. It is the
27 default characteristic if no advice is given for an open file. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

20.1 I/O Advisory Information and Space Control 63

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

28 POSIX_FADV_SEQUENTIALspecifies that the application expects to access
29 the specified data sequentially from lower offsets to higher
30 offsets.

31 POSIX_FADV_RANDOMspecifies that the application expects to access the
32 specified data in a random order.

33 POSIX_FADV_WILLNEEDspecifies that the application expects to access
34 the specified data in the near future.

35 POSIX_FADV_DONTNEEDspecifies that the application expects that it will
36 not access the specified data in the near future.

37 POSIX_FADV_NOREUSEspecifies that the application expects to access the
38 specified data once and then not reuse it thereafter.

39 These values shall be defined in <fcntl.h> if the Advisory Information C

40 option is supported. C

41 Otherwise:

42 Either the implementation shall support the posix_fadvise() function as
43 described above or this function shall not be provided.

44 20.1.1.3 Returns

45 Upon successful completion, the posix_fadvise() function shall return a value of
zero;46 otherwise, it shall return an error number to indicate the error.

47 20.1.1.4 Errors

48 If any of the following conditions occur, the posix_fadvise() function shall return
the49 corresponding error number:

50 [EBADF] The fd argument is not a valid file descriptor.

51 [ESPIPE] The fd argument is associated with a pipe or FIFO.

52 [EINVAL] The value in advice is invalid.

53 20.1.1.5 Cross-References C

54 posix_madvise(), 20.2.1. C

55 20.1.2 File Space Control

56 Function: posix_fallocate().

57 20.1.2.1 Synopsis

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

64 20 Advisory Information

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

58 #include <sys/types.h> C
59 #include <fcntl.h>

int60 posix_fallocate(int fd, off_t offset, size_t len);
61 C

62 20.1.2.2 Description

63 If {_POSIX_ADVISORY_INFO} is defined: E

64 The posix_fallocate() function ensures that any required storage for regular C

65 file data starting at offset and continuing for len bytes is allocated on the file
66 system storage media. If posix_fallocate() returns successfully, subsequent
67 writes to the specified file data shall not fail due to the lack of free space on
68 the file system storage media.

69 If the offset + len is beyond the current file size, then posix_fallocate() shall C

70 adjust the file size to offset + len. Otherwise, the file size shall not be C

71 changed. C

72 It is implementation defined whether a previous posix_fadvise() call
73 influences allocation strategy.

74 Space allocated via posix_fallocate() shall be freed by a successful call to C

75 creat () or open() that truncates the size of the file. Space allocated via C

76 posix_fallocate() may be freed by a successful call to ftruncate () that C

77 reduces the file size to a size smaller than offset + len. C

78 Otherwise:

79 Either the implementation shall support the posix_fallocate() function as C

80 described above or this function shall not be provided. C

81 20.1.2.3 Returns

82 Upon successful completion, the posix_fallocate() function shall return a value of C

83 zero; otherwise, it shall return an error number to indicate the error. C

84 20.1.2.4 Errors

85 If any of the following conditions occur, the posix_fallocate() function shall return C

86 the corresponding error number: C

87 [EBADF] The fd argument is not a valid file descriptor.

88 [EBADF] The fd argument references a file that was opened without write C

89 permission. C

90 [EFBIG] The value of offset + len is greater than the maximum file size. C

91 [EINTR] A signal was caught during execution. C

92 [EINVAL] The len argument was zero or the offset argument was less than C

93 zero. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

20.1 I/O Advisory Information and Space Control 65

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

94 [EIO] An I/O error occurred while reading from or writing to a file sys- C

95 tem. C

96 [ENODEV] The fd argument does not refer to a regular file.
97 C

98 [ENOSPC] There is insufficient free space remaining on the file system
99 storage media.

100 [ESPIPE] The fd argument is associated with a pipe or FIFO. C

101 20.1.2.5 Cross-References

102 unlink(), 5.5.1; open(), 5.3.1; creat (), 5.3.2; ftruncate (), 5.6.7. C

103 20.2 Memory Advisory Information and Alignment Control

104 20.2.1 Memory Advisory Information

105 Function: posix_madvise().

106 20.2.1.1 Synopsis

107 #include <sys/types.h> C
108 #include <sys/mman.h>

int109 posix_madvise(void ∗addr, size_t len, int advice);

110 20.2.1.2 Description

111 If {_POSIX_ADVISORY_INFO} is defined and either {_POSIX_MAPPED_FILES} is E

112 defined or {_POSIX_SHARED_MEMORY_OBJECTS} is defined: E

113 The posix_madvise() function provides advice to the implementation on the
114 expected behavior of the application with respect to the data in the memory
115 starting at address, addr, and continuing for len bytes. The implementa-
116 tion may use this information to optimize handling of the specified data.
117 The posix_madvise() function has no effect on the semantics of access to
118 memory in the specified range though it may affect the performance of
119 access.

120 The implementation may require that addr be a multiple of the page size, D

121 which is the value returned by sysconf () when the name value D

122 _SC_PAGESIZE is used. D

123 The advice to be applied to the memory range is specified by the advice
124 parameter and may be one of the following values:
125 C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

66 20 Advisory Information

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

126 POSIX_MADV_NORMALspecifies that the application has no advice to give
127 on its behavior with respect to the specified range. It is the
128 default characteristic if no advice is given for a range of C

129 memory. C

130 POSIX_MADV_SEQUENTIALspecifies that the application expects to access
131 the specified range sequentially from lower addresses to higher
132 addresses.

133 POSIX_MADV_RANDOMspecifies that the application expects to access the
134 specified range in a random order.

135 POSIX_MADV_WILLNEEDspecifies that the application expects to access
136 the specified range in the near future.

137 POSIX_MADV_DONTNEEDspecifies that the application expects that it will
138 not access the specified range in the near future.

139 These values shall be defined in <sys/mman.h> if the Advisory Information C

140 option is supported and either the Memory Mapped Files option or the C

141 Shared Memory Objects option is supported. C

142 Otherwise:

143 Either the implementation shall support the posix_madvise() function as
144 described above or this function shall not be provided.

145 20.2.1.3 Returns

146 Upon successful completion, the posix_madvise() function shall return a value of
zero;147 otherwise, it shall return an error number to indicate the error.

148 20.2.1.4 Errors

149 If any of the following conditions occur, the posix_madvise() function shall return
the150 corresponding error number:

151 [EINVAL] The value in advice is invalid.
152 D

153 [ENOMEM] Addresses in the range starting at addr and continuing for len
154 bytes are partly or completely outside the range allowed for the
155 address space of the calling process. C

156 If any of the following conditions are detected, the posix_madvise() function shall D

157 return the corresponding error number: D

158 [EINVAL] The value of addr is not a multiple of the value returned by sys- D

159 conf() when the name value _SC_PAGESIZE is used. C

160 [EINVAL] The value of len is zero. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

20.2 Memory Advisory Information and Alignment Control 67

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

161 20.2.1.5 Cross-References C

162 posix_fadvise(), 20.1.1; mmap(), 12.2.1; sysconf (), 4.8.1. C

163 20.2.2 Aligned Memory Allocation

164 Function: posix_memalign().

165 20.2.2.1 Synopsis

166 #include <sys/types.h> C
167 #include <stdlib.h>

int168 posix_memalign(void ∗∗memptr, size_t alignment, C
169 size_t size);

170 20.2.2.2 Description

171 If {_POSIX_ADVISORY_INFO} is defined: E

172 The posix_memalign() function allocates size bytes aligned on a boundary
173 specified by alignment, and returns a pointer to the allocated memory in
174 memptr. The value of alignment must be a multiple of sizeof(void ∗) that is C

175 also a power of two. Upon successful completion, the value pointed to by C

176 memptr shall be a multiple of alignment. C

177 The C Standard free () function deallocates memory which has previously
178 been allocated by posix_memalign().

O179 therwise:

180 Either the implementation shall support the posix_memalign() function as
181 described above or this function shall not be provided.

182 20.2.2.3 Returns

183 Upon successful completion, the posix_memalign() function returns a value of
zero.184 Otherwise the posix_memalign() function shall return an error number to
indicate185 the error.

186 20.2.2.4 Errors

187 If any of the following conditions occur, the posix_memalign() function shall
return188 the corresponding error number:

189 [EINVAL] The value of the alignment parameter is not a power of two mul- C

190 tiple of sizeof(void ∗). C

191 [ENOMEM] There is insufficient memory available with the requested align- C

192 ment. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

68 20 Advisory Information

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

193 20.2.2.5 Cross-References C

194 free (), 8.1; malloc(), 8.1. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

20.2 Memory Advisory Information and Alignment Control 69

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

70 20 Advisory Information

P1003.1d/D14

Annex A
(informative)

Bibliography

1 A.2 Other Standards C

2 ⇒⇒ A.2 Other Standards Add the following to the end of subclause A.2, with an C

3 appropriate reference number: C

4 {B1} ISO/IEC 14519:1998, POSIX Ada Language Interfaces—Binding for Sys- C

5 tem Application Interfaces (API) including Realtime Extensions. C

6 A.3 Historical Documentation and Introductory Texts C

7 ⇒⇒ A.3 Historical Documentation and Introductory Texts Add the following C

8 to the end of subclause A.3, with an appropriate reference number: C

9 {B2} Sprunt, B.; Sha, L.; and Lehoczky, J.P. "Aperiodic Task Scheduling for C

10 Hard Real-Time Systems". The Journal of Real-Time Systems, Vol. 1, C

11 1989, pages 27-60. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A.3 Historical Documentation and Introductory Texts 71

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

72 A Bibliography

P1003.1d/D14

Annex B
(informative)

Rationale and Notes1

2 B.2 Definitions and General Requirements

3 B.2.3 General Concepts

4 ⇒⇒ B.2.3 General Concepts: Add the following subclause, in the proper order,
5 to the existing General Concept items:

6 B.2.3.1 execution time measurement

7 The methods used to measure the execution time of processes and threads, and
the8 precision of these measurements, may vary considerably depending on the
software9 architecture of the implementation, and on the underlying hardware.
I10 mplementations can also make tradeoffs between the scheduling overhead and
the11 precision of the execution time measurements. The standard does not impose
any12 requirement on the accuracy of the execution time; it instead specifies that
the13 measurement mechanism and its precision are implementation defined.

14 B.3 Process Primitives

15 B.3.1 Process Creation and Execution

16 ⇒⇒ B.3.1 Process Creation and Execution Add the following subclauses:

17 B.3.1.4 Spawn File Actions

18 A spawn file actions object may be initialized to contain an ordered sequence of D

19 close, dup2, and open operations to be used by posix_spawn() or posix_spawnp() to D

20 arrive at the set of open file descriptors inherited by the spawned process from the D

21 set of open file descriptors in the parent at the time of the posix_spawn() or D

22 posix_spawnp() call. It had been suggested that the close and dup2 operations D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.3 Process Primitives 73

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

23 alone are sufficient to rearrange file descriptors, and that files which need be D

24 opened for use by the spawned process can be handled either by having the calling D

25 process open them before the posix_spawn() or posix_spawnp() call (and close D

26 them after), or by passing file names to the spawned process (in argv) so that it D

27 may open them itself. The working group recommends that applications use one of D

28 these two methods when practical, since detailed error status on a failed open D

29 operation is always available to the application this way. However, the working D

30 group feels that allowing a spawn file actions object to specify open operations is D

31 still appropriate because: D

32 (1) It is consistent with equivalent POSIX.5 functionality (see the discussion D

33 on compatibility with POSIX.5, in B.3.1.6). D

34 (2) It supports the I/O redirection paradigm commonly employed by POSIX D

35 programs designed to be invoked from a shell. When such a program is D

36 the child process, it may not be designed to open files on its own. D

37 (3) It allows file opens that might otherwise fail or violate file D

38 ownership/access rights if executed by the parent process. D

39 Regarding (2) above, note that the spawn open file action provides to D

40 posix_spawn() and posix_spawnp() the same capability that the shell redirection D

41 operators provide to system (), only without the intervening execution of a shell D

42 (e.g.: system("myprog <file1 3<file2");). D

43 Regarding (3) above, note that if the calling process needs to open one or more files D

44 for access by the spawned process, but has insufficient spare file descriptors, then D

45 the open action is necessary to allow the open to occur in the context of the child D

46 process after other file descriptors have been closed (that must remain open in the D

47 parent). D

48 Additionally, if a parent is executed from a file having a ‘‘set-user-id’’ mode bit set D

49 and the POSIX_SPAWN_RESETIDS flag is set in the spawn attributes, a file created D

50 within the parent process will (possibly incorrectly) have the parent’s effective D

51 user id as its owner whereas a file created via an open action during D

52 posix_spawn() or posix_spawnp() will have the parent’s real id as its owner; and D

53 an open by the parent process may successfully open a file to which the real user D

54 should not have access or fail to open a file to which the real user should have D

55 access. D

56 File Descriptor Mapping Rationale

57 C

58 The working group had originally proposed using an array which specified the C

59 mapping of child file descriptors back to those of the parent. It was pointed out by C

60 the ballot group that it is not possible to re-shuffle file descriptors arbitrarily in a C

61 library implementation of posix_spawn() or posix_spawnp() without provision for C

62 one or more spare file descriptor entries (which simply may not be available). Such C

63 an array requires that an implementation develop a complex strategy to achieve C

64 the desired mapping without inadvertently closing the wrong file descriptor at the C

65 wrong time. C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

74 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

66 It was noted by a member of the Ada Language Bindings working group that the C

67 approved Ada Language Start_Process family of POSIX process primitives use a C

68 caller-specified set of file actions to alter the normal fork() / exec semantics for C

69 inheritance of file descriptors in a very flexible way, yet no such problems exist C

70 because the burden of determining how to achieve the final file descriptor map- C

71 ping is completely on the application. Furthermore, although the file actions inter- C

72 face appears frightening at first glance, it is actually quite simple to implement in C

73 either a library or the kernel. C

74 B.3.1.5 Spawn Attributes D

75 The original spawn interface proposed in this standard, defined the attributes that D

76 specify the inheritance of process attributes across a spawn operation as a struc- D

77 ture. In order to be able to separate optional individual attributes under their D

78 appropriate options (i.e., the spawn-schedparam and spawn-schedpolicy D

79 attributes depending upon the Process scheduling option), and also for extensibil- D

80 ity and consistency with the newer posix interfaces, the attributes interface has D

81 been changed to an opaque datatype. This interface now consists of the type D

82 posix_spawnattr_t, representing a spawn attributes object, together with associ- D

83 ated functions to initialize or destroy the attributes object, and to set or get each D

84 individual attribute. Although the new object-oriented interface is more verbose D

85 than the original structure, it is simple to use, more extensible, and easy to imple- D

86 ment. D

87 B.3.1.6 Spawn a Process

88 The POSIX fork() function is difficult or impossible to implement without swapping
or89 dynamic address translation. Since:

90 — Swapping is generally too slow for a realtime environment,

91 — dynamic address translation is not available everywhere POSIX might be
92 useful,

93 — and processes are too useful to simply option out of POSIX whenever it must
94 run without address translation or other MMU services,

95 POSIX needs process creation and file execution primitives that can be efficiently
implemented96 without address translation or other MMU services.

W97 e shall call this function posix_spawn(). A closely related function, C

98 posix_spawnp(), is included for completeness. C

99 The posix_spawn() function is implementable as a library routine, but both C

100 posix_spawn() and posix_spawnp() are designed as kernel operations. Also, C

101 although they may be an efficient replacement for many fork() / exec pairs, their
goal102 is to provide useful process creation primitives for systems that have
di103 fficulty with fork(), not to provide drop-in replacements for fork() / exec.

This104 view of the role of posix_spawn() and posix_spawnp() influenced the design of C

105 their API. It does not attempt to provide the full functionality of fork() / exec in C

106 which arbitrary user specified operations of any sort are permitted between the C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.3 Process Primitives 75

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

107 creation of the child process and the execution of the new process image; any C

108 attempt to reach that level would need to provide a programming language as C

109 parameters. Instead, posix_spawn() and posix_spawnp() are process creation C

110 primitives like the Start_Process and Start_Process_Search Ada language C

111 bindings in ISO/IEC 14519:1998 {B1} package POSIX_Process_Primitives and also C

112 like those in many operating systems that are not UNIX1) systems, but with some D

113 POSIX specific additions. D

114 To achieve its coverage goals, posix_spawn() and posix_spawnp() have control of C

115 six types of inheritance: file descriptors, process group ID, user and group ID, sig- C

116 nal mask, scheduling, and whether each signal ignored in the parent will remain C

117 ignored in the child, or be reset to its default action in the child. C

118 Control of file descriptors is required to allow an independently written child pro- C

119 cess image to access data streams opened by and even generated or read by the C

120 parent process without being specifically coded to know which parent files and file C

121 descriptors are to be used. Control of the process group ID is required to control C

122 how the child process’s job control relates to that of the parent. C

123 Control of the signal mask and signal defaulting is sufficient to support the imple-
mentation124 of system () suggested in P1003.1a. Although support for system () is not C

125 explicitly one of the goals for posix_spawn() and posix_spawnp(), it is covered C

126 under the ‘‘at least 50%’’ coverage goal.

The127 intention is that the normal file descriptor inheritance across fork(), the sub- C

128 sequent effect of the specified spawn file actions, and the normal file descriptor C

129 inheritance across one of the exec family of functions should fully specify open file C

130 inheritance. The implementation need make no decisions regarding the set of C

131 open file descriptors when the child process image begins execution, those deci- C

132 sions having already been made by the caller and expressed as the set of open file C

133 descriptors and their FD_CLOEXEC flags at the time of the call and the spawn file C

134 actions object specified in the call. We have been assured that in cases where the C

135 POSIX Start_Process Ada primitives have been implemented in a library, this C

136 method of controlling file descriptor inheritance may be implemented very easily. C

137 See Figure B-1 for a crude, but workable, C language implementation. C

138 We can identify several problems with posix_spawn() and posix_spawnp() but C

139 there does not appear to be a solution that introduces fewer problems.

Environment140 modification for child process attributes not specifiable via the attrp C

141 or file_actions arguments must be done in the parent process, and since the C

142 parent generally wants to save its context, it is more costly than similar func- C

143 tionality with fork() / exec. It is also complicated to modify the environment of a C

144 multi-threaded process temporarily, since all threads must agree when it is safe C

145 for the environment to be changed. However, this cost is only borne by those invo- C

146 cations of posix_spawn() and posix_spawnp() that use the additional functionality. C

147 Since extensive modifications are not the usual case, and are particularly unlikely C

148 ________________

1)149 UNIX is a registered trademark of The Open Group in the US and other countries. D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

76 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

150 in time-critical code, keeping much of the environment control out of C

151 posix_spawn() and posix_spawnp() is appropriate design. C

152 The posix_spawn() and posix_spawnp() functions do not have all the power of C

153 fork() / exec. This is to be expected. The fork() function is a wonderfully powerful
operation.154 We do not expect to duplicate its functionality in a simple, fast function
with155 no special hardware requirements. It is worth noting that posix_spawn() C

156 and posix_spawnp() are very similar to the process creation operations on many D

157 operating systems that are not UNIX systems. D

158 C

159 Requirements

160 The requirements for posix_spawn() and posix_spawnp() are: C

161 — They must be implementable without an MMU or unusual hardware.

162 — They must be compatible with existing POSIX standards.

Additional163 goals are:

164 — They should be efficiently implementable.

165 — They should be able to replace at least 50% of typical executions of fork().

166 — A system with posix_spawn() and posix_spawnp() and without fork() should C

167 be useful, at least for realtime applications.

168 — A system with fork() and the exec family should be able to implement
169 posix_spawn() and posix_spawnp() as library routines. C

170 Two-Syntax Rationale

171 POSIX exec has several calling sequences with approximately the same functional-
ity.172 These appear to be required for compatibility with existing practice. Since
the173 existing practice for the posix_spawn functions is otherwise substantially
unlike174 POSIX, we feel that simplicity outweighs compatibility. There are, there-
fore,175 only two names for the posix_spawn functions.

The176 parameter list does not differ between posix_spawn() and posix_spawnp();
177 posix_spawnp() interprets the second parameter more elaborately than D

178 posix_spawn(). D

179 C

180 Compatibility with POSIX.5 POSIX_Process_Primitives.Start_Process

181 The Start_Process and Start_Process_Search procedures from ISO/IEC
182 14519:1998 {B1}, the Ada Language Binding to POSIX.1, encapsulate fork() and
183 exec functionality in a manner similar to that of posix_spawn() and C

184 posix_spawnp(). Originally, in keeping with our simplicity goal, the working C

185 group had limited the capabilities of posix_spawn() and posix_spawnp() to a sub- C

186 set of the capabilities of Start_Process and Start_Process_Search ; certain C

187 non-default capabilities were not supported. However, based on suggestions by the C

188 ballot group to improve file descriptor mapping or drop it, and on the advice of an C

189 Ada Bindings working group member, the working group decided that C

190 posix_spawn() and posix_spawnp() should be sufficiently powerful to implement C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.3 Process Primitives 77

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

191 Start_Process and Start_Process_Search . The rationale is that if the Ada C

192 language binding to such a primitive had already been approved as an IEEE stan- C

193 dard, there can be little justification for not approving the functionally equivalent C

194 parts of a C binding. The only three capabilities provided by posix_spawn() and C

195 posix_spawnp() that are not provided by Start_Process and Start_Process_- C

196 Search are optionally specifying the child’s process group id, the set of signals to C

197 be reset to default signal handling in the child process, and the child’s scheduling C

198 policy and parameters. C

199 For the Ada Language Binding for Start_Process to be implemented with
200 posix_spawn(), that Binding would need to explicitly pass an empty signal mask

and201 the parent’s environment to posix_spawn() whenever the caller of Start_-
Process202 allowed these arguments to default, since posix_spawn() does not provide
such203 defaults. The ability of Start_Process to mask user-specified signals during
its204 execution is functionally unique to the Ada Language Binding and must be
dealt205 with in the binding separately from the call to posix_spawn().

206 Process Group

207 The process group inheritance field can be used to join the child process with an
existing208 process group. By assigning a value of zero to the spawn-pgroup attri- D

209 bute of the object referenced by attrp, the setpgid() mechanism will place the child
process210 in a new process group.

211 Threads

212 Without the posix_spawn() and posix_spawnp() functions, systems without C

213 address translation can still use threads to give an abstraction of concurrency. In
many214 cases, thread creation suffices, but it is not always a good substitute. The

215 posix_spawn() and posix_spawnp() functions are considerably ‘‘heavier’’ than C

216 thread creation. Processes have several important attributes that threads do not.
Even217 without address translation, a process may have base-and-bound memory
protection.218 Each process has a process environment including security attributes
and219 file capabilities, and powerful scheduling attributes specified by POSIX.1 and

220 POSIX.1b. Processes abstract the behavior of non-uniform-memory-architecture
multi221 -processors better than threads, and they are more convenient to use for
activities222 that are not closely linked.

The223 posix_spawn() and posix_spawnp() functions may not bring support for multi- C

224 ple processes to every configuration. Process creation is not the only piece of
operating225 system support required to support multiple processes. The total cost of
support226 for multiple processes may be quite high in some circumstances. Existing
practice227 shows that support for multiple processes is uncommon and threads are
common228 among ‘‘tiny kernels.’’ There should, therefore, probably continue to be

229 AEPs for operating systems with only one process.

230 Asynchronous Error Notification Rationale

231 A library implementation of posix_spawn() or posix_spawnp() may not be able to C

232 detect all possible errors before it forks the child process. This standard provides D

233 for an error indication returned from a child process which could not successfully D

234 complete the spawn operation via a special exit status which may be detected D

235 using the status value returned by wait() and waitpid(). D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

78 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

236 The stat_val interface and the macros used to interpret it are not well-suited to
the237 purpose of returning API errors, but they are the only path available to a D

238 library implementation. Thus, an implementation may cause the child process to D

239 exit with exit status 127 for any error detected during the spawn process after the D

240 posix_spawn() or posix_spawnp() function has successfully returned. D

241 C

242 The working group had proposed using two additional macros to interpret C

243 stat_val: The first, WIFSPAWNFAIL, would have detected a status that indicated C

244 that the child exited because of an error detected during the posix_spawn() or C

245 posix_spawnp() operations rather than during actual execution of the child pro- C

246 cess image; the second, WSPAWNERRNO, would have extracted the error value if C

247 WIFSPAWNFAIL indicated a failure. Unfortunately, the ballot group strongly C

248 opposed this because it would make a library implementation of posix_spawn() or C

249 posix_spawnp() dependent on kernel modifications to waitpid() to be able to C

250 embed special information in stat_val to indicate a spawn failure. C

251 The 8 bits of child process exit status that are guaranteed by this standard to be C

252 accessible to the waiting parent process are insufficient to disambiguate a spawn C

253 error from any other kind of error that my be returned by an arbitrary process C

254 image. No other bits of the exit status are required to be visible in stat_val, so C

255 these macros could not be strictly implemented at the library level. Reserving an D

256 exit status of 127 for such spawn errors is consistent with the use of this value by D

257 system () and popen() to signal failures in these operations that occur after the D

258 function has returned but before a shell is able to execute. The exit status of 127 D

259 does not uniquely identify this class of error, nor does it provide any detailed infor- D

260 mation on the nature of the failure. Note that a kernel implementation of D

261 posix_spawn() or posix_spawnp() is permitted (and encouraged) to return any pos- D

262 sible error as the function value, thus providing more detailed failure information D

263 to the parent process. D

264 Thus, no special macros are available to isolate asynchronous posix_spawn() or C

265 posix_spawnp() errors. Instead, errors detected by the posix_spawn() or C

266 posix_spawnp() operations in the context of the child process before the new pro- C

267 cess image executes are reported by setting the child’s exit status to 127. The cal- D

268 ling process may use the WIFEXITED and WEXITSTATUS macros on the stat_val D

269 stored by the wait() or waitpid() functions to detect spawn failures to the extent C

270 that other status values with which the child process image may exit (before the C

271 parent can conclusively determine that the child process image has begun execu- C

272 tion) are distinct from exit status 127. D

273 Library Implementation of Spawn

274 The posix_spawn() or posix_spawnp() operation is enough to: C

275 — Simply start a process executing a process image. This is the simplest
276 application for process creation, and it may cover most executions of POSIX
277 fork().

278 — Support I/O redirection including pipes.

279 — Run the child under a user and group ID in the domain of the parent.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.3 Process Primitives 79

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

280 — Run the child at any priority in the domain of the parent.

The281 posix_spawn() or posix_spawnp() operation does not cover every possible use C

282 of fork(), but it does span the common applications: typical use by shell and
283 login .

The284 cost is that before it calls posix_spawn() or posix_spawnp(), the parent must C

285 adjust to a state that posix_spawn() or posix_spawnp() can map to the desired C

286 state for the child. Environment changes require the parent to save some of its C

287 state and restore it afterwards. The effective behavior of a successful invocation of
288 posix_spawn() is as if the operation were implemented with POSIX operations as

shown289 in Figure B-1.

290 ___
291 #include <sys/types.h> C
292 #include <stdlib.h> C
293 #include <stdio.h> C
294 #include <unistd.h> C
295 #include <sched.h> C
296 #include <fcntl.h> C
297 #include <signal.h> C
298 #include <errno.h> C
299 #include <string.h> C
300 #include <signal.h> D

301 / ∗#include <spawn.h> ∗/ C
302 / ∗∗∗/ C
303 / ∗Things that could be defined in spawn.h ∗/ C
304 / ∗∗∗/ C
305 typedef struct D
306 { C
307 short posix_attr_flags; C
308 #define POSIX_SPAWN_SETPGROUP 0x1 C
309 #define POSIX_SPAWN_SETSIGMASK 0x2 C
310 #define POSIX_SPAWN_SETSIGDEF 0x4 C
311 #define POSIX_SPAWN_SETSCHEDULER 0x8 C
312 #define POSIX_SPAWN_SETSCHEDPARAM 0x10 C
313 #define POSIX_SPAWN_RESETIDS 0x20 C
314 pid_t posix_attr_pgroup; C
315 sigset_t posix_attr_sigmask; C
316 sigset_t posix_attr_sigdefault; C
317 int posix_attr_schedpolicy; C
318 struct sched_param posix_attr_schedparam; C
319 } posix_spawnattr_t; D

320 typedef char ∗posix_spawn_file_actions_t; C

321 int posix_spawn_file_actions_init(C
322 posix_spawn_file_actions_t ∗file_actions); C
323 int posix_spawn_file_actions_destroy(C
324 posix_spawn_file_actions_t ∗file_actions); C
325 int posix_spawn_file_actions_addclose(C
326 posix_spawn_file_actions_t ∗file_actions, C
327 int fildes); C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

80 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

328 int posix_spawn_file_actions_adddup2(C
329 posix_spawn_file_actions_t ∗file_actions, C
330 int fildes, int newfildes); C
331 int posix_spawn_file_actions_addopen(C
332 posix_spawn_file_actions_t ∗file_actions, C
333 int fildes, const char ∗path, int oflag, C
334 mode_t mode); C
335 int posix_spawnattr_init (D
336 posix_spawnattr_t ∗attr); D
337 int posix_spawnattr_destroy (D
338 posix_spawnattr_t ∗attr); D
339 int posix_spawnattr_getflags (D
340 const posix_spawnattr_t ∗attr, D
341 short ∗flags); D
342 int posix_spawnattr_setflags (D
343 posix_spawnattr_t ∗attr, D
344 short flags); D
345 int posix_spawnattr_getpgroup (D
346 const posix_spawnattr_t ∗attr, D
347 pid_t ∗pgroup); D
348 int posix_spawnattr_setpgroup (D
349 posix_spawnattr_t ∗attr, D
350 pid_t pgroup); D
351 int posix_spawnattr_getschedpolicy (D
352 const posix_spawnattr_t ∗attr, D
353 int ∗schedpolicy); D
354 int posix_spawnattr_setschedpolicy (D
355 posix_spawnattr_t ∗attr, D
356 int schedpolicy); D
357 int posix_spawnattr_getschedparam (D
358 const posix_spawnattr_t ∗attr, D
359 struct sched_param ∗schedparam); D
360 int posix_spawnattr_setschedparam (D
361 posix_spawnattr_t ∗attr, D
362 const struct sched_param ∗schedparam); D
363 int posix_spawnattr_getsigmask (D
364 const posix_spawnattr_t ∗attr, D
365 sigset_t ∗sigmask); D
366 int posix_spawnattr_setsigmask (D
367 posix_spawnattr_t ∗attr, D
368 const sigset_t ∗sigmask); D
369 int posix_spawnattr_getdefault (D
370 const posix_spawnattr_t ∗attr, D
371 sigset_t ∗sigdefault); D
372 int posix_spawnattr_setdefault (D
373 posix_spawnattr_t ∗attr, D
374 const sigset_t ∗sigdefault); D
375 int posix_spawn(C
376 pid_t ∗pid, C
377 const char ∗path, C
378 const posix_spawn_file_actions_t ∗file_actions, C
379 const posix_spawnattr_t ∗attrp, D
380 char ∗ const argv[], C
381 char ∗ const envp[]); C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.3 Process Primitives 81

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

382 int posix_spawnp(C
383 pid_t ∗pid, C
384 const char ∗file, C
385 const posix_spawn_file_actions_t ∗file_actions, C
386 const posix_spawnattr_t ∗attrp, D
387 char ∗ const argv[], C
388 char ∗ const envp[]); C

389 / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/ C
390 / ∗Example posix_spawn() library routine ∗/ C
391 / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/ C
392 int posix_spawn(pid_t ∗pid, C
393 const char ∗path, C
394 const posix_spawn_file_actions_t ∗file_actions, C
395 const posix_spawnattr_t ∗attrp, D
396 char ∗ const argv[], C
397 char ∗ const envp[]) C
398 { C
399 / ∗Create process ∗/ C
400 if((∗pid=fork()) == (pid_t)0) C
401 { C
402 / ∗This is the child process ∗/ C
403 / ∗Worry about process group ∗/ C
404 if(attrp −>posix_attr_flags & POSIX_SPAWN_SETPGROUP) C
405 { C
406 / ∗Override inherited process group ∗/ C
407 if(setpgid(0, attrp −>posix_attr_pgroup) != 0) C
408 { C
409 / ∗Failed ∗/ C
410 exit(127); D
411 } C
412 } C

413 / ∗Worry about process signal mask ∗/ C
414 if(attrp −>posix_attr_flags & POSIX_SPAWN_SETSIGMASK) C
415 { C
416 / ∗Set the signal mask (can’t fail) ∗/ C
417 sigprocmask(SIG_SETMASK, &attrp −>posix_attr_sigmask, C
418 NULL); C
419 } C

420 / ∗Worry about resetting effective user and group ID s∗/ C
421 if(attrp −>posix_attr_flags & POSIX_SPAWN_RESETIDS) C
422 { C
423 / ∗None of these can fail for this case. ∗/ C
424 setuid(getuid()); C
425 setgid(getgid()); C
426 } C

427 / ∗Worry about defaulted signals ∗/ C
428 if(attrp −>posix_attr_flags & POSIX_SPAWN_SETSIGDEF) C
429 { C
430 struct sigaction deflt; C
431 sigset_t all_signals; C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

82 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

432 int s; C

433 / ∗Construct default signal action ∗/ C
434 deflt.sa_handler = SIG_DFL; C
435 deflt.sa_flags = 0; C

436 / ∗Construct the set of all signals ∗/ C
437 sigfillset(&all_signals); C
438 C
439 / ∗Loop for all signals ∗/ C
440 for(s=0; sigismember(&all_signals,s); s++) C
441 { C
442 / ∗Signal to be defaulted? ∗/ C
443 if(sigismember(&attrp −>posix_attr_sigdefault,s)) C
444 { C
445 / ∗Yes − default this signal ∗/ C
446 if(sigaction(s, &deflt, NULL) == −1) C
447 { C
448 / ∗Failed ∗/ C
449 exit(127); D
450 } C
451 } C
452 } C
453 } C

454 / ∗Worry about the fds if we are to map them ∗/ C
455 if(file_actions != NULL) C
456 { C
457 / ∗Loop for all actions in object ∗file_actions ∗/ C
458 / ∗(implementation dives beneath abstraction) ∗/ C
459 char ∗p = ∗file_actions; C
460 while(∗p != ’\0’) C
461 { C
462 if(strncmp(p,"close(",6) == 0) C
463 { C
464 int fd; C
465 if(sscanf(p+6,"%d)",&fd) != 1) C
466 { C
467 exit(127); D
468 } C
469 if(close(fd) == −1) exit(127); D
470 } C
471 else if(strncmp(p,"dup2(",5) == 0) C
472 { C
473 int fd,newfd; C
474 if(sscanf(p+5,"%d,%d)",&fd,&newfd) != 2) C
475 { C
476 exit(127); D
477 } C
478 if(dup2(fd, newfd) == −1) exit(127); D
479 } C
480 else if(strncmp(p,"open(",5) == 0) C
481 { C
482 int fd,oflag; C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.3 Process Primitives 83

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

483 mode_t mode; C
484 int tempfd; C
485 char path[1000]; / ∗should be dynamic ∗/ C
486 char ∗q; C
487 if(sscanf(p+5,"%d,",&fd) != 1) C
488 { C
489 exit(127); D
490 } C
491 p = strchr(p, ’,’) + 1; C
492 q = strchr(p, ’ ∗’); C
493 if(q == NULL) exit(127); D
494 strncpy(path, p, q −p); C
495 path[q −p] = ’\0’; C
496 if(sscanf(q+1,"%o,%o)",&oflag,&mode)!=2) C
497 { C
498 exit(127); D
499 } C
500 if(close(fd) == −1) C
501 { C
502 if(errno != EBADF) exit(127); D
503 } C
504 tempfd = open(path, oflag, mode); C
505 if(tempfd == −1) exit(127); D
506 if(tempfd != fd) C
507 { C
508 if(dup2(tempfd,fd) == −1) C
509 { C
510 exit(127); D
511 } C
512 if(close(tempfd) == −1) C
513 { C
514 exit(127); D
515 } C
516 } C
517 } C
518 else C
519 { C
520 exit(127); D
521 } C
522 p = strchr(p, ’)’) + 1; C
523 } C
524 } C

525 / ∗Worry about setting new scheduling policy and parameters ∗/ C
526 if(attrp −>posix_attr_flags & POSIX_SPAWN_SETSCHEDULER) C
527 { C
528 if(sched_setscheduler(0, attrp −>posix_attr_schedpolicy, C
529 &attrp −>posix_attr_schedparam) == −1) C
530 { C
531 exit(127); D
532 } C
533 } C

534 / ∗Worry about setting only new scheduling parameters ∗/ C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

84 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

535 if(attrp −>posix_attr_flags & POSIX_SPAWN_SETSCHEDPARAM) C
536 { C
537 if(sched_setparam(0, &attrp −>posix_attr_schedparam)== −1) C
538 { C
539 exit(127); D
540 } C
541 } C

542 / ∗Now execute the program at path ∗/ C
543 / ∗Any fd that still has FD_CLOEXECset will be closed ∗/ C
544 execve(path, argv, envp); C
545 exit(127); / ∗exec failed ∗/ D
546 } C
547 else C
548 { C
549 / ∗This is the parent (calling) process ∗/ C
550 if((int)pid == −1) return errno; C
551 return 0; C
552 } C
553 } C

554 / ∗∗/ C
555 / ∗ Here is a crude but effective implementation of the ∗/ C
556 / ∗ file action object operators which store actions as ∗/ C
557 / ∗ concatenated token separated strings. ∗/ C
558 / ∗∗/ C
559 / ∗Create object with no actions. ∗/ C
560 int posix_spawn_file_actions_init(C
561 posix_spawn_file_actions_t ∗file_actions) C
562 { C
563 ∗file_actions = malloc(sizeof(char)); C
564 if(∗file_actions == NULL) return ENOMEM; C
565 strcpy(∗file_actions, ""); C
566 return 0; C
567 } C

568 / ∗Free object storage and make invalid. ∗/ C
569 int posix_spawn_file_actions_destroy(C
570 posix_spawn_file_actions_t ∗file_actions) C
571 { C
572 free(∗file_actions); C
573 ∗file_actions = NULL; C
574 return 0; E
575 } C

576 / ∗Add a new action string to object. ∗/ C
577 static int add_to_file_actions(C
578 posix_spawn_file_actions_t ∗file_actions, C
579 char ∗new_action) C
580 { C
581 ∗file_actions = realloc C
582 (∗file_actions, strlen(∗file_actions)+strlen(new_action)+1); C
583 if(∗file_actions == NULL) return ENOMEM; C
584 strcat(∗file_actions, new_action); C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.3 Process Primitives 85

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

585 return 0; C
586 } C

587 / ∗Add a close action to object. ∗/ C
588 int posix_spawn_file_actions_addclose(C
589 posix_spawn_file_actions_t ∗file_actions, C
590 int fildes) C
591 { C
592 char temp[100]; C
593 sprintf(temp, "close(%d)", fildes); C
594 return add_to_file_actions(file_actions, temp); C
595 } C

596 / ∗Add a dup2 action to object. ∗/ C
597 int posix_spawn_file_actions_adddup2(C
598 posix_spawn_file_actions_t ∗file_actions, C
599 int fildes, int newfildes) C
600 { C
601 char temp[100]; C
602 sprintf(temp, "dup2(%d,%d)", fildes, newfildes); C
603 return add_to_file_actions(file_actions, temp); C
604 } C
605 C
606 / ∗Add an open action to object. ∗/ C
607 int posix_spawn_file_actions_addopen(C
608 posix_spawn_file_actions_t ∗file_actions, C
609 int fildes, const char ∗path, int oflag, C
610 mode_t mode) C
611 { C
612 char temp[100]; C
613 sprintf(temp, "open(%d,%s ∗%o,%o)", fildes, path, oflag, mode); C
614 return add_to_file_actions(file_actions, temp); C
615 } C

616 / ∗∗/ D
617 / ∗ Here is a crude but effective implementation of the ∗/ D
618 / ∗ spawn attributes object functions which manipulate ∗/ D
619 / ∗ the individual attributes. ∗/ D
620 / ∗∗/ D
621 / ∗Initialize object with default values. ∗/ D
622 int posix_spawnattr_init (D
623 posix_spawnattr_t ∗attr) D
624 { D
625 attr->posix_attr_flags=0; D
626 attr->posix_attr_pgroup=0; D
627 / ∗ Default value of signal mask is the parent’s signal mask ∗/ D
628 / ∗ other values are also allowed ∗/ D
629 sigprocmask(0, NULL,&attr->posix_attr_sigmask); D
630 sigemptyset(&attr->posix_attr_sigdefault); D
631 / ∗ Default values of scheduling attr. inherited from the parent ∗/ D
632 / ∗ other values are also allowed ∗/ D
633 attr->posix_attr_schedpolicy=sched_getscheduler(0); D
634 sched_getparam(0,&attr->posix_attr_schedparam); D
635 return 0; E

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

86 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

636 } D

637 int posix_spawnattr_destroy (D
638 posix_spawnattr_t ∗attr) D
639 { D
640 / ∗ No action needed ∗/ D
641 return 0; E
642 } D

643 int posix_spawnattr_getflags (D
644 const posix_spawnattr_t ∗attr, D
645 short ∗flags) D
646 { D
647 ∗flags=attr->posix_attr_flags; D
648 return 0; E
649 } D

650 int posix_spawnattr_setflags (D
651 posix_spawnattr_t ∗attr, D
652 short flags) D
653 { D
654 attr->posix_attr_flags=flags; D
655 return 0; E
656 } D

657 int posix_spawnattr_getpgroup (D
658 const posix_spawnattr_t ∗attr, D
659 pid_t ∗pgroup) D
660 { D
661 ∗pgroup=attr->posix_attr_pgroup; D
662 return 0; E
663 } D

664 int posix_spawnattr_setpgroup (D
665 posix_spawnattr_t ∗attr, D
666 pid_t pgroup) D
667 { D
668 attr->posix_attr_pgroup=pgroup; D
669 return 0; E
670 } D

671 int posix_spawnattr_getschedpolicy (D
672 const posix_spawnattr_t ∗attr, D
673 int ∗schedpolicy) D
674 { D
675 ∗schedpolicy=attr->posix_attr_schedpolicy; D
676 return 0; E
677 } D

678 int posix_spawnattr_setschedpolicy (D
679 posix_spawnattr_t ∗attr, D
680 int schedpolicy) D
681 { D
682 attr->posix_attr_schedpolicy=schedpolicy; D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.3 Process Primitives 87

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

683 return 0; E
684 } D

685 int posix_spawnattr_getschedparam (D
686 const posix_spawnattr_t ∗attr, D
687 struct sched_param ∗schedparam) D
688 { D
689 ∗schedparam=attr->posix_attr_schedparam; D
690 return 0; E
691 } D

692 int posix_spawnattr_setschedparam (D
693 posix_spawnattr_t ∗attr, D
694 const struct sched_param ∗schedparam) D
695 { D
696 attr->posix_attr_schedparam= ∗schedparam; D
697 return 0; E
698 } D

699 int posix_spawnattr_getsigmask (D
700 const posix_spawnattr_t ∗attr, D
701 sigset_t ∗sigmask) D
702 { D
703 ∗sigmask=attr->posix_attr_sigmask; D
704 return 0; E
705 } D

706 int posix_spawnattr_setsigmask (D
707 posix_spawnattr_t ∗attr, D
708 const sigset_t ∗sigmask) D
709 { D
710 attr->posix_attr_sigmask= ∗sigmask; D
711 return 0; E
712 } D

713 int posix_spawnattr_getsigdefault (D
714 const posix_spawnattr_t ∗attr, D
715 sigset_t ∗sigdefault) D
716 { D
717 ∗sigdefault=attr->posix_attr_sigdefault; D
718 return 0; E
719 } D

720 int posix_spawnattr_setsigdefault (D
721 posix_spawnattr_t ∗attr, D
722 const sigset_t ∗sigdefault) D
723 { D
724 attr->posix_attr_sigdefault= ∗sigdefault; D
725 return 0; E
726 } D

727 ___

728 Figure B-1 −− posix_spawn() Equivalent

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

88 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

729 I/O redirection with posix_spawn() or posix_spawnp() is accomplished by crafting C

730 a file_actions argument to effect the desired redirection. Such a redirection follows C

731 the general outline of the example in Figure B-2. C

732 ___
733 / ∗ To redirect new standard output (fd 1) to a file, ∗/ C
734 / ∗ and redirect new standard input (fd 0) from my fd socket_pair[1], ∗/ C
735 / ∗ and close my fd socket_pair[0] in the new process. ∗/ C
736 posix_spawn_file_actions_t file_actions; C
737 posix_spawn_file_actions_init (&file_actions); C
738 posix_spawn_file_actions_addopen (&file_actions, 1, "newout", ...); C
739 posix_spawn_file_actions_dup2 (&file_actions, socket_pair[1], 0); C
740 posix_spawn_file_actions_close (&file_actions, socket_pair[0]); C
741 posix_spawn_file_actions_close (&file_actions, socket_pair[1]); C
742 posix_spawn(..., &file_actions, ...) C
743 posix_spawn_file_actions_destroy (&file_actions); C

744 ___

745 Figure B-2 −− I/O Redirection with posix_spawn()

746 Spawning a process under a new userid uses the outline shown in Figure B-3.

747 ___
748 Save = getuid();

s749 etuid(newid);
p750 osix_spawn(...)
s751 etuid(Save);

752 ___

753 Figure B-3 −− Spawning a new Userid Process

754 B.13 Execution Scheduling

755 ⇒⇒ B.13 Execution Scheduling Add the following subclause:

756 B.13.3 Sporadic Server Scheduling Policy

757 The sporadic server is a mechanism defined for scheduling aperiodic activities in
time758 -critical realtime systems. This mechanism reserves a certain bounded
amount759 of execution capacity for processing aperiodic events at a high priority
level.760 Any aperiodic events that cannot be processed within the bounded amount
of761 execution capacity are executed in the background at a low priority level. Thus,
a762 certain amount of execution capacity can be guaranteed to be available for pro-
cessing763 periodic tasks, even under burst conditions in the arrival of aperiodic pro-
cessing764 requests (i.e. a large number of requests in a short time interval). The
sporadic765 server also simplifies the schedulability analysis of the realtime system,

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.13 Execution Scheduling 89

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

766 because it allows aperiodic processes or threads to be treated as if they were
periodic.767 The sporadic server was first described by Sprunt, et al. {B2}.

The768 key concept of the sporadic server is to provide and limit a certain amount of
computation769 capacity for processing aperiodic events at their assigned normal
priority,770 during a time interval called the replenishment period. Once the entity
controlled771 by the sporadic server mechanism is initialized with its period and
execution772 -time budget attributes, it preserves its execution capacity until an
aperiodic773 request arrives. The request will be serviced (if there are no higher
priority774 activities pending) as long as there is execution capacity left. If the
request775 is completed, the actual execution time used to service it is subtracted
from776 the capacity, and a replenishment of this amount of execution time is
scheduled777 to happen one replenishment period after the arrival of the aperiodic
request.778 If the request is not completed, because there is no execution capacity
left,779 then the aperiodic process or thread is assigned a lower background priority.
F780 or each portion of consumed execution capacity the execution time used is
replenished781 after one replenishment period. At the time of replenishment, if the
sporadic782 server was executing at a background priority level, its priority is
elevated783 to the normal level. Other similar replenishment policies have been
de784 fined, but the one presented here represents a compromise between efficiency
and785 implementation complexity.

The786 interface that appears in this section defines a new scheduling policy for
threads787 and processes that behaves according to the rules of the sporadic server
mechanism.788 Scheduling attributes are defined and functions are provided to allow
the789 user to set and get the parameters that control the scheduling behavior of this
mechanism,790 namely the normal and low priority, the replenishment period, the C

791 maximum number of pending replenishment operations, and the initial C

792 execution-time budget. C

793 B.13.3.1 Scheduling Aperiodic Activities (rationale)

794 Virtually all realtime applications are required to process aperiodic activities. In
many795 cases, there are tight timing constraints that the response to the aperiodic
events796 must meet. Usual timing requirements imposed on the response to these
events797 are:

798 — The effects of an aperiodic activity on the response time of lower priority
799 activities must be controllable and predictable.

800 — The system must provide the fastest possible response time to aperiodic
801 events.

802 — It must be possible to take advantage of all the available processing
803 bandwidth not needed by time-critical activities to enhance average-case
804 response times to aperiodic events.

T805 raditional methods for scheduling aperiodic activities are background processing,
polling806 tasks, and direct event execution:

807 — Background processing consists of assigning a very low priority to the pro-
808 cessing of aperiodic events. It utilizes all the available bandwidth in the

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

90 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

809 system that has not been consumed by higher priority threads. However, it
810 is very difficult, or impossible, to meet requirements on average-case
811 response time, because the aperiodic entity has to wait for the execution of
812 all other entities which have higher priority.

813 — Polling consists of creating a periodic process or thread for servicing
814 aperiodic requests. At regular intervals, the polling entity is started and it
815 services accumulated pending aperiodic requests. If no aperiodic requests
816 are pending, the polling entity suspends itself until its next period. Polling
817 allows the aperiodic requests to be processed at a higher priority level.
818 However, worst and average-case response times of polling entities are a
819 direct function of the polling period, and there is execution overhead for
820 each polling period, even if no event has arrived. If the deadline of the
821 aperiodic activity is short compared to the interarrival time, the polling fre-
822 quency must be increased to guarantee meeting the deadline. For this case,
823 the increase in frequency can dramatically reduce the efficiency of the sys-
824 tem and, therefore, its capacity to meet all deadlines. Yet, polling
825 represents a good way to handle a large class of practical problems because
826 it preserves system predictability, and because the amortised overhead
827 drops as load increases.

828 — Direct event execution consists of executing the aperiodic events at a high
829 fixed-priority level. Typically, the aperiodic event is processed by an inter-
830 rupt service routine as soon as it arrives. This technique provides predict-
831 able response times for aperiodic events, but makes the response times of
832 all lower priority activities completely unpredictable under burst arrival
833 conditions. Therefore, if the density of aperiodic event arrivals is
834 unbounded, it may be a dangerous technique for time-critical systems. Yet,
835 for those cases in which the physics of the system imposes a bound on the
836 event arrival rate, it is probably the most efficient technique.

The837 sporadic server scheduling algorithm combines the predictability of the pol-
ling838 approach with the short response times of the direct event execution. Thus, it
allows839 systems to meet an important class of application requirements that cannot
be840 met by using the traditional approaches. Multiple sporadic servers with
di841 fferent attributes can be applied to the scheduling of multiple classes of
aperiodic842 events, each with different kinds of timing requirements, such as indivi-
dual843 deadlines, average response times, etc. It also has many other interesting
applications844 for realtime, such as scheduling producer/consumer tasks in
time845 -critical systems, limiting the effects of faults on the estimation of task
execution846 -time requirements, etc.

847 B.13.3.2 Existing Practice

848 The sporadic server has been used in different kinds of applications, including mil-
itary849 avionics, robot control systems, industrial automation systems, etc. There
are850 examples of many systems that cannot be successfully scheduled using the
classic851 approaches such as direct event execution, or polling, and are schedulable
using852 a sporadic server scheduler. The sporadic server algorithm itself can suc-
cessfully853 schedule all systems scheduled with direct event execution or polling.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.13 Execution Scheduling 91

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

854 The sporadic server scheduling policy has been implemented as a commercial pro-
duct855 in the run-time system of the Verdix Ada compiler. There are also many
applications856 that have used a much less efficient application-level sporadic server.
These857 real-time applications would benefit from a sporadic server scheduler imple-
mented858 at the scheduler level.

859 B.13.3.3 Library-Level vs. Kernel-Level Implementation

860 The sporadic server interface described in this section requires the sporadic server
policy861 to be implemented at the same level as the scheduler. This means that the
process862 sporadic server shall be implemented at the kernel level and the thread
sporadic863 server policy shall be implemented at the same level as the thread
scheduler,864 i.e. kernel or library level.

In865 an earlier interface for the sporadic server, this mechanism was implementable
at866 a different level than the scheduler. This feature allowed the implementer to
choose867 between an efficient scheduler-level implementation, or a simpler user or
library868 -level implementation. However, the working group considered that this
interface869 made the use of sporadic servers more complex, and that library-level
i870 mplementations would lack some of the important functionality of the sporadic
server,871 namely the limitation of the actual execution time of aperiodic activities.
The872 working group also felt that the interface described in this chapter does not
preclude873 library-level implementations of threads intended to provide efficient
low874 -overhead scheduling for those threads that are not scheduled under the
sporadic875 server policy.

876 B.13.3.4 Range of Scheduling Priorities

877 Each of the scheduling policies supported in POSIX.1b has an associated range of
priorities.878 The priority ranges for each policy might or might not overlap with the
priority879 ranges of other policies. For time-critical realtime applications it is usual
for880 periodic and aperiodic activities to be scheduled together in the same proces-
sor.881 Periodic activities will usually be scheduled using the SCHED_FIFO scheduling
policy,882 while aperiodic activities may be scheduled using SCHED_SPORADIC.

883 Since the application developer will require complete control over the relative
priorities884 of these activities in order to meet his timing requirements, it would be
desirable885 for the priority ranges of SCHED_FIFO and SCHED_SPORADIC to overlap
completely.886 Therefore, although the standard does not require any particular rela-
tionship887 between the different priority ranges, it is recommended that these two
ranges888 should coincide.

889 B.13.3.5 Dynamically Setting the Sporadic Server Policy

890 Several members of the Working Group requested that implementations should
not891 be required to support dynamically setting the sporadic server scheduling pol-
icy892 for a thread. The reason is that this policy may have a high overhead for
library-level893 implementations of threads, and if threads are allowed to dynami-
cally894 set this policy this overhead can be experienced even if the thread does not
use895 that policy. By disallowing the dynamic setting of the sporadic server

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

92 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

896 scheduling policy, these implementations can accomplish efficient scheduling for
threads897 using other policies. If a strictly conforming application needs to use the
sporadic898 server policy, and is therefore willing to pay the overhead, it must set
this899 policy at the time of thread creation.

900 B.13.3.6 Limitation of the Number of Pending Replenishments

901 The number of simultaneously pending replenishment operations must be limited
for902 each sporadic server for two reasons: an unlimited number of replenishment
operations903 would need an unlimited number of system resources to store all the
pending904 replenishment operations; on the other hand, in some implementations
each905 replenishment operation will represent a source of priority inversion (just for
the906 duration of the replenishment operation) and thus, the maximum amount of
r907 eplenishments must be bounded to guarantee bounded response times. The way
in908 which the number of replenishments is bounded is by lowering the priority of
the909 sporadic server to sched_ss_low_priority when the number of pending replen-
ishments910 has reached its limit. In this way, no new replenishments are scheduled
until911 the number of pending replenishments decreases.

In912 the sporadic server scheduling policy defined in this standard, the application
can913 specify the maximum number of pending replenishment operations for a sin-
gle914 sporadic server, by setting the value of the sched_ss_max_repl scheduling
parameter.915 This value must be between one and {SS_REPL_MAX}, which is a max-
imum916 limit imposed by the implementation. The limit {SS_REPL_MAX} must be
greater917 than or equal to {_POSIX_SS_REPL_MAX}, which is defined to be four in
this918 standard. The minimum limit of four was chosen so that an application can at
least919 guarantee that four different aperiodic events can be processed during each
interval920 of length equal to the replenishment period.

921 B.14 Clocks and Timers

922 ⇒⇒ B.14 Clocks and Timers Add the following subclauses:

923 B.14.3 Execution Time Monitoring

B924 .14.3.1 Introduction

925 The main goals of the execution time monitoring facilities defined in this chapter
are926 to measure the execution time of processes and threads and to allow an appli-
cation927 to establish CPU time limits for these entities. The analysis phase of
time928 -critical realtime systems often relies on the measurement of execution times
of929 individual threads or processes to determine whether the timing requirements
will930 be met. Also, performance analysis techniques for soft deadline realtime sys-
tems931 rely heavily on the determination of these execution times. The execution
time932 monitoring functions provide application developers with the ability to

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.14 Clocks and Timers 93

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

933 measure these execution times on-line and open the possibility of dynamic
execution934 -time analysis and system reconfiguration, if required. The second goal
of935 allowing an application to establish execution time limits for individual
processes936 or threads and detecting when they overrun allows program robustness
to937 be increased by enabling on-line checking of the execution times. If errors are
detected938 — possibly because of erroneous program constructs, the existence of
errors939 in the analysis phase, or a burst of event arrivals — on-line detection and
recovery940 is possible in a portable way. This feature can be extremely important for
many941 time-critical applications. Other applications require trapping CPU-time
errors942 as a normal way to exit an algorithm; for instance, some realtime artificial
intelligence943 applications trigger a number of independent inference processes of
varying944 accuracy and speed, limit how long they can run, and pick the best answer
available945 when time runs out. In many periodic systems, overrun processes are
simply946 restarted in the next resource period, after necessary end-of-period actions
have947 been taken. This allows algorithms that are inherently data-dependent to be
made948 predictable.

The949 interface that appears in this chapter defines a new type of clock, the
950 CPU-time clock, which measures execution time. Each process or thread can

invoke951 the clock and timer functions defined in POSIX.1b to use them. Functions
are952 also provided to access the CPU-time clock of other processes or threads to
enable953 remote monitoring of these clocks. Monitoring of threads of other processes
is954 not supported, since these threads are not visible from outside of their own pro-
cess955 with the interfaces defined in POSIX.1c.

956 B.14.3.2 Execution Time Monitoring Interface

957 The clock and timer interface defined in POSIX.1b (Section 14) only defines one
clock,958 which measures wall-clock time. The requirements for measuring execution
time959 of processes and threads, and setting limits to their execution time by detect-
ing960 when they overrun, can be accomplished with that interface if a new kind of
clock961 is defined. These new clocks measure execution time, and one is associated
with962 each process and with each thread. The clock functions currently defined in

963 POSIX.1b can be used to read and set these CPU-time clocks, and timers can be
created964 using these clocks as their timing base. These timers can then be used to
send965 a signal when some specified execution time has been exceeded. The

966 CPU-time clocks of each process or thread can be accessed by using the symbols
967 CLOCK_PROCESS_CPUTIME_ID, or CLOCK_THREAD_CPUTIME_ID.

968 The clock and timer interface defined in POSIX.1b and extended with the new kind
of969 CPU-time clock would only allow processes or threads to access their own

970 CPU-time clocks. However, many realtime systems require the possibility of moni-
toring971 the execution time of processes or threads from independent monitoring
entities.972 In order to allow applications to construct independent monitoring enti-
ties973 that do not require cooperation from or modification of the monitored entities,
two974 functions have been defined in this chapter: clock_getcpuclockid(), for access-
ing975 CPU-time clocks of other processes, and pthread_getcpuclockid(), for accessing

976 CPU-time clocks of other threads. These functions return the clock identifier asso-
ciated977 with the process or thread specified in the call. These clock IDs can then be
used978 in the rest of the clock function calls.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

94 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

979 The clocks accessed through these functions could also be used as a timing base
for980 the creation of timers, thereby allowing independent monitoring entities to
limit981 the CPU-time consumed by other entities. However, this possibility would
imply982 additional complexity and overhead because of the need to maintain a timer
queue983 for each process or thread, to store the different expiration times associated
with984 timers created by different processes or threads. The working group decided
this985 additional overhead was not justified by application requirements. Therefore,
creation986 of timers attached to the CPU-time clocks of other processes or threads
has987 been specified as implementation defined.

988 B.14.3.3 Overhead Considerations

989 The measurement of execution time may introduce additional overhead in the
thread990 scheduling, because of the need to keep track of the time consumed by each
of991 these entities. In library-level implementations of threads, the efficiency of C

992 scheduling could be somehow compromised because of the need to make a kernel C

993 call, at each context switch, to read the process CPU-time clock. Consequently, a C

994 thread creation attribute called cpu-clock-requirement was defined, to allow C

995 threads to disconnect their respective CPU-time clocks. However, the Ballot Group C

996 considered that this attribute itself introduced some overhead, and that in current C

997 implementations it was not worth the effort. Therefore, the attribute was deleted, C

998 and thus thread CPU-time clocks are required for all threads if the Thread CPU- C

999 Time Clocks option is supported. C

1000 B.14.3.4 Accuracy of CPU-time Clocks

1001 The mechanism used to measure the execution time of processes and threads is
speci1002 fied in this document as implementation defined. The reason for this is that
both1003 the underlying hardware and the implementation architecture have a very
strong1004 influence on the accuracy achievable for measuring CPU-time. For some
i1005 mplementations, the specification of strict accuracy requirements would
represent1006 very large overheads, or even the impossibility of being implemented.

Since1007 the mechanism for measuring execution time is implementation defined,
realtime1008 applications will be able to take advantage of accurate implementations
using1009 a portable interface. Of course, strictly conforming applications cannot rely
on1010 any particular degree of accuracy, in the same way as they cannot rely on a
very1011 accurate measurement of wall clock time. There will always exist applica-
tions1012 whose accuracy or efficiency requirements on the implementation are more
rigid1013 than the values defined in this or any other standard.

In1014 any case, there is a minimum set of characteristics that realtime applications
would1015 expect from most implementations. One such characteristic is that the sum
of1016 all the execution times of all the threads in a process equals the process execu-
tion1017 time, when no CPU-time clocks are disabled. This need not always be the
case1018 because implementations may differ in how they account for time during con-
text1019 switches. Another characteristic is that the sum of the execution times of all
processes1020 in a system equals the number of processors, multiplied by the elapsed
time,1021 assuming that no processor is idle during that elapsed time. However, in
some1022 systems it might not be possible to relate CPU-time to elapsed time. For

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.14 Clocks and Timers 95

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

1023 example, in a heterogeneous multiprocessor system in which each processor runs
at1024 a different speed, an implementation may choose to define each ‘‘second’’ of

1025 CPU-time to be a certain number of ‘‘cycles’’ that a CPU has executed.

1026 B.14.3.5 Existing Practice

1027 Measuring and limiting the execution time of each concurrent activity are com-
mon1028 features of most industrial implementations of realtime systems. Almost all
critical1029 realtime systems are currently built upon a cyclic executive. With this
approach,1030 a regular timer interrupt kicks off the next sequence of computations.
It1031 also checks that the current sequence has completed. If it has not, then some
error1032 recovery action can be undertaken (or at least an overrun is avoided).
Current1033 software engineering principles and the increasing complexity of software
are1034 driving application developers to implement these systems on multi-threaded
or1035 multi-process operating systems. Therefore, if a POSIX operating system is to be
used1036 for this type of application then it must offer the same level of protection.

Execution1037 time clocks are also common in most UNIX implementations, although
these1038 clocks usually have requirements different from those of realtime applica-
tions.1039 The POSIX.1 times () function supports the measurement of the execution
time1040 of the calling process, and its terminated child processes. This execution time
is1041 measured in clock ticks and is supplied as two different values with the user
and1042 system execution times, respectively. BSD supports the function getrusage (),
which1043 allows the calling process to get information about the resources used by
itself1044 and/or all of its terminated child processes. The resource usage includes user
and1045 system CPU time. Some UNIX systems have options to specify high resolution
(up1046 to one microsecond) CPU time clocks using the times () or the getrusage () func-
tions.1047

The1048 times () and getrusage () interfaces do not meet important realtime require-
ments1049 such as the possibility of monitoring execution time from a different process
or1050 thread, or the possibility of detecting an execution time overrun. The latter
requirement1051 is supported in some UNIX implementations that are able to send a
signal1052 when the execution time of a process has exceeded some specified value. For
example,1053 BSD defines the functions getitimer () and setitimer (), which can operate
either1054 on a realtime clock (wall-clock), or on virtual-time or profile-time clocks
which1055 measure CPU time in two different ways. These functions do not support
access1056 to the execution time of other processes. System V supports similar func-
tions1057 after release 4. Some emerging implementations of threads also support
these1058 functions.

1059 IBM’s MVS operating system supports per-process and per-thread execution time
clocks.1060 It also supports limiting the execution time of a given process.

Given1061 all this existing practice, the Working Group considered that the POSIX.1b
clocks1062 and timers interface was appropriate to meet most of the requirements that
real-time1063 applications have for execution time clocks. Functions were added to get
the1064 CPU time clock IDs, and to allow/disallow the thread CPU time clocks (in order
to1065 preserve the efficiency of some implementations of threads).

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

96 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

1066 B.14.3.6 Clock Constants

1067 The definition of the manifest constants CLOCK_PROCESS_CPUTIME_ID and
1068 CLOCK_THREAD_CPUTIME_ID allows processes or threads, respectively, to access

their1069 own execution-time clocks. However, given a process or thread, access to its
own1070 execution-time clock is also possible if the clock ID of this clock is obtained
through1071 a call to clock_getcpuclockid() or pthread_getcpuclockid(). Therefore,
these1072 constants are not necessary and could be deleted to make the interface
simpler.1073 Their existence saves one system call in the first access to the CPU-time
clock1074 of each process or thread. The Working Group considered this issue and
decided1075 to leave the constants in the standard because they are closer to the

1076 POSIX.1b use of clock identifiers.

1077 B.14.3.7 Library Implementations of Threads

1078 In library implementations of threads, kernel entities and library threads can
coexist.1079 In this case, if the CPU-time clocks are supported, most of the clock and
timer1080 functions will need to have two implementations: one in the thread library,
and1081 one in the system calls library. The main difference between these two imple-
mentations1082 is that the thread library implementation will have to deal with clocks
and1083 timers that reside in the thread space, while the kernel implementation will
operate1084 on timers and clocks that reside in kernel space. In the library implemen-
tation,1085 if the clock ID refers to a clock that resides in the kernel, a kernel call will
have1086 to be made. The correct version of the function can be chosen by specifying
the1087 appropriate order for the libraries during the link process.

1088 B.14.3.8 History of Resolution Issues: Deletion of the enable attribute

1089 In the draft corresponding to the first balloting round, CPU-time clocks had an
attribute1090 called enable . This attribute was introduced by the Working Group to
allow1091 implementations to avoid the overhead of measuring execution time for
those1092 processes or threads for which this measurement was not required. How-
ever,1093 the enable attribute got several ballot objections. The main reason was that
processes1094 are already required to measure execution time by the POSIX.1 times () C

1095 function. Consequently, the enable attribute was considered unnecessary, and C

1096 was deleted from the draft.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.14 Clocks and Timers 97

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

1097 B.14.4 Rationale Relating to Timeouts

B1098 .14.4.1 Requirements for Timeouts

1099 Realtime systems which must operate reliably over extended periods without
human1100 intervention are characteristic in embedded applications such as avionics,
machine1101 control, and space exploration, as well as more mundane applications
such1102 as cable TV, security systems and plant automation. A multi-tasking para-
digm,1103 in which many independent and/or cooperating software functions relinqu-
ish1104 the processor(s) while waiting for a specific stimulus, resource, condition, or
operation1105 completion, is very useful in producing well engineered programs for
such1106 systems. For such systems to be robust and fault tolerant, expected
occurrences1107 that are unduly delayed or that never occur must be detected so that
appropriate1108 recovery actions may be taken. This is difficult if there is no way for a
task1109 to regain control of a processor once it has relinquished control (blocked)
awaiting1110 an occurrence which, perhaps because of corrupted code, hardware mal-
function,1111 or latent software bugs, will not happen when expected. Therefore, the
common1112 practice in realtime operating systems is to provide a capability to time
out1113 such blocking services. Although there are several methods to achieve this
already1114 defined by POSIX, none are as reliable or efficient as initiating a timeout
s1115 imultaneously with initiating a blocking service. This is especially critical in
hard-realtime1116 embedded systems because the processors typically have little time
reserve,1117 and allowed fault recovery times are measured in milliseconds rather
than1118 seconds.

The1119 working group largely agreed that such timeouts were necessary and ought to
become1120 part of the standard, particularly vendors of realtime operating systems
whose1121 customers had already expressed a strong need for timeouts. There was
some1122 resistance to inclusion of timeouts in the standard because the desired
e1123 ffect, fault tolerance, could, in theory, be achieved using existing facilities and
alternative1124 software designs, but there was no compelling evidence that realtime
system1125 designers would embrace such designs at the sacrifice of performance
and1126 /or simplicity.

1127 B.14.4.2 Which Services Should Be Timed Out?

1128 Originally, the working group considered the prospect of providing timeouts on all
1129 blocking services, including those currently existing in POSIX.1, POSIX.1b, and
1130 POSIX.1c, and future interfaces to be defined by other working groups, as sort of a

general1131 policy. This was rather quickly rejected because of the scope of such a
change,1132 and the fact that many of those services would not normally be used in a
realtime1133 context. More traditional time-sharing solutions to timeout would suffice
for1134 most of the POSIX.1 interfaces, while others had asynchronous alternatives
which,1135 while more complex to utilize, would be adequate for some realtime and all
non-realtime1136 applications.

The1137 list of potential candidates for timeouts was narrowed to the following for
further1138 consideration:

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

98 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

1139 POSIX.1b

1140 — sem_wait()

1141 — mq_receive ()

1142 — mq_send()

1143 — lio_listio()

1144 — aio_suspend()

1145 — sigwait()
1146 timeout already implemented by sigtimedwait()

1147 POSIX.1c

1148 — pthread_mutex_lock()

1149 — pthread_join()

1150 — pthread_cond_wait()
1151 timeout already implemented by pthread_cond_timedwait()

1152 POSIX.1

1153 — read()

1154 — write()

After1155 further review by the working group, the read(), write(), and lio_listio()
functions1156 (all forms of blocking synchronous I/O) were eliminated from the list
b1157 ecause

1158 (1) asynchronous alternatives exist,

1159 (2) timeouts can be implemented, albeit non-portably, in device drivers, and

1160 (3) a strong desire not to introduce modifications to POSIX.1 interfaces.

The1161 working group ultimately rejected pthread_join() since both that interface
and1162 a timed variant of that interface are non-minimal and may be implemented as
a1163 library function. See B.14.4.3 for a library implementation of pthread_join().

Thus1164 there was a consensus among the working group members to add timeouts
to1165 4 of the remaining 5 functions (the timeout for aio_suspend() was ultimately
added1166 directly to POSIX.1b, while the others are added here in POSIX.1d). How-
ever,1167 pthread_mutex_lock() remained contentious.

Many1168 feel that pthread_mutex_lock() falls into the same class as the other func-
tions;1169 that is, it is desirable to time out a mutex lock because a mutex may fail to
be1170 unlocked due to errant or corrupted code in a critical section (looping or
branching1171 outside of the unlock code), and therefore is equally in need of a reli-
able,1172 simple, and efficient timeout. In fact, since mutexes are intended to guard
small1173 critical sections, most pthread_mutex_lock() calls would be expected to
obtain1174 the lock without blocking nor utilizing any kernel service, even in imple-
mentations1175 of threads with global contention scope; the timeout alternative need
only1176 be considered after it is determined that the thread must block.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.14 Clocks and Timers 99

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

1177 Those opposed to timing out mutexes feel that the very simplicity of the mutex is
compromised1178 by adding a timeout semantic, and that to do so is senseless. They
claim1179 that if a timed mutex is really deemed useful by a particular application,
then1180 it can be constructed from the facilities already in POSIX.1b and POSIX.1c.
The1181 following two C language library implementations of mutex locking with
timeout1182 represent the solutions offered (in both implementations, the timeout
parameter1183 is specified as absolute time, not relative time as in the proposed

1184 POSIX.1c interfaces):

1185 ___
1186 #include <pthread.h> C
1187 #include <time.h> C
1188 #include <errno.h> C

1189 int pthread_mutex_timedlock(pthread_mutex_t ∗mutex,
1190 const struct timespec ∗timeout)
1191 {
1192 struct timespec timenow;

1193 while (pthread_mutex_trylock(mutex) == EBUSY) C
1194 {
1195 clock_gettime(CLOCK_REALTIME, &timenow);
1196 if (timespec_cmp(&timenow,timeout) >= 0)
1197 {
1198 return ETIMEDOUT; C
1199 }
1200 pthread_yield();
1201 }
1202 return 0;
1203 }

1204 ___

1205 Figure B-4 −− Spinlock Implementation

1206 The Spinlock implementation is generally unsuitable for any application using
priority1207 based thread scheduling policies such as {SCHED_FIFO} or {SCHED_RR},
since1208 the mutex could currently be held by a thread of lower priority within the
same1209 allocation domain, but since the waiting thread never blocks, only threads of
equal1210 or higher priority will ever run, and the mutex can not be unlocked. Setting
priority1211 inheritance or priority ceiling protocol on the mutex does not solve this
problem,1212 since the priority of a mutex owning thread is only boosted if higher
priority1213 threads are blocked waiting for the mutex, clearly not the case for this
s1214 pinlock.

The1215 Condition Wait implementation effectively substitutes the
1216 pthread_cond_timedwait() function (which is currently timed out) for the desired
1217 pthread_mutex_timedlock(). Since waits on condition variables currently do not

include1218 protocols which avoid priority inversion, this method is generally unsuit-
able1219 for realtime applications because it does not provide the same priority inver-
sion1220 protection as the untimed pthread_mutex_lock(). Also, for any given imple-
mentations1221 of the current mutex and condition variable primitives, this library
i1222 mplementation has a performance cost at least 2.5 times that of the untimed

1223 pthread_mutex_lock() even in the case where the timed mutex is readily locked

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

100 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

1224 ___
1225 #include <pthread.h> C
1226 #include <time.h> C
1227 #include <errno.h> C

1228 struct timed_mutex
1229 {
1230 int locked;
1231 pthread_mutex_t mutex;
1232 pthread_cond_t cond;
1233 };

typedef1234 struct timed_mutex timed_mutex_t;

int1235 timed_mutex_lock(timed_mutex_t ∗tm,
1236 const struct timespec ∗timeout)
1237 {
1238 int timedout= FALSE;
1239 int error_status; C

1240 pthread_mutex_lock(&tm->mutex); C

1241 while (tm->locked && !timedout)
1242 {
1243 if ((error_status=pthread_cond_timedwait(&tm->cond, C
1244 &tm->mutex, C
1245 timeout))!=0) C
1246 { C
1247 if (error_status== ETIMEDOUT) timedout = TRUE; C
1248 }
1249 }

1250 if(timedout)
1251 {
1252 pthread_mutex_unlock(&tm->mutex); C
1253 return ETIMEDOUT; C
1254 }
1255 else
1256 {
1257 tm->locked = TRUE;
1258 pthread_mutex_unlock(&tm->mutex); C
1259 return 0;
1260 }
1261 }

void1262 timed_mutex_unlock(timed_mutex_t ∗tm)
1263 {
1264 pthread_mutex_lock(&tm->mutex); / ∗for case assignment not atomic ∗/ C
1265 tm->locked = FALSE; C
1266 pthread_mutex_unlock(&tm->mutex); C
1267 pthread_cond_signal(&tm->cond); C
1268 }

1269 ___

1270 Figure B-5 −− Condition Wait Implementation

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.14 Clocks and Timers 101

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

1271 without blocking (the interfaces required for this case are shown in bold). Even in
uniprocessors1272 or where assignment is atomic, at least an additional

1273 pthread_cond_signal() is required. pthread_mutex_timedlock() could be imple-
mented1274 at effectively no performance penalty in this case because the timeout
parameters1275 need only be considered after it is determined that the mutex cannot
be1276 locked immediately.

Thus1277 it has not yet been shown that the full semantics of mutex locking with
timeout1278 can be efficiently and reliably achieved using existing interfaces. Even if
the1279 existence of an acceptable library implementation were proven, it is difficult to
justify1280 why the interface itself should not be made portable, especially considering
approval1281 for the other four timeouts.

1282 B.14.4.3 Rationale for Library Implementation of pthread_timedjoin

1283 The pthread_join() C Language example shown in Figure B-6 demonstrates that it
is1284 possible, using existing pthread facilities, to construct a variety of thread which
allows1285 for joining such a thread, but which allows the join operation to time out.
It1286 does this by using a pthread_cond_timedwait() to wait for the thread to exit. A
small1287 timed_thread descriptor structure is used to pass parameters from the
creating1288 thread to the created thread, and from the exiting thread to the joining
thread.1289 This implementation is roughly equivalent to what a normal

1290 pthread_join() implementation would do, with the single change being that
1291 pthread_cond_timedwait() is used in place of a simple pthread_cond_wait().

Since1292 it is possible to implement such a facility entirely from existing pthread
1293 interfaces, and with roughly equal efficiency and complexity to an implementation

which1294 would be provided directly by a pthreads implementation, it was the con-
sensus1295 of the working group members that any pthread_timedjoin() facility would
be1296 unnecessary, and should not be provided.

1297 B.14.4.4 Form of the Timeout Interfaces

1298 The working group considered a number of alternative ways to add timeouts to
blocking1299 services. At first, a system interface which would specify a one-shot or
persistent1300 timeout to be applied to subsequent blocking services invoked by the
calling1301 process or thread was considered because it allowed all blocking services to
be1302 timed out in a uniform manner with a single additional interface; this was
rather1303 quickly rejected because it could easily result in the wrong services being
timed1304 out.

It1305 was suggested that a timeout value might be specified as an attribute of the
object1306 (semaphore, mutex, message queue, etc.), but there was no consensus on
this,1307 either on a case-by-case basis or for all timeouts.

Looking1308 at the two existing timeouts for blocking services indicates that the work-
ing1309 group members favor a separate interface for the timed version of a function.
However,1310 pthread_cond_timedwait() utilizes an absolute timeout value while

1311 sigtimedwait() uses a relative timeout value. The working group members agreed
that1312 relative timeout values are appropriate where the timeout mechanism’s pri-
mary1313 use was to deal with an unexpected or error situation, but they are C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

102 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

1314 ___
1315 / ∗
1316 ∗ Construct a thread variety entirely from existing functions
1317 ∗ with which a join can be done, allowing the join to time out.
1318 ∗/

#include1319 <pthread.h> C
1320 #include <time.h> C

1321 struct timed_thread {
1322 pthread_t t;
1323 pthread_mutex_t m;
1324 int exiting;
1325 pthread_cond_t exit_c;
1326 void ∗(∗start_routine)(void ∗arg); C
1327 void ∗arg;
1328 void ∗status;

};1329

typedef1330 struct timed_thread ∗timed_thread_t;
static1331 pthread_key_t timed_thread_key;
static1332 pthread_once_t timed_thread_once = PTHREAD_ONCE_INIT; C

1333 static void timed_thread_init()
{1334

1335 pthread_key_create(&timed_thread_key, NULL);
}1336

static1337 void ∗timed_thread_start_routine(void ∗args)

/1338 ∗
1339 ∗ Routine to establish thread specific data value and run the actual
1340 ∗ thread start routine which was supplied to timed_thread_create().
1341 ∗/

{1342
1343 timed_thread_t tt = (timed_thread_t) args;

1344 pthread_once(&timed_thread_once, timed_thread_init);
1345 pthread_setspecific(timed_thread_key, (void ∗)tt);
1346 timed_thread_exit((tt->start_routine)(tt->arg));

}1347

int1348 timed_thread_create(timed_thread_t ttp, const pthread_attr_t ∗attr, C
1349 void ∗(∗start_routine)(void ∗), void ∗arg) C

1350 / ∗
1351 ∗ Allocate a thread which can be used with timed_thread_join().
1352 ∗/

{1353
1354 timed_thread_t tt;
1355 int result;

1356 tt = (timed_thread_t) malloc(sizeof(struct timed_thread));
1357 pthread_mutex_init(&tt->m, NULL); C
1358 tt->exiting = FALSE;
1359 pthread_cond_init(&tt->exit_c, NULL); C

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.14 Clocks and Timers 103

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

1360 tt->start_routine = start_routine;
1361 tt->arg = arg;
1362 tt->status = NULL;

1363 if ((result = pthread_create(&tt->t, attr, C
1364 timed_thread_start_routine, (void ∗)tt)) != 0) { C
1365 free(tt);
1366 return result;
1367 }

1368 pthread_detach(tt->t);
1369 ttp = tt;
1370 return 0;

}1371

t1372 imed_thread_join(timed_thread_t tt,
1373 struct timespec ∗timeout, C
1374 void ∗∗status)

{1375
1376 int result;

1377 pthread_mutex_lock(&tt->m);
1378 result = 0;
1379 / ∗
1380 ∗ Wait until the thread announces that it’s exiting, or until timeout.
1381 ∗/
1382 while (result == 0 && ! tt->exiting) {
1383 result = pthread_cond_timedwait(&tt->exit_c, &tt->m, timeout);
1384 }
1385 pthread_mutex_unlock(&tt->m);
1386 if (result == 0 && tt->exiting) {
1387 ∗status = tt->status;
1388 free((void ∗)tt);
1389 return result;
1390 }
1391 return result;

}1392

t1393 imed_thread_exit(void ∗status)
{1394

1395 timed_thread_t tt;
1396 void ∗specific;

1397 if ((specific=pthread_getspecific(timed_thread_key)) == NULL){ C
1398 / ∗
1399 ∗ Handle cases which won’t happen with correct usage.
1400 ∗/
1401 pthread_exit(NULL);
1402 }
1403 tt = (timed_thread_t) specific;
1404 pthread_mutex_lock(&tt->m);
1405 / ∗
1406 ∗ Tell a joiner that we’re exiting.
1407 ∗/
1408 tt->status = status;
1409 tt->exiting = TRUE;
1410 pthread_cond_signal(&tt->exit_c);
1411 pthread_mutex_unlock(&tt->m);

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

104 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

1412 / ∗
1413 ∗ Call pthread exit() to call destructors and really exit the thread.
1414 ∗/
1415 pthread_exit(NULL);

}1416

1417 ___

1418 Figure B-6 −− pthread_join() with timeout

1419 inappropriate when the timeout must expire at a particular time, or before a D

1420 specific deadline. For the timeouts being introduced in this document, the work- D

1421 ing group considered allowing both relative and absolute timeouts as is done with C

1422 POSIX.1b timers, but ultimately favored the simpler absolute timeout form. C

1423 An absolute time measure can be easily implemented on top of an interface that D

1424 specifies relative time, by reading the clock, calculating the difference between the D

1425 current time and the desired wake up time, and issuing a relative timeout call. D

1426 But there is a race condition with this approach because the thread could be D

1427 preempted after reading the clock, but before making the timed out call; in this D

1428 case, the thread would be awakened later than it should and, thus, if the wake up D

1429 time represented a deadline, it would miss it. D

1430 There is also a race condition when trying to build a relative timeout on top of an D

1431 interface that specifies absolute timeouts. In this case, we would have to read the D

1432 clock to calculate the absolute wake up time as the sum of the current time plus D

1433 the relative timeout interval. In this case, if the thread is preempted after reading D

1434 the clock but before making the timed out call, the thread would be awakened ear- D

1435 lier than desired. D

1436 But the race condition with the absolute timeouts interface is not as bad as the D

1437 one that happens with the relative timeout interface, because there are simple D

1438 workarounds. For the absolute timeouts interface, if the timing requirement is a D

1439 deadline, we can still meet this deadline because the thread woke up earlier than D

1440 the deadline. If the timeout is just used as an error recovery mechanism, the pre- D

1441 cision of timing is not really important. If the timing requirement is that between D

1442 actions A and B a minimum interval of time must elapse, we can safely use the D

1443 absolute timeout interface by reading the clock after action A has been started. It D

1444 could be argued that, since the call with the absolute timeout is atomic from the D

1445 application point of view, it is not possible to read the clock after action A, if this D

1446 action is part of the timed out call. But if we look at the nature of the calls for D

1447 which we specify timeouts (locking a mutex, waiting for a semaphore, waiting for a D

1448 message, or waiting until there is space in a message queue), the timeouts that an D

1449 application would build on these actions would not be triggered by these actions D

1450 themselves, but by some other external action. For example, if we want to wait for D

1451 a message to arrive to a message queue, and wait for at least 20 milliseconds, this D

1452 time interval would start to be counted from some event that would trigger both D

1453 the action that produces the message, as well as the action that waits for the mes- D

1454 sage to arrive, and not by the wait-for-message operation itself. In this case, we D

1455 could use the workaround proposed above. D

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.14 Clocks and Timers 105

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

1456 For these reasons, the absolute timeout is preferred over the relative timeout D

1457 interface. D

1458 C

1459 ⇒⇒ Annex B Rationale and Notes Add the following subclause.

1460 NOTE: When this standard is approved, the section number of this subclause will be changed to
make1461 it consistent with the base standard and all its approved amendments.

1462 B.20 Advisory Information

1463 The POSIX.1b standard contains an Informative Annex with proposed interfaces
for1464 "real-time files". These interfaces could determine groups of the exact parame-
ters1465 required to do "direct I/O" or "extents". These interfaces were objected to by a
a1466 significant portion of the balloting group as too complex. A portable application
had1467 little chance of correctly navigating the large parameter space to match its
desires1468 to the system. In addition, they only applied to a new type of file (real-time

1469 files) and they told the implementation exactly what to do as opposed to advising
the1470 implementation on application behavior and letting it optimize for the system
the1471 (portable) application was running on. For example, it was not clear how a sys-
tem1472 that had a disk array should set its parameters.

There1473 seemed to be several overall goals:

1474 — Optimizing Sequential Access

1475 — Optimizing Caching Behavior

1476 — Optimizing I/O data transfer

1477 — Preallocation

The1478 advisory interfaces, posix_fadvise() and posix_madvise() satisfy the first two
goals.1479 The POSIX_FADV_SEQUENTIAL and POSIX_MADV_SEQUENTIAL advice

1480 tells the implementation to expect serial access. Typically the system will prefetch
the1481 next several serial accesses in order to overlap I/O. It may also free previously
accessed1482 serial data if memory is tight. If the application is not doing serial access
it1483 can use POSIX_FADV_WILLNEED and POSIX_MADV_WILLNEED to accomplish
I/O1484 overlap, as required. When the application advises POSIX_FADV_RANDOM or

1485 POSIX_MADV_RANDOM behavior, the implementation usually tries to fetch a
minimum1486 amount of data with each request and it does not expect much locality.

1487 POSIX_FADV_DONTNEED and POSIX_MADV_DONTNEED allow the system to free
up1488 caching resources as the data will not be required in the near future.

1489 POSIX_FADV_NOREUSE tells the system that caching the specified data is not
optimal.1490 For file I/O, the transfer should go directly to the user buffer instead of
being1491 cached internally by the implementation. To portably perform direct disk
I/O1492 on all systems, the application must perform its I/O transfers according to the
following1493 rules:

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

106 B Rationale and Notes

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D14

1494 (1) The user buffer should be aligned according to the {POSIX_REC_XFER_-
1495 ALIGN} pathconf() variable.

1496 (2) The number of bytes transferred in an I/O operation should be a multiple
1497 of the {POSIX_ALLOC_SIZE_MIN} pathconf() variable.

1498 (3) The offset into the file at the start of an I/O operation should be a multi-
1499 ple of the {POSIX_ALLOC_SIZE_MIN} pathconf() variable.

1500 (4) The application should ensure that all threads which open a given file
1501 specify POSIX_FADV_NOREUSE to be sure that there is no unexpected
1502 interaction between threads using buffered I/O and threads using direct
1503 I/O to the same file.

In1504 some cases, a user buffer must be properly aligned in order to be transferred
directly1505 to/from the device. The {POSIX_REC_XFER_ALIGN} pathconf() variable
tells1506 the application the proper alignment.

The1507 preallocation goal is met by the space control function, posix_fallocate(). The
application1508 can use posix_fallocate() to guarantee no [ENOSPC] errors and to
improve1509 performance by prepaying any overhead required for block allocation. C

1510 Implementations may use information conveyed by a previous posix_fadvise() call
to1511 influence the manner in which allocation is performed. For example, if an
application1512 did the following calls:

1513 fd = open(" file")

1514 posix_fadvise(fd, offset, len, POSIX_FADV_SEQUENTIAL)

1515 posix_fallocate(fd, len, size)

1516 An implementation might allocate the file contiguously on disk.

 1517 C

1518 Finally, the pathconf() variables {POSIX_REC_MIN_XFER_SIZE}, {POSIX_REC_-
MAX_XFER_SIZE1519 } and {POSIX_REC_INCR_XFER_SIZE} tell the application a range
of1520 transfer sizes that are recommended for best I/O performance.

Where1521 bounded response time is required, the vendor can supply the appropriate
settings1522 of the advisories to achieve a guaranteed performance level.

The1523 interfaces meet the goals while allowing applications using regular files to
take1524 advantage of performance optimizations. The interfaces tell the implementa-
tion1525 expected application behavior which the implementation can use to optimize
performance1526 on a particular system with a particular dynamic load.

The1527 posix_memalign() function was added to allow for the allocation of specifically
aligned1528 buffers, e.g. for {POSIX_REC_XFER_ALIGN}.

The1529 working group also considered the alternative of adding a function which
would1530 return an aligned pointer to memory within a user supplied buffer. This
was1531 not considered to be the best method, because it potentially wastes large
amounts1532 of memory when buffers need to be aligned on large alignment boun-
d1533 aries.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.20 Advisory Information 107

P1003.1d/D14 INFORMATION TECHNOLOGY—POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

108 B Rationale and Notes

P1003.1d/D14

Identifier Index

clock_getcpuclockid()
Accessing a Process CPU-time Clock {14.3.2} 49

mq_timedreceive()
Receive a Message from a Message Queue {15.2.5} 55

mq_timedsend () Send a Message to a Message Queue {15.2.4} 53
posix_fadvise() File Advisory Information {20.1.1} ... 63
posix_fallocate() File Space Control {20.1.2} ... 64
posix_madvise() Memory Advisory Information {20.2.1} 66
posix_memalign()

Aligned Memory Allocation {20.2.2} ... 68
posix_spawn() Spawn a Process {3.1.6} .. 21
posix_spawnattr_destroy()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getflags()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getpgroup()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getschedparam()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getschedpolicy()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getsigdefault()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getsigmask()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_init()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setflags()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setpgroup()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setschedparam()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setschedpolicy()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setsigdefault()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setsigmask()

Spawn Attributes {3.1.5} .. 16
posix_spawn_file_actions_addclose()

Spawn File Actions {3.1.4}.. 14
posix_spawn_file_actions_adddup2()

Spawn File Actions {3.1.4}.. 14

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Identifier Index 109

P1003.1d/D14

posix_spawn_file_actions_addopen()
Spawn File Actions {3.1.4}.. 14

posix_spawn_file_actions_destroy()
Spawn File Actions {3.1.4}.. 14

posix_spawn_file_actions_init()
Spawn File Actions {3.1.4}.. 14

posix_spawnp() Spawn a Process {3.1.6} .. 21
pthread_getcpuclockid()

Accessing a Thread CPU-time Clock {14.3.3} 50
pthread_mutex_timedlock()

Locking and Unlocking a Mutex {11.3.3} 35
sem_timedwait () Lock a Semaphore {11.2.6} ... 33
<spawn.h> Spawn File Actions {3.1.4}.. 14

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

110 Identifier Index

P1003.1d/D14
P1003.1d/D14

Alphabetic Topical Index

A

abbreviations
C Standard . . . 5

Abbreviations . . . 5
abbreviations

POSIX.1 . . . 6
POSIX.1b . . . 6
POSIX.1c . . . 6
POSIX.1d . . . 6
POSIX.5 . . . 6

Accessing a Process CPU-time Clock . . . 49
Accessing a Thread CPU-time Clock . . . 50
Accuracy of CPU-time Clocks . . . 95
address space . . . 67
Advisory Information . . . 63, 106
Advisory Information option . . . 7-8, 11, 27,

29, 63-68
aio_suspend () . . . 99
alarm () . . . 25
Aligned Memory Allocation . . . 68
ARG_MAX . . . 22
Asynchronous Input and Output . . . 31
Asynchronous I/O Control Block . . . 31
attributes

enable . . . 97
schedparam . . . 43

attributes
cpu-clock-requirement . . . 95
spawn-default . . . 19
spawn-flags . . . 18, 20, 22-25
spawn-pgroup . . . 18, 20, 22-23, 78
spawn-schedparam . . . 19-20, 23
spawn-schedpolicy . . . 19-20, 23
spawn-sigdefault . . . 19-20, 23-24
spawn-sigmask . . . 18, 20, 23

B

background . . . 89-90
background priority . . . 89-90
Bibliography . . . 71
blocked thread . . . 40-41
bounded response . . . 1, 93, 107

BSD . . . 96

C

cancellation point . . . 61
Cancellation Points . . . 61
chmod() . . . 25
C Language Definitions . . . 7
clock

system . . . 33, 36, 54, 56
Clock and Timer Functions — Description

. . . 47
Clock and Timer Functions . . . 47
clock

CLOCK_REALTIME . . . 33, 36, 54, 56
Clock Constants . . . 97
clock

CPU-time . . . 5, 13, 47-50, 59, 94-97
clock_getcpuclockid() . . . 8, 47, 49-51, 94, 97

function definition . . . 49
clock_getres () . . . 47, 50-51
clock_gettime () . . . 47, 50-51
CLOCK_PROCESS_CPUTIME_ID . . . 47, 94, 97
CLOCK_REALTIME . . . 33, 36, 54, 56, 100
clock resolution . . . 34, 36, 54, 56
Clocks . . . 47

CPU-time . . . 13-14
Clocks and Timers . . . 47-48, 93
clocks

CPU-Time . . . 13
CPU-time . . . 47

clock_settime () . . . 41, 47, 50-51
CLOCK_THREAD_CPUTIME_ID . . . 47, 94, 97
close () . . . 16, 25
Compile-Time Symbolic Constants for Porta-

bility Specifications . . . 10-11
Condition Wait Implementation . . . 101
Configurable Pathname Variables . . . 29
Configurable System Variables . . . 27
conformance . . . 3

implementation . . . 3
Conformance . . . 3

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Alphabetic Topical Index 111

P1003.1d/D14

Conforming Implementation Options . . . 3
CPU . . . 5-6, 13-14, 47-50, 93-97
cpu-clock-requirement

attribute . . . 95
CPU-time Clock Characteristics . . . 49
CPU-Time clock . . . 13
CPU-time clock . . . 13-14, 47

definition of . . . 5
CPU time [execution time]

definition of . . . 5
CPU-time timer

definition of . . . 5
creat () . . . 65-66
Create a Per-Process Timer — Description

. . . 48
Create a Per-Process Timer — Errors . . . 48
Create a Per-Process Timer . . . 48
Cross-References . . . 16, 20, 25, 34, 37, 50-

51, 55, 57, 64, 66, 68-69
C Standard . . . 5, 68

abbreviation . . . 5
definition of . . . 5

D

Data Definitions for Asynchronous Input and
Output . . . 31

Definitions . . . 5
Definitions and General Requirements . . . 73
document . . . 2, 18, 22, 44, 71, 95, 105
dup2 () . . . 16, 25
Dynamically Setting the Sporadic Server Pol-

icy . . . 92
Dynamic Thread Scheduling Parameters

Access — Description . . . 45
Dynamic Thread Scheduling Parameters

Access — Errors . . . 46
Dynamic Thread Scheduling Parameters

Access . . . 45

E

[EBADF] . . . 16, 64-65
EBADF . . . 84
EBUSY . . . 100
[EDEADLK] . . . 37
[EFBIG] . . . 65
effective group ID . . . 23

effective user ID . . . 23
[EINTR] . . . 54, 56, 65
[EINVAL] . . . 16, 20, 24, 34, 37, 54, 56, 64-65,

67-68
[EIO] . . . 66
enable

attribute . . . 97
[ENODEV] . . . 66
[ENOMEM] . . . 16, 20, 67-68
ENOMEM . . . 85
[ENOSPC] . . . 66, 107
[ENOTSUP] . . . 46, 48
[EPERM] . . . 50
[ESPIPE] . . . 64, 66
[ESRCH] . . . 50-51
[ETIMEDOUT] . . . 34, 37, 54, 56
ETIMEDOUT . . . 100-101
exec . . . 13, 24, 75-77
Execute a File — Description . . . 13
Execute a File . . . 13
Execution Scheduling . . . 39, 89
execution time

definition of . . . 5
execution time measurement . . . 73
Execution Time Monitoring . . . 48, 93
Execution Time Monitoring Interface . . . 94
Existing Practice . . . 91, 96
_exit () . . . 25

F

FALSE . . . 101, 103
fcntl () . . . 25
<fcntl.h> . . . 8, 64
FD_CLOEXEC . . . 15, 22, 76, 85
FIFO . . . 64, 66
File Advisory Information . . . 63
file descriptor . . . 14-16, 22, 24, 63-65, 74-76
Files and Directories . . . 29
File Space Control . . . 64
file system . . . 65-66
pthread_join()

with timeout . . . 105
fork () . . . 2, 13, 24-25, 75-77, 79-80
fork handlers . . . 24
Form of the Timeout Interfaces . . . 102
free () . . . 68-69

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

112 Alphabetic Topical Index

P1003.1d/D14

ftruncate () . . . 65-66
functions

clock_getcpuclockid() . . . 49
mq_timedreceive() . . . 55
mq_timedsend () . . . 53
posix_fadvise() . . . 63
posix_fallocate() . . . 64
posix_madvise() . . . 66
posix_memalign() . . . 68
posix_spawn () . . . 21
posix_spawnattr_destroy() . . . 16
posix_spawnattr_getflags() . . . 16
posix_spawnattr_getpgroup() . . . 16
posix_spawnattr_getschedparam() . . . 16
posix_spawnattr_getschedpolicy() . . . 16
posix_spawnattr_getsigdefault() . . . 16
posix_spawnattr_getsigmask() . . . 16
posix_spawnattr_init() . . . 16
posix_spawnattr_setflags() . . . 16
posix_spawnattr_setpgroup() . . . 16
posix_spawnattr_setschedparam() . . . 16
posix_spawnattr_setschedpolicy() . . . 16
posix_spawnattr_setsigdefault() . . . 16
posix_spawnattr_setsigmask() . . . 16
posix_spawn_file_actions_addclose()

. . . 14
posix_spawn_file_actions_adddup2()

. . . 14
posix_spawn_file_actions_addopen()

. . . 14
posix_spawn_file_actions_destroy() . . . 14
posix_spawn_file_actions_init () . . . 14
posix_spawnp () . . . 21
pthread_getcpuclockid() . . . 50
pthread_mutex_timedlock() . . . 35
sem_timedwait () . . . 33

G

General . . . 1
General Concepts — measurement of execu-

tion time . . . 6
General Concepts . . . 6, 73
General Terms . . . 5
generate a signal . . . 94
Get Configurable Pathname Variables—

Description . . . 29
Get Configurable Pathname Variables . . . 29
Get Configurable System Variables— Descrip-

tion . . . 27
Get Configurable System Variables . . . 27
getitimer () . . . 96

getrusage () . . . 96

H

Headers and Function Prototypes . . . 7
Historical Documentation . . . 71
Historical Documentation and Introductory

Texts . . . 71
History of Resolution Issues: Deletion of the

enable attribute . . . 97

I

IBM . . . 96
IEEE . . . 6, 78
IEEE P1003.1a . . . 76
IEEE P1003.1d . . . 6
IEEE Std 1003.1 . . . 6
Implementation Conformance . . . 3
implementation defined . . . 5-6, 19, 24, 40,

42, 44-45, 48-49, 65, 73, 95
Input and Output Primitives . . . 31
Introduction . . . 93
I/O Advisory Information and Space Control

. . . 63
I/O Redirection with posix_spawn() . . . 89
ISO/IEC 14519 . . . 6, 71, 76-77
ISO/IEC 9899:1995 . . . 5
ISO/IEC 9899 . . . 5, 68
ISO/IEC 9945-1 . . . 6
ISO/IEC 9945 . . . 7

J

job control . . . 76

K

kill () . . . 25

L

language binding . . . 75-78
Library-Level vs. Kernel-Level Implementa-

tion . . . 92

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Alphabetic Topical Index 113

P1003.1d/D14

Library Implementations of Threads . . . 97
Limitation of the Number of Pending Replen-

ishments . . . 93
<limits.h> . . . 8-9
lio_listio () . . . 99
Lock a Semaphore — Cross-References . . . 34
Lock a Semaphore — Description . . . 33
Lock a Semaphore — Errors . . . 34
Lock a Semaphore — Returns . . . 34
Lock a Semaphore — Synopsis . . . 33
Lock a Semaphore . . . 33
Locking and Unlocking a Mutex — Cross-

References . . . 37
Locking and Unlocking a Mutex — Description

. . . 36
Locking and Unlocking a Mutex — Errors

. . . 37
Locking and Unlocking a Mutex — Returns

. . . 36
Locking and Unlocking a Mutex — Synopsis

. . . 35
Locking and Unlocking a Mutex . . . 35
login . . . 80

M

malloc () . . . 69
measurement of execution time . . . 6
Memory Advisory Information . . . 66
Memory Advisory Information and Alignment

Control . . . 66
Memory Mapped Files option . . . 66-67
Message Passing . . . 53
Message Passing Functions . . . 53
Message Passing option . . . 7, 53, 55
message queues . . . 53, 55
Minimum Values . . . 8
mmap() . . . 68
MMU . . . 75, 77
mq_open () . . . 55, 57
mq_receive () . . . 55, 99
mq_send () . . . 53, 99
mq_timedreceive() . . . 7, 55-56, 61

function definition . . . 55
mq_timedsend () . . . 7, 53-54, 61

function definition . . . 53
<mqueue.h> . . . 8

mutexes . . . 36
Mutexes . . . 35
MVS . . . 96

N

NULL . . . 82-86, 103-105
Numerical Limits . . . 8

O

O_NONBLOCK . . . 53-56
open () . . . 16, 25, 65-66
OPEN_MAX . . . 16
Optional Configurable Pathname Variables

. . . 29
Optional Configurable System Variables

. . . 27
Optional Minimum Values . . . 8
Optional Pathname Variable Values . . . 10
Optional Run-Time Invariant Values (Possibly

Indeterm.) . . . 9
options

Advisory Information . . . 7-8, 11, 27, 29,
63-68

Memory Mapped Files . . . 66-67
Message Passing . . . 7, 53, 55
Prioritized Input and Output . . . 31
Process Scheduling . . . 8, 18-19, 23, 25,

31, 44
Process Sporadic Server . . . 11, 27, 39-40,

42-43
Semaphores . . . 33
Shared Memory Objects . . . 66-67
Spawn . . . 7-8, 11, 14, 17, 19, 21, 27
Threads . . . 5, 7, 24, 36
Thread Sporadic Server . . . 11, 27, 39-40,

43-45
Timeouts . . . 7, 11, 27, 33, 36, 53, 55
Timers . . . 33, 54, 56

options
Process CPU-Time Clocks . . . 8, 11, 13, 27,

47-49, 59
Thread CPU-Time Clocks . . . 7, 11, 13, 27,

49-50, 95
Other Standards . . . 71
Overhead Considerations . . . 95

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

114 Alphabetic Topical Index

P1003.1d/D14

P

package
POSIX_Process_Primitives . . . 76

PATH
variable . . . 22

pathconf () . . . 9, 107
pathname . . . 22
Pathname Variable Values . . . 9-10
_PC_ALLOC_SIZE_MIN . . . 29

limit definition . . . 29
_PC_REC_INCR_XFER_SIZE . . . 29

limit definition . . . 29
_PC_REC_MAX_XFER_SIZE . . . 29

limit definition . . . 29
_PC_REC_MIN_XFER_SIZE . . . 29

limit definition . . . 29
_PC_REC_XFER_ALIGN . . . 29

limit definition . . . 29
pipe . . . 64, 66, 79
popen () . . . 79
POSIX.1 . . . 6, 8, 39, 47, 59, 77-78, 96-99

abbreviation . . . 6
definition of . . . 6

POSIX.1b
abbreviation . . . 6
definition of . . . 6

POSIX.1c
abbreviation . . . 6
definition of . . . 6

POSIX.1d
abbreviation . . . 6
definition of . . . 6

POSIX.1i . . . 6
POSIX.5 . . . 6, 74, 77

abbreviation . . . 6
definition of . . . 6

_POSIX_ADVISORY_INFO . . . 3, 11, 27, 63,
65-66, 68

POSIX_ALLOC_SIZE_MIN . . . 10, 29, 107
_POSIX_CPUTIME . . . 3, 11, 13, 27, 47-49
POSIX_FADV_DONTNEED . . . 106
posix_fadvise () . . . 7, 61, 63-65, 68, 106-107

function definition . . . 63
POSIX_FADV_NOREUSE . . . 106-107
POSIX_FADV_RANDOM . . . 106
POSIX_FADV_SEQUENTIAL . . . 106-107
POSIX_FADV_WILLNEED . . . 106
posix_fallocate() . . . 7, 61, 64-65, 107

function definition . . . 64

POSIX_MADV_DONTNEED . . . 106
posix_madvise () . . . 7, 61, 64, 66-67, 106

function definition . . . 66
POSIX_MADV_RANDOM . . . 106
POSIX_MADV_SEQUENTIAL . . . 106
POSIX_MADV_WILLNEED . . . 106
_POSIX_MAPPED_FILES . . . 66
posix_memalign() . . . 8, 68, 107

function definition . . . 68
_POSIX_MESSAGE_PASSING . . . 53, 55
_POSIX_PRIORITIZED_IO . . . 31
_POSIX_PRIORITY_SCHEDULING . . . 11, 19,

23, 25, 31, 44
POSIX_Process_Primitives

package . . . 76
POSIX_REC_INCR_XFER_SIZE . . . 10, 29, 107
POSIX_REC_MAX_XFER_SIZE . . . 10, 29, 107
POSIX_REC_MIN_XFER_SIZE . . . 10, 29, 107
POSIX_REC_XFER_ALIGN . . . 10, 29, 107
_POSIX_SEMAPHORES . . . 33
_POSIX_SHARED_MEMORY_OBJECTS . . . 66
posix_spawn () . . . 7, 14-16, 18, 20-22, 24-26,

61, 73-80, 89
Equivalent . . . 89
function definition . . . 21

_POSIX_SPAWN . . . 3, 11, 14, 17, 19, 21, 27
posix_spawnattr_destroy() . . . 7, 16, 18-20,

25
function definition . . . 16

posix_spawnattr_getflags() . . . 7, 16, 18-20,
25
function definition . . . 16

posix_spawnattr_getpgroup() . . . 7, 16, 18-
20, 25
function definition . . . 16

posix_spawnattr_getschedparam() . . . 8, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_getschedpolicy() . . . 8, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_getsigdefault() . . . 7, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_getsigmask() . . . 7, 16, 18-
20, 25
function definition . . . 16

posix_spawnattr_init() . . . 7, 16-20, 25
function definition . . . 16

posix_spawnattr_setflags() . . . 7, 16, 18-20,
25
function definition . . . 16

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Alphabetic Topical Index 115

P1003.1d/D14

posix_spawnattr_setpgroup() . . . 7, 16, 18-
20, 25
function definition . . . 16

posix_spawnattr_setschedparam() . . . 8, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_setschedpolicy() . . . 8, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_setsigdefault() . . . 8, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_setsigmask() . . . 7, 16, 18-
20, 25
function definition . . . 16

posix_spawn_file_actions_addclose() . . . 7,
14-16, 25
function definition . . . 14

posix_spawn_file_actions_adddup2() . . . 7,
14-16, 25
function definition . . . 14

posix_spawn_file_actions_addopen() . . . 7,
14-16, 25
function definition . . . 14

posix_spawn_file_actions_destroy() . . . 7,
14-16, 25
function definition . . . 14

posix_spawn_file_actions_init () . . . 7, 14-16,
25
function definition . . . 14

posix_spawnp () . . . 7, 14-16, 18, 20-22, 24-
26, 61, 73-80, 89
function definition . . . 21

POSIX_SPAWN_RESETIDS . . . 18, 23, 74, 80,
82

POSIX_SPAWN_SETPGROUP . . . 18, 22-23, 25,
80, 82

POSIX_SPAWN_SETSCHEDPARAM . . . 18-19,
23, 25, 80, 85

POSIX_SPAWN_SETSCHEDULER . . . 18-19, 23,
25, 80, 84

POSIX_SPAWN_SETSIGDEF . . . 18-19, 23-24,
80, 82

POSIX_SPAWN_SETSIGMASK . . . 18, 23, 80,
82

_POSIX_SPORADIC_SERVER . . . 3, 11, 27, 39-
40, 42-43

_POSIX_SS_REPL_MAX . . . 8-9, 93
_POSIX_THREAD_CPUTIME . . . 3, 11, 13, 27,

47-50, 59
_POSIX_THREAD_PRIORITY_SCHEDULING

. . . 11, 43

_POSIX_THREADS . . . 36
_POSIX_THREAD_SPORADIC_SERVER . . . 3,

11, 27, 39-40, 43-45
_POSIX_TIMEOUTS . . . 3, 11, 27, 33, 36, 53,

55
_POSIX_TIMERS . . . 11
PRIO_INHERIT . . . 36
Prioritized Input and Output option . . . 31
procedure

Start_Process . . . 75-78
Start_Process_Search . . . 76-78

Process CPU-Time Clocks option . . . 8, 11, 13,
27, 47-49, 59

Process Creation — Description . . . 13
Process Creation . . . 13-14
Process Creation and Execution . . . 13, 73
Process Environment . . . 27
process group . . . 18, 22-23, 26, 76, 78
process group ID . . . 23, 76
process ID . . . 23-24
Process Management . . . 13
Process Primitives . . . 73
Process Scheduling Attributes . . . 43
Process Scheduling Functions . . . 42
Process Scheduling option . . . 8, 18-19, 23,

25, 31, 44
Process Sporadic Server option . . . 11, 27,

39-40, 42-43
Process Termination . . . 26
pthread_attr_getschedparam() . . . 45
pthread_attr_getschedpolicy() . . . 45
pthread_attr_setschedparam() . . . 45
pthread_attr_setschedpolicy() . . . 45
pthread_cond_signal() . . . 102
pthread_cond_timedwait () . . . 99-100, 102
pthread_cond_wait () . . . 99, 102
pthread_create() . . . 59
pthread_getcpuclockid() . . . 7, 47, 50-51, 94,

97
function definition . . . 50

pthread_getschedparam() . . . 45
<pthread.h> . . . 8
pthread_join () . . . 99, 102
pthread_mutex_lock() . . . 36, 99-100
pthread_mutex_timedlock() . . . 7, 35-37, 100,

102
function definition . . . 35

PTHREAD_ONCE_INIT . . . 103

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

116 Alphabetic Topical Index

P1003.1d/D14

pthread_setschedparam() . . . 45-46
pthread_timedjoin() . . . 102

R

Range of Scheduling Priorities . . . 92
read () . . . 99
Receive a Message from a Message Queue —

Cross-References . . . 57
Receive a Message from a Message Queue —

Description . . . 55
Receive a Message from a Message Queue —

Errors . . . 56
Receive a Message from a Message Queue —

Returns . . . 56
Receive a Message from a Message Queue —

Synopsis . . . 55
Receive a Message from a Message Queue

. . . 55
replenishment operation . . . 40-41, 93
replenishment period . . . 39-41, 90, 93
Requirements for Timeouts . . . 98
resolution

clock . . . 34, 36, 54, 56
Run-Time Invariant Values (Possibly Indeter-

minate) . . . 8-9
running thread . . . 40-41

S

_SC_ADVISORY_INFO . . . 27
limit definition . . . 27

_SC_CPUTIME . . . 27
limit definition . . . 27

SCHED_FIFO . . . 31, 35, 40, 42-44, 92, 100
sched_get_priority_max() . . . 41
sched_get_priority_min() . . . 41
<sched.h> . . . 39
SCHED_OTHER . . . 40, 42, 44
schedparam

attribute . . . 43
SCHED_RR . . . 31, 35, 40, 42-44, 100
sched_setparam() . . . 25, 42
sched_setscheduler() . . . 25, 43
SCHED_SPORADIC . . . 31, 35, 39-46, 92
Scheduling Allocation Domain . . . 44
Scheduling Aperiodic Activities (rationale)

. . . 90

Scheduling Documentation . . . 44
Scheduling Parameters . . . 39
Scheduling Policies . . . 39
scheduling policy . . . 35, 39-40, 42-43, 45-46,

92-93, 100
Scope . . . 1
_SC_PAGESIZE . . . 66-67
_SC_SPAWN . . . 27

limit definition . . . 27
_SC_SPORADIC_SERVER . . . 27

limit definition . . . 27
_SC_THREAD_CPUTIME . . . 27

limit definition . . . 27
_SC_THREAD_SPORADIC_SERVER . . . 27

limit definition . . . 27
_SC_TIMEOUTS . . . 27

limit definition . . . 27
Semaphore Functions . . . 33
<semaphore.h> . . . 8
semaphores . . . 33
Semaphores option . . . 33
sem_post () . . . 33
sem_timedwait () . . . 7, 33-34, 61

function definition . . . 33
sem_wait () . . . 33, 99
Send a Message to a Message Queue — Cross-

References . . . 55
Send a Message to a Message Queue —

Description . . . 53
Send a Message to a Message Queue — Errors

. . . 54
Send a Message to a Message Queue —

Returns . . . 54
Send a Message to a Message Queue —

Synopsis . . . 53
Send a Message to a Message Queue . . . 53
setitimer () . . . 96
setpgid () . . . 25, 78
Set Scheduling Parameters — Description

. . . 42
Set Scheduling Parameters . . . 42
Set Scheduling Policy and Scheduling Parame-

ters — Description . . . 43
Set Scheduling Policy and Scheduling Parame-

ters . . . 43
setuid () . . . 25
Shared Memory Objects option . . . 66-67
shell . . . 80
shell . . . 80

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Alphabetic Topical Index 117

P1003.1d/D14

SIG_DFL . . . 23, 83
SIG_IGN . . . 24
signal

generate . . . 94
signal actions . . . 23
signal mask . . . 23
SIG_SETMASK . . . 82
sigtimedwait () . . . 99, 102
sigwait () . . . 99
Spawn a Process . . . 21, 75
Spawn Attributes . . . 16, 75
spawn-default

attribute . . . 19
Spawn File Actions . . . 14, 73
spawn-flags

attribute . . . 18, 20, 22-25
<spawn.h> . . . 8, 14, 17-18, 22

header definition . . . 14
Spawning a new Userid Process . . . 89
spawn option . . . 19
Spawn option . . . 7-8, 11, 14, 17, 21, 27
spawn-pgroup

attribute . . . 18, 20, 22-23, 78
spawn-schedparam

attribute . . . 19-20, 23
spawn-schedpolicy

attribute . . . 19-20, 23
spawn-sigdefault

attribute . . . 19-20, 23-24
spawn-sigmask

attribute . . . 18, 20, 23
Spinlock Implementation . . . 100
Sporadic Server Scheduling Policy . . . 89
SS_REPL_MAX . . . 9, 42-43, 45, 93
Start_Process

procedure . . . 75-78
Start_Process_Search

procedure . . . 76-78
stat () . . . 25
<stdlib.h> . . . 8
Symbolic Constants . . . 10
Synchronization . . . 33
sysconf () . . . 9, 66-68
<sys/mman.h> . . . 67
system () . . . 74, 76, 79
system clock . . . 33, 36, 54, 56
System V . . . 27, 96

T

Terminology and General Requirements . . . 5
terms . . . 5
Thread Cancellation . . . 61
Thread Cancellation Overview . . . 61
Thread CPU-Time Clocks option . . . 7, 11, 13,

27, 49-50, 95
Thread Creation — Description . . . 59
Thread Creation . . . 59
Thread Creation Scheduling Attributes —

Description . . . 45
Thread Creation Scheduling Attributes

. . . 44
Thread Management . . . 59
Threads . . . 59
Thread Scheduling . . . 43
Thread Scheduling Attributes . . . 43
Thread Scheduling Functions . . . 44
Threads option . . . 5, 7, 24, 36
Thread Sporadic Server option . . . 11, 27,

39-40, 43-45
time () . . . 33-34, 36-37, 54-57
<time.h> . . . 8, 34, 36-37, 49, 54-57
Timeouts option . . . 7, 11, 27, 33, 36, 53, 55
timer_create () . . . 48, 50-51
Timers option . . . 33, 54, 56
times () . . . 25, 96-97
TOC . . . 5
TRUE . . . 101, 104

U

undefined . . . 15, 18, 40
UNIX . . . 76-77, 96
unlink () . . . 66
Unlock a Semaphore — Description . . . 35
Unlock a Semaphore . . . 35
unspecified . . . 18-19, 24, 26, 31

V

Versioned Compile-Time Symbolic Constants
. . . 11

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

118 Alphabetic Topical Index

P1003.1d/D14

W

wait () . . . 26, 78-79
Wait for Process Termination — Description

. . . 26
Wait for Process Termination . . . 26
waitpid () . . . 26, 78-79
WEXITSTATUS . . . 79
Which Services Should Be Timed Out?

. . . 98
WIFEXITED . . . 26, 79
WIFSIGNALED . . . 26
WIFSPAWNFAIL . . . 79
WIFSTOPPED . . . 26
write () . . . 99
WSPAWNERRNO . . . 79
WSTOPSIG . . . 26

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Alphabetic Topical Index 119

P1003.1d/D14

120 Alphabetic Topical Index

