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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the
specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established by the respective organization to deal with
particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft
International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.
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Introduction

As a society, we are increasingly reliant upon high integrity systems: for safety systems (such as fly-by-wire aircraft), for
security systems (to protect digital information) or for financial systems (e.g., cash dispensers).  As the complexity of these
systems grows, so do the demands for improved techniques for the production of the software components of the system.

These high integrity systems must be shown to be fully predictable in operation and have all the properties required of them.
This can only be achieved by analysing the software, in addition to the use of conventional dynamic testing.

There is, currently, no mainstream high level language where all programs in that language are guaranteed to be predictable and
analysable, so for all choices of implementation language it is essential to control the language features used by the application.

The Ada language [ARM]  is designed with specific mechanisms for controlling the use of certain aspects of the language.
Furthermore,

1. The semantics of Ada programs are well-defined, even in error situations. Specifically, the effect of a program
can be predicted from the language definition with few implementation dependencies or interactions between
language features.

2. The strong typing within the language can be used to reduce the scope (and cost) of analysis to verify key
properties.

3. The Ada language has been successfully used on many high integrity applications. This demonstrates that
validated Ada compilers have the quality required for such applications.

4. Guidance can be provided to facilitate the use of the language and to encourage the development of tools for
further verification.

Ada is therefore ideally suited for implementing high integrity software and this document provides guidance in the controls
that are required on the use of Ada to ensure that programs are predictable and analysable.

All language design balances functionality against integrity, for instance, the ability to control storage allocation directly will
impact the need to ensure the integrity of data.  An aspect of the integrity of Ada programs is the possibility of avoiding access
types (references) completely, whereas in other languages references are linked to array accessing and/or parameter passing,
and therefore cannot be excluded.

There are, however, a number of different analysis techniques in use for high integrity software and this document is not
prescriptive about which techniques to use. Furthermore, each analysis technique requires different controls on the use of the
language.  Ada assists analysis: for instance, the modes of Ada parameters, suitably used, provide information for data flow
analysis which other languages cannot always provide.  This Technical Report, therefore, catalogues specific verification
techniques (see 2.5), and classifies the impact that language features have on the use of these techniques (in the tables in
Section 5).

It is the user's responsibility to select the analysis techniques for a particular application; this document can then be used to
define the full set of controls necessary for using that set of techniques.

The guidance given here first specifies its scope, by reference to the safety and security standards to which high integrity
applications may be written.

Section 2 then analyses the verification techniques that are applied in the development of high integrity systems.  By this
means, the regulatory rules of the standards for safety and security are abstracted to avoid the need to consider each such
standard separately.

Section 3 addresses general issues concerning how computer languages must be constructed if programs written in that
language are to be fully predictable. These issues are relevant to any restricted language defined through the application of this
guidance.
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Section 4 provides identification of a three-way classification system used for Ada language features.  This classification is
based upon the ease with which verification techniques can be applied to a program containing the feature.  This classification
is needed since while the majority of the core features in Ada assists verification, the use of certain features makes the resulting
code difficult or impossible to analyse with the currently available program analysis tools and techniques.

Section 5 provides the main technical material of this Technical Report by classifying Ada language features.  Users of this
Technical Report can then determine which features of Ada are appropriate to use from the verification techniques that are to
be employed. The assessment has shown that the vast majority of the Ada features lend themselves to effective use in the
construction of high integrity systems.

The Technical Report concludes, in Section 6, by providing information to aid the choice of a suitable Ada compiler together
with its associated run-time system.

References to relevant standards and guides is provided.  A detailed analysis of Ada95 for high integrity systems is available in
References [CAT1] , [CAT2]  and [CAT3] .

A comprehensive index is provided to ease the use of the Technical Report.

Levels of criticality

Many of the Standards to which high integrity software is written use multiple levels to classify the criticality of the software
components which make up the system. While the number and nature of the levels vary, the general approach is always the
same: the higher the criticality of the system, the more verification techniques need to be used for its assurance. Table 1 relates
the various levels of classification used in some well known International Standards.

Standard Number of levels Lowest Level Highest Level
[DO-178B] 4 D A
[IEC-61508] 4 Safety Integrity Level 1 Safety Integrity Level 4

[ITSEC] 7 E0 E6

   Table 1: Levels of criticality in some Standards

This Technical Report emphasises the higher levels of criticality, for which the more demanding verification techniques are
employed and for which Ada provides major benefits.

This Technical Report, however, does not directly use any such levels but focuses on the correlation between the features of the
language and the verification techniques to be employed at the higher levels of criticality. The material in [ISO/IEC 15026],
[ARP 4754]  and [ARP 4761]  may be useful in determining the criticality of a system if this is not covered by application-
specific standards.

Readership

This Technical Report has been written for:

1. Those responsible for coding standards applicable to high integrity Ada software.

2. Those developing high integrity systems in Ada.

3. Vendors marketing Ada compilers, source code generators, and verification tools for use
in the development of high integrity systems.

4. Regulators who need to approve high integrity systems containing software written in
Ada.

5. Those concerned with high integrity systems who wish to consider the advantages of
using the Ada language.

This Technical Report is not a tutorial on the use of Ada or on the development of high integrity software.  Developers using
this report are assumed to have a working knowledge of the language and an understanding of good Ada style, as in [AQS] .
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Information Technology - Programming Languages - Guide for the
Use of the Ada Programming Language in High Integrity Systems

1 Scope

This Technical Report provides guidance on the use of Ada when producing high integrity systems.  In producing such
applications it is usually the case that adherence to guidelines or standards has to be demonstrated to independent bodies.
These guidelines or standards vary according to the application area, industrial sector or nature of the risk involved.

For safety applications, the international generic standard is [IEC 61508] of which part 3 is concerned with software.

For security systems, the multi-national generic assessment guide is [ISO CD 15408].

For sector-specific guidance and standards there are:

Airborne civil avionics: [DO-178B]

Nuclear power plants: [IEC 880]

Medical systems: [IEC 601-4]

Pharmaceutical: [GAMP]

For national/regional guidance and standards there are the following:

UK Defence: [DS 00-55]

European rail: [EN 50128]

European security: [ITSEC]

US nuclear: [NRC]

UK automotive: [MISRA]

US medical: [FDA]

US space: [NASA]

The above standards and guides are referred to as Standards in this Technical Report.  The above list is not exhaustive but
indicative of the type of Standard to which this Technical Report provides guidance.

The specific Standards above are not addressed individually but their requirements and recommendations have been analysed
from which this Technical Report is synthesised.

1.1 Within the scope

This Technical Report assumes that a system is being developed in Ada to meet a standard listed above or one of a similar
nature.   The primary goal of this Technical Report is to translate general requirements into Ada specific ones. For example, a
general standard might require that dynamic testing provides evidence of the execution of all the statements in the code of the
application.  In the case of generics,  this is interpreted by this Technical Report to mean all instantiations of the generic should
be executed.
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This Technical Report is intended to provide guidance only, and hence there are no ‘shalls’.  However, this Technical Report
identifies verification and validation issues which should be resolved and documented according to the sector-specific
standards being employed.

The following topics are within the scope of this Technical Report:

• the choice of features of the language which aid verification and compliance to the Standards,

• identification of language features requiring additional verification steps,

• the use of tools to aid design and verification,

• issues concerning qualification of compilers for use on high integrity applications,

• tools, such as graphic design tools, which generate Ada source code which is accessible to users.

Note: Tools which generate Ada source code require special consideration.  Where generated code may be modified or
extended, verification of the extensions and overall system will be assisted if the guidelines have been taken into account.  Even
where the modification is not intended, inspection and analysis of the generated code may be unavoidable unless the generator
is trusted or ‘qualified’ according to an applicable standard.  Finally, even if generated code is neither modified nor inspected,
the overall verification process may be made more complicated if the code deviates from guidelines intended to facilitate
testing, memory use analysis etc.  Potential users of such tools should evaluate their code generation against the guidelines.

1.2 Out of scope

The following topics are considered to be out of scope with respect to this Technical Report:

• Domain-specific standards,

• Application-specific issues,

• Hardware and system-specific issues,

• Human factors.

2 Verification Techniques

Verification is the confirmation by examination and provision of objective evidence that specified requirements have been
fulfilled [ISO 8402: 2.18] .

There are currently four approaches required by standards to support the verification of software:

1. traceability,

2. reviews,

3. analysis, and

4. testing.

Each one of these is discussed below.  Where appropriate, language-specific techniques that support each approach are
discussed. Finally, these techniques are grouped into categories that can form a basis for the analysis of Ada language features.
This analytical approach forms the basis for the assessment presented in Section 5.

2.1 Traceability

Traceability is required to establish that the implementation is complete, and to identify new derived requirements.  It occurs
throughout the life-cycle e.g., there needs to be traceability from:

• lower level (decomposed) requirements to higher level requirements;
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• test procedures to requirements, design, or code;

• object code to source code.

While traceability is not language specific, certain attributes of design or coding styles can aid in (or detract from)
accomplishing this objective.  For example, consider a single module that implements a single low level requirement, which has
an associated single test procedure, then the method to support traceability is straightforward.  On the other hand, if there is a
many-to-many relationship between the various decomposed levels of software (because of design choices or test procedures),
traceability can become very complicated.  Deduction of completeness of implementation (without extraneous code) may
therefore be difficult or impossible.

Additionally, the use of some of the more sophisticated language features of high-level languages that require extensive
compiler generated code may detract from the straightforward translation into,  and hence traceability of,  the object code.

2.2 Reviews

Reviews are an important part of the verification process.  They can be carried out on requirements, design, code, test
procedures, or analysis reports.  Reviews are conducted by humans and may be undertaken ‘formally’ such as in a Fagan
inspection [11] or ‘informally’ such as in desk checks.  Typically, reviews are done by an ‘independent’ person i.e., the
producer of the artefact is different from the reviewer.  This independence is a mandatory requirement of safety-critical
software standards.

Coding standards and avoidance of certain language features of high-level languages are essential for high integrity systems in
order to facilitate reviews.  These aspects become important since the 'independent' code review may at times be conducted by
an expert in the application domain who may not have detailed insight into language constructs and their interactions.

2.3 Analysis

This Technical Report distinguishes between analysis (i.e., static analysis) and testing (i.e., dynamic analysis).  Analysis
supplements testing to establish that the requirements are correctly implemented.

Analysis can be performed on requirements, design, or code; the major emphasis of this Technical Report is the analysis of the
design and code.

Described below are ten analysis methods which are required in different combinations by various standards.

1. Control Flow

2. Data Flow

3. Information Flow

4. Symbolic Execution

5. Formal Code Verification

6. Range Checking

7. Stack Usage

8. Timing Analysis

9. Other Memory Usage

10. Object Code Analysis

 

2.3.1 Control Flow Analysis

Control Flow Analysis is conducted to

1. ensure that code is executed in the right sequence,
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2. ensure that code is well structured,

3. locate any syntactically unreachable code, and

4. highlight the parts of the code where termination needs to be considered, i.e., loops and recursion.

Call tree analysis, an example of one of the many Control Flow Analysis techniques available, is used to verify that the
sequencing stated by the design is correctly implemented. Also, call tree analysis can help detect direct and indirect recursion,
which are prohibited by most high integrity standards. Furthermore, if a system is partitioned into critical and non-critical parts,
then the call tree analysis can confirm that the design rules for partitioning have been followed.

Ada is rich in facilities for program flow control.  Language rules, such as prohibition of modification of for  loop control
variables, make it difficult to produce poorly structured Ada code.  If the goto  statement is not used and relatively minor
restrictions are made on placement of exit  and return  statements, Ada code becomes inherently well structured.

2.3.2 Data Flow Analysis

The objective of Data Flow Analysis is to show that there is no execution path in the software that would access a variable that
has not been set a value. Data Flow Analysis uses the results of Control Flow Analysis in conjunction with the read or write
access to variables to perform the analysis. Data Flow Analysis can also detect other code anomalies such as multiple writes
without intervening reads.

In most general-purpose languages, data flow analysis is a complex activity, mainly because global variables can be accessed
from anywhere, and because subprogram parameters do not support out -only modes. The job can be made significantly easier
in Ada which has packages to contain potentially shared data, and out mode parameters on subprograms.

2.3.3 Information Flow Analysis

Information Flow Analysis identifies how execution of a unit of code creates dependencies between the inputs to and outputs
from that code. For example:

X := A+B;
Y := D- C;
if  X>0 then
  Z:=( Y+1);
end if ;

Here, X depends on A and B, Y depends on C and D, and Z depends on A, B, C, and D (and implicitly on its own initial value).

These dependencies can be verified against the dependencies in the specification to ensure that all the required dependencies
are implemented and no incorrect ones are established. It can be performed either internal to a module (i.e., a procedure or a
function), across modules, or across the entire software (or system). This analysis can be particularly appropriate for a critical
output that can be traced back all the way to the inputs of the hardware/software interface.

2.3.4 Symbolic Execution

The objective of Symbolic Execution is to verify properties of a program by algebraic manipulation of the source text without
requiring a formal specification. This technique is typically applied using tools that also undertake Control, Data and
Information Flow Analysis.

Symbolic Execution is a technique where the program is ‘executed’ by performing back-substitution; in essence, the right hand
side of each assignment is substituted for the left hand side variable in its subsequent uses.  This converts the sequential logic
into a set of parallel assignments in which output values are expressed in terms of input values. Conditional branches are
represented as conditions under which the relevant expression gives the values of the outputs from the inputs. To undertake this
computation, it is assumed that no aliasing is taking place, i.e., two variables X and Y do not refer to the same entity and that
functions have no side-effects. Tools that provide support for symbolic execution may or may not check for these conditions.

Using the fragment of Ada code which illustrated Information Flow Analysis gives:
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A+B ≤ 0:
   X = A+B
   Y = D- C
   Z = not defined on this path (retains initial value)
A+B > 0:
   X = A+B
   Y = D- C
   Z = D- C+1
These algebraic expressions give the output in terms of the input and can be compared (manually) with the specification of a
subprogram to verify the code.

Symbolic execution can also be used to assist with reasoning that run-time errors will not occur (e.g., Range Checking). The
symbolic execution model is extended to include expressions indicating the conditions under which a run-time error may occur.
If these expressions are mutually contradictory for a particular execution path then that path is free from potential run-time
errors

2.3.5 Formal Code Verification

Formal code verification is the process of proving that the code of a program is correct with respect to the formal specification
of its requirements.  The objective is to explore all possible program executions, which is infeasible by dynamic testing alone.

Each program unit is verified separately, against those parts of the specification that apply to it.  For instance, formal code
verification of a subprogram involves proving that its code is consistent with its formally-stated post-condition (specifying the
intended relationships between variables on termination), given its pre-condition (specifying the conditions which must apply
when the subprogram is called).   A more restricted proof aimed at demonstrating a particular safety/security property can also
be constructed.

The verification is usually performed in two stages:

1. Generation of Verification Conditions (VCs). These theorems are proof obligations, whose truth implies that if
the pre-condition holds initially, and execution of the code terminates, then the post-condition holds on
termination.  These VCs are usually generated mechanically.

2. Proof of verification conditions. Machine assistance in the form of a suitable proof tool can be used to discharge
verification conditions.

The process outlined above establishes partial correctness.    To establish total correctness  it is also necessary to prove
termination of all loops when the stated pre-condition holds and termination of any recursion.   Recursion is not normally
permitted in high integrity systems.  Termination is usually demonstrated by exhibiting a variant expression for every loop, and
showing that this expression gives a non-negative number that decreases on each iteration.  Termination conditions can be
generated and proved, similarly to the generation and proof of verification conditions.

The value of formal code verification depends on the availability of a specification expressed in a suitable form such as results
from formal specification methods. Formal methods involve the use of formal logic, discrete mathematics, and computer-
readable languages to improve the specification of software.

Proof of absence of run-time errors
In some real-time high integrity systems, occurrence of run-time errors is not acceptable. An example is the flight-control
system of a dynamically unstable aircraft, in which there would not be time to recover from such an error.  The techniques of
formal code verification described above can be used to prove that (with appropriate language constraints) certain classes of
run-time errors, e.g., range constraint violations, cannot arise in any execution.

To perform such verifications, the object type and variable declarations are used to construct pre-conditions on the ranges of
initial values, and at each place in the source code where a run-time check would be produced, an assertion formally describing
the check is generated.  From these pre-conditions, assertions and the program code, verification conditions are mechanically
produced.

These verifications (or ‘proof obligations’)  are numerous, but for the most part simple enough to be proved automatically.  Full
formal requirement specifications are not needed to apply this technique.
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2.3.6 Range Checking

The objective of this analysis is to verify that the data values lie within the specified ranges as well as maintain specified
accuracy. These forms of analysis include, but are not limited to,

1. overflow and underflow analysis,

2. rounding errors,

3. range checking, and

4. array bounds.

For discrete types, the static bounds placed upon variables often allow many cases to be checked automatically. When
enumerated types are used instead of integer types, these checks are more effective. For real types, the need to show the
absence of overflow is more demanding than the analysis of operations on discrete types.

Since the semantics of Ada remain defined even in error conditions, the necessary checks can be explicitly specified.
Furthermore, the ‘Valid attribute makes it straightforward to check that scalar data, especially where it is obtained from sources
external to the program, is a legal Ada value, without the risk of run-time exceptions being generated.

2.3.7 Stack Usage Analysis

The stack is a part of the memory shared by different subprograms and used for storing data local to the subprogram, temporary
data and return addresses generated by the compiler. Stack Usage Analysis is a particular form of shared resource analysis that
establishes the maximum possible size of the stack required by the system and whether there is sufficient physical memory to
support this maximum stack size. Also, some compilers use multiple stacks and this analysis needs to be conducted for each
stack.

Another aspect of Stack Usage Analysis is to ensure that there is no stack-heap collision at run-time. This analysis is avoided
when dynamic heap allocation is prohibited.

Stack Usage Analysis is made simpler for a programming language such as Ada where subprogram calls and return semantics
are unambiguous, and where there is a clean distinction between static and dynamic types. Compilers supporting the Safety and
Security Annex provide the necessary information to undertake this analysis, see [ARM: H.3.1(15)].

2.3.8 Timing Analysis

The overall objective of this analysis is to establish temporal properties of the input/output dependencies. A common and
important aspect of this analysis is the worst-case execution time for the correct behaviour of the overall system.

Certain programming language features or design approaches make timing analysis difficult, e.g., loops without static upper
bounds and the manipulation of dynamic data structures.

The static typing of Ada and the unambiguous semantics of its control structures facilitate these analyses. Also, the pragma
Reviewable  and pragma  Inspection_Point  ensure that there is traceability from the source code to the object code to
facilitate timing analysis.

2.3.9 Other Memory Usage Analysis

This analysis is required for any resource that is shared between different 'partitions' of software.  These forms of analysis
include, but are not limited to, memory (heap), I/O ports, and special purpose hardware, which perform specific computations
or watchdog timer functions.

Analysis will show the absence of interference between Ada and other components such as low-level and hardware device
drivers and resource managers.  In particular heap memory should usually be avoided and IO devices rigorously partitioned.
Ada is particularly useful when doing such analysis since the pragma  Restrictions (No_Allocators) can be used to ensure no
explicit use of the heap and pragma  Restrictions (No_Implicit_Heap_Allocation) to ensure no implicit usage of the heap.

2.3.10 Object Code Analysis

The purpose of Object Code Analysis is to demonstrate that object code is a correct translation of source code and that errors
have not been introduced as a consequence of a compiler failure.
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This analysis is sometimes undertaken by manual inspection of the machine code generated by the compiler. The compiler
vendor may provide details of the mapping from the source code to object code so that manual checks are simpler to undertake.
Unfortunately, it is not currently within the state of the art to formally verify the equivalence of source code and the generated
object code.

The Ada pragma  Reviewable  provides basic information to assist in tracing from source code to object code.  Pragma
Inspection_Point  can be used to determine the exact status of variables at specific points [15].

2.4 Testing

2.4.1 Principles

Testing (sometimes known as dynamic analysis) is the execution of software on a digital computer, which is often the target
machine on which the final application runs. Testing has the advantage of providing tangible, auditable, evidence of software
execution behaviour [14].

There are many testing techniques and new ones are being invented continually.  This section is limited to those procedures that
are required by various software standards.  It is not intended to be an exhaustive encyclopaedia of the various testing
techniques known at the present time.

Testing can be performed at various levels of software (and system):

• Software module level (individual procedures or functions),

• Software integration testing (i.e., module integration testing),

• Hardware/Software integration testing, and

• System testing.

The testing procedures described below focus on the first two aspects, i.e., module and module integration testing, since the
choice of programming language has a direct impact on the ease or difficulty of testing.  Within this framework,  there are two
basic forms of testing:

• Requirements-based (or black-box) testing, and

• Structure-based (or white-box) testing.

Since exhaustive testing is infeasible for any realistic program, one approach is to limit the number of test cases to partition the
data domain into equivalence classes and their boundary values.

2.4.2 Requirements-Based Testing

The requirements-based testing methods aim to show that the actual behaviour of the program is in accordance with its
requirements. For this reason, these methods are sometimes also called ‘functional testing’ or ‘black-box testing’. This is to
highlight the fact that the program structure is not taken into account. There are two common methods for conducting
requirements-based testing:

Equivalence Class Testing
The inputs and outputs of the component [BS 7925-1: 3.42] under test are divided into equivalence classes in which the values
within one class can reasonably be expected to be treated by the component in the same way.  The equivalence class for
numeric data is a range having the same sign or zero.  For data of an enumerated type, each value usually forms a class, since
each value could be expected to be treated differently.  For composite types, the equivalence classes are obtained by combining
the classes derived from the components of the type.  Testing is then undertaken using a sample from each equivalence class
[BS 7925-2: 5.1] .

Boundary Value Testing
This approach enhances the equivalence class testing by requiring testing with values at the boundary of the specified range.
Additionally, ‘stress’ testing or ‘robustness’ testing may be undertaken outside the specified range if required by the application
domain standard [BS 7925-2: 5.2].
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2.4.3 Structure-based Testing

The objective of these testing methods is to increase the confidence in software by exercising the program beyond the
requirements-based testing mentioned above.

Examples of the methods used, and the definitions implied, are:

Statement Coverage
The application of test cases such that every statement in the program has been invoked at least once.

Decision (Branch) Coverage
The application of test cases such that every point of entry and exit in the program has been invoked at least once, and every
decision in the program has taken all possible outcomes at least once.

Modified Condition/Decision Coverage
The application of test cases such that every point of entry and exit in the program has been invoked at least once, every
condition in a decision in the program has taken all possible outcomes at least once, every decision in the program has taken all
possible outcomes at least once, and each condition in a decision has been shown to independently affect that decision’s
outcome. A condition is shown to independently affect a decision’s outcome by varying just that condition while holding fixed
all other possible conditions.

These structure-based testing approaches apply only to source code of high-level languages such as Ada. In addition, standards
for the development of safety-critical software often require that the set of tests are shown to execute every instruction in the
object code of the software under test.

2.5 Use of Verification Techniques in this Technical Report

When considering the previous verification techniques, certain groupings can be formed.  The verification techniques within a
group have similar properties with respect to the complexity of that technique when applied to a particular language feature.
The following table shows the groups, and abbreviations, used in the Assessment of Language Features (Section 5).

Approach Group Name Technique
Control Flow

Flow Analysis (FA) Data Flow
Information Flow

Symbolic Analysis (SA) Symbolic Execution
Analysis Formal Code Verification

Range Checking (RC) Range Checking
Stack Usage (SU) Stack Usage
Timing Analysis (TA ) Timing
Other Memory Usage (OMU ) Other Memory Usage
Object Code Analysis (OCA) Object Code Analysis
Requirements-based Testing (RT) Equivalence Class

Boundary Value
Testing Statement Coverage

Structure-based Testing (ST) Branch Coverage
Modified Condition/Decision Coverage

     Table 2 : Verification Techniques

For convenience, some techniques are grouped together as follows:

Flow Analysis
The three methods under this group name are Control Flow, Data Flow and Information Flow (Analysis). The basic methods of
control flow and data flow are combined with information flow analysis.

Symbolic Analysis
Two methods are grouped together here: Formal Code Verification and Symbolic Execution. Both these methods share a
mathematical foundation and typically use tools which analyse the source text of a program algebraically.

Requirements-based Testing
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The Equivalence Class and Boundary Value are closely related in that Boundary Value testing extends the set of test cases
required by Equivalence Class testing.

Structure-based Testing
Three testing methods are combined here, which in order are: Modified Condition/Decision Coverage, Branch Coverage and
Statement Coverage. These methods are closely related and are often tested with the help of the same tool.

3 General Language Issues

3.1 Writing Verifiable Programs

Standards and guidelines for high integrity software demand assurances of its fitness for purpose, based on its static analysis
(see Section 2.3), and also testing (see Section 2.4).

The choice of the verification techniques to be used for a software development is one part of the definition of the overall
development process for that software. Coding standards and language subsets can only be defined after the analysis methods
have been selected, to ensure that none of the analysis methods are compromised by the use of inappropriate language features.

In the context of high integrity systems, fitness for purpose depends on the behaviour of a system being predictable, and
demonstrably conforming to a precise specification of its requirement. Historically, demonstration of conformance to
requirement specifications by static analysis and testing has usually been attempted retrospectively, after a system has been
developed.  This approach has rarely proved a cost-effective way of producing the desired results, for several reasons. Firstly,
because the design and implementation processes have not been chosen with verification in mind.  Secondly, the static analysis
or testing technologies have been difficult and costly to apply, and were not very revealing. And finally, where such analyses
have revealed errors, these were detected so late that their correction was extremely costly.

The high cost of repeated testing as mistakes are uncovered and rectified, and improvements in the technology of static
analysis, have led to a realisation that there are significant cost benefits in performing static code analysis as the code is
produced.  This accords well with the movement, as specification methods have improved, towards ‘Correctness by
Construction’ - the ‘lean engineering’ view of software development.  Here static analysis methods, where they are relevant,
feature as an integral part of the development process.  Their purpose is to establish the validity (in particular respects) of
intermediate products before they are used to develop further ones.  This constructive approach also contrasts with
retrospective verification in matters of style: where certain language features are positively required in order to support a
particular model.  The retrospective approach leads to a list of language prohibitions.  Although the constructive approach is
more demanding, conceptually, it uses language and tools to better effect, improving technical quality as well as reducing costs.

With motivations such as these for performing verification, it can be seen that there are four different reasons for needing or
rejecting particular language features within this context:

1. Language rules to achieve predictability,

2. Language rules to allow modelling,

3. Language rules to facilitate testing,

4. Pragmatic considerations.

In addition, there are reasons to enhance the language by adding forms of annotations.

In the following sections these matters are considered in detail.

3.1.1 Language Rules to Achieve Predictability

Language rules to achieve predictability are independent of the analysis methods to be used.  It is a requirement, in all high
integrity system development, that the program source code is unambiguous.  All possible forms of language ambiguity must be
prevented in some way.

The ways in which programs written in a high-level language can be ambiguous are well-known. A few cases are discussed
below.
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Side-effects
It is generally accepted that side effects in functions are undesirable. Side effects can make order of evaluation
of an expression a significant issue, and can make repeated calls to a function return different results. Many
programming languages permit functions to have side-effects.

Effects of elaboration order
Programs in languages that support default initialisation or elaboration will be dependent on the order of
evaluation within a unit and the order in which units are evaluated.

Effects of parameter-passing mechanisms
Parameters to a subprogram in a high level language can be passed as a copy or passed as a reference. The
results of an execution may depend upon which method is chosen by an implementation (where a choice is
permitted).

Such ambiguities make the formal analysis of a program difficult. The uncertainties can be reduced by writing programs that do
not depend on these types of issues.

There is often an attempt in high integrity systems to eliminate offending language features to remove the uncertainties or
implementation dependencies. If taken to its extreme this can lead to a language that is ‘safe’ but ineffective.  It will lack the
expressive power required to tackle the application requirements.  The language may be ‘safe’ but the programming process
becomes more error-prone as complex designs must be produced to circumvent the inadequacies of the language.

3.1.2 Language Rules to Allow Modelling

All static analysis methods involve the construction of a model of program source text (or object code), and the application of
algorithms or reasoning processes to this model, to check whether it has some particular properties.  It is possible that if a
particular feature of a language is used at all, or in a particular way, the model would be unable to capture those aspects of the
program text that are important to the analysis to be performed.  As a consequence, to ensure validity of a static analysis
method some language features must be disallowed or their use rigorously controlled.

Assuming that language rules, or other devices, exist to ensure a program is meaningful, this section considers the requirements
for the various forms of modelling and analysis methods to be well founded and, at least in principle, applicable.

The simpler kinds of static analysis, in particular control, data, and information flow analysis, essentially involve the study of
paths (corresponding to execution histories) on a directed graph model of a program (effectively a flowchart).  The arcs of the
program graph have labels which capture some syntactic and semantic properties of the program statements.  For control flow
analysis only the graph structure is required, for data flow analysis each arc label specifies which variables the corresponding
statement reads and updates, for information flow analysis the dependencies between read and updated variables must be
defined more precisely.  Conceptually, formal code verification (and proof of absence of run-time errors) is also based on paths
(or execution histories) on such a graph, but here the arc labels are partial functions of the set of program variables, defining the
conditions for traversing the arcs and the transformations of variables performed in doing so.  These static analysis techniques
are all applied to the same structural model, but  form a progressively richer description of the program objects and elements.

The inclusion of exception flows and run-time dispatching significantly complicates the graph structure and tends, in the
general case, to the analysis becoming intractable; the goto  statement also introduces difficulties.  Otherwise, there are no
obstacles to control-flow analysis, which only requires and provides relatively limited information.

Data-flow analysis begins to take an interest in the data objects of a program. When using this method difficulties of
distinguishing between dynamically-selected components of composite objects are first encountered.  Two issues are: arrays
must be treated as entire objects (although their components, selected by dynamically-computed indices, can reappear in formal
code verification), and dynamic creation of objects in the course of execution (using access types) cannot be represented.
Information flow analysis essentially requires the same constraints.

Such static models of programs only apply to sequential code.  If the program contains concurrent threads, (e.g., tasks) then
each thread must be analysed independently in terms of its flow, with the concurrency aspects being addressed by different
models and reasoning processes.  With a concurrent system the key objective of modelling is to prove that the system cannot
enter undesirable states such as deadlock.  The main static techniques for achieving this are finite state automata [3],  petri-nets
[4], [5] and process algebras [6], [7], [8] using model checking or mathematical proof.  All try to construct the set of all feasible
histories for the system to show that unsafe conditions cannot be reached.  The degree to which thread synchronisation impacts
on the flow analysis of individual threads determines the complexity of the overall verification problem.  The more
asynchronous the model, the more straightforward the flow analysis of each thread.  If there is only asynchronous data passing
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between threads then each thread can be verified in isolation.  Moreover, the complete timing/scheduling analysis of the entire
concurrent system becomes tractable.

Surprisingly perhaps, the domain to which formal code verification is applicable in principle is no more restricted;  indeed, it is
somewhat larger, as composite objects can be considered more generally.  There is a large gap, however, between what is
analysable in principle and what can be analysed in practice and a number of strategic choices arise.  If the dynamic semantics
of the language are made as simple as reasonably possible, the burden of verification is placed as far as possible on static
analysis tools.  So, for example, if a program is deemed exception free by formal proof, coverage testing is significantly
simplified.

In conclusion, the adequacy of modelling for different analysis methods gives rise to some language constraints.  But just as
important in determining how a programming language should be used, are the precise reasons for using the analysis methods
and the ways in which they are to be employed — in other words, the choice of software development process.

3.1.3 Language Rules to Facilitate Testing

Demonstration of a program's correct dynamic behaviour, by testing, is an important part of its verification. In practice the
development of high integrity systems usually involves two different forms of testing: investigative, informal or debugging
testing; and formal coverage testing of a kind or kinds required by various standards. As noted above the detection and
elimination of errors by static analysis methods early in the project life-cycle can greatly reduce testing costs by shifting the
emphasis of testing from debugging to demonstrating correctness.

The constraints placed on programming languages to facilitate testing are generally less significant than those demanded by
static analysis techniques. Although language features do have some impact on testing, the use of static analysis techniques as
part of the development process will ensure that language features which might complicate such testing will be avoided.

Language features that obstruct coverage testing are those such as dispatching which introduces very dynamic control flow;
goto  which complicates control flow; and features which complicate the view taken of data, for example: variant records,
unchecked conversions and dynamic pointer usage. Predefined exceptions present a particular difficulty for coverage testing
because it is often not possible to reach all the paths these introduce by external stimulation of unmodified code.

Language features that assist testing are those which constrain data values by strong and static typing and those which assist in
locating errors by indicating their presence close to the point where they arise; here predefined exceptions are beneficial.

There is a general tension between the dictates of good software engineering, which encourage information (or more accurately
"detail") hiding, and testing which often seeks to monitor the values of internal system state. Language features which enable
these conflicting requirements to be reconciled are of particular value and avoid distorting the design just to achieve testability.
Ada has particular strengths in this area which often allow test harnesses to have access to "hidden" data in non-intrusive ways.
Examples include:

• A child package may be used to monitor state in the private part of its parent without requiring any change to that
parent package.

• Subunits may be used to place the source for an embedded subprogram in a separate file thus allowing the
construction of a suitable test driver for it. Test point subprograms in packages can also usefully be placed in a
subunit and replaced with a null subprogram in delivered code.

• Parameterless functions may be used to return the value of "trimming variables" which are often found in control
systems. These variables behave as constants at the program level but can be dynamically adjusted by direct
memory access during rig testing. The use of parameterless functions to return their value reconciles the
software's view that they are constants with the testing need to adjust their values.

• The use of a package to contain "test point" variables. These are "write-only" variables used solely for test
monitoring purposes. At the point where the (hidden) value to be monitored is generated a copy can be passed to
this package and used to update its state; this is preferable to distorting the design by making the data directly
visible and emphasises the distinction between state needed by the software for its correct behaviour and that
introduced for testing purposes only.
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3.1.4 Pragmatic Considerations

The considerations of side effects and elaboration order described in section 3.1.1 impose conditions essential to the validity
and technical relevance of static analysis methods. Further linguistic issues are important to the tractability and eventually the
economic viability of their application.

The questions of what conditions make the static analysis methods easy to apply, and what makes their results meaningful and
useful, have essentially the same answers: a program should be well-designed.

All the static analysis and testing methods and construction techniques are most effective when  software is well-structured,
with every module having a single entry point and a  single exit point.  Although data flow analysis can still be applied to
‘spaghetti code’, it will be less efficient in finding data flow errors and anomalies.  Similarly, information flow analysis can be
extended to ‘spaghetti code’, for which the unsurprising outcome is that almost every variable may depend on every other.  In
constructing proofs, it is preferable to have building blocks with pre-conditions on their single entry points and post-conditions
defining state at their single exits.  For all these reasons language subsets for high integrity programming invariably exclude
goto  statements, return statements from procedure subprograms and  apart from at the top most level, exception handlers are
avoided.

Proving correctness of programs, like reasoning about them informally, is about relating fragments of code to fragments of
specification. Decomposition of functionality is very important.  Verifiability depends on simplicity of contextual information,
i.e., scope and visibility should be as limited as reasonably possible.  So it is important to pay attention to architecture, the
location of state, access to state, and embedding.

For such reasoning to be practical,  the use of two-valued logic is preferred, where predicates are either true or false but not
undefined.  To achieve this it is useful for all variables to have valid values. This implies that there should not be undefined
variables, a condition that can be met in three different ways:

• by language constraints, e.g., imposing initialisation of all variables in their declarations;

• by using a data flow analyser, to ensure that no variable is ever read before being initialised;

• by a tool-assisted software development process that ensures proper initialisations.

Of these options, the latter two are preferred, since it is usually better for all initialisations to be meaningful.

The conclusion is that for high integrity software development, the language employed is more than a pick-and-mix selection of
language features. It must be built as a coherent whole as a means of expressing a chosen development philosophy, that is
compatible with tools used to implement it.

3.1.5 Language Enhancements

A programming language should be used in a style that enhances its fitness for purpose. The rules discussed above for
predictability and modelling are restrictions on the language: the elimination of syntactic forms or other, more subtle features.
Fitness can also be enhanced by adding elements to the standard language, to facilitate derivation or verification of a program
given its specification.

Tools and techniques that relate the source code to a formal specification, such as Formal Code Verification, often need
information extra to the program source in order to work efficiently. Such information describes program properties that follow
from the laws of the language and that the programmer intuitively believes but are not expressed directly in the language
syntax. Examples include loop invariants, relationships between formal parameters, and state hidden inside other service-
providing packages1. Capturing this information enables proofs that are otherwise computationally hard.

One approach to verification is to capture these properties by embedding annotations (formal comments, with their own syntax
and semantics), in the source code, together with static design rules that relate the annotations to program objects. An
annotation can express an invariant as an equivalence between program objects, and can reveal hidden state in packages
without compromising their integrity.

                                                          

1 It is a design goal of Ada that a client routine should not access state variables in another package (to prevent the client abusing them,
among other good reasons). However knowledge of the state is needed to reason about the behaviour of the whole program.
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The literate programming paradigm [17] provides another way of relating source code to specification. In literate programming,
program and program fragments are embedded within a larger document, that also contains natural language description and
other formal notations. One can relate and check objects in different fragments, and assemble a complete program for
compilation.

Other development paradigms involve automated generation of package templates from a specification. As well as the package
code, the toolkit may supply additional information to the programmer, to exclude unwanted interactions across module
boundaries.

All the above approaches facilitate correctness-by-construction, by narrowing the gap between a package or component and its
specification, and by enabling its verification in a stand-alone manner at any time during development.

3.2 The Choice of Language

Any language that is to be used for theimplementation of high integrity systems should:

• be strongly typed,

• support a range of static types,

• have consistent semantics that is defined in an international standard,

• support abstractions and information hiding,

• have available validated compilers.

Ada is unique in its compliance to all these attributes. Nevertheless it may be necessary to restrict or prevent the use of certain
features to achieve full predictability, and to allow all the forms of static analysis and testing considered important.  However
verification poses few problems with the main part of the language [10].

Rules of Ada usage are determined by considerations of the elimination of ambiguity,  the feasibility of modelling and analysis,
and the constructive use of static analysis.  In some cases it is found that a language feature is undesirable, (e.g., goto
statements) or that it renders some kind of static analysis intractable, (e.g., predefined exceptions) or infeasible (e.g., full
tasking).  More frequently the difficulty stems from the use of several features in combination in a particular manner.  The most
satisfactory way of applying appropriate restrictions in this case is through annotations, and rules between these and the Ada
code.  The annotation system requires very careful design if it is to be secure.  The most important concern is with ways of
using Ada that provide good implementations of specifications and designs, and that can to a large extent be rigorously verified
as they are constructed.  Experience indicates that when these conditions are met, testing is also greatly simplified.

Whether the restrictions are based on language-defined or implementation-defined restrictions, tool-based analysis or
annotation-based analysis, the result is a subset of the entire language, or possibly a collection  of subsets of the language. It
would be ideal if a single subset could be defined which would satisfy all requirements. The reality of different user
communities, each with their own regulatory and commercial pressures, and multiple levels of criticality make this ideal
impossible to achieve. Since a single set of restrictions cannot be defined, this Technical Report provides detailed guidance that
assist users in constructing their own restrictions based upon the verification techniques that they require.

Consideration of the language requirements for correctness by construction is a matter of positive choices.  It may lead to some
restrictions on the use of Ada, but these should be based on sound engineering judgement of the most appropriate combination
of language features.  Here the aim is to use Ada as the vehicle to support the chosen design and development paradigms, in the
course of code production — which may for example suggest a particular way of using packages to implement object
templates.

To perform all necessary constraint checks as a program components are constructed, it is necessary to utilise specification and
design information, and relate it to the program architecture and code. To do this tools such as [16], and [18] use a system of
annotations (‘formal Ada comments’), as discussed in 3.1.5. Introduction of an annotation system may also bring with it some
stylistic restrictions on the use of Ada, for instance to reduce overloading and limit visibility.  Annotations may also be
necessary to fully support modular development. For example, to reason about the process performed by a module,  knowledge
of precisely what information it is accessing, and what are its effects, direct and indirect is required. .Specifically,its use or
action on a global variable cannot be ignored.

The correctness by construction approach, with correctness checking module-by-module, may also require rules to avoid
unwanted properties arising from the incremental development.  For instance, it must be possible to prevent recursion (usually
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frowned upon in safety-critical applications) by rules applicable at the module level, rather than by checking for recursion when
a system is complete.

It is reiterated that Ada is currently the only viable language with sufficient industrial heritage that can provide the framework
for static analysis and correctness by construction. As indicated above some restrictions on the use of the language are
necessary. Section 5 of this Technical Report provides a detailed assessment of these features.

4 Significance of Language Features for High Integrity

Language features are classified to facilitate the cost-effective application of the required verification techniques.

4.1 Criteria for Assessment of Language Features

Control of the language features used in the implementation of high integrity systems is one essential ingredient to the use of a
high order language. Ada was expressly designed to facilitate this effort. Yet, like all modern general purposes languages, Ada
offers a broader variety of features than strictly required for any specific application domain. Hence, important design decisions
need to be made to determine which language features best suit the implementation and verification requirements that emanate
from the specific application domain.

The reasoning behind this can be shown by an example. High integrity control systems often handle physical data that
continuously varies. The processing involves the input/output of these quantities from/to digital to analogue converters. Within
the program, the natural way to handle such data is by means of an Ada real type (fixed or floating point). The verification
process for fixed point is slightly different to that for floating point. Hence, a design decision should be made as to which form
of real type should be used. In doing so, one should also consider that real types are only suitable for modelling continuously
varying quantities and, therefore, are not needed at all in some types of applications.

The choice of language features is determined by the nature and criticality of the application and the verification techniques to
be employed. In practice, however, the availability of software tools may further constrain the choice of language features. For
instance, if formal verification with proof is required, then the use of any real types might not be viable so that the application
might have to be coded using integer types only.

This Technical Report rates language features using three categories as follows:

Included
A feature is ‘included’ if it is directly amenable to the designated verification technique. Not surprisingly, most
Ada features are rated ‘included’ for most verification techniques. Included features enable the analysis to be
undertaken and directly support the production of high integrity code.

Allowed
A feature is ‘allowed’ if the designated verification step is not straightforward, but is still achievable; or if the use
of the feature is necessary and the use of the problematic verification technique can be effectively circumvented.

Excluded
A feature is ‘excluded’ if there is no current cost effective way of undertaking the designated verification
technique. Assurance of exclusion requires some form of verification.

Even without the excluded and allowed features, Ada remains a rich language of great expressive power.  In particular, all the
features needed to support large scale, effective software engineering practice such as abstraction, encapsulation and
concurrency are retained.

4.2 How to use this Technical Report

The user of this Technical Report should proceed in four steps, as follows:

1. Determine the verification techniques required from the relevant application specific standards or
guidelines.

2. Identify and understand the objectives to be satisfied by each of the verification techniques.

3. Using the tables in section 5, determine the actual rating of the language features.
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4. Confirm that the resulting choice of subset and the additional verification steps for any allowed features
can satisfy the programming and verification requirements. This step should take into account available
tools.

In some situations a verification technique is hard to apply because of the interaction of two or more language features.  When
such an interaction occurs, it is addressed under the feature that is primarily responsible for the problem.  For example, the use
of representation clauses has impact on a number of features; these issues are all considered in the low level programming
section (see 5.9).

5 Assessment of Language Features

The Ada features are split into fourteen groups closely related to chapters of the ARM. These are:

• types with static attributes;

• declarations;

• names, including scope and visibility;

• expressions;

• statements;

• subprograms;

• packages (child and libraries);

• arithmetic types;

• low level and interfacing;

• generics;

• access types and types with dynamic attributes;

• exceptions;

• tasking;

• distribution.

Each group of features is assessed separately. For each group of features assessed, this Technical Report includes one
evaluation table and one textual section providing constructive guidance to use of the designated features.

The table indicates how a given language feature performs with respect to each of the nine groups of verification techniques
identified in Table 2 (reproduced below for ease of reference).  The rating ‘included’ is denoted by the abbreviation ‘Inc’ (plain
faced) in the relevant entry; the rating ‘allowed’ by the abbreviation ‘Alld’ (bold faced); and the rating ‘excluded’ by the
abbreviation ‘Exc’ (bold faced). Some of the ratings, including all marked as allowed or excluded, are accompanied by
explanatory notes providing the rationale for the assessment. If it is necessary to make a global statement about the feature then
a note is attached to the feature itself.  Where a feature has the rating ‘excluded’ against a number of verification techniques
then we assume it will not be used in high integrity systems.  The assessments presented are thus simplified by not including all
possible interactions with such features.
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Approach Group Name Technique
Control Flow

Flow Analysis (FA) Data Flow
Information Flow

Symbolic Analysis (SA) Symbolic Execution
Analysis Formal Code Verification

Range Checking (RC) Range Checking
Stack Usage (SU) Stack Usage
Timing Analysis (TA ) Timing
Other Memory Usage (OMU ) Other Memory Usage
Object Code Analysis (OCA) Object Code Analysis
Requirements-based Testing (RT) Equivalence Class

Boundary Value
Testing Statement Coverage

Structure-based Testing (ST) Branch Coverage
Modified Condition/Decision Coverage

     Table 2 (copied for reference) : Verification Techniques

Predefined Language Environment
The Technical Report gives no explicit consideration to the predefined language environment. If components of the
environment are used in an high integrity application, then three situations arise:

1. The components are written in Ada. In this case, the Guidelines in section 5 apply.

2. The components are part of the run-time system. In this case, the Guidelines in section 6 apply.

3. If neither of the above applies, then no guidance is provided.

5.1 Types with Static Attributes

The strong typing mechanism in Ada is a significant contribution to software engineering. All values are associated with the
type that is appropriate to their domain, and the type definition covers precisely the set of applicable values. This section is only
concerned with types and subtypes that have static bounds and attributes, and that are statically allocated. Moreover, this
section ignores interactions with Representation Clauses, which are dealt with in Section 5.9.

Ada95 has added the notion of statically matching subtypes to Ada83.  When a compiler determines statically that a subtype
does not match a required subtype, during parameter passing for example, it will report an error.

The rules for the derivation of types, explicit and implicit conversion between types, and mechanisms for the derivation,
extension and overriding of primitive subprograms are complete, consistent and beneficial to programming of high integrity
systems. Values associated with one type must be explicitly converted to other types. This forces designers to be explicit about
conversions and makes the conversions visible in the  source code. In addition, conversions can occur only between types that
have a common parentage, i.e., all numeric types, or types that have been  derived from the same parent type. The name-based
typing and derivation support software engineering principles and prevent many classes of errors.

Abstract types and subprograms provide significant capability to Ada at virtually no run-time cost. A tagged type that is
declared abstract prevents objects of that type from being declared, although type derivation (or extension) is permitted, and
these new types may then have objects and actual primitive operations.  When a tagged type is extended, abstract primitive
operations ensure that the extender of the type provides real code for each primitive operation, and does not accidentally use
default or incomplete operations. Abstract subprograms of non-tagged types allow the definer of the type to make unavailable
certain operations that would ordinarily be available for the type.
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5.1.1 Evaluation

Group Name
Feature  FA  SA  RC  SU  TA OMU  OCA  RT ST
Anonymous
Types

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Subtypes1  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Enumerated
Types

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Character  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Boolean  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Integer  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Derived  Inc Alld 2  Inc  Inc  Inc  Inc Alld 2  Inc  Inc
Arrays  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Records  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Discriminated
Records

 Inc Exc3  Inc  Inc  Inc Exc3 Alld 3  Inc Exc3

Tagged Types
without 'Class

 Inc Alld 2  Inc  Inc  Inc  Inc Alld 2  Inc  Inc

Class Wide
Operations

 Exc4 Exc4  Inc  Inc Alld 4  Inc Alld 4  Inc Exc4

Abstract Types
& Subprograms

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Table 3 : Types with Static Attributes

5.1.2 Notes

1. The use of 'Image for any subtype should be avoided. 'Image  returns an unconstrained string which may require
unbounded memory techniques for implementation.

2. Derivation of a type causes an automatic overloading of all primitive subprograms of the type. This makes functional
coverage harder, but still tractable since the effects are limited to the unit that does the derivation, plus units that depend on
the original unit.

3. Discriminants on records can be used to create unconstrained objects, to make some components inaccessible in some
variants, and to define indefinite generic formal parameters and private types. This leads to significant analysis complexity,
potential execution-time exceptions, and can cause the use of dynamic memory techniques.

4. The analysis of class-wide calls involves dispatching and hence must consider every candidate object type and analyse the
associated subprogram. This can be a difficult undertaking because types declared in library-level package specifications
can be extended anywhere in the partition.

5.1.3 Guidance

Integer types should always be declared with explicit ranges, instead of  deriving from one of the predefined integer types.

Avoiding Run-Time Dispatching
User invoked dispatching only occurs if 'Class  is used. Prevention of dispatching can be enforced by the use of pragma
Restrictions(No_Dispatch).

The use of derived types or tagged types with 'Class requires that all operations on the types are checked to ensure that the
operations called according to the language rules are the ones the application design requires.

5.2 Declarations

A declaration associates a name with an entity and describes some characteristics of that entity.  The Ada language uses these
characteristics both statically (at compile time) and dynamically (at run-time) to ensure that entities are not used in
inappropriate ways.
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5.2.1 Evaluation

Group Name
Feature  FA  SA  RC  SU  TA OMU  OCA  RT ST
Named numbers Inc Inc Inc Inc Inc Inc Inc Inc Inc
Constants Inc Inc Inc Inc Inc Inc Inc Inc1 Inc
Variables Inc Inc Inc Inc Inc Inc Inc Inc Inc
Unconstrained
Object 2

Inc Inc Inc Inc Inc Inc Inc Inc Inc

Initialisation 3 Inc Inc Inc Inc Inc Inc Inc Inc Inc
Aliased Object
or Component –
Simple Case

Alld 4 Alld 4 Inc Inc Inc Inc  Alld 4 Inc Inc

Aliased Object
or Component –
Complex Case

Exc5 Exc5 Inc Inc Exc5 Inc Exc5 Inc Inc

Declarative Part
in Block
Statement

Alld 6 Alld 6 Inc Inc Inc Inc Inc Inc Alld 6

Table 4 : Declarations

5.2.2 Notes

1. Boundary Value Testing is more problematic if a constant is assigned a non-static value on scope entry.

2. The use of discriminants in the creation of unconstrained objects buys high integrity systems more problems than the
advantages it may procure.  The use of objects of a discriminated subtype may force the compiler to defer to run-time
important decisions on the management of the object (e.g., allocation, access). Those cases may prove difficult to analyse.
The entries in Table 4 have been assigned assuming that discriminants are not used for the creation of unconstrained
objects.

3. The initialisation of variable objects in high integrity systems should always be static and explicit. The former property
ensures that the initialising expression can be verified at compile time. The latter ensures that the initialisation is deliberate.

4. Simple definitions of aliased objects are ones that don’t change any properties of the object or component from those
defined by the initial type.  Aliased objects can be accessed by generalised access types, and hence are subject to the same
issues that affect pointers.  Flow analysis and symbolic analysis may become intractable if views of the object are exported
beyond the module being analysed.

5. Complex definitions of aliased objects or components occur when properties of the object may be inconsistent with non-
aliased objects of the same type.  The language rules in these cases are complex, making analysis unlikely.  Examples of this
occur when the original type is indefinite, unconstrained, or modified by representation clauses.

6. Ada allows block statements to enclose a declarative part. Whereas the use of this feature is one of the language means for
encapsulation and hierarchical program structuring, it also presents some drawbacks to flow and symbolic analysis as well
as to structural coverage.

5.2.3 Guidance

Declarations should be used to encapsulate the program design in as exact and static a manner as possible. For instance,
constraints should be as tight as possible and also static so that program properties can be statically verified.

Use of Named Numbers
Named numbers are beneficial in that they denote the value of a static expression which is evaluated, with full precision, at
compile time. This makes them the natural target of all numeric expressions in the program and eliminates the possibility that
Constraint_Error may be raised at run-time during the evaluation of the expression.

For the same reason, named numbers should be used at all times in the executable code in the place of numeric literals.

Initialisation of Variables
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All variables should be given a meaningful value before use. Failure to do so may raise a predefined exception or cause
erroneous behaviour at run-time.

Initial values may be given by:

1. Associating an explicit initialisation expression with the variable at the point of its declaration.

2. Making an assignment to the variable that will be executed prior to references to it.

Ensuring assignments to variables can conveniently be made in a subprogram which is called prior to the use of the variable.

For state variables in packages, assignments may also be made in the package elaboration part. A consistent approach to the
initialisation of package state variables should be adopted.

In all cases, Data Flow Analysis should be used to confirm that every object has been assigned a value before it is used. The
effectiveness of the analysis is undermined if variables are initialised unnecessarily (sometimes called ‘junk initialisation’).
Compilers supporting Annex H provide information on the initialisation status of variables, see [ARM:H.3.1(8)].

Use of Aliased Objects
The strong typing of Ada facilitates the achievement of type-safe access to variables through access values.   Furthermore, the
accessibility rules of the language help in creating objects without the need for general access types.  Static tools can also be
defined using e.g., Ada Semantic Interface Specification [ASIS]  to complement the power of the compiler in the determination
of ‘unsafe’ use of aliased objects.  The use of Ada aliased objects is therefore generally safer than  the use of pointer or
reference objects in other languages.

5.3 Names, including Scope and Visibility

Entities are denoted by names controlled by the rules for scoping and visibility.

Name de-referencing in Ada is usually quite straightforward and determinable at compile time with a few notable exceptions.
Renamings can be used to introduce short names for use in a restricted scope.  Object renaming declarations can be used to
provide a short name for a component of an object. Overloading of names can enhance the readability of a program if applied
judiciously.

Nesting of packages inside other packages provides information hiding and containment, but does not increase the scope levels
(i.e., cause the information to be nested at deeper levels on the program stack or task stack).  There is a tension between nesting
and non-nesting of subprograms inside other subprograms or tasks. Many opportunities arise to simplify algorithms by placing
some of the logic inside a local function or procedure. On the other hand, high integrity software processes usually enforce the
isolated testing of all executable units.

5.3.1 Evaluation

Group Name
Feature  FA  SA RC  SU  TA OMU  OCA  RT ST
Names  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Static
renaming

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Renaming –
complex or
dynamic
evaluation

 Exc1  Exc1 Exc1  Inc  Inc  Inc Exc1  Inc  Inc

Overloading  Alld 2  Alld 2  Inc  Inc  Inc  Inc Alld 2  Inc  Inc
Nesting
package spec

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Nesting
package body,
subprogram

 Inc  Inc  Alld 3  Inc  Inc  Inc  Inc  Inc  Alld 3

Table 5 : Names, including Scope and Visibility
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5.3.2 Notes

1. The use of complex forms of renaming, i.e., those which require run-time evaluation of bounds or object components; or
those which extend component lifetime, is excluded because it hinders symbolic analysis, flow analysis and range checking;
and complicates object code analysis as it embeds run-time code that has no associated visible source code.

2. If multiple subprograms of the same name are used (whether overloaded, overridden or homographic), it should be shown
that the intended subprogram is in fact called.

3. The textual inclusion of packages or generics inside a package body, private part of a package, subprogram body, or task
creates challenges for coverage-based testing. External tests that stimulate the enclosing unit can rarely exercise all of the
branches, conditions, or statements in the enclosed unit. Similarly range checking becomes problematic.

5.3.3 Guidance

Names are always resolvable at compile-time, but may involve range checks. Two aspects involving names are considered
below.

Renaming
Renaming can improve readability but runs the risk of making aliasing hard to detect. Hence reviews, perhaps supported by
tools, are needed to ensure correct usage. Such reviews are greatly simplified if continued use of the original name of a
renamed entity is avoided.

The subtype indication in a renaming declaration should statically match the subtype of the renamed object. Similarly, the
profile of a subprogram renaming declaration should be subtype-conformant with the profile of the renamed subprogram. A
subprogram can be renamed in order to furnish new default parameter values. A renaming-as-body can be used in cases where a
subprogram can be implemented directly by calling some other subprogram.

Nesting
The textual inclusion of units inside package specifications and private part of library units provides information containment
without sacrificing accessibility of the module for testing. Nested units in the private part can be accessed by child packages of
the parent unit.

Packages should be library-level units, visible subunits, child subprograms, or child library packages. Where standards demand
unit testing of all subprograms it may be necessary to avoid the declaration of subprograms locally within other subprograms.
Accessibility for unit testing can also be achieved, without the need to compromise program structure, by making local
subprograms subunits and placing their source in a separate file.

5.4 Expressions

An expression is a formula defining how a value is to be calculated. The value of an expression is determined by evaluation of
the formula using the current values of the operands that appear in the formula.  Operands are any names, literals, function
calls, allocators, type conversion, qualified expressions, or aggregates.

Every expression has a fixed type, and this is the type of the value resulting from its evaluation. The type is determined either
from the types of the operands within the expression or from the context of the expression.  In an imperative language like Ada
expressions are readily available for review and analysis.  This facility is supported by the strong typing of expression results.

Static expressions are constant values that are completely determined at compile-time. They can be used to determine the value
of numeric constants, enumeration literals, string constants and bounds for ranges and arrays. Static expressions have the
following properties: they enhance review and analysis; they move the checks on array bounds and ranges from run-time to
compile-time; and they eliminate run-time complexity in the calculation of such values.

Numeric type conversions are straightforward since the underlying numerical value is represented in the new type according to
precise, deterministic rules [ARM: 4.6 (29-33] unless Constraint_Error is raised.
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5.4.1 Evaluation

Group Name
Feature  FA  SA  RC  SU  TA OMU  OCA  RT ST
Operators with
Composite
Operands1

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Logical
Operators

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc2

Short-circuit
control forms

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc2

Relational
operators

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Membership
Tests

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Slices  Inc Alld 3  Inc  Inc Alld 3  Inc Alld 3  Inc  Inc
Qualified
Expressions

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Aggregates4  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Static
Expressions.

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Type
Conversion
Numeric

 Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Type
Conversion
Other

 Inc Alld 5  Inc  Inc  Inc5  Inc Alld 5  Inc  Inc

Indexing  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Table 6 : Expressions

5.4.2 Notes

1. If one or more of the operands is a composite object then the compiler may insert loops into the object code that are not in
the source code.  Examples where this may occur are relational operations on arrays and logic operations on boolean
arrays. If the size of these objects is not static then the timing analysis must be based on the worst case (which is probably,
but not necessarily, when the objects have the largest possible size).

2. When testing decisions with multiple conditions, the value of every condition will need to be considered. If the short
circuit forms are used then the values of some conditions will be insignificant in some test cases and need not be
considered in those test cases. Achieving full coverage of compound decisions is more difficult when the conditions within
the decision are not independent. If short circuit forms are used then the effect of dependencies between conditions is
reduced.

3. The bounds of the range that defines the slice must be of the type of the index of the array. Two or more slices of the same
array may overlap (so that components of the array appear in more than one slice). This may make understanding of the
code more difficult, although the language definition ensures that the effects of overlapping slices are well defined. Slices
will introduce loops into the object code that are not visible in the source and this may make timing analysis more difficult.
Slices of packed arrays will introduce further timing complexity. Slices defined by ranges that are static subtypes will be
simpler to analyse.

4. If an aggregate is to be assigned to an object and the aggregate references that object then the object code will be more
complex than it might otherwise be:

• The enforced use of a temporary object makes the code more obscure and compiler dependent.

• The compiler may require heap space for the storage of the temporary object but heap management algorithms
may not be present.

• Data values are much more difficult to trace, as they are transferred through the hidden temporary object.
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Temporary objects may also be introduced by any use of non-static aggregates.  The above notes, therefore, apply.

5 There are a wide variety of type conversions for which the underlying system must be shown to implement the proper
behaviour of the program. In particular conversions of composite and non-static objects generate additional code that must
be traced back to source code. Conversion of composite objects usually requires a temporary object, heap storage, and
unpredictable timing. View conversion, (e.g., between tagged types, or applied to actual in out  and out  parameters)
requires dynamic checks as does conversion between generalised access types. Conversion between access types with
different storage pools is potentially erroneous.

5.4.3 Guidance

For multi-termed expressions it is advisable to constrain the compiler's actions by fully parenthesising the expression.  The
programmer should have a clear view of the required order of evaluation of sub-expressions and should enforce this view.  This
reduction in non-determinacy will significantly simplify verification and improve readability.  For example, proof of exception
free evaluation is obviously easier if there is only one order of evaluation.

Aggregates should be used as actual parameters and function return values in preference to temporary variables for individual
components, and as the right-hand side of assignments to composite objects in preference to separate assignments to individual
components. This makes it easier to verify that all individual components have been set, makes explicit any dependencies on
the composite object assigned to, and makes maintenance more robust should the type definition change. Aggregates used to
initialise objects should be static wherever possible, to avoid the need to build a temporary object (this is a specific
implementation permission). Named aggregates should be preferred over positional except for large, heterogeneous, static
arrays, and explicitly named choices should be preferred over others  (viz '1..n => ...'). The former is more likely to require
compiler-generated code to fill holes and the latter to require dynamic storage.

When two types are not readily convertible, or fall into one of the cases noted below, the conversion should be coded explicitly,
with look-up tables, function calls or case statements:

• composite objects;

• tagged and indefinite types;

• in out  or out  parameters in a procedure call;

• access and generalised access types.

Complete test coverage may be difficult to achieve for expressions that create implicit loops in the object code (e.g.,
aggregates, expressions with composite operands). For example it may not be possible to create operands for which a loop is
executed zero times, and this omission will need justification.

5.5 Statements

Statements are the basic commands, both simple and compound, that make up the Ada programming language. This section is
concerned only with those statements that are not specific to a particular area of the language. For example, the accept
statement is not considered as it relates only to tasking (see 5.13).
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5.5.1 Evaluation

Group Name
Feature  FA  SA  RC  SU  TA OMU  OCA  RT ST
Null  Inc  Inc  Inc  Inc Inc  Inc  Inc  Inc  Inc
Assignment  Inc  Inc  Inc  Inc Inc1  Inc  Inc1  Inc  Inc
Block  Inc  Inc  Inc  Inc Inc  Inc  Inc  Inc  Inc
Goto2 Exc2 Exc2  Inc  Inc Exc2  Inc  Inc  Inc Exc2

For loop  Inc  Inc  Inc  Inc Inc3  Inc  Inc  Inc  Inc
While loop  Inc  Inc  Inc  Inc Alld 5  Inc Alld 4  Inc Alld 4

Simple loop
with exit

 Inc Inc  Inc  Inc Alld 5  Inc  Inc  Inc  Inc

case  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
If  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc

Table 7 : Statements

5.5.2 Notes

1. There may be an impact on timing analysis when assignment statements are between non-scalar values, e.g., when assigning
values to arrays. This impact should be predictable, but must be considered when the analysis takes place.

2. The goto  statement is exceptional because its use is contrary to all principles of structured programming. There are no
circumstances in which goto  can be used where the use of some other construct is not preferable on grounds of good
practice, readability, and aesthetics. Given this, the use of goto  within high integrity systems is almost not an issue, and the
reasons for not using it is based on the applicability of the set of analysis techniques (although compelling) are almost
irrelevant.

3. The timing analysis of a for  loop gives precise results if the range through which the iteration takes place is statically
determinable. The analysis is more difficult, and the results less useful, if the range is dependent on one or more variables.
Timing analysis is complicated significantly by the use of an exit  statement within a for  loop because the exact behaviour of
the loop is harder to predict.

4. When generating the object code for a while  loop, a compiler may generate more than one test for exit from the loop, i.e., a
single statement in source code may map to multiple pieces of object code. This makes Object Code Analysis more difficult,
and also makes it harder to ensure that all branches and statements have been fully exercised when testing Structural
Coverage.

5. Timing analysis is difficult for while  loops, and any other loops where a condition is required to be satisfied before exit. It
is not usually possible to determine accurately how many times the loop will be traversed before the exit condition is
satisfied. The use of annotations to capture maximum loop counts is recommended.

5.5.3 Guidance

The use of statements of the type described in this section is fundamental to any structured programming language; these are the
basic tools that build the underlying program structure. They allow the use of loops and conditional branching, essential
features of the vast majority of meaningful programs. Because of their fundamental nature, the behaviour of most of these
constructs is well-defined. That does not, however, necessarily mean that it is always absolutely predictable. For this reason, the
ease of applying a specific analysis technique to a type of statement may depend on how that statement is used.

Apart from goto , and to a small extent loops, there is no need to restrict the use of these basic statements (unless there are
difficult-to-resolve timing issues), and to do so would place a great burden on the programmer. There is a need for caution,
however, and good programming style should be used at all times. loop s, case , and if,  in particular determine the main
structure of a program (or subprogram), and using these in an effective, well-structured, manner can make the whole analysis
and testing process much simpler to perform.

Functional Correctness is readily applicable to nested loops only if the following are true: an exit statement must only transfer
control to the level above, and the exit condition must be tested on each iteration.
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5.6 Subprograms

Procedures are a basic unit of abstraction for statements and are an essential element of any imperative programming language.
Ada subprogram specifications allow the mode and subtype of each parameter to be specified, allowing both compile-time type
checks and run-time constraint checks on parameters in a call. Ada's compilation environment (library) requirements, and
strong type checking eliminate most forms of incorrect invocation of a subprogram.

5.6.1 Evaluation

Group Name
Feature  FA  SA  RC  SU  TA  OMU OCA  RT ST
Procedures  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Functions  Inc  Inc1  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Default
Expression

 Inc Alld 2  Inc  Inc  Inc  Inc Alld 2  Inc  Inc

Indefinite
Formal
Parameters

Inc Inc Inc Alld 3 Alld 3 Alld 3 Inc Inc Inc

Complex
return types

 Inc  Inc  Inc Exc4 Exc4 Exc4  Inc  Inc  Inc

Inline
expansion

 Inc  Inc  Inc  Inc  Inc  Inc Alld 5  Inc Alld 5

Return in
procedures

Alld 6 Alld 6  Inc  Inc  Inc  Inc Alld 6  Inc  Inc

Parameter
aliasing

Exc7 Exc7  Inc  Inc  Inc  Inc  Inc  Inc Alld 7

Access
Parameters

Exc8 Exc8  Inc Exc9  Inc Exc9  Inc  Inc  Inc

Table 8 : Subprograms

5.6.2 Notes

1. If functions have side effects, order of evaluation can become a significant issue, making formal analysis difficult.

2. The use of default expressions for some parameters is a convenience, but comes at a cost.  Implementations may differ in
how they support default parameters, making time and space analysis more difficult.  The traceability of source code to
object code is more difficult and variation between implementations is more marked if the default expression is not static.
If default expressions are allowed, then the above issues could be addressed by a tool or code reviews.

3. Procedures and functions can have parameters of indefinite types. This may lead to a requirement for dynamic storage.

4. The following types should not be used in function returns because they require dynamic storage techniques:

• Indefinite types – types with unconstrained or unknown discriminants or class-wide types.

• Unconstrained types – such as string, and

• Tagged types – since the returned type and actual type can differ.

5. Inline expansion of a subprogram call can be used to eliminate parameter passing overhead and may reduce the execution
time of a program.  Code size, however, can be increased, and the tracing of object code to source code can be more
difficult.

6. Return statements can make the natural flow of control more apparent but returns from deeply nested structures can be
obscure and cause difficulties for flow analysis, object code analysis etc.  Only allowing returns at the outermost scope is
an effective restriction.

7. When parameters are aliased (to non-locals or other parameters) then program proof based upon substitution will be
incorrect. Similarly, informal reasoning can easily be in error. Hence if Formal Code Verification or Symbolic Execution is
being used as an analysis technique, the absence of aliasing is required. The absence of aliasing should be determined by
the use of tools and code reviews.
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8. Aliasing occurs when two distinct Ada identifiers actually refer to the same object. This can be between parameters or
between parameters and non-locals. Aliasing will cause Flow Analysis and Symbolic Analysis to malfunction. Similar
problems arise with access types when two such values point to the same entity.

9. The lack of accessibility checks on access parameters (i.e., parameters that explicitly use the keyword access ) makes it
very difficult to undertake the analysis of memory usage.

5.6.3 Guidance

The following restrictions on parameters  are advised to eliminate the problems caused by indefinite formal parameters: no
concatenation of one-dimensional arrays and no unconstrained records. Subtype conversions in subprogram calls must also be
used with caution.

Static analysis must be used to ensure parameters with out  mode are assigned a value in all execution paths, and return
statements are always encountered in functions. Side effects from parameter evaluation should always be avoided. Similarly, it
is usually advisable to prevent functions from having side effects (although there are some circumstances in which side effects
are unavoidable, but these must be verified separately). The use of non-local variables should always be documented.

Recursion, and mutual recursion, is usually prohibited for flow analysis, stack analysis and timing analysis.  Direct recursion is
easy to detect. Mutual recursion is harder to detect in general; however, if pragma  Elaborate_Body is applied to all library
units, and tagged types and generic units are not used, then mutual recursion can occur only between subprograms in a single
library unit. This is more readily analysed.  Pragma  Restrictions (No_Recursion)  does not prevent recursion from occurring,
and if recursion does occur the execution is erroneous. Implementations might check for violations of the restriction, and may
generate somewhat simpler code.

Overloading can make the program reader's job more difficult.  The advice of the Ada Quality and Style guide [AQS]  seems
reasonable: use overloading judiciously, for widely used subprograms that perform similar actions on arguments of different
types, and preserve the conventional meaning of overloaded operators.

5.7 Packages (child, and libraries)

Packages are Ada's basic unit of modularity. Therefore packages are fundamental to the creation of any Ada program. Packages
allow the partitioning of a program into parts that interact using well-defined interfaces. This can facilitate the analysis of a
program by limiting the interactions between its parts.

High integrity programs can sometimes be structured so that the code that deals directly with some critical aspect of the system
can be encapsulated in a package body. This is ideal, as Ada's language rules then guarantee that this code is called only using
the interface defined in the package specification. Furthermore, any local data used in this critical code is protected from
tampering.

Packages define three different levels of isolation. Entities declared in the public part of a package specification are visible
wherever the package itself is visible. Entities declared in the private part are visible to the package body, and also within any
child packages (if the package is a library unit). Finally, entities declared in the body are visible only within the body. These
levels of isolation permit designers and implementers to implement stand-alone service packages, subsystems of cooperating
packages, or packages that export all significant items. Subsystems can therefore be built with exactly the proper amount of
visibility and security for the systems being designed. Issues to do with nested packages are considered in Section 5.3.

Child library packages provide a mechanism for building subsystems. Because it is closely related to subunits there is little
compiler impact.

5.7.1 Evaluation

Group Name
Feature  FA  SA  RC  ST  TM  OMU  OCA  RT ST
Specifications Inc Inc Inc Inc Inc Inc Inc Inc Inc
Bodies Inc Inc Inc Inc Inc Inc Inc Inc Inc
Initialisation 1 Inc Inc Inc Inc Inc Inc Inc Inc Inc
With Clause Inc Inc Inc Inc Inc Inc Inc Inc Inc
Private2,3 Inc Inc Inc Inc Inc Inc Inc Inc Inc2

Use Clause 4 Inc Inc Inc Inc Inc Inc Alld 4 Inc Inc
Use Type 4 Inc Inc Inc Inc Inc Inc Alld 4 Inc Inc
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Child Private Inc Inc Inc Inc Inc Inc Inc Inc Inc
Child Public Inc Inc5 Inc Inc Inc Inc Inc Inc Inc
Separate Inc Inc Inc Inc Inc Inc Inc Inc Inc
Elaborate Body Inc Inc Inc Inc Inc Inc Inc Inc Inc

Table 9 : Packages (child, and libraries)

5.7.2 Notes

1. Ratings apply when elaboration order dependencies have been avoided by restricting access to indirectly accessed objects
and subprograms during package elaboration.  The following restrictions are required:

a. Package initialisation code should never update objects in packages.

b. Initialisation code in package bodies should not directly or indirectly reference subprograms or objects other
than static constraints declared outside the package.

c. Expressions initialising objects declared in a package specification may reference objects and subprograms
from remote packages provided all such remote packages, whether the reference is direct or indirect, are pure,
preelaborated or contain a pragma  Elaborate_Body.

2. Operations and objects defined in private parts cannot be explicitly verified from units having visibility only to the
specification.

3. Derivations of private types and public types with private primitive operations create problems for flow analysis, symbolic
analysis, and human understanding. Derivations or extensions of such types allows one to create subprograms with exactly
the same signature as the private operations. Which call was executed would depend upon scope visibility. The ratings here
assume that these capabilities have been excluded.

4. The use clause brings excessive overloading and possibly hiding of names. Human understanding and code review are
made difficult. Use type clauses only bring into view the operations and literals of the type named in the clause. This
provides a constrained view of the operations on a type.

5. The ratings assume that child library units do not with  units that with  any parent units. Child library units can create
dependences on units that are dependent on the parent. Multiple views of a type and its primitive operations may be
created. Ada language rules are designed to make only one path legal, but there may be confusion on the part of human
designers and programmers.

5.7.3 Guidance

Any complex initialisations can be done by procedures or assignments instead of during elaboration. The use of such
initialising procedures for library-level packages may be preferred, as long as they are called only after the main subprogram
has commenced. Then the elaboration of the package body variables and subprograms will have all occurred, but it must still be
shown that the call to the initialisation subprogram occurs before any use of the package — a non-trivial exercise, especially if
any concurrency exists in the program.

The type defined private in Ada has at least two views — the public partial view and the complete private view. Language rules
permit some differences between these definitions, such as adding or removing discriminants, adding limited, tagged, or aliased
in the full view, and placing primitive subprograms in the private part. It is recommended that derivations from a type that has a
partial view only occur where the full view (and hence all primitive subprograms) is visible, i.e., in the private part, in private
child packages and in package bodies.

Use Clauses
Most large software development projects and high integrity software  development projects place significant restrictions on
use clauses. The use type  clause and the renames clause provide alternatives that make primitive operations available without
the wholesale import of another  package's name space.

Child packages
Child packages permit the aggregation of packages into hierarchies of packages, and allow a subsystem to be extended without
forcing the basic definition of the system (in the parent unit) to be modified or recompiled.  Tools that analyse coverage must
take into consideration all of the ways that child packages can be included in a program.
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Child packages should not with  units that may with  the parent, and should not derive or extend types that have been declared in
the private type of a  parent unit.

5.8 Arithmetic Types

The ability in Ada, in contrast to most other languages, to define types and subtypes with static bounds substantially aids the
review, analysis and verification process.  For instance, simple tools can often affirm that uses of integer variables cannot raise
an exception, say in an array indexing operation.

5.8.1 Evaluation

Group Name
Feature FA SA RC SU TA OMU OCA  RT ST
Integer types Inc Inc Inc Inc Inc Inc Inc Inc Inc
Modular types Inc Alld 1 Alld 1 Inc Inc Inc Inc Inc Inc
Float types Inc Alld 2 Alld 3 Inc Alld 4 Inc Inc5 Alld 2 Inc
Fixed types Inc Alld 10,2 Alld 3,7 Inc Alld 9 Inc Alld 6,9 Alld 7,2 Inc
Dec/fixed types Inc Alld 8 Inc Inc Alld 8 Inc Alld 8 Alld 8 Inc

Table 10: Arithmetic Types

5.8.2 Notes

1. The predefined operations on modular integer types are not those of classical mathematics (for instance, operations are
non-associative for modular types when the modulus is not a power of 2). In consequence, care is needed to ensure that the
operations perform the intended function. The same reservations apply to the use of the Modulus attribute.  Since the
predefined operations in modular types do not raise Constraint_Error,  one must ensure that the semantic effect is as
specified in the application.

2. Due to the potential machine-dependence of the rounding of real operations, the computation of boundary value test cases
can be awkward (see Equivalence Class Testing). Similarly, the rounding presents problems with Symbolic Analysis.

3. If the program is required to be exception-free, then an analysis is required of the range of values that variables can have to
demonstrate that each numeric operation will indeed be exception-free. This work is typically labour-intensive and is often
more difficult with fixed point since the range of values is more restricted.

4. The timing of floating point operations are typically data-dependent. Hence computing the worst-case execution time can
be awkward if an analysis of the data is required.

5. Floating point requires complex (hardware/software) support. Such complexity may require specific verification measures.

6. Many fixed point operations require run-time support from the compiler (for instance re-scaling). This support is context
dependent and can be quite complex. The effort in showing the compiler does handle every operation correctly is
significant and has led some developments to use floating point instead.  Errors have been observed in validated compilers
in this area, but special tests are available to check implementations.

7. The rounding of some fixed point operations is not defined in the language and the implementation need not provide any
information on the actual rounding performed. This implies that the rounding could be context-dependent or even change
with a new release of the compiler.

8. Support for decimal fixed point is typically only provided by compilers supporting the Information Systems Annex [ARM:
Annex F] .  The predefined operations on decimal fixed point types that do not give an exact result are defined to truncate.
In consequence, it may be easier to verify programs which uses decimal fixed point types than those which use ordinary
fixed point types.  In other respects, the verification issues are the same as for ordinary fixed point types.

9. Fixed point operations require compiler support for which timing and object code analysis is more complex.

10. Type conversion between fixed point types whose delta is not a power of 2 may introduce additional rounding errors.
Hence such types should be avoided. Placing a representation attribute clause for ‘Small to match the delta is
recommended for all fixed point types.
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5.8.3 Guidance

As noted in 5.2.3, named numbers should be used when the application permits compile-time evaluation.

Continuously varying quantities should be modelled by means of Ada real types. It is not usually appropriate to use integer
types since there is no simple way of multiplying integer values and re-scaling the result. Hence an important design decision is
to use either ordinary fixed point types or floating point types (or less likely, both).

The inherent problem with real types is that rounding is performed which introduces a degree of implementation defined
behaviour into the program which does not occur with integer types.

Analysis of real expressions requires analysis of the ranges within which the result of an expression is guaranteed to lie. A
floating point expression has a value in a range which has a size relative to the value of the expression and a fixed point
expression has a value in a range which has an absolute size.

When using real arithmetic:

• Be aware of whether the implementation supports the Numerics Annex [ARM:Annex G] as the accuracy of real
arithmetic is guaranteed only for implementations that support this annex.

• For maximum portability of code, only use implementations that support, and ensure that the strict mode is used.

• For implementations that support the Numerics Annex, the accuracy of the predefined operators is defined in
terms of model numbers of the relevant type. Although the set of model numbers is implementation defined, it is
straightforward for a user to define a set of model numbers that will be provided by all implementations of
interest (provided only they have a common radix for number representation).  By analysing the accuracy of real
arithmetic in terms of this set of model numbers all implementations are guaranteed to provide the analysed
accuracy or better.

• If future implementations are unknown then the characteristics assumed by the accuracy analysis should be
recorded and it is then easy to determine whether a new implementation conforms (and so whether the previous
analysis still applies or needs to be repeated).

• Currently, most of the major processor chips directly support floating point. The older chips do not, and neither
do some specialised chips. Hence in some cases, the use of floating point is not viable due to the lack of hardware
support and because software support is too slow.  If the systems design would allow for either floating point or
fixed point, then the choice is critical since it influences the coding, the testing and the qualification of the
compiler. If it is decided not to use floating point, then the pragma  Restrictions  (No_Floating_Point) can be
used to enforce no explicit use. However, the compiler may still make implicit use of floating point (say, for
complex numeric conversions), which may require compiler options to remove.

Not specifically listed in the above table is the use of attributes. There are numerous numeric attributes which can conveniently
be divided into two classes:

• Those whose use provides no special problems:

Adjacent, Aft, Ceiling,
Compose,  Copy_Sign, Delta,
Denorm, Digits, Exponent,
Floor, Fore, Fraction,
Leading_Part, Round, Rounding,
Scale, Small, Truncation,
Unbiased_Rounding.

• Those which are low-level and must be used with care to ensure portability:
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Machine, Machine_Emax, Machine_Emin,
Machine_Mantissa, Machine_Overflows, Machine_Radix,
Machine_Rounds, Model, Model_Emin,
Model_Epsilon, Model_Mantissa, Model_Small,
Remainder, Safe_First, Safe_Last,
Scaling, Signed_Zeros.

Specific problems noted in the table imply that modular types are rarely an appropriate choice instead of integer types.

5.9 Low Level and Interfacing

Low level constructs and interfacing exist to allow an Ada program to interact with:

• elements of the machine, e.g., memory addresses;

• other hardware elements of the system, e.g., tape and screen devices;

• other software elements of the system, e.g., databases, GUI; and

• other languages, e.g., C, Fortran, Machine Code.

Ada is very useful in providing a mechanism for interchanging information between different languages.  It is also useful in
allowing these mechanisms to be performed in a very constrained way. Many of the interactions that cause difficulties occur
between standard Ada facilities and the features discussed here. Nevertheless the feature, or combination of features, can often
be used successfully if the encapsulation guidelines are followed, and if multiple combinations of low-level features are not
applied simultaneously.

All of the low level features described in the following table must be encapsulated in program units that clearly isolate their
behaviour from the rest of the program. The ability of Ada to support this encapsulation and isolation is a key advantage
obtained from the use of Ada.

The use of low level constructs and interfacing can be seen to be a mechanism for dealing with elements outside of the Ada
system under consideration.

5.9.1 Evaluation

Group Name
Feature  FA  SA  RC  SU  TA OMU  OCA  RT ST
Representation
Clause

Inc Alld 1 Inc Alld 1,2 Alld 2 Inc Alld 2 Alld 2 Alld 2

Representation
Attributes

Alld 3 Alld 3 Alld 3 Alld 3 Alld 3 Alld 3 Alld 3 Alld 3 Alld 3

Package
System

Alld 4 Alld 4 Alld 4 Alld 4 Alld 4 Alld 4 Alld 4 Alld 4 Alld 4

Machine Code
Insertion

Alld 5 Alld 5 Alld 5 Alld 5 Alld 5 Alld 5 Inc Alld 5 Alld 5

Unchecked
Conversion

Alld 7 Alld 6 Alld 6 Inc Inc Inc Inc Alld 6 Inc

Unchecked
Access

Exc8 Exc8 Exc8 Exc8 Alld 8 Exc8 Alld 8 Exc8 Exc8

Streams Exc9 Exc9 Exc9 Exc9 Exc9 Exc9 Exc9 Exc9 Exc9

Interfacing
Pragmas

Alld 10 Alld 10 Alld 10 Inc Alld 10 Alld 10 Alld 10,11 Alld 10 Alld 10

Address
Clause 12

Inc Inc Inc Inc Inc Alld 13 Alld 14 Inc Inc

Table 11 : Low level and interfacing
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5.9.2 Notes

1. Representation clauses can have interactions with other features that make their semantics, storage use, or timing properties
difficult to predict.

2. Representation clauses may lead to object code for initialisation or unpacking. Also, such clauses can require that the
compiler emits very different machine code than is usually the case, leading to difficulties in tracing from source to object
code and a risk of incorrect object code.

3. These ratings are for representation attributes in  expressions (and not their use in representation clauses); they are then,
typically, implementation-dependent compile-time constants.

4. Package System, including its children, is compiler-dependent. The facilities it provides should be evaluated by
comparison with equivalent features described elsewhere in Section 5. For example, constants exported by package system
are included (see 5.2.1).

5. Machine code is not constrained in its effect and must, therefore, be used with extreme care and encapsulated in the
smallest unit possible.

6. No constraint check is performed on the assignment of a result from an unchecked conversion.  However, it is possible to
use ‘Valid for scalar results to ensure the value is a valid member of the appropriate subtype.  In the case of conversion to a
non-scalar type, extreme care is needed to ensure that a valid result is produced, perhaps by examination of the machine
code produced (since ‘Valid cannot be applied)

7. Unchecked conversion of structured types will result in loss of some flow analysis information.  It will not be possible to
deduce the flow of information from components in the first view to particular components of the converted view.

8. Unchecked access value creation, and subsequent use of the access value, can lead to dangling references or corruption of
data.

9. Streams require class wide types and access parameters, and are therefore difficult to analyse.

10. The effect of an imported subprogram needs to be documented in such a way that its callers can be analysed.

11. There may be object code generated to account for differences in calling convention.

12. Address clauses should not be used to introduce aliasing by overlapping or superimposing variables in memory.

13. Analysis of memory use must consider the impact of the location of objects at specific addresses.

14. Object Code Analysis must ensure that the specified address of a variable is directly generated for all accesses of that
variable and that the variable has not been optimised to a register, for example. Use of pragma  Volatile may be
appropriate.

5.9.3 Guidance

If the system has a defined integrity level and the Ada code in the system is required to interact with some other element, then
assurances should be obtained that the other element has the same integrity as the Ada code itself.  This Technical Report
considers COTS software to be another element that ranges from complete software packages to code segments that have not
explicitly been created for the current system.

If ‘allowed’ low-level features are used, it is recommended that their use be encapsulated within a small package body or
subprogram.  This reduces the possibility of an interaction with some other feature used in a different part of a program, and
can facilitate analysis.

Representation clauses on enumeration types should be avoided, except when  confined to a unit body to interface to foreign
systems.  A type with a representation clause should not be used as a source of a type derivation, nor should it be used as a loop
parameter, case expression, array index, in a 'Succ  or 'Pred  clause, or in a type conversion.

If a record definition is subject to representation clauses, such as packing, alignment, layout or ordering clauses, then the
declaration should be restricted to a compilation unit body. Care is required to ensure that there is not a conflict between
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representations applied to the record, components of the record, and objects of the record (e.g., pragma  Pack and 'Access
may be mutually incompatible). Assignment to or from such a record should be component-by-component to avoid timing
issues and unanalysed object code.

Representation Clauses
Such clauses in general change the machine-code emitted by the compiler. They should be used solely to enable such changes
and not to ‘confirm’ an existing representation. An enumeration representation clause with non-contiguous values will cause the
code for many operations on the enumerated type to be obscure and hard to relate to the source text; hence such operations
should be avoided. Similarly, record representation clauses can make operations such as assignment, equality and conversion
non-trivial and hence every operation should be used sparingly and in a localised fashion.

5.10 Generics

Generics provide a powerful mechanism for constructing large-scale programs through the parameterisation of program units
(packages and subprograms) with types, objects, packages and subprograms. Abstract algorithms and data types can thereby be
constructed in terms of parametric types and operations, specifying only as much as necessary. A generic instantiated with
different sets of parameters yields different program units that share the same algorithmic structure.

Generic units can be used to:

• define abstract data types;

• parameterise a procedure by another procedure (e.g., a loop iterator);

• replicate a unit.

Generics can appear at library level or nested within other units. Generic units can be children or parameters to other generics,
enabling the construction of whole parametric software subsystems.

Use of generics enhances program reliability in several ways. It facilitates reuse, eases maintenance, reduces source code size
and helps avoid human replication error. In principle, it also assists with static analysis and testing; if a generic algorithm is
verified once, all instances of the generic can be considered automatically verified. In practice, the complexity of the
instantiation process mitigates against this ideal.

Analysability of a generic feature depends not only on the semantics and behaviour of the feature, but also on how it is
compiled: whether by macro-expansion or code-sharing. In general shared code is highly parametric, because small changes to
actual parameters make dramatic differences to efficiency (e.g., composite vs. elementary types). Code coverage is difficult to
achieve, because there are rarely sufficient instances to test all options. The complexity of mapping from the generic unit
directly to object code impedes verification as well as robustness and reliability. In practice a majority of compilers adopt
macro-expansion, or a hybrid where only simple cases share code. It is recommended that generics compiled by code-sharing
are excluded for high integrity systems.

Analysis of a generic feature might be undertaken on the generic unit, or on its instances. The former offers the possibility of
‘once-and-for-all’ verification: if the generic is shown to have some property, then that property is inherited by all of its
instances. In principle it is possible to perform some analyses, notably Symbolic and Flow Analysis, on a generic unit alone,
although tool support is presently weak. This is a corollary of Ada's contract model, which states that the formal specification
contains sufficient information to determine the legality of the generic body, whatever actual parameters are supplied.
Verification conditions at the point of instantiation must also be satisfied. This might involve work, or the imposition of
restrictions, e.g., to enforce range constraints on formal parameters.

Alternatively, the analyses can be performed on the individual instances. Other techniques (Object Code Analysis, testing) must
be applied this way. Success criteria might be specified individually for each instance, on the generic itself and derived
(‘instantiated’) for the instances, or both (provided consistency is maintained). Annotations and test points needed to express
the criteria can be attached to the source code, a compiler intermediate form such as ASIS (where one exists), or onto the object
code via a debugger. This last is highly effective for dynamic testing and has been used with success in high integrity systems.
It is presently unclear what static analysis annotations might apply to generics or instances, or how to attach them; this presents
a challenge to tool builders. However there is no reason to believe that static analysis techniques cannot evolve to incorporate
generics in some form.

Analysis of instances offers more immediate potential than analysis of whole generic units. Although it has to be repeated for
each individual instance, the tool requirements are much lighter and the complex step of verifying the instantiation is avoided.
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5.10.1 Evaluation

The table below assumes a macro-expansion implementation, with analysis tools acting on an intermediate expanded form

Group Name
Feature  FA  SA  RC  SU  TA OMU  OCA  RT ST
Generic units
(packages &
subprograms)

Alld 1 Alld 1 Inc Inc Inc Inc Alld 2 Inc Inc

Formal
subprograms

Alld 3 Alld 3 Alld 4 Inc Inc Inc Alld 2 Inc Inc

in  objects Inc Inc Inc Alld 5 Inc Inc Alld 2 Inc Inc
in out  objects Alld 3 Alld 3 Exc6 Inc Inc Inc Alld 6 Inc Inc
type parameters7 Inc Inc Inc Inc Inc Inc Alld 7 Inc Inc
Default parameters Inc Inc Inc Inc Inc Inc Alld 8 Inc Inc
Formal packages Alld 9 Alld 9 Alld 9 Alld 9 Alld 9 Alld 9 Alld 9 Alld 9 Alld 9

Generic children Alld 9 Alld 9 Alld 9 Alld 9 Alld 9 Alld 9 Alld 9 Alld 9 Alld 9

non-library and
nested generic units

Exc10 Inc Inc Inc Inc Inc Alld 2 Inc Exc11

non-library and
nested instances

Inc Inc Inc Inc Inc Inc Inc Exc11 Exc11

Table 12: Generics

5.10.2 Notes

1. Tool support is not available at the present time. There are potential name capture problems when an actual parameter
shares a name with a local of the generic unit.

2. The mapping between source and object code is complex for generics. In particular, implicit operations to perform
assignment, equality, constraint checking, etc., are not obvious in the source code and obstruct understanding. This
comment applies to object-code analysis of all aspects of generics.

3. Subtype constraints on generic formal in out objects and on parameters to generic formal subprograms are disregarded.
This means that constraint exceptions cannot be predicted looking at the generic alone.  When an in out formal object is
aliased at instantiation by providing an actual that also corresponds to another formal object, then program proof based
upon substitution may be incorrect.  Similarly, informal reasoning may be in error.

4. Subtype constraints on parameters to formal subprograms are disregarded: those pertaining to the actual are applied at run-
time. To simplify the semantics, formal subprograms should statically match the actual.

5. An instance of a generic in  object declares a new object, initialised by the actual value, in the unit containing the
instantiation, and the stack grows there. This may cause a problem, particularly at library level, where no such unit is
readily identifiable.

6. An instance of a generic in out  object is an alias of the actual object, with constraints those of the actual, not the formal.
The alias complicates the code mapping.

7. ‘type parameters’ covers all kinds of type: private, limited private, scalar, derived, tagged, array and access. None are
excluded, but in general the more closely-defined the type (i.e., smaller value-space), the harder it is to relate source and
object code, because more primitive operations occur. If the formal is a derived type, re-export of new derivations from the
generic causes confusion between primitive operations.

8. When binding defaulted formal parameters, different visibility rules apply if the box <> version is used. The mechanism is
prone to human error.

9. Formal packages and generic children provide a very powerful mechanism for encapsulating software components and
subsystems for reuse, thereby increasing the reliability and maintainability of software. They are high level features: all
semantic issues are resolved at instantiation and there is no impact on code generation. Therefore it seems unlikely that
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they will impede analyses at the instance level. However there is presently little field experience in their use and compilers
have not been exercised in this area. Therefore they cannot be recommended for high integrity Ada at the present time.

10. Flowgraphs cannot be assembled for nested units.

11. Non-library generics or instances cannot be breakpointed on a per-instance basis.

5.10.3 Guidance

Generics offer great potential for improving program reliability and maintainability. Against this, engineering experience and
support in the high integrity field is limited. Therefore, generics should only be allowed where compilers are considered
reliable, users have experience, and there exist support tools appropriate to the application.

It is recommended that only macro-expanding compilers be used, and that analysis is performed on each instance in preference
to analysis of the generic unit.

There are several issues with generics that obstruct analysis, comprehension, verification or maintenance. These should be
excluded from high integrity systems:

• Exclusions to enable analysis: 

• generics compiled by code-sharing,

• generics and instances not declared at library-level,

• nested generics,

• formal in out  objects.

• Exclusions for reasons of human comprehension and ease of maintenance: 

• formal tagged and derived types, or formal types with unknown discriminants,

• default parameters to generic units,

• subprogram parameters with constraints that do not statically match the actual.

In addition features which involve other excluded areas of the language, such as dynamic types, should not be available to the
user.

5.11 Access Types and Types with Dynamic Attributes

Access types provide pointers to objects whose memory is allocated from address space regions which are predictable (global
and stack) or from regions which are hard to predict (heap).  As these pointers are typed, they provide an additional level of
security over direct object addresses.  They can, however, establish aliases which complicate analysis concerned with the use of
the data referenced.

Heap management raises problems with consumption of time and storage.  A storage pool may be logically equivalent to a
stack of the objects through usage conventions and implementation.  The allocation and deallocation in such pools can be made
predictable.

Types whose size depends on run-time values make the bounds of storage use difficult to predict.  Indefinite subtypes do not
have enough information from the type itself to create objects.  Unconstrained record objects cause problems with analysis and
resource use as they may change shape during program execution.

Unbounded storage is incompatible with high integrity systems since the occurrence of Storage_Error  is unacceptable. This
implies that types with dynamic attributes are either excluded or should be used with extreme care.

The requirement for staticness excludes variant records (which require discriminants, see 5.1) and run-time dispatching.
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5.11.1 Evaluation

Group Name
Feature  FA  SA  RC  SU  TA OMU  OCA  RT ST
Unconstrained
array types –
including strings1

Inc Inc Inc Inc Inc Inc Inc Inc Inc

Full access types Exc2 Exc2 Inc Exc2 Exc2 Exc2 Inc Inc Inc
Restricted storage
pools3

Alld 4 Exc4 Inc Inc Inc Inc Inc Inc Inc

General access
types

Alld 4 Alld 4 Inc Inc Inc Inc Inc Inc Inc

Access to
subprogram

Exc5 Exc5 Inc Inc Alld 5 Inc Alld 5 Inc Inc

Controlled types
including
unrestricted
storage pools

Exc6 Exc6 Inc Inc Inc Inc Alld 6 Inc Exc6

Indefinite objects Alld 7 Alld 7 Alld 7 Exc7 Exc7 Exc7 Exc7 Inc Exc7

Non-static array
objects

Inc Alld 8 Alld 8 Alld 8 Alld 8 Alld 8 Inc Alld 8 Inc

Table 13 : Types with Dynamic Attributes

5.11.2 Notes

1. Note that the concatenate function returns a type of an unconstrained array. Refer to Section 5.6 for more information.

2. Full access types employ the run-time system to allocate from the heap and other storage areas, making memory use
unpredictable, timing analysis problematic, heap exhaustion and fragmentation a significant risk. It can also create
unbounded aliasing problems.

3. Pool-specific access types use storage similarly to stack-based data types. However, they require careful implementation
and use to ensure the algorithms are predictable.

4. Pools and general access types permit aliasing of data. See restrictions in Section 5.2.

5 Access to subprogram types disrupt control flow, and makes it difficult to export analysis results of subprograms into
calling subprograms. This exclusion can be enforced by the pragma  Restrictions(No_Access_Subprograms). When
used with static locations and linker tools, they can be used as a means of system reconfiguration.

6 Controlled types introduce hidden control flows due to user-defined initialisation, assignment and, especially, finalisation.
These are hard to review, analyse or test, particularly in error conditions.

7 Indefinite objects consume time and storage in ways which are difficult, if not impossible, to predict.  Their dependence on
run-time values complicates analysis.  Consequently, these objects should not be used in high integrity systems.

8 Arrays with bounds which are not static complicate analysis of resources used.  Time and memory used depends on
dynamic bounds.  Analysis of data access based on array indexing is further complicated if the bounds are unknown until
run-time.

5.11.3 Guidance

As noted in the introduction to this section, the use of dynamic mechanisms is to be minimised in high integrity systems.
Appropriate enforcements can be provided by the use of pragma  Restrictions  (No_Implicit_Heap_Allocation), pragma
Restrictions(No_Allocators), pragma  Restrictions (No_Access_Subprograms).

Although the evaluation table has ‘Inc’ against nearly all the testing based verification techniques, it should be noted that the
effectiveness of these techniques may well be reduced. For example, a problem arising from the inappropriate use of aliasing
may well be difficult to find during Requirements-based Testing and Structure-based Testing. It is also true that code inspection
techniques will be made more complex (and hence error prone) by the use of these dynamic features.
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5.12 Exceptions

Ada has well-defined semantics even under error conditions.  The language allows the user to detect error conditions and to
specify the required behaviour under such conditions at run-time.

Predefined exceptions concern error conditions detected by the run-time environment. The implicit raising of predefined
exceptions poses some problems where high integrity software is concerned because the location in the program and the exact
time at which exceptions are actually raised cannot be easily predicted.

A predefined exception is raised automatically when an associated constraint is violated. In contrast, user exceptions provide
the means to specify error conditions whose occurrences must be explicitly detected.

The exception mechanism leads the designer to an intellectual dilemma:

• its use makes the verification more difficult, so the use of exceptions should perhaps be prohibited;

• its use allows residual errors to be detected and handled, so the exception features are potentially a key part of a
language for high integrity applications [NRC] [13].

Solutions to this conflict will be proposed in the guidance subsection below.

If the use of exceptions is prohibited this does not in itself prevent predefined exceptions from being raised. The use of the
pragma    Restrictions(No_Exceptions) is recommended, but the program will become erroneous  if a run-time exception
does occur.

The evaluation table below has been produced with the assumption that exceptions are to be used

5.12.1 Evaluation

Group Name
Feature FA SA RC SU TA OMU OCA RT ST
Predefined
exceptions1

Alld 2 Alld 2 Inc Inc Inc Inc Alld 3 Inc Alld 4

Declaration
(user)

Inc Inc Inc Inc Inc Inc Inc Inc Inc

Raising (user) Alld 5 Alld 5 Inc Inc Inc Inc Inc Inc Alld 5

Handler
(predefined)

Alld 6 Alld 6 Inc Inc7 Inc8 Inc Inc Inc Alld 9

Handler (user) Alld 5 Alld 5 Inc Inc Inc Inc Alld 5 Inc Inc
Propagation Exc10 Exc10 Inc Inc Alld 10 Inc Alld 10 Inc Alld 10

Table 14 : Exceptions

5.12.2 Notes

1. Predefined exceptions should not be raised explicitly, because such a raising cannot be distinguished from implicitly raised
exceptions.

2. Symbolic Analysis and Flow Analysis are problematic, as the locations at which predefined exceptions are raised are not
generally known.

3. Object Code Analysis  is difficult because detection is either explicit or implicit via a hardware mechanism.

4. It is difficult to find a test sequence that will bring about the error conditions necessary to raise the predefined exception.

5. In general, it is difficult to define the execution sequence that will cause the precondition of the exception to become true.

6. The state immediately prior to the execution of the handler cannot be established making Symbolic Analysis intractable.
Similarly, Flow Analysis is intractable since the point of the raising of a predefined exception cannot be established.

7. The stack is used or not to reach the handler depending on the technique used to implement the exception mechanism:
conventionally, the Static Mapping which uses a table or the Dynamic Tracking which uses the stack.
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8. Timing Analysis depends on the technique used to implement the exception mechanism.

9. It was previously mentioned that it is not possible to control the program from its inputs to raise a predefined exception and
thus to execute the associated handler.

10. Once an exception has been propagated, then neither Flow Analysis nor Symbolic Analysis can be undertaken and other
forms of verification become difficult.

5.12.3 Guidance

In the introduction, the conflict concerning the use of the exception mechanism was highlighted. On one hand, the previous
section dealing with evaluation shows the difficulties induced by this mechanism when applying verification techniques. So, its
use seems to be prohibited when high integrity systems are concerned. On the other hand, it is not possible to say that its non-
use just reduces the language expression capabilities as it occurs for the other features. Indeed, when exceptions are not used,
the errors cannot be handled but their existence is not avoided [13]. To solve this issue, the proposed guidelines concern three
design strategies.

A first design choice (called ‘exclusion strategy’)   consists of excluding the use of exceptions. This may be obtained by means
of the pragma  Restrictions (No_Exceptions) written in the Ada programs or by using compiler options provoking the same
effect. However, the absence of erroneous  states usually leading to an exception raising must be demonstrated. This is easily
obtained concerning potential user exceptions as their raising is explicit. The proof that no predefined exceptions can be raised
is more complex, but may still be tractable (see Section 2.3.5).

The second design choice (called ‘belt-and-braces strategy’)   seeks to avoid dependency on the exception mechanism but
recognises that a predefined exception may nevertheless occur for some unforeseen reason.  The code is designed to be
exception-free, perhaps demonstrated by suitable proof (see exclusion strategy) but an ‘others’ exception handler is introduced
at the outermost scope level which does a very simple restart/reset or halt operation (if such an operation is compatible with the
application). As signalled in the notes, the actual state of the variables is not well defined when the exception handler is
reached. So, this strategy requires the implementation of a mechanism ensuring the recovery of a well-known program state at
program resumption time (for instance, a ‘recovery cache mechanism’). It should be noted that the implementation of such a
strategy may be very complex when the program includes tasks. In particular, resumption of the task in which an exception
raising occurs is frequently not acceptable when synchronisations exist. In this case, a more complex resumption policy must be
considered to handle the phenomenon called ‘domino effect’.

The third design choice (called ‘containment strategy’)   authorises the use of exceptions in a simple way. In particular, the
following guidelines must be considered to make easier the verification techniques applications. Exception mechanisms can
only be used (if required) to handle errors occurring at run-time and not rare events, such as ‘end of file is reached’. Predefined
exceptions should not be raised explicitly. Predefined and user exceptions must be handled close to the raising location. In
particular, propagation phenomenon should be avoided. Here again, the exception handling must guarantee that the program
state is well-defined.

5.13 Tasking

High integrity systems traditionally do not make use of high-level language features such as concurrency. With Ada, these
language features can be prohibited by the use of pragma  Restrictions (Max_Tasks=0), pragma  Restrictions
(No_Protected_Types) and pragma    Restrictions (No_Delay). The view that tasking should not be used is despite the fact
that such systems are inherently concurrent.  Concurrency is viewed as a ‘systems’ issue.  It is visible during design and in the
construction of the cyclic executive that implements the separate code fragments, but it is not addressed within the software
production phases.  Notwithstanding this approach, the existence of an extensive range of concurrency features within Ada does
allow concurrency to be expressed at the language level with the resulting benefits of having a standard analysable approach
that can be checked by the compiler and supported by other tools.

The requirement to analyse both the functional and temporal behaviour of high integrity systems imposes a number of
restrictions on the concurrency model that can be employed.  These restrictions then impact on the language features that are
needed to support the model.  Typical features of the concurrency model are as follows.

a. A fixed number of tasks.

b. Each task has a single invocation  event, but has a potentially unbounded number of invocations.  The
invocation event can either be temporal (for a time-triggered task) or a signal from either another task or the
environment. A high integrity application may restrict itself to only time-triggered tasks.
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c. Tasks only interact via the use of shared data.  Updates to any shared data  must be atomic.

These constraints furnish a model that can be implemented using fixed priority scheduling (either pre-emptive or non pre-
emptive) and analysed in a number of ways:

a. The functional behaviour of each task can be verified using the techniques appropriate for sequential code.
Shared data is viewed as just environmental input when analysing a task. Timing analysis can ensure that such
data is appropriately initialised and temporally valid.

b. Following the assignment of temporal attributes to each task (period, deadline, priority etc), the system-wide
timing behaviour can be verified using the proven techniques in fixed priority analysis [1], [2].

To implement this concurrency model in Ada requires only a small selection of the available tasking features.  At the Eighth
International Real-Time Ada Workshop (1997) the following profile (called the Ravenscar profile) was defined for high
integrity, efficient, real-time systems [9].

The Ravenscar Profile is defined by the following.

a. Task type and object declarations at the library level (that is, no hierarchy of tasks).

b. No unchecked deallocation of protected and task objects.

c. No dynamic allocation of task or protected objects (this is not part of the profile but is included here to be
consistent with an overall approach to dynamic allocation — see 3.1.2).

d. Tasks are assumed to be non-terminating.

e. Library level protected objects with no entries (to ensure atomic updates to shared data).

f. Library level protected objects with a single entry (for invocation signalling).  This entry has a barrier
consisting of a single boolean variable; moreover only a single task may queue on this entry.

g. ‘Real-Time’ package.

h. Atomic and volatile pragmas.

i. delay-until  statements

j. Count attribute for protected entries (but not within entry barriers).

k. Task identifiers.

l. Task discriminants.

m. Protected procedures as interrupt handlers.

It follows that the following tasking features are not included in the profile: task types and objects other than at the library level,
task hierarchies, unchecked de-allocation of protected and task objects, requeue, ATC, abort  task entries, dynamic priorities,
calendar, relative delays, protected types other than at the library level, protected entries with barriers other than a single
Boolean variable declared within the same protected type, attempts to queue more than one task on a single protected entry,
locking policies other than ceiling locking, scheduling policies other than FIFO  within priorities, all forms of select statement,
and user-defined task attributes.

The inclusion of protected entries allows event based scheduling to be used.  For many high integrity systems only time
triggered actions are employed, hence such entries and their associated interrupt handlers are not required.

The profile defines dispatching to be FIFO within priority with protected objects having Ceiling Locking.  However it also
allows a non pre-emptive policy to be defined. Co-operative scheduling (that is, non pre-emption between well defined system
calls such as delay-until  or the call of a protected object) can reduce the cost of testing as pre-emption can only occur at well-
defined points in the code. It can also reduce the size of the run-time.

With either dispatching policy, the Ravenscar profile can be supported by a relatively small run-time.  It is reasonable to
assume that a purpose-built run-time (supporting only the profile) would be efficient and ‘certifiable’ (i.e., built with the
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evidence necessary for its use in a certified system).  An equivalent run-time for a constrained Ada83 tasking model has already
been used in a certified application. Static checks are possible to ensure any program conforms to the profile.

Not only does the use of Ada increase the effectiveness of verification of the concurrency aspects of the application, it also
facilitates a more flexible approach to the system's timing requirements.  The commonly used cyclic executive approach
imposes strict constraints on the range and granularity of periodic activities. The Ravenscar profile will support any range and a
fine level of granularity. So, for example, tasks with periods of 50ms and 64ms can be supported together. Moreover, changes
to the timing attributes of activities only require a re-evaluation of the timing analysis. Cyclic executives are hard to maintain
and changes can lead to complete reconstruction. Finally, note that the inclusion of a small number of event triggered activities
does not fundamentally change the structure of the concurrent program or the timing analysis, but it does impose significant
problems for the cyclic executive. Polling  for ‘events’  is a common approach in high integrity systems; but if the ‘event’ is
rare and the deadline for dealing with the event is short then the time triggered approach is very resource intensive. The event
triggered approach will work with much less resources.  The guidelines are not intended to imply that event triggering is better
than time triggering. The point here, is that the Ravenscar profile deals with both approaches and the migration from one to the
other.

5.13.1 Evaluation

Group Name
Feature  FA  SA  RC  SU  TA  OMU  OCA  RT ST
Ravenscar
Profile

 Alld 1  Inc2  Inc  Inc3  Inc3  Inc4  Inc  Inc  Alld 5

Other Tasking
Features

 Exc6  Exc6  Inc  Exc7  Exc7  Exc7  Exc7  Inc  Exc8

Table 15: Tasking

5.13.2 Notes

1. Each task is analysed as if it were a separate program.  Data flow and information flow between tasks is an issue but can be
addressed by viewing any data that flows between tasks to be output or input for the two tasks involved.  Hence existing
methods of dealing with inputs from the environment are adequate. With the Ravenscar profile there is no control flow
between tasks.

2. Due to the lack of synchronisation between tasks, symbolic analysis can be undertaken on a per task basis.

3. System timing behaviour and stack usage are fully predictable with this profile.

4. The static task structure avoids the need for the use of any storage structure other than the stack.

5. With the pre-emptive dispatching policy, structural coverage is deemed not to include the testing of all possible pre-emption
points. Rather, structural coverage is focused on the behaviour of each task. If this view is not appropriate then non pre-
emptive (and co-operative) dispatching must be employed. This explicitly defines the points at which a task can be pre-
empted.  With non pre-emption, interrupt handling (for example, to deal with a regular clock interrupt) is still allowed but
the interrupt is not permitted to release a higher priority task for execution.  A non-interruption dispatching policy is also
possible. With this policy no interrupts are used and each task release condition must be checked whenever the run-time
system is invoked.

6. Where appropriate the synchronous concurrency aspects of the application may be formalised using techniques such as
finite state automata [3] Petri-Nets [4], [5] or a process algebra [6], [7], [8]. Note these aspects are rarely formalised in the
systems view of concurrency. They are excluded due to lack of experience in using these techniques in high integrity
applications and because there remain some research questions over the scaleability of the techniques to real problems.
Other tasking features such as re-queue and asynchronous transfer of control have not yet been formalised.

7. If dynamic task creation is allowed then memory usage cannot be predicted and static scheduling analysis is not feasible.

8. As the behaviour of one task is more synchronously linked to the executions of other tasks, the need to directly test multi-
tasking programs increases. Notions of coverage for general tasking programs are not fully defined and hence the general
model is excluded for this type of verification.
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5.13.3 Guidance

With the profile, each task should be structured as an infinite loop within which is a single invocation event. This is either a call
to delay until  (for a time triggered task) or a call to a protected entry (for an event triggered task).

The use of the Ravenscar profile allows timing analysis to be extended from just the prediction of the worst-case behaviour of
an activity to an accurate estimate of the worst-case behaviour of the entire system. The computational model embodied by the
Ravenscar profile is very simple and straightforward. It does not include, for example, the rendezvous or the abort, and hence
does not allow control flow between tasks (other than by the release of a task for execution in the event triggered model). But it
does enable interfaces between activities (tasks) to be checked by the compiler.

Pre-emptive execution, in general, leads to increased scheduleability and hence is more efficient in the use of the system's
resources (e.g., CPU time). As pre-emption can occur at any time, it is not feasible to test all possible pre-emption points.
Rather, it is necessary for the run-time system  (RTS) to guarantee that the functional behaviour of a task will not be affected by
interrupts or pre-emption. For a high integrity application evidence to support this guarantee would need to be provided by the
compiler vendor (or RTS supplier). For the Ravenscar profile the RTS will be simple and small. There is ample expertise in the
industry to be confident that high integrity Ada RTS are feasible and will be available.

Many, but not all, of the constraints defined by the profile can be enforced by use of the Restrictions pragma. For those for
which the pragma does not apply, it is still a static syntax check to determine if a program complies to the profile. The only
exception to this rule is the assumption that a task is non-terminating. This can not, of course, be checked but any
implementation of the profile will protect itself against task termination.

5.14 Distribution

Although many high integrity systems are distributed, it is rare for the programming activity to directly address notions of
distribution. Nevertheless, the features that Ada defines to support the programming of distributed systems are important and
can have a role in even single processor high integrity systems.  This is particularly true when different criticality subsystems
are to be hosted on to the same processing resource; an approach that is becoming more common in a number of application
areas, for example, Integrated Modular Avionics.

Ada provides a number of categorisation pragmas that allow library units to be partitioned into distinct groups that do not share
variables or physical addresses.  The interactions between these separate partitions are well-defined and analysable (i.e., there
can be no hidden interactions between the partitions) .  This separation of addresses does not necessarily imply separate address
spaces as this is an implementation issue.  However, if memory protection is required (to isolate specific subsystems) then the
Ada partition model is the obvious way of representing the necessary enclosures at the program level.

On a single processor system the only two categorisation pragmas that are needed in order to facilitate the effective use of
partitions are pure and remote-call-interface.  A pure package is a restricted form of preelaborable package as it designates a
library unit that can be elaborated without the execution of any code at run-time. In a genuine distributed system, two further
pragmas are usually required: remote-types and shared-passive.

5.14.1 Evaluation

Group Name
Feature  FA  SA  RC  SU  TA  OMU  OCA  RT ST
Preelaborate  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Pure  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc  Inc
Remote-call-
interface

Exc1  Inc  Inc  Inc Exc1  Inc Exc1  Inc  Inc

Remote types  Inc  Exc1  Inc  Inc  Inc  Inc  Inc  Inc  Exc1

Shared
Passive

 Inc  Exc1  Inc  Inc  Inc  Inc  Inc  Inc  Exc1

Table 16: Distribution

5.14.2 Notes

1. The programming of distributed systems is somewhat immature; the construction of distributed systems and the
commensurate issues of fault tolerance and survivability introduce many systems issues that go well beyond mere
programming. The analysis and testing of distributed systems is not straightforward.
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5.14.3 Guidance

Partitions are a useful form of structuring and hence the categorisation pragmas should be employed, where appropriate, to
provide additional information about the properties of library units.

6 Compilers and Run-time Systems

It is imperative that software written for high integrity systems in a high level language be interpreted the same way by
developers, reviewers and auditors. Safety related and security guidelines and standards require that the language be endorsed
by a national or international standards agency. In addition, some Standards may require that compilers be validated to show
conformance to the language definition and that this be performed by an independent certification organisation.

6.1 Language issues

Ada compilers must undergo such validation testing, and evidence of the results of such testing is maintained by the Ada
Information Clearing house as a public record.

An Ada compilation system used for safety critical systems must conform to the Ada language definition as defined in the Ada
standard [ARM]. A fully conformant compiler must pass all applicable Ada Compiler Validation Capability (ACVC) tests
which exercise the compiler, linker and the run-time system together. ACVC tests will also be applied to the annexes which
have been implemented which must also conform to the Ada standard. The tool selection process for a safety critical
application will need to ensure that the compilation system and the annexes are validated.

The compiler may have options which control the level of optimisation  or other code transformations which affect traceability
between source and object code. As these options have a direct impact on the correctness of the object code, it is important that
the compiler passes the validation suite with the options to be used when building the operational software, and that the run-
time libraries be verified with the same options.

The production of a language subset compiler specifically for high integrity applications is not recommended. The use of a
compiler by many in a broad range of applications is more likely to uncover latent faults which may be present in the
compilation system. Many safety standards require assessment of the quality of the compilation system through an analysis of
reported and fixed faults by the compiler vendor. Quality reports, evidence of regression testing  review of the fault tracking
system may be required. Such evidence may be provided under terms of non-disclosure by the compiler vendors.

For the reasons outlined earlier in this report, safety critical projects will use a subset of the Ada language. The application
code must be analysed to ensure that the appropriate subset is used. This analysis may be done by code inspections, by the use
of source analysis tools, or by the compiler itself, if it has this capability.

The Ada Semantic Interface Specification [ASIS]   provides a standard mechanism for obtaining information about an Ada
program or its components. As ASIS is an ISO standard, portable tools may be written which perform analysis of the language
constructs used. Traversal algorithms, access to semantic information and structural constructs are provided for Ada source
code under investigation. This representation exposes scope, visibility, overloading and other attributes to provide analysis
tools the same information that a compiler code generator would use. Tools may thus be written which are independent of the
compiler, but use the intermediate representation offered by the compiler.

An alternative subsetting method would be to use compilers directly. The compiler may be able to enforce a subset when
directed to do so by the user through compiler options, or use of pragma  Restrictions.

A compiler processing in subset enforcement mode will be unable to pass many tests of the ACVC suite. Even the reporting
packages of the ACVC may use features of the language which are outside of the high integrity subset.

The level of confidence in the subset compiler increases if the algorithms used in the subset and the full compiler are
unchanged. It is important the implementation of pragma  Restrictions, or compiler subsetting options does not affect the
general algorithms used by the compiler (control flow optimisations, memory management etc. should be the same whether
pragma restrictions is used or not, or the differences well documented).

6.2 Compiler Qualification

The compiler  and linker are development tools. They transform source to object and through this process may produce
translation errors. Before a development tool can be used on a high integrity application with total trust, it must be qualified. At
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present it is beyond the state of the art to qualify software as complex as a compiler. This level of distrust forces some
verification to be performed at the object code level. This is usually performed through dynamic testing on the target computer
with a specified coverage (say, Modified Condition/Decision Coverage to 100%). Additionally, object code analysis may be
performed, see 2.3.10.

Verification through testing may possibly uncover compiler faults. The most serious are translation errors where the object
code generated implements the semantics of the source program incorrectly. Faults discovered should be reported to the
compiler manufacturer where they can be logged and tracked using an error reporting system. Subsequent compiler versions
may improve the compiler correctness by fixing the reported errors.

A list of residual errors or errors not fixed in a given version should be available to the users. The use of a restricted language
subset helps in this area as it is usually the combinations of complex constructs which causes the biggest problems for the
compiler.

A compiler may generate correct but sub-optimal code, for example a range check on a variable which has already been
checked. Although this may not affect the semantics of the program, it may introduce additional paths which are not covered
through testing. This complicates coverage analysis at the highest levels of criticality. If traceability between source and object
code cannot be demonstrated, then other verification means may be used to show that the compiler has not inserted incorrect
code.

Additional code produced by the compiler must be found and traced and classified into 'dead'  or 'deactivated' code. In such
cases, dead code must be removed and deactivated code must be documented.

6.3 Run-Time System

The run-time system (RTS) forms part of the operational software. It has a direct impact on the integrity of the application.
Consequently the RTS needs evidence of verification to an integrity level which corresponds to the integrity level of the
application or higher.

The RTS consists of several classes of routines used by the Ada program. Some routines are linked in automatically by the
compiler to initialise and manage the target environment (e.g., set up address bases for stacks, set up interrupt vectors and so
on.) Some routines are linked in on demand by the code generator. The compiler may on occasion use run-time routines to
implement operations which require many instructions (e.g., bit_block_move on an architecture which does not have an
instruction to perform this). Some routines are made visible by the Ada language and supplied through packages supplied by
the RTS (e.g., Ada.Synchronous_Task_Control). The tasking system will include routines to declare, activate and perform
synchronisation between tasks on behalf of the user. Calls to these routines are generated through the use of the underlying
constructs.

The RTS may be supplied entirely by the developers of the Ada compiler, or a reduced Ada RTS may interface to a language
independent RTS. With both approaches, a substantial effort must be undertaken to demonstrate that the RTS implements the
semantics of the language. It must also be shown that the RTS executes with bounded execution times, and uses machine
resources in a predictable way.

Software is not certified, consequently, the RTS cannot be certified. Certification evidence can be produced for the RTS, but
the materials produced will be scrutinised for each system in which the RTS is used. The requirements for certification does not
diminish because it is Commercial Off The Shelf (COTS). Although broad use may improve the pedigree of a RTS, it does not
diminish the responsibility for safe operation.

The requirements of the underlying safety or security Standard must be satisfied for the RTS and evidence must be made
available in accordance with the criticality level of the application.
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Fore - attribute 28
Formal Code Verification 5, 8, 10, 16
Fortran 29
Fraction  - attribute 28
fragmentation 34
function call 20
Functional Correctness 23
functional testing 7
functions 24

GAMP 1
generics 31
global variables 4
goto 10, 12, 13, 23
GUI 29

handler 35
heap 21, 33, 34

IEC 601-4 1
IEC 61508 vi
IEC 880 1
if  23
Image - attribute 17
included 14
indefinate object 34
indefinite formal parameters 24
indefinite or unconstrained return types 24
Information Flow Analysis 4, 8, 10, 12, 16
information hiding 11, 19
initialisation 25
inline expansion 24
Inspection_Point 6, 7
instantiation 31
integer 27
integer type 17
interfacing 29
interfacing pragmas 29
invocation 36
ISO 8402 2
ISO CD 15408 1
ISO/IEC 15026 vi
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ITSEC vi, 1

layout 30
Leading_Part - attribute 28
levels vi, 13
life-cycle 11
lifetime 20
limited private 32
literal 20
logical operators 21
loop

for 23
implicit 22
invariant 12
iterator 31
simple loop with exit 23
while 23

low level 29

Machine - attribute 29
machine code 29
Machine Insertion 29
Machine_Emax - attribute 29
Machine_Emin - attribute 29
Machine_Mantissa - attribute 29
Machine_Overflows - attribute 29
Machine_Radix - attribute 29
Machine_Rounds - attribute 29
macro-expansion 31
Max_Tasks 36
medical 1
membership tests 21
MISRA 1
Model - attribute 29
Model_Emin - attribute 29
Model_Epsilon - attribute 29
Model_Mantissa - attribute 29
Model_Small - attribute 29
modelling 10
Modified Condition/Decision Coverage 8, 16
modular 27
Modulus - attribute 27
monitor 11

name 20
named number 18
NASA 1
nesting 19
No_Access_Subprograms 34
No_Allocators 6, 34
No_Delay 36
No_Dispatch 17
No_Exceptions 35, 36
No_Floating_Point 28
No_Implicit_Heap_Allocation 6, 34
No_Protected_Types 36
No_Recursion 25
non-scalar 23
NRC 1, 35
nuclear 1

null 23

Object Code Analysis 6, 8, 16, 23, 35
OCA See Object Code Analysis
OMU See Other Memory Usage Analysis
optimisation 40
Other Memory Usage Analysis 6, 8, 16
overlapping 21
overloading 13, 19, 25

package 20, 25
packing 21
parameterless functions 11
parameter-passing 10
partial correctness 5
partition 6, 39
pharmaceutical 1
pointer 11
polling 38
pool 33, 34
post-condition 5
pragma

Elaborate_Body 25, 26
Inspection_Point 6, 7
Restrictions 6, 13, 17, 25, 28, 34, 35, 36
Reviewable 6, 7

pre-condition 5
Pred - attribute 30
predefined language environment 16
predicates 12
predictability 9
pre-emption 38
primitive operation 16, 26
priorities 37
private 25
private - type 32
procedures 24
proof obligations 5
propagation 35

qualified expression 20
Qualified Expressions 21

rail 1
Range Checking 6, 8, 16
Ravenscar profile 37, 38
RC See Range Checking
reconfiguration 34
record 17
recursion 4, 13
regression testing 40
relational  operators 21
reliance v
Remainder - attribute 29
renaming 19
representation attributes 29
representation clause 16, 18, 29
requeue 37
Requirements-based testing 7, 34
Restrictions
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Max_Tasks 36
No_Access_Subprogramms 34
No_Access_Subprograms 34
No_Allocators 6, 34
No_Delay 36
No_Dispatch 17
No_Exceptions 35, 36
No_Floating_Point 28
No_Implicit_Heap_Allocation 6, 34
No_Protected_Types 36
No_Recursion 25

return in procedures 24
Reviewable 6, 7
reviews 3
Round - attribute 28
rounding 28
Rounding - attribute 28
RT See Requirements-based Testing

SA See Symbolic Analysis
Safe_First - attribute 29
Safe_Last - aattribute 29
safety v
scalar 32
Scale - attribute 28
Scaling - attribute 29
security v
separate 26
shared data 37
short-circuit control forms 21
side-effect 10
side-effects 24
Signed_Zeros - attribute 29
slices 21
Small - attribute 27, 28
source

code 3, 6
generation 2

space 1
spaghetti code 12
specification 25
ST See Structure-based Testing
Stack Usage Analysis 6, 8, 16
state 12
statement 22
Statement Coverage 8, 16
static expressions 21
Storage_Error 33

Streams 29
string 34
Structural Coverage 8, 9, 23
Structure-based Testing 8, 34
SU See Stack Usage Analysis
subprogram 16, 24
subsystem 25
subtype 16, 17, 20
subunit 20
subunits 11
Succ - attribute 30
Symbolic Analysis 8, 16, 27
Symbolic Execution 4, 8, 16

TA See Timing Analysis
tagged type 17, 22, 24, 32
tasking 10, 13
termination 5
Testing 7
Timing Analysis 6, 8, 16
tools 2
total correctness 5
traceability 2
Truncation - attribute 28
type conversion

numeric 21
other 16
other 21

Unbiased_Rounding - attribute 28
unchecked conversion 11, 29
Unchecked_Access 29
unconstrained object 18
unconstrained type 24
use clause 25
use type 25

Valid - attribute 6, 30
variable 18
variant record 11, 33
vendor 40
verification condition 5
visibility 13
Volatile 30

while See loop
with Clause 25


