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1. Introduction

Asasociety, we are increasingly reliant upon high integrity systems: for safety systems (such as fly-by-wire aircraft), for
security systems (to protect digital information) or for financial systems (e.g. cash dispensers). Asthe complexity of
these systems grows, so do the demands for improved techniques for the production of the software components of the
system.

These high integrity systems must be shown to be fully predictable in operation and have all the properties required of
them. This can only be achieved by analysing the software, in addition to the use of conventional dynamic testing.

Thereis, currently, no mainstream high level language where al programs in that language are guaranteed to be
predictable and analysable, so for al choices of implementation language it is essential to control the language features
used by the application.

The Adalanguage is designed with specific mechanisms for controlling the use of certain aspects of the language.
Furthermore,

1. The semantics of Ada programs are well-defined, even in error situations. Specifically, the effect of a
program can be predicted from the language definition with few implementation dependencies or
interactions between language features.

2. The strong typing within the language can be used to reduce the scope (and cost) of analysis to verify key
properties.

3. The Adalanguage has been successfully used on many high integrity applications. This demonstrates that
validated Ada compilers have the quality required for such applications.

4. Guidance can be provided to facilitate the use of the language and to encourage the development of tools
for further verification.

Adaistherefore ideally suited for implementing high integrity software and this document provides guidance in the
controls that are required on the use of Adato ensure that programs are predictable and analysable.

All language design balances functionality against integrity, for instance, the ability to control storage allocation directly
will impact the need to ensure the integrity of data. An aspect of the integrity of Ada programsis the possibility of
avoiding access types (references) completely, whereasin other languages references are linked to array accessing
and/or parameter passing, and therefore cannot be excluded.

There are, however, anumber of different analysis techniquesin use for high integrity software and this document is not
prescriptive about which techniques to use. Furthermore, each analysis technique requires different controls on the use
of the language. Adaassists analysis. for instance, the modes of Ada parameters, suitably used, provide information for
data flow analysis which other languages cannot always provide. Thistechnical report, therefore, catalogues specific
verification techniques (in Section 3.5), and classifies the impact that language features have on the use of these
techniques (in the tables in Section 6).

It isthe user’s responsibility to select the analysis techniques for a particular application; this document can then be used
to define the full set of controls necessary for using that set of techniques.

The guidance given here first specifiesits scope, by reference to the safety and security standards to which high integrity
applications may be written.

Section 3 then analyses the verification techniques that are applied in the development of high integrity systems. By this
means, the regulatory rules of the standards for safety and security are abstracted to avoid the need to consider each such
standard separately.

Section 4 addresses general issues concerning how computer languages must be constructed if programs written in that
language are to be fully predictable. These issues are relevant to any restricted language defined through the application
of this guidance.

Section 5 provides identification of athree-way classification system used for Adalanguage features. This classification
is based upon the ease with which verification techniques can be applied to a program containing the feature. This
classification is needed since while the majority of the core featuresin Ada assists verification, the use of certain
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features makes the resulting code difficult or impossible to analyse with the currently available program analysis tools
and techniques.

Section 6 provides the main technical materia of thistechnical report by classifying Adalanguage features. Users of
this Technical Report can then determine which features of Ada are appropriate to use from the verification techniques
that are to be employed. The assessment has shown that the vast majority of the Ada features lend themselvesto
effective use in the construction of high integrity systems.

The technical report concludes, in Section 7, by providing information to aid the choice of a suitable Ada compiler
together with its associated run-time system.

References to relevant standards and guidesis provided. A detailed analysis of Adad5 for high integrity systemsis
available in References [CAT1], [CATZ2] and [CATS3].

A comprehensive index is provided to ease the use of the Technical Report.

1.1 Levels of criticality

Many of the Standards to which high integrity software is written use multiple levelsto classify the criticality of the
software components which make up the system. While the number and nature of the levels vary, the genera approach is
always the same: the higher the criticality of the system, the more verification techniques need to be used for its
assurance. Table 1 relates the various levels of classification used in some well known International Standards.

Standard Number of levels L owest Level Highest L evel
[DO-178B] 4 D A
[IEC-61508] 4 Safety Integrity Level 1 Safety Integrity Level 4

[ITSEC] 7 EO E6

Table 1: Levelsof criticality in some Standar ds

Thistechnical report emphasises the higher levels of criticality, for which the more demanding verification techniques
are employed and for which Ada provides major benefits.

Thistechnical report, however, does not directly use any such levels but focuses on the correlation between the features
of the language and the verification techniques to be employed at the higher levels of criticality. The materia in
[ISO/IEC 15026], [ARP 4754] and [ARP 4761] may be useful in determining the criticality of a systemif thisis not
covered by application-specific standards.

1.2 Readership

Thistechnical report has been written for:

1. Thoseresponsible for coding standards applicable to high integrity Ada software.

2. Those developing high integrity systemsin Ada.

3. Vendors marketing Ada compilers, source code generators, and verification tools
for use in the development of high integrity systems.

4. Regulators who need to approve high integrity systems containing software written
in Ada.

5. Those concerned with high integrity systems who wish to consider the advantages
of using the Adalanguage.

Thistechnical report is not atutorial on the use of Ada or on the development of High Integrity software. Developers
using this report are assumed to have a working knowledge of the language and an understanding of good Ada style, as
in[AQS].

2. Scope

Thistechnical report provides guidance on the use of Adawhen producing high integrity systems. In producing such
applicationsit is usually the case that adherence to guidelines or standards has to be demonstrated to independent

5
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bodies. These guidelines or standards vary according to the application area, industrial sector or nature of the risk
involved.

For safety applications, the international generic standard is [IEC-61508] of which part 3 is concerned with software.
For security systems, the multi-national generic assessment guide is[1SO CD 15409].
For sector-specific guidance and standards there are:

Airbornecivil avionics: [DO-178B]

Nuclear power plants: [|[EC 880]

Medical systems: [IEC 601-4]

Phar maceutical: [GAMP]
For national/regional guidance and standards there are the following:

UK Defence: [DS 00-55]

European rail: [EN 50128]

European security: [ITSEC]

USnuclear: [NRC]

UK automotive: [MISRA]

US medical: [FDA]

US space: [NASA]

The above standards and guides are referred to as Standards in this technical report. The above list is not exhaustive but
indicative of the type of Standard to which this technical report provides guidance.

The specific Standards above are not addressed individually but their requirements and recommendations have been
analysed from which thistechnical report is synthesised.

2.1 Within the scope

Thistechnical report assumes that a system is being developed in Adato meet a standard listed above or one of asimilar
nature. The primary goal of thistechnical report is to transate general requirementsinto Ada specific ones. For
example, agenera standard might require that dynamic testing provides evidence of the execution of al the statements
in the code of the application. In the case of generics, thisisinterpreted by thistechnical report to mean al
instantiations of the generic should be executed.

This technical report is intended to provide guidance only, and hence there are no ‘shalls’. However, this technical
report identifies verification and validation issues which should be resolved and documented according to the sector-
specific standards being employed.

The following topics are within the scope of this technical report:

» the choice of features of the language which aid verification and compliance to the Standards,

» identification of language features requiring additional verification steps,

» the use of tools to aid design and verification,

» issues concerning qualification of compilers for use on high integrity applications,

* tools, such as graphic design tools, which generate Ada source code which is accessible to users.
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Note: Tools which generate Ada source code require special consideration. Where generated code may be modified or

extended, verification of the extensions and overall system will be assisted if the guidelines have been taken into

account. Even where the modification is not intended, inspection and analysis of the generated code may be

unavoidable unless the generator is trusted or ‘qualified’ according to an applicable standard. Finally, even if generated
code is neither modified nor inspected, the overall verification process may be made more complicated if the code
deviates from guidelines intended to facilitate testing, memory use analysis etc. Potential users of such tools should
evaluate their code generation against the guidelines.

2.2 Out of scope

The following topics are considered to be out of scope with respect to this technical report:

» Domain-specific standards,

» Application-specific issues,

» Hardware and system-specific issues,
* Human factors.

3. Verification Techniques

Verification is the confirmation by examination and provision of objective evidence that specified requirements have
been fulfilled [ISO 8402: 2.18].

There are currently four approaches required by standards to support the verification of software:

traceability,
reviews,
analysis, and
testing.

PR

Each one of these is discussed below. Where appropriate, language-specific techniques that support each approach are
discussed. Finally, these techniques are grouped into categories that can form a basis for the analysis of Ada language
features. This analytical approach forms the basis for the assessment presented in Section 6.

3.1 Traceability

Traceability is required to establish that the implementation is complete, and to identify new derived requirements. It
occurs throughout the life-cycle e.g. there needs to be traceability from:

* lower level (decomposed) requirements to higher level requirements;
» test procedures to requirements, design, or code;
» object code to source code.

While traceability is not language specific, certain attributes of design or coding styles can aid in (or detract from)
accomplishing this objective. For example, consider a single module that implements a single low level requirement,
which has an associated single test procedure, then the method to support traceability is straightforward. On the other
hand, if there is a many-to-many relationship between the various decomposed levels of software (because of design
choices or test procedures), traceability can become very complicated. Deduction of completeness of implementation
(without extraneous code) may therefore be difficult or impossible.

Additionally, the use of some of the more sophisticated language features of high-level languages that require extensive
compiler generated code may detract from the straightforward translation into, and hence verification of, the object
code.

3.2 Reviews

Reviews are an important part of the verification process. They can be carried out on requirements, design, code, test
procedures, or analysis reports. Reviews are conducted by humans and may be undertaken ‘formally’ such as in a Fagan
inspection or ‘informally’ such as in desk checks. Typically, reviews are done by an ‘independent’ person i.e. the
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producer of the artefact is different from the reviewer. Thisindependence is a mandatory requirement of safety-critical
software standards.

Coding standards and avoidance of certain language features of high-level languages are essential for high integrity
systems in order to facilitate reviews. These aspects become important since the ’independent’ code review may at times
be conducted by an expert in the application domain who may not have detailed insight into language constructs and
their interactions.

3.3 Analysis

Thistechnical report distinguishes between analysis (i.e. static analysis) and testing (i.e. dynamic analysis). Analysis
supplements testing to establish that the requirements are correctly implemented.

Analysis can be performed on requirements, design, or code; the major emphasis of thistechnical report isthe analysis
of the design and code.

Described below are ten analysis methods which are required in different combinations by various standards.

Control Flow

Data Flow

Information Flow
Symbolic Execution
Formal Code Verification
Range Checking

Stack Usage

Timing Analysis

. Other Memory Usage
10. Object Code Analysis

CoNoTMwNE

3.3.1 Control Flow Analysis
Control Flow Anaysisis conducted to:

1. ensurethat code is executed in the right sequence,

2. ensurethat codeiswell structured,

3. locate any syntactically unreachable code, and

4. highlight the parts of the code where termination needs to be considered, i.e., loops and recursion.

Call tree analysis, an example of one of the many Control Flow Analysis techniques available, is used to verify that the
sequencing stated by the design is correctly implemented. Also, call tree analysis can help detect direct and indirect
recursion, which are prohibited by most high integrity standards. Furthermore, if a system is partitioned into critical and
non-critical parts, then the call tree analysis can confirm that the design rules for partitioning have been followed.

Adaisrichin facilities for program flow control. Language rules, such as prohibition of modification of for loop
control variables, make it difficult to produce poorly structured Adacode. If the goto statement is not used and
relatively minor restrictions are made on placement of exit and return statements, Ada code becomes inherently well
structured.

3.3.2 Data Flow Analysis

The objective of Data Flow Analysisisto show that there is no execution path in the software that would access a
variable that has not been set avalue. Data Flow Analysis uses the results of Control Flow Analysisin conjunction with
the read or write access to variables to perform the analysis. Data Flow Analysis can also detect other code anomalies
such as multiple writes without intervening reads.

In most general -purpose languages, data flow analysisis a complex activity, mainly because global variables can be
accessed from anywhere, and because subprogram parameters do not support out-only modes. The job can be made
significantly easier in Ada which has packages to contain potentially shared data, and out parameters on subprograms.
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3.3.3 Information Flow Analysis

Information Flow Analysis identifies how execution of a unit of code creates dependencies between the inputs to and
outputs from that code. For example:

X:=A+B;

Y:=D-C;

if X>0 then
Z:=(Y+1);

end if;

Here, X dependson A and B, Y dependson C and D, and Z dependson A, B, C, and D (and implicitly on its own initial
value).

These dependencies can be verified against the dependencies in the specification to ensure that all the required
dependencies are implemented and no incorrect ones are established. It can be performed either internal to amodule
(i.e. aprocedure or afunction), across modules, or across the entire software (or system). This analysis can be
particularly appropriate for a critical output that can be traced back all the way to the inputs of the hardware/software
interface.

3.3.4 Symbolic Execution

The objective of Symbolic Execution isto verify properties of a program by algebraic manipulation of the source text
without requiring aformal specification. This technique istypically applied using tools that also undertake Control, Data
and Information Flow Analysis.

Symbolic Execution is a technique where the program is ‘executed’ by performing back-substitution; in essence, the
right hand side of each assignment is substituted for the left hand side variable in its subsequent uses. This converts the
sequential logic into a set of parallel assignments in which output values are expressed in terms of input values.
Conditional branches are represented as conditions under which the relevant expression gives the values of the outputs
from the inputs. To undertake this computation, it is assumed that no aliasing is taking place, i.e. two variables X and Y
do not refer to the same entity and that functions have no side-effects. Tools that provide support for symbolic execution
may or may not check for these conditions.

Using the fragment of Ada code which illustrated Information Flow Analysis gives:

A+B <0:

X = A+B

Y = D-C

Z = not defined on this path (retains initial value)
A+B >0

X = A+B

Y = D-C

Z = D-C+1

These algebraic expressions give the output in terms of the input and can be compared (manually) with the specification
of a subprogram to verify the code.

Symbolic execution can also be used to assist with reasoning that run-time errors will not occur (e.g. Range Checking).
The symbolic execution model is extended to include expressions indicating the conditions under which a run-time error
may occur. If these expressions are mutually contradictory for a particular execution path then that path is free from
potential run-time errors

3.3.5 Formal Code Verification

Formal code verification is the process of proving that the code of a program is correct with respect to the formal
specification of its requirements. The objective is to explore all possible program executions, which is infeasible by
dynamic testing alone.

Each program unit is verified separately, against those parts of the specification that apply to it. For instance, formal
code verification of a subprogram involves proving that its code is consistent with its formally-stated post-condition
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(specifying the intended relationships between variables on termination), given its pre-condition (specifying the
conditions which must apply when the subprogram is called). A more restricted proof aimed at demonstrating a
particular safety property can also be constructed.

The verification is usualy performed in two stages:

1. Generation of Verification Conditions (VCs). These theorems are proof obligations, whose truth implies that
if the pre-condition holdsinitially, and execution of the code terminates, then the post-condition holds on
termination. These VCs are usually generated mechanically.

2. Proof of verification conditions. Machine assistance in the form of a suitable proof tool can be used to
discharge verification conditions.

The process outlined above establishes partial correctness. To establish total correctness it isalso necessary to prove
termination of al loops when the stated pre-condition holds and termination of any recursion. Recursion is not
normally permitted in High Integrity systems. Termination is usually demonstrated by exhibiting avariant expression
for every loop, and showing that this expression gives a non-negative number that decreases on each iteration.
Termination conditions can be generated and proved, similarly to the generation and proof of verification conditions.

The value of formal code verification depends on the availability of a specification expressed in a suitable form such as
results from formal specification methods. Formal methods involve the use of formal logic, discrete mathematics, and
computer-readabl e languages to improve the specification of software.

Proof of absence of run-timeerrors

In some real-time safety-critical systems, occurrence of run-time errors is not acceptable. An example isthe flight-
control system of adynamically unstable aircraft, in which there would not be time to recover from such an error. The
techniques of formal code verification described above can be used to prove that (with appropriate language constraints)
certain classes of run-time errors, e.g. range constraint violations, cannot arisein any execution.

To perform such verifications, the object type and variable declarations are used to construct pre-conditions on the
ranges of initial values, and at each place in the source code where a run-time check would be produced, an assertion
formally describing the check is generated. From these pre-conditions, assertions and the program code, verification
conditions are mechanically produced.

These verifications (or ‘proof obligations’) are numerous, but for the most part simple enough to be proved
automatically. Full formal requirement specifications are not needed to apply this technique.

3.3.6 Range Checking

The objective of this analysis is to verify that the data values lie within the specified ranges as well as maintain specified
accuracy. These forms of analysis include, but are not limited to,

overflow and underflow analysis,
rounding errors,

range checking, and

array bounds.

PN

For discrete types, the static bounds placed upon variables often allow many cases to be checked automatically. When
enumerated types are used instead of integer types, these checks are more effective. For real types, the need to show the
absence of overflow is more demanding than the analysis of operations on discrete types.

Since the semantics of Ada remain defined even in error conditions, the necessary checks can be explicitly specified.
Furthermore, thevalid attribute makes it straightforward to check that scalar data, especially where it is obtained from
sources external to the program, isalegal Adavalue, without the risk of run-time exceptions being generated.

3.3.7 Stack Usage Analysis

The stack isapart of the memory shared by different subprograms and used for storing data local to the subprogram,
temporary data and return addresses generated by the compiler. Stack Usage Analysisis a particular form of shared
resource analysis that establishes the maximum possible size of the stack required by the system and whether thereis
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sufficient physical memory to support this maximum stack size. Also, some compilers use multiple stacks and this
analysis needs to be conducted for each stack.

Another aspect of Stack Usage Analysisisto ensure that thereis no stack-heap collision at run-time. Thisanalysisis
avoided when dynamic heap allocation is prohibited.

Stack Usage Analysisis made simpler for a programming language such as Ada where subprogram calls and return
semantics are unambiguous, and where there is a clean distinction between static and dynamic types. Compilers
supporting the Safety and Security Annex provide the necessary information to undertake this analysis, see [ARM:
H.3.1(15)].

3.3.8 Timing Analysis

The overall objective of this analysisisto establish temporal properties of the input/output dependencies. A common
and important aspect of this analysisis the worst-case execution time for the correct behaviour of the overall system.

Certain programming language features or design approaches make timing analysis difficult, e.g. loops without static
upper bounds and the manipulation of dynamic data structures.

The static typing of Ada and the unambiguous semantics of its control structures facilitate these analyses. Also, the
pragma Reviewable and pragma Inspection_Point ensure that there is traceability from the source code to the object
code to facilitate timing analysis.

3.3.9 Other Memory Usage Analysis

Thisanaysisisrequired for any resource that is shared between different *partitions' of software. These forms of
analysisinclude, but are not limited to, memory (heap), 1/O ports, and special purpose hardware, which perform specific
computations or watchdog timer functions.

Analysiswill show the absence of interference between Ada and other components such as low-level and hardware
device drivers and resource managers. In particular heap memory should usually be avoided and 10 devices rigorously
partitioned. Adais particularly useful when doing such analysis sine thepragma Restrictions (No_Allocators ) can be
used to ensure no explicit use of the heap and pragma Restrictions (No_Implicit_Heap_Allocation ) to ensure no implicit
usage of the heap.

3.3.10 Object Code Analysis

The purpose of Object Code Analysisisto demonstrate that object code is a correct translation of source code and that
errors have not been introduced as a consequence of a compiler failure.

This analysisis sometimes undertaken by manual inspection of the machine code generated by the compiler. The
compiler vendor may provide details of the mapping from the source code to object code so that manual checks are
simpler to undertake. Unfortunately, it is not currently within the state of the art to formally verify the equivalence of
source code and the generated object code.

The Adapragma Reviewable provides basic information to assist in tracing from source code to object code. pragma
Inspection_Point can be used to determine the exact status of variables at specific points[15].

3.4 Testing

3.4.1 Principles

Testing (sometimes known as dynamic analysis) is the execution of software on adigital computer, which is often the
target machine on which the final application runs. Testing has the advantage of providing tangible, auditable, evidence
of software execution behaviour.

11
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There are many testing techniques and new ones are being invented continually. This section islimited to those
procedures that are required by various software standards. It is not intended to be an exhaustive encyclopaedia of the
various testing techniques known at the present time.

Testing can be performed at various levels of software (and system):

» Software module level (individual procedures or functions),
» Software integration testing (i.e. module integration testing),
» Hardware/Software integration testing, and

e System testing.

The testing procedures described below focus on the first two aspects i.e. module and module integration testing, since
the choice of programming language has a direct impact on the ease or difficulty of testing. Within this framework,
there are two basic forms of testing:

* Requirements-based (or black-box) testing, and
» Structure-based (or white-box) testing.

Since exhaustive testing isinfeasible for any realistic program, one approach isto limit the number of test casesto
partition the data domain into equivalence classes and their boundary values.

3.4.2 Requirements-Based Testing

The requirements-based testing methods aim to show that the actual behaviour of the program isin accordance with its
requirements. For this reason, these methods are sometimes also called ‘functional testing’ or ‘black-box testing’. This is
to highlight the fact that the program structure is not taken into account. There are two common methods for conducting
requirements-based testing:

Equivalence Class Testing

The inputs and outputs of the component under test are divided into equivalence classes in which the values within one
class can reasonably be expected to be treated by the component in the same way. The equivalence class for numeric
data is a range having the same sign or zero. For data of an enumerated type, each value usually forms a class, since
each value could be expected to be treated differently. For composite types, the equivalence classes are obtained by
combining the classes derived from the components of the type. Testing is then undertaken using a sample from each
equivalence class [BS 7925: 5.1].

Boundary Value Testing

This approach enhances the equivalence class testing by requiring testing with values at the boundary of the specified
range. Additionally, ‘stress’ testing or ‘robustness’ testing may be undertaken outside the specified range if required by
the application domain standard.

3.4.3 Structure-based Testing

The objective of these testing methods is to increase the confidence in software by exercising the program beyond the
requirements-based testing mentioned above.

Examples of the methods used, and the definitions implied, are:

Statement Coverage
The application of test cases such that every statement in the program has been invoked at least once.

Decision (Branch) Coverage
The application of test cases such that every point of entry and exit in the program has been invoked at least once, and
every decision in the program has taken all possible outcomes at least once.

M odified Condition/Decision Coverage

The application of test cases such that every point of entry and exit in the program has been invoked at least once, every
condition in a decision in the program has taken all possible outcomes at least once, every decision in the program has
taken all possible outcomes at least once, and each condition in a decision has been shown to independently affect that
decision’s outcome. A condition is shown to independently affect a decision’s outcome by varying just that condition
while holding fixed all other possible conditions.

12
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These structure-based testing approaches apply only to source code of high-level languages such as Ada. In addition,
standards for the development of safety-critical software often require that the set of tests are shown to execute every
instruction in the object code of the software under test.

3.5 Use of Verification Techniques in this Technical Report

When considering the previous verification techniques, certain groupings can be formed. The verification techniques
within agroup have similar properties with respect to the complexity of that technique when applied to a particular
language feature. The following table shows the groups, and abbreviations, used in the section Assessment of Language
Features (Section 6).

Approach Group Name Technigue
Control Flow
Flow Analysis (FA) Data Flow
Information Flow
Symbolic Analysis (SA) Symbolic Execution
Analysis Formal Code Verification
Range Checking (RC) Range Checking
Stack Usage (SU) Stack Usage
Timing Analysis (TA) Timing
Other Memory Usage (OMU) Other Memory Usage
Object Code Analysis (OCA) Object Code Analysis
Requirements-based Testing (RT) | Equivalence Class
Boundary Value
Testing Statement Coverage
Structure-based Testing (ST) Branch Coverage
Modified Condition/Decision Coverage

Table 2: Verification Techniques

For convenience, some techniques are grouped together as follows:

Flow Analysis
The three methods under this group name are Control Flow, Data Flow and Information Flow (Analysis). The basic
methods of control flow and data flow are combined with information flow analysis.

Symbolic Analysis
Two methods are grouped together here: Formal Code V erification and Symbolic Execution. Both these methods share a
mathematical foundation and typically use tools which analyse the source text of aprogram algebraicaly.

Requirements-based Testing
The Equivalence Class and Boundary Value are closely related in that Boundary Value testing extends the set of test
cases required by Equivalence Class testing.

Structure-based Testing

Three testing methods are combined here, which in order are: Modified Condition/Decision Coverage, Branch Coverage
and Statement Coverage. These methods are closely related and are often tested with the help of the same tool.

4. General Language Issues

4.1 Writing Verifiable Programs

Standards and guidelines for high integrity software demand assurances of its fitness for purpose, based on its static
analysis (see Section 3.3), and also testing (see Section 3.4).

The choice of the verification techniques to be used for a software development is one part of the definition of the
overall development process for that software. Coding standards and language subsets can only be defined after the
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analysis methods have been selected, to ensure that none of the analysis methods are compromised by the use of
inappropriate language features.

In the context of high integrity systems, fitness for purpose depends on the behaviour of a system being predictable, and
demonstrably conforming to a precise specification of its requirement. Historically, demonstration of conformance to
requirement specifications by static analysis and testing has usually been attempted retrospectively, after a system has
been developed. This approach has rarely proved a cost-effective way of producing the desired results, for several
reasons. Firstly, because the design and implementation processes have not been chosen with verification in mind.
Secondly, the static analysis or testing technologies have been difficult and costly to apply, and were not very revealing.
And finally, where such analyses have revealed errors, these were detected so late that their correction was extremely
costly.

The high cost of repeated testing as mistakes are uncovered and rectified, and improvementsin the technology of static

analysis, have led to aredlisation that there are significant cost benefits in performing static code analysis asthe codeis

produced. This accords well with the movement, as specification methods have improved, towards ‘Correctness by
Construction’ - the ‘lean engineering’ view of software development. Here static analysis methods, where they are
relevant, feature as an integral part of the development process. Their purpose is to establish the validity (in particular
respects) of intermediate products before they are used to develop further ones. This constructive approach also
contrasts with retrospective verification in matters of style: where certain language features are positively required in
order to support a particular model. The retrospective approach leads to a list of language prohibitions. Although the
constructive approach is more demanding, conceptually, it uses language and tools to better effect, improving technical
quality as well as reducing costs.

With motivations such as these for performing verification, it can be seen that there are four different reasons for
needing or rejecting particular language features within this context:

1. Language rules to achieve predictability,
2. Language rules to allow modelling,

3. Language rules to facilitate testing,

4. Pragmatic considerations.

In addition, there are reasons to enhance the language by adding forms of annotations.

In the following sections these matters are considered in detalil.

4.1.1 Language Rules to Achieve Predictability

Language rules to achieve predictability are independent of the analysis methods to be used. Itis a requirement, in all
high integrity system development, that the program source code is unambiguous. All possible forms of language
ambiguity must be prevented in some way.

The ways in which programs written in a high-level language can be ambiguous are well-known. A few cases are
discussed below.

Side-effects

It is generally accepted that side effects in functions are undesirable. Side effects can make order of
evaluation of an expression a significant issue, and can make repeated calls to a function return
different results. Many programming languages permit functions to have side-effects.

Effects of elaboration order
Programs in languages that support default initialisation or elaboration will be dependent on the order
of evaluation within a unit and the order in which units are evaluated.

Effects of parameter-passing mechanisms

Parameters to a subprogram in a high level language can be passed as a copy or passed as a reference.
The results of an execution may depend upon which method is chosen by an implementation (where a
choice is permitted).

Such ambiguities make the formal analysis of a program difficult. The uncertainties can be reduced by writing programs
that do not depend on these types of issues.
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Thereis often an attempt in high integrity systemsto eliminate offending language features to remove the uncertainties

or implementation dependencies. If taken to its extreme this can lead to a language that is ‘safe’ but ineffective. It will
lack the expressive power required to tackle the application requirements. The language may be ‘safe’ but the
programming process becomes more error-prone as complex designs must be produced to circumvent the inadequacies
of the language.

4.1.2 Language Rules to Allow Modelling

All static analysis methods involve the construction of a model of program source text (or object code), and the
application of algorithms or reasoning processes to this model, to check whether it has some particular properties. Itis
possible that if a particular feature of a language is used at all, or in a particular way, the model would be unable to
capture those aspects of the program text that are important to the analysis to be performed. As a consequence, to
ensure validity of a static analysis method some language features must be disallowed or their use rigorously controlled.

Assuming that language rules, or other devices, exist to ensure a program is meaningful, this section considers the
requirements for the various forms of modelling and analysis methods to be well founded and, at least in principle,
applicable.

The simpler kinds of static analysis, in particular control, data, and information flow analysis, essentially involve the
study of paths (corresponding to execution histories) on a directed graph model of a program (effectively a flowchart).
The arcs of the program graph have labels which capture, some syntactic and semantic properties of the program
statements. For control flow analysis only the graph structure is required, for data flow analysis each arc label specifies
which variables the corresponding statement reads and updates, for information flow analysis the dependencies between
read and updated variables must be defined more precisely. Conceptually, formal code verification (and proof of
absence of run-time errors) is also based on paths (or execution histories) on such a graph, but here the arc labels are
partial functions of the set of program variables, defining the conditions for traversing the arcs and the transformations

of variables performed in doing so. These static analysis techniques are all applied to the same structural model, but
form a progressively richer description of the program objects and elements.

The inclusion of exception flows and run-time dispatching significantly complicates the graph structure and tends, in the
general case, to the analysis becoming intractablgpthestatement also introduces difficulties. Otherwise, there are
no obstacles to control-flow analysis, which only requires and provides relatively limited information.

Data-flow analysis begins to take an interest in the data objects of a program. When using this method difficulties of
distinguishing between dynamically-selected components of composite objects are first encountered. Two issues are:
arrays must be treated as entire objects (although their components, selected by dynamically-computed indices, can
reappear in formal code verification), and dynamic creation of objects in the course of execution (using access types)
cannot be represented. Information flow analysis essentially requires the same constraints.

Such static models of programs only apply to sequential code. If the program contains concurrent threads (e.g. tasks)
then each thread must be analysed independently in terms of its flow, with the concurrency aspects being addressed by
different models and reasoning processes. With a concurrent system the key objective of modelling is to prove that the
system cannot enter undesirable states such as deadlock. The main static techniques for achieving this are finite state
automata [3], petri-nets [4], [5] and process algebras [6], [7], [8] using model checking or mathematical proof. All try

to construct the set of all feasible histories for the system to show that unsafe conditions cannot be reached. The degree
to which thread synchronisation impacts on the flow analysis of individual threads determines the complexity of the
overall verification problem. The more asynchronous the model, the more straightforward the flow analysis of each
thread. If there is only asynchronous data passing between threads then each thread can be verified in isolation.
Moreover, the complete timing/scheduling analysis of the entire concurrent system becomes tractable.

Surprisingly perhaps, the domain to which formal code verification is applicable in principle is no more restricted;

indeed, it is somewhat larger, as composite objects can be considered more generally. There is a large gap, however,
between what is analysable in principle and what can be analysed in practice and a number of strategic choices arise. If
the dynamic semantics of the language are made as simple as reasonably possible, the burden of verification is placed as
far as possible on static analysis tools. So, for example, if a program is deemed exception free by formal proof,

coverage testing is significantly simplified.

In conclusion, the adequacy of modelling for different analysis methods gives rise to some language constraints. But
just as important in determining how a programming language should be used, are the precise reasons for using the
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analysis methods and the ways in which they are to be employed - in other words, the choice of software development
process.

4.1.3 Language Rules to Facilitate Testing

Demonstration of a program’s correct dynamic behaviour, by testing, is an important part of its verification. In practice
the development of high integrity systems usually involves two different forms of testing: investigative, informal or
debugging testing; and formal coverage testing of akind or kinds required by various standards. As noted above the
detection and elimination of errors by static analysis methods early in the project lifecycle can greatly reduce testing
costs by shifting the emphasis of testing from debugging to demonstrating correctness.

The constraints placed on programming languages to facilitate testing are generally less significant than those demanded
by static analysis techniques. Although language features do have some impact on testing, the use of static analysis
techniques as part of the development process will ensure that language features which might complicate such testing
will be avoided.

Language features that obstruct coverage testing are those such as dispatching which introduces very dynamic control
flow; goto which complicates control flow; and features which complicate the view taken of data, for example: variant
records, unchecked conversions and dynamic pointer usage. Predefined exceptions present a particular difficulty for
coverage testing because it is often not possible to reach all the paths these introduce by external stimulation of
unmodified code.

Language features that assist testing are those which constrain data values by strong and static typing and those which
assist in locating errors by indicating their presence close to the point where they arise; here predefined exceptions are
beneficial.

Thereis ageneral tension between the dictates of good software engineering, which encourage information (or more
accurately "detail") hiding, and testing which often seeks to monitor the values of internal system state. Language
features which enable these conflicting requirements to be reconciled are of particular value and avoid distorting the
design just to achieve testability. Ada has particular strengthsin this area which often allow test harnesses to have access
to "hidden" datain non-intrusive ways. Examples include:

» A child package may be used to monitor state in the private part of its parent without requiring any change
to that parent package.

» Subunits may be used to place the source for an embedded subprogram in a separate file thus allowing the
construction of a suitable test driver for it. Test point subprograms in packages can also usefully be placed
in a subunit and replaced with a null subprogram in delivered code.

» Parameterless functions may be used to return the value of "trimming variables' which are often found in
control systems. These variables behave as constants at the program level but can be dynamically adjusted
by direct memory access during rig testing. The use of parameterless functions to return their value
reconciles the software’ s view that they are constants with the testing need to adjust their values.

» Theuse of apackage to contain "test point" variables. These are "write-only" variables used solely for test
monitoring purposes. At the point where the (hidden) value to be monitored is generated a copy can be
passed to this package and used to update its state; this is preferable to distorting the design by making the
data directly visible and emphasises the distinction between state needed by the software for its correct
behaviour and that introduced for testing purposes only.

4.1.4 Pragmatic Considerations

The considerations of side effects and elaboration order described in section 4.1.1 impose conditions essential to the
validity and technical relevance of static analysis methods. Further linguistic issues are important to the tractability and
eventually the economic viability of their application.

The questions of what conditions make the static analysis methods easy to apply, and what makes their results
meaningful and useful, have essentially the same answers. a program should be well-designed.

All the static analysis and testing methods and construction techniques are most effective when software is well-

structured, with every module having a single entry point and a single exit point. Although data flow analysiscan still

be applied to ‘spaghetti code’, it will be less efficient in finding data flow errors and anomalies. Similarly, information
flow analysis can be extended to ‘spaghetti code’, for which the unsurprising outcome is that almost every variable may
depend on every other. In constructing proofs, it is preferable to have building blocks with pre-conditions on their
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single entry points and post-conditions defining state at their single exits. For all these reasons language subsets for
safety-critical programming invariably excludegoto statements, return statements from procedure subprograms and
apart from at the top most level, exception handlers are avoided.

Proving correctness of programs, like reasoning about them informally, is about relating fragments of code to fragments
of specification. Decomposition of functionality is very important. Verifiability depends on simplicity of contextual
information i.e. scope and visibility should be as limited as reasonably possible. So it isimportant to pay attention to
architecture, the location of state, access to state, and embedding.

For such reasoning to be practical, the use of two-valued logic is preferred, where predicates are either true or false but
not undefined. To achievethisit isuseful for all variables to have valid values. Thisimplies that there should not be
undefined variables, a condition that can be met in three different ways.

» by language congtraints, e.g. imposing initialisation of all variablesin their declarations;
» by using adataflow analyser, to ensure that no variable is ever read before being initialised;
» by atool-assisted software development process that ensures proper initialisations.

Of these options, the latter two are preferred, since it is usually better for al initialisations to be meaningful.

The conclusion isthat for high integrity software devel opment, the language employed is more than a pick-and-mix
selection of language features. It must be built as a coherent whole as a means of expressing a chosen development
philosophy, that is compatible with tools used to implement it.

4.1.5 Language Enhancements

A programming language should be used in a style that enhancesiits fitness for purpose. The rules discussed above for
predictability and modelling are restrictions on the language: the elimination of syntactic forms or other, more subtle
features. Fitness can aso be enhanced by adding elements to the standard language, to facilitate derivation or
verification of a program given its specification.

Tools and techniques that relate the source code to aformal specification, such as Formal Code Verification, often need
information extra to the program source in order to work efficiently. Such information describes program properties that
follow from the laws of the language and that the programmer intuitively believes but are not expressed directly in the
language syntax. Examples include loop invariants, relationships between formal parameters, and state hidden inside
other service-providing packages'. Capturing this information enables proofs that are otherwise computationally hard.

One approach to verification is to capture these properties by embedding annotations (formal comments, with their own
syntax and semantics), in the source code, together with static design rules that relate the annotations to program objects.
An annotation can express an invariant as an equivalence between program objects, and can reveal hidden state in
packages without compromising their integrity.

The literate programming paradigm [17] provides another way of relating source code to specification. In literate
programming, program and program fragments are embedded within alarger document, that also contains natural
language description and other formal notations. One can relate and check objects in different fragments, and assemble a
compl ete program for compilation.

Other development paradigms involve automated generation of package templates from a specification. Aswell asthe
package code, the toolkit may supply additional information to the programmer, to exclude unwanted interactions across
module boundaries.

All the above approaches facilitate correctness-by-construction, by narrowing the gap between a package or component
and its specification, and by enabling its verification in a stand-alone manner at any time during devel opment.

YItisadesign goal of Adathat aclient routine should not access state variables in another package (to prevent the client
abusing them, among other good reasons). However knowledge of the state is needed to reason about the behaviour of
the whole program.

17



Working Draft of ISO/IEC 15942 V35

4.2 The Choice of Language
Any language that is to be used for the implementation of high integrity systems should:

* bestrongly typed,

» support arange of static types,

* have consistent semantics that is defined in an international standard,
» support abstractions and information hiding,

* haveavailable validated compilers.

Adaisuniquein its compliance to all these attributes. Nevertheless it may be necessary to restrict or prevent the use of
certain features to achieve full predictability, and to alow all the forms of static analysis and testing considered
important. However verification poses few problems with the main part of the language.

Rules of Ada usage are determined by considerations of the elimination of ambiguity, the feasibility of modelling and
analysis, and the constructive use of static analysis. In some casesit is found that alanguage feature is undesirable (e.g.
goto statements) or that it renders some kind of static analysis intractable (e.g. predefined exceptions) or infeasible (e.g.
full tasking). More frequently the difficulty stems from the use of several featuresin combination in a particular
manner. The most satisfactory way of applying appropriate restrictions in this case is through annotations and rules
between these and the Ada code. The annotation system requires very careful design if it isto be secure. The most
important concern is with ways of using Adathat provide good implementations of specifications and designs, and that
can to alarge extent be rigorously verified as they are constructed. Experience indicates that when these conditions are
met, testing is also greatly simplified.

Whether the restrictions are based on language-defined or implementation-defined restrictions, tool-based analysis or
annotation-based analysis, the result is a subset of the entire language, or possibly a collection of subsets of the
language. It would beideal if asingle subset could be defined which would satisfy all requirements. The reality of
different user communities, each with their own regulatory and commercial pressures, and multiple levels of criticality
make thisideal impossible to achieve. Since asingle set of restrictions cannot be defined, this technical report provides
detailed guidance that assist users in constructing their own restrictions based upon the verification techniques that they
require.

Consideration of the language requirements for correctness by construction is a matter of positive choices. It may lead
to some restrictions on the use of Ada, but these should be based on sound engineering judgement of the most
appropriate combination of language features. Here the aim isto use Ada as the vehicle to support the chosen design
and development paradigms, in the course of code production - which may for example suggest a particular way of using
packages to implement object templates.

To perform al necessary constraint checks as a program components are constructed, it is necessary to utilise

specification and design information, and relate it to the program architecture and code. To do thistools such as[16],

and [18] use a system of annotations (‘formal Ada comments’), as discussed in 4.1.5. Introduction of an annotation
system may also bring with it some stylistic restrictions on the use of Ada, for instance to reduce overloading and limit
visibility. Annotations may also be necessary to fully support modular development. For example, to reason about the
process performed by a module, knowledge of precisely what information it is accessing, and what are its effects, direct
and indirect is required; its use or action on a global variable cannot be ignored.

The correctness by construction approach, with correctness checking module-by-module, may also require rules to avoid
unwanted properties arising from the incremental development. For instance, it must be possible to prevent recursion
(usually frowned upon in safety-critical applications) by rules applicable at the module level, rather than by checking for
recursion when a system is complete.

It is reiterated that Ada is currently the only viable language with sufficient industrial heritage that can provide the

framework for static analysis and correctness by construction. As indicated above some restrictions on the use of the
language are necessary. Section 6 of this technical report provides a detailed assessment of these features.

5. Significance of Language Features for High Integrity

Language features are classified to facilitate the cost-effective application of the required verification techniques.
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5.1 Criteria for Assessment of Language Features

Control of the language features used in the implementation of high integrity systemsis one essential ingredient to the
use of ahigh order language. Adawas expressly designed to facilitate this effort. Yet, like all modern general purposes
languages, Ada offers a broader variety of features than strictly required for any specific application domain. Hence,
important design decisions need to be made to determine which language features best suit the implementation and
verification requirements that emanate from the specific application domain.

The reasoning behind this can be shown by an example. High integrity control systems often handle physical data that
continuously varies. The processing involves the input/output of these quantities from/to digital to analogue converters.
Within the program, the natural way to handle such datais by means of an Adareal type (fixed or floating point). The
verification process for fixed point is dightly different to that for floating point. Hence, a design decision should be
made as to which form of real type should be used. In doing so, one should also consider that real types are only suitable
for modelling continuously varying quantities and, therefore, are not needed at all in some types of applications.

The choice of language featuresis determined by the nature and criticality of the application and the verification
techniques to be employed. In practice, however, the availability of software tools may further constrain the choice of
language features. For instance, if formal verification with proof is required, then the use of any real types might not be
viable so that the application might have to be coded using integer types only.

Thistechnical report rates language features using three categories as follows:

Included

A feature is ‘included’ if it is directly amenable to the designated verification technique. Not surprisingly,
most Ada features are rated ‘included’ for most verification techniques. Included features enable the
analysis to be undertaken and directly support the production of high integrity code.

Allowed

A feature is ‘allowed’ if the designated verification step is not straightforward, but is still achievable; or if
the use of the feature is necessary and the use of the problematic verification technique can be effectively
circumvented.

Excluded
A feature is ‘excluded’ if there is no current cost effective way of undertaking the designated verification
technique. Assurance of exclusion requires some form of verification.

Even without the excluded and allowed features, Ada remains a rich language of great expressive power. In particular,
all the features needed to support large scale, effective software engineering practice such as abstraction, encapsulation
and concurrency are retained.

5.2 How to use this Technical Report
The user of this technical report should proceed in four steps, as follows:

1. Determine the verification techniques required from the relevant application specific standards or
guidelines.

2. Identify and understand the objectives to be satisfied by each of the verification techniques.

3. Using the tables in section 6, determine the actual rating of the language features.

4. Confirm that the resulting choice of subset and the additional verification steps for any allowed
features can satisfy the programming and verification requirements. This step should take into
account available tools.

In some situations a verification technique is hard to apply because of the interaction of two or more language features.
When such an interaction occurs, it ia addressed under the feature that is primarily responsible for the problem. For
example, the use of representation clauses has impact on a number of features; these issues are all considered in the low
level programming section (section 6.9).

6. Assessment of Language Features

The Ada features are split in fourteen groups closely related to chapters of the ARM. These are:
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» typeswith static attributes;

» declarations;

* names, including scope and visihility;
* expressions,

* statements;

» subprograms;

» packages (child and libraries);

o arithmetic types,

* low level and interfacing;

e generics;

» accesstypes and types with dynamic attributes;
e exceptions,

e tasking;

» distribution.

Each group of featuresis assessed separately. For each group of features assessed, this technical report includes one
evaluation table and one textual section providing constructive guidance to use of the designated features.

The table indicates how a given language feature performs with respect to each of the nine groups of verification
techniquesidentified in Table 2 (reproduced below for ease of reference). The rating ‘included’ is denoted by the
abbreviation ‘Inc’ (plain faced) in the relevant entry; the rating ‘allowed’ by the abbreviation ‘Alld’ (bold faced); and

the rating ‘excluded’ by the abbreviation ‘Exc’ (bold face@pme of the ratings, including all marked as allowed or
excluded, are accompanied by explanatory notes providing the rationale for the assessment. If it is necessary to make a
global statement about the feature then a note is attached to the feature itself. Where a feature has the rating ‘excluded’
against a number of verification techniques then we assume it will not be used in high integrity systems. The
assessments presented are thus simplified by not including all possible interactions with such features.

Approach Group Name Technigue
Control Flow
Flow Analysis FA) Data Flow
Information Flow
Symbolic Analysis$A) Symbolic Execution
Analysis Formal Code Verification
Range CheckingRC) Range Checking
Stack UsageSU) Stack Usage
Timing Analysis TA) Timing
Other Memory UsageQM U) Other Memory Usage
Object Code AnalysiSJCA) Object Code Analysis
Requirements-based TestirigT() | Equivalence Class
Boundary Value
Testing Statement Coverage
Structure-based Testing1) Branch Coverage
Modified Condition/Decision Coverage

Table 2 (copied for reference) : Verification Techniques

Predefined L anguage Environment
The technical report gives no explicit consideration to the predefined language environment. If components of the
environment are used in an high integrity application, then three situations arise:

1. The components are written in Ada. In this case, the Guidelines in section 6 apply.

2. The components are part of the run-time system. In this case, the Guidelines in section 7 apply.
3. If neither of the above applies, then no guidance is provided.
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6.1 Types with Static Attributes

The strong typing mechanism in Adais a significant contribution to software engineering. All values are associated with
the type that is appropriate to their domain, and the type definition covers precisely the set of applicable values. This
section is only concerned with types and subtypes that have static bounds and attributes, and that are statically allocated.
Moreover, this section ignores interactions with Representation Clauses, which are dealt with in Section 6.9.

Adad5 has added the notion of statically matching subtypesto Ada83. When a compiler determines statically that a
subtype does not match a required subtype, during parameter passing for example, it will report an error.

Therules for the derivation of types, explicit and implicit conversion between types, and mechanisms for the derivation,
extension and overriding of primitive subprograms are complete, consistent and beneficial to programming of high
integrity systems. Values associated with one type must be explicitly converted to other types. This forces designers to
be explicit about conversions and makes the conversions visible in the source code. In addition, conversions can occur
only between types that have acommon parentage, i.e. al numeric types, or types that have been derived from the same
parent type. The name-based typing and derivation support software engineering principles and prevent many classes of
errors.

Abstract types and subprograms provide significant capability to Ada at virtually no run-time cost. A tagged typethat is
declared abstract prevents objects of that type from being declared, although type derivation (or extension) is permitted,
and these new types may then have objects and actual primitive operations. When atagged type is extended, abstract
primitive operations ensure that the extender of the type provides real code for each primitive operation, and does not
accidentally use default or incompl ete operations. Abstract subprograms of non-tagged types allow the definer of the
type to make unavailable certain operations that would ordinarily be available for the type.

6.1.1 Evaluation

Group Name
Feature FA SA RC SU TA OMU | OCA RT ST
Anonymous Inc Inc Inc Inc Inc Inc Inc Inc Inc
Types
Subtypes' Inc Inc Inc Inc Inc Inc Inc Inc Inc
Enumerated Inc Inc Inc Inc Inc Inc Inc Inc Inc
Types
Character Inc Inc Inc Inc Inc Inc Inc Inc Inc
Boolean Inc Inc Inc Inc Inc Inc Inc Inc Inc
Integer Inc Inc Inc Inc Inc Inc Inc Inc Inc
Derived Inc | Alld® | Inc Inc Inc Inc Alld> | Inc | Inc
Arrays Inc Inc Inc Inc Inc Inc Inc Inc Inc
Records Inc Inc Inc Inc Inc Inc Inc Inc Inc
Discriminated Inc | Exc® | Inc Inc Inc Exc® | Alld® | Inc | Exc®
Records
Tagged Types Inc | Alld®| Inc | Inc | Inc Inc Alld> | Inc | Inc
without 'Class
Class Wide Exc' | Exc’ | Inc Inc | Alld* | Inc Alld* | Inc | Exc’
Operations
Abstract Types Inc Inc Inc Inc Inc Inc Inc Inc Inc
& Subprograms

Table 3: Typeswith Static Attributes

6.1.2 Notes

1. The use of 'Image for any subtype should be avoided. 'Image returns an unconstrained string which may require
unbounded memory techniques for implementation.

2. Derivation of a type causes an automatic overloading of all primitive subprograms of the type. This makes
functional coverage harder, but still tractable since the effects are limited to the unit that does the derivation, plus
units that depend on the origina unit.
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3. Discriminants on records can be used to create unconstrained objects, to make some components inaccessible in
some variants, and to define indefinite generic forma parameters and private types. This leads to significant
analysis complexity, potential execution-time exceptions, and can cause the use of dynamic memory techniques.

4, The analysis of class-wide cals involves dispatching and hence must consider every candidate object type and
analyse the associated subprogram. This can be a difficult undertaking because types declared in library-level
package specifications can be extended anywhere in the partition.

6.1.3 Guidance

Integer types should always be declared with explicit ranges, instead of deriving from one of the predefined integer
types.

Avoiding Run-Time Dispatching
User invoked dispatching only occursif 'Class is used. Prevention of dispatching can be enforced by the use of pragma
Restrictions(No_Dispatch).

The use of derived types or tagged types with 'Class requiresthat all operations on the types are checked to ensure that
the operations called according to the language rules are the ones the application design requires.

6.2 Declarations

A declaration associates a name with an entity and describes some characteristics of that entity. The Adalanguage uses
these characteristics powerfully both statically (at compile time) and dynamically (at run-time) to ensure that entities are
not used in inappropriate ways.

6.2.1 Evaluation

Group Name

Feature FA SA RC SU TA | OMU | OCA | RT ST
Named numbers | Inc Inc Inc Inc Inc Inc Inc Inc Inc
Constants Inc Inc Inc Inc Inc Inc Inc Inct | Inc
Variables Inc Inc Inc Inc Inc Inc Inc Inc Inc
Unconstrained Inc Inc Inc Inc Inc Inc Inc Inc Inc
Object 2

Initialisation * Inc Inc Inc Inc Inc Inc Inc Inc Inc

Aliased Object | Alld* | Alld* |[Inc |Inc | Inc | Inc Alld* | Inc | Inc
or Component
Simple Case

Aliased Object | Exc® | Exc® |Inc | Inc | Exc® | Inc Exc® |Inc | Inc
or Component

Complex Case

Declarative Part Alld® | Alld® [Inc |[Inc | Inc | Inc Inc Inc | Alld®
in Block
Statement

Table4 : Declarations

6.2.2 Notes
1. Boundary Value Testing is more problematic if a constant is assigned a non-static value on scope entry.

2. The use of discriminants in the creation of unconstrained objects buys high integrity systems more problems than the
advantages it may procure. The use of objects of a discriminated subtype may force the compiler to defer to run-time
important decisions on the management of the object (e.g. allocation, access). Those cases may prove difficult to
analyse. The entries in Table 4 have been assigned assuming that discriminaatsusee for the creation of

unconstrained objects.

3. The initialisation of variable objects in high integrity systems should always be static and explicit. The former
property ensures that the initialising expression can be verified at compile time. The latter ensures that the

initialisation is deliberate.

4. Simple definitions of aliased objects are ones that don’t change any properties of the object or component from those
defined by the initial type. Aliased objects can be accessed by generalised access types, and hence are subject to the
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same issues that affect pointers. Flow analysis and symbolic analysis may become intractable if views of the object
are exported beyond the module being analysed.

5. Complex definitions of aliased objects or components occur when properties of the object may be inconsistent with
non-aliased objects of the same type. The language rules in these cases are complex, making analysis unlikely.
Examples of this occur when the original type is indefinite, unconstrained, or modified by representation clauses.

6. Ada alows block statements to enclose a declarative part. Whereas the use of this feature is one of the language
means for encapsulation and hierarchical program structuring, it also presents some drawbacks to flow and symbolic
anaysis aswell asto structural coverage.

6.2.3 Guidance

Declarations should be used to encapsul ate the program design in as exact and static a manner as possible. For instance,
constraints should be as tight as possible and also static so that program properties can be statically verified.

Use of Named Numbers

Named numbers are beneficial in that they denote the value of a static expression which is evaluated, with full precision,
at compile time. This makes them the natural target of all numeric expressionsin the program eliminate the possibility
that Constraint_Error may be raised at run-time during the evaluation of the expression.

For the same reason, named numbers should be used at all times in the executable code in the place of numeric literals.

Initialisation of Variables
All variables should be given a meaningful value before use. Failure to do so may raise a predefined exception or cause
erroneous behaviour at run-time.

Initial values may be given by:

1. Associating an explicit initialisation expression with the variable at the point of its declaration.
2. Making an assignment to the variable that will be executed prior to referencesto it.

Controlled assignments to uninitialised variables can conveniently be made in a subprogram which is called prior to the
use of the variable.

For state variables in packages, assignments may also be made in the package elaboration part. A consistent approach to
theinitialisation of package state variables should be adopted.

In al cases, Data Flow Analysis should be used to confirm that every object has been assigned a value before it is used.
The effectiveness of the analysis is undermined if variables are initialised unnecessarily (sometimes called ‘junk
initialisation’). Compilers supporting Annex H provide information on the initialisation status of variables, see
[ARM:H.3.1(8)].

Use of Aliased Objects

The strong typing of Ada facilitates the achievement of type-safe access to variables through access values.
Furthermore, the accessibility rules of the language help in creating objects which are impervious to access by general
access types. Static tools can also be defined using e.g. Ada Semantic Interface Specification [ASIS] to complement the
power of the compiler in the determination of ‘unsafe’ use of aliased objects. The use of Ada aliased objects is therefore
generally safer than the use of pointer or reference objects in other languages.

6.3 Names, including Scope and Visibility

Entities are denoted by names controlled by the rules for scoping and visibility.

Name de-referencing in Ada is usually quite straightforward and determinable at compile time with a few notable
exceptions. Renamings can be used to introduce short names for use in a restricted scope. Object renaming declarations
can be used to provide a short name for a component of an object. Overloading of names can enhance the readability of
a program if applied judiciously.

Nesting of packages inside other packages provides information hiding and containment, but does not increase the scope

levels (i.e. cause the information to be nested at deeper levels on the program stack or task stack). There is a tension
between nesting and non-nesting of subprograms inside other subprograms or tasks. Many opportunities arise to simplify
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agorithms by placing some of the logic inside aloca function or procedure. On the other hand, high integrity software
processes usually enforce the isolated testing of all executable units.

6.3.1 Evaluation

Group Name

Feature FA SA RC SU| TA | OMU | OCA RT ST
Names Inc Inc Inc Inc | Inc Inc Inc Inc Inc
Static Inc Inc Inc Inc | Inc Inc Inc Inc Inc
renaming

Renaming — | Exc! | Exc' |Exct | Inc| Inc | Inc |Exct | Inc Inc
complex or

dynamic

evaluation

Overloading | Alld® | Alld® | Inc Inc| Inc | Inc | Alld® | Inc Inc
Nesting Inc Inc Inc Inc| Inc Inc Inc Inc Inc
package spec

Nesting Inc Inc | Alld® | Inc| Inc | Inc Inc Inc | Alld®
package body

subprogram

Table5: Names, including Scope and Visibility

6.3.2 Notes

1. The use of complex forms of renaming, i.e. those which require run-time evaluation of bounds or object
components; or those which extend component lifetime, is excluded because it hinders symbolic analysis, flow
analysis and range checking; and complicates object code analysis as it embeds run-time code that has no associated
visible source-code.

2. If multiple subprograms of the same name are used (whether overloaded, overridden or homographic), it should be
shown that the intended subprogram is in fact called.

3. The textual inclusion of packages or generics inside a package body, private part of a package, subprogram body,
task or protected type creates challenges for coverage-based testing. External tests that stimulate the enclosing unit
can rarely exercise all of the branches, conditions, or statements in the enclosed unit. Similarly range checking
becomes problematic.

6.3.3 Guidance

Names are always resolvable at compile-time, but may involve range checks. Two aspects involving names are
considered below.

Renaming

Renaming can improve readability but runs the risk of making aliasing hard to detect. Hence reviews, perhaps supported
by tools, are needed to ensure correct usage. Such reviews are greatly simplified if continued use of the original name of
a renamed entity is avoided.

The subtype indication in a renaming declaration should statically match the subtype of the renamed object. Similarly,
the profile of a subprogram renaming declaration should be subtype-conformant with the profile of the renamed
subprogram. A subprogram can be renamed in order to furnish new default parameter values. A renaming-as-body can
be used in cases where a subprogram can be implemented directly by calling some other subprogram.

Nesting

The textual inclusion of units inside package specifications and private part of library units provides information
containment without sacrificing accessibility of the module for testing. Nested units in the private part can be accessed
by child packages of the parent unit.

Packages should be library-level units, visible sub-units or child library packages. Where standards demand unit testing
of all subprograms it may be necessary to avoid the declaration of subprograms locally within other subprograms.
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Accessihility for unit testing can also be achieved, without the need to compromise program structure, by making local
subprograms subunits and placing their source in a separate file.

6.4 Expressions

An expression is aformula defining how avalueisto be calculated. The value of an expression is determined by
evaluation of the formula using the current values of the operands that appear in the formula. Operands are any of
names, literals, function calls, allocators, type conversion, qualified expressions, or aggregates.

Every expression has afixed type, and thisis the type of the value resulting from its evaluation. The type is determined
either from the types of the operands within the expression or from the context of the expression. In an imperative
language like Ada expressions are readily available to review and analysis. Thisfacility is supported by the strong
typing of expression results.

Static expressions are constant values that are completely determined at compile-time. They can be used to determine
the value of numeric constants, enumeration literals, string constants and bounds for ranges and arrays. Static
expressions have the following properties. they enhance reviewability; they move the checks on array bounds and ranges
from run-time to compile-time; and they eliminate run-time complexity in the calculation of such values.

Numeric type conversions are straightforward since the underlying numerical value is represented in the new type
according to prices, deterministic rules[ARM: 4.6 (29-33] unless Constriant_Error israised.

6.4.1 Evaluation

Group Name

Feature FA SA RC SU TA | OMU | OCA RT ST
Operatorswith | Inc Inc Inc Inc Inc Inc Inc Inc Inc
Composite
Operands"
Logical Inc Inc Inc Inc Inc Inc Inc Inc Inc?
Operators
Short-circuit Inc Inc Inc Inc Inc Inc Inc Inc Inc?
control forms
Relational Inc Inc Inc Inc Inc Inc Inc Inc Inc
operators
Membership Inc Inc Inc Inc Inc Inc Inc Inc Inc
Tests
Slices Inc | Alld® | Inc Inc | Alld® | Inc | Alld® | Inc Inc
Qualified Inc Inc Inc Inc Inc Inc Inc Inc Inc
Expressions
Aggregates’ Inc Inc Inc Inc Inc Inc Inc Inc Inc
Static Inc Inc Inc Inc Inc Inc Inc Inc Inc
Expressions.
Type Inc Inc Inc Inc Inc Inc Inc Inc Inc
Conversion
Numeric
Type Inc | Alld® | Inc Inc Inc | Inc | Alld® | Inc Inc
Conversion
Other
Indexing Inc Inc Inc Inc Inc Inc Inc Inc Inc

Table6: Expressions

6.4.2 Notes

1. If one or more of the operands is a composite object then the compiler may insert loops into the object code that are
not in the source code. Examples where this may occur are relational operations on arrays and logic operations on
boolean arrays. If the size of these objects is not static then the timing analysis must be based on the worst case
(which is probably, but not necessarily, when the objects have the largest possible size).
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2. When testing decisions with multiple conditions, the value of every condition will need to be considered. If the
short circuit forms are used then the values of some conditions will be insignificant in some test cases and need not
be considered in those test cases. Achieving full coverage of compound decisions is more difficult when the
conditions within the decision are not independent. If short circuit forms are used then the effect of dependencies
between conditions is reduced.

3. The bounds of the range that defines the slice must be of the type of the index of the array. Two or more slices of
the same array may overlap (so that components of the array appear in more than one dlice). This may make
understanding of the code more difficult, although the language definition ensures that the effects of overlapping
dlices are well defined. Slices will introduce loops into the object code that are not visible in the source and this
may make timing analysis more difficult. Slices of packed arrays will introduce further timing complexity. Slices
defined by ranges that are static subtypes will be ssimpler to analyse.

4. If an aggregate is to be assigned to an object and the aggregate references that object then the object code will be
more complex than it might otherwise be:

» Theenforced use of atemporary makes the code more obscure and compiler dependent.

» The compiler may require heap space for the temporary memory but heap management algorithms may
not be present.

» Datavalues are much more difficult to trace, as they are transferred through the hidden temporary.

Temporary objects may aso be introduced by any use of non-static aggregates. The above notes, therefore, apply.

5 Thereareawide variety of type conversions for which the underlying system must be shown to implement the
proper behaviour of the program. In particular conversions of composite and non-static objects generate additional
code that must be traced back to source code. Conversion of composite objects usually requires atemporary object,
heap storage, and unpredictable timing. View conversion (e.g. between tagged types, or applied to actual in out and
out parameters) requires dynamic checks as does conversion between generalised access types. Conversion between
access types with different storage poolsis potentially erroneous.

6.4.3 Guidance

For multi-termed expressionsit is advisable to constrain the compiler’ s actions by fully parenthesising the expression.
The programmer should have a clear view of the required order of evaluation of sub-expressions and should enforce this
view. Thisreduction in non-determinacy will significantly simplify verification and improve readability. For example,
proof of exception free evaluation is obviously easier if there is only one order of evaluation.

Aggregates should be used as actual parameters and function return values in preference to temporary variables for
individual components, and as the right-hand side of assignments to composite objects in preference to separate
assignments to individual components. This makes it easier to verify that all individual components have been set,
makes explicit any dependencies on the composite object assigned to, and makes maintenance more robust should the
type definition change. Aggregates used to initialise objects should be static wherever possible, to avoid the need to
build atemporary object (thisis a specific implementation permission). Named aggregates should be preferred over
positional except for large, heterogeneous, static arrays, and explicitly named choices should be preferred over 'others’
(viz'1..n=>..."). Theformer is more likely to require compiler-generated code to fill holes and the latter to require
dynamic storage.

When two types are not readily convertible, or fall into one of the cases noted below, the conversion should be coded
explicitly, with look-up tables, function calls or case statements:

* composite objects;

» tagged and indefinite types;

e inout or out parametersin a procedure call;
e access and generalised access types.

Complete test coverage may be difficult to achieve for expressions that create implicit loops in the object code (e.g.

aggregates, expressions with composite operands). For example it may not be possible to create operands for which a
loop is executed zero times, and this omission will need justification.
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6.5 Statements

Statements are the basic commands, both simple and compound, that make up the Ada programming language. This
section is concerned only with those statements that are not specific to a particular area of the language. For example,
the Accept statement is not considered as it relates only to Tasking (section 6.13).

6.5.1 Evaluation

Group Name

Feature FA SA RC SU TA | OMU | OCA RT ST
Null Inc Inc Inc Inc Inc Inc Inc Inc Inc
Assignment | Inc Inc Inc Inc | Inct Inc Inct | Inc Inc
Block Inc Inc Inc Inc Inc Inc Inc Inc Inc
Goto® Exc® | Exc® | Inc Inc | Exc® | Inc Inc Inc | Exc®
For loop Inc Inc Inc Inc Inc® Inc Inc Inc Inc
Whileloop | Inc Inc Inc Inc | Alld® | Inc | Alld* | Inc | Alld*
Simpleloop | Inc Inc Inc Inc Alld® | Inc Inc Inc Inc
with exit

Case Inc Inc Inc Inc Inc Inc Inc Inc Inc
If Inc Inc Inc Inc Inc Inc Inc Inc Inc

Table 7 : Statements

6.5.2 Notes

1. There may be an impact on timing analysis when assignment statements are between non-scalar values, e.g. when
assigning values to arrays. Thisimpact should be predictable, but must be considered when the analysis takes place.

2. The goto statement is exceptional because its use is contrary to al principles of structured programming. There are
no circumstances in which goto can be used where the use of some other construct is not preferable on grounds of
good practice, readability, and aesthetics. Given this, the use of goto within high integrity systems is amost not an
issue, and the reasons for not using it based on the applicability of the set of analysis techniques (although
compelling) are amost irrelevant.

3. Thetiming analysis of afor loop gives precise results if the range through which the iteration takes place is statically
determinable. The analysis is more difficult, and the results less useful, if the range is dependent on one or more
variables. Timing analysis is complicated significantly by the use of an exit statement within a for loop because the
exact behaviour of the loop is harder to predict.

4. When generating the object code for awhile loop, a compiler may generate more than one test for exit from the loop
i.e. asingle statement in source code may map to multiple pieces of object code. This makes Object Code Analysis
more difficult, and also makes it harder to ensure that al branches and statements have been fully exercised when
testing Structural Coverage.

5. Timing analysisis difficult for while loops, and any other loops where a condition is required to be satisfied before
exit. It is not usualy possible to determine accurately how many times the loop will be traversed before the exit
condition is satisfied. The use of annotations to capture maximum loop counts is recommended.

6.5.3 Guidance

The use of statements of the type described in this section is fundamental to any structured programming language; these
are the basic tools that build the underlying program structure. They allow the use of loops and conditional branching,
essential features of the vast magjority of meaningful programs. Because of their fundamental nature, the behaviour of
most of these constructs is well-defined. That does not, however, necessarily mean that it is always absolutely
predictable. For this reason, the ease of applying a specific analysis technique to atype of statement may depend on how
that statement is used.

Apart from goto, and to a small extent loops, there is no need to restrict the use of these basic statements (unless there
are difficult-to-resolve timing issues), and to do so would place a great burden on the programmer. Thereis aneed for
caution, however, and good programming style should be used at all times. loops, case, and if, in particular determine
the main structure of a program (or subprogram), and using these in an effective, well-structured, manner can make the
whole analysis and testing process much simpler to perform.
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Functional Correctnessis readily applicable to nested loops only if the following are true: an exit statement must only
transfer control to the level above, and the exit condition must be tested on each iteration.

6.6 Subprograms

Procedures are a basic unit of abstraction for statements and are an essential element of any imperative programming
language. Ada subprogram specifications alow the mode and subtype of each parameter to be specified, allowing both
compile-time type checks and run-time constraint checks on parametersin a call. Ada' s compilation environment
(library) requirements, and strong type checking eliminate most forms of incorrect invocation of a subprogram.

6.6.1 Evaluation

Group Name

Feature FA SA RC SU TA OMU | OCA RT ST
Procedures Inc Inc Inc Inc Inc Inc Inc Inc Inc
Functions Inc Inct Inc Inc Inc Inc Inc Inc Inc
Default Inc | Alld®> | Inc Inc Inc Inc Alld® | Inc Inc
Expression
Indefinite Inc Inc Inc Alld® | Alld® | Alld® | Inc Inc Inc
Formal
Parameters
Complex Inc Inc Inc Exc® | Exc® | Exc Inc Inc Inc
return types
Inline Inc Inc Inc Inc Inc Inc Alld® | Inc | Alld®
expansion
Returnin Alld® | Alld® | Inc Inc Inc Inc Alld® | Inc Inc
procedures
Parameter Exc’ | Exc’ | Inc Inc Inc Inc Inc Inc | Alld’
diasing
Access Exc® | Exc® | Inc Exc® | Inc Exc® Inc Inc Inc
Parameters

Table 8 : Subprograms

6.6.2 Notes

1.
2.

If functions have side effects, order of evaluation can become a significant issue, making formal analysis difficult.
The use of default expressions for some parameters is a convenience, but comes at a cost. |mplementations may
differ in how they support default parameters, making time and space analysis more difficult. The traceability of
source code to object code is more difficult and variation between implementations is more marked if the default
expression is not static. If default expressions are allowed, then the above issues could be addressed by a tool or
code reviews.
Procedures and functions can have parameters of indefinite types. This may lead to a requirement for dynamic
storage.
The following types should not be used in function returns because they require dynamic storage techniques:

* Indefinite types — types with unconstrained or unknown discriminants or class-wide types.

« Unconstrained types —such as string, and

« Tagged types — since the returned type and actual type can differ.
Inline expansion of a subprogram call can be used to eliminate parameter passing overhead and may reduce the
execution time of a program. Code size, however, can be increased, and the tracing of object code to source code
can be more difficult.
Return statements can make the natural flow of control more apparent but returns from deeply nested structures can
be obscure and cause difficulties for flow analysis, object code analysis etc. Only allowing returns at the outermost
scope is an effective restriction.
When parameters are aliased (to non-locals or other parameters) then program proof based upon substitution will be
incorrect. Similarly, informal reasoning can easily be in error. Hence if Formal Code Verification or Symbolic
Execution is being used as an analysis technique, the absence of aliasing is required. The absence of aliasing should
be determined by the use of tools and code reviews.
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8. Aliasing occurs when two distinct Adaidentifiers actually refer to the same object. This can be between parameters
or between parameters and non-locals. Aliasing will cause Flow Analysis and Symbolic Analysis to malfunction.
Similar problems arise with access types when two such values point to the same entity.

9. The lack of accessibility checks on access parameters (i.e., parameters that explicitly use the keyword access)
makes it very difficult to undertake the analysis of memory usage.

6.6.3 Guidance

The following restrictions on parameters are advised to eliminate the problems caused by indefinite formal parameters.
no concatenation of one-dimensional arrays and no unconstrained records. Subtype conversions in subprogram calls
must also be used with caution.

Static analysis must be used to ensure parameters with out mode are assigned avalue in all execution paths, and return
statements are always encountered in functions. Side effects from parameter eval uation should always be avoided.
Similarly, it isusualy advisable to prevent functions from having side effects (although there are some circumstancesin
which side effects are unavoidable, but these must be verified separately). The use of non-local variables should always
be documented.

Recursion, and mutual recursion, is usually prohibited for flow analysis, stack analysis and timing analysis. Direct
recursion is easy to detect. Mutual recursion is harder to detect in general; however, if Pragma Elaborate_Body is
applied to al library units, and tagged types and generic units are not used, then mutual recursion can occur only
between subprogramsin asingle library unit. Thisis more readily analysed. Pragma Restriction (No_Recursion) does
not prevent recursion from occurring, and if recursion does occur the execution is erroneous. |mplementations might
check for violations of the restriction, and may generate somewhat simpler code.

Overloading can make the program reader’ s job more difficult. The advice of the Ada Quality and Style guide seems
reasonable: use overloading judiciously, for widely used subprograms that perform similar actions on arguments of
different types, and preserve the conventional meaning of overloaded operators.

6.7 Packages (child, and libraries)

Packages are Ada s basic unit of modularity. Therefore packages are fundamental to the creation of any Ada program.
Packages allow the partitioning of a program into parts that interact using well-defined interfaces. This can facilitate the
analysis of aprogram by limiting the interactions between its parts.

High integrity programs can sometimes be structured so that the code that deals directly with some critical aspect of the
system can be encapsulated in a package body. Thisisideal, as Ada s language rules then guarantee that this codeis
called only using the interface defined in the package specification. Furthermore, any local data used in thiscritical code
is protected from tampering.

Packages define three different levels of isolation. Entities declared in the public part of a package specification are
visible wherever the package itself isvisible. Entities declared in the private part are visible to the package body, and
aso within any child packages (if the package isalibrary unit). Finaly, entities declared in the body are visible only
within the body. These levels of isolation permit designers and implementers to implement stand-alone service
packages, subsystems of cooperating packages, or packages that export all significant items. Subsystems can therefore
be built with exactly the proper amount of visibility and security for the systems being designed. I ssues to do with nested
packages are considered in Section 6.3.

Child library packages provide a powerful mechanism for building subsystems. Because it is closely related to subunits
thereislittle compiler impact, but the most effective ways of using this capability are still under consideration.

6.7.1 Evaluation

Group Name
Feature FA SA RC ST ™ OMU | OCA RT ST
Specifications Inc Inc Inc Inc Inc Inc Inc Inc Inc
Bodies Inc Inc Inc Inc Inc Inc Inc Inc Inc
Initialisation * Inc Inc Inc Inc Inc Inc Inc Inc Inc
With Clause Inc Inc Inc Inc Inc Inc Inc Inc Inc
Private”® Inc Inc Inc Inc Inc Inc Inc Inc Inc®
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Use Clause Inc Inc Inc Inc Inc Inc Alld* Inc Inc
Use Type* Inc Inc Inc Inc Inc Inc Alld* Inc Inc
Child Private Inc Inc Inc Inc Inc Inc Inc Inc Inc
Child Public Inc Inc® Inc Inc Inc Inc Inc Inc Inc
Separate Inc Inc Inc Inc Inc Inc Inc Inc Inc
Elaborate Body Inc Inc Inc Inc Inc Inc Inc Inc Inc

Table 9 : Packages (child, and libraries)

6.7.2 Notes

1. Ratings apply when elaboration order dependencies have been avoided by restricting access to remote objects and
subprograms during package elaboration. The following restrictions are required:

a Package initialisation code should never update objects in remote packages.

b. Initidlisation code in package bodies should not directly or indirectly reference subprograms or
objects other than static constraints declared outside the package.

C. Expressions initialising objects declared in a package specification may reference objects and

subprograms from remote packages provided all such remote packages, whether the reference is direct
or indirect, are pure, pre-elaborated or contain a pragma Elaborate_Bodly.

2. Operations and objects defined in private parts cannot be explicitly verified from units having visibility only to the
specification.

3. Derivations of private types and public types with private primitive operations create problems for flow anaysis,
symbolic analysis, and human understanding. Derivations or extensions of such types alows one to create
subprograms with exactlly the same signature as the private operations. Which call was executed would depend
upon scope visibility. The ratings here assume that these capabilities have been excluded.

4. The use clause brings excessive overloading and possibly hiding of names. Human understanding and code review
are made difficult. Use type clauses only bring into view the operations and literals of the type named in the clause.
This provides a constrained view of the operations on atype.

5. Theratings assume that child library units do not with units that with any parent units. Child library units can create
dependences on units that are dependent on the parent. Multiple views of atype and its primitive operations may be
created. Ada language rules are designed to make only one path legal, but there may be confusion on the part of
human designers and programmers.

6.7.3 Guidance

Any complex initialisations can be done by procedures or assignments instead of during elaboration. The use of such
initialising procedures for library-level packages may be preferred, aslong asthey are called only after the main
subprogram has commenced, since elaboration of the package body variables and subprograms have al occurred, but it
must still be shown that the call to the initialisation subprogram occurs before any use of the package - a non-trivial
exercise, especialy if any concurrency existsin the program.

The type defined private in Ada has at least two views - the public partial view and the complete private view. Language
rules permit some differences between these definitions, such as adding or removing discriminants, adding limited,
tagged, or aiased in the full view, and placing primitive subprogramsin the private part. It is recommended that
derivations from atype that has a partial view only occur where the full view (and hence al primitive subprograms) is
visible, i.e. inthe private part, in the private part of child packages, in private child packages and in package bodies.

Use Clauses

Most large software devel opment projects and high integrity software development projects place significant
restrictions on use clauses. The use type clause and the renames clause provide alternatives that make primitive
operations avail able without the wholesale import of another package' s name space.

Child packages

Child packages permit the aggregation of packages into hierarchies of packages, and allow a subsystem to be extended
without forcing the basic definition of the system (in the parent unit) to be modified or recompiled. Tools that analyse
coverage must take into consideration all of the ways that child packages can be included in a program.

Child packages should not with units that may with the parent, and should not derive or extend types that have been
declared in the private type of a parent unit.
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6.8 Arithmetic Types

The ability in Ada, in contrast to most other languages, to define types and subtypes with static bounds substantially aids
the review, analysis and verification process. For instance, simple tools can often affirm that uses of integer variables
cannot raise an exception, say in an array indexing operation.

6.8.1 Evaluation

Group Name
Feature FA SA RC SU TA OMU | OCA RT ST
Integer types Inc Inc Inc Inc Inc Inc Inc Inc Inc
Modular types | Inc Alld* Alld® |Inc |Inc Inc Inc Inc Inc
Float types Inc Alld? Alld® |Inc | Alld* |Inc Inc® Alld? Inc
Fixed types Inc Alld®? | Alld®*" | Inc | Alld® | Inc Alld®® | Alld"? | Inc
Dec/fixed types | Inc Alld® Inc Inc | Alld® | Inc Alld® | Alld® Inc

Table 10: Arithmetic Types

6.8.2 Notes

1

10.

The predefined operations on modular integer types are not those of classical mathematics (for instance, operations
are non-associative for modular types when the modulus is not a power of 2). In consequence, care is needed to
ensure that the operations perform the intended function. The same reservations apply to the use of the modulus
attribute. Since the predefined operations in modular types do not raise Constraint_Error, one must ensure that the
semantic effect is as specified in the application.

Due to the potential machine-dependence of the rounding of real operations, the computation of boundary value test
cases can be awkward (see Equivalence Class Testing). Similarly, the rounding presents problems with Symbolic
Analysis.

If the program is required to be exception-free, then an analysis is required of the range of values that variables can
have to demonstrate that each numeric operation will indeed be exception-free. This work is typically labour-
intensive and is often more difficult with fixed point since the range of values is more restricted.

The timing of floating point operations are typicaly data-dependent. Hence computing the worst-case execution
time can be awkward if an analysis of the datais required.

Floating point requires complex (hardware/software) support. Such complexity may require specific verification
measures.

Many fixed point operations reguire run-time support from the compiler (for instance re-scaling). This support is
context dependent and can be quite complex. The effort in showing the compiler does handle every operation
correctly is significant and has led some devel opments to use floating point instead. Errors have been observed in
validated compilersin this area, but special tests are available to check implementations.

The rounding of some fixed point operations is not defined in the language and the implementation need not
provide any information on the actual rounding performed. This implies that the rounding could be context-
dependent or even change with anew release of the compiler.

Support for decimal fixed point is typically only provided by compilers supporting the Information Systems Annex
[ARM: Annex F]. The predefined operations on decimal fixed point types that do not give an exact result are
defined to truncate. In consequence, it may be easier to verify programs which uses decimal fixed point types than
those which use ordinary fixed point types. In other respects, the verification issues are the same as for ordinary
fixed point types.

Fixed point operations require compiler support for which timing and object code analysis is more complex.

Type conversion between fixed point types whose delta is not a power of 2 may introduce additional rounding
errors. Hence such types should be avoided. Placing a representation attribute clause for Small to match the deltais
recommended for all fixed point types.

6.8.3 Guidance
Asnoted in 6.2.3, named numbers should be used when the application permits compile-time evaluation.
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Continuously varying quantities should be modelled by means of Adareal types. It is not usually appropriate to use
integer types since thereis no simple way of multiplying integer values and re-scaling the result. Hence an important
design decision isto use either ordinary fixed point types or floating point types (or less likely, both).

The inherent problem with real typesisthat rounding is performed which introduces a degree of implementation defined
behaviour into the program which does not occur with integer types.

Analysis of real expressions requires analysis of the ranges within which the result of an expression is guaranteed to lie.
A floating point expression has avalue in arange which has a size relative to the value of the expression and a fixed
point expression has a value in arange which has an absolute size.

When using real arithmetic:

Be aware of whether the implementation supports the Numerics Annex [ARM:Annex G] as the accuracy
of rea arithmetic is guaranteed only for implementations that support this annex.

For maximum portability of code, only use implementations that support, and ensure that the strict mode
isused.

For implementations that support the Numerics Annex, the accuracy of the predefined operatorsis defined
in terms of model numbers of the relevant type. Although the set of model numbers is implementation
defined, it is straightforward for a user to define a set of model numbers that will be provided by all
implementations of interest (provided only they have a common radix for number representation). By
analysing the accuracy of rea arithmetic in terms of this set of model numbers all implementations are
guaranteed to provide the analysed accuracy or better.

If future implementations are unknown then the characteristics assumed by the accuracy anaysis should
be recorded and it is then easy to determine whether a new implementation conforms (and so whether the
previous analysis still applies or needs to be repeated).

Currently, most of the major processor chips directly support floating point. The older chips do not, and
neither do some specialised chips. Hence in some cases, the use of floating point is not viable due to the
lack of hardware support and because software support istoo slow. If the systems design would allow for
either floating point or fixed point, then the choice is critical since it influences the coding, the testing and
the qualification of the compiler. If it is decided not to use floating point, then the Pragma Restrictions
(No_Floating_Point) can be used to enforce no explicit use. However, the compiler may still make implicit
use of floating point (say, for complex numeric conversions), which may require compiler options to
remove.

Not specifically listed in the above table is the use of attributes. There are numerous numeric attributes which can
conveniently be divided into two classes:

Those whose use provides no specia problems:;

Adjacent, Aft, Ceiling,
Compose, Copy_Sign, Delta,
Denorm, Digits, Exponent,
Floor, Fore, Fraction,
Leading_Part, Round, Rounding,
Scale, Small, Truncation,

Unbiased_Rounding.

¢ Those which are low-level and must be used with care to ensure portability:

Machine, Machine_Emax, Machine_Emin,
Machine_Mantissa, Machine_Overflows, Machine_Radix,
Machine_Rounds, Model, Model_Emin,
Model_Epsilon, Model_Mantissa, Model_Small,
Remainder, Safe_First, Safe_Last,
Scaling, Signed_Zeros.

Specific problems noted in the table imply that modular types are rarely an appropriate choice instead of integer types.
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6.9 Low Level and Interfacing
Low level constructs and interfacing exist to allow an Ada program to interact with:

» elements of the machine, e.g. memory addresses;

» other hardware elements of the system, e.g. tape and screen devices,
» other software elements of the system, e.g. databases, GUI; and

» other languages, e.g. C, Fortran, Machine Code.

Adaisvery useful in providing a mechanism for interchanging information between different languages. It isalso useful
in allowing these mechanismsto be performed in avery constrained way. Many of the interactions that cause difficulties
occur between standard Adafacilities and the features discussed here. Nevertheless the feature, or combination of
features, can often be used successfully if the encapsulation guidelines are followed, and if multiple combinations of
low-level features are not applied simultaneously.

All of the low level features described in the following table must be encapsulated in program units that clearly isolate
their behaviour from the rest of the program. The ability of Adato support this encapsulation and isolation is a key
advantage obtained from the use of Ada.

The use of low level constructs and interfacing can be seen to be a mechanism for dealing with elements outside of the
Ada system under consideration.

6.9.1 Evaluation

Group Name
Feature FA SA RC SU TA OMU OCA RT ST
Representation | Inc Alld* | Inc Alld* | Alld®> | Inc Alld? Alld> | Alld?
Clause
Representation | Alld® | Alld® | Alld® | Alld® | Alld® | Alld® | Alld® Alld® | Alld®
Attributes
Package Alld* | Alld* | Ald* | Alld* | Alld* | Alld* | Alld* Alld* | Alld*
System
Machine Code | Alld® | Alld®> | Alld®> | Alld® | Alld® | Alld® | Inc Alld® | Alld®
Insertion
Unchecked Alld” | Alld® | Alld® Inc Inc Inc Inc Alld® Inc
Conversion
Unchecked Exc® Exc® Exc® Exc® Alld® Exc® Alld® Exc® Exc®
Access
Streams Exc® Exc® Exc® Exc® Exc® Exc® Exc® Exc® Exc®
Interfacing Alld® | Alld® | Alld® | Inc Alld® | Alld® | Al | Ald® | Alld®
Pragmas
Address Inc Inc Inc Inc Inc Alld® | Allg* Inc Inc
Clause *2

Table11: Low level and interfacing

6.9.2 Notes

1. Representation clauses can have interactions with other features that make their semantics, storage use, or timing
properties difficult to predict.

2. Representation clauses may lead to object code for initialisation or unpacking. Also, such clauses can require that
the compiler emits very different machine code than is usually the case, leading to difficulties in tracing from source
to object code and arisk of incorrect object code.

3. Theseratings are for representation attributes in expressions (and not their use in representation clauses); they are
then, typically, implementati on-dependent compile-time constants.

4. Package system, including its children, is compiler-dependent. The facilities it provides should be evaluated by
comparison with equivalent features described elsewhere in Section 6. For example, constants exported by package
system are included (see Section 6.2.1).
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5. Machine codeis not constrained in its effect and must, therefore, be used with extreme care and encapsulated in the
smallest unit possible.

6. .No congtraint check is performed on the assignment of a result from an unchecked conversion. However, it is
possible to use ‘Valid for scalar results to ensure the value is a valid member of the appropriate subtype. In the case
of conversion to a non-scalar type, extreme care is needed to ensure that a valid result is produced, perhaps by
examination of the machine code produced (since ‘Valid cannot be applied)

7. Unchecked conversion of structured types will result in loss of some flow anaysis information. It will not be
possible to deduce the flow of information from components in the first view to particular components of the
converted view.

8. Unchecked access value creation, and subsequent use of the access value, can lead to dangling references or
corruption of data.

9. Streams require class wide types and access parameters, and are therefore difficult to analyse.

10. The effect of an imported subprogram needs to be documented in such away that its callers can be analysed.

11. There may be object code generated to account for differencesin calling convention.

12. Address clauses should not be used to introduce aliasing by overlapping or superimposing variables in memory.

13. Analysis of memory use must consider the impact of the location of objects at specific addresses.

14. Object Code Analysis must ensure that the specified address of a variable is directly generated for all accesses of
that variable and that the variable has not been optimised to aregister, for example. Use of pragma volatile may be

appropriate.

6.9.3 Guidance

If the system has a defined integrity level and the Ada code in the system is required to interact with some other element,
then assurances should be obtained that the other element has the same integrity as the Ada code itself. Thistechnical
report considers COT S software to be another element that ranges from complete software packages to code segments
that have not explicitly been created for the current system. The latter end of this range could be considered as re-use.

If ‘allowed’ low-level features are used, it is recommended that their use be encapsulated within a small package body or
subprogram. This reduces the possibility of an interaction with some other feature used in a different part of a program,
and can facilitate analysis.

Representation clauses on enumeration types should be avoided, except when confined to a unit body to interface to
foreign systems. A type with a representation clause should not be used as a source of a type derivation, nor should it be
used as a loop parameter, case expression, array indesugtaor'Pred clause, or in a type conversion.

If a record definition is subject to representation clauses, such as packing, alignment, layout or ordering clauses, then the
declaration should be restricted to a compilation unit body. Care is required to ensure that there is not a conflict between
representations applied to the record, components of the record, and objects of the record (examp@éack and

'Aliased may be mutually incompatible). Assignment to or from such a record should be component-by-component to
avoid timing issues and unanalysed object code.

Representation Clauses

Such clauses in general change the machine-code emitted by the compiler. They should be used solely to enable such
changes and not to ‘confirm’ an existing representation. An enumeration representation clause with non-contiguous
values will cause the code for many operations on the enumerated type to be obscure and hard to relate to the source
text; hence such operations should be avoided. Similarly, record representation clauses can make operations such as
assignment, equality and conversion non-trivial and hence every operation should be used sparingly and in a localised
fashion.

6.10 Generics

Generics provide a powerful mechanism for constructing large-scale programs through the parameterisation of program
units (packages and subprograms) with types, objects and subprograms. Abstract algorithms and data types can thereby
be constructed in terms of parametric types and operations, specifying only as much as necessary. A generic instantiated
with different sets of parameters yields different program units that share the same algorithmic structure.

Generic units can be used to:

» define abstract data types;
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» parameterise a procedure by another procedure (e.g. aloop iterator);
* replicate aunit.

Generics can appear at library level or nested within other units. Generic units can be children or parameters to other
generics, enabling the construction of whole parametric software subsystems.

Use of generics enhances program reliability in several ways. It facilitates reuse, eases maintenance, reduces source code
size and helps avoid human replication error. In principle, it also assists with static analysis and testing; if ageneric
agorithm is verified once, al instances of the generic can be considered automatically verified. In practise, the
complexity of the instantiation process mitigates against thisideal.

Analysability of a generic feature depends not only on the semantics and behaviour of the feature, but also on how it is
compiled: whether by macro-expansion or code-sharing. In general shared code is highly parametric, because small
changesto actual parameters make dramatic differencesto efficiency (e.g. composite vs. elementary types). Code
coverage is difficult to achieve, because there are rarely sufficient instances to test al options. The complexity of
mapping from the generic unit directly to object code impedes verification as well as robustness and reliability. In
practice amajority of compilers adopt macro-expansion, or a hybrid where only simple cases share code. Itis
recommended that generics compiled by code-sharing are excluded for high integrity systems.

Analysis of ageneric feature might be undertaken on the generic unit, or on itsinstances. The former offersthe

possibility of ‘once-and-for-all’ verification: if the generic is shown to have some property, then that property is

inherited by all of its instances. In principle it is possible to perform some analyses, notably Symbolic and Flow
Analysis, on a generic unit alone, although tool support is presently weak. This is a corollary of Ada's contract model,
which states that the formal specification contains sufficient information to determine the legality of the generic body,
whatever actual parameters are supplied. Verification conditions at the point of instantiation must also be satisfied. This
might involve work, or the imposition of restrictions, e.g. to enforce range constraints on formal parameters.

Alternatively, the analyses can be performed on the individual instances. Other techniques (Object Code Analysis,
testing) must be applied this way. Success criteria might be specified individually for each instance, on the generic itself
and derived (‘instantiated’) for the instances, or both (provided consistency is maintained). Annotations and test points
needed to express the criteria can be attached to the source code, a compiler intermediate form such as ASIS (where one
exists), or onto the object code via a debugger. This last is highly effective for dynamic testing and has been used with
success in high integrity systems. It is presently unclear what static analysis annotations might apply to generics or
instances, or how to attach them; this presents a challenge to tool builders. However there is no reason to believe that
static analysis techniques cannot evolve to incorporate generics in some form.

Analysis of instances offers more immediate potential than analysis of whole generic units. Although it has to be

repeated for each individual instance, the tool requirements are much lighter and the complex step of verifying the
instantiation is avoided.
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6.10.1 Evaluation
The table below assumes a macro-expansion implementation, with analysis tools acting on an intermediate expanded

form.

Group Name
Feature FA SA RC SU TA oMU OCA RT ST
Generic units Alld* | Alld* | Inc Inc Inc Inc Alld> | Inc Inc
(packages &
subprograms)
Formal Alld® | Alld® | Alld* | Inc Inc Inc Alld> | Inc Inc
subprograms
in objects Inc Inc Inc Alld® Inc Inc Alld? Inc Inc
in out objects Alld® | Alld® | Exc® | Inc Inc Inc Alld® | Inc Inc
type parameters’ Inc Inc Inc Inc Inc Inc Alld’ Inc Inc
Default parameters | Inc Inc Inc Inc Inc Inc Alld® Inc Inc
Formal packages Alld® | Alld® | Ald® | Alld® | Alld® | Alld® | Alld® | Alld® | Alld®
Generic children Alld® | Alld® | Ald® [ Alld® [ Alld® [ Alld® | Alld® [ Alld® | Alld®
non-library and Exc® | Inc Inc Inc Inc Inc Alld> | Inc Exc"
nested generic units
non-library and Inc Inc Inc Inc Inc Inc Inc Exc" | Exc®
nested instances

Table 12: Generics

6.10.2 Notes

1

2.

Tool support is not available at the present time. There are potential name capture problems when an actual

parameter shares a name with alocal of the generic unit.

The mapping between source and object code is complex for generics. In particular, implicit operations to perform
assignment, equality, constraint checking, etc., are not obvious in the source code and obstruct understanding. This

comment applies to object-code analysis of all aspects of generics.

Subtype constraints on generic formal in out objects and on parameters to generic formal subprograms are
disregarded. This means that constraint exceptions cannot be predicted looking at the generic alone. When anin out

formal object is aliased at instantiation by providing an actual that also corresponds to another formal object, then

program proof based upon substitution may be incorrect. Similarly, informal reasoning may bein error.

Subtype constraints on parameters to formal subprograms are disregarded: those pertaining to the actual are applied

at run-time. To simplify the semantics, formal subprograms should statically match the actual .

An instance of a generic in object declares a new object, initialised by the actua value, in the unit containing the
instantiation, and the stack grows there. This may cause a problem, particularly at library level, where no such unit

isreadily identifiable.

An instance of a generic in out object is an alias of the actual object, with constraints those of the actual, not the

formal. The alias complicates the code mapping.

‘type parameters’ covers all kinds of type: private, limited private, scalar, derived, tagged, array and access. None
are excluded, but in general the more closely-defined the type, the harder it is to relate source and object code,
because more primitive operations occur. If the formal is a derived type, re-export of new derivations from the
generic causes confusion between primitive operations.

When binding defaulted formal parameters, different visibility rules apply if the<boxersion is used. The
mechanism is prone to human error.

Formal packages and generic children provide a very powerful mechanism for encapsulating software components
and subsystems for reuse, thereby increasing the reliability and maintainability of software. They are high level
features: all semantic issues are resolved at instantiation and there is no impact on code generation. Therefore it
seems unlikely that they will impede analyses at the instance level. However there is presently little field experience
in their use and compilers have not been exercised in this area. Therefore they cannot be recommended for high
integrity Ada at the present time.

10. Flowgraphs cannot be assembled for nested units.
11. Non-library generics or instances cannot be breakpointed on a per-instance basis.
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6.10.3 Guidance

Generics offer great potential for improving program reliability and maintainability. Against this, engineering
experience and support in the high integrity field is limited. Therefore, generics should only be allowed where compilers
are considered reliable, users have experience, and there exist support tools appropriate to the application.

It is recommended that only macro-expanding compilers be used, and that analysisis performed on each instancein
preference to analysis of the generic unit.

There are severa issues with generics that obstruct analysis, comprehension, verification or maintenance. These should
be excluded from high integrity systems:

» Exclusionsto enable analysis:
« generics compiled by code-sharing,
¢ generics and instances not declared at library-level,
¢ nested generics,
e formal in out objects.

» Exclusionsfor reasons of human comprehension and ease of maintenance:
« formal tagged and derived types, or formal types with unknown discriminants,
« default parameters to generic units,
« subprogram parameters with constraints that do not statically match the actual.

In addition features which involve other excluded areas of the language, such as dynamic types, should not be available
to the user.

6.11 Access Types and Types with Dynamic Attributes

Access Types provide pointers to objects whose memory is allocated from memory regions which are predictable
(global and stack) or from regions which are hard to predict (heap). Asthese pointers are typed, they provide an
additional level of security over direct object addresses. They can, however, establish aliases which complicate analysis
concerned with the use of the data referenced.

Heap management raises problems with consumption of time and memory. A storage pool may be logically equivalent
to astack of the objects through usage conventions and implementation. The allocation and deallocation in such pools
can be made predictable.

Types whose size depends on run-time values make the bounds of memory use difficult to predict. Indefinite subtypes
do not have enough information from the type itself to create objects. Unconstrained record objects cause problems
with analysis and resource use as they may change shape during program execution.

Unboundedness in storage is incompatible with high integrity systems since the occurrence of Storage_Error is
unacceptable. Thisimplies that types with dynamic attributes are either excluded or should be used with extreme care.

The requirement for staticness has excludes variant records (which require discriminants, see Section 6.1) and run-time
dispatching.
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6.11.1 Evaluation

Group Name

Feature FA SA RC SU TA | OMU | OCA RT ST
Unconstrained Inc Inc Inc Inc Inc Inc Inc Inc Inc
array types —
including string$
Full access types | Ex¢® | Exc® | Inc Exc®> | Exc® | Exc® | Inc Inc Inc
Restricted storage| Alld* | Exc’ Inc Inc Inc Inc Inc Inc Inc
pools
General access | Alld* | Alld* | Inc Inc Inc Inc Inc Inc Inc
types
Access to Exc’ Exc’ Inc Inc Alld® | Inc Alld® | Inc Inc
subprogram
Controlled types | Exc® | Exc® | Inc Inc Inc Inc | Alld® | Inc Exc®
including
unrestricted
storage pools
Indefinite objects | Alld” | Alld” | Alld” | Exc’” | Exc’” | Exc’ | Exc” | Inc Exc’
Non-static array | Inc Alld® | Alld® | Alld® | Alld® | Alld® | Inc Alld® | Inc
objects
Table13: Typeswith Dynamic Attributes
6.11.2 Notes
1. Note that the concatenate function returns a type of an unconstrained array. Refer to Section 6.6 for more

information.

2. Full access types employ the run-time system to allocate from the heap and other memory areas, making memory
use unpredictable, timing analysis problematic, heap exhaustion and fragmentation a significant risk. It can also
create unbounded aliasing problems.

3. Pool-specific access types use memory similarly to stack-based data types. However, they require careful
implementation and use to ensure the algorithms are predictable.

4. Pools and general access types permit aliasing of data. See restrictions in Section 6.2.

5 Access to subprogram types disrupt control flow, and makes it difficult to export analysis results of subprograms
into calling subprograms. This exclusion can be enforced bprtwema Restrictions(No_Access_Subprograms).

When used with static locations and linker tools, they can be used as a means of system reconfiguration.

6 Controlled types introduce hidden control flows due to user-defined initialisation, assignment and, especially,
finalisation. These are hard to review, analyse or test, particularly in error conditions.

7 Indefinite objects consume time and memory in ways which are difficult, if not impossible, to predict. Their
dependence on run-time values complicates analysis. Consequently, these objects should not be used in high
integrity systems.

8 Arrays with bounds which are not static complicate analysis of resources used. Time and memory used depends on
dynamic bounds. Analysis of data access based on array indexing is further complicated if the bounds are unknown
until run-time.

6.11.3 Guidance

As noted in the introduction to this section, the use of dynamic mechanisms is to be minimised in high integrity systems.
Appropriate enforcements can be provided by the upeagina Restrictions (No_Implicit_Heap_Allocation), pragma
Restrictions(No_Allocators), pragma Restrictions (No_Access_Subprograms).

Although the evaluation table has ‘Inc’ against nearly all the testing based verification techniques, it should be noted that
the effectiveness of these techniques may well be reduced. For example, a problem arising from the inappropriate use of
aliasing may well be difficult to find during Requirements-based Testing and Structure-based Testing. It is also true that
code inspection techniques will be made more complex (and hence error prone) by the use of these dynamic features.
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6.12 Exceptions

Ada has well-defined semantics even under error conditions. The language allows the user to detect error conditions
and to specify the required behaviour under such conditions at run-time.

Predefined exceptions concern error conditions detected by the run-time environment. The implicit raising of predefined
exceptions poses some problems where high integrity software is concerned because the location in the program and the
exact time at which exceptions are actually raised cannot be easily predicted.

A predefined exception is raised automatically when an associated constraint is violated. In contrast, user exceptions
provide the means to specify error conditions whose occurrences must be explicitly detected.

The exception mechanism leads the designer to an intellectual dilemma:
» itsuse makesthe verification more difficult, so the use of exceptions should perhaps be prohibited;
* itsuse alows residua errors to be detected and handled, so the exception features are potentialy a key
part of alanguage for high integrity applications [NRC][13].
Solutions to this conflict will be proposed in the section 6.12.3.
If the use of exceptionsis prohibited this does not in itself prevent predefined exceptions for being raised. The use of the
pragma Restrictions(No_Exceptions) is recommended, but the program will become erroneous if arun-time

exception does occur.

The evauation table below has been produced with the assumption that exceptions are to be used.

6.12.1 Evaluation

Group Name
Feature FA SA RC SU TA OMU | OCA RT ST
Predefined Alld®> | Alld® | Inc Inc Inc Inc Alld® | Inc | Alld*
exceptions'
Declaration Inc Inc Inc Inc Inc Inc Inc Inc Inc
(user)
Raising (user) | Alld®> | Alld®> | Inc Inc Inc Inc Inc Inc | Alld®
Handler Alld® | Alld® | Inc Inc” | Inc® Inc Inc Inc | Alld®
(predefined)
Handler (user) | Alld® | Alld® | Inc Inc Inc Inc Alld® | Inc | Inc
Propagation | Exc® | Exc | Inc Inc Alld® | Inc Alld® | Inc | Alld®

Table 14 : Exception

6.12.2 Notes

1. Predefined exceptions should not be raised explicitly, because such a raising cannot be distinguished from
implicitly raised exceptions.

2. Symbolic Analysis and Flow Analysis are problematic, as the locations at which predefined exceptions are raised
are not generally known.

3. Object Code Analysisis difficult because detection is either explicit or implicit via a hardware mechanism.

4. It is difficult to find a test sequence that will bring about the error conditions necessary to raise the predefined
exception.

5. In generd, it is difficult to define the execution sequence that will cause the precondition of the exception to
become true.

6. The state immediately prior to the execution of the handler cannot be established making Symbolic Analysis
intractable. Similarly, Flow Analysisis intractable since the point of the raising of a predefined exception cannot be
established.

7. The stack is used or not to reach the handler depending on the technique used to implement the exception
mechanism: conventionally, the Static Mapping which uses atable or the Dynamic Tracking which uses the stack.

8. Timing Analysis depends on the technique used to implement the exception mechanism.
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9. It was previously mentioned that it is not possible to control the program from its inputs to raise a predefined
exception and thus to execute the associated handler.

10. Once an exception has been propagated, then neither Flow Analysis nor Symbolic Analysis can be undertaken and
other forms of verification become difficult.

6.12.3 Guidance

In the introduction, the conflict concerning the use of the exception mechanism was highlighted. On one hand, the
previous section dealing with evaluation shows the difficulties induced by this mechanism when applying verification
techniques. So, its use seems to be prohibited when High Integrity Systems are concerned. On the other hand, it is not
possible to say that its non-use just reduces the language expression capabilities asit occurs for the other features.
Indeed, when exceptions are not used, the errors cannot be handled but their existence is not avoided [13]. To solve this
issue, the proposed guidelines concern three design strategies.

A first design choice (called ‘exclusion strategy’) consists of excluding the use of exceptions. This may be obtained by
means of theragma Restrictions(No_Exceptions) written in the Ada programs or by using compiler options provoking

the same effect. However, the absence of erroneous states usually leading to an exception raising must be demonstrated.
This is easily obtained concerning potential user exceptions as their raising is explicit. The proof that no predefined
exceptions can be raised is more complex, but may still be tractable (see Section 3.3.5).

The second design choice (called ‘belt-and-braces strategy’) seeks to avoid dependency on the exception mechanism but
recognises that a predefined exception may nevertheless occur for some unforeseen reason. The code is designed to be
exception-free, perhaps demonstrated by suitable proof (see exclusion strategy) but an ‘others’ exception handler is
introduced at the outermost scope level which does a very simple restart/reset or halt operation (if such an operation is
compatible with the application). As signalled in the notes, the actual state of the variables is not well defined when the
exception handler is reached. So, this strategy requires the implementation of a mechanism ensuring the recovery of a
well-known program state at program resumption time (for instance, a ‘recovery cache mechanism’). It should be noted
that the implementation of such a strategy may be very complex when the program includes tasks. In particular,
resumption of the task in which an exception raising occurs is frequently not acceptable when synchronisations exist. In
this case, a more complex resumption policy must be considered to handle the phenomenon called ‘domino effect’.

The third design choice (called ‘containment strategy’) authorises the use of exceptions in a simple way. In particular,

the following guidelines must be considered to make easier the verification techniques applications. Exception
mechanisms can only be used (if required) to handle errors occurring at run-time and not rare events, such as ‘end of file
is reached’. Predefined exceptions should not be raised explicitly. Predefined and user exceptions must be handled close
to the raising location. In particular, propagation phenomenon should be avoided. Here again, the exception handling
must guarantee that the program state is well-defined.

6.13 Tasking

High integrity systems traditionally do not make use of high-level language features such as concurrency. With Ada,
these language features can be prohibited by the ysagha Restrictions(Max_Tasks=0), pragma
Restrictions(No_Protected_Types) andpragma Restrictions(No_Delay). The view that tasking should not be used is

despite the fact that such systems are inherently concurrent. Concurrency is viewed as a ‘systems’ issue. It is visible
during design and in the construction of the cyclic executive that implements the separate code fragments, but it is not
addressed within the software production phases. Notwithstanding this approach, the existence of an extensive range of
concurrency features within Ada does allow concurrency to be expressed at the language level with the resulting benefits
of having a standard analysable approach that can be checked by the compiler and supported by other tools.

The requirement to analyse both the functional and temporal behaviour of high integrity systems imposes a number of
restrictions on the concurrency model that can be employed. These restrictions then impact on the language features
that are needed to support the model. Typical features of the concurrency model are as follows.

a. A fixed number of tasks.

b. Each task has a single invocation event, but has a potentially unbounded number of invocations. The
invocation event can either be temporal (for a time-triggered task) or a signal from either another task
or the environment. A high integrity application may restrict itself to only time-triggered tasks.

C. Tasks only interact via the use of shared data. Updates to any shared data must be atomic.

These constraints furnish a model that can be implemented using fixed priority scheduling (either pre-emptive or non
pre-emptive) and analysed in a number of ways:
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a The functional behaviour of each task can be verified using the techniques appropriate for sequential
code. Shared data is viewed as just environmental input when analysing a task. Timing analysis can
ensure that such datais appropriately initialised and temporally valid.

b. Following the assignment of temporal attributes to each task (period, deadline, priority etc), the
system-wide timing behaviour can be verified using the standard techniques in fixed priority analysis

(1. [2].

To implement this concurrency model in Adarequires only a small selection of the available tasking features. At the
Eighth International Real-Time Ada Workshop (1997) the following profile (called the Ravenscar Profile) was defined
for high integrity, efficient, real-time systems[9].

The Ravenscar Profile is defined by the following.

a Task type and object declarations at the library level (that is, no hierarchy of tasks).

b. No unchecked deallocation of protected and task objects.

C. No dynamic allocation of task or protected objects (thisis not part of the profile but isincluded here to
be consistent with our overall approach to dynamic allocation - see Section 4.1.2).

d. Tasks are assumed to be non-terminating.

Library level protected objects with no entries (to ensure atomic updates to shared data).

Library level protected objects with a single entry (for invocation signalling). This entry has a barrier

consisting of a single boolean variable; moreover only a single task may queue on this entry.

g. ‘Real-Time’ package.

h. Atomic and volatile pragmas.

[

J

k

I

- o

delay-until statements
Count attribute for protected entries (but not within entry barriers).
Task identifiers.

. Task discriminants.

m. Protected procedures as interrupt handlers.

It follows that the following tasking features are not included in the profile: task types and objects other than at the
library level, task hierarchies, unchecked de-allocation of protected and task objects, requeue, ATC, abort, task entries,
dynamic priorities, calendar, relative delays, protected types other than at the library level, protected entries with
barriers other than a single Boolean variable declared within the same protected type, attempts to queue more than one
task on a single protected entry, locking policies other than ceiling locking, scheduling policies other than FIFO within
priorities, all forms of select statement, and user-defined task attributes.

The inclusion of protected entries allows event based scheduling to be used. For many high integrity systems only time
triggered actions are employed, hence such entries and their associated interrupt handlers are not required.

The profile defines dispatching to B&FO within priority with protected objects havirggiling Locking. However it

also allows a non pre-emptive policy to be defined. Co-operative scheduling (that is, non pre-emption between well
defined system calls such@alay-until or the call of a protected object) can reduce the cost of testing as pre-emption
can only occur at well-defined points in the code. It can also reduce the size of the run-time.

With either dispatching policy, the Ravenscar Profile can be supported by a relatively small run-time. It is reasonable to
assume that a purpose-built run-time (supporting only the profile) would be efficient and ‘certifiable’ (i.e. built with the
evidence necessary for its use in a certified system). An equivalent run-time for a constrained Ada83 tasking model has
already been used in a certified application. Static checks are possible to ensure any program conforms to the profile.

Not only does the use of Ada increase the effectiveness of verification of the concurrency aspects of the application, it
also facilitates a more flexible approach to the system's timing requirements. The commonly used cyclic executive
approach imposes strict constraints on the range and granularity of periodic activities. The Ravenscar profile will
support any range and a fine level of granularity. So, for example, tasks with periods of 50ms and 64ms can be
supported together. Moreover, changes to the timing attributes of activities only require a re-evaluation of the timing
analysis. Cyclic executives are hard to maintain and changes can lead to complete reconstruction. Finally, note that the
inclusion of a small number of event triggered activities does not fundamentally change the structure of the concurrent
program or the timing analysis, but it does impose significant problems for the cyclic executive. Polling for ‘events’ is a
common approach in high integrity systems; but if the ‘event’ is rare and the deadline for dealing with the event is short
then the time triggered approach is very resource intensive. The event triggered approach will work with much less
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resources. The guidelines are not intended to imply that event triggering is better than time triggering. The point here, is
that the Ravenscar profile deals with both approaches and the migration from one to the other.

6.13.1 Evaluation

Group Name
Feature FA SA RC SU TA oMU OCA RT ST
Ravenscar Alld* | Inc® | Inc Inc | Inc® | Inc? Inc Inc Alld®
Profile
Other Tasking | Exc® | Exc® | Inc Exc’ | Exc” | Exc” | Exc’ | Inc Exc®
Features

Table 15: Tasking

6.13.2 Notes

1.

agrwn

Each task is analysed asiif it were a separate program. Data flow and information flow between tasks is an issue but
can be addressed by viewing any data that flows between tasks to be output or input for the two tasks involved.
Hence existing methods of dealing with inputs from the environment are adequate. With the Ravenscar Profile there
is no control flow between tasks.

Due to the lack of synchronisation between tasks, symbolic analysis can be undertaken on a per task basis.

System timing behaviour and stack usage are fully predictable with this profile.

The static task structure avoids the need for the use of any memory structure other than the stack.

With the pre-emptive dispatching policy, structural coverage is deemed not to include the testing of all possible pre-
emption points. Rather, structural coverage is focused on the behaviour of each task. If this view is not appropriate
then non pre-emptive (and co-operative) dispatching must be employed. This explicitly defines the points at which a
task can be pre-empted. With non pre-emption, interrupt handling (for example, to deal with a regular clock
interrupt) is still allowed but the interrupt is not permitted to release a higher priority task for execution. A non-
interruption dispatching policy is aso possible. With this policy no interrupts are used and each task release
condition must be checked whenever the run-time system is invoked.

Where appropriate the synchronous concurrency aspects of the application may be formalised using techniques such
as finite state automata [3] Petri-Nets [4], [5] or a process algebra [6], [7], [8]. Note these aspects are rarely
formalised in the systems view of concurrency. They are excluded due to lack of experience in using these
techniques in high integrity applications and because there remain some research questions over the scaleability of
the techniques to real problems. Other tasking features such as re-queue and asynchronous transfer of control have
not yet been formalised.

If dynamic task creation is allowed then memory usage cannot be predicted and static scheduling analysis is not
feasible.

As the behaviour of one task is more synchronously linked to the executions of other tasks, the need to directly test
multi-tasking programs increases. Notions of coverage for general tasking programs are not fully defined and hence
the general model is excluded for this type of verification.

6.13.3 Guidance

With the profile, each task should be structured as an infinite loop within which is a single invocation event. Thisis
either acall to delay until (for atime triggered task) or a call to a protected entry (for an event triggered task).

The use of the Ravenscar profile allows timing analysis to be extended from just the prediction of the worst-case
behaviour of an activity to an accurate estimate of the worst-case behaviour of the entire system. The computational
model embodied by the Ravenscar profileis very simple and straightforward. 1t does not include, for example, the
rendezvous or the abort, and hence does not allow control flow between tasks (other than by the release of atask for
execution in the event triggered model). But it does enable interfaces between activities (tasks) to be checked by the
compiler.

Pre-emption execution, in general, leads to increased scheduleability and hence is more efficient in the use of the
system’sresources (e.g. CPU time). As pre-emption can occur at any time, it is not feasible to test all possible pre-
emption points. Rather, it is necessary for the run-time system (RTS) to guarantee that the functional behaviour of atask
will not be affected by interrupts or pre-emption. For a high integrity application evidence to support this guarantee
would need to be provided by the compiler vendor (or RTS supplier). For the Ravenscar profile the RTS will be simple
and small. There is ample expertise in the industry to be confident that high integrity Ada RTS are feasible and will be
available.

42



Working Draft of ISO/IEC 15942 V35

Many, but not all, of the constraints defined by the profile can be enforced by use of the Restrictions pragma. For those
for which the pragma does not apply, it is still a static syntax check to determine if a program complies to the profile.
The only exception to this rule is the assumption that atask is non-terminating. This can not, of course, be checked but
any implementation of the profile will protect itself against task termination.

6.14 Distribution

Although many high integrity systems are distributed, it is rare for the programming activity to directly address notions
of distribution. Nevertheless, the features that Ada defines to support the programming of distributed systems are
important and can have arole in even single processor high integrity systems. Thisis particularly true when different
criticality subsystems are to be hosted on to the same processing resource; an approach that is becoming more common
in a number of application areas, for example, Integrated Modular Avionics.

Ada provides a number of categorisation pragmas that allow library units to be partitioned into distinct groups that do

not share variables or physical addresses. The interactions between these separate partitions are well-defined and

analysable (i.e. there can be no hidden interactions between the partitions). This separation of addresses does not

necessarily imply separate memory spaces as thisis an implementation issue. However, if memory protectionis

required (to isolate specific subsystems) then Ada’s partition is the obvious way of representing the necessary enclosures
at the program level.

On a single processor system the only two categorisation pragmas that are needed in order to facilitate the effective use
of partitions argoure andremote-call-interface. A pure package is a restricted formpad-elaborate which is itself a

useful category as it designates a library unit that can be elaborated without the execution of any code at run-time. In a
genuine distributed system, two further pragmas are usually reqeirede-types andshared-passive.

6.14.1 Evaluation

Group Name
Feature FA SA RC SU TA OMU | OCA RT ST
Pre-elaborate Inc Inc Inc Inc Inc Inc Inc InG Ing
Pure Inc Inc Inc Inc Inc Inc Inc Inc Inc
Remote-call- | Exc! | Inc Inc Inc | Exct | Inc Exct | Inc Inc
interface
Remote types| Inc| Exc' | Inc Inc Inc Inc Inc Inc | Exc'
Shared Inc | Exct | Inc Inc Inc Inc Inc Inc | Exct
Passive

Table 16: Distribution

6.14.2 Notes

1. The programming of distributed systems is somewhat immature; the construction of distributed systems and the
commensurate issues of fault tolerance and survivability introduce many systems issues that go well beyond mere
programming. The analysis and testing of distributed systems is not straightforward.

6.14.3 Guidance

Partitions are a useful form of structuring and hence the three standard pragmas should be employed, where appropriate,
to provide additional information about the properties of library units.

7. Compilers and Run-time Systems

It is imperative that software written for high integrity systems in a high level language be interpreted the same way by
developers, reviewers and auditors. Safety related and security guidelines and standards require that the language be
endorsed by a national or international standards agency. In addition, some standards may require that compilers be
validated to show conformance to the language definition and that this be performed by an independent certification
organisation.
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7.1 Language issues

Ada compilers must undergo such validation testing, and evidence of the results of such testing is maintained by the Ada
Information Clearing house as a public record.

An Ada compilation system used for safety critical systems must conform to the Ada language definition as defined in
the Ada standard [ARM]. A fully conformant compiler must pass all applicable Ada Compiler Validation Capability
(ACVC) tests which exercise the compiler, linker and the run-time system together. ACV C tests will aso be applied to
the annexes which have been implemented which must also conform to the Ada standard. The tool selection process for
asafety critical application will need to ensure that the compilation system and the annexes to be used have avalidation
basis.

The compiler may have options which control the level of optimisation or other code transformations which affect
traceability between source and object code. As these options have a direct impact on the correctness of the object code,
it isimportant that the compiler passes the validation suite with the options to be used when building the operational
software, and that the run-time libraries be verified with the same options.

The production of alanguage subset compiler specifically for high integrity applications is not recommended. The use
of acompiler by many in abroad range of applicationsis more likely to uncover latent faults which may be present in
the compilation system. Many safety standards require assessment of the quality of the compilation system through an
analysis of reported and fixed faults by the compiler vendor. Quality reports, evidence of regression testing, review of
the fault tracking system may be required. Such evidence may be provided under terms of non-disclosure by the
compiler vendors.

For the reasons outlined earlier in this report, safety critical projects will use a subset of the Adalanguage. The
application code must be analysed to ensure that the appropriate subset is used. This analysis may be done by code
inspections, by the use of source anaysistools, or by the compiler itsdlf, if it has this capability.

The Ada Semantic Interface Specification [ASIS] provides a standard mechanism for obtaining information about an
Ada program or its components. As ASISis an 1SO standard, portable tools may be written which perform analysis of
the language constructs used. Traversal algorithms, access to semantic information and structural constructs are
provided for Ada source code under investigation. This representation exposes scope, visibility, overloading and other
attributes to provide analysis tools the same information that a compiler code generator would use. Tools may thus be
written which are independent of the compiler, but use the intermediate representation offered by the compiler.

An alternative subsetting method would be to use compilers directly. The compiler may be able to enforce a subset when
directed to do so by the user through compiler options, or use of pragma restrictions.

A compiler processing in subset enforcement mode will be unable to pass many tests of the ACVC suite. Even the
reporting packages of the ACV C may use features of the language which are outside of the high integrity subset.

Thelevel of confidence in the subset compiler increases if the algorithms used in the subset and the full compiler are
unchanged. It isimportant the implementation of pragma restrictions, or compiler subsetting options does not affect the
genera algorithms used by the compiler (control flow optimisations, memory management etc. should be the same
whether pragmarestrictionsis used or not, or the differences well documented).

7.2 Compiler Qualification

The compiler and linker are development tools. They transform source to object and through this process may produce
trandation errors. Before a development tool can be used on a high integrity application with total trust, it must be
qualified. At present it is beyond the state of the art to qualify software as complex as acompiler. Thislevel of distrust
forces some verification to be performed at the object code level. Thisis usually performed through dynamic testing on
the target computer with a specified coverage (say, Modified Condition/Decision Coverage to 100%). Additionaly,
object code analysis may be performed, see section 3.3.10.

Verification through testing may possibly uncover compiler faults. The most serious are translation errors where the
object code generated implements the semantics of the source program incorrectly. Faults discovered should be reported
to the compiler manufacturer where they can be logged and tracked using an error reporting system. Subsequent
compiler versions may improve the compiler correctness by fixing the reported errors.
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A list of residual errors or errors not fixed in a given version should be available to the users. The use of arestricted
language subset helpsin thisareaasit is usually the combinations of complex constructs which causes the biggest
problems for the compiler.

A compiler may generate correct but sub-optimal code, for example arange check on a variable which has already been
checked. Although this may not affect the semantics of the program, it may introduce additional paths which are not
covered through testing. This complicates coverage analysis at the highest levels of criticality. If traceability between
source and object code cannot be demonstrated, then other verification means may be used to show that the compiler has
not inserted incorrect code.

Additional code produced by the compiler must be found and traced and classified into "dead’ or 'deactivated’ code. In
such cases, dead code must be removed and deactivated code must be documented.

7.3 Run-Time System

The run-time system (RTS) forms part of the operational software. It has adirect impact on the integrity of the
application. Consequently the RTS needs evidence of verification to an integrity level which corresponds to the integrity
level of the application or higher.

The RTS consists of several classes of routines used by the Ada program. Some routines are linked in automatically by
the compiler to initialise and manage the target environment (e.g. set up memory bases for stacks, set up interrupt
vectors and so on.) Some routines are linked in on demand by the code generator. The compiler may on occasion use
run-time routines to implement operations which require many instructions (e.g. bit_block_move on an architecture
which does not have an instruction to perform this). Some routines are made visible by the Adalanguage and supplied
through packages supplied by the RTS. (e.g. Ada.Synchronous_Task_Control). The tasking system will include routines
to declare, activate and perform synchronisation between tasks on behalf of the user. Calls to these routines are
generated through the use of the underlying constructs.

The RTS may be supplied entirely by the developers of the Ada compiler, or areduced AdaRTS may interfaceto a
language independent RTS. With both approaches, a substantial effort must be undertaken to demonstrate that the RTS
implements the semantics of the language. It must also be shown that the RTS executes with bounded execution times,
and uses machine resources in a predictable way.

Software is not certified, consequently, the RTS cannot be certified. Certification evidence can be produced for the RTS,
but the materials produced will be scrutinised for each system in which the RTS is used. The requirements for
certification does not diminish because it is Commercia Off The Shelf (COTS). Although broad use may improve the
pedigree of aRTS, it does not diminish the responsibility for safe operation.

The requirements of the underlying safety or security standard must be satisfied for the RTS and evidence must be made
available in accordance with the criticality level of the application.
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System
Address Clause
Aliasing
Alld
Allowed
Analysis
annotations
Assignment
Attribute

Class

Image

Pred

Succ

Block
Bodies

Boundary Value Testing

Branch Coverage

Case

ceiling locking
Child Private
Child Public
Class - attribute

Commercial off the shelf
Composite Operands
Control Flow Analysis
Correctness by Construction
See Commercial off the Shelf

COTS

Data Flow Analysis
Dec/fixed

Default Expression
DO-178B

Elaborate Body
EN 50128

Equivalence Class Testing

Errors
Constraint_Error

Exc

exceptions

Excluded

Exiting from loops

FA

FDA

FIFO

Fixed

Float

Flow Analysis
For

Formal Code Verification

Functions

28

33

33

28

See Allowed
19

8

18

27

22
21
34
34

27
29
13,20
13,20

27
41
30
30
22
34
25
13, 15,20
14

13, 15, 16, 20
31

28

5, 6, 46

30
6
13,20

23

See Excluded
17,18

19

See Loop

See Flow Analysis
6

41

31

31

13,20

See Loop

13, 15, 20

28
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GAMP 6
goto 15, 17, 18, 27
IEC 601-4 6
|EC-61508 5
IEC-880 6
If 27
Image - attribute 21
Included 19
Indefinite Formal Parameters 28
Indefinite or Unconstrained Return Types 28
Information Flow Analysis 13, 15, 16, 20
Initialisation 29
Inline Expansion 28
Inspection_Point 11
Integer 31
Interfacing Pragmas 33
SO CD 15408 6
ISO/IEC 15026 5
ITSEC 5,6, 47
Logical Operators 25
Loop

for 27

simple loop with exit 27

while 27
Machine Insertion 33
Max_Tasks 40
Membership Tests 25
MISRA 6
Modified Condition/Decision Coverage 13,20
Modular 31
NASA 6
No_Access Subprograms 38
No_Allocators 11, 38
No_Delay 40
No_Dispatch 22
No_Exceptions 39, 40
No_Floating_Point 32
No_Implicit_Heap Allocation 11, 38
No_Protected Types 40
No_Recursion 29
NRC 6
Null 27
NUREG/CR-6463 47
Object Code Analysis 13,20
OCA See Object Code Analysis
oMU See Other Memory Usage Analysis
Other Memory Usage Analysis 11,13, 20
Package See also Ada Packages
partial correctness 10

Pragma
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Elaborate Body 29, 30
I nspection_Point 11
Restrictions 11, 18, 22, 29, 32, 38, 39, 40
Reviewable 11
Pred - attribute 34
Predefined Language Environment 20
Private 29
Procedures 28
Qualified Expressions 25
Range Checking Analysis 13,20
Ravenscar Profile 40, 41, 42
RC See Range Checking Analysis
Relational operators 25
Representation Attributes 33
Representation Clause 33
Restrictions
Max_Tasks 40
No_Access Subprogramms 38
No_Access Subprograms 38
No_Allocators 11, 38
No_Delay 40
No_Dispatch 22
No_Exceptions 39, 40
No_Foating_Point 32
No_Implicit_Heap Allocation 11, 38
No_Protected Types 40
No_Recursion 29
Return in Procedures 28
Reviewable 11
SA See Symbolic Analysis
Separate 30
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V35
Short-circuit control forms 25
Side-effects 14
Slices 25
spaghetti code 16
Specifications 29
ST See Structure-based Testing
Stack Usage Analysis 13,20
Statement Coverage 13,20
Static Expressions 25
Storage Error 37
Streams 33
Structural Coverage 13
SU See Stack Usage Analysis
Succ - attribute 34
Symbolic Analysis 13,20
Symbolic Execution 13,20
TA See Timing Analysis
Tasking 15, 18
Timing Analysis 13,20
total correctness 10
Type Conversion
Numeric 25
Other 25
UK Defence Standard 00-55 6
Unchecked Access 33
Unchecked Conversion 33
Use Clause 30
Use Type 30
While See Loop
With Clause 29



