
 ISO/IEC/JTC 1/SC 22/WG 23 N1432

	 	 	 	 	 	 Draft	amendment	1	to	ISO/IEC	24772-1	

	 	 	 	 	 	 	 	 	 26	October	2024	

6.66 Code representation differs between compiler view and reader view
6.66.1	Description	of	application	vulnerability	

The	ISO/IEC	10646:2020	character	set	includes	characters	that	can	effectively	hide	adjoining	
text.	Such	characters	set	text	display	direction	left-to-right	or	right-to-left	but	are	invisible	
unless	the	editor	or	display	program	is	instructed	to	mnemonically	display	them.	If	left-to-
right	is	the	current	default	direction	and	a	right-to-left	character	(RLI)	is	used,	subsequent	
text	will	visually	replace	the	text	preceding	the	RLI	character.

The	 following	example,	 taken	 from	[1],	 shows	code	with	 the	 invisible	characters	denoted	
visibly	by	+LRI, +PDI, +RLO,	where	these	denotations	stand	for	the	zero-space	Unicode	
control	characters:		

<LRI> Left-to-Right Isolate
<PDI> Pop Directional Isolate
<RLO> Right-to-Left Overwrite

Due	to	the	direction-changing	characters,	the	following	code		

alvl = 'user'
if alvl != 'none+RLO+LRI': #Check if admin+PDI+LRI' and alvl!= 'user’
 print('You are an admin.')

will	be	displayed	to	the	human	reader	in	some	editors	as:			

alvl = 'user'
if alvl != 'none’ and alvl!= 'user' #Check if admin
 print('You are an admin.')

but	execute	as:		

alvl = 'user'
if alvl != 'none’: #Check if admin' and alvl!= 'user’

 print('You are an admin.')

as	the	second	condition	shown	in	the	visual	representation	is	really	part	of	the	comment	in	
the	actual	code.		

Some	 languages	restrict	 the	use	of	direction-changing	control	 characters	 to	comments	or	
strings.	Nevertheless,	malicious	use	can	change	string	or	comment	into	executable	code,	as	
shown	above	and	also	below	using	RLI	in	a	string.	

'''Subtract funds from account then RLI ''' ; return
'''LRI'''

This	line	can	display	as,	depending	on	the	text	editor	used;	

'''Subtract funds from bank account then return;’’’

but	executes	as	

; return

A	 similar	 situation	 arises	 from	 the	 use	 of	 the	 carriage	 return	 <CR>	 and	 line	 feed	 <LF>	
characters,	depending	upon	the	environment	where	the	code	is	executed.	

Example	

Blow_Up(); <CR> BeReallyNice()

The	lack	of	a	<LF>	can	cause	the	code	(e.g	in	UNIX-based	systems)	to	be	displayed	as	

BeReallyNice()

while	the	code	executes	as		

Blow_Up(); BeReallyNice()

because	some	environments	will	overwrite	the	physical	line	if	the	<LF>	is	not	included	with	
the	<CR>.	

6.66.2	Related	coding	guidelines	

6.66.3	Mechanism	of	failure	

The	examples	in	6.66.1	show	how	readers	of	code	can	be	misled	about	the	actual	code	that	
will	be	executed	once	the	code	is	compiled	or	interpreted.	Thus	these	Unicode	characters	are	
a	simple	means	to	cause	the	execution	of	malicious	code.			

Additionally,	 the	 end-of-line	 issue	 can	 be	 a	 source	 of	 unintentional	 errors	 and	 a	 difficult	
search	for	the	origin	of	unexpected	program	behaviour,	when	executed	code	is	accidentally	
not	shown	in	the	displayed	source	code.		

6.66.4	Applicable	language	characteristics	
This	 vulnerability	 description	 is	 intended	 to	 be	 applicable	 to	 languages	 with	 the	 following	
characteristics:	

- Languages	that	permit	non-printing	Unicode	control	characters	causing	differences	between	
displayed	code	and	executed	code	as	part	of	program	code,	string	literals	or	comments.		

- Languages	that	permit	arbitrary	sequences	of	<CR>	and	<LF>	characters.			

	

6.66.5	Avoiding	the	vulnerability	or	mitigating	its	effect	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:	

• Carefully manage	and	thoroughly	review	the	use	of	any	characters	that	can	in	any	
way	hide	the	functionality	and	representation	of	program	code.		

• Avoid	 reliance	 on	 simple	 visual	 inspection	 of	 code;	 instead	 use	 tools	 to	 reveal	
dangerous	control	characters.	

• Always	 use	 static	 analysis	 tools	 that	 identify	 all	 occurrences	 of	 hidden	 characters	
within	a	program.		

• Use	tools	to	confirm	that	program	code	conforms	to	the	end-of-line	convention	of	the	
environment	in	which	code	is	edited	and	compiled.	

• Use	only	editors	that	are	capable	of	revealing	the	hidden	Unicode	(zero-space)	control	
characters	and	ensure	that	the	editor	setting	is	enabled.	

• Refrain	 from	 copying	 and	pasting	 code	 from	untrusted	 sources	unless	 the	 code	 is	
thoroughly	checked	as	described	above.	

	

6.66.6	Implications	for	language	design	and	evolution	
In	future	language	design	and	evolution	activities,	language	designers	should	consider	the	following	
items:	

- Flagging	all	occurrences	of	Unicode	control	characters	that	are	capable	of	causing	displayed	
code	to	be	different	from	executed	code.	

- Excluding	<CR>	and	<LF>	characters	from	strings	and	comments.		

- Diagnosing	mismatches	 of	 program	 code	with	 end-of-line	 conventions	 of	 the	 compilation	
environment.	

	

	

