
Technical Report ISO/IEC 24772-8:202X(E)

© ISO/IEC 2013 – All rights reserved 1

ISO/IEC JTC 1/SC 22 N1423
Date: 20230828

ISO/IEC TR 24772-8

Edition 1

ISO/IEC JTC 1/SC 22/WG 23

Secretariat: ANSI

 DRAFT DRAFT DRAFT

Programming languages — Avoiding vulnerabilities in programming languages –
Vulnerability descriptions for the programming language Fortran

Élément 1ntroductive — Élément principal — Partie n: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without
notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they
are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage: (10) development stage
Document language: E

2 © ISO/IEC 2013 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards
development process is permitted without prior permission from ISO, neither this document nor any
extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior
written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as
shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

© ISO/IEC 2013 – All rights reserved 3

Contents

Table	of	Contents	

FOREWORD ... 6
INTRODUCTION .. 7
1. SCOPE .. 8
2. NORMATIVE REFERENCES .. 8
3. TERMS AND DEFINITIONS, SYMBOLS AND CONVENTIONS .. 8
3.1 TERMS AND DEFINITIONS ... 8
4 LANGUAGE CONCEPTS .. 10
4.1 GENERAL .. 10
4.2 FORTRAN STANDARD CONCEPTS AND TERMINOLOGY .. 10
4.3 DELETED AND REDUNDANT FEATURES .. 11
4.4 NON-STANDARD EXTENSIONS ... 11
4.5 CONFORMANCE TO THE STANDARD ... 11
4.6 NUMERIC MODEL ... 12
4.7 INTEROPERABILITY .. 12
4.8 ALLOCATABLE VARIABLES ... 12
4.9 POLYMORPHISM .. 13
4.10 PARALLELISM ... 14
5 GENERAL AVOIDANCE MECHANISMS FOR FORTRAN .. 17
6 SPECIFIC ANALYSIS FOR FORTRAN ... 18
6.1 GENERAL .. 18
6.2 TYPE SYSTEM [IHN] .. 18
6.3 BIT REPRESENTATION [STR] ... 20
6.4 FLOATING-POINT ARITHMETIC [PLF] .. 22
6.5 ENUMERATOR ISSUES [CCB] .. 22
6.6 CONVERSION ERRORS [FLC] ... 23
6.7 STRING TERMINATION [CJM] ... 24
6.8 BUFFER BOUNDARY VIOLATION (BUFFER OVERFLOW) [HCB] ... 24
6.9 UNCHECKED ARRAY INDEXING [XYZ] ... 26
6.10 UNCHECKED ARRAY COPYING [XYW] ... 26
6.11 POINTER TYPE CONVERSIONS [HFC] .. 27
6.12 POINTER ARITHMETIC [RVG] .. 27
6.13 NULL POINTER DEREFERENCE [XYH] .. 27
6.14 DANGLING REFERENCE TO HEAP [XYK] ... 28
6.15 ARITHMETIC WRAP-AROUND ERROR [FIF] .. 29
6.16 USING SHIFT OPERATIONS FOR MULTIPLICATION AND DIVISION [PIK] ... 29
6.17 CHOICE OF CLEAR NAMES [NAI] ... 29
6.18 DEAD STORE [WXQ] .. 30
6.19 UNUSED VARIABLE [YZS] ... 30
6.20 IDENTIFIER NAME REUSE [YOW] ... 30

Deleted: 12

Deleted: 13

Deleted: 21

Deleted: 25

Deleted: 26

Deleted: 28

4 © ISO/IEC 2013 – All rights reserved

6.21 NAMESPACE ISSUES [BJL] .. 31
6.22 MISSING INITIALIZATION OF VARIABLES [LAV] ... 31
6.23 OPERATOR PRECEDENCE AND ASSOCIATIVITY [JCW] ... 32
6.24 SIDE-EFFECTS AND ORDER OF EVALUATION [SAM] ... 32
6.25 LIKELY INCORRECT EXPRESSION [KOA] ... 33
6.26 DEAD AND DEACTIVATED CODE [XYQ] ... 33
6.27 SWITCH STATEMENTS AND STATIC ANALYSIS [CLL] ... 34
6.28 DEMARCATION OF CONTROL FLOW [EOJ] ... 34
6.29 LOOP CONTROL VARIABLE ABUSE [TEX] .. 35
6.30 OFF-BY-ONE ERROR [XZH] ... 35
6.31 UNSTRUCTURED PROGRAMMING [EWD] ... 36
6.32 PASSING PARAMETERS AND RETURN VALUES [CSJ] ... 36
6.33 DANGLING REFERENCES TO STACK FRAMES [DCM] ... 37
6.34 SUBPROGRAM SIGNATURE MISMATCH [OTR] .. 38
6.35 RECURSION [GDL] ... 38
6.36 IGNORED ERROR STATUS AND UNHANDLED EXCEPTIONS [OYB] .. 38
6.37 TYPE-BREAKING REINTERPRETATION OF DATA [AMV] ... 39
6.38 DEEP VS. SHALLOW COPYING [YAN] .. 40
6.39 MEMORY LEAKS AND HEAP FRAGMENTATION [XYL] ... 40
6.40 TEMPLATES AND GENERICS [SYM] .. 41
6.41 INHERITANCE [RIP] ... 41
6.42 VIOLATIONS OF THE LISKOV SUBSTITUTION PRINCIPLE OR THE CONTRACT MODEL [BLP] .. 41
6.43 REDISPATCHING [PPH] ... 41
6.44 POLYMORPHIC VARIABLES [BKK] .. 42
6.45 EXTRA INTRINSICS [LRM] .. 42
6.46 ARGUMENT PASSING TO LIBRARY FUNCTIONS [TRJ] .. 43
6.47 INTER-LANGUAGE CALLING [DJS] .. 43
6.48 DYNAMICALLY-LINKED CODE AND SELF-MODIFYING CODE [NYY] ... 44
6.49 LIBRARY SIGNATURE [NSQ] .. 44
6.50 UNANTICIPATED EXCEPTIONS FROM LIBRARY ROUTINES [HJW] .. 44
6.51 PRE-PROCESSOR DIRECTIVES [NMP] .. 45
6.52 SUPPRESSION OF LANGUAGE-DEFINED RUN-TIME CHECKING [MXB] .. 45
6.53 PROVISION OF INHERENTLY UNSAFE OPERATIONS [SKL] .. 46
6.54 OBSCURE LANGUAGE FEATURES [BRS] ... 46
6.55 UNSPECIFIED BEHAVIOUR [BQF] ... 47
6.56 UNDEFINED BEHAVIOUR [EWF] .. 47
6.57 IMPLEMENTATION-DEFINED BEHAVIOUR [FAB] ... 48
6.58 DEPRECATED LANGUAGE FEATURES [MEM] ... 48
6.59 CONCURRENCY – ACTIVATION [CGA] .. 49
6.60 CONCURRENCY – DIRECTED TERMINATION [CGT] .. 49
6.61 CONCURRENT DATA ACCESS [CGX] .. 50
6.62 CONCURRENCY – PREMATURE TERMINATION [CGS] .. 51
6.63 PROTOCOL LOCK ERRORS [CGM] .. 51
6.64 RELIANCE ON EXTERNAL FORMAT STRINGS [SHL] ... 52

Deleted: 34

© ISO/IEC 2013 – All rights reserved 5

6.65 MODIFYING CONSTANTS [UJO] .. 52
7 LANGUAGE SPECIFIC VULNERABILITIES FOR FORTRAN ... 53
7.1 GENERAL .. 53
7.2 SOURCE FORM ... 53
7.3 UNFORMATTED FILES .. 53

BIBLIOGRAPHY .. 55

INDEX ... 57

6 © ISO/IEC 2013 – All rights reserved

Foreword	

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, when the joint technical committee has collected data of a different kind from that
which is normally published as an International Standard (“state of the art”, for example), it may decide to publish
a Technical Report. A Technical Report is entirely informative in nature and shall be subject to review every five
years in the same manner as an International Standard.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 24772-8, was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

© ISO/IEC 2013 – All rights reserved 7

Introduction	

This Standard documents avoidance mechanisms for the programming language Fortran so that application
developers considering Fortran or using Fortran will be better able to avoid the programming constructs that
lead to vulnerabilities in software written in the Fortran language and their attendant consequences. This
guidance can also be used by developers to select source code evaluation tools that can discover and eliminate
some constructs that could lead to vulnerabilities in their software. It can also be used in comparison with
companion standards including the language-independent standard, ISO/IEC 24772-1:2024 Programming
languages — Avoiding vulnerabilities in programming language -- Part 1: Language-independent catalogue of
vulnerabilities, to select a programming language that provides the appropriate level of confidence that
anticipated problems can be avoided.

It should be noted that this document is inherently incomplete. It is not possible to provide a complete list of
programming language vulnerabilities because new weaknesses are discovered continually. Any such report
can only describe those that have been found, characterized, and determined to have sufficient probability and
consequence.

Deleted: and with

Deleted: report

8 © ISO/IEC 2013 – All rights reserved

Programming Languages — Programming language vulnerabilities – Part 8:
Vulnerability descriptions for the programming language Fortran

1.	Scope	

This Standard itemizes software programming language vulnerabilities to be avoided in the development of
systems where assured behaviour is required for security, safety, mission-critical and business-critical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

This Standard documents how the vulnerabilities described in the language-independent writeup, ISO/IEC 24772-
1:2024, are manifested in Fortran and provides mechanisms to avoid them.

2.	Normative	references	

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISO/IEC 24772-1:2024 Programming languages — Avoiding vulnerabilities in programming language --, Part 1:
Language-independent catalogue of vulnerabilities
ISO/IEC 1539-1:2018, Information technology -- Programming languages -- Fortran -- Part 1: Base language
ISO 80000–2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be use in the natural
sciences and technology
ISO/IEC/IEEE 60559-2011, Information technology – Microprocessor Systems – Floating-Point arithmetic	

3.	Terms	and	definitions,	symbols	and	conventions	

3.1	Terms	and	definitions	

For the purposes of this document, the terms and definitions given in ISO/IEC 2382–1, in 24772-1:2024, ISO/IEC
1539-1:2018 and the following apply. Other terms are defined where they appear in italic type.
The precise statement of the following definitions can be found in the Fortran standard.

3.2

argument association
association between an effective argument and a dummy argument

3.3

assumed-shape array
a dummy argument array whose shape is assumed from the corresponding actual argument

3.4

Deleted: 24772-1

Deleted: 24772-1

Deleted: 24772-1

© ISO/IEC 2013 – All rights reserved 9

assumed-size array:
dummy argument array whose size is assumed from the corresponding actual argument

3.5

deleted feature
feature that existed in older versions of Fortran but has been removed from later versions of the standard

3.6

explicit interface
interface of a procedure that includes all the characteristics of the procedure and names for its dummy
arguments

3.7

Image
 one of a mutually cooperating set of instances of a Fortran program, each with its own execution state and set of
data objects

3.8

implicit typing
archaic rule that declares a variable upon use according to the first letter of its name

3.9

kind type parameter
value that determines one of a set of processor-dependent data representation methods

3.10

Module
separate scope that contains definitions that can be accessed from other scopes

3.11

obsolescent feature

 feature that is not recommended because better methods exist in the current standard

3.12

processor
combination of computing system and mechanism by which programs are transformed for use on that computing
system

3.13

Deleted: a

Deleted: a

Deleted: an

Deleted:

Deleted: an

Deleted: a

Deleted: a

Deleted: : a

10 © ISO/IEC 2013 – All rights reserved

processor dependent
not completely specified in the Fortran standard, having one of a set of methods and semantics determined by
the processor

3.14

pure procedure
procedure subject to constraints such that its execution has no side effects

3.15

type
named category of data characterized by a set of values, a syntax for denoting these values, and a set of
operations that interpret and manipulate the values

4	Language	concepts				

4.1	General	

Fortran is the oldest international standard programming language with the first Fortran processors appearing
over fifty years ago. During half a century of computing, computing technology has changed immensely, and
Fortran has evolved via several revisions of the standard. Also, during half a century of computing and in response
to customer demand, some popular processors supported extensions. There remains a substantial body of
Fortran code that is written to previous versions of the standard or with extensions to previous versions, and
before modern techniques of software development came into widespread use. The process of revising the
standard has been done carefully with a goal of protecting applications programmers’ investments in older codes.
Very few features were deleted from older revisions of the standard; those that were deleted were little used, or
redundant with a superior alternative, or error-prone with a safer alternative. Many modern processors generally
continue to support deleted features from older revisions of the Fortran standard, and even some extensions
from older processors, and do so with the intention of reproducing the original semantics. Also, there exist
automatic means of replacing at least some archaic features with modern alternatives. Even with automatic
assistance, there might be reluctance to change existing software due to its having proven itself through usage on
a wider variety of hardware than is in general use at present, or due to issues of regulation or certification. The
decision to modernize trusted software is made cognizant of many factors, including the availability of resources
to do so and the perceived benefits. This document does not attempt to specify criteria for modernizing trusted
old code.

4.2	Fortran	standard	concepts	and	terminology	

The Fortran standard, ISO/IEC 1539-1 is written in terms of a processor which includes the language translator
(that is, the compiler or interpreter, and supporting libraries), the operating system (affecting, for example,
how files are stored, or which files are available to a program), and the hardware (affecting, for example,
the machine representation of numbers or the availability of a clock). The Fortran standard specifies how
the contents of files are interpreted. The standard does not specify the size or complexity of a program that
might cause a processor to fail.

Formatted: Font: 11 pt, Bold, Italic, Underline

Deleted: a

© ISO/IEC 2013 – All rights reserved 11

A program conforms to the Fortran standard if it uses only forms and relationships between forms specified by
the standard and does so with the interpretation given by the standard. A program unit is standard-conforming if
it can be included in an otherwise standard-conforming program in a way that is standard conforming.

The Fortran standard allows a processor to support features, not defined by the standard, provided such features
do not contradict the standard. Use of such features, called extensions in this document, should be avoided.
Processors are able to detect and report the usage of some extensions.

This document assumes that diagnostics for non-standard forms and relationships are always enabled.

4.3	Deleted	and	redundant	features	

Annexes B.1 and B.2 of ISO/IEC 1539-1:2018 standard lists eight features of older versions of Fortran that
have been deleted because they were redundant and considered largely unused. Although no longer part of
the standard, they are supported by many processors to allow old programs to continue to run. Annex B.3 of
ISO/IEC 1539-1:2018 lists twelve features of Fortran that are regarded as obsolescent because they are
redundant – better methods are available in the current standard. The obsolescent features are described in
the standard using a small font. The use of any deleted or obsolescent feature should be avoided. It should
be replaced by a modern counterpart for greater clarity and reliability (by automated means if possible).
Processors are able to detect and report the use of these features.

4.4	Non-standard	extensions	

The Fortran standard defines a set of intrinsic procedures and intrinsic modules and allows a processor to
extend this set with further procedures and modules. A program that uses an intrinsic procedure or module
not defined by the standard is not standard-conforming. A program that uses an entity not defined by the
standard from a module defined by the standard is not standard-conforming. The usage of intrinsic
procedures or modules not defined by the standard should be avoided. Processors are able to detect and
report the usage of intrinsic procedures or modules not defined by the standard.

The Fortran standard does not completely specify the effects of programs in some situations, but rather allows
the processor to employ any of several alternatives. These alternatives are called processor dependencies and
are summarized in Annex A.2 of the standard. The programmer should not rely for program correctness on a
particular alternative being chosen by a processor. In general for real and complex entities, the representation
of quantities, the results of operations, and the results of calculations performed by intrinsic procedures are
all processor-dependent approximations of their respective exact mathematical equivalent.

4.5	Conformance	to	the	standard	

Although strenuous efforts have been made, and are ongoing, to ensure that the Fortran standard provides an
interpretation for all programs that conform to it, circumstances occasionally arise where the standard fails to do
so. If the standard fails to provide an interpretation for a program, the program is not standard-conforming.

Processors are required to provide a mode that detects deviation from the standard so far as can be determined
from syntax rules and constraints during translation only, and not during execution of a program. Many

Deleted: use

Deleted: ,

Deleted: Use

Deleted: use

12 © ISO/IEC 2013 – All rights reserved

processors offer runtime checks and debugging aids. For example, most processors support options to report
when, during execution, an array subscript is found to be out-of-bounds in an array reference.

Generally, the Fortran standard is written as specifying what a correct program produces as output, and not how
such output is actually produced. That is, the standard specifies that a program executes as if certain actions
occur in a certain order, but not that such actions actually occur. A means other than those specified by Fortran
(for example, a debugger) might be able to detect such particulars.

4.6	Numeric	model	

The values of numeric data objects are described in terms of a bit model, an integer model, and a floating-point
model. Inquiry intrinsic procedures return values that describe the model rather than any particular hardware.

Most Fortran processors support ISO/IEC/IEEE 60559:2011, the IEEE standard for floating-point arithmetic. The
floating-point standard defines binary patterns that represent floating-point values, signed zeros, and signed
infinities; any other value is a NaN (Not a Number). This allows IEEE arithmetic to be closed, that is, every
operation has a result. If an exception occurs, execution continues with the corresponding flag signaling, and the
flag remains signaling until explicitly set quiet by the program. The flags are therefore called sticky. The flags are
overflow, divide_by_zero, invalid (for example 0.0/0.0 or when an operand is a NaN), underflow, and inexact
(when the result cannot be represented exactly). There are five corresponding Fortran exception flags. Each has a
value that is either quiet or signaling and its initial value is quiet. There are procedures for finding and for
resetting the value of a flag. If a flag is signaling on entry to a procedure, the processor will set it to quiet on entry
and restore it to signaling on return. This allows exception handling within the procedure to be independent of
the state of the flags on entry, while retaining their ‘sticky’ properties.

The Fortran standard places minimal constraints on the representation of entities of type character and type
logical.

4.7	Interoperability	

Interoperability of Fortran program units with program units written in other languages is defined in terms of a
companion processor. A Fortran processor is its own companion processor, and might have other companion
processors as well. The interoperation of Fortran program units is defined as if the companion processor is
defined by the C programming language.

4.8	Allocatable	variables	

An allocatable variable or component is declared with a rank (dimensionality) but without data. It is associated
with data by an allocate statement and is then said to be allocated. If it is an array, the allocate statement
provides it with bounds. Its data is released to the system by a deallocate statement and it is then said to be
unallocated. Its initial status is unallocated. Its allocation status is either allocated or unallocated. While it has
many of the properties of a pointer variable, it cannot give rise to memory leakage or a dangling pointer.
Assignment between allocatable variables of the same rank copies their data.

© ISO/IEC 2013 – All rights reserved 13

4.9	Polymorphism	

Fortran supports object orientation with single inheritance. A derived type ta can be extended to form a new
type tb with all the components of type ta plus possibly additional components. The extended type tb also has
a parent component of type ta with the name ta and the type and type parameters of the parent type. Access
to the components is illustrated by the following example.

type ta
 real :: x
end type
type, extends (ta) :: tb
 integer :: i
end type
type(tb) :: bobj
. . .
bobj%x = 1
bobj%ta%x = 2 ! Overwrites the previous assignment of 1

A variable can be declared as polymorphic; it has a declared type and a dynamic type that is permitted to be the
declared type or any extension of the declared type. A type declaration can bind existing procedures to the type;
each has a binding name that can be the same as the name of the existing procedure. The existing procedure
usually has a dummy argument of the type that is given the pass attribute. A type-bound procedure is invoked
as if it were a component of the object; if the procedure has an argument with the pass attribute, the
corresponding actual argument must be omitted from the argument list and the invoking object is passed
automatically. Here is an example

module m
 type ta
 real :: x = 7.2
 end type
 type, extends (ta) :: tb
 integer :: i
 contains
 procedure :: proc => foo ! hence a call to obj%proc() is equivalent to
 ! the call foo(obj)
 end type
contains
 real function foo(arg)
 class(tb) :: arg
 foo = arg%x
 end function
end module m
. . .
 use m
 type(tb) :: bobj
 real :: y
 y = bobj%proc() ! y is assigned the value 7.2

Binding names are inherited by extensions of the type but can be overridden by a specification for the same name
in the definition of an extended type. Which procedure is invoked in a type-bound reference is determined by the

Deleted:

14 © ISO/IEC 2013 – All rights reserved

dynamic type of the object through which the procedure is referenced. To execute alternative code depending on
the dynamic type of a polymorphic entity and to gain access to the dynamic parts, the select type construct
is provided.

4.10	Parallelism	

4.10.1	Images	and	coarrays
Fortran is an inherently parallel programming language, with program execution consisting of one or more
asynchronously executing replications, called images, of the program. The standard makes no requirements of
how many images exist for any program, nor of the mechanism of inter-image communication. Inquiry intrinsic
procedures are defined to allow a program to detect the number of images in use, and which replication the
executing image represents. Synchronization statements are defined to allow a program to synchronize its
images; the sync all statement provides a barrier for all images and the sync images statement
provides a barrier for specified images. Statements executed on one image ahead of its execution of an
event post statement precede statements executed on another image after its execution of a
corresponding event wait statement. The critical construct defines a scope in which only one image at
a time is permitted to execute.

All data objects are local to their respective image, but a data object declared as a coarray can be accessed
from another image. This access is accomplished by using cosubscripts in square brackets to indicate the
image being accessed. A coarray can be scalar or an array.

4.10.2	Locks
The lock and unlock statements provide a mechanism for ensuring that data on an image are accessed by one
image at a time. A lock is a scalar variable of the derived type lock_type that is defined in the intrinsic module
iso_fortran_env. A lock must be a scalar coarray or an element of an array coarray. It has one of two states:
locked and unlocked. The only way to change the value of a lock is by executing a lock or unlock statement. If
a lock variable is locked, it can be unlocked only by the image that locked it. If a lock statement is executed for a
lock variable that is locked by another image, the image normally waits for the lock to be unlocked by that image
but there is an option to continue execution in this case. An error condition occurs for a lock statement if the
lock variable is already locked by the executing image, and for an unlock statement if the lock variable is not
already locked by the executing image. Here is a simple example of the usage of a lock:

 lock (stack_lock[p])
 stack_size[p] = stack_size[p] + 1
 stack(stack_size[p])[p] = job
 unlock (stack_lock[p])

Here stack_lock is a coarray and p is a local scalar denoting an image. Even if several images execute this code at
the same time, no two are permitted to alter data on the same image p at the same time.

Data protection can also be achieved with a critical construct, which limits execution of the construct to one
image at a time:

 critical
 stack_size[p] = stack_size[p] + 1

Deleted: use

© ISO/IEC 2013 – All rights reserved 15

 stack(stack_size[p])[p] = job
 end critical

This would, however, prevent several images executing the code at the same time for different values of p.

4.10.3		Teams
Teams are sets of images; a team is expected to execute independently of other teams. The set of all images
forms the initial team. The form team statement subdivides a team into a set of new teams. The change
team construct defines a scope in which the new teams execute.

	
4.10.4	Segments	
Any statement that implies ordering between the execution of statements on different images is known as an
image control statement. For example, sync_all and sync_images are image control statements.

On each image, the set of statements executed between two image control statements is known as a
segment. The orderings imposed by the image control statements imply a partial ordering of all the segments
on all the images.

If the value of a variable or a part of it is altered in a segment, it is permitted to be referenced in another
segment only if the two segments are ordered, or if the variable is:

• integer of kind atomic_int_kind or logical of kind atomic_logical_kind (see 4.10.5
Atomic actions);

• asynchronous (see 4.10.6Asynchronous variables); or
• volatile (see 4.10.7 Volatile variables).

The execution of a sync memory statement defines a boundary on an image between two segments, each of
which can be ordered in some user-defined way with respect to segments on other images.

4.10.5	Atomic	actions	
There is an exception for the segment ordering rule for integers of kind atomic_int_kind and logicals of
kind atomic_logical_kind. These are permitted to be referenced and defined in unordered segments
by intrinsic subroutines including atomic_define, atomic_ref, and atomic_or. The system
insures that for each variable all such actions occur sequentially. Such variables are not volatile by the Fortran
language rules.

4.10.6	Asynchronous	variables	
Another exception of the segment ordering rule is that a variable can be declared as asynchronous. This
attribute indicates that the variable might be referenced or defined by non-Fortran procedures. Access to the
asynchronous variable is initiated by execution of a communication initiation procedure and is completed by
execution of a corresponding communication completion procedure. The programmer is responsible for
ensuring that the variable:

• is not referenced between execution of an input communication initiation procedure and execution of
the corresponding communication completion procedure; and

Deleted: ¶

Deleted: 	

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: 	

16 © ISO/IEC 2013 – All rights reserved

• is not defined between execution of an output communication initiation procedure and execution of the
corresponding communication completion procedure.

The asynchronous attribute is useful both for I/O of large blocks of data and for interoperating with
parallel-processing packages such as MPI. MPI provides procedures such as MPI_Irecv and MPI_Isend
for nonblocking transfer of data between processes. For example, in the code
 subroutine UpdateBuf(buf, …)
 real :: buf(100, 100)
 . . . code that involves buf.
 block
 asynchronous :: buf
 call MPI_Irecv(buf,. . . req, . . .)
 . . . code that does not involve buf.
 call MPI_Wait(req, . . .)
 end block
 . . . code that processes buf.

MPI_Irecv initiates input communication and can return while the communication (reading values into
buf) is still underway. The code between MPI_Irecv and MPI_Wait can execute without waiting for
this communication to complete provided it does not involve buf. Similar code with the call of
MPI_Irecv replaced by a call of MPI_Isend is asynchronous output communication. It should be noted
that any attempt to access buf between the MPI_Irecv and the MPI_Wait can result in corruption of
data, at least.

4.10.7	Volatile	variables	
A further exception for the segment ordering rule is that a variable can be declared as volatile. This
indicates to the compiler that, at any time, the variable might be changed and/or examined from outside the
Fortran program. The feature needs to be used with care. If two processes access the variable at the same
time, an inconsistent value might be obtained.

4.10.8	Collective	subroutines
There are several intrinsic subroutines that are collective in the sense that the images of the current team
collaborate to perform an action, such as summation.

4.10.9	Image	failure	

It is optional for a Fortran system to support continued execution in the presence of failed images. If an image is
regarded by the system as failed, it remains failed until execution terminates. The constant
stat_failed_image in the intrinsic module iso_fortran_env is positive if failed image handling is
supported and negative otherwise. If it is positive, it is used for the value of a stat= specifier or stat argument
if a failed image is involved in an image control statement, a reference to an object with cosubscripts, or an
invocation of a collective subroutine or atomic subroutine, and no other error condition occurs. The intrinsic
function image_status provides a test for the failure of a specified image, and the intrinsic function
failed_images returns an array of image indices of failed images in the current team.

4.10.10	Do	concurrent

Deleted: 	

Deleted: ¶

Deleted: 	

© ISO/IEC 2013 – All rights reserved 17

Another concurrency mechanism provided by Fortran is the do concurrent construct. It permits concurrent
execution of the iterations of a loop within the execution of a single image. It does not give the user visibility or
control of separate threads of execution performing the operations. By using this construct, the programmer
asserts that there are no interdependencies between loop iterations. The language processor is responsible for
organizing the usage of threads or other mechanisms such as pipelining or the usage of GPUs.

5	General	avoidance	mechanisms	for	Fortran	

In addition to the top 20 generic programming rules from ISO IEC 24772-1:2024 5.2, additional rules from this
section apply specifically to the Fortran programming language. The recommendations of this are restatements
of recommendations from clause 6, but represent ones stated frequently, or that are considered as particularly
noteworthy by the authors. Clause 6 of this document contains the full set of recommendations, as well as
explanations of the problems that led to the recommendations made.

Every guidance provided in this section, and in the corresponding Part section, is supported material in clause 6 of
this document, as well as other important recommendations.

Table	1:	Primary	avoidance	mechanisms	for	software	developers	

Number Recommended avoidance mechanism References
 Software developers can …
1. Use static analysis tools, including Fortran compilers, to

detect problematic code, such as
• Language features that are obsolescent, non-

conforming, or deleted
• Uninitialized variables
• Integer overflows

Enable the compiler’s detection of such code

6.22 [LAV] 6.25 [KOA]
6.53 [SKL] 6.56 [EWF]
6.57 [FAB] 6.54 [BRS]
6.58 [MEM]

2 Enable bounds checking and pointer checking throughout
development of a code and only disable such checking during
production runs when performance requirements cannot be
met otherwise.

6.8 [HCB] 6.14 [XYK]

3 Use all run-time checks that are available during
development to detect:

• Uninitialized variables
• Real value exceptions
• Integer overflows
• Null pointer checks
• Dangling pointer checks

6.2 [IHN] 6.15 [FIF]
6.36 [OYB] 6.52 [MXB]

4 Declare all variables and use implicit none to enforce
this.

6.17 [NAI] 6.21 [BJL]
6.54 [BRS] 7.1

5 Use an allocatable object in an assignment where differently-
sized objects might occur so the left-hand side object is
reallocated as needed.

6.8 [HCB] 6.9 [XYZ]
6.38 [YAN]

6 Use allocatable objects in preference to pointer objects
unless pointer assignment is required.

6.13 [XYH] 6.14 [XYK]
6.33 [DCM] 6.38 [YAN] 6.39 [XYL]

7 Avoid implicit interfaces; use explicit interfaces. 6.11 [HFC] 6.32 [CSI] 6.34 [OTR]

Deleted: use

Deleted: use

Deleted: 24772-1

Deleted: clause

Deleted: clause

Deleted: C

Deleted: Software developers can …

Deleted: ,

Deleted: ,

Deleted: ,

Deleted: ,

Deleted: ,

Deleted: ,

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: ,

Deleted: ,

Deleted: ,

Deleted: ,

Deleted: ,

18 © ISO/IEC 2013 – All rights reserved

6.46 [TRJ] 6.49 [NSQ] 6.53 [SKL]
6.56 [EWF] 6.57 [FAB]

8 Avoid using keywords as names and reusing names in nested
scopes.

6.17 [NAI] 6.20 [YOW]

9 In select constructs, cover cases that are expected never to
occur with a default clause to ensure that unexpected
cases are detected and processed, for example by emitting
an error message.

6.27 [CLL] 6.44 [BKK]

10 Specify argument intents to allow further checking of
argument usage.

6.32 [CSJ] 6.65 [UJO]

11 Avoid the usage of the intrinsic function transfer. 6.53 [SKL]
12 Use procedures from a trusted library to perform

calculations where floating-point accuracy is needed.
6.4 [PLF]

13 Test all diagnostic status values returned by procedure calls 6.36 [OYB]
14 Include an iostat or stat variable when possible and

check its value to ensure no errors occurred.
6.6 [FLC] 6.8 [HCB]
6.14 [XYK] 6.59 [CGA]

15 For parallel programming
• Use coarrays only when communication among

images is necessary.
• Use collective subroutines whenever possible.

6.61 [CGX] 6.63 [CGM]

6	Specific	analysis	for	Fortran	

6.1	General		

This clause contains specific advice for Fortran about the possible presence of vulnerabilities as described in
24772-1:2024 and provides specific guidance on how to avoid them in Fortran program code. This section mirrors
24772-1:2024 clause 6. For example, the vulnerability “Type System [IHN]” that is found in 6.2 of 24772-1:2024, is
addressed with the analysis of Fortran-specific issues addressed in 6.2 in this document.

6.2	Type	system	[IHN]		

6.2.1 Applicability to language

The vulnerabilities documented in ISO/IEC … apply to Fortran. They are partially mitigated by Fortran’s strong type
system, as described below.

The Fortran type system is a strong type system consisting of data types and type parameters. A type parameter is
an integer value that specifies a parameterization of the type; a derived type (defined by the user) need not have
any type parameters. Objects of the same type that differ in the value of their type parameter(s) might differ in
representation, and therefore in the limits of the values they can represent. For many purposes for which other
languages use type, Fortran uses the type, type parameters, and rank of a data object. A conforming processor
supports at least two kinds of type real and a complex kind corresponding to each supported real kind. Double
precision real is required to provide more digits of decimal precision than default real. A conforming processor
supports at least one integer kind with a range of 1018 or greater.

Deleted: ,

Deleted: ,

Deleted: ,

Deleted: ,

Deleted: ,

Deleted:

Deleted: use

Deleted:

Deleted:

Deleted: 24772-1

Deleted: 24772-1

Deleted: 24772-1

Deleted: clause

© ISO/IEC 2013 – All rights reserved 19

The compatible types ©n Fortran are the numeric types: integer, real, and complex. No coercion exists between
type logical and any other type, nor between type character and any other type. Among the numeric types,
coercion might result in a loss of information or an undetected failure to conform to the standard. For example, if
a double-precision real is assigned to a single-precision real, round-off is likely; and if an integer operation results
in a value outside the supported range, the program is not conforming. This might not be detected. Likewise,
assigning a value to an integer variable whose range does not include the value, renders the program not
conforming.

An example of coercion in Fortran is (assuming rkp names a suitable real kind parameter):

real(kind=rkp) :: a
integer :: i
a = a + i

which is automatically treated as if it were:

a = a + real(i, kind=rkp)

Objects of derived types are considered to have the same type when their type definitions are from the same
original text (which can be made available to other program units by module use). Sequence types and bin©)
types represent a narrow exception to this rule. Sequence types are less commonly used because they are less
convenient, cannot be extended, and cannot interoperate with types defined by a companion processor. ©d(c)
types are, in general, only used to interoperate with types defined by a companion processor; they also cannot be
extended.

A derived type can have type parameters and these parameters can be applied to the derived type’s components.
Default assignment of variables of the same derived type is component-wise. Default assignment can be
overridden by an explicitly coded assignment procedure. For derived-type objects, type changing assignments and
conversion procedures are required to be explicitly coded by the programmer. Other than default assignment,
each operation on a derived type is defined by a procedure. These procedures can contain any necessary checks
and coercions.

In addition to the losses mentioned in Clause 6 of ISO/IEC 24772-1:2024, intrinsic assignment of a complex entity
to a noncomplex variable only assigns the real part.

Intrinsic functions can be used in constant expressions that compute desired kind type parameter values. Also,
the intrinsic module iso_fortran_env supplies named constants suitable for kind type parameters.

Intrinsic assignment between user-defined types is only permitted if the types are type compatible, and therefore
the vulnerability associated with structural equivalence documented in ISO/IEC 24772-1:2024 does not exist in
Fortran.

Fortran provides the capability to identify different units of measure through the usage of distinct derived types.
For example, the derived types
 type centigrade

Deleted: i

Deleted: d(c

Deleted: to use

Deleted: Bin

Deleted: 24772-1

Deleted: 24772-1

Deleted: use

20 © ISO/IEC 2013 – All rights reserved

 real :: temp
 end type

and
 fahrenheit
 real :: temp
 end type

can be used to distinguish Celcius and Fahrenheit temperatures. The following code would not conform
to the standard.

 type (fahrenheit) :: f
 type (centigrade) :: c
 c = f ! Non-conforming

6.2.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.2.5;
• Use kind values based on the needed range for integer types via the selected_int_kind intrinsic

procedure and based on the range and precision needed for real and complex types via the
selected_real_kind intrinsic procedure.

• Use explicit conversion intrinsics for conversions of values of intrinsic types, even when the conversion is
within one type and is only a change of kind. Doing so alerts the maintenance programmer to the fact of
the conversion, and that it is intentional.

• Use inquiry intrinsic procedures to learn the limits of a variable’s representation and thereby take care to
avoid exceeding those limits.

• Use derived types to avoid implicit conversions.
• Use simple derived types to hold numeric values that can represent different unit systems (such as

radians vs degrees) and provide explicit conversion functions as needed;
• Use compiler options when available to detect during execution when a significant loss of information

occurs.
• Use compiler options when available to detect during execution when an integer value overflows.

6.3	Bit	representation	[STR]		

6.3.1	Applicability	to	language

The vulnerability associated with the difficulty of bit-oriented manipulations as described in ISO/IEC 24772-1:2024
6.3.1 applies to Fortran but is mitigated because all bit operations can be performed by referencing intrinsic
procedures.

The vulnerability associated with endianness does not apply to Fortran, since Fortran defines bit positions by a bit
model described in 16.3 of the standard. Care should be taken to understand the mapping between an external
definition of the bits (for example, a control register) and the bit model. The programmer can rely on the bit

Deleted: type fah

Deleted: renheit

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 24772-1

Deleted: subclause

Deleted: 24772-1

Deleted: clause

Deleted: Subclause

© ISO/IEC 2013 – All rights reserved 21

model, which depends only on the number of bits in each integer datum and not on how the implementation
interprets these bits as an integer value.

Fortran allows constants to be defined by binary, octal, or hexadecimal digits, collectively called BOZ constants.
BOZ constants can only be used to initialize variables and as arguments to intrinsic functions that perform bit
operations or convert to the numeric types.

These values can be assigned to named constants thereby providing a name for a mask. Such constants can be
placed in an integer aligned to the right using the int intrinsic, for example,

 i = int(o’716’,kind(i)).

If the size of I is 8 bits, then the final value would be o’316’, not o’716’, as the user intended. One can ensure that
the integer is long enough by using the bit_size intrinsic, for example

 if (bit_size (i) >= 9) then
 i = int(o’716’,kind(i))
 else
 . . .

A further complication arises if a BOZ constant is interpreted as a real number since real numbers can have a
number of representations.

Derived types in Fortran can be used to isolate bit operations within the type definition and thus to prevent its
direct usage by the user of the derived type.

Fortran provides access to individual bits within an integer by bit manipulation intrinsic procedures. Of particular
use, shift procedures are provided to manipulate a bit field held in more than a single integer.

The bit model does not provide a bit representation for negative integer values.

6.3.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Use the language-provided intrinsics whenever bit manipulations are necessary, especially those that

occupy more than one integer.
• Encapsulate bit strings inside derived types to exclude numeric operations on them.
• Use the intrinsic procedure bit_size to determine the size of the bit model supported by the kind of

integer in use.
• Be aware that the Fortran standard uses the term “left-most” to refer to the highest-order bit,

and the term “left” to mean towards the highest-order bit (as in shiftl) .
• Avoid using compiler extensions that allow variables of logical type to hold bit string values, because the

results can vary between implementations.
• Avoid compiler extensions that accept BOZ constants in non-standard usage.

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

22 © ISO/IEC 2013 – All rights reserved

6.4	Floating-point	arithmetic	[PLF]		

6.4.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.4 is applicable to Fortran. Most language processors
support much of the ISO/IEC/IEEE 60559:2011 standard and facilities are provided for the programmer to detect
the extent of conformance.

The rounding mode in effect during translation might differ from the rounding mode in effect during
execution; most processors support the rounding mode being changed during execution under program
control. A separate rounding mode is provided for input/output formatting conversions; this rounding mode
is required to be supported and can also be changed during execution.

Fortran provides intrinsic procedures to give values describing any representation method in use, to provide
access to the parts of a floating-point quantity, and to set the parts.

6.4.2 Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.4.5;
• Use procedures from a trusted library to perform calculations where floating-point accuracy is needed.
• Understand the usage of the library procedures and test the diagnostic status values returned to ensure

the calculation proceeds as expected;
• Avoid creating a logical value from a test for equality or inequality between two floating-point

expressions, and use compiler options where available to detect such usage.
• Avoid using floating-point variables as loop indices, as it is a deleted feature; use integer variables instead;
• Use intrinsic inquiry procedures, when needed, to determine the properties of the representation in use;
• Avoid the usage of bit operations to get or to set the parts of a floating-point quantity, and use intrinsic

procedures to provide the functionality when needed;
• Where the IEEE intrinsic modules and the IEEE real kinds are in use, apply the intrinsic module procedures

to determine the limits of the processor’s conformance to ISO/IEC/IEEE 60559 and to determine the limits
of the representation in use;

• Where the IEEE intrinsic modules are in use, apply the intrinsic module procedures to detect and control
the available rounding modes and exception flags.

6.5	Enumerator	issues	[CCB]		

6.5.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.5 is applicable to Fortran since Fortran provides
enumeration values for interoperation with C programs that use C enums. Their usage is expected most often to
occur when a C enum appears in the function prototype whose interoperation requires a Fortran interface.

Vulnerabilities associated with indexing arrays with enumeration types do not apply to Fortran since enum literals
are simply	named	integer	constants	and	arrays	are	indexed	by	them.	The	arrays	must	be	dimensioned	
accordingly	to	accommodate	all	these	(and	other)	integer	values	as	indices. The Fortran variables to be

Deleted: 24772-1

Deleted: clause

Formatted: No bullets or numbering

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:¶
Use

Deleted: 24772-1

Deleted: clause

Deleted:

Deleted: use

Deleted: use

Deleted: use

Deleted: use

Deleted: 24772-1

Deleted: clause

Deleted: use

© ISO/IEC 2013 – All rights reserved 23

assigned the enumeration values are of type integer and the correct kind to interoperate with C variables of C
type enum.

6.5.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.5.5;
• Use enumeration values in Fortran only when interoperating with C procedures that have enumerations

as formal parameters and/or return enumeration values as function results;
• Ensure the interoperability of the C and Fortran definitions of every enum type used;
• Ensure that the correct companion processor has been identified, including any companion processor

options that affect enum definitions;

• Avoid the usage of variables assigned enumeration values in arithmetic operations, or the usage of
variables to receive the results of arithmetic operations if subsequent usage would be as an enumerator.

6.6	Conversion	errors	[FLC]		

6.6.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.6 is applicable to Fortran .

Fortran processors are required to support two kinds of type real and are required to support a complex kind for
every real kind supported. Fortran processors are required to support at least one integer kind with a range of
1018 or greater and most processors support at least one integer kind with a smaller range.

Automatic conversion among numeric types is allowed, with the associated vulnerabilities documented in ISO/IEC
24772-1:2024 6.6.

Fortran does not provide intrinsic assignment between unrelated types for conforming programs. The
programmer can create explicit conversion routines between unrelated types.

Equivalence between objects of character and integer types as well as between objects of logical and numeric
types is obsolescent, and will be diagnosed by compilers with a warning when requested.

Intrinsic assignment provides automatic conversion between default and ASCII character kinds, and from these
kinds to ISO/IEC 10646 character kind.

Fortran uses IO statements for conversion between character and numeric types. If the field width is insufficient
on output then asterisks are used. If a value on input cannot be represented, the outcome is processor dependent
but an error condition should be expected. If the Fortran processor detects an error on input or output, then the
IOSTAT variable is set to a nonzero value.

Conversions between incompatible types can be achieved by explicitly invoking user-provided conversion
functions, e.g.

 type (centigrade) function FtoC(t)
 type (fahrenheit) :: t
 FtoC%temp = (t%temp-32.0)/1.8

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 24772-1

Deleted: clause

Deleted: use

Deleted: use

Deleted: e

Deleted: will

Deleted: 24772-1

Deleted: clause

Deleted: 24772-1

Deleted: subclause

24 © ISO/IEC 2013 – All rights reserved

 end function
for conversion from Fahrenheit to Centigrade.

6.6.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.6.5;
• Use the kind selection intrinsic procedures to select sizes of variables supporting the required

operations and values;
• Use a temporary variable with a large range to read a value from an untrusted source so that the

value can be checked against the limits provided by the inquiry intrinsics for the type and kind of the
variable to be used;

• Use a temporary variable with a large range to hold the value of an expression before assigning it to a
variable of a type and kind that has a smaller numeric range to ensure that the value of the
expression is within the allowed range for the variable, and use the inquiry intrinsics to supply the
extreme values allowed for the variable;

• Use derived types and put checks in the applicable defined assignment procedures;
• Use static analysis or compiler features to identify conversions that can lose or corrupt information;
• Use compiler options when available to detect and report during execution when a loss or corruption

of information occurs;
• Include an IOSTAT variable in each IO statement and check its value after each IO operation to ensure

any errors that occurred are processed appropriately.

6.7	String	termination	[CJM]		

The vulnerability as specified in ISO/IEC 24772-1:2024:2019 6.7 is not applicable to Fortran since strings are not
terminated by a special character and the string length is maintained by the implementation.

6.8	Buffer	boundary	violation	(Buffer	overflow)	[HCB]		

6.8.1	Applicability	to	language	

The vulnerability as specified in ISO/IEC 24772-1:2024:2019 6.8 is applicable to Fortran as follows. A Fortran
program might be affected by this vulnerability in two situations. The first is that an array subscript could be
outside its bounds, and the second is that a character substring index could be outside its length. The Fortran
standard requires that each array subscript be within its bounds, not simply that the resulting offset be within the
array as a whole.

Fortran does not mandate array subscript checking to verify in-bounds array references, nor character substring
index checking to verify in-bounds substring references.

The Fortran standard requires that array shapes conform for whole array assignments and operations where the
left-hand side is not an allocatable object. However, Fortran does not mandate that array shapes be checked
during whole-array assignments and operations.

Any undetected bounds violations result in undefined behaviour; see 6.56 Undefined behaviour [EWF].

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 24772-1

Deleted: clause

Deleted: 24772-1

Deleted: clause

Deleted: 24772-1

Deleted: clause

© ISO/IEC 2013 – All rights reserved 25

When a whole-array assignment occurs to define an allocatable array, the allocatable array is resized, if needed,
to the correct size. When a whole character assignment occurs to define an allocatable character, the allocatable
character is resized, if needed, to the correct size.

When a character assignment defines a non-allocatable character variable and a length mismatch occurs, the
assignment has a blank-fill (if the value is too short) or truncate (if the value is too long) semantic; this is also true
for input. If this happens for an allocatable character variable, the variable defined is resized, if needed, to the
correct size; but this does not happen for input.

The Fortran standard does not permit the character variable that defines an internal file to be too small for the
output sent to it but the standard does not mandate that this be checked.

If the character variable that defines an internal file is too small for the output sent to it, an error condition
results. This can be detected with an iostat= or err= specifier; without one of these, error termination occurs.

Most implementations include an optional facility for bounds checking. These bounds checks are likely to be
incomplete for a dummy argument that is an explicit-shape or assumed-size array because of passing only
the address of such an object, or because the local declaration of the bounds might be inconsistent with
those of the actual argument. It is therefore preferable to use an assumed-shape array as a procedure
dummy argument. The performance of operations involving assumed-shape arrays is improved by using the
contiguous attribute.

Fortran provides a set of array bounds intrinsic inquiry procedures which can be used to obtain the bounds of
arrays where such information is available. Fortran also provides character length intrinsic inquiry functions so the
length of character entities can be reliably found.

6.8.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:	
• Apply	the	avoidance	mechanisms	of	ISO/IEC	24772-1:2024		6.8.5	
• Ensure	that	consistent	bounds	information	about	each	array	is	available	throughout	a	program;	
• Enable	bounds	checking	throughout	code	development	and	only	disable	such	checking	during	

production	runs	when	performance	requirements	cannot	be	met	otherwise	and	after	extensive	
static	anlaysis	and	testing	to	ensure	that	bounds	are	not	ignored.;		

• Use	whole	array	assignment,	operations,	and	bounds	inquiry	intrinsics	where	possible;	
• Use	allocatable	arrays	where	array	operations	involving	differently-sized	arrays	might	occur	so	the	

left-hand	side	array	is	reallocated	as	needed;	
• Obtain	array	bounds	from	array	inquiry	intrinsic	procedures	wherever	needed	and		use	explicit	

interfaces	and	assumed-shape	arrays	to	ensure	that	array	shape	information	is	passed	to	all	
procedures	where	needed,	and	can	be	used	to	dimension	local	arrays;		

• Use	allocatable	character	variables	where	assignment	of	strings	of	varying	sizes	is	expected	so	the	
left-hand	side	character	variable	is	reallocated	as	needed;	

• Use	intrinsic	assignment	for	the	whole	character	variable	rather	than	looping	over	substrings	to	
assign	data	to	statically-sized	character	variables	so	that	the	truncate-or-blank-fill	semantic	will	
protect	against	storing	outside	the	assigned	variable;	

• Verify	that	the	records	of	an	internal	file	are	large	enough	for	the	output	being	sent	to	them.	

Deleted: the use of

Deleted: Fortran	software	developers	can	avoid	the	
vulnerability	or	mitigate	its	ill	effects	in	the	following	ways.	They	
can:…Use	
Use	

Deleted: Use	

Deleted: 24772-1

Deleted: clause

26 © ISO/IEC 2013 – All rights reserved

6.9	Unchecked	array	indexing	[XYZ]		

6.9.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.9 is applicable to Fortran.

A Fortran program can be affected by this vulnerability when an array subscript is outside its bounds. The Fortran
standard requires that each array subscript be within its bounds, not simply that the resulting offset be within the
array as a whole, but implementations are not required to diagnose this.

Most processors include an optional facility for bounds checking. These are likely to be incomplete for a
dummy argument that is an explicit-shape or assumed-size array because of passing only the address of such
an object, or because the local declaration of the bounds might be inconsistent with those of the actual
argument. It is therefore preferable to select an assumed-shape array as a procedure argument. The
performance of operations involving assumed-shape arrays is improved by the use of the contiguous
attribute.

Fortran provides a set of array bounds intrinsic inquiry procedures which can obtain the bounds of arrays where
such information is available.

6.9.2 Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.9.5;
• Ensure that consistent bounds information about each array is available throughout a program;

• Enable bounds checking, when available, throughout development of a code, and only disable bounds
checking during production runs and only for program units that are critical for performance;

• Use whole array assignment, operations, and bounds inquiry intrinsics where possible;
• Obtain array bounds from array inquiry intrinsic procedures wherever needed, and use explicit interfaces

and assumed-shape arrays or allocatable arrays as procedure dummy arguments to ensure that array
shape information is passed to all procedures where needed and can be used to dimension local arrays;

• Use allocatable arrays where array operations involving differently sized arrays might occur so the left-
hand side array is reallocated as needed;

• Declare the lower bound of each array extent to fit the problem, thus minimizing the usage of subscript
arithmetic.

6.10	Unchecked	array	copying	[XYW]		

6.10.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.10 is applicable to Fortran. See 6.9 Unchecked array
indexing [XYZ].

6.10.2 Avoidance	mechanisms	for	language	users	

Deleted: 24772-1

Deleted: :2019 clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 24772-1

Deleted: clause

Deleted: use

Deleted: 24772-1

Deleted: clause

Deleted: clause

© ISO/IEC 2013 – All rights reserved 27

To avoid the vulnerability or mitigate its ill effects Fortran software developers can apply the avoidance
mechanisms of ISO/IEC 24772-1:2024 6.8.2 Buffer boundary violations [HCB].

6.11	Pointer	type	conversions	[HFC]		

6.11.1 Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.11 is applicable to Fortran in the following cases: in the
context of polymorphic pointers; the C-style pointer conversion intrinsics; and in the usage of implicit interfaces
for procedure pointers and dummy procedure arguments. All other pointer conversions are forbidden.

A non-polymorphic pointer is declared with a type and can be associated only with an object of its type. A
polymorphic pointer that is not unlimited polymorphic is declared with a type and can be associated only with an
object of its type or an extension of its type. An unlimited polymorphic pointer can be used to reference its target
only by using a type with which the type of its target is compatible in a select type construct. A procedure
pointer can only be associated with a procedure target. These restrictions are enforced during compilation.

A procedure pointer with an implicit interface can be associated with a procedure target that has a different
implicit interface, with the risk of passing incompatible arguments. Similarly, a dummy procedure with an implicit
interface can be associated with an actual procedure that has a different interface, with the risk of passing
incompatible arguments. Either case can result in arbitrary failures.

When an unlimited polymorphic pointer has a target of a sequence type or an interoperable derived type, a type-
breaking cast can occur. All usage of sequence types is error prone because no checks are made by the compiler
for components of the wrong type or shape.

A pointer appearing as an argument to the intrinsic module procedure c_loc effectively has its type changed to
the intrinsic type c_ptr, which can be recast to any type. A procedure pointer appearing as an argument to the
intrinsic module procedure c_funloc effectively has its type changed to the intrinsic type c_funptr, which can
be recast to any procedure pointer.

6.11.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.11.5;
• Avoid implicit interfaces; use explicit interfaces instead;
• Avoid the use of C-style pointers, unless necessary to interface with C programs;
• Avoid sequence types.

6.12	Pointer	arithmetic	[RVG]		

The vulnerability as specified in ISO/IEC 24772-1:2024 6.12 is not applicable to Fortran since there is no
mechanism for pointer arithmetic in Fortran.

6.13	Null	pointer	dereference	[XYH]	

6.13.1	Applicability	to	language		

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can

Deleted: use

Deleted: 24772-1

Deleted: :2019

Deleted: clause

Deleted: use

Deleted: use

Deleted: d

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: clause

Deleted: 24772-1

Deleted: :2019

Deleted: clause

28 © ISO/IEC 2013 – All rights reserved

The vulnerability as specified in ISO/IEC 24772-1:2024 6.13 is applicable to Fortran. For a pointer whose
association status is defined, the Fortran intrinsic procedure associated determines whether a pointer

• has a valid target, i.e. is not NULL, or
• is associated with a particular target.

This vulnerability also occurs for a pointer whose pointer association status is undefined, meaning that a request
about its association status is unreliable.

In Fortran, it is invalid to reference an allocatable variable or component (see 4.8) that is not allocated.

Some processors include an optional facility for pointer checking.

6.13.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms s of ISO/IEC 24772-1:2024 6.13.5;
• Ensure that all pointers have a defined association status before use, either by initialization or by pointer

assignment;
• Consider using allocatable instead of pointer when possible, since the allocation status of

allocatable variables or allocatable components cannot be undefined;
• Use static analysis tools and compiler options where available to enable pointer checking during

development of a code;
• Use the associated intrinsic procedure before referencing a target through a pointer if there is any

possibility of the pointer being null;
• Use default initialization in the declarations of pointer components.

6.14	Dangling	reference	to	heap	[XYK]		

6.14.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.14 is applicable to Fortran because it has pointers, and
separate allocate and deallocate statements for them.

6.14.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.14.5;
• Use allocatable objects in preference to pointer objects whenever the facilities of allocatable objects are

sufficient;
• Use compiler options where available or static analysis tools to detect dangling references;
• Enable pointer checking throughout development of code and only disable such checking during

production runs when performance requirements cannot be met otherwise;
• Avoid pointer-assigning a pointer to a target if the pointer might have a longer lifetime than the target or

the target attribute of the target, and check actual arguments that are argument associated with dummy
arguments that are given the target attribute within the referenced procedure;

Deleted: 24772-1

Deleted: :2019

Deleted: clause

Deleted: clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: clause

Deleted: 24772-1

Deleted: :2019

Deleted: clause

Deleted:

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 2019

Deleted: clause

© ISO/IEC 2013 – All rights reserved 29

• Check for successful deallocation when deallocating a pointer by using the stat= specifier.

6.15	Arithmetic	wrap-around	error	[FIF]		

6.15.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.15 is applicable to Fortranfor integer values. Some
processors have an option to detect this vulnerability at run time.

6.15.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.15.5
• Use the intrinsic procedure selected_int_kind to select an integer kind value that will be adequate

for all anticipated needs.
• Use compiler options where available or static analysis tools to detect during execution when an integer

value overflows.

6.16	Using	shift	operations	for	multiplication	and	division	[PIK]		

6.16.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.16 is applicable to Fortran. Fortran provides bit
manipulation through intrinsic procedures that operate on integer variables. Specifically, both shifts that replicate
the left-most bit and shifts that do not are provided as intrinsic procedures with integer operands.

6.16.2	Avoidance	mechanisms	for	language	users		

To avoid the vulnerability or mitigate its ill effects Fortran software developers can avoid using shift intrinsics
where integer multiplication or division is intended.

6.17	Choice	of	clear	names	[NAI]		

6.17.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.17 is applicable to Fortran.

Fortran is a single-case language; upper case and lower case are treated identically by the standard in names. A
name can include underscore characters, except in the initial position. The number of consecutive
underscores is significant but might be difficult to see.

When implicit typing is in effect, a misspelling of a name results in a new variable. Implicit typing can
be disabled by usage of the implicit none statement.

Fortran has no reserved names. Language keywords are permitted as names.

6.17.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

Deleted: 19

Deleted: clause

Deleted: . This vulnerability is applicable to Fortran

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: 2019

Deleted: clause

Formatted: Font: 11 pt

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can

Deleted: 19 clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

30 © ISO/IEC 2013 – All rights reserved

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.17.5;
• Declare all variables and use implicit none to enforce the declaration of all variables before use;
• Disable implicit typing through the usage of the implicit none statement.
• Prohibit the usage of consecutive underscores in a name;
• Prohibit the usage of keywords as names;
• Be aware of language rules associated with the case of external names and with the attribute

bind(C).

6.18	Dead	store	[WXQ]		

6.18.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.18 is applicable to Fortran.

6.18.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.18.5.
• Declare all variables and use implicit none to enforce the declaration of all variables before use;

6.19	Unused	variable	[YZS]		

6.19.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.19 is applicable to Fortran. Fortran has separate
declaration and usage of variables and does not require that all variables declared be used, so this vulnerability
applies.

6.19.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.19.5
• Declare all variables and use implicit none to enforce the declaration of all variables before use;

6.20	Identifier	name	reuse	[YOW]		

6.20.1	Applicability	to	language

The vulnerability as specified in ISO/IEC in 24772-1:2024 6.20 is applicable to Fortran. Fortran has several
situations where nested scopes occur. These include:

• Module procedures have a nested scope within their module host.
• Internal procedures have a nested scope within their (procedure) host.
• A block construct might have a nested scope within the host scope.
• An array constructor might have a nested scope.

Deleted: Use

Deleted: 2019

Deleted: clause

Deleted: use

Deleted: Avoid

Deleted: using

Deleted: Avoid using

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 2019

Deleted: clause

Deleted: 2019

Deleted: clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 24772-1

Deleted: :2019

Deleted: clause

Deleted: 19 clause

© ISO/IEC 2013 – All rights reserved 31

The index variables of some constructs, such as do concurrent or array constructor implied do loops, are
local to the construct. A select name in an associate or select type construct is local to the construct.

6.20.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.20.5;
• Avoid reusing a name within a nested scope;
• Clearly comment the distinction between similarly named variables, wherever they occur in nested

scopes;
• Be aware of the scoping rules for statement entities and construct entities.

6.21	Namespace	issues	[BJL]		

6.21.1	Applicability	to	language

The vulnerability specified in 24772-1:2024 6.22 does not apply to Fortran because the import of homographs
into a unit results in compilation failure on an attempt to access one of the named items, i.e. the ambiguity is
diagnosed. These ambiguities can be resolved by renaming one or both of the homographs on import.

A similar vulnerability exists, however, when implicit typing is used within a scope, and a module is accessed via
use association without an only list. Specifically, a variable that appears in the local scope but is not explicitly
declared, might have a name that is the same as a name that was added to the module after the module was first
used. This can cause the declaration, meaning, and the scope of the affected variable to change. See also clause
6.45 “Extra intrinsics”.

6.21.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Avoid implicit typing, always declare all variables, and use implicit none to enforce this;
• Use a global private statement in all modules to require explicit specification of the public attribute;
• Use an only clause on every use statement;
• Use renaming to resolve name collisions.

6.22	Missing	initialization	of	variables	[LAV]		

6.22.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.22 applies to Fortran. The value of a variable that has never
been given a value is undefined. It is the programmer’s responsibility to guard against the usage of uninitialized
variables.

Supplying an initialization in the declaration of a local variable, or in a data statement, causes the variable to be
located in static storage, so later invocations of the unit will see the last stored value from the previous
invocation. This can be avoided by using executable statements to initialize local variables.

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: 19 clause

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New, Not Italic

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Formatted: Font: (Default) Courier New, 11 pt

Deleted: 19 clause

Deleted: use

32 © ISO/IEC 2013 – All rights reserved

6.22.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.22.5;
• Favour explicit initialization in executable statements for objects of intrinsic type and default initialization

for components of objects of derived type;
• When providing default initialization, provide default values for all components;
• Use type value constructors to provide values for all components;
• Use compiler options, where available, and static analysis tools to identify instances of use of uninitialized

variables;
• Use other tools, for example, a debugger or flow analyzer, to detect instances of the use of uninitialized

variables.

6.23	Operator	precedence	and	associativity	[JCW]		

6.23.1	Applicability	to	language

The vulnerability as specified in ISO/IEC 24772-1:2024 6.23 applies to Fortran.

Fortran specifies an order of precedence for operators. The order for the intrinsic operators is well known except
among the logical operators .not., .and., .or., .eqv., and .neqv.. In addition, any monadic defined
operator, and any dyadic defined operator have a position in this order, but these positions are not well known.

6.23.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.23.5;
• Consult the Fortran reference manual or suitable reference books for definitive information on specific

operator precedence and associativity issues.

6.24	Side-effects	and	order	of	evaluation	[SAM]		

6.24.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.24 applies to Fortran. Non-intrinsic Fortran functions are
permitted to have side effects unless the function is declared using the pure attribute. Within expressions, the
order of invocation of functions is not specified. The standard explicitly requires that evaluating any part of an
expression does not change the value of any other part of the expression, but there is no requirement for this to
be diagnosed by the processor.

Further, the Fortran standard allows a processor to ignore any part of an expression that is not needed to
compute the value of the expression. Processors vary as to how aggressively they take advantage of this
permission.

6.24.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: 19 clause

Deleted: 22

Deleted: ,

Deleted: to have

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

© ISO/IEC 2013 – All rights reserved 33

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.24.5;
• Replace any function with a side effect by a subroutine so that its place in the sequence of computation is

certain;
• Assign function results to temporary variables and use the temporary variables in the original expression;
• Declare a function as pure whenever possible.

6.25	Likely	incorrect	expression	[KOA]		

6.25.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.25 applies to Fortran, however Fortran’s likely incorrect
expressions are not those documented there. Some of Fortran’s issues arise becaApply Fortran permits
processors to extend the language with syntax that conflicts with the standard.

Some processors allow an operator immediately preceding a unary operator, which should be avoided. This can
be detected by using processor options to detect violations of the standard. A common mistake is to confApply
intrinsic assignment (=) and pointer assignment (=>). Programmers sometimes assume that logical operators can
be used on numeric values.

6.25.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.25.5;
• Use an automatic tool to simplify expressions;
• Check for assignment versus pointer assignment carefully when assigning to names having the pointer

attribute;
• Enable the compiler’s detection of nonconforming code.

6.26	Dead	and	deactivated	code	[XYQ]		

6.26.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.26 applies to Fortran. There is no requirement in the Fortran
standard for processors to detect code that cannot be executed. It is entirely the task of the programmer to
remove such code.

The developer should justify each case of statements that cannot be executed.

If desirable to preserve older code for documentation (for example, of an older numerical method), the code
should be converted to comments. Alternatively, a source code control package can be used to preserve the text
of older versions of a program.

6.26.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.26.5;
• Use an editor or other tool that can transform a block of code to comments to do so with dead or

Deleted: Use

Deleted: 19 clause

Deleted: 19 clause

Deleted: use

Deleted: use

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

34 © ISO/IEC 2013 – All rights reserved

deactivated code;
• Use a version control tool to maintain older versions of code when needed to preserve development

history.

6.27	Switch	statements	and	static	analysis	[CLL]		

6.27.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.27 applies to Fortran.

Fortran has the select case construct, the select type construct and the select rank construct. In
each of these constructs, control never flows from one alternative to another, but it can happen that no case is
executed unless a default clause is included in each usage.

Fortran has obsoleted the computed go to statement which allows control to flow from one alternative to
another, and allows other unexpected flow of control.

6.27.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.27.5;
• Cover cases that are expected never to occur with a default clause to ensure that unexpected cases are

detected and processed, for example by emitting an error message;
• Prohibit the usage of the computed go to statement.

6.28	Demarcation	of	control	flow	[EOJ]		

6.28.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.28 applies primarily to deprecated constructs of Fortran.
Modern Fortran supports block constructs for choice and iteration, which have separate end statements for do,
select, and if constructs. Furthermore, these constructs can be named which reduces visual confusion when
blocks are nested.

6.28.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.28.5;
• Use the block form of the do-loop, together with cycle and exit statements, rather than the non-block

do-loop;
• Use the if construct or select case construct whenever possible, rather than statements

that rely on labels, that is, the arithmetic if and goto statements;
• Use names on block constructs to provide matching of initial statement and end statement for each

construct.

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: Avoid

Deleted: use

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Commented [SM1]: Should this not say “Prohibit statements
that depend on labels, specifically the arithithmetic if statement and
goto statement?

© ISO/IEC 2013 – All rights reserved 35

6.29	Loop	control	variable	abuse	[TEX]		

6.29.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.29 does not apply to standard Fortran, except	in	
circumstances	documented	here,	where	the	compiler	does	not	enforce	prohibitions	defined	by	the	Fortran	
standard.	

A Fortran do construct has the trip increment and trip count established when the do statement is executed.
These do not change during the execution of the loop.

The program is prohibited from changing the value of an iteration variable during execution of the loop. The
processor is usually able to detect violation of this rule, but there are situations where this is difficult or requires
the usage of a processor option; for example, an iteration variable might be changed by a procedure that is
referenced within the loop.

6.29.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Ensure that the value of the iteration variable is not changed other than by the loop control mechanism

during the execution of a do loop;
• Verify that where the iteration variable is an actual argument, it is associated with an intent(in) or a

value dummy argument.

6.30	Off-by-one	error	[XZH]		

6.30.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.30 applies to Fortran as described below.

The	vulnerability	is	mitigated	in	Fortran, as Fortran permits explicit declarations of upper and lower bounds of
arrays, which allows bounds that are relevant to the application to be used. For example, latitude can be declared
with bounds -90 to 90, while longitude can be declared with bounds -180 to 180. Thus, user-written arithmetic on
subscripts can be minimized.

This vulnerability is applicable to a mixed-language program containing both Fortran and C, since arrays in C
always have the lower bound 0 while the default in Fortran is 1, and one can reduce the overall complexity in
the programmer’s mind by declaring Fortran arrays with lower bounds of zero.

The vulnerability associated with off-by-one errors in loops applies to Fortran. The lbound and ubound
intrinsics provide a safe mechanism for iterating over array subscripts.

6.30.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.30.5;
• Declare array bounds to fit the natural bounds of the problem;
• Declare interoperable (with C) arrays with the lower bound 0;

Deleted: 19 clause

Deleted:

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

36 © ISO/IEC 2013 – All rights reserved

• Use lbound and ubound intrinsics to specify loop bounds instead of numeric literals.

6.31	Unstructured	programming	[EWD]		

6.31.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.31 applies to Fortran.

As the first language to be formally standardized, Fortran has older constructs that allow an unstructured
programming style to be employed.

These features have been superseded by better methods. The Fortran standard continues to support
these archaic forms to allow older programs to function. Some of them are obsolescent, which means
that the processor is required to be able to detect and report their usage.

Automatic tools are the preferred method of refactoring unstructured code. Only where automatic tools are
unable to do so should refactoring be done manually.

Refactoring efforts should always be thoroughly checked by testing of the new code.

6.31.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.31.5;
• Use the compiler or static analysis tools to detect unstructured programming and the usage of old or

obsolescent features;
• Use a tool to automatically refactor unstructured code;
• Replace unstructured code manually with modern structured alternatives only where automatic tools are

unable to do so.

6.32	Passing	parameters	and	return	values	[CSJ]		

6.32.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.32 applies to Fortran, but is mitigated to some extent.

Module procedures, intrinsic procedures, and internal procedures have explicit interfaces. An external
procedure has an explicit interface only when one is provided by a procedure declaration or interface body.
Such an interface body could be generated automatically using a software tool. Explicit interfaces allow
processors to check the attributes, including type, kind, and rank, of arguments and result variables of
functions.

Fortran does not specify the argument-passing mechanism, but rather specifies the rules of argument association.
These rules are generally implemented either by reference or by copy. More restrictive rules apply to coarrays
and to arrays with the contiguous attribute. Rules for procedures declared to have a C binding follow the
rules of C. Copying can be limited by the programmer specifying intent(in), intent(out), or value.

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: use

Deleted: 19 clause

© ISO/IEC 2013 – All rights reserved 37

Incorrect choice of parameter passing mechanism is therefore minimized, provided the intent specifications for
the arguments are supplied and correct. Moreover, the vulnerability of passing an incorrect address of a data
structure is limited by the requirement that targets of pointers always have the correct type, kind, and rank.

On the other hand, a vulnerability arises if the programmer relies on a particular parameter mechanism but the
compiler chooses a different one. This is particularly the case when aliasing is present.

Aliasing cannot occur for arguments declared with the value attribute.		Aliasing does not accord with the
Fortran standard,	but its detection is unlikely unless runtime checks are available and are employed. Aliasing
effects inside procedures can depend on the argument-passing mechanism chosen by the compiler.

The vulnerability of an uninitialized result value or intent(out)	argument exists, when it is not assigned a
value in the subprogram.

6.32.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.32.5.
• Specify explicit interfaces by placing procedures in modules where the procedure is to be used in more

than one scope, or by using internal procedures where the procedure is to be used in one scope only
• Specify argument intents to allow further checking of argument usage.
• Specify pure (or elemental) for procedures where possible for greater clarity of the programmer’s

intentions.
• Use a compiler or other tools to automatically create explicit interfaces for external procedures.

• If available, use runtime checks against aliasing, at least during development.
• Ensure that the result of a function is assigned, potentially through the usage of static analysis tools or

explicit runtime checks.

6.33	Dangling	references	to	stack	frames	[DCM]		

6.33.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.33 applies to Fortran when a local target does not have the
save attribute and the pointer has a lifetime longer than the target. However, the intended functionality is
often available with allocatables, which do not suffer from this vulnerability. The Fortran standard explicitly states
that the lifetime of an allocatable function result extends to its usage in the expression that invoked the call.

6.33.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.33.5;
• Avoid pointer assignment to a target if the pointer association has a longer lifetime than the target or the

target attribute of the target;
• Use allocatable variables in preference to pointers wherever they provide sufficient functionality.

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: use

Deleted: 19 clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

38 © ISO/IEC 2013 – All rights reserved

6.34	Subprogram	signature	mismatch	[OTR]		

6.34.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.34 applies to Fortran.

The Fortran term denoting a procedure’s signature is its interface.

The Fortran standard requires that interfaces match, but does not require that the processor diagnoses
mismatches. However, processors do check this when the interface is explicit. Some processors can check
interfaces if inter-procedural analysis is requested.

Explicit interfaces are provided automatically for intrinsic procedures or when procedures are placed in modules
or are internal procedures within other procedures.

6.34.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.34.5;
• Use explicit interfaces, for example by placing procedures inside a module or making them internal

procedures;
• Use a processor or a static analysis tool that checks all interfaces;
• Use a processor or other tool to create explicit interface bodies for external procedures.

6.35	Recursion	[GDL]		

6.35.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.35 applies to Fortran since Fortran supports recursion. In
Fortran 2018, procedures are recursive by default and the keyword non_recursive is required to indicate the
opposite. Previous versions provide the recursive attribute to permit recursion.

Recursive calculations are attractive in some situations due to their close resemblance to the most compact
mathematical formula of the quantity to be computed. Also,	some	recursion	patterns	cannot	be	reduced	to	
iterations,	short	of	programming	a	call	stack	explicitly.

6.35.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.35;
• Prefer iteration to recursion, unless it can be proved that the depth of recursion can never be large.

6.36	Ignored	error	status	and	unhandled	exceptions	[OYB]		

6.36.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.36 applies to Fortran.

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: 19 clause

Deleted: it

Deleted: ;

Deleted:

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: 19 clause

© ISO/IEC 2013 – All rights reserved 39

Fortran consistently Apply s a scheme of status values where zero indicates success, a positive value indicates an
error, and a negative value indicates some other information. Many Fortran statements and some intrinsic
procedures return such a status value. A failure by the invoking program to request the status value when there is
an error results in error termination of the program. Some programmers, however, in order to “keep going”
request the status value but do not examine it. This can result in unbounded program errors when subsequent
steps in the program rely upon the previous statements having completed successfully, see 6.56 Undefined
behaviour [EWF].

The intrinsic module ieee_exceptions is defined by the standard for the support of floating-point exceptions
(see 4.6) and is provided by most processors. Accessing this module allows the program to test the Fortran flags.

Fortran does not support exception handling of the kind described in ISO IEC 24772-1:2024 6.36.3 para 4. For
each of the Fortran flags, some processors allow control during program execution of whether to halt image
execution or continue after the flag is raised. Halting is not precise and can occur any time after the exception has
occurred.

Fortran does not support detection of integer overflow (see 6.15), but some compilers have an option for
detecting it.

6.36.2	Avoidance	mechanisms	for	language	Apply	rs

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.36.5;
• When the default behaviour of program termination is undesirable, code a status variable for all

statements that support one, examine its value prior to continuing execution for faults that cause
termination, and take appropriate action;

• Check and respond to all status values that are returned by an intrinsic procedure or by a library
procedure;

• Use compiler options where available to detect integer overflow.

6.37	Type-breaking	reinterpretation	of	data	[AMV]		

6.37.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.37 applies to Fortran only in the context of the transfer
intrinsic function or the obsolescent features common, equivalence, and entry. In particular, standard Fortran
does not provide other means to convert between unrelated types.

The intrinsic function transfer permits the unchecked copying from a value to a specified (different) type.

Storage association via common, equivalence, or entry statements, or via the intrinsic procedure
transfer can cause a type-breaking reinterpretation of data. Type-breaking reinterpretation via common,
equivalence, or entry is not standard-conforming.

6.37.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

Deleted: use

Deleted: clause

Deleted: subclause

Deleted: clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

40 © ISO/IEC 2013 – All rights reserved

• Avoid usage of the transfer intrinsic unless its usage is unavoidable, and then document the usage
carefully;

• Avoid the usage of common to share data. Use module variables instead;
• Avoid the usage of equivalence. If the intent is to save storage space, use allocatable data instead;
• Avoid the usage of entry, but instead use a module containing any private data items, with a module

procedure for each entry point and the shared code in a private module procedure;
• Use compiler options where available and static analysis tools to detect the obsolescent features common,

equivalence, and entry.

6.38	Deep	vs.	shallow	copying	[YAN]		

6.38.1	Applicability	to	language

The vulnerability described in ISO/IEC 24772-1:2024 6.38. applies to Fortran. Both deep copy and shallow copy are
supported by the language. The operator = performs a deep copy except for pointer components. The operator
=> performs pointer assignment.

For assignment (the operator =), data structures that do not contain pointers are completely copied. Allocatable
components (see 4.8) are completely copied, and pointer components have only the pointer copied. If the
allocatable object has already been allocated but has a different shape or different dynamic type, then the target
will be deallocated, reallocated to the shape and dynamic type the source, and the copy is completed; for arrays,
the lower bound of the copied array is 1 in each dimension. If no reallocation is necessary, the left-hand side of
the assignment retains its bounds and dynamic type, and does not assume the lower bound of the right.

6.38.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply allocatable components in preference to pointer components;
• Copy the objects referred to by pointer components if there is any possibility that the aliasing of a

shallow copy would affect the application adversely.

6.39	Memory	leaks	and	heap	fragmentation	[XYL]		

6.39.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.39 applies to Fortran as described below.

The misuse of pointers in Fortran can cause a memory leak. However, the intended functionality is often available
with allocatables, which cannot cause memory leaks. Multiple allocations using pointers or allocatables can cause
fragmentation.

6.39.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.39.5;
• Use allocatable data items rather than pointer data items whenever possible;

Deleted: use

Deleted: use

Deleted: use

Deleted: use

Deleted: use

Deleted: clause

Deleted: clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

© ISO/IEC 2013 – All rights reserved 41

• Use final routines to free memory resources allocated to a data item of derived type;
• Use a tool during testing to detect memory leaks.

6.40	Templates	and	generics	[SYM]		

The vulnerability specified in ISO/IEC 24772-1:2024 6.40 does not apply to Fortran since Fortran does not support
templates or generics.

6.41	Inheritance	[RIP]		

6.41.1	Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.41 applies to Fortran since Fortran supports inheritance and
redefinition of type-bound subprograms. Fortran supports single inheritance only, so the complexities associated
with multiple inheritance do not apply. The problem of accidental redefinition is partially mitigated by the
non_overridable attribute which prevents overriding by all subclasses. There is no mechanism to restrict a
type-bound procedure to be a redefinition or a new procedure, respectively. Hence the vulnerabilities of
accidental redefinition and non-redefinition apply.

6.41.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.41.5;
• Declare a type-bound procedure to be non_overridable when necessary to ensure that it is not

overridden by subclasses.

6.42	Violations	of	the	Liskov	substitution	principle	or	the	contract	model	[BLP]		

6.42.1	Applicability	to	language		

The vulnerability specified in ISO/IEC 24772-1:2024 6.42 applies to Fortran. Fortran provides no mechanism to
specify and enforce preconditions and postconditions, but the programmer can have this in mind and include
explicit precondition and postcondition tests in the code. Fortran has no mechanism to prevent “has-a”
inheritance.

6.42.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.42.5;
• Consider enforcing preconditions and postconditions by inserting explicit checks in the code.

6.43	Redispatching	[PPH]		

6.43.1	Applicability	to	language	

Deleted: 2019

Deleted: clause

Deleted: TR

Deleted: 2019

Deleted: clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: TR

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: clause

42 © ISO/IEC 2013 – All rights reserved

The vulnerability specified in ISO/IEC 24772-1:2024 6.43 applies to Fortran as Fortran semantics imply redispatching
of nested calls.

6.43.	2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.43.5;
• Monitor and limit the depth of recursion;
• Declare type bound procedures as non_recursive if they are not intended ever to be called

recursively.
• When overriding a type-bound procedure, check that its usage by other procedures bound to the type are

not affected.

6.44	Polymorphic	variables	[BKK]		

6.44.1	Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.44 applies to Fortran, as Fortran provides polymorphic
variables. However, the vulnerability is mitigated by restricting casts to safe ones only. Only the vulnerabilities
related to the handling of existing data components by casting operations remain.

Upcasts, as described in ISO/IEC TR 24772-1:2024:2019 6.44, are implicit in assignments and parameter passing,
which always allow a value of an object of dynamic type to be assigned to a polymorphic variable declared to be
of any of its non-abstract ancestor types. Crosscasts or other unsafe casts are not possible in Fortran.

Downcasts are realized by select type constructs, where a variable selected upon assumes the selected type
as its declared type for the extent of the respective block. Among matching guard statements, the block following
the most specific guard is executed. If there is no matching guard statement, no block is executed.

The vulnerability of not handling the potential error when no guard statement matches the select type construct
remains. Use of the class default guard statement in the select type statement guarantees that all cases
are covered; however, its usage can mask subsequently-added child types for which explicit handling is necessary.

6.44.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.44.5;
• Apply the class default guard statement to provide code that indicates an error or clearly document

why such behaviour is acceptable;
• Avoid using the intrinsic function transfer to perform an unsafe cast.

6.45	Extra	intrinsics	[LRM]		

6.45.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.45 applies to Fortran.

Deleted: 19 clause

Deleted: .

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted:

Deleted: clause

Deleted: and limit it

Commented [SM2]: This is redispatching, not recursion.

Deleted: uses

Deleted: TR

Deleted: 19 clause

Deleted: 24772-1

Deleted: clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: TR

Deleted: 19 clause

Deleted: Use

Deleted: 19 clause

© ISO/IEC 2013 – All rights reserved 43

Fortran permits a processor to supply extra intrinsic procedures or extra intrinsic modules but requires language
processors to be able to diagnose their usage. The usage of such intrinsics is not standard-conforming, even if the
processor that provides them is standard-conforming.

6.45.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.45.5;
• Specify that a procedure has the intrinsic attribute in a scope where the intrinsic procedure is

referenced;
• Specify intrinsic or non_intrinsic on a use statement for a module;
• Use compiler options to detect the usage of non-standard intrinsic procedures and modules.
• Use static analysis tools and human review to detect the usage of extra intrinsics.

6.46	Argument	passing	to	library	functions	[TRJ]		

6.46.1	Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.46 applies to Fortran since Fortran allows the usage of
libraries written in other languages or generated by other Fortran processors.

6.46.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.46.5;
• Use libraries from reputable sources with reliable documentation and understand the documentation to

appreciate the range of acceptable input;
• Verify arguments to library procedures when their validity is in doubt;
• Use condition constructs such as if and where to prevent invocation of a library procedure with

invalid arguments;
• Provide explicit interfaces for library procedures. If the library provides a module containing interface

bodies, use the module.

6.47	Inter-language	calling	[DJS]		

6.47.1	Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.47 applies to Fortran but is mitigated as specified below.

Fortran supports interoperating with functions and data that can be specified by means of the C programming
language. The facilities provided for interoperability with C features specify the interactions and thereby limit the
extent of this vulnerability.

When exchanging character strings with C, it is crucial to handle the fact that C terminates all strings with NUL and
that Fortran uses a different mechanism to specify string length.

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted:

Deleted: use

Deleted: 19 clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: 19 clause

44 © ISO/IEC 2013 – All rights reserved

When interoperating with C, Fortran strings correspond to C strings; the NUL terminator must be handled
explicitly.

Be aware that certain Fortran dummy arguments interoperate with a "C descriptor", as defined by the Fortran
standard. These will require special code in the other language procedure to properly receive or pass the
argument.

6.47.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms documented in ISO/IEC 24772-1:2024 6.47.5;
• Correctly identify the companion processor, including any options affecting its types;
• Use the C interoperability features of Fortran (the iso_c_binding module, the

ISO_Fortran_binding.h header file, and the bind(C) attribute), and use the correct constants
therein to specify the type kind values needed;

• Use the value attribute as needed for dummy arguments;
• Perform IO on any given file in one programming language only.

6.48	Dynamically-linked	code	and	self-modifying	code	[NYY]		

The vulnerability specified in ISO/IEC 24772-1:2024 6.48 does not apply to Fortran.

The Fortran standard does not discuss the means of program translation, so any usage or misuse of dynamically
linked libraries is processor dependent. Fortran does not permit self-modifying code.

6.49	Library	signature	[NSQ]		

6.49.1	Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.49 is mitigated in Fortran since Fortran supports explicit
interface specification to libraries written in other languages. However, it is not required that the interface
specification be given or enforced by the compiler. Also, the actual interface correspondence with the foreign
language remains unchecked.

6.49.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.49.5;
• Apply explicit interfaces for the library code if they are available.
• Avoid libraries that do not provide explicit interfaces;
• Apply processor options and static analysis tools to detect and report signature mismatches.
• Carefully construct explicit interfaces for the library procedures where library modules are not provided.

6.50	Unanticipated	exceptions	from	library	routines	[HJW]		

6.50.1	Applicability	to	language	

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: clause

Deleted: 19 clause

Deleted: use

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: Use

Deleted:

Deleted: Use

© ISO/IEC 2013 – All rights reserved 45

The vulnerability specified in ISO/IEC 24772-1:2024 6.50 applies to Fortran since Fortran allows the Apply of
libraries and does not provide an exception handling capability.

6.50.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• For libraries written in other languages, apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.50.5
• Wrap the procedure in the foreign code to translate exceptions into Fortran conformant status values and

handle each error situation.
• Check any return flags present and, if an error is indicated, take appropriate actions when calling a library

procedure, see 6.36 Ignored error status and unhandled exceptions [OYB].

6.51	Pre-processor	directives	[NMP]		

6.51.1	Applicability	to	language	

The vulnerability in ISO/IEC 24772-1:2024 6.51 does not apply to Fortran standard-conforming programs since the
Fortran standard does not include pre-processing. However, some Fortran programmers employ the C pre-
processor cpp, or other pre-processors, in which case, the vulnerability applies.

The C pre-processor, as defined by the C language, is unaware of several Fortran source code properties.
Some suppliers of Fortran processors also supply a Fortran-aware version of cpp,often called fpp. Unless
a Fortran-aware version of cpp is used, unexpected results, not always easily detected, can occur.

It is likely that other pre-processors are not aware of Fortran source code properties. Not all pre-processors have
a Fortran-aware mode that could be used to reduce the probability of erroneous results.

6.51.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Avoid the usage of the C pre-processor cpp;
• Avoid pre-processors generally, and where deemed necessary, ensure that a Fortran mode is set;
• Use processor-specific modules in place of pre-processing wherever possible.

6.52	Suppression	of	language-defined	run-time	checking	[MXB]		

6.52.1	Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.52 does not apply directly to Fortran since Fortran does not
require the usage of runtime checks to detect runtime errors. However, the Fortran standard has many
requirements that cannot be statically checked and while many processors provide options for run-time checking,
the standard does not require that any such checks be provided.

6.52.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.52.5;
• Use all run-time checks that are available during development;

Deleted: 19 clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: use

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: O

Deleted: might or might not be

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: use

Deleted: 19 clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

46 © ISO/IEC 2013 – All rights reserved

• Use all run-time checks that are available during production running, except where performance is
critical;

• Use several Fortran language processors during development to check as many conditions as possible.

6.53	Provision	of	inherently	unsafe	operations	[SKL]		

6.53.1	Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.53 applies to Fortran as described below.

The types of actual arguments and corresponding dummy arguments are required to agree, but few processors
check this unless the procedure has an explicit interface.

The intrinsic function transfer provides the facility to transform an object of one type to an object of
another type that has the same physical representation.

A variable of one type can be storage associated through the usage of common and equivalence with a
variable of another type. Defining the value of one causes the value of the other to become undefined. A
processor might not be able to detect this.

There are facilities for invoking C functions from Fortran and Fortran procedures from C. While there are rules
about type agreement for the arguments, it is unlikely that processors will check them.

6.53.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.53.5;
• Provide an explicit interface for each external procedure or replace the procedure by an internal or

module procedure;
• Avoid the usage of the intrinsic function transfer;
• Avoid the usage of common and equivalence;
• Use multiple compilers from different sources or explicit static analysis tools to detect erroneous

situations.
• Use the compiler or other automatic tool for checking the types of the arguments in calls between

Fortran and C, make use of them during development and in production running except where
performance would be severely affected.

6.54	Obscure	language	features	[BRS]		

6.54.1	Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.54 applies to Fortran since Fortran has a number of deleted
and obsolescent features, plus items described below.

For the usage of deleted and obsolescent features, see 6.58 Deprecated language features [MEM]. Such usage can
produce semantic results not in accord with the modern programmer’s expectations or the knowledge of modern
code reviewers. The same applies to processor-defined language extensions.

Deleted: 19 clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: use

Deleted: use

Deleted: 19 clause

Deleted: use

Deleted:

© ISO/IEC 2013 – All rights reserved 47

The save attribute for a local variable causes its definition to be retained across calls to its subprogram. This also
makes save variables shared between recursive invocations of a procedure or shared in a do concurrent
construct if declared within that construct.

Supplying an initial value for a local variable as part of the declaration implicitly gives it the save attribute, which
might be unexpected by the developer. However, the default initialization of a component of a variable of derived
type does not affect the save attribute of that variable.

If implicit typing is used, a simple spelling error will unexpectedly introduce a new name. The intended effect on
the given variable will be lost without any processor diagnostic.

6.54.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.54.5;
• Use multiple Fortran language processors or other static analysis tools to detect and identify obsolescent

or deleted features and replace them by better methods;
• Avoid explicit and implicit usages of the save attribute in recursive invocations of a procedure and in do

concurrent constructs ;
• Specify the save attribute when supplying an initial value;
• Use implicit none to enforce explicit declarations.

6.55	Unspecified	behaviour	[BQF]		

6.55.1	Applicability	to	language

The vulnerability specified in ISO/IEC 24772-1:2024 6.55 applies to Fortran. Examples include:

• The order of evaluation of actual arguments of a procedure call is unspecified.
• Short circuit of logical operations is unspecified in Fortran.
• Freedom is given to the language processor to evaluate a mathematically equivalent expression, despite

the order of evaluation of compound expressions being specified by the language. In the case of real
arithmetic, rounding errors can therefore lead to different results.

Many relevant cases listed in ISO/IEC 24772-1:2024 6.55 are implementation-defined behaviour. See 6.57
Implementation-defined behaviour [FAB].

6.55.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can apply the avoidance
mechanisms of ISO/IEC 24772-1:2024 6.55.5.

6.56	Undefined	behaviour	[EWF]		

6.56.1	Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.56 applies to Fortran.

Deleted:

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

Deleted: the processor,

Deleted: 19 clause

Deleted: 19 clause

Deleted: clause

Formatted: NormBull

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can

Deleted: ¶
use

Deleted: TR

Deleted: clause

Deleted: 19 clause

48 © ISO/IEC 2013 – All rights reserved

A Fortran processor is unconstrained unless the program uses only those forms and relations specified by the
Fortran standard, and gives them the meaning described therein.

The behaviour of non-standard code can change between processors.

A processor is permitted to provide additional intrinsic procedures. One of these might be invoked instead of an
intended external procedure with the same name.

6.56.2 Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can apply the avoidance
mechanisms of ISO/IEC 24772-1:2024 6.56.5;

6.57	Implementation-defined	behaviour	[FAB]		

6.57.1	Applicability	to	language		

The vulnerability specified in ISO/IEC 24772-1:2024 6.57 applies to Fortran.

Implementation-defined behaviour is known within the Fortran standard as processor-dependent behaviour.
Annex A.2 of ISO/IEC 1539-1:2018 contains a list of processor dependencies for which implementations should
document the actual behaviour.

Reliance on one behaviour where the standard explicitly allows several is not portable. The behaviour is liable to
change between different processors.

6.57.2	Avoidance	mechanisms	for	language	users		

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:
• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.57.5;
• Use processor options and static analysis tools to detect and report the usage of processor-dependent

non-standard features;
• Obtain diagnostics from more than one source, for example, through the usage of code checking tools or

multiple Fortran compilers;
• Specify the intrinsic attribute for all intrinsic procedures and modules referenced.
• Avoid the usage of non-standard intrinsic procedures;

6.58	Deprecated	language	features	[MEM]		

6.58.1	Applicability	to	language	

The vulnerability specified in ISO/IEC 24772-1:2024 6.58 applies to Fortran. Fortran was originally defined using
line-oriented and unstructured code, but has been revised and updated on regular cycles since that time and has
a number of deprecated language features.

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can

Deleted: use

Deleted: 19 clause

Deleted: 19 clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 2019

Deleted: clause

Deleted: use

Deleted: use

Deleted: use

Deleted: 19 clause

© ISO/IEC 2013 – All rights reserved 49

Because they are still used in some programs, many processors support features of previous revisions of the
Fortran standard that were deleted in later versions of the Fortran standard. These are listed in Annex B.1 of the
Fortran standard. In addition, there are features of earlier revisions of Fortran that are still in the standard but are
redundant and for which better methods are available in ISO/IEC 1539-1:2018. The obsolescent features are
identified by small font in the standard and are summarized in Annex B.2 of that standard. Any usage of these
deleted and obsolescent features can, according to ISO/IEC 1539-1:2018, produce results not in accord with the
modern programmer’s expectations and can be beyond the knowledge of modern code reviewers.

6.58.2 Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can apply the processor, multiple
processors and static analysis tools to detect and identify obsolescent or deleted features and replace them by
better methods.

6.59	Concurrency	–	Activation	[CGA]	

6.59.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.59 is applicable to Fortran during program activation;
however the semantics of Fortran do not separate the consequences of failure during activation from failures
during general execution, hence the vulnerabilities involved in activation are subsumed by the vulnerabilities
described in 6.62 Concurrency -- Premature termination.

Images in Fortran all start asynchronously but the mechanism is not specified by the language. Failure of an image
can be detected by an executing image by executing one of the intrinsic functions failed_images and
image_status, or by examining the status variable after executing a statement that involves access to data
on another image.

To ensure that all images have activated successfully, one can insert a sync all statement with an iostat=
specifier. If this detects a failed image, all images can be terminated by any image executing an error stop
statement.

The construct do concurrent gives permission to execute a set of iterations of a loop body in parallel but the
mechanisms by which this is achieved are not specified. It is the responsibility of the implementation to indicate
that the image has failed if it is unable to execute the construct.

6.59.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.59.5;
• At the start of the program insert a sync all statement with an iostat= specifier to ensure that all

images have activated successfully.

6.60	Concurrency	–	Directed	termination	[CGT]		

6.60.1	Applicability	to	language	

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can

Deleted: use

Deleted: clause

Deleted: clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: 19 clause

50 © ISO/IEC 2013 – All rights reserved

The vulnerability of external termination of another image, as described in ISO/IEC 24772-1:2024 6.60,does not
apply to Fortran which supports external termination only of all images are terminated by the error stop
statement. There remains the vulnerability associated with ignored requests to terminate and the vulnerability
associated with delayed termination.

6.60.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can apply the avoidance
mechanisms of ISO/IEC 24772-1:2024 6.60.5 as applicable;

6.61	Concurrent	data	access	[CGX]		

6.61.1	Applicability	to	language

The vulnerability as described in ISO/IEC 24772-1:2024 6.61 applies to Fortran. It is mitigated by several language
features. Data are accessible across image boundaries:

• By using an image selector in square brackets.
• By invoking a collective (intrinsic) procedure (see 4.10.8).
• By invoking a procedure that has an image selector in square brackets.

All atomic changes of values of variables (4.10.8) occur sequentially. For all coarray data, Fortran provides the
following mechanisms for serializing the alteration of the value of a variable on one image from its access by
another image:

• The sync all and sync images statements (4.10.1).
• Events (4.10.1).
• The critical construct (4.10.1).
• Locks (4.10.2).
• Teams (4.10.3).
• Collectives (4.10.8).

6.61.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.61.5;
• Use a coarray only when communication among images is necessary for that object;
• Apply one or more of the following mechanisms to ensure correct execution when executing on more

than one image;
o Use the sync_all statement to separate the alteration of the value of a coarray variable on

one image from its access by any other image;
o Use the sync_images statement to separate the alteration of the value of a coarray variable

on one image from its access by an image in a specified set of images;
o Use a collective subroutine whenever suitable;
o Use integer variables of kind atomic_int_kind and logical variables of kind

atomic_logical_kind and use atomic intrinsic subroutines including
atomic_define, atomic_ref, and atomic_or to guarantee sequential access;

Deleted: clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can use

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: clause

Deleted: Use

Deleted: Use

© ISO/IEC 2013 – All rights reserved 51

o Use the event post statement in one image and the corresponding event wait statement
on another image to impose sequential ordering;

o Use the critical construct to limit execution of a section of code to one image at a time; if
performance using critical sections is unacceptable, use locks and perform analysis to show
correct lock behaviour;

• Avoid the usage of the volatile attribute;
• Avoid the usage of the asynchronous attribute except for use with a parallel-processing package such

as MPI for nonblocking data transfer;
• Avoid the usage of the sync memory statement for defining and ordering segments.

6.62	Concurrency	–	Premature	termination	[CGS]		

6.62.1	Applicability	to	language	

The vulnerability as described in ISO/IEC 24772-1:2024 6.62 applies to Fortran, as images can prematurely
terminate in various ways. It is mitigated by language features for detecting failed images (4.10.9) and
conditionally continuing execution in their presence.

6.62.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.62.5;
• Use the intrinsic functions failed_images, and image_status to detect failed images;
• In order to continue execution in the presence of failed images, from time-to-time store relevant

information for each team of images externally or on another team, so that the computation can be
resumed on a reduced number of images or with images kept in reserve and idle replacing failed images;

• If continued execution is not desired in the presence of failed images, follow a strategy that ensures safe
termination of the executing images;

• If a procedure needs to abort, avoid executing a	stop statement – instead return with an error flag
set.

6.63	Protocol	lock	errors	[CGM]	

6.63.1	Applicability	to	language	

The vulnerabilities as described in ISO/IEC 24772-1:2024 6.63 apply to Fortran with “image” corresponding to the
term “thread”. There are several mechanisms (see 6.61.1) for ensuring that the sequencing of the execution of
the images leads to the intended results. It is essential to use one or more of these mechanisms to avoid the
disruptions discussed in ISO/IEC 24772-1:2024 6.63.

6.63.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

Deleted:

Deleted: use

Deleted: use

Deleted: use

Commented [SM3]: Prohibit?

Deleted: clause

Deleted: clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: Use

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: clause

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

52 © ISO/IEC 2013 – All rights reserved

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.63.5;
• Apply the avoidance mechanisms listed in 6.61.2, bullet 3.

6.64	Reliance	on	external	format	strings	[SHL]		

6.64.1	Applicability	to	language	

Most	of	the vulnerability as described in ISO/IEC 24772-1:2024 6.64 does not apply to Fortran, however Fortran
provides the ability to control input or output via format strings and mistakes in format strings can cause serious
program errors. Fortran mitigates the vulnerability in that the format string cannot affect the access of memory
beyond the data items being referenced. If the format string is constant, then it cannot be influenced by external
input or by program state.

6.64.2	Avoidance	mechanisms	for	language	users

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Wherever possible, use format strings that are constants.
• Where a variable string is needed, include code to check that its value is within expectations.

6.65	Modifying	constants	[UJO]	

6.65.1	Applicability	to	language	

The vulnerability as described in ISO/IEC 24772-1:2024 6.65 is applicable to Fortran. The vulnerability is mitigated
by the following language properties.

Fortran does not allow a constant to be the target of a pointer and does not allow a type to have a constant as a
component. Fortran also prevents all attempts to write directly to a variable declared constant and prevents
passing a constant to an out or inout dummy argument in a subprogram. However, Fortran permits a pointer to
an in subprogram dummy argument, and a subsequent write via the pointer.

Fortran compilers usually do not prevent the usage of a constant as an actual argument in the absence of an
intent specification.

6.65.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Always use intent specifications for dummy arguments;
• Avoid a pointer to an in dummy argument;
• Use the compiler or static analysis tools to detect any usage of a constant or in dummy argument that is

not in accord with the Standard.

Deleted: Use

Deleted: clause

Deleted: Use

Deleted: clause

Deleted: .

Deleted: However

Deleted: ,

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: clause

Deleted: use

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

Deleted: use

© ISO/IEC 2013 – All rights reserved 53

7 Language	specific	vulnerabilities	for	Fortran	

7.1	General	

The vulnerabilities document in this clause are specific to Fortran.

7.2	Source	form		

7.2.1	Applicability	to	language

Fortran has an obsolescent source form called “fixed” where blanks are not significant in parsing the source code,
and a source form called “free” where blanks are significant. A famous example of the vulnerability associated
with fixed source form is

do 25 i = 1.10

being interpreted as an assignment of 1.1 to the (undeclared) floating point variable do25i instead of as the loop
header

do 25 i = 1,10

In addition, fixed source form ignores text beyond line position 72, whereas for free form code, all characters
within the legal line length are significant (except beyond the character !). The vulnerability associated with fixed
form source code is that any text placed beyond line position 72 is ignored, which can change the semantics.
Numerous additional vulnerabilities are associated with fixed form source.

7.2.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerability or mitigate its ill effects Fortran software developers can:

• Avoid fixed source form in all programs;
• Use implicit none to require that all variables are declared, see 6.17 Choice of clear names [NAI]

7.3	Unformatted	files		

7.3.1	Applicability	to	language
In Fortran unformatted output of a variable or expression, the internal representation of its value is written
exactly as it stands to the storage medium and can be read back directly with neither roundoff nor conversion
overhead into a variable of the same type, type parameters, and shape. If the variable is a pointer, for defined
behaviour, it must be associated with a target and the value of the target is written; when read back the target
must have the shape of the target that was written. If the variable is allocatable, it must be allocated; when read
back it must be allocated and have the shape of the variable that was written. The variable is not permitted to be
of a type with an ultimate component that is allocable or a pointer, unless a user-defined derived type I/O
procedure has been provided. If these prerequisites are not satisfied, program behaviour is undefined. In
particular, if the file is read within a program execution other than the one in which it was written, there is a
danger that incorrect values will be obtained, or that the reading program runs out of data prematurely.

7.3.2	Avoidance	mechanisms	for	language	users	

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can:

54 © ISO/IEC 2013 – All rights reserved

To avoid the vulnerability or mitigate its ill effects Fortran software developers can, when using an unformatted
file:

• Ensure that the properties of each variable read exactly match those of the variable or expression that
was written.

• Limit access of unformatted files to the same computer system, the same compiler, and the same
compiler options unless it is guaranteed that the same internal representations are in use.

	
	 	

Deleted: Fortran software developers can avoid the vulnerability
or mitigate its ill effects in the following ways. They can,

Deleted: ¶

Deleted:

Deleted:

Deleted:

© ISO/IEC 2013 – All rights reserved 55

Bibliography	

[1] ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 2004

[2] ISO/IEC TR 10000-1, Information technology — Framework and taxonomy of International Standardized
Profiles — Part 1: General principles and documentation framework

[3] ISO 10241 (all parts), International terminology standards

 [7] ISO/IEC/IEEE 60559, Information technology – Microprocessor Systems – Floating-Point arithmetic

 [9] ISO/IEC 8652, Information technology — Programming languages — Ada

 [11] R. Seacord, The CERT C Secure Coding Standard. Boston,MA: Addison-Westley, 2008.

 [14] ISO/IEC TR 15942:2000, Information technology — Programming languages — Guide for the use of the
 Ada programming language in high integrity systems

 [17] ISO/IEC TR 24718: 2005, Information technology — Programming languages — Guide for the use of the
Ada Ravenscar Profile in high integrity systems

 [19] ISO/IEC 15291:1999, Information technology — Programming languages — Ada Semantic Interface
Specification (ASIS)

[20] Software Considerations in Airborne Systems and Equipment Certification. Issued in the USA by the
Requirements and Technical Concepts for Aviation (document RTCA SC167/DO-178B) and in Europe by the
European Organization for Civil Aviation Electronics (EUROCAE document ED-12B).December 1992.

[21] IEC 61508: Parts 1-7, Functional safety: safety-related systems. 1998. (Part 3 is concerned with software).

[22] ISO/IEC 15408: 1999 Information technology. Security techniques. Evaluation criteria for IT security.

[23] J Barnes, High Integrity Software - the SPARK Approach to Safety and Security. Addison-Wesley. 2002.

1. Lecture Notes on Computer Science 5020, “Ada 2012 Rationale: The Language, the Standard Libraries,”
John Barnes, Springer, 2012. ???????

 [25] Steve Christy, Vulnerability Type Distributions in CVE, V1.0, 2006/10/04

 [29] Lions, J. L. ARIANE 5 Flight 501 Failure Report. Paris, France: European Space Agency (ESA) & National
Center for Space Study (CNES) Inquiry Board, July 1996.

 [33] The Common Weakness Enumeration (CWE) Initiative, MITRE Corporation, (http://cwe.mitre.org/)

[34] Goldberg, David, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM
Computing Surveys, vol 23, issue 1 (March 1991), ISSN 0360-0300, pp 5-48.

[36] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-
10: 0-321-49362-1, Pearson Education, Boston, MA, 2008

56 © ISO/IEC 2013 – All rights reserved

[37] Bo Einarsson, ed. Accuracy and Reliability in Scientific Computing, SIAM, July 2005
http://www.nsc.liu.se/wg25/book

[38] GAO Report, Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi Arabia, B-
247094, Feb. 4, 1992, http://archive.gao.gov/t2pbat6/145960.pdf

[39] Robert Skeel, Roundoff Error Cripples Patriot Missile, SIAM News, Volume 25, Number 4, July 1992, page
11, http://www.siam.org/siamnews/general/patriot.htm

 [41] Holzmann, Garard J., Computer, vol. 39, no. 6, pp 95-97, Jun., 2006, The Power of 10: Rules for Developing
Safety-Critical Code

[42] P. V. Bhansali, A systematic approach to identifying a safe subset for safety-critical software, ACM SIGSOFT
Software Engineering Notes, v.28 n.4, July 2003

[43] Ada 95 Quality and Style Guide, SPC-91061-CMC, version 02.01.01. Herndon, Virginia: Software
Productivity Consortium, 1992. Available from: http://www.adaic.org/docs/95style/95style.pdf

[44] Ghassan, A., & Alkadi, I. (2003). Application of a Revised DIT Metric to Redesign an OO Design. Journal of
Object Technology , 127-134.

[45] Subramanian, S., Tsai, W.-T., & Rayadurgam, S. (1998). Design Constraint Violation Detection in Safety-
Critical Systems. The 3rd IEEE International Symposium on High-Assurance Systems Engineering , 109 -
116.

[46] Lundqvist, K and Asplund, L., “A Formal Model of a Run-Time Kernel for Ravenscar”, The 6th International
Conference on Real-Time Computing Systems and Applications – RTCSA 1999

© ISO/IEC 2013 – All rights reserved 57

Index	

AMV – Type-breaking reinterpretation of data, 40

BJL – Namespace issues, 31
BKK – Polymorphic variables, 43
BLP – Violations of the Liskov substitution principle

or the contract model, 42
BQF – Unspecified behaviour, 48
BRS – Obscure language features, 48

CCB – Enumerator issues, 22
CGA – Concurrency – Activation, 50
CGM – Protocol Lock Errors, 53
CGS – Concurrency – Premature termination, 52
CGT – Concurrency – Directed termination, 51
CGX – Concurrency – Concurrent data access, 51
CJM – String termination, 24
CLL – Switch statements and static analysis, 34
CSJ – Passing parameters and return values, 37

DCM – Dangling references to stack frames, 38
DJS – Inter-language calling, 44

EOJ – Demarcation of control flow, 35
EWD – Unstructured programming, 36
EWF – Undefined behaviourr, 49

FAB – Implementation-defined behaviourr, 49
FIF – Arithmetic wrap-around error, 29
FLC – Conversion errors, 23

HCB – Buffer boundary violation (Buffer overflow),

24
HFC – Pointer type conversions, 27
HJW – Unanticipated exceptions from library

routines, 46

IHN– Type system, 18

JCW – Operator precedence and associativity, 32

KOA – Likely incorrect expression, 33

Language vulnerabilities

Argument passing to library functions [TRJ], 44
Arithmetic wrap-around error [FIF], 29
Bit representation [STR], 20
Buffer boundary violation (Buffer overflow) [HCB], 24
Choice of clear names [NAI], 29
Concurrency – Activation [CGA], 50
Concurrency – Concurrent data access [CGX], 51
Concurrency – Directed termination [CGT], 51
Concurrency – Premature termination [CGS], 52
Conversion errors [FLC], 23
Dangling reference to heap [XYK], 28
Dangling references to stack frames [DCM], 38
Dead and deactivated code [XYQ], 34
Dead store [WXQ], 30
Deep vs shallow copying [YAN], 40
Demarcation of control flow [EOJ], 35
Deprecated language features [MEM], 50
Dynamically-linked code and self-modifying code [NYY],

45
Enumerator issues [CCB], 22
Extra intrinsics [LRM], 43
Floating-point arithmetic [PLF], 21
Identifier name reuse [YOW], 31
Ignored error status and unhandled exceptions [OYB],

39
Implementation-defined behaviour [FAB], 49
Inheritance [RIP], 41
Inter-language calling [DJS], 44
Library signature [NSQ], 45
Likely incorrect expression [KOA], 33
Loop control variable abuse [TEX], 35
Memory leaks and heap fragmentation [XYL], 41
Missing initialization of variables [LAV], 32
Modifying constants [UJO], 54
Namespace issues [BJL], 31
Null pointer dereference [XYH], 28
Obscure language features [BRS], 48
Off-by-one error [XZH], 36
Operator precedence and order of evaluation [JCW], 32
Passing parameters and return values [CSJ], 37
Pointer arithmetic [RVG], 27
Pointer type conversions [HFC], 27

58 © ISO/IEC 2013 – All rights reserved

Polymorphic variables [BKK], 43
Pre-processor directives [NMP], 46
Protocol Lock Errors [CGM], 53
Provision of inherently unsafe operations [SKL], 47
Recursion [GDL], 39
Redispatching [PPH], 42
Reliance on external format strings [SHL], 53
Side effects and order of evaluation [SAM], 33
Source form, 54
String termination [CJM], 24
Subprogram signature mismatch [OTR], 38
Suppression of language-defined run-time checking

[MXB], 46
Switch statements and static analysis [CLL], 34
Templates and generics [SYM], 41
Type system [IHN], 18
Type-breaking reinterpretation of data [AMV], 40
Unanticipated exceptions from library routines [HJW],

46
Unchecked array copying [XYW], 26
Unchecked array indexing [XYZ], 26
Undefined behaviour [EWF], 49
Unformatted files, 55
Unspecified behaviour [BQF], 48
Unstructured programming [EWD], 36
Unused variable [YZS], 30
Using shift operations for multiplication and division

[PIK], 29
Violations of the Liskov substitution principle or the

contract model [BLP], 42
LAV – Missing initialization of variables, 32
LRM – Extra intrinsics, 43

MEM – Deprecated language features, 50
MXB – Suppression of language-defined run-time

checking, 46

NAI – Choice of clear names, 29
NMP – Pre-processor directives, 46
NSQ – Library signature, 45

NYY – Dynamically-linked code and self-modifying
code, 45

OTR – Subprogram signature mismatch, 38
OYB – Ignored error status and unhandled

exceptions, 39
OYB – Recursion, 39

PIK – Using shift operations for multiplication and

division, 29
PLF – Floating point arithmetic, 21
PPH – Redispatching, 42

RIP – Inheritance, 41
RVG – Pointer arithmetic, 27

SAM – Side effects and order of evaluation, 33
SHL – Reliance on external format strings, 53
SKL – Provision of inherently unsafe operations, 47
Source form, 54
STR – Bit representation, 20
SYM – Templates and generics, 41

TEX – Loop control variable abuse, 35
TRJ – Argument passing to library functions, 44

UJO – Modifying constants, 54
Unformatted files, 55

WXQ – Dead store, 30

XYH – Null pointer dereference, 28
XYK – Dangling reference to heap, 28
XYL – Memory leaks and heap fragmentation, 41
XYQ – Dead and deactivated code, 34
XYW – Unchecked array copying, 26
XYZ – Unchecked array indexing, 26
XZH – Off-by-one error, 36

YAN – Deep vs shallow copying, 40
YOW – Identifier name reuse, 31
YZS – Unused variable, 30

