
	

©	ISO/IEC	2018	–	All	rights	reserved	 	 	 1	

	

ISO/IEC JTC 1/SC 22/WG23 N1416

Date: 2024-09-11

ISO/IEC WD 24772–4

Edition 1

ISO/IEC JTC 1/SC 22/WG 23

Secretariat: ANSI

Programming languages — Avoiding vulnerabilities in programming languages – Part 4:
Catalogue of vulnerabilities for the programming language Python

Style	De(inition:	Term(s):	Keep	with	next
Style	De(inition:	TermNum:	Keep	with	next

Style	De(inition:	Index	2:	Tab	stops:		7.6	cm,
Right,Leader:	…

Style	De(inition:	Index	1:	Tab	stops:		7.6	cm,
Right,Leader:	…	+	Not	at		7.62	cm

Style	De(inition:	CODE:	Font:	English	(US),	Indent:	Left:	
1.27	cm,	Line	spacing:		Multiple	1.15	li

Style	De(inition:	Bullet:	Space	After:		6	pt,	Bulleted	+
Level:	1	+	Aligned	at:		0	cm	+	Indent	at:		0.63	cm,	Don't
keep	with	next,	Don't	keep	lines	together

Style	De(inition:	Style2

Style	De(inition:	TOC	1:	Right:		-1.11	cm,	Tab	stops:	
18.25	cm,	Right,Leader:	…	+	Not	at		18.27	cm

Style	De(inition:	Heading	3

Deleted:	381

Deleted:	4-24

Commented	[SM1]:	For the ISO editor,	
All code samples rely upon the spacing and arrangement of
lines. Please, please do not touch them.	

	

2	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Document type: International standard

Document subtype: if applicable

Document stage: (10) development stage

Document language: E

Élément introductif — Élément principal — Partie n: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment.
It is subject to change without notice and may not be referred to as an International
Standard.

Recipients of this draft are invited to submit, with their comments, notification of any
relevant patent rights of which they are aware and to provide supporting documentation.

	 	

©	ISO/IEC	2023	–	All	rights	reserved	 3	
	

Participating	in	meeting	28	August	2024	

			Stephen	Michell	–	convenor	WG	23	

			Larry	Wagoner	-	USA	

			Sean	McDonagh	–	USA	

				Erhard	Ploedereder	–	Germany	

		Tullio	Vardanega	–	Italy	

Regrets	

Based	on	Document	N	1400	from	meeting	17	July	2024	with	comments	and	additions	
in	N1407..	

All	 issues	discussed	are	 captured	 in	 the	document,	 either	as	 comments	or	 resolved	
issues.	The	previous	reviewed	version	of	this	document	is	N1400.	

Key	for	comments:	

	 	

Deleted:	24	April	

Deleted:				Erhard	Ploedereder	-	Germany			Tullio	
Vardanega	–	Italy¶ ...	[1]

Moved	(insertion)	[1]

Deleted:	¶
Moved	up	[1]:				Tullio	Vardanega	–	Italy¶

Deleted:	379
Deleted:	1	April	
Deleted:		with	edits	by	Sean	McDonagh
Deleted:	.	
Deleted:	379
Deleted:	¶ ...	[2]

	

4	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO.
While the reproduction of working drafts or committee drafts in any form for use by
participants in the ISO standards development process is permitted without prior permission
from ISO, neither this document nor any extract from it may be reproduced, stored or
transmitted in any form for any other purpose without prior written permission from ISO.
Requests for permission to reproduce this document for the purpose of selling it should be
addressed as shown below or to ISO’s member body in the country of the requester:

ISO copyright office

Case postale 56, CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing
agreement.

Violators may be prosecuted.

©	ISO/IEC	2023	–	All	rights	reserved	 5	
	

Contents	
Foreword .. 8	

1. Scope .. 10	

2. Normative references .. 10	

3. Terms and definitions .. 11	

3.1	General	..	11	

4. Using this document .. 17	

5 General language concepts and primary avoidance mechanisms .. 18	

5.1	General	Python	language	concepts	..	18	

5.2	Primary	avoidance	mechanisms	for	Python	..	29	

6. Programming language vulnerabilities in Python ... 32	

6.1	General	..	32	

6.2	Type	system	[IHN]	...	33	

6.3	Bit	representations	[STR]	...	35	

6.4	Floating-point	arithmetic	[PLF]	..	36	

6.5	Enumerator	issues	[CCB]	...	37	

6.6	Conversion	errors	[FLC]	..	40	

6.7	String	termination	[CJM]	...	42	

6.8	Buffer	boundary	violation	[HCB]	..	43	

6.9	Unchecked	array	indexing	[XYZ]	..	43	

6.10	Unchecked	array	copying	[XYW]	...	43	

6.11	Pointer	type	conversions	[HFC]	...	43	

6.12	Pointer	arithmetic	[RVG]	..	44	

6.13	Null	pointer	dereference	[XYH]	..	44	

6.14	Dangling	reference	to	heap	[XYK]	...	45	

	

6	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.15	Arithmetic	wrap-around	error	[FIF]	..	45	

6.16	Using	shift	operations	for	multiplication	and	division	[PIK]	...	47	

6.17	Choice	of	clear	names	[NAI]	...	47	

6.18	Dead	store	[WXQ]	..	49	

6.19	Unused	variable	[YZS]	...	50	

6.20	Identifier	name	reuse	[YOW]	..	50	

6.21	Namespace	issues	[BJL]	...	53	

6.22	Missing	initialization	of	variables	[LAV]	...	57	

6.23	Operator	precedence	and	associativity	[JCW]	...	58	

6.24	Side-effects	and	order	of	evaluation	of	operands	[SAM]	...	58	

6.25	Likely	incorrect	expression	[KOA]	..	62	

6.26	Dead	and	deactivated	code	[XYQ]	..	64	

6.27	Switch	statements	and	static	analysis	[CLL]	..	65	

6.28	Demarcation	of	control	flow	[EOJ]	..	65	

6.29	Loop	control	variables	[TEX]	..	66	

6.30	Off-by-one	error	[XZH]	..	67	

6.31	Unstructured	programming	[EWD]	..	68	

6.32	Passing	parameters	and	return	values	[CSJ]	...	70	

6.33	Dangling	references	to	stack	frames	[DCM]	...	73	

6.34	Subprogram	signature	mismatch	[OTR]	...	74	

6.35	Recursion	[GDL]	...	75	

6.36	Ignored	error	status	and	unhandled	exceptions	[OYB]	...	76	

6.37	Type-breaking	reinterpretation	of	data	[AMV]	..	76	

6.38	Deep	vs.	shallow	copying	[YAN]	...	77	

Deleted:	69

©	ISO/IEC	2023	–	All	rights	reserved	 7	
	

6.39	Memory	leaks	and	heap	fragmentation	[XYL]	...	78	

6.40	Templates	and	generics	[SYM]	...	79	

6.41	Inheritance	[RIP]	...	80	

6.42	Violations	of	the	Liskov	substitution	principle	or	the	contract	model		[BLP]	82	

6.43	Redispatching	[PPH]	..	82	

6.44	Polymorphic	variables	[BKK]	...	84	

6.45	Extra	intrinsics	[LRM]	..	85	

6.46	Argument	passing	to	library	functions	[TRJ]	...	87	

6.47	Inter-language	calling	[DJS]	...	87	

6.48	Dynamically-linked	code	and	self-modifying	code	[NYY]	...	88	

6.49	Library	signature	[NSQ]	..	90	

6.50	Unanticipated	exceptions	from	library	routines	[HJW]	...	90	

6.51	Pre-processor	directives	[NMP]	...	91	

6.52	Suppression	of	language-defined	run-time	checking	[MXB]	..	91	

6.53	Provision	of	inherently	unsafe	operations	[SKL]	...	92	

6.54	Obscure	language	features	[BRS]	..	93	

6.55	Unspecified	behaviour	[BQF]	..	97	

6.56	Undefined	behaviour	[EWF]	..	98	

6.57	Implementation–defined	behaviour	[FAB]	..	99	

6.58	Deprecated	language	features	[MEM]	..	101	

6.59	Concurrency	–	Activation	[CGA]	...	102	

6.60	Concurrency	–	Directed	termination	[CGT]	..	105	

6.61	Concurrent	data	access	[CGX]	...	109	

6.62	Concurrency	–	Premature	termination	[CGS]	..	112	

6.63	Lock	protocol	errors	[CGM]	...	118	

6.64	Reliance	on	external	format	string	[SHL]	...	123	

Deleted:	83

Deleted:	86

Deleted:	89

Deleted:	91

	

8	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.65	Modifying	constants	[UJO]	..	123	

7. Language specific vulnerabilities for Python ... 124	

7.1	General	..	124	

7.2	Lack	of	Explicit	Declarations	...	124	

7.3	Code	representation	differs	between	compiler	view	and	reader	view	...	125	

7.4	Time	representation	and	Usage	in	Python	...	127	

Bibliography ... 130	

	

Foreword	

ISO	 (International	 Organization	 for	 Standardization)	 and	 IEC	 (International	
Electrotechnical	 Commission)	 form	 the	 specialized	 system	 for	 worldwide	
standardization.	National	 bodies	 that	 are	members	 of	 ISO	 or	 IEC	 participate	 in	 the	
development	of	International	Standards	through	technical	committees	established	by	
the	respective	organization	to	deal	with	particular	fields	of	technical	activity.	ISO	and	
IEC	technical	committees	collaborate	in	fields	of	mutual	interest.	Other	international	
organizations,	governmental	and	non-governmental,	in	liaison	with	ISO	and	IEC,	also	
take	 part	 in	 the	 work.	 In	 the	 field	 of	 information	 technology,	 ISO	 and	 IEC	 have	
established	a	joint	technical	committee,	ISO/IEC	JTC	1.	

International	 Standards	 are	 drafted	 in	 accordance	 with	 the	 rules	 given	 in	 the	
ISO/IEC	Directives,	Part	2.	

The	main	task	of	the	joint	technical	committee	is	to	prepare	International	Standards.	
Draft	International	Standards	adopted	by	the	joint	technical	committee	are	circulated	
to	 national	 bodies	 for	 voting.	 Publication	 as	 an	 International	 Standard	 requires	
approval	by	at	least	75%	of	the	national	bodies	casting	a	vote.	

In	exceptional	circumstances,	when	the	joint	technical	committee	has	collected	data	of	
a	different	kind	from	that	which	is	normally	published	as	an	International	Standard	
(“state	 of	 the	 art”,	 for	 example),	 it	 may	 decide	 to	 publish	 a	 Technical	 Report.	 A	
Technical	Report	is	entirely	informative	in	nature	and	shall	be	subject	to	review	every	
five	years	in	the	same	manner	as	an	International	Standard.	

©	ISO/IEC	2023	–	All	rights	reserved	 9	
	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	
be	the	subject	of	patent	rights.	ISO	and	IEC	shall	not	be	held	responsible	for	identifying	
any	or	all	such	patent	rights.	

ISO/IEC	TR	24772-4	 was	 prepared	 by	 Joint	 Technical	 Committee	 ISO/IEC	JTC	1,	
Information	 technology,	 Subcommittee	 SC	22,	 Programming	 languages,	 their	
environments	and	system	software	interfaces.	

This	document	is	part	of	a	series	of	documents	that	describe	how	vulnerabilities	arise	
in	programming	languages.	ISO/IEC	24772-1:2024	addresses	vulnerabilities	that	can	
arise	 in	 any	 programming	 language	 and	 hence	 is	 language	 independent.	 The	 other	
parts	of	the	series	are	dedicated	to	individual	languages.	

This	 document	 provides	 avoidance	 mechanisms	 for	 vulnerabilities	 in	 the	
programming	language	Python,	so	that	application	developers	considering	Python	or	
using	Python	will	be	better	able	to	avoid	the	programming	constructs	that	can	lead	to	
vulnerabilities	 in	 software	 written	 in	 the	 Python	 language	 and	 their	 attendant	
consequences.	This	document	can	also	be	used	by	developers	 to	select	source	code	
evaluation	 tools	 that	can	discover	and	eliminate	some	constructs	 that	could	 lead	 to	
vulnerabilities	in	their	software.	This	document	can	also	be	used	in	comparison	with	
companion	documents	and	with	the	language-independent	report,	ISO/IEC	24772-1,	
“Programming	Languages	—	Avoiding	vulnerabilities	 in	programming	 languages	—	
Part	1:Language	 independent	catalogue	of	vulnerabilities”,	 to	select	a	programming	
language	that	provides	the	appropriate	level	of	confidence	that	anticipated	problems	
can	be	avoided.	

It	should	be	noted	that	 this	document	 is	 inherently	 incomplete.	 It	 is	not	possible	 to	
provide	 a	 complete	 list	 of	 programming	 language	 vulnerabilities	 because	 new	
weaknesses	are	discovered	continually.	Any	such	document	can	only	describe	those	
that	have	been	found,	characterized,	and	determined	to	have	sufficient	probability	and	
consequence.	

	 	

	

10	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

1.	Scope	

This	document	specifies	software	programming	language	vulnerabilities	to	be	avoided	
in	 the	 development	 of	 systems	 where	 assured	 behaviour	 is	 required	 for	 security,	
safety,	 mission-critical	 and	 business-critical	 software.	 In	 general,	 the	 avoidance	
mechanisms	described	herein	are	applicable	to	the	software	developed,	reviewed,	or	
maintained	for	any	application.	

This	document	describes	how	vulnerabilities	specified	 in	 the	 language-independent	
ISO/IEC	24772–1	are	manifested	in	Python.	

Python	is	not	an	internationally	specified	language,	in	the	sense	that	it	does	not	have	a	
single	International	Standard	specification.	The	language	definition	is	maintained	by	
the	Python	Software	Foundation	at	https://docs.python.org	for	the	version	of	Python	
referenced	in	this	document.	

The	analysis	and	avoidance	mechanisms	provided	 in	 this	document	are	 targeted	 to	
Python	version	3.12	[15][16].		

Implementations	of	earlier	versions	of	Python	exist	and	are	in	active	usage,	however,	
Python	is	not	always	backward	compatible	especially	between	v2.x	and	v3.x.	Readers	
are	 cautioned	 to	 be	 aware	 of	 the	 differences	 as	 they	 apply	 to	 the	 avoidance	
mechanisms	provided	herein.	To	determine	possible	vulnerabilities	for	future	releases	
of	Python,	research	the	documentation	on	the	Python	web	site	given	above.	

2.	Normative	references	

The	 following	 referenced	 documents	 are	 indispensable	 for	 the	 application	 of	 this	
document.	For	dated	references,	only	the	edition	cited	applies.	For	undated	references,	
the	latest	edition	of	the	referenced	document	(including	any	amendments)	applies.	

ISO/IEC	 24772-1:2023	 Programming	 languages	 -	 Avoiding	 vulnerabilities	 in	
programming	languages	-	Part	1:	Language-independent	catalogue	of	vulnerabilities	

ISO/IEC	 60559:2020	 Information	 technology	 -	 Microprocessor	 Systems	 -	 Floating-
Point	arithmetic	

ISO/IEC	10967-1:2012	Information	technology	-	Language	independent	arithmetic	-	
Part	1:	Integer	and	floating-point	arithmetic	

©	ISO/IEC	2023	–	All	rights	reserved	 11	
	

ISO/IEC	10967-2:2001	Information	technology	-	Language	independent	arithmetic	-	
Part	2:	Elementary	numerical	functions	

ISO/IEC	10967-3:2006	Information	technology	-	Language	independent	arithmetic	-	
Part	 3:	 Complex	 integer	 and	 floating-point	 arithmetic	 and	 complex	 elementary	
numerical	functions	

3.	Terms	and	definitions	

3.1	General	

For	 the	 purposes	 of	 this	 document,	 the	 terms	 and	 definitions	 given	 in	 ISO/IEC	
2382:2015,	ISO/IEC	24772–1,	and	the	following	apply.		

ISO	and	IEC	maintain	terminology	databases	for	use	in	standardization	are	available	
at:	

• IEC	Glossary,	std.iec.ch/glossary	
• ISO	Online	Browsing	Platform,	www.iso.ch/obp/ui	

• Python	 terminology	 can	 be	 found	 in	 the	 referenced	 Python	 document	 set	
https://docs.python.org.	

3.2	
annotation	
label	associated	with	a	class	or	function	name,	variable	or	return	value	used	as	a	type	
hint	

3.3	
argument	
value	passed	to	a	function	or	method	when	called	

3.4	
assignment	statement	
statement	that	assigns	an	object	to	a	name	(label)	

3.5	
aware	datetime	object	
objects	that	are	aware	of	the	time	zone	to	which	the	object’s	value	applies	

3.6	
body	
the	portion	of	a	compound	statement	that	follows	the	header	and	can	contain	other	
compound	(nested)	statements	

	

12	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

3.7	
Boolean	
truth	value	where	True	corresponds	to	any	non-zero	value	and	False	corresponds	to	
zero	

3.8	
built-in	
function	provided	by	the	Python	language	intrinsically	without	the	need	to	import	it	
(for	example,	str(),	slice(),	type())	

3.9	
class	
program-defined	type	which	is	used	to	instantiate	objects	and	provide	attributes	that	
are	common	to	all	the	objects	that	it	instantiates	

3.10	
comment	
information	preceded	by	a	“#“	for	readers	and	ignored	by	the	language	processor	

3.11	
complex	number	
number	made	up	of	a	real	and	an	imaginary	part,	each	expressed	as	a	floating-point	
number,	in	which	the	imaginary	part	is	expressed	with	a	trailing	upper-	or	lower-case	
j	or	J	or	both	

3.12	
coroutine	
generalized	form	of	a	subroutine	used	with	asyncio	that	can	be	entered,	exited,	and	
resumed	at	many	points	

3.13	
CPython	
the	standard	implementation	of	Python	coded	in	ANSI	portable	C	

3.14	
decorator	
function	that	extends	the	behavior	of	another	function	without	explicitly	modifying	it	

Deleted:	upper	or	lower	case

©	ISO/IEC	2023	–	All	rights	reserved	 13	
	

3.15	
dictionary	
built-in	 mapping	 consisting	 of	 zero	 or	 more	 key:value	 pairs	 that	 are	 ordered,	
changeable,	cannot	contain	duplicates,	and	can	be	indexed	by	keys	of	mixed	types	

3.16	
docstring	
one	 or	 more	 lines	 in	 a	 unit	 of	 code	 that	 are	 retrievable	 at	 run-time	 and	 serve	 to	
document	the	code		

3.17	
entry	point	
a	mechanism	for	an	installed	distribution	to	offer	specific	execution	services	

3.18	
exception	
object	that	encapsulates	the	attributes	of	an	error	or	abnormal	event	by	terminating	
normal	processing	and	can	lead	to	program	termination	if	not	handled	in	the	program	

3.19	
function	
a	 grouping	 of	 statements,	 either	 built-in	 or	 defined	 in	 a	 program	 using	 the	 def	
statement,	which	can	be	called	as	a	unit	

3.20	
garbage	collection	
process,	 controlled	 by	 the	 Python	 gc	 module,	 by	 which	 the	 memory	 used	 by	
unreferenced	objects	and	their	namespaces	is	reclaimed	

3.21	
global	object	
object	 that	 is	 declared	 global	 and	 can	 be	 referenced	 from	 anywhere	 within	 the	
module	or	within	any	modules	that	import	it	

3.22	
guerrilla	patching	
changing	the	attributes	and/or	methods	of	a	module’s	class	at	run-time	from	outside	
of	the	module	

3.23	
Global	interpreter	lock	(GIL)	
mechanism	in	the	CPython	interpreter	that	limits	execution	to	a	single	thread		at	a	time	

Commented	[SM2]:	Renumber from here to the end of 3.	

	

14	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

3.24	
immutable	object	
object,	such	as	an	int,	float,	bool,	str,	or	tuple	object,	whose	value	cannot	be	
changed	by	the	execution	of	the	program	

3.25	
import
mechanism	that	is	used	to	make	the	contents	of	a	module	accessible	to	the	importing	
program	

3.26	
inheritance	
definition	of	a	class	as	a	subclass	of	other	classes	such	that	inheriting	class	acquires	
methods	and	components	from	the	superclass	without	explicitly	defining	them	

3.27	
instance	
object	 that	 belongs	 to	 a	class	 and	 created	 by	 invoking	 the	class	 as	 if	 it	were	 a	
function	

3.28	
integer	
a	whole	number	of	any	length	

3.29	
keyword	
identifier	 that	 is	 reserved	 for	 special	 meaning	 to	 the	 Python	 interpreter	 and	 that	
cannot	be	used	as	a	name	of	an	object	or	a	function	or	a	method	

3.30	
lambda	expression		
an	 anonymous	 inline	 function	 consisting	 of	 a	 single	 expression	which	 is	 evaluated	
when	the	function	is	called	

3.31	
list	
ordered	sequence	of	zero	or	more	items	which	can	be	modified	(mutable)		and	indexed	

3.32	
literal	
string	or	number	

©	ISO/IEC	2023	–	All	rights	reserved	 15	
	

3.33	
membership	
property	of	belonging	by	occurring	in	a	sequence	

3.34	
method	resolution	order	(MRO)	
order	used	to	resolve	references	to	methods	and	variables	to	the	correct	inheritance	
level	

3.35	
module	
file	 containing	 source	 code	 in	 Python	 or	 in	 another	 language	 and	 that	 has	 its	 own	
namespace	and	scope,	may	contain	definitions	for	functions	and	classes,	and	is	only	
executed	once	when	first	imported	or	reloaded	

3.36	
mutable	
characteristic	of	being	changeable	such	as	a	list	or	dictionary	

3.37	
naïve	datetime	object	

objects	that	are	not	aware	of	the	time	zone	to	which	the	object’s	value	applies	

3.38	
name	
reference	to	a	Python	object	such	as	a	number,	string,	list,	dictionary,	tuple,	set,	built-
in,	module,	function,	or	class	

3.39	
namespace	
place	where	names	reside	with	their	references	to	the	objects	that	they	represent	

3.40	
None	
null	object	

3.41	
number	
integer,	floating-point,	decimal,	or	complex	number	

3.42	
operator	
symbol	that	represents	an	action	or	operation	on	one	or	more	operands		

	

16	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

3.	43	
overriding	
attribute	in	a	subclass	to	replace	a	superclass	attribute	

3.44	
package	
collection	of	one	or	more	other	modules	in	the	form	of	a	directory	

3.45	
pickling	
process	of	serializing	objects	using	the	pickle	module	

3.46	
scope	
program	region	where	a	label	or	name	is	available	for	use	within	the	overall	program	

3.47	
script	
unit	of	code	generally	synonymous	with	a	program	but	usually	run	at	the	highest	level	

3.48	
self	
name	of	the	class	instance	variable	used	within	functions	controlled	by	the	instance	

3.49	
sequence	
ordered	container	of	mutable	or	immutable	items	of	the	same	type	that	can	be	indexed	
or	sliced	using	positive	numbers	

3.50	
set	
unordered	sequence	of	zero	or	more	mutable	or	immutable	items	which	do	not	need	
to	be	of	the	same	type	

3.51	
short-circuiting	operator	
logical	operator	consisting	of	two	expressions	where	the	evaluation	of	the	right-hand	
expression	can	be	skipped	depending	upon	the	operation	and	the	evaluation	of	the	left-
hand	expression	

©	ISO/IEC	2023	–	All	rights	reserved	 17	
	

3.52	
statement	
any	instruction	written	in	the	source	code	and	executed	by	the	Python	interpreter	

3.53	
string	
built-in	 immutable	 sequence	 object	 consisting	 of	 one	 or	 more	 characters	 and	 not	
containing	a	termination	character		

3.54	
tuple	
an	immutable	sequence	of	objects	with	potentially	varying	types		

3.55	
type	hint	
an	 annotation	 that	 identifies	 the	 expected	 type	 for	 a	 variable,	class,	 function,	 or	
return	value		

3.56	
variable	
a	reference	to	the	memory	location	of	an	object	that	contains	a	value	

4.	Using	this	document	

ISO/IEC	24772-1:2024	4.2	documents	 the	process	of	 creating	 software	 that	 is	 safe,	
secure	 and	 trusted	 within	 the	 context	 of	 the	 system	 in	 which	 it	 is	 fielded.	 As	 this	
document	shows,	vulnerabilities	exist	in	the	Python	programming	environment,	and	
organizations	 are	 responsible	 for	 understanding	 and	 addressing	 the	 programming	
language	issues	that	arise	in	the	context	of	the	real-world	environment	in	which	the	
program	will	be	fielded.	

Organizations	 following	 this	 document	 meet	 the	 requirements	 of	 4.2	 of	 ISO/IEC	
24772-1,	repeated	here	for	the	convenience	of	the	reader:	

• Identify	 and	 analyze	 weaknesses	 in	 the	 product	 or	 system,	 including	 systems,	
subsystems,	modules,	and	individual	components.	

• Identify	and	analyze	sources	of	programming	errors.		
• Determine	 acceptable	 programming	 paradigms	 and	 practices	 to	 avoid	

vulnerabilities	using	the	documentation	provided	in	5.2,	6	and	7.	
• Map	the	 identified	acceptable	programming	practices	 into	organizational	coding	

standards.	
• Select	and	deploy	tooling	and	processes	to	enforce	coding	rules	or	practices.	

	

18	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

• Implement	controls	(in	keeping	with	the	requirements	of	the	safety,	security,	and	
privacy	needs	of	the	system)	that	enforce	these	practices	and	procedures	to	ensure	
that	the	vulnerabilities	do	not	affect	the	safety	and	security	of	the	system	under	
development.	

In	addition,	organizations	can	determine	avoidance	and	mitigation	mechanisms	using	
clause	6	of	this	document	as	well	as	other	technical	documentation,	such	as	the	MITRE	
Corporation,	Common	Weakness	Enumeration	(CWE)	[8],	Sun	Microsystems,	Inc.	[18],	
and	Einarsson	[2].	Other	views	of	avoiding	programming	mistakes	and	design	flaws	
are	addressed	by	Martelli	[13]	and	Sebesta[17].	

Tool	vendors	follow	this	document	by	providing	tools	that	diagnose	the	vulnerabilities	
described	 in	 this	 document.	 Tool	 vendors	 also	 document	 to	 their	 users	 those	
vulnerabilities	that	cannot	be	diagnosed	by	the	tool.	

Programmers	 and	 software	 designers	 follow	 this	 document	 by	 following	 the	
architectural	and	coding	guidelines	of	their	organization,	and	by	choosing	appropriate	
mitigation	techniques	when	a	vulnerability	is	not	avoidable.	

5	General	language	concepts	and	primary	avoidance	mechanisms		

5.1	General	Python	language	concepts	

5.1.1	Introduction	

The	key	concepts	discussed	in	this	section	are	not	entirely	unique	to	Python,	but	they	
are	implemented	in	Python	in	ways	that	are	not	always	intuitive.	

This	document	 reflects	material	presented	 in	 the	Python	documentation	 set,	which	
includes	the	Python	Reference	Manual	[15]	and	the	Python-C	language	interface	[14].	
Guidance	regarding	programming	in	Python	can	be	found	in	Lutz	[6]	[7],	Embedding	
Python	[3],	Python	logging	facility	[5],	Python	runtime	audit	hooks	[12]	and	packaging	
binary	extensions	[9].	

5.1.2	Execution	environment	

All	 examples	 in	 this	document	were	executed	 from	 the	 command	 line	 since	an	 IDE	
(Integrated	 Development	 Environment)	 can	 optimize	 code	 and	 lead	 to	 different	
results.	

©	ISO/IEC	2023	–	All	rights	reserved	 19	
	

5.1.3	Dynamic	Typing	

A	frequent	source	of	confusion	is	Python’s	dynamic	typing	and	its	effect	on	variable	
assignments	(name	is	synonymous	with	variable	in	this	annex).	In	Python	there	are	no	
static	 declarations	 of	 variables.	 Variables	 are	 created,	 rebound,	 and	 deleted	
dynamically.	 Further,	 variables	 are	 not	 objects	 as	 they	 are	 in	 more	 traditional	
languages.	Rather,	they	are	references	to	objects	and	can	be,	and	frequently	are,	bound	
to	other	objects	as	the	program	executes.	

a = 1 # a is bound to an integer object whose value is 1
a = 'abc' # a is now bound to a string object

In	Python,	variables	have	no	type	–	they	reference	objects	which	have	types	thus	the	
statement	a = 1	creates	a	new	variable	called	“a”	that	references	a	new	object	whose	
value	is	“1”	and	type	is	integer.	That	variable	can	be	deleted	with	a	del	statement	or	
bound	to	another	object	any	time	as	shown	above	(see	6.2	Type	system	[IHN]).	This	
annex	often	treats	the	term	variable	(or	name)	as	being	the	object,	which	is	technically	
incorrect	but	simpler.	For	example,	in	the	statement	a = 1,	the	object	“a”	is	assigned	
the	value	“1”.	The	name	a	is	assigned	to	a	newly	created	object	of	type	integer	which	
is	assigned	the	value	“1”.	

Even	when	explicit	type	declarations	are	present,	they	are	not	checked	at	runtime,	and	
are	 instead	 checked	 using	 separate	 type	 checking	 tools.	 The	 following	 code	 will	
execute	without	any	problems,	but	the	assignment	of	a	string	to	a	variable	explicitly	
declared	as	holding	an	integer	will	cause	static	type	analysis	to	fail:	

a: int = 1 # Programmer declares ‘a’ will always refer
 # to an int object
a = 'abc' # Type checker reports error when a is bound
 # to ‘a’ string object

Similarly,	there	is	no	type	checking	for	argument	passing	to	user-defined	functions	and	
methods.	Type	errors	are	diagnosed	during	the	execution	of	the	function	or	method	
when	an	illegal	operation	is	attempted,	or	a	call	is	made	to	a	function	or	method	that	is	
not	 defined.	When	 type	 hints	 for	 function	 arguments	 are	 present,	 they	 can	 also	 be	
checked	using	separate	type	checking	tools.	

5.1.4	Mutable	and	Immutable	Objects	

Note	that	in	the	statement:	a = a + 1,	Python	creates	a	new	object	whose	value	is	
calculated	by	adding	1	to	the	value	of	the	current	object	referenced	by	a.	If,	prior	to	the	
execution	of	this	statement	a’s	object	had	contained	a	value	of	1,	then	a	new	integer	
object	with	a	value	of	2	would	be	created.	The	integer	object	whose	value	was	1	is	now	
marked	for	deletion	using	garbage	collection	provided	no	other	variables	reference	it.	

	

20	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Note	that	the	value	of	a	is	not	updated	in	place,	that	is,	the	object	referenced	by	a	does	
not	simply	have	1	added	to	 it	as	would	be	typical	 in	other	 languages.	This	does	not	
happen	in	Python	because	 integer	objects,	as	well	as	string,	number	and	tuples,	are	
immutable	–	they	cannot	be	changed	in	place.	Only	lists,	sets,	and	dictionaries	can	be	
changed	in	place	–	they	are	mutable.	In	practice	this	restriction	of	not	being	able	to	
change	a	mutable	object	in	place	is	mostly	transparent	but	a	notable	exception	is	when	
immutable	 objects	 are	 passed	 as	 a	 parameter	 to	 a	 function	 or	 class	 (see	 6.22	
Initialization	of	Variables	[LAV]).	

The	underlying	actions	that	are	performed	to	enable	the	apparent	in-place	change	do	
not	update	the	immutable	object	–	they	create	a	new	object	and	bind	(or	“point”)	the	
variable	 to	 the	new	object.	This	can	be	shown	as	below	(the	 id	 function	returns	an	
object’s	address):	

a = 'abc'
print(id(a)) #=> 30753768
a = 'abc' + 'def'
print(id(a)) #=> 52499320
print(a) #=> abcdef

The	updating	of	objects	referenced	in	the	parameters	passed	to	a	function	or	class	is	
governed	by	whether	 the	object	 is	mutable,	 in	which	case	 it	 is	updated	 in	place,	or	
immutable	in	which	case	a	local	copy	of	the	object	is	created	and	updated	which	has	
no	 effect	 on	 the	 passed	 object.	 This	 is	 described	 in	 more	 detail	 in	 6.32	 Passing	
Parameters	and	Return	Values	[CSJ].	

5.1.5	Variables,	objects,	and	their	values	

Python	variables	 (names)	 are	not	 like	 variables	 in	most	 other	 languages	 -	 they	 are	
dynamically	referenced	to	objects.	Python	allows	optional	explicit	type	declarations	to	
be	added	to	variables,	 function	parameters	and	return	values.	The	Python	 language	
itself	 does	 not	 enforce	 these	 annotations	 but	 they	 can	 be	 used	 by	 third-party	 type	
checkers,	as	well	as	IDEs.	Any	Python	variable	can	be	reassigned	to	objects	of	different	
types	at	different	times.	

Python	creates	each	variable	when	it	is	first	assigned.	In	fact,	assignment	is	the	only	
way	to	bring	a	variable	into	existence.	Function	parameters	are	implicitly	assigned	by	
the	interpreter	when	the	function	is	called.	All	values	in	a	Python	program	are	accessed	
through	a	variable	reference	which	points	to	a	memory	location	which	is	always	an	
object	(for	example,	number,	string,	list,	and	so	on).	A	variable	is	said	to	be	bound	to	

©	ISO/IEC	2023	–	All	rights	reserved	 21	
	

an	object	when	it	is	assigned	to	that	object.	A	variable	can	be	rebound	to	another	object	
which	can	be	of	any	type.	For	example:	

a = 'alpha' # assignment to a string
a = 3.142 # rebinding “a” to a float
a = b = (1, 7.4, “Hello”) # rebinding to a tuple
print(a) #=> (1, 7.4, “Hello”)
del a
print(b) #=> (1, 7.4, “Hello”)
print(a) #=> NameError: name 'a' is not defined

The	first	three	statements	show	dynamic	binding	in	action.	The	variable	a	is	bound	to	
a	string,	then	to	a	float,	then	to	another	variable	which	in	turn	is	assigned	a	tuple	of	
value	(1,	7.4,	“Hello”).	Tuples	can	contain	objects	of	mixed	types	and	are	immutable	
and	ordered.	

The	del	statement	then	unbinds	the	variable	a	from	the	tuple	object	which	effectively	
deletes	the	variable	a	(if	there	were	no	other	references	to	the	tuple	object	it	too	would	
have	 been	 deleted	 because	 an	 object	 with	 zero	 references	 is	 marked	 for	 garbage	
collection	(but	is	not	necessarily	deleted	immediately)).	In	this	case,	we	see	that	b	is	
still	referencing	the	tuple	object,	so	the	tuple	is	not	deleted.	The	final	statement	above	
shows	that	an	exception	is	raised	when	an	unbound	variable	is	referenced.	

The	way	in	which	Python	dynamically	binds	and	rebinds	variables	is	a	source	of	some	
confusion	to	new	programmers	and	even	experienced	programmers	who	are	used	to	
static	binding	where	 a	 variable	 is	permanently	bound	 to	 a	 single	memory	 location.	
Values	 are	 assigned	 to	 objects	 which	 in	 turn	 are	 referenced	 by	 variables	 but	 it	 is	
simpler	to	say	the	value	is	assigned	to	the	variable.	For	brevity	this	document	uses	this	
simpler,	 though	not	as	exact,	wording.	Variables	 in	an	expression	are	replaced	with	
object	 references	 when	 that	 expression	 is	 evaluated,	 therefore	 a	 variable	 must	 be	
explicitly	assigned	before	being	referenced,	otherwise	a	run-time	exception	is	raised:	

a = 1
if a == 1 : print(b) # error – b is not defined

When	line	1	above	is	interpreted,	an	object	of	type	integer	is	created	to	hold	the	value	
1 and	the	variable a is	created	and	linked	to	that	object.	The	second	line	illustrates	
how	an	error	is	raised	if	a	variable	(b	in	this	case)	is	referenced	before	being	assigned	
to	an	object.	

a = 1
b = a
a = 'x'
print(a, b) #=> x 1

	

22	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Variables	can	share	references	as	above	–	b	is	assigned	to	the	same	object	as	a.	This	is	
known	as	a	shared	reference.	 If	a	 is	 later	reassigned	 to	another	object	 (as	 in	 line	3	
above),	b	will	still	be	assigned	to	the	initial	object	that	a	was	assigned	to	when	b	shared	
the	reference,	in	this	case	b	would	equal	to	1.	

The	 subject	 of	 shared	 references	 requires	 particular	 care	 since	 its	 effect	 varies	
according	to	the	rules	for	in-place	object	changes.	In-places	object	changes	are	allowed	
only	for	mutable	(that	is,	alterable)	objects.	Numeric	objects	and	strings	are	immutable	
(unalterable).		Lists	and	dictionaries	are	mutable	which	affects	how	shared	references	
operate	as	below:	

a = [1,2,3]
b = a
a[0] = 7
print(a) # [7, 2, 3]
print(b) # [7, 2, 3]

In	 the	example	above,	a	 and	b	have	a	 shared	reference	 to	 the	same	 list	object	 so	a	
change	to	that	list	object	affects	both	references.	If	the	shared	reference	effects	are	not	
well	understood,	the	change	to	b	can	cause	unexpected	results.	

Assignments	can	also	invoke	an	augmented	syntax	such	as	a += 1.	Other	syntaxes	
support	multiple	targets,	that	is,	

x = y = z = 1

binding	(or	rebinding)	an	instance	attribute,	that	is,	

x.a = 1

and	binding	(or	rebinding)	a	container	element,	that	is,	

x[k] = 1

For	further	discussion	of	aliasing	see	6.32	Passing	parameters	and	return	values	[CSJ],	
and	6.38	Deep	vs	shallow	copying	[YAN].	For	further	discussion	of	concurrent	access	
to	values,	see	6.61	Concurrency	-	data	access	[CGX].	

The	Python	language,	by	design,	allows	for	dynamic	binding	and	rebinding.	Because	of	
the	dynamic	way	in	which	variables	are	brought	into	a	program	at	run-time,	the	Python	

©	ISO/IEC	2023	–	All	rights	reserved	 23	
	

language	 runtimes	 cannot	warn	 that	 a	 variable	 is	 referenced	 but	 never	 assigned	 a	
value.	The	following	code	illustrates	this:	

if a > b:
 import x
else:
 import y

Depending	on	the	current	value	of	a	and	b,	either	module	x	or	y	is	imported	into	the	
program.	If	x	assigns	a	value	to	a	variable	z	and	module	y	references	z	then	dependent	
on	which	import	statement	is	executed	first	(an	import	always	executes	all	code	in	
the	module	when	it	is	first	imported),	an	unassigned	variable	reference	exception	will	
or	will	not	be	raised.	

Programmers	can	use	ResourceWarning	to	detect	the	implicit	cleanup	of	resources	
and	tracemalloc	to	report	the	location	of	the	resource	allocation.	

Python	 only	 checks	 whether	 a	 variable	 already	 exists	 when	 it	 is	 encountered	 in	 a	
statement	 that	 attempts	 to	 access	 its	 value.	 It	was	 intentionally	 part	 of	 the	 Python	
language	design	to	resolve	names	at	runtime	when	they	are	used.	This	allows	for	the	
scoping	semantics	where	names	may	be	resolved	in	either	the	current	local	scope,	an	
outer	 lexically	nested	 function	 scope,	 the	module	global,	 or	 the	built-in	namespace.	
Python	 therefore	has	no	way	 to	know	 if	 a	 variable	 is	 referenced	before	or	 after	 an	
assignment.	For	example:	

if y > 0:
 print(x)

The	above	statement	is	legal	even	if	x	has	not	been	previously	defined	(that	is,	assigned	
a	value)	in	the	current	scope	or	an	outer	lexically	nested	function	scope	in	a	way	that	
is	visible	to	the	compiler.	However,	at	runtime,	an	exception	UnboundLocalError	
is	raised	when	a	local	variable	is	read	before	it	is	assigned.	The	exception	is	raised	only	
if	the	statement	is	executed	and	y > 0,	and	x	is	not	present	in	the	current	local	scope,	
module	globals	or	the	built-in	namespace.	Thus,	this	scenario	would	not	lend	itself	to	
static	analysis	because,	as	in	the	case	above,	it	may	be	perfectly	logical	to	not	ever	print	
x	unless	y > 0,	or	the	program	may	use	means	that	are	opaque	to	the	compiler	to	
ensure	that	x	is	available	in	the	module	scope	or	the	built-in	namespace	by	the	time	it	
is	needed	(for	example,	it	may	be	set	from	another	module,	or	programmatically	via	
the	globals()	built-in).	

There	 is	 no	 ability	 to	 use	 a	 variable	 with	 an	 uninitialized	 value	 because	 assigned	
variables	 always	 reference	 objects	 which	 always	 have	 a	 value	 and	 unassigned	
variables	 do	 not	 exist.	 Therefore,	 Python	 raises	 an	 exception	 at	 runtime	 when	 an	
unassigned	(that	is,	non-existent)	variable	is	referenced.	

	

24	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Initialization	of	function	arguments	can	cause	unexpected	results	when	an	argument	
is	set	to	a	default	object	which	is	mutable:	

def x(y=[]):
 y.append(1)
 print(y)
x([2]) #=> [2, 1], as expected (default was not needed)
x() # [1]
x() # [1, 1] continues to expand with each subsequent call

The	behaviour	above	is	not	a	bug,	it	is	a	defined	behaviour	for	mutable	objects,	but	it	
is	a	very	bad	idea	in	almost	all	cases	to	assign	mutable	objects	as	default	values.	

5.1.6	Inheritance	

Inheritance	 is	 a	 powerful	 part	 of	 Object-Oriented	 Programming	 (OOP).	 Python	
supports	single	inheritance	and	multiple	inheritance.	

Python	 supports	 inheritance	 through	 a	 dynamic	 hierarchical	 search	 of	 class	
namespaces	starting	at	the	class	of	a	given	object	and	proceeding	upward	through	its	
superclasses.	 Python	 supports	 method	 overriding;	 it	 does	 not	 support	 method	
overloading	by	default.	

In	binding	the	name	of	a	method	call,	normally	only	the	name	of	the	called	function	is	
considered.	As	a	special	case,	the	decorator	@dispatch	can	be	used	to	enable	method	
overloading,	but	only	within	the	namespace	of	a	single	class.	The	decorator	does	not	
allow	for	overloading	of	methods	along	an	inheritance	hierarchy.		Consider:	

from multipledispatch import dispatch

@dispatch(int,int)
def product(first, second):
 result = first*second
 print(result)

@dispatch(float,float,float)
def product(first, second, third):
 result = first * second * third
 print(result)

product(2,3) # => 6

©	ISO/IEC	2023	–	All	rights	reserved	 25	
	

product(2.2,3.4,2.3) # => 17.204

Without	 the	 @dispatch	 decorators,	 only	 the	 second	 method	 product	 would	 be	
considered	 in	 subsequent	 name	 binding.	 With	 the	 decorators,	 the	 types	 of	 the	
parameters	are	taken	into	account	as	well	in	binding	the	method	name	of	a	call.		

As	the	name	resolution	takes	only	the	method	name	into	account,	a	method	definition	
either	redefines	(hides)	an	equally	named	inherited	method	of	the	class	of	the	object	
or,	if	none	is	found,	it	represents	a	new	method.		

class A:
 def method1(self):
 print('method1 of class A')

class B(A):
 def method1(self):
 print('Modified method1 of class A by class B')

b = B()
b.method1() #=> Modified method1 of class A by class B

Multiple	 inheritance	 is	 also	 supported	 by	 Python.	 Name	 resolution	 uses	 a	 strategy	
known	as	Method	Resolution	Order	(MRO).	The	MRO	is	also	commonly	recognized	as	
C3	 Linearization.	 For	 simpler	 cases	 that	 do	 not	 involve	 “diamond	 structures”	 (i.e.,	
superclasses	 that	 are	 shared	 by	 other	 superclasses),	 the	 MRO	 generally	 follows	 a	
depth-first,	 left-to-right	 ordering	 protocol	 resulting	 in	 a	 single	 path	 through	 the	
inheritance	 tree.	 For	 diamond	 structures,	 the	 rules	 become	 more	 complicated	 as	
shown	by	the	examples	below.	In	these	cases,	the	MRO	is	difficult	to	establish	manually,	
and	 its	outcome	differs	substantially	 from	the	usual	rules	 in	other	OO-languages.	 In	
general,	 the	MRO	lookup	sequence	for	binding	names	in	classes	 is	a	mixture	of	 left-
most	depth-first	and	selective	breadth-first	traversal,	the	latter	ensuring	that	all	search	
paths	back	to	a	given	parent	node	are	explored	before	this	parent	node	is	visited.		

Consider	the	following	example	of	multiple	inheritance:	

class A:
 def __init__(self):
 self.id = 'Class A'
 def getId(self):
 return "from A " + self.id

class B:
 def __init__(self):
 self.id = 'Class B'
 def getId(self):

	

26	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

 return "from B " + self.id

class C(A, B):
 def __init__(self):
 A.__init__(self)
 B.__init__(self)

c = C()
print(c.getId()) # => from A Class B
 # When class C(B,A) is used,
 # the output is -> from B Class B

Even	though	both	class	A	and	class	B	carry	a	component	id,	the	joint	child	C	class	has	a	
single	 instance	of	 id.	Thus,	 the	assignments	executed	by	A.__init__(self)	 and	
B.__init__(self)	operate	on	this	single	instance	overwriting	each	other.		

The	built-in	function	super()	introduces	more	flexibility.	In	Python,	super()	also	
relies	on	MRO.	Updating	the	previous	example	using	super()	is	shown	below	and	the	
output	 is	 now	class A.	 Reversing	 the	 inheritance	 call	 to	 class	C(B, A)	 would	
predictably	result	in	class B.	The	MRO	for	the	scenario	below	is	calculated	using	the	
__mro__	attribute	for	class C	resulting	in	(C -> A -> B).	It	is	important	to	
make	sure	that	each	class	calls	the	__init__	of	its	superclass	so	that	it	is	properly	
initialized.	

class A:
 def __init__(self):
 super().__init__()
 self.id = 'Class A'
 def getId(self):
 return self.id

class B:
 def __init__(self):
 super().__init__()
 self.id = 'Class B '
 def getId(self):
 return self.id

class C(A, B):
 def __init__(self):

©	ISO/IEC	2023	–	All	rights	reserved	 27	
	

 super().__init__()
 def getId(self):
 return self.id

c = C()
print(c.getId()) # => Class A
print(C.__mro__) # => (<class '__main__.C'>,
 # <class '__main__.A'>, <class
'__main__.B'>,
 # <class 'object'>)

In	general,	the	MRO	lookup	sequence	for	binding	names	in	classes	is	a	mixture	of	left-
most	depth-first	and	selective	breadth-first	traversal;	the	latter	ensuring	that	all	search	
paths	back	to	a	given	parent	node	are	explored	before	this	parent	node	is	visited.	As	
noted	earlier,	 in	these	cases	the	MRO	is	difficult	to	establish	manually.	Additionally,	
Python	renders	certain	MRO’s	illegal	which	further	complicates	the	understanding	of	
the	rules.	For	example,	in	a	class	hierarchy	described	by	

class O: pass
class P: pass
class A(P): pass
class B(P): pass
class Z(O): pass
class Y(Z): pass
class W(O): pass

class C(Y, A, B, W): pass # This works fine

c = C()
c.meth()

class C(Z, Y, A, B, W): pass
 # => TypeError: Cannot create a
 # consistent MRO for bases Z, Y, A, B, W

the	MRO	for	resolving	the	method	name	c.meth()	is	the	linear	sequence	

C – Y – Z – A – B – P – W – O – object.

On	the	other	hand,	in	the	last	line	above,	Python	cannot	establish	a	consistent	MRO	for		

class C(Z, Y, A, B, W),

	

28	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

because	Z	is	a	superclass	of	Y	and	Python	throws	the	TypeError	exception.	Notice	
that	object	is	always	the	last	class	in	every	MRO	chain.	

Note	that	Python	will	always	diagnose	a	failure	to	declare	a	legal	class,	as	shown	above.		

5.1.7	Concurrency	

Python’s	threading	module	provides	the	ability	to	perform	cooperative	multithreading	
from	 within	 a	 single	 native	 thread.	 Due	 to	 the	 restrictions	 of	 Python’s	 Global	
Interpreter	Lock	(GIL)	in	some	implementations,	only	one	thread	at	a	time	is	permitted	
to	run.	In	these	implementations,	multithreading	can	still	be	useful	in	situations	where	
the	CPU	becomes	idle	such	as	in	I/O-bound	applications.		

It	is	important	to	handle	potential	thread	exceptions	when	starting	new	threads,	and	
care	needs	to	be	taken	so	that	each	thread	is	only	started	once.	

Python’s	 multiprocessing	 module	 provides	 multiprocessing	 capability	 that	 allows	
independent	processes	to	run	on	multiple	cores.	Unlike	threading,	these	independent	
processes	do	not	have	shared	memory	and	are	not	prone	to	the	relevant	data	races.	It	
is	 important	 to	 handle	 potential	 multiprocessing	 exceptions	 when	 starting	 new	
processes,	 and	 if	 a	 process	 terminates	 as	 the	 result	 of	 an	 exception,	 it	 cannot	 be	
restarted.	

Python’s	 asyncio	 module	 is	 the	 newest	 approach	 to	 handling	 asynchronous	
concurrency,	introduced	in	Python	3.4.	This	new	asyncio	processing	model	is	typically	
faster	than	implementations	that	use	traditional	threads	and	multiprocessing,	and	it	is	
often	safer	since	asyncio	operations	all	run	in	the	same	thread.		Python	event	loops	are	
automatically	generated	by	asyncio.run().	When	using	asyncio,	correct	operation	
requires	that	all	tasks	relinquish	control	co-operatively,	with	execution	controlled	by	
the	 Async	 IO	 manager.	 Since	 task	 switching	 is	 less	 arbitrary	 than	 thread	 context	
switching	 when	 cooperative	 transfers	 of	 control	 between	 coroutines	 are	 used,	 i.e.,	
await()	 to	 provide	 predictable	 control	 over	 the	 task	 switching	 process.	 Multiple	
event	loops	are	possible	but	not	recommended	when	using	asyncio	as	the	execution	
model	 relies	 on	 a	 single	 thread	 and	 adding	multiple	 event	 loops	 does	 not	 provide	
additional	functionality	or	performance.	

Interprocess	 communication	 is	 almost	 always	 necessary	 in	multicore	 systems.	 If	 a	
program	is	implemented	that	uses	both	processes	and	event	loops,	it	should	be	noted	
that	 event	 loops	 are	 not	 a	 suitable	 means	 of	 interprocess	 communication.	 It	 is	

©	ISO/IEC	2023	–	All	rights	reserved	 29	
	

plausible,	however,	that	the	masters	of	event	loops	may	need	to	communicate	with	one	
another,	and	this	should	happen	outside	of	the	event	loop	processing.	

A	 thread	 with	 the	daemon	 flag	 set	 to	True	 is	 called	 a	 daemon	 thread	 and	 never	
terminates	until	the	program	ends.	

Futures	 are	 Python	 objects	 that	 represent	 the	 eventual	 result	 of	 asynchronous	
operations.	Futures	are	also	available	using	the	concurrent.futures	module,	which	
provides	 a	 common	 interface	 for	 asynchronous	 execution	 of	 threads	 using	
ThreadPoolExecutor,	 or	 processes	 using	 ProcessPoolExecutor.	 When	
executors	 are	 used,	 the	 overheads	 of	 repeatedly	 creating	 threads	 or	 processes	 are	
avoided.	For	CPU	bound	tasks,	the	ProcessPoolExecutor	class	can	provide	better	
performance.	 Futures	 in	 asyncio	 are	 awaitable	 objects	 and	 are	 not	 thread	 safe.	
Coroutines	await	on	future	objects	until	they	provide	a	valid	result,	error	message,	or	
are	cancelled.	

5.2	Primary	avoidance	mechanisms	for	Python	

5.2.1	 Recommendations	 in	 interpreting	 ISO/IEC	 24772-1	 avoidance	
mechanisms	

Python	has	some	fundamental	differences	with	standard	imperative	languages,	which	
are	 the	majority	of	 languages	 covered	by	 the	 ISO/IEC	 series	of	documents,	 and	 the	
avoidance	mechanisms	offered	by	 those	documents	do	not	always	apply	 to	Python.	
This	 document	 describes	 how	 the	 vulnerabilities	 identified	 in	 ISO/IEC	 24772-1	
manifest	in	Python	and	the	steps	recommended	to	mitigate	them.	

The	expectation	is	that	users	of	this	document	will	develop	and	use	a	coding	standard	
based	on	this	document	that	is	tailored	to	their	risk	environment.	

5.2.2	Top	avoidance	mechanisms		

Each	vulnerability	listed	in	clause	6	provides	a	set	of	ways	that	the	vulnerability	can	be	
avoided	or	mitigated.	Many	of	the	mitigations	and	avoidance	mechanisms	are	common.	
This	clause	provides	the	most	effective	and	most	common	mitigations,	together	with	
references	 to	 which	 vulnerabilities	 they	 apply.	 The	 references	 to	 the	 respective	
vulnerabilities	are	provided	to	give	the	reader	easy	access	to	those	vulnerabilities	for	
rationale	and	further	exploration.	The	mitigations	provided	here	are	in	addition	to	the	
top	avoidance	mechanisms	provided	in	ISO/IEC	24772-1:2024	5.4.	

	

30	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

	 	 TABLE	1:	Top	avoidance	mechanisms	in	Python	

Number	 Recommended	avoidance	mechanism	 Applicable	vulnerabilities	

1	 Use	type	annotations	to	help	provide	static	type	
checking	prior	to	running	code.	

6.5	[CCB]		

6.2	[IHN]		

6.11	[HFC]		

6.41	[RIP]	

6.42	[BLP]	

6.44	[BKK]	

2	 Avoid	the	use	of	pickle,	but	if	it	must	be	used,	
only	unpickle	trusted	data.	

6.53	[SKL]	

6.61	[CGX]	

3	 Avoid	 implicit	 references	 to	 global	 values	 from	
within	functions	to	make	code	clearer.	In	order	to	
update	 global	 objects	 within	 a	 function	 or	
class,	 place	 the	 global	 statement	 at	 the	
beginning	of	 the	 function	definition	and	 list	 the	
variables	 so	 it	 is	 clearer	 to	 the	 reader	 which	
variables	 are	 local	 and	 which	 are	 global	 (for	
example,	global a, b, c).	

6.20	[YOW]	

6.21	[BJL]	

6.61	[CGX]	

6.63	[CGM]	

©	ISO/IEC	2023	–	All	rights	reserved	 31	
	

Number	 Recommended	avoidance	mechanism	 Applicable	vulnerabilities	

4	 Always	use	named	exceptions	to	avoid	catching	
errors	 that	 are	 intended	 for	 other	 exception	
handlers	 and	 use	 context	 managers	 to	 enclose	
the	code	creating	the	exception.	

6.6	[FLC]	

6.15	[FIF]	

6.31	[EWD]	

6.36	[OYB]	

6.59	[CGA]	

6.62	[CGS]	

5	 Avoid	using	exec	or	eval	and	never	use	these	
with	untrusted	code.	

6.48	[NYY]	

6.53	[SKL]	

6	 Avoid	 guerrilla	 patching,	 but	 if	 unavoidable,	 be	
aware	 that	 altering	 the	 behavior	 of	 objects	 at	
runtime	 can	make	 code	much	more	 difficult	 to	
understand	and	can	introduce	vulnerabilities.	

6.48	[NYY]	

6.53	[SKL]	

	

7	 Consider	 the	 guidance	 of	 “PEP	 551	 –	 Security	
transparency	 in	 the	 Python	 runtime”	 [11]	 and	
“PEP	 578	 Python	 Runtime	 Audit	 Hooks"	 [12]	
when	using	audit	hooks.	

6.48	[NYY]	

6.54	[BRS]	

8	 Be	 cognizant	 that	 most	 arithmetic	 and	 bit	
manipulation	 operations	 on	 non-integers	 have	
the	potential	for	undetected	wrap-around	errors.	

6.15	[FIF]	

9	 When	 using	 multiple	 threads,	 verify	 that	 all	
shared	 data	 is	 protected	 by	 locks	 or	 similar	
mechanisms,	 and	 use	 inter-communication	
mechanisms	or	global	references	to	ensure	safe	
terminations.	

6.59	[CGA]	

6.60	[CGT]	

6.61	[CGX]		

6.63	[CGM]	

	

32	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Number	 Recommended	avoidance	mechanism	 Applicable	vulnerabilities	

10	 Avoid	 mixing	 concurrency	 models	 within	 the	
same	program.	

6.59	[CGA]	

11	 When	 using	 asyncio,	 make	 all	 tasks	 non-
blocking.	

6.25	[KOA]	

6.59	[CGA]	

6.61	[CGX]	

6.65	[BQF]	

12	 Avoid	external	termination	of	concurrent	entities	
except	as	an	extreme	measure.	

6.60	[CGT]	

13	 Be	 cognizant	 of	 the	 precise	 semantics	 of	
assignments	to	mutable	objects.	

6.54	[BRS]	

14	 Inherit	 only	 from	 trusted	 classes	 and	 only	 use	
multiple	inheritance	that	is	linearizable	with	the	
MRO	rules.	

6.41	[RIP]	

6.43	[PPH]	

15	 Avoid	logic	that	depends	on	byte	order	or	use	the	
sys.byteorder	variable	and	write	the	logic	to	
account	for	byte	order.	

6.57	[FAB]		

6.3	[STR]	

6.	Programming	language	vulnerabilities	in	Python	

6.1	General		

Clause	6	contains	specific	analysis	 for	 the	Python	programming	 language	about	 the	
possible	 presence	 of	 vulnerabilities	 as	 described	 in	 ISO/IEC	 24772-1:2024	 and	
provides	 specific	 avoidance	 mechanisms	 for	 Python.	 This	 section	 mirrors	 ISO/IEC	

©	ISO/IEC	2023	–	All	rights	reserved	 33	
	

24772-1:2024	Clause	6	in	that	the	vulnerability	“Type	system	[IHN]”	is	found	in	6.2	of	
ISO/IEC	24772-1:2024,	and	Python	specific	avoidance	mechanisms	are	 found	in	6.2	
“Type	system	[IHN]”	in	this	document.		

Note	 that	 the	avoidance	mechanisms	provided	 in	 this	document	apply	 to	Python	as	
specified	in	the	Python	3.12	documentation.	Python	is	extended	by	several	commonly	
used	 libraries	 that	 can	 have	 behaviours	 different	 from	 those	 documented	 by	 the	
Python	standard.	This	document	does	not	address	these	additional	libraries.	

6.2	Type	system	[IHN]	

6.2.1	Applicability	to	language	

The	vulnerabilities	related	to	insufficient	use	of	the	type	system	as	specified	in	ISO/IEC	
24772-1:2024	6.2	apply	to	Python.	

Python	 abstracts	 all	 data	 as	 objects	 and	 every	 object	 has	 a	 type	 (in	 addition	 to	 an	
identity	and	a	value).	Extensions	to	Python,	written	in	other	languages,	can	define	new	
types,	and	Python	code	can	also	define	new	types,	either	programmatically	through	the	
types	module,	or	by	using	the	dedicated	class	statement.	

Python	is	also	a	strongly	typed	language	–	operations	cannot	be	performed	on	an	object	
that	 is	not	valid	 for	 that	 type.	Checks	performed	 to	ensure	an	appropriate	 type	are	
performed	dynamically	when	the	operation	on	the	object	is	invoked.	For	operations	
that	are	not	valid	for	a	given	type,	an	exception	will	be	raised	at	runtime.	Programmers	
can	 use	 isinstance(),	 type(),	 and	 other	 behavioural	 based	 type	 checkers	 to	
verify	that	the	type	is	valid	or	convertible,	and	then	convert	to	the	desired	type.		

a = 'abc' # a refers to a string object
if isinstance(a, str): print('a type is string')

By	 default,	 a	 Python	 program	 is	 free	 to	 assign	 (bind),	 and	 reassign	 (rebind),	 any	
variable	to	any	type	of	object	at	any	time.	This	is	considered	safe	in	general	since	the	
type	of	the	object	is	carried	in	the	object	and	if	a	variable	is	rebound,	then	any	future	
calls	using	that	variable	will	check	the	type	recorded	in	the	object	to	decide	the	validity	
of	the	operation.	See	6.36	Ignored	error	status	and	unhandled	exceptions	[OYB]	for	a	
discussion	of	the	vulnerabilities	associated	with	failed	checks.	

In	Python,	variables	are	created	when	they	are	first	assigned	a	value	(see	6.17	Choice	
of	clear	names	[NAI]).	Variables	are	generic	in	that	they	do	not	have	a	type.	They	simply	
reference	objects	which	hold	the	object’s	type	information.		

Automatic	 conversion	 occurs	 only	 for	 numeric	 types	 of	 objects.	 Python	 converts	
(coerces)	 from	 the	 simplest	 type	 up	 to	 the	most	 complex	 type	whenever	 different	
numeric	types	are	mixed	in	an	expression.	For	example:	

Deleted:	9.0
Commented	[SJM3]:	The latest version is now v 3.12.5.

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Default	Paragraph	Font,	Not	Highlight
Formatted:	Font:	Font	color:	Auto,	Not	Highlight
Formatted:	Not	Highlight

Deleted:	In	many	cases,	the	conversion	call	is	the	type	
check	(e.g.,	itr = iter(arg)	is	a	common	way	of	
accepting	any	iterable	as	input	and	throwing	TypeError	
otherwise).…

Commented	[SJM4]:	Should we consider deleting this? It is
not directly related to the example that follows.

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

	

34	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

a = 1
b = 2.0
c = a + b; print(c) #=> 3.0

In	 the	 example	 above,	 the	+	 operation	 converts	 the	 value	 of	a	 to	 its	 floating-point	
equivalent,	1.0,	adds	it	to	b,	and	stores	the	floating-point	value,	3.0,	into	c (which	is	
thus	 a	 floating-point	 number).	 A	 programmer	may	 erroneously	 expect	 that	c	 is	 an	
integer	and	use	it	accordingly	which	can	lead	to	unexpected	results.		

Some	of	these	issues	are	visible	to	the	programmer.	For	example,	x = 1/2	will	create	
an	object	of	type	float	with	a	numeric	value	of	0.5,	while	x = 1//2	will	truncate	to	
the	integer	0.	

Gradual	typing	in	Python	allows	optional	annotations	to	be	added	to	dynamic	variables	
to	assign	them	types	so	that	they	can	be	statically	checked.	This	lets	Python	programs	
contain	both	dynamic	variables,	while	adding	the	error-checking	benefits	of	statically	
typed	variables.	Python	tools	provide	static	type	checkers	that	assist	users	in	avoiding	
the	misuse	of	declared	types	in	Python.	

Python	also	has	the	vulnerability	that	changes	in	logical	representation	(e.g.,	meters	to	
feet)	 are	not	 enforced	by	 the	general	 type	 system.	Programmers	 can	use	dedicated	
libraries	to	manage	such	types	or	can	create	their	own	using	classes.	

6.2.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Follow	the	avoidance	mechanisms	contained	in	ISO/IEC	24772-1:2024	6.2.5.		
• Use	 static	 type	 checkers	 to	 detect	 typing	 errors.	 The	 Python	 community	 is	 one	

source	of	static	type	checkers.	
• Pay	special	attention	to	issues	of	magnitude	and	precision	when	using	mixed	type	

expressions.	
• Be	aware	of	the	consequences	of	shared	references	(see	6.24	Side-effects	and	order	

of	evaluation	of	operands	[SAM]	and	6.38	Deep	vs.	shallow	copying	[YAN]).	
• Keep	 in	 mind	 that	 using	 a	 very	 large	 integer	 will	 have	 a	 negative	 effect	 on	

performance.	

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

Formatted:	Not	Highlight
Deleted:	of

Commented	[SJM5]:	Reword? Consider:
…that changes of logical representation…

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

©	ISO/IEC	2023	–	All	rights	reserved	 35	
	

6.3	Bit	representations	[STR]	

6.3.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.3	apply	to	Python.		

Python	 provides	 hexadecimal,	 octal	 and	 binary	 built-in	 functions.	oct	 converts	 to	
octal,	hex	to	hexadecimal	and	bin	to	binary:	

print(oct(256)) # 0o400
print(hex(256)) # 0x100
print(bin(256)) # 0b100000000

The	notations	shown	as	comments	above	are	also	valid	ways	to	specify	octal,	hex	and	
binary	values	respectively:	

print(0o400) #=> 256
a = 0x100+1; print(a) #=> 257

The	built-in	int	 function	can	be	used	to	convert	strings	to	numbers	and	optionally	
specify	any	number	base:	

int('256') # the integer 256 in the default base 10
int('400', 8) #=> 256
int('100', 16) #=> 256
int('24', 5) #=> 14

Python	stores	integers	that	are	beyond	the	underlying	hardware’s		largest	integer	size	
as	 an	 internal	 value	 of	 arbitrary	 length	 so	 that	 programmers	 are	 only	 limited	 by	
performance	 concerns	 when	 very	 large	 integers	 are	 used	 (and	 by	 memory	 when	
extremely	large	numbers	are	used).	For	example:	

a = 2**100 #=> 1267650600228229401496703205376

Python	is	not	susceptible	to	the	vulnerability	associated	with	shifting	the	underlying	
number	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.3	 because	 Python	 treats	 positive	
integers	as	being	infinitely	padded	on	the	left	with	zeroes	and	negative	numbers	(in	
two’s	complement	notation)	with	1’s	on	the	left	when	used	in	bitwise	operations:	

a << b # ‘a’ shifted left ‘b’ bits
a >> b # ‘a’ shifted right ‘b’ bits

There	is	no	overflow	check	required	for	left	shifts	since	bits	are	added	as	required.	For	
right	shifts	of	positive	numbers,	the	result	will	decrease	by	powers	of	two	with	a	limit	

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

	

36	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

of	zero.	Note	that	right	shifts	of	negative	numbers	eventually	result	in	-1	if	the	number	
of	positions	shifted	is	sufficiently	large.	

The	 vulnerability	 associated	 with	 endianness	 can	 be	 mitigated	 by	 identifying	 the	
endian	 protocol.	 Use	 sys.byteorder	 to	 determine	 the	 native	 byte	 order	 of	 the	
platform.	The	call	returns	big	or	little.	
6.3.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Follow	the	avoidance	mechanisms	contained	in	ISO/IEC	24772-1:2024	6.3.5.	
• Be	careful	when	shifting	negative	numbers	to	the	right	as	the	number	will	never	

reach	zero.		
• Localize	and	document	the	code	associated	with	explicit	manipulation	of	bits	and	

bit	fields.		
• Use	sys.byteorder	to	determine	the	native	byte	order	of	the	platform.		

6.4	Floating-point	arithmetic	[PLF]	

6.4.1	Applicability	to	language	

The	vulnerabilities	described	in	ISO/IEC	24772-1:2024	6.4	apply	to	Python.	

Python	supports	floating-point	arithmetic	with	a	specified	mantissa	of	53	bits.	Literals	
are	expressed	with	a	decimal	point	and	or	an	optional	e	or	E:	

1., 1.0, .1, 1.e0

Python	 provides	 decimal	 fixed-point	 and	 floating-point	 libraries	 for	 use	 where	
appropriate.	

6.4.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Follow	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.4.5.	
• Code	 algorithms	 to	 account	 for	 the	 fact	 that	 results	 can	 vary	 slightly	 by	

implementation.	

Formatted:	CODE	Char,	Not	Highlight
Formatted:	Not	Highlight
Formatted:	CODE	Char,	Not	Highlight
Formatted:	Not	Highlight

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

©	ISO/IEC	2023	–	All	rights	reserved	 37	
	

6.5	Enumerator	issues	[CCB]	

6.5.1	Applicability	to	language	

The	 vulnerabilities	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.5	 partially	 apply	 to	
Python.	

An	enum	module	was	introduced	in	Python	v3.4	which	allows	for	better	iteration	and	
value	comparison	than	most	previous	user-developed	methods.	An	example	of	the	new	
enum	module	is:		

from enum import Enum
class ColorEnum(Enum):
 RED = 1
 GREEN = 2
 BLUE = 3
 YELLOW = 4
print(ColorEnum.BLUE) #=> ColorEnum.BLUE

from enum import Enum
class ColorEnum(Enum):
 RED = 1
 GREEN = 3
 BLUE = 2
 YELLOW = 4
print(ColorEnum.BLUE)
print(ColorEnum.GREEN.value > ColorEnum.BLUE.value) #=> TRUE

Values	can	be	assigned	to	the	names	either	manually	or	automatically	using	auto().	
Using	auto()	ensures	that	each	name	is	assigned	a	unique	and	sequential	value	and	
the	initial	assignment	starting	at	1	(not	0).	

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

Deleted:	#GREEN < BLUE #syntax error ¶

Deleted:	

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

	

38	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

from enum import Enum, auto
class ColorEnum(Enum):
 RED = auto()
 GREEN = auto()
 BLUE = auto()
 YELLOW = auto()

for color in ColorEnum:
 print(color.value) #=> 1,2,3,4

If	values	are	assigned	manually,	they	can	occur	out	of	sequence,	but	care	must	be	taken	
to	ensure	that	there	are	no	repeat	values	since	only	the	first	unique	value	is	recognized	
and	all	subsequent	repeated	values	are	ignored.	For	example:	

from enum import Enum
class ColorEnum(Enum):
 RED = 1
 GREEN = 2
 BLUE = 2
 YELLOW = 3
for color in ColorEnum:
 print(color.name, color.value) #=> RED 1, GREEN 2,

 #=> YELLOW 3

Notice	that	BLUE	is	completely	ignored	since	it	is	a	repeated	value.	Duplicate	values	
can	 be	 detected	 and	 forced	 to	 raise	 a	 ValueError	 by	 using	 the	 @unique	 class	
decorator	as	shown	below:	

from enum import Enum, unique
@unique
class ColorEnum(Enum):
 RED = 1
 GREEN = 2
 BLUE = 2
 YELLOW = 3

for color in ColorEnum:
 print(color.name, color.value)
 #=> ValueError:duplicate values found in
 #=> <enum 'ColorEnum'>: BLUE -> GREEN

Formatted:	Font	color:	Auto

Formatted:	CODE,	Keep	with	next,	Pattern:	Clear,	Tab
stops:	Not	at		1.62	cm	+		3.23	cm	+		4.85	cm	+		6.46	cm	+	
8.08	cm	+		9.69	cm	+		11.31	cm	+		12.92	cm	+		14.54	cm	+	
16.16	cm	+		17.77	cm	+		19.39	cm	+		21	cm	+		22.62	cm	+	
24.23	cm	+		25.85	cm

Formatted:	Font:	Not	Bold,	Font	color:	Auto
Formatted:	Font	color:	Auto

Formatted:	Not	Highlight
Formatted:	Keep	with	next

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

Deleted:	¶

Formatted:	Indent:	Left:		7.62	cm,	First	line:		1.27	cm

Formatted:	Not	Highlight
Formatted:	Not	Highlight

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Font	color:	Auto

Formatted:	CODE,	Pattern:	Clear,	Tab	stops:	Not	at		1.62
cm	+		3.23	cm	+		4.85	cm	+		6.46	cm	+		8.08	cm	+		9.69	cm
+		11.31	cm	+		12.92	cm	+		14.54	cm	+		16.16	cm	+		17.77
cm	+		19.39	cm	+		21	cm	+		22.62	cm	+		24.23	cm	+		25.85
cm

Formatted:	Font:	Not	Bold,	Font	color:	Auto
Formatted:	Font	color:	Auto

Formatted:	Not	Highlight
Formatted:	Not	Highlight

©	ISO/IEC	2023	–	All	rights	reserved	 39	
	

Mixing	auto()	with	manual	assignments	can	be	prone	to	error	for	the	same	reason.	
For	example:	

from enum import Enum, auto
class Colors(Enum):
 RED = auto()
 BLUE = auto()
 GREEN = auto()
 PURPLE = 0
 YELLOW = 1
print(list(Colors)) #=> [<Colors.RED:1>, <Colors.BLUE:2>,
 #=> <Colors.GREEN:3>, <Colors.PURPLE:0>]

Notice	that	YELLOW	is	missing	since	its	manually	assigned	value	of	1	had	already	been	
created	automatically.	

Another	interesting	scenario	that	involves	lists	and	auto()	is	shown	here:	

from enum import IntEnum, auto
colors = ["RED", "GREEN"]
class Nums(IntEnum):
 ONE = auto()
 TWO = auto()
 THREE = auto()
print(colors[Nums.ONE]) #=> GREEN

On	the	other	hand,	

print(colors[Nums.ONE-1]) #=> RED

Notice	that	in	this	scenario	the	first	item	in	the	colors	list	(RED)	cannot	be	accessed	
using	auto(),	 unless	1	 is	 subtracted	 from	every	 enumeration	 constant	 created	by	
auto().	

Given	that	enumeration	is	a	useful	programming	device,	many	programmers	choose	to	
implement	their	own	enumeration	objects	or	types	using	a	wide	variety	of	methods	
including	the	creation	of	classes,	lists,	and	even	dictionaries.	Such	substitutes	carry	the	
risk	that	the	usual	enumeration	semantics	will	be	incompletely	implemented.	

In	Python	releases	before	3.4,	programmers	used	various	other	Python	capabilities	to	
implement	the	functionality	of	enumerations,	each	with	its	own	set	of	vulnerabilities.	
New	programs	should	use	the	provided	functionality	of	enum	as	it	is	a	more	complete	
implementation.	 Programs	 created	 before	 Python	 3.4	 can	 consider	 updating	 their	
relevant	 code	 to	use	 the	enum	module.	 For	 example,	 sets	 of	 strings	 can	be	used	 to	
simulate	enumerations:	

Deleted:	¶

Deleted:	

Deleted:	

Deleted:	

Deleted:	<

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

	

40	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

colors = ['red', 'green', 'blue']
if ‘red’ in colors:
 print('Valid color') #=> Valid color

6.5.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Follow	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.5.5.	
• Use	type	annotations	to	help	provide	static	type	checking	prior	to	running	the	code.	
• Avoid	the	use	of	auto()	for	enums	intended	to	be	used	for	indexing	into	lists.	

• If	using	auto()	for	defining	enums,	ensure	that	auto()	is	used	everywhere.	

• If	using	auto()	for	defining	enums,	be	very	careful	in	converting	to	list	members.	

6.6	Conversion	errors	[FLC]	

6.6.1	Applicability	to	language	

The	 vulnerabilities	 identified	 in	 ISO/IEC	24772-1:2024	6.6	 apply	 to	 Python,	 except	
those	related	to	integer-based	conversions	since	Python	seamlessly	handles	integers	
as	described	below.	

Python	has	updated	how	it	handles	coercion	and	instead	of	using	the	“lifting”	technique	
that	brings	operands	 to	a	common	type,	 it	 leaves	 the	handling	of	different	operand	
types	 to	 the	 operation.	 If	 a	 style	 slot	 is	 incapable	 of	 handling	 an	 argument	 type	
combination,	 the	 Py_NotImplemented	 singleton	 signals	 to	 the	 caller	 that	 the	
operation	is	not	implemented	for	the	type	combination.	This	signals	the	caller	to	try	
other	operation	slots	until	it	finds	one	that	is	compatible	with	the	type	combination	
being	 implemented.	 If	 there	 are	 no	 compatible	 combinations	 found,	 a	TypeError	
exception	is	raised.	

Native	Python	numerical	types	are	converted	using	the	following	rules:		

• If	either	argument	is	a	complex	number,	the	other	is	converted	to	the	complex	type;		
• Otherwise,	if	either	argument	is	a	floating-point	number,	the	other	is	converted	to	

floating-point;	
• Otherwise,	both	must	be	plain	integers	and	no	conversion	is	necessary.	

Deleted:	v

Deleted:	<#>Avoid	using	enums	created	by	auto()	to	
access	lists.	¶

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

©	ISO/IEC	2023	–	All	rights	reserved	 41	
	

Integers	in	the	Python	language	are	of	a	length	bounded	only	by	the	amount	of	memory	
in	 the	machine.	 Implementations	may	 store	 integers	 in	 an	 internal	 format	 that	 has	
faster	performance	when	the	number	is	smaller	than	the	largest	integer	supported	by	
the	 implementation	 language	 and	 platform,	 but	 this	 detail	 is	 not	 exposed	 to	 the	
language	user	in	Python.	

Converting	 from	 a	 floating-point	 number	 to	 an	 integer,	 either	 implicitly	 (using	 the	
int()	function)	or	explicitly,	will	typically	cause	a	loss	of	precision:	

a = 3.0
print(int(a)) #=> 3 (no loss of precision)
a = 3.1415
print(int(a)) #=> 3 (precision lost)

Precision	can	also	be	lost	when	converting	from	a	very	large	integer	to	a	floating-point	
number	where	it	requires	more	than	53	bits	of	precision.	Losses	in	precision,	whether	
from	an	integer	to	floating-point	conversion	or	vice	versa,	do	not	generate	errors	but	
can	 lead	to	unexpected	results	especially	when	floating-point	numbers	are	used	 for	
loop	control.	

Conversions	of	an	excessively	large	integer	or	their	string	equivalent	to	a	float	will	lead	
to	 the	 exception	 OverflowError	 (see	 6.36	 Ignored	 error	 status	 and	 unhandled	
exceptions	[OYB]).	

Explicit	conversion	methods	can	also	be	used	to	convert	between	types	though	this	is	
seldom	 required	 for	 numbers	 since	 Python	will	 automatically	 convert	 as	 required.	
Examples	include:	

a = int(1.6666) #=> 1
b = float(1) #=> 1.0
c = int('10') #=> 10
d = str(10) #=> '10'
e = ord('x') #=> 120
f = chr(121) #=> 'y'

Conversions	between	unrelated	types	are	not	possible	in	Python.	For	conversions	up	
and	down	a	class	hierarchy,	see	6.44	Polymorphic	variables	[BKK].		

6.6.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Follow	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.6.5.	

Formatted ...	[3]

Formatted ...	[4]

Formatted ...	[5]

Formatted ...	[6]

Formatted ...	[7]
Deleted:	explicitly	

Formatted:	Not	Highlight
Deleted:	a converted to

Deleted:	b converted to

Deleted:	c integer …0 created from a
string ...	[8]
Deleted:	d string …10' created from an
integer ...	[9]
Deleted:	 e integer assigned integer value

Deleted:	f assigned the string

Deleted:	The	vulnerabilities	described	in	ISO/IEC	24772-
1:2024	related	to	conversion	between	semantically	
incompatible	types	is	applicable	to	Python,	which	does	
not	express	this	notion,	such	as	distinguishing	feet	from	
meters.	The	application	developer	can	implement	such	
mechanisms	by	wrapping	important	types	in	classes	and	
checking	class	types	before	performing	conversions	to	
avoid	resulting	exceptions	or	miscalculations.	An	
alternative	method	is	to	use	one	of	the	available	open-
source	libraries	that	provide	the	intended	functionality	
that	users	can	use	in	preference	to	creating	their	own.¶
Formatted ...	[10]

	

42	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

• Though	there	is	generally	no	need	to	be	concerned	with	an	integer	getting	too	large	
(rollover)	or	small,	be	aware	that	iterating	or	performing	arithmetic	with	very	large	
positive	or	small	(negative)	integers	will	hurt	performance.	

• Be	aware	of	 the	potential	 consequences	of	precision	 loss	when	converting	 from	
floating-point	to	integer.	

• Design	 coding	 strategies	 that	 allow	 the	 distinction	 of	 semantically	 incompatible	
types.	

• Design	 classes	 that	 have	 operation	 handling	methods	 carefully	 and	 ensure	 that	
Py_NotImplemented	and	TypeError	exceptions	are	handled.		

• Use	 or	 develop	 units	 libraries	 to	 handle	 conversions	 between	 differing	 unit-
based	systems.	

6.7	String	termination	[CJM]		

6.7.1	Applicability	to	language	

This	vulnerability	is	not	applicable	to	Python	native	programming,	as	Python	does	not	
use	null	terminated	strings.	Python	strings	are	immutable	objects	whose	length	can	be	
queried	with	built-in	functions.	Therefore,	Python	raises	an	exception	for	any	access	
past	the	end	or	beginning	of	a	string.	

a = '12345'
b = a[5] #=> IndexError: string index out of range

Vulnerabilities	 associated	 with	 runtime	 exceptions	 are	 addressed	 in	 6.36	 Ignored	
error	status	and	unhandled	exceptions	[OYB].	

Python	programs,	however,	may	include	extension	modules	written	in	C	or	C++,	and	
any	string	types	used	for	those	modules	will	be	C-based	string	types	which	have	the	
vulnerability.	

6.7.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.7.5.	

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight

©	ISO/IEC	2023	–	All	rights	reserved	 43	
	

• Where	 C	 style	 strings	 or	 C++	 style	 strings	 are	 used,	 apply	 the	 avoidance	
mechanisms	provided	by	ISO/IEC	24772-1:2024	.	

6.8	Buffer	boundary	violation	[HCB]	

This	vulnerability	 is	not	applicable	to	Python	because	Python’s	run-time	checks	the	
boundaries	 of	 arrays	 and	 raises	 an	 exception	 when	 an	 attempt	 is	 made	 to	 access	
beyond	a	boundary.	Vulnerabilities	associated	with	runtime	exceptions	are	addressed	
in	6.36	Ignored	error	status	and	unhandled	exceptions	[OYB].	

6.9	Unchecked	array	indexing	[XYZ]	

The	vulnerability	as	described	in	ISO/IEC	24772-1:2024	6.9	is	not	applicable	to	Python	
because	Python’s	run-time	checks	 the	boundaries	of	arrays	and	raises	an	exception	
when	an	attempt	is	made	to	access	beyond	a	boundary.	Vulnerabilities	associated	with	
runtime	 exceptions	 are	 addressed	 in	 6.36	 Ignored	 error	 status	 and	 unhandled	
exceptions	[OYB].	

6.10	Unchecked	array	copying	[XYW]	

The	 vulnerability	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.10	 is	 not	 applicable	 to	
Python	because	assigning	lists	is	done	by	reference.	A	deep	copy	of	a	list	creates	a	new	
list	object.	There	 is	a	potential	vulnerability	associated	with	copying	an	object	over	
part	of	itself	when	an	object	is	complex,	such	as	lists	of	lists	(see	6.38	Deep	vs.	shallow	
copying	[YAN]).	

6.11	Pointer	type	conversions	[HFC]	

6.11.1	Applicability	to	language	

The	 vulnerabilities	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.11	 are	 applicable	 to	
Python	since,	although	Python	does	not	have	traditional	visible	references	to	memory	
(pointers),	 every	 variable	 contains	 an	 implicit	 pointer	 to	 the	 actual	 value	 stored.	
Additionally,	 Python	 permits	 code	 to	 instruct	 instances	 to	misrepresent	 their	 type.	
Consuming	code	always	has	the	option	to	decide	whether	to	believe	the	real	type	or	
the	 claimed	 type,	 but	 naive	 code	will	 believe	 any	 claims	 by	 default.	 The	 following	
example	illustrates	how	an	object’s	type	can	be	misrepresented	during	runtime:	

Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Formatted:	Not	Highlight
Commented	[SJM10]:	It might be useful to point out the
following:
• Python doesn’t have explicit (traditional) pointers like
many other languages, but rather does have implicit
pointers
• Every variable in Python is a pointer, because variables
in Python are names that refer to objects

Commented	[SM11R10]:	Implemented.	
Deleted:	because	
Commented	[SJM12]:	Object

Deleted:	“lie”	about

Commented	[SJM13]:	Lie=”to make an untrue statement
with intent to deceive.” This may be a little strong, possibly
modify:

…misrepresent their type.

Commented	[SJM14R13]:	

Deleted:	As	a	simple	example	of	code	misrepresent	lying	
about	thetheir	type	of	its	argument,	and	thus	changing	the	
method	implementation	at	runtime

	

44	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

class Example:
 def method(self):
 print("From Example: ", type(self), self.__class__)

class Other:
 def method(self):
 print("From Other: ", type(self), self.__class__)

x = Example()
x.method() #=> From Example: <class '__main__.Example'>
x.__class__ = Other #=> Reassign the type of the current x instance
x.method() #=> From Other: <class '__main__.Other'>

6.11.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.11.5.	

• Forbid	altering	the	__class__	attribute	for	instances	of	a	class	unless	there	are	
compelling	reasons	to	do	so.	If	alterations	are	required,	document	the	reasons	in	
docstring	and	local	comments.	

• Use	type	annotations	and	type	hints	in	the	code.	
• Run	a	third-party	static	type-checker.	

6.12	Pointer	arithmetic	[RVG]	

This	vulnerability	as	documented	in	ISO/IEC	24772-1:2024	6.12	is	not	applicable	to	
Python	 because	 Python	 does	 not	 have	 pointers	 and	 does	 not	 permit	 arithmetic	 on	
references.	

6.13	Null	pointer	dereference	[XYH]	

This	 vulnerability	 as	documented	 in	 ISO/IEC	24772-1:2024	6.13	does	not	 apply	 to	
Python.	 The	 Python	 equivalent	 of	 a	 null	 pointer	 is	 the	 object	None.	 Accessing	 this	

Formatted:	Keep	with	next

Formatted:	Right:		-1.9	cm,	Tab	stops:		6.03	cm,	Left

Deleted:	 #=> <class
‘__main__.Example’> <class¶ ...	[11]

Formatted:	Not	Highlight

Formatted:	Right:		-1.9	cm,	Keep	with	next,	Tab	stops:	
6.03	cm,	Left

Deleted:	 ¶ ...	[12]

Commented	[SJM17]:	This line got commented-out in one
of the edits making the example meaningless. It has now
been corrected.

Deleted:	the type of the x instance
(Example) ¶ ...	[13]

Deleted:	

Deleted:	<class ‘__main__.Other’> <class
‘__main__.Other’>…

©	ISO/IEC	2023	–	All	rights	reserved	 45	
	

object	 raises	 an	 exception.	 Vulnerabilities	 associated	 with	 runtime	 exceptions	 are	
addressed	in	6.36	Ignored	error	status	and	unhandled	exceptions	[OYB].	

6.14	Dangling	reference	to	heap	[XYK]	

6.14.1	Applicability	to	language	

These	vulnerabilities	 as	documented	 in	 ISO/IEC	24772-1:2024	6.14	only	minimally	
apply	 to	 Python	 because	 Python	 exclusively	 uses	 garbage	 collection	 for	 memory	
reclamation,	 thus	 no	 dangling	 references	 can	 exist.	 Specifically,	 Python	 only	 uses	
namespaces	 to	access	objects,	 therefore	when	an	object	 is	deallocated	 there	are	no	
names	denoting	 the	 reclaimed	object.	 Attempts	 to	 access	 those	names	 anyway	will	
raise	runtime	exceptions	as	usual.	Vulnerabilities	associated	with	runtime	exceptions	
are	addressed	in	6.36	Ignored	error	status	and	unhandled	exceptions	[OYB].	

Note	that	due	to	reference	cycles	and	__del__	methods,	it	is	possible	for	objects	that	
were	 scheduled	 for	 deallocation	 to	 gain	 new	 live	 references,	 and	 hence	 not	 be	
candidates	 for	 deallocation	 after	 all.	 Python	 runtimes	 are	 aware	 of	 this	 when	 it	
happens,	 and	 avoid	 deallocating	 the	memory,	 ensuring	 that	 dangling	 references	 to	
heap	memory	are	not	created.	

Python	 permits	 direct	 access	 to	 the	 internal	 data	 of	 objects	 by	 using	 the	
memoryview()	 function.	 The	 memoryview()	 function	 is	 useful	 on	 very	 large	
objects	since	it	does	not	create	a	copy	of	the	object	data	and,	as	a	result,	can	perform	
certain	 tasks	 much	 faster.	 Managing	 this	 direct	 access	 to	 objects	 does	 require	
verification	that	the	object	data	remains	valid	even	if	the	object	is	no	longer	needed	
elsewhere	in	the	program.	

6.14.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.14.5.	

• When	accessing	data	objects	directly	by	using	memoryview(),	make	sure	that	the	
data	pointed	to	remains	valid	until	it	is	no	longer	needed.	

6.15	Arithmetic	wrap-around	error	[FIF]	

6.15.1	Applicability	to	language	

The	vulnerabilities	discussed	in	ISO/IEC	24772-1:2024	6.15.3	do	not	apply	to	Python	
for	integers.	

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Formatted

Formatted

Formatted

Formatted

	

46	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Operations	on	integers	in	Python	cannot	cause	wrap-around	errors	because	integers	
have	 no	maximum	 size	 other	 than	 what	 the	memory	 resources	 of	 the	 system	 can	
accommodate.	

Shift	operations	operate	correctly,	except	that	large	shifts	on	negative	numbers	infill	
with	‘1’s	and	will	often	result	in	a	final	answer	of	-1.	

Normally	 the	OverflowError	 exception	 is	 raised	 for	 floating-point	wrap-around	
errors	but,	for	implementations	of	Python	written	in	C,	exception	handling	for	floating-
point	operations	cannot	be	assumed	to	catch	this	type	of	error	because	they	are	not	
standardized	 in	 the	 underlying	 C	 language.	 Because	 of	 this,	 most	 floating-point	
operations	cannot	be	depended	on	to	raise	this	exception.	

Attempts	to	convert	large	integers	that	cannot	be	represented	as	a	double-precision	
ISO/IEC	60559	value	to	float	will	raise	OverflowError.	

bigint = 2 * 10 ** 308
float(bigint) #=> OverflowError: int too large to convert to
float

The	 vulnerabilities	 associated	 with	 unhandled	 exceptions	 are	 discussed	 in	 	 6.36	
Ignored	error	status	and	unhandled	exceptions	[OYB].	

6.15.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.15.5.	
• Be	cognizant	that	most	arithmetic	and	bit	manipulation	operations	on	non-integers	

have	the	potential	for	undetected	wrap-around	errors.	
• Avoid	using	floating-point	or	decimal	variables	for	program	flow	logic,	but	if	one	of	

these	types	must	be	used,	then	bound	loop	structures	to	not	exceed	the	maximum	
or	minimum	possible	values	for	the	loop	control	variables.	

• Test	 the	 implementation	 that	 is	 being	 used	 to	 see	 if	 exceptions	 are	 raised	 for	
floating-point	operations	and	if	they	are	then	used	for		exception	handling	to	catch	
and	handle	wrap-around	errors.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted:	Not	Highlight
Deleted:	is

Field	Code	Changed

Deleted:	then	

Commented	[SJM18]:	Reword
And if they are then used for exception handling…

©	ISO/IEC	2023	–	All	rights	reserved	 47	
	

6.16	Using	shift	operations	for	multiplication	and	division	[PIK]	

This	 vulnerability	 is	 not	 applicable	 to	 Python	 because	 there	 is	 no	 practical	way	 to	
overflow	an	integer	since	integers	have	unlimited	precision,	left	shifts	are	defined	in	
terms	of	multiplication	by	powers	of	2,	and	right	shifts	are	defined	in	terms	of	floor	
division	by	powers	of	two.	

print(-1 << 100) #=> -1267650600228229401496703205376
print(1 << 100) #=> 1267650600228229401496703205376
print(-4 >> 3) #=> -1 where 0 might be expected

6.17	Choice	of	clear	names	[NAI]	

6.17.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.17	exist	in	Python.		

Python	provides	very	liberal	naming	rules:	

• Names	may	be	of	any	length	and	consist	of	letters,	numerals,	and	underscores	only.	
All	 characters	 in	 a	 name	 are	 significant.	Note	 that	 unlike	 some	 other	 languages	
where	only	the	first	n	number	of	characters	in	a	name	are	significant,	all	characters	
in	 a	 Python	 name	 are	 significant.	 This	 eliminates	 a	 common	 source	 of	 name	
ambiguity	 when	 names	 are	 identical	 up	 to	 the	 significant	 length	 and	 vary	
afterwards	which	 effectively	makes	 all	 such	 names	 a	 reference	 to	 one	 common	
variable.	

• All	names	must	start	with	an	underscore	or	a	letter.	
• Names	are	case	sensitive,	for	example,	Alpha,	ALPHA,	and	alpha	are	each	unique	

names.	While	this	is	a	feature	of	the	language	that	provides	for	more	flexibility	in	
naming,	it	is	also	can	be	a	source	of	programmer	errors	when	similar	names	are	
used	which	differ	only	in	case,	for	example,	aLpha	versus	alpha.	

• Names	 allow	 all	 Unicode	 “script”	 code	 points	 to	 be	 used	 as	 letters,	 and	 each	
numerical	code	point	is	considered	distinct	when	used	as	part	of	a	name,	even	if	
their	visual	rendering	is	similar.	Some	Unicode	characters	can	cause	confusion	for	
humans	in	that	what	they	read	may	not	be	the	text	that	is	processed	by	the	language	
processor.	For	example,	using	homoglyphs,	Сonfused	(Сyrillic	ES)	versus	Confused	
(Latin	C),	or	aIpha	(Latin	capital	I)	versus	alpha	(Latin	lowercase	l)	will	be	different	
names.	

The	following	naming	conventions	are	not	part	of	the	standard	but	are	in	common	use:	

Formatted

Formatted

	

48	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

• Class	 names	 start	 with	 an	 upper-case	 letter,	 all	 other	 variables,	 functions,	 and	
modules	are	in	all	lower	case.	

• Names	starting	with	a	single	underscore	(_)	are	not	imported	by	the	“from	module	
import	 *”	 	 statement	 –	 this	 not	 part	 of	 the	 standard	 but	most	 implementations	
enforce	it.	

• Names	starting	and	ending	with	two	underscores	(__)	are	system-defined	names.	

• Names	starting	with,	but	not	ending	with,	two	underscores	are	local	to	their	class	
definition.	

• Python	provides	a	variety	of	ways	to	package	names	into	namespaces	so	that	name	
clashes	can	be	avoided:	

o Names	are	scoped	to	functions,	classes,	and	modules	meaning	there	is	
normally	no	collision	with	names	utilized	in	outer	scopes	and	vice	versa.	

o Names	in	modules	(a	file	containing	one	or	more	Python	statements)	are	
local	to	the	module	and	are	referenced	using	qualification	(for	example,	
a	 function	x	 in	module	y	 is	 referenced	 as	y.x).	 Though	 local	 to	 the	
module,	a	module’s	names	can	be,	and	routinely	are,	copied	into	another	
namespace	with	a	“from module”	import	statement.	

Python’s	naming	rules	are	 flexible	by	design	but	are	also	susceptible	 to	a	variety	of	
unintentional	coding	errors:	

• Names	are	not	required	to	be	declared	but	 they	must	be	assigned	values	before	
they	 are	 referenced.	 This	 means	 that	 some	 errors	 will	 never	 be	 exposed	 until	
runtime	when	the	use	of	an	unassigned	variable	will	raise	an	exception	(see	6.22	
Initialization	of	variables	[LAV]).	

• Names	can	be	unique	but	may	look	similar	to	other	names,	for	example,	alpha	and	
aLpha,	__x	and	_x,	_beta__	and	__beta_	which	could	lead	to	the	use	of	the	
wrong	variable.	Python	will	not	detect	this	problem	as	it	parses	the	expression.	

Python	utilizes	dynamic	typing	with	types	determined	at	runtime.	There	are	no	type	
or	 variable	 declarations	 for	 an	 object	 by	 default,	 which	 can	 lead	 to	 subtle	 and	
potentially	catastrophic	errors:	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 49	
	

x = 1
lots of code…

#	and	eventually	

X = 10

In	the	code	above,	the	programmer	intended	to	set	(lower	case)	x	to	10	and	instead	
created	a	new	(upper	case)	X	with	the	value	10	and	leave	 lower-case	x	unchanged.	
Python	will	 not	 detect	 a	 problem	because	 it	 is	 a	 case-sensitive	 language	 and	 every	
change	of	case	in	a	name	will	result	in	a	new	object.	For	example,	THIS,	This,	THis,	
and	this	are	all	different	variables.	

6.17.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.17.5.	
• For	more	guidance	on	Python’s	naming	conventions,	refer	to	Python	Style	Guides	

contained	in	“PEP	8	–	Style	Guide	for	Python	Code”[10].	
• Avoid	names	that	differ	only	by	case	unless	necessary	to	the	logic	of	the	usage,	and	

in	such	cases	document	the	usage.	
• Adhere	to	Python’s	naming	conventions.	
• Avoid	overly	long	names.	
• Use	names	that	are	not	similar	(especially	in	the	use	of	upper	and	lower	case)	to	

other	names.	
• Use	meaningful	names.	
• Use	names	that	are	clear	and	visually	unambiguous	because	the	compiler	cannot	

assist	in	detecting	names	that	appear	similar	but	are	different.	
• Ensure	that	‘show-all-hidden-characters’	is	enabled	in	the	editor.	
• Understand	 or	 eliminate	 all	 confusing	 Unicode	 characters,	 in	 particular,	

homoglyphs.	
• Use	caution	when	copying	and	pasting	Unicode	text.	

6.18	Dead	store	[WXQ]	

6.18.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1:2024	6.18	applies	to	Python,	since	
it	 is	possible	to	assign	a	value	to	a	variable	and	never	reference	that	variable	which	
causes	a	“dead	store”.	This	in	itself	is	not	harmful,	other	than	the	memory	that	it	wastes,	

Formatted:	Keep	with	next

Formatted:	Indent:	First	line:		1.27	cm,	Keep	with	next
Deleted:	if	some	rare	but	important	case:

Formatted:	Keep	with	next

Formatted

Formatted

Formatted

Formatted

	

50	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

but	if	there	is	a	substantial	amount	of	dead	stores	then	performance	could	suffer	or,	in	
an	extreme	case,	the	program	could	halt	due	to	lack	of	memory		

Similarly,	 if	 dead	 stores	 cause	 the	 retention	 of	 critical	 resources,	 such	 as	 file	
descriptors	or	system	locks,	then	this	retention	may	cause	subsequent	system	failures.	

Variables	 local	 to	 a	 function	 are	 deleted	 automatically	 when	 the	 encompassing	
function	 is	 exited	 but,	 though	 not	 a	 common	 practice,	 variables	 can	 be	 explicitly	
deleted	when	they	are	no	longer	needed	using	the	del	statement.	

6.18.2	Avoidance	mechanisms	for	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.18.5.	
• Assume	that	when	examining	code,	that	a	variable	can	be	bound	(or	rebound)	to	

another	object	(of	same	or	different	type)	at	any	time.	
• Avoid	rebinding	except	where	it	adds	identifiable	benefit.	
• Consider	using	ResourceWarning	to	detect	implicit	reclamation	of	resources.	

6.19	Unused	variable	[YZS]	

6.19.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO	IEC	TR	24772-1	6.19	is	applicable	to	Python.	

6.19.2 	Avoidance	mechanisms	for	language	users	

Software	developers	can	avoid	the	vulnerability	or	mitigate	its	ill	effects	by	applying	
the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024		6.19.5.		

6.20	Identifier	name	reuse	[YOW]	

6.20.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1	6.20	apply	to	Python.	

Python	has	the	concept	of	namespaces	which	are	simply	the	places	where	names	exist	
in	memory.	Namespaces	are	associated	with	functions,	classes,	and	modules.	When	a	
name	 is	 created	 (that	 is,	when	 it	 is	 first	 assigned	 a	 value),	 it	 is	 associated	 (that	 is,	

©	ISO/IEC	2023	–	All	rights	reserved	 51	
	

bound)	to	the	namespace	associated	with	the	location	where	the	assignment	statement		
is	made	(for	example,	in	a	function	definition).	The	association	of	a	variable	to	a	specific	
namespace	is	elemental	to	how	scoping	is	defined	in	Python.	

Scoping	allows	 for	 the	definition	of	more	 than	one	variable	with	 the	same	name	 to	
reference	different	objects.	For	example:	

avar = 1
def x():
 avar = 2
 print(avar) #=> 2
x()
print(avar) #=> 1

The	 variable	avar	 within	 the	 function	x	 above	 is	 local	 to	 the	 function	 only	 –	 it	 is	
created	 when	 x	 is	 called	 and	 disappears	 when	 control	 is	 returned	 to	 the	 calling	
program.	 If	 the	 function	 needed	 to	 update	 the	 outer	 variable	 named	avar	 then	 it	
would	need	to	specify	that	avar	was	a	global	before	referencing	it	as	in:	

avar = 1
def x():
 global avar
 avar = 2
 print(avar) #=> 2
x()
print(avar) #=> 2

In	 the	case	above,	 the	 function	 is	updating	 the	variable	avar	 that	 is	defined	 in	 the	
calling	module.	There	is	a	subtle	but	important	distinction	on	the	locality	versus	global	
nature	 of	 variables:	 assignment	 is	 always	 local	 unless	 global	 is	 specified	 for	 the	
variable	as	in	the	example	above	where	avar	is	assigned	a	value	of	2.	If	the	function	
had	 instead	 simply	 referenced	 avar	 without	 assigning	 it	 a	 value,	 then	 it	 would	
reference	the	topmost	variable	avar	which,	by	definition,	is	always	a	global:	

avar = 1
def x():
 print(avar)
x() #=> 1

The	rule	illustrated	above	is	that	attributes	of	modules	(that	is,	variable,	function,	and	
class	names)	are	global	 to	 the	module	meaning	any	 function	or	 class	 can	 reference	
them.	

Scoping	rules	cover	other	cases	where	an	identically	named	variable	name	references	
different	objects:	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

52	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

• A	nested	function’s	variables	are	in	the	scope	of	the	nested	function	only.	
• Variables	defined	in	a	module	are	in	global	scope,	which	means	they	are	scoped	to	

the	module	 only	 and	 are	 therefore	 not	 visible	 within	 functions	 defined	 in	 that	
module	(or	any	other	function)	unless	explicitly	identified	as	global	at	the	start	
of	the	function.	

Python	has	ways	to	bypass	implicit	scope	rules:	

• The	 global	 statement,	 which	 allows	 an	 inner	 reference	 to	 an	 outer	 scoped	
variable(s).		

• The	nonlocal	statement,	which	allows	a	variable	in	an	enclosing	function	definition	
to	be	referenced	from	a	nested	function.	

The	concept	of	scoping	makes	it	safer	to	code	functions	because	the	programmer	is	
free	to	select	any	name	in	a	function	without	worrying	about	accidentally	selecting	a	
name	 assigned	 to	 an	 outer	 scope,	 which	 in	 turn	 could	 cause	 unwanted	 results.	 In	
Python,	one	must	be	explicit	when	 intending	 to	 circumvent	 the	 intrinsic	 scoping	of	
variable	 names.	 The	 downside	 is	 that	 identical	 variable	 names,	 which	 are	 totally	
unrelated,	can	appear	in	the	same	module,	which	could	lead	to	confusion	and	misuse	
unless	scoping	rules	are	well	understood.	

Names	 can	 also	 be	 qualified	 to	 prevent	 confusion	 as	 to	 which	 variable	 is	 being	
referenced:	

avar = 1
class xyz():
 avar = 2
 print(avar) #=> 2

print(xyz.avar, avar) #=> 2 1

The	final	print	function	call	above	references	the	avar	variable	within	the	xyz	class	
and	the	global	avar.		

6.20.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.20.5.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 53	
	

• Forbid	the	use	of	identical	names	unless	necessary	to	reference	the	correct	object.	
• Avoid	the	use	of	the	global	and	nonlocal	specifications	because	they	are	generally	

a	 bad	 programming	 practice	 for	 reasons	 beyond	 the	 scope	 of	 this	 annex	 and	
because	 their	 bypassing	 of	 standard	 scoping	 rules	 make	 the	 code	 harder	 to	
understand.	

• Use	qualification	when	necessary	to	ensure	that	the	correct	variable	is	referenced.	

6.21	Namespace	issues	[BJL]	

6.21.1	Applicability	to	language	

The	 vulnerabilities	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.21	 are	 applicable	 to	
Python	when	modules	are	imported.	

Python	has	a	hierarchy	of	namespaces,	which	provides	isolation	to	protect	from	name	
collisions,	ways	to	explicitly	reference	down	into	a	nested	namespace,	and	a	way	to	
reference	 up	 to	 an	 encompassing	 namespace.	 Generally	 speaking,	 namespaces	 are	
isolated.	For	example,	a	program’s	variables	are	maintained	in	a	separate	namespace	
from	any	of	the	functions	or	classes	it	defines	or	uses.	The	variables	of	modules,	classes,	
or	functions	are	also	maintained	in	their	own	protected	namespaces.	Namespaces	may	
be	nested.	

For	certain	scenarios,	the	local	namespace	is	dictated	by	the	order	of	importation.	For	
example,	the	scenarios	below	import	two	files	(a.py	and	b.py)	and	each	file	contains	
a	function	named	meth().	Importing	the	files	using	from x import *	results	in	
the	last	import	to	be	used.	In	the	second	scenario,	using	only	the	import x	method	
allows	 the	 use	 of	 either	 meth()	 by	 prefacing	 it	 with	 the	 desired	 library	 name	
regardless	of	order	presented	in	the	file.		

< - file = a.py - >
def meth():
 print(“From A”)

< - file = b.py - >
def meth():
 print(“From B”)

 from a import *
 from b import *
 from a import *
 meth() #=> From A

 import a

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

54	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

 import b
 a.meth() #=> From A

See	6.41	Inheritance	[RIP]	for	a	discussion	of	multiple	inherited	methods	with	the	same	
name.	

Accessing	 a	 namespace’s	 attribute	 (that	 is,	 a	 variable,	 function,	 or	 class	 name),	 is	
generally	done	in	an	explicit	manner	to	make	it	clear	to	the	reader	(and	Python)	which	
attribute	is	being	accessed:	

n = Animal.num # fetches a class’ variable called num
x = mymodule.y # fetches a module’s variable called y

The	examples	above	exhibit	qualification	–	there	is	no	doubt	from	where	a	variable	is	
being	fetched.	Qualification	can	also	occur	from	an	encompassed	namespace	up	to	the	
encompassing	namespace	using	the	global	statement:	

def x():
 global y
 y = 1

The	example	above	uses	an	explicit	global	statement	which	makes	it	clear	that	the	
variable	y	is	not	local	to	the	function	x;	it	assigns	the	value	of	1	to	the	variable	y	in	the	
encompassing	module14.		

Python	 also	 has	 some	 subtle	 namespace	 issues	 that	 can	 cause	 unexpected	 results	
especially	 when	 using	 imports	 of	 modules.	 For	 example,	 assuming	module	M1.py	
contains:	

a = 1

And	module	M2.py	contains:	

b = 1

Executing	the	following	code	is	not	a	problem	since	there	is	no	variable	name	collision	
in	the	two	modules	(the	“from <modulename>	import *”	statement	brings	all	
attributes	of	the	named	module	into	the	local	namespace):	

from M1 import *
print(a) #=> 1

Field	Code	Changed

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 55	
	

from M2 import *
print(b) #=> 1

Later,	the	author	of	the	M2	module	adds	a	variable	named a	and	assigns	it	a	value	of	
2.	Now	M2.py	contains:	

b = 1
a = 2 # new assignment

The	programmer	of	module	M2.py	can	lack	knowledge	of	the	module	M1.py	or	the	
information	that	the	program	imports	both	M1	and	M2.	The	importing	program,	with	
no	changes,	is	run	again:	

from M1 import *
print(a) #=> 1
from M2 import *
print(a) #=> 2

The	 results	 are	 now	 different	 because	 the	 importing	 program	 is	 susceptible	 to	
unintended	 consequences	 due	 to	 changes	 in	 variable	 assignments	 made	 in	 two	
unrelated	modules	as	well	as	the	sequence	in	which	they	were	imported.	Also	note	that	
the	“from	<modulename>	import *”	statement	brings	all	of	the	module’s	attributes	
into	the	importing	code	which	can	silently	overlay	like-named	variables,	functions,	and	
classes.	

A	common	surprise	of	the	Python	language	is	that	Python	detects	local	names	(a	local	
name	is	a	name	that	lives	within	a	class	or	function’s	namespace)	statically	by	looking	
for	 one	 or	 more	 assignments	 to	 a	 name	 within	 the	 class/function.	 If	 one	 or	 more	
assignments	are	found,	then	the	name	is	noted	as	being	local	to	that	class/function.	
This	can	be	confusing	because	if	only	references	to	a	name	are	found	then	the	name	is	
referencing	a	global	object	so	the	only	way	to	know	if	a	reference	 is	 local	or	global,	
barring	 an	 explicit	 global	 statement,	 is	 to	 examine	 the	 entire	 function	 definition	
looking	for	an	assignment.	This	runs	counter	to	Python’s	goal	of	“Explicit	is	better	than	
implicit”	(EIBTI):	

a = 1
def f():
 print(a) #a is local
 a = 2
f() #=> UnboundLocalError: local variable 'a' referenced
before
 # assignment

now with the assignment commented out
a = 1

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

56	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

def f():
 print(a) #=> 1 #a is global
 #a = 2

Assuming a new session:
a = 1
def f():
 global a
 a = 2 * a
f()
print(a) #=> 2

Note	that	the	rules	for	determining	the	locality	of	a	name	applies	to	the	assignment	
operator	“=”	as	above,	but	also	to	all	other	kinds	of	assignments	which	includes	module	
names	in	an	import	statement,	function	and	class	names,	and	the	arguments	declared	
for	them	(see	6.19	Unused	variable	[YZS]).	

Python	can	perform	either	absolute	or	relative	imports.	An	absolute	import	specifies	
the	resource	to	be	imported	using	its	full	path	from	the	project’s	root	folder.	A	relative	
import	 specifies	 the	 resource	 is	 to	 be	 imported	 relative	 to	 the	 current	 location.	
Although	the	full	path	of	an	import	can	be	long,	the	use	of	an	absolute	import	defines	
explicitly	what	resource	is	being	imported.		

Name	resolution	follows	a	simple	Local,	Enclosing,	Global,	Built-ins	(LEGB)	sequence:	

• First	the	local	namespace	is	searched;		
• Then	the	enclosing	namespace	(that	is,	a	def	or	a	lambda	expression),	recursively;		

• Then	the	global	namespace;	
• Lastly	the	built-in	namespace.	

Python	v3.3	introduced	types.prepare_class()	which	gives	more	control	over	
how	classes	and	metaclasses	are	created.	The	__prepare__	 function	can	be	called	
prior	to	the	creation	of	a	metaclass	instance	giving	complete	control	over	how	the	class	
declarations	 are	 ordered.	 It	 also	 allows	 symbols	 to	 be	 inserted	 into	 the	 class	
namespace,	which	can	be	used	elsewhere	in	the	class,	but	these	inserted	symbols	are	
only	visible	during	class	construction.	

6.21.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Commented	[p20]:	These what?

Commented	[SJM21R20]:	As a refresher, this content was
derived from PEP 3115 https://peps.python.org/pep-3115/

"these” is simply referring to the mentioned symbols, but
this could probably be worded more clearly (good point).

Metaclasses are an advanced area of Python but can be
useful in certain circumstances. For example, metaclasses
can be used to create function overloading in Python since,
by default, Python does not inherently have this capability.
However, we may want to reconsider including this ...	[14]

©	ISO/IEC	2023	–	All	rights	reserved	 57	
	

• Use	the	full	path	name	for	imports,	in	preference	to	relative	paths.	
• When	using	the	import	statement,	rather	than	use	the	from x import *	form	

(which	 imports	 all	 of	 module	 x’s	 attributes	 into	 the	 importing	 program’s	
namespace),	instead	explicitly	name	the	attributes	that	need	to	be	imported	(for	
example,	from X import a, b, c)	so	that	variables,	functions	and	classes	are	
not	inadvertently	overlaid.	

• Avoid	 implicit	 references	 to	 global	 values	 from	 within	 functions	 to	 make	 code	
clearer.	 In	 order	 to	 update	 globals	 within	 a	 function	 or	 class,	 place	 the	 global	
statement	at	the	beginning	of	the	function	definition	and	list	the	variables	so	it	is	
clearer	to	the	reader	which	variables	are	local	and	which	are	global	(for	example,	
global a, b, c).		

• When	 interfacing	with	 external	 systems	 or	 other	 objects	where	 the	 declaration	
order	of	class	members	is	relevant,	use	__prepare__	to	obtain	the	desired	order	
for	class	member	creation.	

6.22	Missing	initialization	of	variables	[LAV]	

6.22.1	Applicability	of	language	

This	vulnerability	applies	only	minimally	to	Python	because	all	attempts	to	access	an	
uninitialized	variable	result	in	an	exception.	There	is	no	ability	to	use	a	variable	with	
an	 uninitialized	 value	 because	 assigned	 variables	 always	 reference	 objects	 which	
always	have	a	value	and	unassigned	variables	do	not	exist.	Therefore,	Python	raises	an	
exception	at	runtime	when	a	name	that	is	not	bound	to	an	object	is	referenced.	

Static	 type	analysis	 tools	 can	be	used	prior	 to	execution	 to	 identify	any	accesses	 to	
names	that	are	not	bound	to	objects.	

Vulnerabilities	 associated	 with	 runtime	 exceptions	 are	 addressed	 in	 6.36	 Ignored	
error	status	and	unhandled	exceptions	[OYB].	

6.22.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.22.5.	
• Ensure	that	it	is	not	logically	possible	to	reach	a	reference	to	a	variable	before	it	is	

assigned	to	avoid	the	occurrence	of	a	runtime	error.	

Deleted:	many	

Commented	[SJM23]:	delete or change ‘any’ … too
definitive and too dependent on the tool(s) being used to
quantify.;

	

58	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.23	Operator	precedence	and	associativity	[JCW]	

6.23.1	Applicability	to	language	

The	vulnerability	described	in	ISO/IEC	24772-1:2024	6.23	applies	to	Python.	

Python	provides	many	operators	and	levels	of	precedence,	so	it	is	not	unexpected	that	
operator	precedence	and	associativity	are	not	well	understood	and	hence	misused.	For	
example:	

 2 ** 2 ** 3 # Yields 256, not 64 (right-
associativity)

 c and a==b # parses as c and (a==b)

	Avoidance	mechanisms	for	language	users	

Software	developers	can	avoid	the	vulnerability	or	mitigate	its	ill	effects	by	applying	
the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.23.5.	

6.24	Side-effects	and	order	of	evaluation	of	operands	[SAM]	

6.24.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.24	exists	in	part	in	Python.	
Operands	 are	 evaluated	 left-to-right	 in	 Python	 and	 hence	 the	 evaluation	 order	 is	
deterministic,	but	the	vulnerabilities	associated	with	short-circuit	operators	exist	 in	
Python.	Additional	vulnerabilities	arise	from	Python	semantics	of	loops	that	alter	data	
structures.		

Some	 of	 Python’s	 data	 structures	 such	 as	 list,	 dict,	 set,	 and	 bytearray	 are	
mutable.	Attempting	to	delete	items	from	one	of	these	data	structures,	from	within	a	
loop,	will	result	in	undesirable	side-effects.	The	example	below	shows	that	using	the	
loop	index	to	delete	items	in	the	numbers	list	results	in	an	incorrect	result	since	the	
loop	index	i	is	based	on	the	full	length	of	the	original	list	but	gets	modified	within	the	
loop.		

Deleted:	

Deleted:	 =>

Formatted:	Indent:	Left:		6.35	cm
Deleted:	=>

Deleted:	<#>¶

Formatted:	CODE	Char

Deleted:	s

Formatted:	CODE	Char

Deleted:	ionaries
Deleted:	and

Deleted:	s

Formatted:	CODE	Char
Formatted

Formatted

Commented	[SJM24]:	may

Formatted

Formatted

Commented	[SJM25]:	‘produces unexpected results’ … it is
not incorrect but rather an unexpected result due to
Python’s handling of this situation

©	ISO/IEC	2023	–	All	rights	reserved	 59	
	

nums = [1, 2, 2, 3, 4, 5]
for i in nums:
 if i & 1 == 0: # remove even numbers
 nums.remove(i)
print(nums) # => [1, 2, 3, 5]

The	above	output	may	be	unexpected,	as	it	also	contains	even	numbers.	The	correct	
approach	 is	 to	 create	 a	 copy	of	 the	 original	 list	 by	using	 the	 [:]	 operator	 as	 shown	
below:	

nums = [1, 2, 2, 3, 4, 5]
for i in nums[:]:
 if i & 1 == 0: # remove even numbers
 nums.remove(i)
print(nums) # => [1, 3, 5]

Numeric	data	types	in	Python	are	immutable	and	remain	unchanged	when	used	as	an	
argument	 within	 a	 calling	 function.	 However,	 if	 the	 immutable	 argument	 within	 a	
calling	function	is	made	to	be	a	global	variable,	then	that	argument	is	changed	even	
though	 it	 is	 usually	 an	 immutable	 type.	 This	 potentially	 unexpected	 side-effect	 is	
illustrated	in	the	following	example.	The	double	function	call	passes	the	immutable	
integer	 “y”	as	an	argument	 to	 the	double	 function,	but	because	 it	 is	declared	as	a	
global	variable	within	the	function,	the	integer	argument	that	is	typically	immutable	
is	modified	in	the	calling	function.		

def double(n):
 global y
 y = 2 * n

y = 5
double(y)
print(y) #=> 10

Potentially	unexpected	side-effects	can	also	be	experienced	by	changing	an	external	
list	in	a	loop.	For	example,	the	following	code	shows	that	adding	the	color	black	to	
the	 colors	 list	 updates	 the	 list	 since	 lists	 are	 mutable	 objects.	 The	 for	 loop	
recognizes	 this	new	 list	member	and	continues	with	another	pass	 through	the	 loop	
with	the	index	counter	i	now	set	to	black	resulting	in	the	color	white	being	added	to	
the	colors	list.		

Deleted:	¶ ...	[15]

Formatted:	Font:	(Default)	Cambria,	12	pt,	English	(CAN)
Formatted:	Font:	(Default)	Cambria,	12	pt,	English	(CAN)

Deleted:	and	odd	

Commented	[SJM27]:	The Odd numbers are not
unexpected. See

Formatted:	Font:	(Default)	Cambria,	12	pt,	English	(CAN)

Deleted:	Unexpected	mixed	even	and	odd¶ ...	[16]

Commented	[SJM28]:	Perhaps change to "unexpected”. It
could be argued that this is not technically an error since it
does yield a result, but the result is unexpected due to
Python’s response to this scenario.

Deleted:	result.¶ ...	[17]

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Deleted:	immutable	
Deleted:	object
Formatted

Formatted

Formatted

Commented	[SJM30]:	‘by the called function’ or double

Commented	[SJM31]:	Reword?

The normally ummutable argument…

The argumrnt that is typically immutable is modified ….

Commented	[SM32R31]:	OK	
Formatted

Formatted

Formatted

Formatted

	

60	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

colors = ["red"]
for i in colors:
 if i == "red":
 colors += ["black"]
 if i == "black":
 colors += ["white"]
print(colors) #=> ['red', 'black', 'white']

To	avoid	the	unexpected	side	effects,	is	it	recommended	to	use	a	copy	of	the	list	within	
the	 loop.	 In	this	scenario,	black	 is	added	to	the	 local	colors	 list	but	since	the	 loop	
index	i	never	takes	on	a	value	other	than	red,	the	color	white	is	never	added	to	the	
colors	list.		

colors = ["red"]
for i in colors[:]: # Avoid side effects by using a local
list
 if i == "red":
 colors += ["black"]
 if i == "black":
 colors += ["white"]
print(colors) #=> ['red', 'black']

Python	 allows	 reassignment	 of	 loop	 indexes,	which	 can	 lead	 to	 unexpected	 results	
depending	on	the	order	of	reassignment.	For	example,	the	following	code	illustrates	
two	scenarios	where	the	loop	index	“i”	is	reassigned	within	a	loop.	The	first	scenario	
uses	the	loop	index	prior	to	reassignment	and	prints	out	the	expected	sequence.	The	
second	 scenario	uses	 the	 loop	 index	after	 reassignment	 and,	 since	 it	 creates	 a	new	
object	with	 a	 value	 of	 10,	 this	 new	 value	 is	 printed	 out.	 Internally,	 the	 loop	 index	
counter	remains	intact,	and	the	loop	exits	after	four	iterations	as	expected.		

for i in range(1, 5):
 print(i) #=> 1,2,3,4
 i = 10

for i in range(1, 5):
 i = 10 # new i is created, doesn’t affect the loop count
 print(i) #=> 10,10,10,10

Python	supports	sequence	unpacking	(parallel	assignment)	in	which	each	element	of	
the	 right-hand	 side	 (expressed	 as	 a	 tuple)	 is	 evaluated	 and	 then	 assigned	 to	 each	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 61	
	

element	 of	 the	 left-hand	 side	 (LHS)	 in	 left-to-right	 sequence.	 For	 example,	 the	
following	is	a	safe	way	to	exchange	values	in	Python:	

a = 1
b = 2
a, b = b, a # swap values between a and b
print (a, b) #=> 2, 1

Assignment	of	the	targets	(LHS)	proceeds	left-to-right	so	overlaps	on	the	left	side	are	
not	safe:	

a = [0,0]
i = 0
i, a[i] = 1, 2 #=> Index is set to 1; list is updated at [1]
print(a) #=> 0,2

Be	aware	that,	even	though	overlaps	between	the	 left-hand	side	and	the	right-hand	
side	are	safe,	it	is	possible	to	have	unintended	results	when	the	variables	on	the	left	
side	overlap	with	one	another,	so	always	ensure	that	the	assignments	and	left-to-right	
sequence	 of	 assignments	 to	 the	 variables	 on	 the	 left-hand	 side	 never	 overlap.	 If	
necessary,	 and/or	 if	 it	makes	 the	 code	 easier	 to	understand,	 consider	breaking	 the	
statement	into	two	or	more	statements:	

Overlapping
a = [0,0]
i = 0
i, a[i] = 1, 2 # Index is set to 1; list is updated at [1]
print(a) #=> 0,2

Non-overlapping
a = [0,0]
i, a[0] = 1, 2
print(a) #=> 2,0

As	with	many	languages,	Python	performs	short-circuiting	in	boolean	expressions.	In	
the	case	of	“x	or	y”,	Python	only	evaluates	y	if	x	evaluates	to	False.	Likewise,	for	“x	
and	y”,	Python	only	evaluates	y	if	x	is	True.	If	there	are	side	effects	in	y,	they	only	
occur	if	y	is	evaluated.	

Python	Boolean	operators	are	often	used	to	assign	values	as	in:	

a = b or c or d or None

Variable	a	 is	assigned	 the	 first	value	of	 the	 first	object	 that	has	a	non-zero	 (that	 is,	
True)	value	or,	in	the	example	above,	the	value	None	if	b,	c,	and	d	are	all	False.	This	

Formatted

Formatted

Moved	(insertion)	[2]

Commented	[p33]:	Shouldn’t this be about 6 paragraphsd
earlier?

Commented	[SJM34R33]:	I agree with moving it so that it
is located near the previous overlap content.

Commented	[SM35R33]:	moved.	

Commented	[SJM36]:	‘permitted’
L->R overlaps are only safe when not dependent on L->L
overlaps

Deleted:	o

Commented	[p37]:	Belongs further up where there is an
example of short-circuiting already.

Commented	[SJM38R37]:	Concur

Commented	[SM39R37]:	OK. Maybe here?	
Deleted:	B
Formatted

Formatted

Commented	[SJM40]:	This is probably OK as is, but we
could elaborate on this example.

b=d=0
c=5
a = b or c or d or None
print(a) #=> 5

INTERESTING:	The	operands	of	an	expression	involving	a	
boolean	expression	(OR,	AND,	etc.)	would	expectedly		
have	Boolean	values,	but	objects	in	Python	are	not	very	
strict	about	this	and	internally	implements	a	set	of	rules	
to	decide	if	an	object	is	considered	true	or	false		
	
https://docs.python.org/3/library/stdtypes.html

“By	default,	an	object	is	considered	true	unless	its	class	
defines	either	a	__bool__()	method	that	returns	False	or	a	
__len__()	method	that	returns	zero,	when	called	with	the	
object.	[1]	Here	are	most	of	the	built-in	objects	considered	
false:	
	
•	constants	defined	to	be	false:	None	and	False	
•	zero	of	any	numeric	type:	0,	0.0,	0j,	Decimal(0),	
Fraction(0,	1)	
•	empty	sequences	and	collections:	'',	(),	[],	{},	set(),	
range(0)”	 ...	[18]
Commented	[SM41R40]:	OK. SM	
Formatted

Formatted

	

62	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

is	a	common	and	well	understood	practice.	Difficulty	can	arise,	however,	if	a	value	such	
as	5	(for	c)	is	included,	then	a	will	receive	the	value	5	instead	of	True	or	False.	

Additionally,		trouble	can	be	introduced	when	functions	or	other	constructs	with	side	
effects	are	used	on	the	right	side	of	a	Boolean	operator:	

if a() or b()

If	function	a	returns	a	True	result	then	function	b	will	not	be	called	which	may	cause	
unexpected	results	if	function	b	has	side	effects.	If	necessary,	perform	each	expression	
first	and	then	evaluate	the	results:	

x = a()
y = b()
if x or y …

6.24.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.24.5.		
• Avoid	assignment	to	a	variable	equally	named	as	a	loop	index	counter	within	the	

loop.	
• Be	aware	of	Python’s	short-circuiting	behaviour	when	expressions	with	side	effects	

are	used	on	the	right	side	of	a	Boolean	expression.		
• Avoid	any	operation	that	changes	the	size	of	a	data	structures	while	iterating	over	

it	and	instead,	create	a	new	list.	

6.25	Likely	incorrect	expression	[KOA]	

6.25.1	Applicability	to	language	

The	vulnerabilities	as	described	in	TR	24772-1	6.25	apply	to	Python,	but	Python	goes	
to	some	lengths	to	help	prevent	some	of	the	likely	incorrect	expressions.	

Formatted:	CODE	Char
Formatted:	Default	Paragraph	Font
Formatted:	Default	Paragraph	Font
Deleted:	However,
Formatted

Formatted

Formatted

Formatted

Deleted:	b	

Moved	up	[2]:	Be	aware	that,	even	though	overlaps	
between	the	left-hand	side	and	the	right-hand	side	
are	safe,	it	is	possible	to	have	unintended	results	
when	the	variables	on	the	left	side	overlap	with	one	
another,	so	always	ensure	that	the	assignments	and	
left-to-right	sequence	of	assignments	to	the	variables	
on	the	left-hand	side	never	overlap.	If	necessary,	
and/or	if	it	makes	the	code	easier	to	understand,	
consider	breaking	the	statement	into	two	or	more	
statements:¶

Deleted:	As	with	many	languages,	Python	performs	
short-circuiting	in	Boolean	expressions.	In	the	case	of	
“x	or	y”,	Python	only	evaluates	y	if	x	evaluates	to	
False.	Likewise,	for	“x	and	y”,	Python	only	evaluates	
y	if	x	is	True.	If	there	are	side	effects	in	y,	they	only	
occur	if	y	is	evaluated.¶

Deleted:	¶

©	ISO/IEC	2023	–	All	rights	reserved	 63	
	

Testing	 for	equivalence	cannot	be	confused	with	assignment	and	 improper	use	will	
result	in	error,	for	example:	

a = b = 1
if (a=b): print(a, b) #=> SyntaxError: invalid syntax.

#=> Maybe you meant ‘==’ or ‘:=’
if (a==b): print(a, b) #=> 1 1

Boolean	operators	use	English	words	and,	not,	or.	Bitwise	operators	use	symbols	&,	
~,	and	|,	respectively.		

Python,	however,	does	have	some	subtleties	that	can	cause	unexpected	results:	

— Skipping	the	parentheses	after	a	function	does	not	invoke	a	call	to	the	function	
and	can	fail	silently	because	it	is	a	legitimate	reference	to	the	function	object:	

class a:
 def demo():
 print("in demo")

a.demo() #=> in demo
a.demo # <function demo at 0x000000000342A9C8>
x = a.demo
x() #=> in demo

The	two	 lines	that	reference	the	 function	without	trailing	parentheses	above	
demonstrate	how	that	syntax	is	a	reference	to	the	function	object	and	not	a	call	
to	the	function.	

— Built-in	functions	that	perform	in-place	operations	on	mutable	objects	(that	is,	
lists,	dictionaries,	and	some	class	instances)	do	not	return	the	changed	object	–	
they	return	None:	

a = []
a.append("x")
print(a) #=> ['x']
a = a.append("y")
print(a) #=> None

— In	async	code,	forgetting	to	use	an	await	statement	results	in	a	warning	about	
the	unawaited	coroutine.		

Short-circuit	operations	can	be	a	source	of	likely	incorrect	expressions	as	described	in	
6.24	“Side	effects	and	order	of	evaluation	of	operands	[SAM]”.	

Commented	[p46]:	Interesting! What about a = b == 1 as
the intended code?

Commented	[SJM47R46]:	a = b == 1
 ^
NameError: name 'b' is not defined

Commented	[SJM48]:	More Completely:

SyntaxError: invalid syntax. Maybe you
meant '==' or ':=' instead of '='?

Commented	[SM49R48]:	Done	
Formatted:	Indent:	Left:		5.08	cm,	First	line:		1.27	cm
Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

64	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.25.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.25.5.	
• Add	parentheses	after	a	function	call	in	order	to	invoke	the	function.	

• Keep	in	mind	that	any	function	that	changes	a	mutable	object	 in	place	returns	a	
None	object	–	not	 the	changed	object	since	 there	 is	no	need	to	return	an	object	
because	the	object	has	been	changed	by	the	function.		

• Use	an	await	statement	for	asyncio	coroutines	and	ensure	that	all	routines	are	
nonblocking.	

• Be	aware	of	the	difference	between	equality	(==)	and	identity	(is)	and	use	them	
as	appropriate.	

6.26	Dead	and	deactivated	code	[XYQ]	

6.26.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1:2024	6.26	applies	to	Python.	

There	are	many	ways	to	have	dead	or	deactivated	code	occur	in	a	program	and	Python	
is	no	different	 in	that	regard.	Except	 in	very	 limited	cases,	Python	does	not	provide	
static	 analysis	 to	 detect	 such	 code	 nor	 does	 the	 very	 dynamic	 design	 of	 Python’s	
language	lend	itself	to	such	analysis.	The	limited	cases	are	those	where	a	known-false	
constant	value	(for	example	0,	False)	is	used	directly	in	a	conditional	flow	control	
check	(the	branch	will	never	be	taken,	so	code	does	not	need	to	be	emitted	for	it),	and	
when	a	function	unconditionally	executes	a	top-level	return	statement	(no	code	needs	
to	be	emitted	for	the	section	after	the	function	returns).	

Python	supports	type	hints	(see	5.1.3)	that	can	be	used	along	with	third	party	static	
analysis	tools	to	detect	dead	or	deactivated	code.	

The	 module	 and	 related	 import	 statement	 provide	 convenient	 ways	 to	 group	
attributes	(for	example,	 functions,	names,	and	classes)	 into	a	 file	which	can	then	be	
copied,	in	whole,	or	in	part	(using	the	from	statement),	into	another	Python	module.	
All	of	the	attributes	of	a	module	are	copied	when	either	of	the	following	forms	of	the	
import	statement	is	used.	This	is	roughly	equivalent	to	simply	copying	in	all	of	code	
directly	into	the	importing	program,	which	can	result	in	code	that	is	never	invoked	(for	
example,	functions	which	are	never	called	and	hence	“dead”):	

Commented	[p50]:	Not all routines. And why the
restriction? Plus, justification in 6.25.1is lacking.

Commented	[SJM51R50]:		
From	5.1.7	Concurrency:	
	
“When	using	asyncio,	correct	operation	requires	that	all	
tasks	relinquish	control	co-operatively,	with	execution	
controlled	by	the	Async	IO	manager.	Since	task	switching	
is	less	arbitrary	than	thread	context	switching	when	
cooperative	transfers	of	control	between	coroutines	are	
used,	i.e.,	await()	to	provide	predictable	control	over	
the	task	switching	process.”	

In Summary, Asyncio requires all routines to be non-
blocking.

Commented	[SM52R50]:	OK	
Commented	[p53]:	True, but equally true for non-top-level
returns for the code up to the next join.

Commented	[SJM54R53]:	This entire paragraph warrants
reconsideration in my opinion.

Per the text:
“Except in very limited cases, Python does not provide static
analysis to detect such code …”.

Strictly speaking, static analysis is not a capability of a
language, but rather the result of compilers, linkers and 3rd-...	[19]
Commented	[SM55R53]:	Done.	
Formatted

Formatted

Deleted:	can	be	used	with
Deleted:		or	deactivated	code	as	can	Python	static	
analysis	tools.
Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted:	CODE	Char

©	ISO/IEC	2023	–	All	rights	reserved	 65	
	

import modulename
from modulename import *

The	import	statement	in	Python	loads	a	module	into	memory,	compiles	it	into	byte	
code,	and	then	executes	it.	Subsequent	executions	of	an	import	for	that	same	module	
are	 ignored	 by	 Python	 and	 have	 no	 effect	 on	 the	 program	whatsoever.	 The	 reload	
statement	is	required	to	force	a	module,	and	its	attributes,	to	be	loaded,	compiled,	and	
executed.	

6.26.2 Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.26.5.	
• Import	just	the	attributes	that	are	required	by	using	the	from	statement	to	avoid	

adding	dead	code.	
• Be	 aware	 that	 subsequent	 imports	 of	 the	 same	module	 have	 no	 effect;	 use	 the	

reload	statement	instead	of import	if	a	fresh	copy	of	the	module	is	desired.	

6.27	Switch	statements	and	static	analysis	[CLL]	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.27	do	not	apply	to	Python,	
which	does	not	have	a	switch	statement	nor	the	concept	of	 labels	or	branching	to	a	
demarcated	“place”.	

6.28	Demarcation	of	control	flow	[EOJ]	

6.28.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.28	only	minimally	apply	
to	 Python.	 Python	 makes	 demarcation	 of	 control	 flow	 very	 clear	 because	 it	 uses	
indentation	(using	spaces	or	tabs	–	but	not	both	within	a	given	code	block)	as	the	only	
demarcation	construct:	

a, b = 1, 1
if a:
 print("a is True")
else:
 print("False")
 if b:
 print("b is true")
print("back to main level")

Formatted:	CODE	Char
Formatted

Formatted

Formatted:	CODE	Char
Formatted

Formatted

Formatted

Formatted

Formatted:	CODE	Char

	

66	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

The	code	above	prints	“a is True”	followed	by	“back to main level”.	Note	
how	control	is	passed	from	the	first	if	statement’s	True	path	to	the	main	level	based	
entirely	 on	 indentation	while	 in	 other	 languages	 that	 do	not	 rely	 on	 indention,	 the	
second	if	statement	would	always	execute	and	would	print	“b is true”	since	the	
second	if	would	evaluate	to	True.	

6.28.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.28.5.	
• Use	either	spaces	or	tabs,	not	both,	to	demark	control	flow.		

6.29	Loop	control	variables	[TEX]	

6.29.1	Applicability	to	language	

The	 vulnerabilities	 as	 documented	 in	 ISO/IEC	 24772-1:2024	 6.28	 apply	 only	
minimally	to	Python.	Python	for	loops	iterate	over	structures	such	as	lists	or	ranges.			

It	 is	possible	to	alter	the	loop	behaviour	by	creating	or	deleting	the	objects	that	are	
iterated	over.	When	using	the	for	statement	to	iterate	though	an	iterable	object	such	
as	a	 list,	 there	 is	no	way	 to	 influence	 the	 loop	count	because	 it	 is	not	exposed.	The	
variable	a	in	the	example	below	takes	on	the	value	of	the	first,	then	the	second,	then	
the	third	member	of	the	list:	

x = ['a', 'b', 'c']
for a in x:
 print(a)
#=>a
#=>b
#=>c

It	 is	 possible,	 though	 not	 recommended,	 to	 change	 a	mutable	 object	 as	 it	 is	 being	
traversed	which	in	turn	changes	the	number	of	iterations	performed.	In	the	case	below	
the	loop	is	performed	only	two	times	instead	of	the	three	times	had	the	list	been	left	
intact:		

Deleted:	Assignments	to	identically	named	variables	in	
the	loop	go	to	local	instances	and	do	not	affect	the	loop	
counter.¶ ...	[20]
Formatted

Formatted

Formatted

Formatted

Commented	[SJM58]:	Changing a mutable object does not
necessarily change its length.

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 67	
	

x = ['a', 'b', 'c']
for a in x:
 print(a)
 del x[0]
print(x)
#=> a
#=> c
#=> ['c']

6.29.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.29.5.	
• Ensure	 to	only	modify	variables	 involved	 in	 loop	control	 in	ways	 that	are	easily	

understood	and	in	ways	that	cannot	lead	to	a	premature	exit	or	an	endless	loop.	
• When	using	the	for	statement	to	iterate	through	a	mutable	object,	avoid	adding	or	

deleting	members	because	it	could	have	unexpected	results.	
• Prohibit	assignment	expressions	 in	the	 loop	control	statement	(that	 is,	while	or	

for).	

6.30	Off-by-one	error	[XZH]	

6.30.1	Applicability	to	language	

The	vulnerabilities	described	in	ISO/IEC	24771-1	6.30	apply	in	part	to	Python.	

The	Python	language	itself	is	vulnerable	to	off-by-one	errors	as	is	any	language	when	
used	carelessly	or	by	a	person	not	familiar	with	Python’s	index	starting	at	zero	versus	
at	one.	Python	does	not	prevent	off-by-one	errors	but	its	runtime	bounds	checking	for	
strings	and	lists	does	lessen	the	chances	that	doing	so	will	cause	harm.	It	is	also	not	
possible	 to	 index	 past	 the	 end	 or	 beginning	 of	 a	 string	 or	 list	 by	 being	 off-by-one	
because	Python	does	not	use	a	sentinel	character	and	it	always	checks	indexes	before	
attempting	to	index	into	strings	and	lists	and	raises	an	exception	when	their	bounds	
are	exceeded.	

The	range	function	can	be	used	to	create	a	sequence	over	a	range	of	numbers	such	as:	

for x in range(10):
 print (x)

which	will	print	the	numbers	0	through	9.	As	many	languages	start	indexing	from	0,	
this	is	not	likely	a	source	of	great	confusion.	It	is	more	likely	that	confusion	will	arise	
when	using	a	range	starting	with	a	value	other	than	the	default	0,	such	as:	

Commented	[SJM59]:	Do not result in unexpected
behavior

Deleted:	Avoid	using	
Commented	[SJM62]:	What about scenarios such as:

def consumer(queue, id):
 print(f'consumer {id}: Running')
 while True:
 item = queue.get()
 if item is None
 queue.put(item)
 break
 sleep(item[1])
 print(f'\nconsumer {id}: Done')

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

68	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

for x in range(5, 10):
 print (x)

which	will	print	the	values	5	through	9.	

6.30.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.30.5.	
• Be	aware	of	Python’s	indexing	by	default	from	zero	and	code	accordingly.	

• Be	careful	that	a	loop	will	always	end	when	the	loop	index	counter	value	is	one	less	
than	the	ending	number	of	the	range.	

• Use	the	for	statement	to	execute	over	whole	constructs	in	preference	to	loops	that	
index	individual	elements.	

• Use	the	enumerate()	built-in	method	when	both	container	elements	and	their	
position	within	the	iteration	sequence	are	required.	

6.31	Unstructured	programming	[EWD]	

6.31.1	Applicability	to	language	

The	 vulnerabilities	 described	 in	 ISO/IEC	 24772-1:2019	 6.31	 are	 substantially	
mitigated	in	Python.	The	language	does	not	provide	a	statement	for	local	or	non-local	
transfers	of	control;	however	there	is	a	library	that	provides	goto	capabilities.	

A	break	statement	for	the	premature	exit	from	loops	is	provided.	Multiple	break	and	
multiple	return	 statements	 are	 permitted.	 Breaking	 out	 of	multiple	 nested	 loops	
from	the	innermost	loop	can	be	problematic	as	the	break	only	terminates	the	nearest	
enclosing	loop.	

Python	 is	 designed	 to	 make	 it	 simpler	 to	 write	 structured	 program	 by	 requiring	
indentation	to	show	scope	of	control	in	blocks	of	code:	

Formatted:	CODE	Char

Formatted:	CODE	Char

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 69	
	

a = 1
b = 1
if a == b:
 print("a == b") #=> a == b
 if a > b:
 print("a > b")
else:
 print("a != b")

In	the	example	above,	the	indentation	must	be	provided	uniformly	by	the	tab	character	
or	spaces.	If	tabs	and	spaces	are	mixed,	the	interpreter	will	reject	the	program.	

In	many	languages	the	last	print	statement	would	be	executed	because	the	else	is	
associated	with	the	immediately	prior	if	statement,	while	Python	uses	indentation	to	
link	 the	 else	 with	 its	 associated	 if	 statement.	 In	 the	 example	 above,	 the	 else	
statement	 is	 associated	 with	 the	 first	 if	 statement	 since	 it	 has	 the	 same	 level	 of	
indentation.	

Context	managers	 (such	as	 those	 introduced	by	 the	with	keyword)	can	be	used	 to	
consolidate	where	 exceptions	 are	 evaluated	 and	propagated,	which	 lets	 developers	
write	straight	forward	code	without	sprinkling	try	…	except	…	finally	structures	
throughout	the	code.	For	example,	the	following	code	ensures	that	the	opened	file	is	
closed	 promptly,	 even	 if	 an	 exception	 occurs,	 or	 code	 in	 the	 body	 returns	 from	 a	
containing	function,	or	breaks	out	of	a	containing	loop:	

with open(“example.txt”) as f:
 for line in f:
 print(line)
File will be closed here,
and on an exception, break, continue, or return

6.31.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.31.5.	
• Avoid	the	use	of	the	goto	package.	

• Use	 the	break	 statement	 judiciously	 to	 exit	 from	 control	 structures	 and	 show	
statically	that	the	code	behaves	correctly	in	all	contexts.	

• Restructure	code	so	that	the	nested	loops	that	are	to	be	collectively	exited	form	the	
body	of	a	function,	and	use	early	function	returns	to	exit	the	loops.	This	technique	
does	not	work	if	there	is	more	complex	logic	that	requires	different	levels	of	exit.	

• Use	context	managers	(such	as	with)	to	enclose	code	creating	exceptions.	

Formatted:	CODE	Char
Formatted:	CODE	Char
Formatted:	CODE	Char
Formatted:	Default	Paragraph	Font,	Font:	Not	Highlight
Formatted:	CODE	Char
Formatted:	CODE	Char

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Deleted:	¶

Deleted:	s well as

Commented	[SJM63]:	Delete ‘as well as’

Commented	[SM64R63]:	Done	

Deleted:	o

Deleted:	¶ ...	[21]

	

70	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.32	Passing	parameters	and	return	values	[CSJ]	

6.32.1	Applicability	to	language	

The	 vulnerabilities	 as	 described	 in	 ISO/IEC	 TR	 24772-1	 6.32	 minimally	 apply	 to	
Python.	

Python	functions	return	a	value	of	None	when	no	return	statement	is	executed	or	
when	a	return	with	no	arguments	 is	 executed.	Python	detects	 attempts	 to	 return	
uninitialized	arguments	and	raises	the	NameError	exception.	

Python	 passes	 arguments	 by	 assignment,	which	 effectively	 is	 similar	 to	 passing	 by	
reference,	 as	 variables	 have	 references	 as	 their	 values.	 Python	 assigns	 the	 passed	
arguments	 to	 the	 function’s	 local	 variables,	 but	 having	 the	 address	 of	 the	 caller’s	
argument	does	not	automatically	allow	the	called	function	to	change	any	of	the	objects	
referenced	by	those	arguments	as	only	global	objects	or	mutable	objects	referenced	
by	 passed	 arguments	 can	 be	 changed.	 Aliasing	 can	 occur	 on	 the	 mutable	 objects	
designated	by	the	parameters	as	follows:	

class C():
 def __init__(self, number):
 self.comp = number

A=C(7) # A.comp = 7
B=C(14) # B.comp = 14

def fun(X,Y):
 X.comp = 8
 Y.comp = 42
 print(X.comp) #=> may be 8, but also 42, depending on
call
 print(Y.comp) #=> always 42

fun(A, B) # call prints 8, 42
fun(A, A) # call prints 42, 42
fun(B, B) # call prints 42, 42
print(A.comp, B.comp) #=> 42 42

Deleted:	<#>Always	use	either	spaces	or	tabs	(but	not	
both)	for	indentations,	and	use	a	text	editor	to	find	and	
make	consistent,	the	use	of	tabs	and	spaces	for	
indentation.¶

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Commented	[p67]:	Suggest “which effectively is similar to
passing by reference, as variables have references as their
values.”

Commented	[SJM68R67]:	OK

Commented	[SM69R67]:	Done	
Formatted

Formatted

Deleted:	–
Formatted:	CODE	Char
Formatted

Formatted

Formatted

Commented	[SJM70]:	Or global

Commented	[SM71R70]:	Done	

Formatted

Formatted

Deleted:	actual	

Deleted:	 Page Break
¶

©	ISO/IEC	2023	–	All	rights	reserved	 71	
	

In	 the	 example	 above,	 class	 instances	A	 and	B	 are	 passed	 as	 arguments	 and	 their	
components	are	updated.	While	the	local	variables	are	discarded	when	the	function	
goes	out	of	scope,	changes	to	 the	components	of	 their	designated	objects	remain	 in	
effect.	 The	 example	 shows	 that	 when	 identical	 objects	 are	 passed	 as	 function	
arguments,	 e.g.	fun(A, A)	 or	fun(B, B),	 the	X	 and	Y	 aliases	 in	 the	 function	
definition	are	reassigned	with	identical	values	and	since	Y.comp	always	appears	after	
X.comp,	its	value	always	gets	returned	to	the	calling	function.		

The	example	below	uses	two	class	instances	A	and	B,	each	passed	individually	into	a	
function	 that	uses	 the	B	 class	 instance.	 	When	 the	 class	B	 instance	 is	passed	 to	 the	
function,	it	is	aliased	to	both	internal	variables	X	and	B,	but	when	class	A	is	passed	to	
the	function,	it	is	only	aliased	to	X.		

class C():
 def __init__(self, number):
 self.comp = number

def fun(X):
 X.comp = 9
 B.comp = 43
 print(X.comp) # may be 9, but also 43, depending on call
 print(B.comp) # always 43

A = C(7) # A.comp = 7
B = C(14) # B.comp = 14
fun(A) # call prints 9 43
fun(B) # call prints 43 43

In	the	example	below,	the	argument	is	mutable,	and	is	therefore	updated	in	place:	

a = [1]

def f(x):
 x[0] = 2
 if a[0] == 2:
 print(“surprise!”)

f(a) #=> surprise
print(a) #=> [2]

Note	that	the	list	object	a	is	not	changed	–	it	is	the	same	object	but	its	content	at	index	
0	has	changed,	which	causes	the	aliasing	effect	demonstrated	by	the	if	statement.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

72	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Aliasing	of	arguments	with	immutable	types	cannot	happen	in	Python.	The	following	
example	 demonstrates	 that	 one	 can	 emulate	 a	 call	 by	 reference	 by	 assigning	 the	
returned	object	to	the	passed	argument:	

def doubler(x):
 return x * 2
x = 1
x = doubler(x)
print(x) #=> 2

This	is	not	a	true	call	by	reference	and	Python	does	not	replace	the	value	of	the	object	
x,	rather	it	creates	a	new	object	x	and	assigns	it	the	value	returned	from	the	doubler	
function	as	proven	by	the	code	below	which	displays	the	address	of	the	initial	and	the	
new	object	x:	

def doubler(x):
 return x * 2
x = 1
print(id(x)) #=> 506081728 changes with each execution
x = doubler(x)
print(id(x)) #=> 506081760 changes with each execution

The	 object	 replacement	 process	 demonstrated	 above	 follows	 Python’s	 normal	
processing	of	any	statement	which	changes	the	value	of	an	immutable	object	and	is	not	
a	special	exception	for	function	returns.	

It	is	possible	in	Python	to	provide	a	read-only	view	of	a	parameter	without	the	cost	of	
making	a	 local	copy.	The	following	example	 illustrates	how	to	 implement	this	read-
only	view	by	using	the	MappingProxyType	interface:	

	
from types import MappingProxyType
foo_types = MappingProxyType(
 {
 "foo1": 1,
 "foo2": 2
 }
)
print(foo_types["foo1"])
print(foo_types["foo2"])

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted:	Font:	(Default)	Cambria,	12	pt,	English	(CAN)
Formatted:	Justiaied
Formatted:	Font:	(Default)	Courier	New,	11	pt
Deleted:		by	applying

Formatted:	Font:	(Default)	Cambria,	12	pt,	English	(CAN)
Formatted:	Font:	Not	Bold
Formatted:	Font:	Not	Bold

©	ISO/IEC	2023	–	All	rights	reserved	 73	
	

#foo_types["foo1"] = 3 #=> TypeError: 'mappingproxy' object
 #=> does not support item assignment

 OUTPUT
 1
 2
6.32.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	 the	 avoidance	mechanisms	 provided	 by	 ISO/IEC	 24772-1:2024	 6.32.5	 to	
avoid	aliasing	effects.	

• Create	copies	of	mutable	objects	before	calling	a	function	if	changes	are	not	wanted	
to	mutable	arguments.	

• Use	 types.MappingProxyType	 or	 collections.ChainMap	 to	 provide	
read-only	views	of	mappings	without	the	cost	of	making	a	copy.	

• Consider	that	local	copies	are	created	for	immutable	arguments	when	assignment	
occurs	within	the	function,	whereas	for	mutable	arguments,	assignments	operate	
directly	on	the	original	argument.	

• Be	careful	when	passing	mutable	arguments	into	a	function	since	the	assignment	
sequence	(order)	within	the	function	may	produce	unexpected	results.		

6.33	Dangling	references	to	stack	frames	[DCM]	

6.33.1	Applicability	to	language	

With	 the	 exception	 of	 interfacing	 with	 other	 languages,	 Python	 does	 not	 have	 the	
vulnerability	 as	 described	 in	 ISO/IEC	 TR	 24772-1	 6.33.	 For	 example,	 Python	 has	 a	
foreign	function	library	called	ctypes,	which	allows	C	functions	to	be	called	in	DLLs	
or	 shared	 libraries.	 It	 can	 provide	 the	 opportunity	 to	 read,	 and	 potentially	 change,	
arbitrary	memory	locations:	

import ctypes
memid = (ctypes.c_char).from_address(0X0B98F706)

Once	memid	is	known,	the	potential	exists	to	modify	the	memory	location.	

See	6.53	Provision	of	 inherently	 unsafe	 operations	 [SKL]	 for	 the	 avoidance	 of	 such	
inherently	unsafe	operations.	For	safer	interactions	with	C	code,	Python	provides	the	
cffi	module.	

Deleted:	 types.MappingProxyType
or¶ ...	[22]
Formatted:	Underline

Deleted:	¶

Commented	[p73]:	Justification missing in .1

Commented	[SJM74R73]:	Good catch!
We may want to delete this as an Avoidance Mechanism
since it is tutorial in nature and we already have a significant
number of examples in this section. However, if we do want
to keep it and add justification in .1, here is an example
usage:

from types import MappingProxyType

foo_types = MappingProxyType(
 {
 "foo1": 1,
 "foo2": 2
 }
)
print(foo_types["foo1"])
print(foo_types["foo2"])

#foo_types["foo1"] = 3 # => TypeError:
'mappingproxy' object does not support
item assignment

OUTPUT:
1
2

Commented	[SM75R73]:	Done	
Formatted

Formatted

Formatted

Formatted

Formatted:	CODE	Char
Field	Code	Changed

Formatted

Formatted

	

74	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.33.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.33.5.	
• Avoid	using	ctypes	when	 calling	C	 code	 from	within	Python	and	use	cffi	 (C	

Foreign	Function	Interface)	instead.	

6.34	Subprogram	signature	mismatch	[OTR]	

6.34.1	Applicability	to	language	

The	vulnerability	of	a	mismatch	in	type	expectations	as	described	in	ISO/IEC	24772-
1:2024	6.34	exists	in	Python.	An	argument	passed	to	a	Python	function	may	be	of	a	
type	that	does	not	match	the	needs	of	operations	performed	by	the	function	on	the	
formal	 parameter,	 resulting	 in	 a	 run-time	 exception.	 The	 other	 vulnerability	 of	 a	
mismatch	 in	 parameter	 numbers	 does	 not	 exist	 in	 Python,	 as	 Python	 checks	 the	
number	of	arguments	passed.	Variable	numbers	of	positional	and	keyword	arguments	
are	supported	by	Python,	but	the	method	of	accessing	the	arguments	ensures	that	all	
access	arguments	exist.	

Python	supports	the	following	argument	structures:	

1. positional,		
2. key=value	(called	a	keyword	argument),	or		
3. both	kinds	of	arguments,	 in	which	case	positional	arguments	must	precede	the	first	

keyword	argument.	

Python	provides	the	mechanism	def foo(*a)	to	permit	foo	to	receive	a	variable	
number	of	positional	arguments.	In	this	case,	the	formal	argument	becomes	a	tuple	and	
the	 actual	 parameters	 are	 extracted	 using	 tuple	 processing	 syntax.	 Furthermore,	
Python	provides	the	mechanism	def foo(**a)	to	permit	foo	to	receive	a	variable	
number	of	keyword	arguments	called	a	dictionary.	

Python	always	calls	 the	most	recently	defined	 function	of	a	specified	name.	That	 is,	
there	is	no	overloading	of	arguments.	There	is	no	type-checking	of	arguments	as	part	
of	parameter	passing	and	no	concept	of	function	overloading.	Type	errors	are	detected	
when	the	body	executes	operations	not	available	for	the	type	of	the	argument.	Python	
provides	 a	 type	 membership	 test	 isinstance(var_name,

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Deleted:	Python	also	supports	a	variable	number	of	
arguments	and,	other	than	the	case	of	variable	arguments,	
will	check	at	runtime	for	the	correct	number	of	arguments	
making	it	impossible	to	corrupt	the	call	stack	in	Python	
when	using	standard	modules.¶
Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 75	
	

Class_or_primitive_type)	 that	 returns	 a	 Boolean	 that	 lets	 the	 user	 take	
alternative	action	based	on	the	actual	type	of	variable.	

Python	 has	 many	 extension	 APIs	 and	 embedding	 APIs	 that	 include	 functions	 and	
classes	 providing	 additional	 functionality.	 These	 perform	 subprogram	 signature	
checking	at	run	time	for	modules	coded	in	non-Python	languages.	Discussion	of	these	
APIs	 is	 beyond	 the	 scope	 of	 this	 document	 but	 the	 reader	 should	 be	 aware	 that	
improper	coding	of	any	non-Python	modules	or	their	interfaces	can	cause	call	stack	
problems.	Programmers	should	also	be	aware	that	the	cffi	module	will	believe	the	
signature	information	it	is	given,	which	may	or	may	not	be	accurate.	For	vulnerabilities	
associated	with	calling	 libraries	written	 in	other	 languages,	 see	6.47	 Inter-language	
calling	[DIS].	

6.34.2	Avoidance	mechanisms	for	language	users	

To	 avoid	 the	 remaining	 vulnerability	 of	 type	mismatches	 or	mitigate	 its	 ill	 effects,	
software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	described	in	ISO/IEC	24772-1:2024	
6.47.5,	Inter-language	calling,	when	interfacing	with	C	code	or	when	calling	library	
functions	that	interface	with	C	code.	

• Avoid	using	ctypes	when	calling	C	code	from	within	Python;	 instead	use	the	C	
Foreign	Function	Interface	(cffi)	since	it	is	more	streamlined	and	safer.			

• Document	 the	 expected	 types	 of	 the	 formal	 parameters	 (type	 hints)	 and	 apply	
static	analysis	tools	that	check	the	program	for	correct	usage	of	types.		

• Use	 type	 membership	 tests	 to	 prevent	 runtime	 exceptions	 due	 to	 unexpected	
parameter	types.	

6.35	Recursion	[GDL]	

6.35.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1:2024	6.35	is	mitigated	in	Python	
since	the	depth	of	the	recursion	is	limited.	Recursion	is	supported	in	Python	and	is,	by	
default,	 limited	 to	 a	 depth	 of	 1,000,	 which	 can	 be	 overridden	 using	 the	
setrecursionlimit	function.	If	the	limit	is	set	high	enough,	a	runaway	recursion	
could	exhaust	all	memory	resources	leading	to	a	denial	of	service.	

6.35.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.35.5.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Formatted

Formatted

	

76	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

• Use	evidence	when	adjusting	the	maximum	recursion	depth	to	a	larger	value	than	
the	default		

6.36	Ignored	error	status	and	unhandled	exceptions	[OYB]	

6.36.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.36	apply	to	Python.		

Unhandled	Python	exceptions	in	the	main	thread	will	cause	the	program	to	terminate,	
as	discussed	in	ISO/IEC	24772-1:2024	6.36.3.	Unhandled	exceptions	in	a	concurrent	
part	of	a	program	will	have	effects	that	are	dependent	on	the	model	of	concurrency	
being	used	and	the	explicit	way	that	the	components	are	executed	and	communicate	
(see	6.62	Concurrency	–	Premature	termination	[CGS]).	

The	 assert	 statement	 in	 Python	 is	 used	 primarily	 for	 debugging	 and	 throws	 an	
exception,	with	optional	comment	if	the	conditions	of	the	assertion	are	not	met.		

6.36.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.36.5.	
• Ensure	that	only	the	desired	named	exceptions	are	caught	and	handled.	
• Ensure	that	all	other	exceptions	that	can	be	thrown	are	caught	by	the	appropriate	

handler	
• Use	 the	assert	 statement	during	 the	debugging	phase	of	code	development	 to	

help	eliminate	undesired	conditions	from	occurring.	
• Ensure	 that	 every	 exception	 that	 can	 be	 thrown	 is	 caught	 by	 the	 appropriate	

handler.	

6.37	Type-breaking	reinterpretation	of	data	[AMV]	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.37	are	not	applicable	to	
Python	because	assignments	are	made	to	objects	and	the	object	always	holds	the	type,	
not	the	variable.	Therefore,	if	multiple	labels	reference	the	same	object,	they	all	see	the	
same	type	and	there	is	no	way	to	have	more	than	one	type	for	any	given	object.	

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Commented	[p78]:	Why is the paragraph here? Maybe
better in precondition checking? Or in unexpected
exceptions?

Commented	[SJM79R78]:	I agree with moving it to 6.36!

We currently have the following Avoidance Mechanisms in
6.36.2:
•Use	Python’s	exception	handling	mechanisms	to	ensure	
that	only	the	desired	named	exceptions	are	caught	and	
handled.	
•Ensure	that	every	exception	that	can	be	thrown	is	caught	
by	the	appropriate	handler.	
	
Section	6.36	Ignored	error	status	and	unhandled	
exceptions	may	be	a	good	home	for	this	sentence	since	
the	assert	statement	can	be	used	to	test	the	exceptions	...	[23]
Formatted

Formatted

Formatted

Formatted

Deleted:	Use	Python’s	exception	handling	mechanisms	...	[24]
Deleted:	e
Deleted:		
Formatted:	Font:	+Body	(Cambria)
Formatted:	Font:	+Body	(Cambria),	12	pt

Deleted:	.

Commented	[p80]:	Do I have a non-Python mechanism to ...	[25]
Commented	[SJM81R80]:	Non-Python? ...	[26]
Commented	[SM82R80]:	Fixed. No example put in 6.36.1.	

Formatted:	Font:	+Body	(Cambria)
Commented	[p83]:	Ditto on placement

Commented	[SM84R83]:	OK?	
Deleted:		–	
Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 77	
	

6.38	Deep	vs.	shallow	copying	[YAN]	

6.38.1	Applicability	to	language	

Python	exhibits	the	vulnerability	as	described	in	ISO/IEC	24772-1:2024	6.38.	

The	slice	operator,	e.g.,	“x = y[:]”	and	the	copy	methods,	e.g.	“x = y.copy()”,	copies	
the	first	level	of	a	list,	but	leaves	deeper	levels,	such	as	sub-lists,	shared.	For	producing	
deep	copies,	Python	provides	the	deepcopy	method.	

The	following	example	illustrates	the	issues	in	Python:	

colours1 = ["orange", "green"]
colours2 = colours1
print(colours1) -- ['orange', 'green']
print(colours2) -- ['orange', 'green']
colours2 = ["violet", "black"]
print(colours1) -- ['orange', 'green']
print(colours2) -- [‘violet’, ‘black’]

If,	however,	one	writes:	

colours1 = ["orange", "green"]
colours2 = colours1
colours2[1] = “yellow”
print(colours1) -- ['orange', 'yellow']

When	colours1	is	created,	Python	creates	it	as	a	list	type,	and	then	has	the	list	point	
to	its	elements.	When	colours2	is	created	as	a	copy	of	colours1,	they	both	point	to	
the	 same	 list	 container.	 If	 one	 sets	 a	 new	 value	 to	 an	 element	 of	 the	 list,	 then	 any	
variable	that	points	to	that	list	sees	the	update,	as	shown	in	the	second	example.	The	
first	example	above	shows	that	when	a	completely	new	list	is	created	for	colours2	
(replacing	 the	 equivalence	 of	 colours1	 and	 colours2),	 any	 further	 changes	 to	
colours2	or	colours1	do	not	affect	the	other.		

Copying	with	the	slice	operator	[:] provides	a	deeper	level	of	copying	under	certain	
situations.	 It	 does	 create	 a	 new	 memory	 address	 for	 the	 top-level	 list,	 but	 when	
embedded	sublists	are	involved,	the	slice	operator	still	references	the	objects	in	the	
original	list.	The	following	example	shows	how	changing	a	sublist	within	list	L2	also	
unintentionally	changes	the	same	sublist	in	list	L1.	

L1 = [[1,2,3], [4,5,6], [7,8,9]]
L2 = L1[:]
L2[0][2] = [123456789]
print(L1) #=> [[1, 2, [123456789]], [4, 5, 6], [7, 8, 9]]

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

78	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

print(L2) #=> [[1, 2, [123456789]], [4, 5, 6], [7, 8, 9]]

Python	 also	 has	 a	 function	 called	deepcopy	 that	 can	 be	 imported	 from	 the	copy	
module	and	copies	all	levels	of	a	structured	object	to	a	completely	new	object	so	that	a	
list	within	a	list	can	be	independently	accessed	as	shown	in	the	example	below:	

import copy
L1 = [[1,2,3], [4,5,6], [7,8,9]]
L2 = copy.deepcopy(L1)
L2[0][2] = [123456789]
print(L1) #=> [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
print(L2) #=> [[1, 2, [123456789]], [4, 5, 6], [7, 8, 9]]

6.38.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.38.5.		
• Be	 aware	 that	 the	 slice	 operator	 [:]	 and	 the	 container copy	 methods	 only	

perform	shallow	copies.		
• Use	 the	copy.deepcopy	 standard	 library	 function	 to	obtain	deep	copies	at	all	

levels	of	a	variable.	

6.39	Memory	leaks	and	heap	fragmentation	[XYL]	

6.39.1	Applicability	to	language	

The	 heap	 fragmentation	 vulnerability	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.39	
exists	 in	 Python.	 The	 memory	 leak	 vulnerability	 of	 that	 subclause	 is	 mitigated	 by	
Python	automatic	garbage	collection	as	described	below.		

Python	supports	automatic	garbage	collection	so	in	theory	it	should	not	have	memory	
leaks.	However,	there	are	at	least	three	general	cases	in	which	memory	can	be	retained	
after	it	is	no	longer	needed.		

The	 first	 case	 is	when	 implementation-dependent	memory	 allocation/de-allocation	
algorithms	cause	a	leak,	which	would	be	an	implementation	error	and	not	a	language	
error.		

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 79	
	

The	second	general	case	is	when	objects	remain	referenced	after	they	are	no	longer	
needed.	This	 is	a	 logic	error	which	requires	 the	programmer	 to	modify	 the	code	 to	
delete	references	to	objects	when	they	are	no	longer	required.		

The	third	case	is	a	subtle	memory	leak	case	wherein	objects	mutually	reference	one	
another	without	any	outside	references	remaining	–	a	kind	of	deadly	embrace	where	
one	object	references	a	second	object	(or	group	of	objects)	so	the	second	object	(or	
group	of	objects)	cannot	be	collected	but	the	second	object(s)	also	reference	the	first	
one(s)	 so	 it/they	 too	 cannot	 be	 collected.	 	 This	 group	 is	 known	 as	 cyclic	 garbage.	
Python	 provides	 a	 garbage	 collection	module	 called	gc	which	 has	 functions	which	
enable	 the	 programmer	 to	 enable	 and	 disable	 cyclic	 garbage	 collection	 as	 well	 as	
inspect	the	state	of	objects	tracked	by	the	cyclic	garbage	collector	so	that	these,	often	
very	subtle	leaks,	can	be	traced	and	eliminated.	

6.39.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.39.5.	
• Set	each	object	to	null	when	it	is	no	longer	required.	
• For	 programs	 intended	 for	 continuous	 operation,	 examine	 all	 object	 usage	

carefully,	 applying	 the	 avoidance	mechanisms	provided	 by	 ISO/IEC	24772-1,	 to	
show	that	memory	is	effectively	reclaimed	and	reused.	

• Use	context	managers	to	explicitly	release	large	memory	buffers	that	are	no	longer	
needed.	

6.40	Templates	and	generics	[SYM]	

6.40.1	Applicability	to	language	

The	 vulnerabilities	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.40	 apply	 to	 Python,	
although	Python	does	not	have	the	applicable	language	characteristics	as	outlined	in	
ISO/IEC	 24772-1:2024	 6.40.4.	 Since	 Python	 is	 dynamically	 typed,	 essentially	 all	
functions	in	Python	exhibit	generic	properties.	Therefore,	the	mechanisms	of	failure	
outlined	in	ISO/IEC	24772-1:2024	6.40.3	apply	to	Python.	

6.40.2	Avoidance	mechanisms	for	language	users	

Software	 developers	 can	 avoid	 the	 vulnerabilities	 or	 mitigate	 their	 ill	 effects	 by	
applying	the	avoidance	mechanisms	of	ISO/IEC	24772-1:2024	6.40.5.	

Formatted

Formatted

Formatted

Formatted

	

80	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.41	Inheritance	[RIP]	

6.41.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.41	apply	to	Python.		

Python	supports	inheritance	as	described	in	5.1.6.	

It	 is	important	to	make	sure	that	each	class	calls	the	__init__	of	its	superclass	so	
that	 it	 is	properly	 initialized.	The	built-in	 function	super()	provides	access	 to	 the	
next	class	in	the	MRO	sequence.	See	5.1.6,	which	also	includes	an	example.	

The	difficulties	associated	with	establishing	the	MRO	are	also	illustrated	in	5.1.4.		

There	can	be	unexpected	outcomes	from	the	MRO	as	shown	in	the	following	code.	The	
outcome	 might	 be	 expected	 to	 be	 a=0,	 but	 in	 reality,	 the	 result	 is	 a=2	 since,	 as	
previously	mentioned,	methods	in	derived	calls	are	always	called	before	the	method	
of	the	base	class		(class T).		

class T():
 a = 0
class A(T):
 pass
class B(T):
 a = 2
class C(A,B):
 pass
c = C()
print(c.a) # => 2

There	is	no	protection	in	Python	against	accidental	redefinition,	method	capture,	or	
accidental	 non-redefinition	 along	 the	 MRO	 sequence,	 so	 that	 these	 vulnerabilities	
apply.		

Moreover,	as	the	search	for	a	binding	is	at	run-time	in	dynamically	established	class	
hierarchies	,	a	static	analysis	cannot	predetermine	the	danger	of	these	vulnerabilities	
to	incur.	Neither	can	a	reviewer	of	the	code	without	detailed	analysis	of	the	entire	class	
hierarchy	determine	which	method	is	called.	The	__mro__	attribute	can	be	queried	in	
the	code	to	determine	the	MRO	sequence.		

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Deleted:	reality

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 81	
	

Hailed	as	a	 flexibility	 in	Python	 literature,	 it	 is	possible	 to	add	an	additional	sibling	
class	into	a	given	hierarchy,	thereby	redefining	parent	method	definitions	(or	adding	
new	 ones),	 so	 that	 the	 elder	 sibling	 appears	 to	 have	 these	 capabilities	 from	 the	
viewpoint	of	all	classes	below.	Thus,	incorrect	or	malicious	code	can	be	inserted	into	
already	validated	code.	

As	explained	in		5.1.4	Mutable	and	Immutable	Objects	,	there	are	situations	in	which	
Python	cannot	establish	a	consistent	MRO,	in	which	case	the	TypeError	exception	is	
raised.	For	a	discussion	of	vulnerabilities	related	 to	unhandled	exceptions,	 see	6.36	
Ignored	error	status	and	unhandled	exceptions	[OYB].	

There	 are	 no	 language	mechanisms	 to	 enforce	 class	 invariants	 when	methods	 are	
redefined,	so	that	class	invariants	can	be	easily	violated	by	redefinitions.	

To	 enforce	 the	 use	 of	 getter	 and	 setter	 methods	 to	 access	 class	 members,	 Python	
provides	a	mechanism	to	make	members	effectively	private:	the	use	of	leading	double	
underscores	(without	matching	trailing	underscores)	for	their	name	implies	only	local	
visibility	in	Python.		

Any	 inherited	methods	are	subject	 to	 the	same	vulnerabilities	 that	occur	whenever	
using	code	that	is	not	well	understood.	

Static	type	analysis	tools	can	detect	issues	associated	with	complex	class	hierarchies.	
Python’s	type	hints	provide	valuable	information	to	static	analysis	tools.	Similarly,	in	
multiple	 inheritance	 situations,	 displaying	 the	MRO	 sequence	 assists	 developers	 in	
understanding	the	method	binding	(see	6.44	Polymorphic	variables	[BKK]).	

6.41.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.41.5.	
• Inherit	only	from	trusted	classes,	such	as	standard	classes.	

• Only	use	multiple	inheritance	that	is	linearizable	by	the	MRO	rules.	
• Make	sure	that	each	class	calls	the	__init__	of	its	superclass.		

• Use	 the	 __mro__	 attribute	 to	 obtain	 information	 about	 the	 MRO	 sequence	 of	
classes	followed	by	method	calls.		

• Use	static	analysis	tools	supported	by	type-checking	hints.	
• Employ	type	hints	to	elicit	compile-time	analysis.	

• Prefix	method	calls	with	the	desired	class	wherever	feasible.	
• Use	Python’s	 built-in	 documentation	 (such	 as	 docstrings)	 to	 obtain	 information	

about	a	class’	methods	before	inheriting	from	the	class.		

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Deleted:		and	verify	that	the	documentation	accurately	
reflects	that	implemented	code.

	

82	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

• For	users	who	are	new	to	the	use	of	multiple	inheritance	in	Python,	carefully	review	
Python’s	rules,	especially	those	of	super()	and	class	names	that	prefix	calls.	

6.42	Violations	of	the	Liskov	substitution	principle	or	the	contract	model		
[BLP]	

6.42.1	Applicability	to	language	

Python	is	subject	to	violations	of	the	Liskov	substitution	rule	as	documented	in	ISO/IEC	
24772-1:2024	6.42.	The	Python	community	provides	static	analysis	tools	for	Python,	
which	detect	most	instances	of	such	violations.	

6.42.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.42.5.		
• Use	software	static	analysis	tools	to	help	identify	violations.	

6.43	Redispatching	[PPH]	

6.43.1	Applicability	to	language	

The	 vulnerabilities	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.43	 exist	 in	 Python.	 By	
default,	all	calls	in	Python	resolve	to	the	method	of	the	controlling	object,	a	semantics	
that	ISO/IEC	24772-1:2024	refers	to	as	redispatching,	and	thus	can	result	in	infinite	
recursion	between	redefined	and	inherited	methods,	as	described	in	ISO/IEC	24772-
1.	

Redispatching	can	be	prevented	by:	

• Prefixing	the	method	call	by	the	name	of	the	desired	class;	or	
• Prefixing	the	method	call	by	super()	to	call	on	the	method	found	along	the	MRO	

of	the	current	class.	

The	following	example	shows	the	infinitely	recursive	dispatching	caused	in	h()	and	
prevented	in	f():	

class A:

Commented	[p87]:	I VERY MUCH doubt this. How can you
possibly distinguish automatically “is-a” and “has-a”
relationships?

Commented	[SJM88R87]:	Ref:
https://github.com/python/typing/issues/487

According to Guido, in response to Stephen’s question on
the topic:

“… the mypy checker does mitigate this by flagging Liskov
violations as errors…”

Also
 “mypy type checker detects and prohibits Liskov violations
with very few exceptions (like incompatible __init__ method
signatures). ”

Commented	[SM89R87]:	OK	
Commented	[p90]:	Ditto

Commented	[SJM91R90]:	The following screenshot
illustrates mypy in use and how it finds Liskov violations in
the example found in:
https://mypy.readthedocs.io/en/stable/error_code_list.html
#check-validity-of-overrides-override
 ...	[27]
Commented	[SM92R90]:	OK	

©	ISO/IEC	2023	–	All	rights	reserved	 83	
	

 def f(self):
 print("In A.f()”)
 def g(self):
 A.f(self) # call to f() in subclass B, will not dispatch
 def h(self):
 self.i()
 def i(self):
 self.h() # call to h() in subclass B, will dispatch
 # showing the vulnerability
class B(A):
 def f(self):
 self.g()
 def h(self):
 self.i() # call to i() in superclass A (infinite
recursion)

a = A()
b = B()
b.f() #=> In A.f()
b.h() #=> RecursionError: maximum recursion depth exceeded

An	 important	 consideration	 in	 class	 definition	 is	 that	 Python	 permits	 a	 second	
method	in	a	class	with	identical	signature	to	an	earlier	one,	which	effectively	hides	
the	first	one	and	prevents	it	from	being	called.	

See	6.44	Polymorphic	variables	[BKK]	for	associated	vulnerabilities.	

6.43.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.43.5.		
• Avoid	dispatching	whenever	possible	by	prefixing	the	method	call	with	the	target	

class	name,	or	with	super().		

• Within	 a	 single	 class,	 avoid	 the	 definition	 of	 a	 second	 method	 with	 the	 same	
signature	as	an	existing	method.	

• Use	 systematic	 code	 reviews,	 organization-wide	 coding	 standards,	 and	 static	
analysis	tools	to	prevent	problems	related	to	the	redefinition	of	methods	in	object-
oriented	programming.	

Formatted:	CODE	Char
Formatted:	CODE	Char
Field	Code	Changed

Commented	[p93]:	Is this legal at all? Or is this “within a
class hierarchy”?

Commented	[SJM94R93]:	Yes, this is legal:
class fooclass():

 def foo(self):
 print("in first foo")

 def foo(self):
 print("in second foo")

f = fooclass()
print(f.foo())

OUTPUT:
in second foo
None

Same behavior occurs outside of a class:
def foo():
 print("in first foo")
def foo():
 print("in second foo")
print(foo())
OUTPUT:
in second foo
None

Commented	[SM95R93]:	See my proposed explanation in
6.43.1	

	

84	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.44	Polymorphic	variables	[BKK]	

6.44.1	Applicability	to	language	

The	 vulnerabilities	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.44	 exist	 in	 Python	 in	
principle,	although	the	mechanisms	differ	from	the	ones	described	in	ISO/IEC	24772-
1.	

Python	is	inherently	polymorphic,	in	the	sense	that	any	called	operation	will	attempt	
to	apply	itself	to	the	given	object	and	raise	an	exception	if	it	cannot	apply	the	operation	
(see	5.1.6	Inheritance).	

While	 Python	 has	 no	 casting	 operators	 as	 described	 in	 ISO/IEC	 24772-1:2024,	
prefixing	method	calls	with	class	names	can	achieve	similar	effects	for	these	calls	and	
cause	respective	vulnerabilities:	

• Prefixing	a	call	with	the	name	of	a	specific	class	forces	the	binding	of	the	method	
name	to	be	taken	from	this	class.	There	is,	however,	no	check	performed	whether	
the	named	class	is	an	ancestor	class	of	the	class	of	the	self	object,	and	thus	safe	to	
use	(commonly	known	as	“upcast”).	Any	class	is	accepted,	turning	the	feature	into	
an	unsafe	cast	in	the	terminology	of	ISO/IEC	24772-1.	Subsequent	failures	occur	in	
Python	 only	 when	 the	 class	 of	 self	 does	 not	 have	 members	 named	 by	 the	
implementation	of	the	chosen	method,	or,	if	it	does,	malfunctions	arise	when	the	
user	semantics	of	these	members	are	different	in	the	two	classes,	e.g.,	a	member	
count	in	two	unrelated	classes	may	stand	for	the	count	of	very	different	entities,	a	
method	engage	may	engage	an	engine	or	engage	a	loving	couple,	depending	on	the	
class	involved.	Since	parameters	play	no	role	in	method	resolution,	they	do	not	help	
in	avoiding	unintended	matches.	

• 	“super()”	 	as	a	prefix	 to	a	call	 ignores	 local	definitions	and,	 instead,	picks	 the	
binding	from	the	next	class	in	the	applicable	MRO	(often	a	parent	class	as	in	most	
OO-languages,	 but	 occasionally	 a	 sibling	 of	 the	 parent	 class,	 as	 shown	 in	 the	
example	in		5.1.6).	As	such,	it	is	reasonably	safe,	since	the	classes	are	ancestors	of	
the	 class	 of	 the	 object,	 albeit	 possibly	 not	 yielding	 the	 expected	 binding.	 The	
vulnerabilities	of	upcasts,	as	described	in	ISO/IEC	24772-1,	apply	in	any	case.	The	
super()	function	returns	a	temporary	proxy	object	of	the	superclass	so	that	its	
name	does	not	need	to	be	used	in	the	child	class.	The	example	below	shows	how	to	
explicitly	 call	 the	 __init__	 method	 in	 the	 Foo	 superclass	 by	 using	 both	 the	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Deleted:		For	the	vulnerability	of	unhandled	exceptions	in	
the	case	no	operation	or	method	of	the	respective	name	is	
found	in	the	object	or	class	instance,	see	6.36	Ignored	
error	status	and	unhandled	exceptions	[OYB].

©	ISO/IEC	2023	–	All	rights	reserved	 85	
	

superclass	name	and	the	super()	function.	Notice	that	the	self-object	reference	
parameter	is	required	when	using	the	Foo	superclass	name.	Notice	also	that,	by	
using	super(),	any	changes	to	the	parent	class	name	will	not	matter	as	they	do	
for	the	first	call.		

class Foo(object):
 def __init__(self, msg):
 print(msg)

class DerivedFoo(Foo):
 def __init__(self)
 Foo.__init__(self, '__init__ using Foo')
 # => __init__ using Foo
 super().__init__('__init__ using super()')
 # => __init__ using
super()
DerivedFoo()

6.44.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.44.5.		
• Ensure	that	each	class	implements	the	__init__	method	that	calls	the	__init__	

of	its	superclass.	
• Employ	static	type	checking	by	providing	type	hints	for	static	analysis	tools	in	areas	

involving	inheritance.	
• Use	__mro__	as	an	aid	during	development	and	during	maintenance	to	help	obtain	

the	desired	class	hierarchies	and	verify	linearity.		
• Consider	 using __mro__	 to	 check	 at	 runtime	 that	 the	 actual	method	 binding	

matches	 the	 expected	method	 binding	 and	 to	 raise	 an	 exception	 if	 they	 do	 not	
match.		

• Pay	attention	to	warnings	that	identify	variables	written	but	never	read.		

6.45	Extra	intrinsics	[LRM]	

6.45.1	Applicability	to	language	

The	vulnerability	as	documented	in	ISO/IEC	24772-1:2024	6.45	applies	to	Python.		

Commented	[p98]:	True, but is it worth mentioning?

Commented	[SJM99R98]:	Somewhat tutorial however the
concept of super() is somewhat unique to Python.

Commented	[SM100R98]:	OK	

	

86	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Python	 provides	 a	 set	 of	 built-in	 intrinsics,	 which	 are	 implicitly	 imported	 into	 all	
Python	 scripts.	 Any	 of	 the	 built-in	 variables	 and	 functions	 can	 therefore	 easily	 be	
overridden	as	in	this	example:	

x = 'abc'
print(len(x)) #=> 3
def len(x):
 return 10
print(len(x)) #=> 10

In	the	example	above	the	built-in	len	 function	is	overridden	with	logic	that	always	
returns	10.	Note	that	the	def	statement	is	executed	dynamically	so	the	new	overriding	
len	function	has	not	yet	been	defined	when	the	first	call	to	len	is	made	therefore	the	
built-in	version	of	len	is	called	in	line	2	and	it	returns	the	expected	result	(3	in	this	
case).	After	the	new	len	function	is	defined	it	overrides	all	references	to	the	builtin-in	
len	function	in	the	script.	This	can	later	be	“undone”	by	explicitly	importing	the	built-
in	len	function	with	the	following	code:	

from builtins import len
print(len(x)) #=> 3

It	is	very	important	to	be	aware	of	name	resolution	rules	when	overriding	built-ins	(or	
anything	else	for	that	matter).	In	the	example	below,	the	overriding	len	 function	is	
defined	within	another	 function	and	 therefore	 is	not	 found	using	 the	LEGB	rule	 for	
name	resolution	(see	6.21	Namespace	issues	[BJL]):	

x = 'abc'
print(len(x)) #=> 3
def f(x):
 def len(x):
 return 10
print(len(x)) #=> 3

6.45.2	Avoidance	mechanisms	for	to	language	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.45.5.		
• Prohibit	the	overriding	of	built-in	intrinsics.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Deleted:	Prevent	

©	ISO/IEC	2023	–	All	rights	reserved	 87	
	

• If	 it	 is	 necessary	 to	 override	 an	 intrinsic,	 document	 the	 case	 and	 show	 that	 it	
behaves	 as	 documented	 and	 that	 it	 preserves	 all	 the	 properties	 of	 the	 built-in	
intrinsic.	

6.46	Argument	passing	to	library	functions	[TRJ]	

6.46.1	Applicability	to	language	

The	vulnerability	as	documented	in	ISO/IEC	24772-1:2024	6.46	applies	to	Python.	

6.46.2	Avoidance	mechanisms	for	language	users	

Software	developers	can	avoid	the	vulnerability	or	mitigate	its	ill	effects	by	applying	
the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.46.5.	

6.47	Inter-language	calling	[DJS]	

6.47.1	Applicability	to	language	

The	 vulnerabilities	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.47	 are	 mitigated	 in	
Python,	which	has	documented	API’s	for	interfacing	with	other	languages.	Python	has	
an	API	that	extends	Python	using	libraries	coded	in	C	or	C++.	The	library	or	libraries	
are	then	imported	into	a	Python	module	and	used	in	the	same	manner	as	a	module	
written	in	Python.	The	full	API	exposed	to	the	“C”	language	by	the	CPython	reference	
interpreter	is	documented	in	the	“Python/C	API	Reference	Manual”[14].		The	section	
in	 the	 Python/C	 API	 Reference	Manual	 entitled	 “Extending	 Python	with	 C	 or	 C++”	
provides	a	low-level	example	of	writing	an	extension	module	from	scratch	using	that	
API.	

Conversely,	code	written	in	C	or	C++	can	embed	Python.	The	standard	for	embedding	
Python	is	documented	in	“Embedding	Python	in	Another	Application”	[3].	

Writing	Python	extension	modules	by	hand	is	error-prone,	and	highly	likely	to	lead	to	
reference	counting	errors,	memory	 leaks,	dangling	pointers,	out-of-bounds	memory	
accesses,	and	similar	problems.	

Note	that	Python	maintainers	recommend	that	developers	use	existing	libraries	and	
tools	that	automatically	generate	the	Python	interface	code	from	simpler	descriptions	
of	intent,	such	as	those	covered	in	Packaging	binary	extensions	[9]			such	as	Cython,	
cffi,	and	SWIG.	Other	 libraries	that	can	be	used	for	performance	optimization	are	
PyO3	for	Rust,	and	pybind11	for	C++.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

88	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.47.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	 the	 avoidance	 mechanisms	 provided	 by	 ISO/IEC	 24772-1:2024	 	 47.5,	
especially	when	interfacing	to	a	language	without	a	predefined	API.	

• Avoid	writing	Python	extension	modules	by	hand.		
• Where	available,	use	existing	interface	libraries	that	bridge	between	Python	and	

the	extension	module	language,		

6.48	Dynamically-linked	code	and	self-modifying	code	[NYY]	

6.48.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.48	apply	to	Python.	

Python	 supports	 dynamic	 linking	 by	 design.	 The	 import	 statement	 fetches	 a	 file	
(known	as	a	module	in	Python),	compiles	it	and	executes	the	resultant	byte	code	at	run	
time.	This	 is	 the	normal	way	 in	which	external	 logic	 is	made	accessible	 to	a	Python	
program.	Therefore,	Python	is	inherently	exposed	to	any	vulnerabilities	that	cause	a	
different	file	to	be	imported:	

• Alteration	 of	 a	 file	 directory	 path	 variable	 to	 cause	 the	 file	 search	 to	 locate	 a	
different	file	first.	

• Overlaying	of	a	file	with	an	alternate	file.	

Python	also	provides	the	eval	and	exec	statements.	The	exec	statement	compiles	
and	 executes	 statements	 (example:	x=1,	 a	 line	 that	 requires	 execution).	 The	eval	
statement	 evaluates	 expressions	 (example,	 1+1,	 composed	 of	 operators	 and	
expressions).	Both	statements	can	be	used	to	create	self-modifying	code:	

x = "print('Hello ' + 'World')"
eval(x) #=> Hello World
program = \
“a = 5”\
“b = 10”\
print("Sum =", a+b)”
exec(program) # Output: Sum = 15

Formatted

Formatted

Deleted:	

Deleted:	

©	ISO/IEC	2023	–	All	rights	reserved	 89	
	

Guerrilla	patching,	also	known	as	monkey	patching,	is	a	way	to	dynamically	modify	a	
module	 or	 class	 at	 run-time	 to	 extend	 or	 subvert	 their	 processing	 logic	 and/or	
attributes.	It	can	be	a	dangerous	practice	because	once	“patched”	any	other	modules	
or	classes	that	use	the	modified	class	or	module	may	unwittingly	use	code	that	does	
not	do	what	is	expected,	which	could	cause	unexpected	results.		

Python,	 by	 default,	 is	 liable	 to	 execute	 dangerous	 code	 without	 detection	 or	
verification.	 The	 Python	 interpreter	 provides	 a	 default	 entry	 point	 that	 allows	
execution	with	no	hooks	enabled.	Production	software	that	uses	modified	entry	points	
and	logs	as	many	events	as	possible	can	reduce	most	of	these	risks.	

Python	Enhancement	Proposal	(PEP)	578	[12]	documents	issues	with	audit	hooks	as	
using	them	can	alter	the	behaviour	of	runtime	calls	and	provides	advice	to	eliminate	
their	default	behaviour.	

6.48.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.48.5.	
• Avoid	using	exec	or	eval	and	never	use	these	with	untrusted	code.	

• Avoid	guerrilla	patching,		
• If	 guerrilla	 patching	 is	 unavoidable,	 ensure	 that	 all	 uses	 of	 the	 patched	 classes	

and/or	modules	continue	to	function	as	documented	through	mechanisms	such	as	
audit	hooks	and	event	logging.	

• Use	caution	when	including	any	code	that	patches	classes	and/or	modules.		
• Ensure	that	any	file	paths	and	files	being	imported	are	from	trusted	sources.	
• Consider	 the	 guidance	 of	 PEP	 578	 [12]	 and	 its	 predecessor	 PEP	 551	 [11]	 to	

eliminate	 potentially	 dangerous	 default	 behaviour	 from	 calls	 into	 the	 Python	
runtime	and	in	the	use	of	audit	hooks.	

• Verify	 that	 the	release	version	of	 the	product	does	not	use	default	Python	entry	
points	 (python.exe	 on	Windows,	 and	pythonX.Y	 on	 other	 platforms)	 since	
these	are	executable	 from	the	command	 line	and	do	not	have	hooks	enabled	by	
default.		

• Consider	using	a	modified	entry	point	that	restricts	the	use	of	optional	arguments	
to	reduce	the	chance	of	unintentional	code	being	executed	

• Avoid	unprotected	settings	from	the	working	environment	in	entry	points.	

• If	the	application	is	performing	event	logging	as	part	of	normal	operations,	consider	
logging	all	predetermined	events	in	calling	external	libraries.		

• Consider	logging	as	many	events	as	possible	and	ensure	that	such	logs	are	archived	
to	an	external	location.		

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Deleted:		and	remove	the	default	Python	entry	point	
from	the	system.	…

	

90	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.49	Library	signature	[NSQ]	

6.49.1	Applicability	to	language	

The	 vulnerabilities	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.49	 are	 mitigated	 in	
Python,	which	provides	an	extensive	API	 for	extending	or	embedding	Python	using	
modules	written	in	C,	Java,	and	Fortran.	Extensions	themselves	have	the	potential	for	
vulnerabilities	exposed	by	the	language	used	to	code	the	extension,	which	is	beyond	
the	scope	of	this	document.		

Python	does	not	have	a	 library	signature-checking	mechanism,	but	 its	API	provides	
functions	and	classes	to	help	ensure	that	the	signature	of	the	extension	matches	the	
expected	call	arguments	and	types	(see	6.34	Subprogram	signature	mismatch	[OTR]).	

Python	does	provide	an	API	that	gives	access	to	various	runtime,	import	and	compiler	
events.	The	information	gathered	from	these	events	can	be	used	to	detect,	identify	and	
avoid	malicious	activity.	For	example,	sys.audithook	can	be	used	to	add	a	callback	
function	for	a	predefined	set	of	events.	The	callback	function	receives	the	name	of	the	
event	 as	 well	 as	 arguments	 that	 can	 be	 used	 for	 monitoring	 and	 filtering.	 These	
monitored	 events	 can	 be	 used	 to	 evaluate	 third	 party	 components	 for	 suspicious	
activity	during	runtime,	reducing	the	inherent	risks	associated	with	external	modules.	
These	 hooks	 are	 useful	 in	 situations	 where	 third-party	 source	 code	 is	 either	
unavailable	or	too	large	to	evaluate	for	malicious	activity.	

6.49.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.49.5.	

• Use	only	trusted	modules	as	extensions.	
• If	coding	an	extension,	utilize	Python’s	extension	API	to	ensure	a	correct	signature	

match.	

6.50	Unanticipated	exceptions	from	library	routines	[HJW]	

6.50.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1:2024	6.50	applies	to	Python.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 91	
	

Python	is	often	extended	by	importing	modules	coded	in	Python	and	other	languages.	
For	modules	coded	in	Python,	the	risks	include	the	interception	of	an	exception	that	
was	intended	for	a	module’s	imported	exception	handling	code	and	vice	versa.	

For	modules	coded	in	other	languages,	the	risks	include:	

• Unexpected	termination	of	the	program.	

• Unexpected	side	effects	on	the	operating	environment.	

6.50.2 	Avoidance	mechanisms	for	language	users	

Software	developers	can	avoid	the	vulnerability	or	mitigate	its	ill	effects	by	applying	
the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.50.5.	

6.51	Pre-processor	directives	[NMP]	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.51	do	not	apply	to	Python	
since	Python	does	not	have	a	preprocessor.	

6.52	Suppression	of	language-defined	run-time	checking	[MXB]	

6.52.1	Applicability	to	language	

The	vulnerabilities	as	documented	in	ISO/IEC	24772-1:2024	6.52	apply	to	Python.	

Among	the	mechanisms	to	suppress	runtime	checking	or	reporting	of	runtime	errors	
are:	

• Using	the	command	line	option	specific	to	the	execution	environment;	
• Using	the	catch_warnings	function	to	catch	and	subsequently	ignore	warnings;	

• Catching	and	then	ignoring	runtime	exceptions.	

Each	of	these	mechanisms	provide	ways	that	serious	situations	that	are	detected	by	
the	 runtime	 can	 be	 ignored,	 which	 will	 almost	 always	 result	 in	 significant	
vulnerabilities.	

6.52.2 Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Follow	the	avoidance	mechanisms	or	ISO	IEC	24772-1	6.52.5.	
• Forbid	suppressing	runtime	checks.	
• Forbid	ignoring	caught	warnings.	
• Forbid	ignoring	caught	runtime	exceptions.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

92	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.53	Provision	of	inherently	unsafe	operations	[SKL]	

6.53.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.53	apply	to	Python.	

Even	though	there	is	no	way	to	suppress	error	checking	or	bounds	checking	in	Python,	
there	are	features	that	are	inherently	unsafe:			

• Interfaces	to	modules	coded	in	other	languages	since	they	could	easily	violate	the	
security	of	the	calling	of	embedded	Python	code	(see	6.47	Inter-language	calling	
[DJS]).	

• Use	of	 the	exec	 and	eval	 dynamic	execution	 functions	 (see	6.48	Dynamically-
linked	code	and	self-modifying	code).	

• Similarly,	logging.dictConfig	can	end	up	running	arbitrary	code.	

• Python	 permits	 user-defined	 modifications	 of	 the	 contents	 of	 module	 builtins.	
Doing	 so,	 however,	 can	 be	 unsafe	 unless	 the	 redefinition	 matches	 all	 of	 the	
semantics	 of	 the	 original	 built-in	 function,	 including	 future	 enhancements.	
Overriding	 Python’s	 default	 behaviour,	 by	 either	 overriding	 Python’s	 built-in	
functions	or	hiding	it	or	a	built-in	variable	by	a	user-defined	variable	of	the	same	
name,	can	have	undesired	side	effects	and	can	be	difficult	to	debug.		

• The	pickle	module	is	inherently	unsafe	since	it	allows	arbitrary,	and	potentially	
malicious,	 code	 execution.	pickle	 can	 spawn	anything	 that	Python	 can	 invoke	
including	 the	 web	 browser.	 To	 mitigate	 this	 risk,	 whitelists	 of	 Python	 built-in	
functions	that	are	deemed	to	be	expected	and	acceptable	can	be	created,	and	all	
other	functions	disallowed.	

• Older	Python	2	pickle	protocols	can	be	ASCII	and	slow	(protocol=0)	making	them	
especially	prone	to	DOS	attacks.	Python	3	defaults	to	higher	protocols	(2-4,	binary).	
The	anticipated	protocol	to	be	used	is	determined	when	pickled,	but	an	attacker	
can	choose	various	protocols.	This	risk	can	be	reduced	by	not	using	protocol 0.	

• pickle	bombs	(self-referencing	payloads)	can	make	a	small	payload	expand	to	an	
extremely	 large	 object	 in	memory	 resulting	 in	 DOS	 or	 other	 attacks.	 There	 are	
legitimate	 use	 cases	 for	 self-referencing	 payloads,	 but	 in	 order	 to	minimize	 the	
chance	 of	 them	 being	 misused	 and	 potentially	 leading	 to	 a	 DOS	 attack,	 self-
referencing	payloads	can	be	disallowed.	

Field	Code	Changed

Field	Code	Changed

©	ISO/IEC	2023	–	All	rights	reserved	 93	
	

• Usage	of	pickle	for	long-term	storage	increases	the	risk	of	attack,	due	in	part	to	
many	more	pickle	payloads	that	are	accepted	than	generated,	and	to	evolving	
protocol	and	Python	version	changes.	

6.53.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.53.5.	
• Use	only	trusted	modules.	
• Avoid	the	use	of	the	exec	and	eval	functions.	

• Avoid	overriding		Python’s	default	behaviour	provided	by	the	builtins	module.	
• Create	a	whitelist	of	Python	built-in	functions	that	are	deemed	to	be	expected	and	

acceptable	in	uses	of	pickle	and	forbid	any	other	functions.	

• Forbid	overriding	the	names	of	built-in	variables	or	functions.	
• Avoid	the	use	of	the	pickle	module	and	logging.dictConfig	and	consider	

using	JSON	and	MessagePack	as	alternatives.	

• Avoid	the	use	of	pickle	for	long	term	storage.	

• Avoid	the	use	of	protocol 0.	

• Disallow	the	use	of	self-referencing	payloads.	

6.54	Obscure	language	features	[BRS]	

6.54.1	Applicability	of	language		

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.54	apply	to	Python.	Some	
examples	of	obscure	language	features	in	Python	are:	

• Functions	are	defined	when	executed:	

a = 1
while a < 3:
 if a == 1:
 def f():
 print("a must equal 1")
 else:
 def f():
 print("a must not equal 1")
 f()
 a += 1

	

94	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

The	function	f	is	defined	and	redefined	to	result	in	the	output	below:	

a must equal 1
a must not equal 1

• A	function’s	variables	are	determined	to	be	local	or	global	using	static	analysis:	if	a	
function	only	references	a	variable	and	never	assigns	a	value	to	it	then	it	is	assumed	
to	 be	 global	 otherwise	 it	 is	 assumed	 to	 be	 local	 and	 is	 added	 to	 the	 function’s	
namespace.	This	is	covered	in	some	detail	in	6.22	Initialization	of	variables	[LAV].		

• A	function’s	default	arguments	are	assigned	when	a	function	is	defined,	not	when	
it	is	executed:	

def f(a=1, b=[]):
 print(a, b)
 a += 1
 b.append("x")
f()
f()
f()

The	output	from	above	is	typically	expected	to	be:	

1 []
1 []
1 []

But	instead,	it	prints:	

1 []
1 ['x']
1 ['x', 'x']

This	is	because	neither	a	nor	b	are	reassigned	when	f	is	called	with	no	arguments	
because	 they	 were	 assigned	 values	 when	 the	 function	 was	 defined.	 The	 local	
variable	a	references	an	immutable	object	(an	integer)	so	a	new	object	is	created	
when	the	a += 1	statement	is	executed	and	the	default	value	for	the	a	argument	
remains	 unchanged.	 The	 mutable	 list	 object	 b	 is	 updated	 in	 place	 and	 thus	 is	
extended	with	each	new	call.	

Deleted:							
Formatted:	Indent:	Left:		0.63	cm,	Keep	with	next,	Keep
lines	together
Formatted:	Keep	with	next,	Keep	lines	together

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 95	
	

• The	+=	operator	does	not	work	as	might	be	expected	for	mutable	objects:	

x = 1
x += 1
print(x) #=> 2 (Works as expected)

But	when	we	perform	this	with	a	mutable	object:	

x = [1, 2, 3]
y = x
print(id(x), id(y)) #=> 38879880 38879880
x += [4]
print(id(x), id(y)) #=> 38879880 38879880
x = x + [5]
print(id(x), id(y)) #=> 48683400 38879880
print(x, y) #=> [1, 2, 3, 4, 5] [1, 2, 3, 4]

• The	+=	operator	changes	x	in	place	while	the	x	=	x	+	[5]	creates	a	new	list	object	
which,	as	the	example	above	shows,	is	not	the	same	list	object	that	y	still	references.	
This	 is	 Python’s	 normal	 handling	 for	 all	 assignments	 (immutable	 or	mutable)	 –	
create	a	new	object	and	assign	to	it	the	value	created	by	evaluating	the	expression	
on	the	right-hand	side	(RHS):	

x = 1
print(id(x)) #=> 506081728
x = x + 1
print(id(x)) #=> 506081760

• Equality	(or	equivalence)	refers	to	two	or	more	objects	having	the	same	value.	It	is	
tested	using	the	==	operator	which	compares	values.	On	the	other	hand,	 two	or	
more	names	 in	Python	 are	 considered	 identical	 only	 if	 they	 reference	 the	 same	
object	which	can	be	tested	by	using	the	is keyword	(in	which	case	they	would,	of	
course,	be	equivalent	too).	For	example:	

a = [0,1]
b = a
c = [0,1]
a is b, b is c, a == c #=> (True, False, True)

a	 and	b	 are	 both	 names	 that	 reference	 the	 same	 objects	while	c	 references	 a	
different	object	which	has	the	same	value	as	both	a	and	b.	

• Python’s	 pickle	 module	 provides	 built-in	 classes	 for	 persisting	 objects	 to	
external	storage	for	retrieval	later.	The	complete	object,	including	its	methods,	is	

Formatted:	Keep	with	next

Formatted

Formatted

Formatted

Formatted

	

96	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

serialized	to	a	file	(or	DBMS)	and	re-instantiated	at	a	 later	time	by	any	program	
which	has	access	to	that	file/DBMS.	This	has	the	potential	 for	 introducing	rogue	
logic	in	the	form	of	object	methods	within	a	substituted	file	or	DBMS.	

• Python	supports	defaults	for	function	parameters,	as	in:	

def f(a=1, b=[]):
 print(a, b)
 a += 1
 b.append("x")_
f() # => 1 []_
f() # => 1 ['x']
f() # => 1 ['x', 'x']

However,	 using	 mutable	 default	 parameters	 can	 cause	 surprising	 effects	 since	
Python’s	default	arguments	are	evaluated	only	once	when	the	function	is	defined,	
not	each	time	the	function	is	called.	

• Python	has	functions	as	first	class	objects	that	can	be	passed	as	arguments,	which	
can	be	confusing	in	the	wrong	context.	For	example,	the	following	two	function	calls	

myFunc(target=doIt)

and	

myFunc(target=doIt())

have	 different	 semantics.	 In	 the	 first	 case,	 the	 function	 doIt	 is	 passed	 as	 an	
argument	and	can	be	called	from	within	myFunc;	in	the	second	case,	the	result	of	
calling	the	doIt()	function		is	passed	as	the	argument.	It	is	important	that	readers	
of	 the	 code	 be	 aware	 of	 the	 major	 semantic	 difference	 caused	 by	 adding	 the	
argument	list.	

6.54.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.54.5.	

• Ensure	that	a	function	is	defined	before	attempting	to	call	it.	
• Be	aware	that	a	function	is	defined	dynamically	so	its	composition	and	operation	

may	vary	due	to	variations	in	the	flow	of	control	within	the	defining	program.	

Deleted:	 Page Break
¶

Formatted:	Font:	11	pt

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 97	
	

• Be	aware	of	when	a	variable	is	local	versus	global.	

• Avoid	 mutable	 objects	 as	 default	 values	 for	 arguments	 in	 a	 function	 definition	
unless	absolutely	needed	and	the	effect	is	understood.	

• Be	aware	that	when	using	the	+=	operator	on	mutable	objects	the	operation	is	done	
in	place	with	a	new	object	not	being	created.	

• Be	cognizant	that	assignments	to	objects,	mutable	and	immutable,	always	create	a	
new	object.		

• Be	aware	of	the	syntactic	difference	between	a	function	name	and	a	function	call	
without	arguments.	

• Understand	the	difference	between	equivalence	and	equality	and	code	accordingly.	
• Ensure	that	the	file	path	used	to	locate	a	persisted	file	or	DBMS	is	correct	and	never	

ingest	objects	from	an	untrusted	source.	

6.55	Unspecified	behaviour	[BQF]	

6.55.1	Applicability	of	language		

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.55	apply	to	Python	to	a	
limited	extent,	as	follows:	

• The	sequence	of	keys	in	a	set	is	unspecified	because	the	hashing	function	used	to	
index	 the	 keys	 is	 likely	 to	 yield	 different	 sequences	 depending	 on	 the	
implementation.		

• Python	sets	are	unordered	and	unindexed,	thus	cannot	be	sorted.	Any	attempt	to	
sort	them	has	unspecified	behaviour.	In	addition,	other	functions	that	depend	on	
order,	 such	as	min(),	max(),	 and	sorted()	 have	unspecified	behaviour	over	
sets.	

• When	 creating	 persisting	 objects,	 if	 an	 exception	 is	 raised	 then	 an	 unspecified	
number	of	bytes	may	have	already	been	written	to	the	file.	

• Pickling	can	result	in	unspecified	behaviour	as	documented	in		6.53.1	Provision	of	
inherently	unsafe	operations	[SKL].	

• For	 integers	within	 the	 range	 [-5:256],	 Python	optimizes	 duplicate	 assignments	
but,	for	all	other	values,	each	replicated	variable	points	to	its	own	unique	object:	

a = 256
b = 256
print(a is b) #=> True
a = 257
b = 257
print(a is b) #=> False

Field	Code	Changed

	

98	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.55.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024		55.5.	
• When	 pickling	 is	 applied	 to	make	 objects	 persistent,	 use	 exception	 handling	 to	

cleanup	partially	written	files.	
• Be	aware	of	the	difference	between	equality	(==)	and	identity	(is)	and	use	them	

as	appropriate.	
• Use	the	intern()	function	to	enforce	optimization	when	memory	optimization	is	

required	for	non-simple	strings.	
• Consider	using	the	id()	function	to	test	for	object	equality.	

• Forbid	form	feed	characters	for	indentation.	

6.56	Undefined	behaviour	[EWF]	

6.56.1	Applicability	to	language	

The	 vulnerabilities	 as	 described	 in	 ISO/IEC	 24772-1:2024	 6.56	 apply	 to	 Python.	
Python	has	undefined	behaviour	in	the	following	instances,	among	others:	

• The	behaviour	of	the	Future	class	encapsulating	the	asynchronous	execution	of	a	
callable	is	undefined	if	the	add_done_callback(fn)	method	(which	attaches	
the	callable	fn	to	the	future)	raises	a	BaseException	exception.		

• Modifying	the	dictionary	returned	by	the	vars()	and	locals()	built-ins	have	
undefined	effects	when	used	to	retrieve	the	dictionary	(that	is,	the	namespace)	for	
an	 object.	 The	 vars()	 built-in	 can	 accept	 an	 optional	 object	 as	 a	 parameter	
vars(obj)and,	in	this	case,	the	returned	value	is	not	undefined	but	depends	on	
the	type	of	the	parameter	object.	

• The	 catch_warnings	 function	 in	 the	 context	 manager	 can	 be	 used	 to	
temporarily	suppress	warning	messages	but	it	can	only	be	guaranteed	in	a	single-
threaded	 application;	 otherwise,	 when	 two	 or	 more	 threads	 are	 active,	 the	
behaviour	is	undefined.	

• When	sorting	a	list	using	the	sort()	method,	attempting	to	inspect	or	mutate	the	
content	of	the	list	will	result	in	undefined	behaviour.		

Deleted:	¶ ...	[28]

Deleted:	Prefer	the	use
Deleted:		

Commented	[p106]:	I am unhappy about this wording.
Suggest: Be aware of the difference between equality (==)
and identity (is) and use them as appropriate.
Again: belongs in 6.25

Commented	[SJM107R106]:	I concur with the rewording.

Commented	[SM108R106]:	Done	
Commented	[SM109R106]:	Copied to 6.25. Can be left
here also, I think.	

Deleted:	of
Deleted:	to
Deleted:	clearly	document	any	use	of	identity

Field	Code	Changed

Field	Code	Changed

©	ISO/IEC	2023	–	All	rights	reserved	 99	
	

• Undefined	behaviour	will	occur	if	a	thread	exits	before	the	main	procedure,	from	
which	it	was	called.	

6.56.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.56.5.	
• Ensure	that	a	callable	does	not	raise	a	BaseException		if	launched	as	a	parallel	

task	using	the	add_done_callback(fn)	command.	

• Avoid	 dependence	 on	 the	 consistencies	 of	 the	 sequence	 of	 keys	 in	 a	 dictionary	
across	 implementations,	 or	 even	 between	 multiple	 executions	 with	 the	 same	
implementation,	in	versions	prior	to	Python	3.7.	

• Forbid	modification	of	the	dictionary	object	returned	by	a	vars()	and	locals()	
call.	

• Forbid	the	use	of	the	catch_warnings	function	to	suppress	warning	messages	
when	using	more	than	one	thread.	

• Forbid	 inspecting	or	 changing	 the	content	of	 a	 list	when	sorting	a	 list	using	 the	
sort()	method.	

6.57	Implementation–defined	behaviour	[FAB]	

6.57.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.57	apply	to	Python.	For	
example,	Python	has	implementation-defined	behaviour	in	the	following	instances:	

• Byte	order	(little	endian	or	big	endian)	varies	by	platform.	
• Exit	return	codes	are	handled	differently	by	different	operating	systems.	

• The	 characteristics	 of	 floating-point	 types,	 such	 as	 the	 maximum	 number	 of	
decimal	digits	that	can	be	represented,	vary	by	platform.	

• The	 filename	 encoding	 used	 to	 translate	 Unicode	 names	 into	 the	 platform’s	
filenames	varies	by	platform.	

• Python	supports	integers	whose	size	is	 limited	only	by	the	memory	available	on	
the	platform.	Extensive	arithmetic	using	 integers	 larger	 than	 the	 largest	 integer	
supported	on	the	platform	used	to	implement	Python	will	degrade	performance.	

• The	 type	 of	 garbage	 collection	 algorithm	 used,	 such	 as	 “reference	 counting”	 or	
“mark	and	sweep”,	is	implementation-defined.	Depending	upon	the	algorithm	used,	
additional	programmer	action	is	required	to	prevent	memory	leakage.	

Deleted:		in	the	language

Commented	[p110]:	On the platform!
Otherwise a direct contradiction.

Commented	[SJM111R110]:	Good point! Agree, change
from language to platform.

Commented	[SM112R110]:	Done.	

	

100	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

• The	 maximum	 value	 that	 a	 variable	 of	 type	 Py_ssize_t	 can	 take	 is	
implementation	defined	and	documented	by	sys.maxsize.	

• Python	uses	string	interning	which	is	a	process	of	storing	only	one	copy	of	each	
distinct	string	value	(up	to	4096	characters	 in	 length)	 in	memory.	For	efficiency	
reasons,	 whether	 a	 string	 will	 be	 interned	 and	 the	 interning	 mechanism	 that	
Python	uses	for	strings	and	integers	varies	depending	on	object	characteristics.	For	
example,	when	a	copy	of	a	string	that	meets	certain	characteristics	 is	created	 in	
Python,	the	copy	points	to	the	same	object	as	the	original:	

a = 'StringWithOnlyASCIILetters_Digits_And_Underscores'
b = 'StringWithOnlyASCIILetters_Digits_And_Underscores'
print(a == b, a is b) #=> True True

All	 other	 strings,	 such	 as	 those	 longer	 than	 4096	 characters	 or	 containing	 any	
character	that	is	not	an	ASCII	letter,	digit,	or	underscore,	will	not	be	interned.	

a = 'Non-Simple String!' # ' ' and '!' prevent this
 # string from being interned
b = 'Non-Simple String!'
print(a == b, a is b) #=> True False

Note	the	unexpected	False	in	the	result.	
If	memory	optimization	is	required	for	non-simple	strings,	 it	can	be	enforced	by	
using	the	intern()	function:	

from sys import intern
a = intern('Non-Simple String!')
b = intern('Non-Simple String!')
print(a == b, a is b) #=> True True

In	general,	executions	of	a	program	initiated	 in	different	ways,	such	as	 from	the	
command	 line	 or	 from	 invocation	 by	 another	 program,	 can	 result	 in	 different	
outcomes	due	to	implementation-defined	elements	in	Python.	

	

6.57.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.57.5.	

©	ISO/IEC	2023	–	All	rights	reserved	 101	
	

• Either	avoid	logic	that	depends	on	byte	order	or	test	the	sys.byteorder	variable	
and	write	the	program	logic	to	account	for	byte	order	little	or	big.	

• Use	zero	(the	default	exit	code	for	Python)	for	successful	execution	and	consider	
adding	 logic	 to	 vary	 the	 exit	 code	 according	 to	 the	 platform	 as	 obtained	 from	
sys.platform	(such	as,	'win32',	'darwin',	or	other).	

• Interrogate	 the	 sys.float.info	 system	 variable	 to	 obtain	 platform	 specific	
attributes	and	code	according	to	those	constraints.	

• Call	 the	 sys.getfilesystemcoding()	 function	 to	 return	 the	 name	 of	 the	
encoding	system	used.	

• Use	 the	os.fsencode()	 and	os.fsdecode()	methods	as	 a	portable	way	 to	
encode	or	decode	a	filename	to	the	filesystem	encoding	that	is	used.		

• When	high	performance	is	dependent	on	knowing	the	range	of	 integer	numbers	
that	can	be	used	without	degrading	performance	use	the	sys.int_info	struct	
sequence	to	obtain	the	number	of	bits	per	digit	(bits_per_digit)	and	the	number	of	
bytes	used	to	represent	a	digit	(sizeof_digit).	

• Use	 sys.maxsize	 to	 determine	 the	 maximum	 value	 a	 variable	 of	 type	
Py_ssize_t	can	take.	Usually	on	a	32-bit	platform,	the	value	is	2**31	-	1	on	a	32-
bit	platform	and	2**63	-	1	on	a	64-bit	platform.	

• When	 portable	 code	 is	 required,	 always	 execute	 on	 several	 different	 Python	
implementations	and	different	invocation	methods.	

6.58	Deprecated	language	features	[MEM]	

6.58.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.58	apply	to	Python.	For	
example,	the	following	features	were	deprecated	in	Python:	

● The	string.maketrans()	 function	 is	deprecated	and	 is	 replaced	by	new	
static	 methods,	 bytes.maketrans()	 and	 bytearray.maketrans().	
This	change	solves	the	confusion	around	which	types	were	supported	by	the	
string	 module.	 Now,	 str,	 bytes,	 and	 bytearray	 each	 have	 their	 own	
maketrans()	and	translate	methods	with	intermediate	translation	tables	of	
the	appropriate	type.	

● The	syntax	of	the	with	statement	now	allows	multiple	context	managers	in	a	
single	statement:	

with open('mylog.txt') as infile, open('a.out', 'w') as
outfile:

Deleted:	¶

Formatted

Formatted

Field	Code	Changed

	

102	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

 for line in infile:
 if '<critical>' in line:
 outfile.write(line)

With	 the	 new	 syntax,	 the	 contextlib.nested()	 function	 is	 no	 longer	
needed	and	is	now	deprecated.	

● PyNumber_Int() is deprecated.	Use	PyNumber_Long()	instead.	
● The	functions	PyOS_ascii_strtod()	and	PyOS_ascii_atof()	are	

deprecated	and	have	been	replaced	by	function	
PyOS_string_to_double().	

● The	PyCObject	API	has	been	deprecated	and	replaced	by	PyCapsule,	which		
has	 a	well-defined	 interface	 for	passing	 typing	 safety	 information	and	a	 less	
complicated	signature	for	calling	a	destructor.	

Warnings	resulting	from	DeprecationWarning	are	shown	by	default	but	only	when	
triggered	by	code	running	in	the	__main__ module.	

6.58.2	Avoidance	mechanism	for	language	users	

Software	 developers	 can	 avoid	 the	 vulnerabilities	 or	 mitigate	 their	 ill	 effects	 by	
applying	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.58.	

6.59	Concurrency	–	Activation	[CGA]	

6.59.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1	6.59	apply	to	Python.		

Python	provides	multiple	concurrency	models	(see		5.1.7	Concurrency).			

Threading	model	

When	a	thread	is	created,	if	the	new	thread	fails	to	be	created	for	any	reason,	then	an	
exception	 is	 thrown	 in	 the	execution	path	of	 the	creator,	which	can	 take	corrective	
action.	Hence	this	vulnerability	does	not	exist	for	Python	threads.	

On	the	other	hand,	if	a	child	thread	has	already	been	started,	then	attempting	to	start	
it	 again	 will	 result	 in	 an	 exception,	 and	 the	 behaviour	 of	 the	 program	 is	
implementation-defined.	This	applies	even	if	the	started	thread	has	completed.	

Formatted

Formatted

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

Formatted

Formatted

Field	Code	Changed

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 103	
	

This	scenario	can	lead	to	deadlock	and	race	conditions	when	activating	a	thread,	and	
is	not	always	observable	even	during	extensive	testing,	so	it	is	important	to	prevent	it	
during	development	so	that	it	does	not	surface	later.		

The	 ThreadPoolExecutor	 enables	 a	 predetermined	 number	 of	 threads	 to	 be	
created	 in	advance	and	available	 for	work.	Otherwise,	creating	and	then	destroying	
threads	 in	 Python	 has	 significant	 overhead	 associated	with	 it	 so	 keeping	 a	 pool	 of	
threads	available	eliminates	the	creation/destruction	process.	The	join()operation	is	
also	performed	automatically	so	that	is	another	benefit.	

Multiprocessing	model	

Since	 the	processing	model	used	 is	 that	of	 the	underlying	operating	 system	and	all	
process	interactions	are	those	of	the	OS,	the	vulnerabilities	are	those	of	the	underlying	
OS.		

Calling	set_start_method()	more	than	once	on	the	same	child	process	causes	an	
exception.	 Calling	 it	 conditionally,	 for	 example	 with	 the	 if __name__ ==
‘__main__’		statement	ensures	that	a	process	can	be	started	only	by	a	module	called	
‘__main__’.	

Asyncio	model	

Traditional	threading	or	processes	are	not	used	in	the	creation	of	new	‘async’	entities,	
so	the	vulnerabilities	associated	with	failing	to	initiate	new	concurrent	entities	do	not	
apply.	Vulnerabilities	associated	with	communication	between	the	‘async’	entity	and	
the	initiating	entity	are	addressed	in	6.61	Concurrency	-	data	access	[CGX]	and	6.63	
Concurrency	–	Lock	protocol	errors	[CGM].		

The	asyncio.run()	 function	manages	the	asyncio	event	 loop.	 It	cannot	be	called	
when	another	asyncio	event	loop	is	running	in	the	same	thread.	Its	design	requires	
that	it	be	used	as	the	main	entry	point	for	asyncio	programs	and	only	be	called	once.		

If	any	task	in	an	event	loop	blocks,	it	runs	the	risk	of	never	being	resumed	if	the	event	
loop	ends	before	the	block	condition	expires.	Many	functions	in	the	Python	standard	
library	incur	blocking,	and	therefore	are	subject	to	this	issue.	Therefore,	many	libraries	
also	exist	in	non-blocking	versions.		

Managing	multiple	asyncio	 events	 can	 be	 error	 prone.	 Python	 provides	 a	 debug	
mode	and	logging	module	to	help	identify	and	catch	common	issues,	as	documented	
in	the	Python	documentation	set	[5].		

Common	vulnerabilities	of	all	models	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Field	Code	Changed

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

104	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

In	each	of	the	three	forms	of	concurrency	discussed	above,	there	is	a	risk	that	some	
concurrent	part	of	the	program	will	incur	an	exception,	which	may	or	may	not	result	
in	notification	of	the	main	body	of	the	program	as	described	in	6.62	Concurrency	--	
Premature	termination	[CGS].	

The	 threat	 of	 deadlocks	 by	 mutual	 dependence	 exists	 for	 threads,	 processes,	 and	
analogously	for	futures.	For	example:		

from concurrent.futures import ThreadPoolExecutor
import time

def foo_a():
 time.sleep(1)
 print(b.result())
 return 1

def foo_b():
 print(a.result())
 return 2

executor = ThreadPoolExecutor(max_workers=2)
a = executor.submit(foo_a) # waits indefinitely on
b
b = executor.submit(foo_b) # waits indefinitely on
a

Additional	vulnerabilities	can	arise	if	a	single	Python	program	attempts	to	use	multiple	
concurrency	models,	since	the	different	models	use	different	mechanisms	for	creation,	
scheduling,	communication,	and	termination.		

6.59.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	 the	avoidance	mechanisms	provided	by	 ISO/IEC	24772-1:2024	6.59.5	 for	
activation	of	processes	or	threads	or	asyncio	tasks.		

• For	 any	 processes	 and	 threads	 that	 have	 already	 been	 started,	 ensure	 that	
additional	starts	on	that	same	object	are	not	attempted	to	avoid	exceptions.	

Formatted

Formatted

Commented	[p113]:	“Notification of the main body of the
program is uncertain, as described in “

Commented	[SJM114R113]:	OK

Commented	[SM115R113]:	Done.	

Formatted

Formatted

Deleted:		(see

Field	Code	Changed

Deleted:)
Deleted:	

Deleted:	

Deleted:	

Deleted:	

Deleted:	

Deleted:	

Deleted:	

Deleted:	

Deleted:	

Deleted:	

Deleted:	

Deleted:	

©	ISO/IEC	2023	–	All	rights	reserved	 105	
	

• Avoid	mixing	concurrency	models	within	the	same	program,	or	if	unavoidable,	use	
with	extreme	caution.	

• Handle	all	exceptions	related	to	thread	creation.	
• Ensure	that	there	is	only	one	asyncio	event	loop	per	program,	although	multiple	

events	can	be	activated	within	the	single	loop.	Python	event	loops	are	automatically	
generated	by	asyncio.run().		

• When	using	asyncio,	make	all	tasks	non-blocking	and	use	asyncio	calls	from	an	
event	loop.	

• Use	the	debug	mode	of	the	Python	interpreter	to	detect	concurrency	errors.		
• To	reduce	the	chance	of	excessive	delays,	perform	concurrent	asyncio	operations	

only	on	non-blocking	code.	
• When	using	multiple	threads,	consider	using	the	ThreadPoolExecutor	within	

the	concurrent.futures	module	to	help	maintain	and	control	the	number	of	
threads	being	created.	

• For	async	functions,	ensure	that	each	async	call	executes	one	or	more	operations	
that	relinquish	control	of	the	processor	when	appropriate.	

6.60	Concurrency	–	Directed	termination	[CGT]	

6.60.1	Applicability	to	language	

The	vulnerabilities	as	described	in	ISO/IEC	24772-1:2024	6.60	apply	to	Python.	

Threading	model	

In	Python,	a	thread	may	terminate	by	coming	to	the	end	of	its	executable	code	or	by	
raising	an	exception.	Python	does	not	have	a	public	API	to	terminate	a	thread.	This	is	
by	 design	 since	 killing	 a	 thread	 is	 not	 recommended	 due	 to	 the	 unpredictable	
behaviour	 that	 results.	 There	 are,	 however,	 dangerous	 workarounds	 that	 can	
terminate	Python	threads	by	using	calls	to	the	operating	system	or	the	ctypes	foreign	
function	library.	These	workaround	techniques	can	lead	to	deadlock,	data	corruption,	
and	other	unpredictable	behaviour	as	described	in	ISO/IEC	24772-1:2024	6.60.	

The	preferred	way	to	terminate	an	executing	thread	is	to	send	it	a	message,	signal	or	
event	to	terminate	itself,	and	then	wait	for	the	termination	to	occur	(using join(),	
).		

The	parent	of	a	thread	can	determine	if	the	child	has	completed	either	by	repeated	calls	
to	is_alive()or	by	executing	the	join()	statement.	The	join()	operation	has	an	
optional	timeout	parameter	to	reduce	the	risk	of	infinite	waiting	and	to	provide	the	
possibility	for	corrective	action.	The	join()	operation	does	not	return	a	final	result	

Commented	[p116]:	Why is this an “although”? Why is it
not in .1, and what has it to do with the first part of the
sentence?

Commented	[SJM117R116]:	Agree, keep it simple

Commented	[SM118R116]:	But I do not agree to just
removing the follow-on. There are going to be multiple
events within a program, but there must only be one per
loop (I think).	
Commented	[p119]:	Move to .1

Commented	[SJM120R119]:	Agree with moving to .1.
Tutorial in nature

Commented	[SJM121]:	It may be ill-advised to ‘ensure’
that there is only one event loop per program. Python
certainly allows for more than one event loop but does not
allow a given event loop to call any coroutine more than
once.

import asyncio

async def coro_1(message):
 print(message)
 await asyncio.sleep(2)

async def coro_2(message):
 print(message)

coro1 = coro_1('hello from coro_1')
asyncio.run(coro1)

#asyncio.run(coro1) # RuntimeError:
cannot reuse already awaited coroutine

coro2 = coro_2('hello from coro_2')
asyncio.run(coro2)

Commented	[p122]:	Correct reference?

Commented	[SJM123R122]:	Another way of saying keep
all calls non-blocking

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Commented	[p124]:	Very wrong!!! ...	[29]
Commented	[SJM125R124]:	join() blocks new threads
from starting until all currently running threads are ...	[30]
Formatted

Formatted

	

106	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

(except	None),	hence	joining	another	thread	or	process	multiple	times	does	not	affect	
the	calling	entity	after	the	first	call	which	awaits	completion	of	the	joined	entity.		

There	are	a	number	of	possible	errors	associated	with	the	joining	of	threads:	

• Failure	to	join	a	completed	thread	can	result	in	logic	errors;	
• Joining	multiple	 children	 in	 an	 order	 different	 than	 the	 expected	 completion	 of	

those	children	can	cause	extended	or	indefinite	delays;		
• Attempting	to	join	the	current	thread	will	result	in	an	exception;	and	
• Any	 attempts	 to	 communicate	with	 another	 thread	 after	 joining	 that	 entity	 can	

result	in	significant	errors,	such	as	a	logic	error,	an	exception,	or	indefinite	delays.	

A	particular	challenge	is	the	scenario	of	daemon	threads.	Inside	a	program,	if	a	thread	
is	 created	 with	 the	 flag	 daemon = True,	 the	 termination	 of	 that	 thread	 is	
disconnected	from	the	termination	of	the	thread	that	created	it.	In	addition,	a	join()	
on	a	daemon	thread	without	a	specified	timeout	will	not	return.	

Multiprocessing	model	

Since	 processes	 are	 entities	 of	 the	 underlying	 operating	 system,	 terminating	 other	
processes	is	OS-specific.	Processes	terminate	when	they	complete	their	program	code,	
but	do	not	notify	the	creating	process;	the	programmer	is	responsible	to	communicate	
final	results	or	a	termination	notice	before	each	process	terminates.	

The	 preferred	 way	 to	 terminate	 an	 executing	 process	 is	 to	 send	 it	 a	 command	 to	
terminate	itself,	and	then	wait	for	the	termination	to	occur	using	join().		

Terminating	a	process	in	Python	is	possible	but	there	are	scenarios	that	may	leave	the	
system	in	a	vulnerable	state:		

• Terminating	 a	 process	 that	 has	 acquired	 a	 lock	 or	 semaphore	 can	 result	 in	 a	
deadlock	condition.		

• Executing	terminate()	on	a	process	that	is	using	a	pipe	or	queue	may	result	in	
lock	 errors	 (see	 6.63	 Lock	 protocol	 errors	 [CGM]	 or	 6.61	 Concurrent	 data	
access[CGX]).		

• Processes	that	are	externally	terminated,	along	with	their	contained	threads,	will	
not	execute	their	finally	clauses,	which	can	result	in	logic	errors.		

• If	the	terminated	process	has	descendants,	then	the	descendants	will	be	orphaned.	

Commented	[SJM126]:	‘a given thread’

from time import sleep
from threading import Thread

target function
def task1():
 sleep(2)
 print('thread1: Done')

def task2():
 sleep(1)
 print('thread2: Done')

thread1 = Thread(target=task1)
thread2 = Thread(target=task2)
thread1.start()
thread2.start()
print('Main: Waiting for threads to
complete...')
thread1.join()
thread2.join()
thread2.join() # redundant join() on a
thread are permitted but meaningless
thread2.start() # RuntimeError: threads
can only be started once
print('Main thread: Done')

Commented	[p127]:	Hmm, see 4 bullet below.
Contradiction? Or does the Rejoining exception not belong
there?
Also: should this say “from within the same thread or
process”.
Presumably, joining from multiple threads is possible?

Commented	[SJM128R127]:	
From the docs:
https://docs.python.org/3/library/threading.html

“Wait until the thread terminates. This blocks the calling
thread until the thread whose join() method is called
terminates – either normally or through an unhandled
exception – or until the optional timeout occurs. ...	[31]
Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Field	Code	Changed

©	ISO/IEC	2023	–	All	rights	reserved	 107	
	

A	process	can	determine	if	another	process	has	completed	either	by	repeated	calls	to	
multiprocessing.Process.is_alive()	 or	 by	 calling	
multiprocessing.Process.join().	Calling	join()	with	a	non-empty	timeout	
together	with	is_alive()	 permits	 the	 calling	 process	 to	 test	 the	 progress	 of	 the	
other	processes.	Calling	join()	with	an	empty	timeout	value	causes	the	process	to	
await	the	completion	of	the	other	process.	

Asyncio	model	

Termination	of	the	event	loop	

When	asyncio	actions	are	scheduled	and	the	parent	 is	 terminated,	 then	the	event	
loop	is	terminated	with	a	runtime	error	possibly	before	some	futures	are	delivered	and	
program	termination	completes.	To	achieve	controlled	termination	externally	to	the	
event	loop,	Python	recommends	terminating	the	event	loop	owner	with	an	exception,	
catch	 the	 exception,	 and	 send	 each	 asyncio	 event	 a	 stop()	 or	 a	
run_until_complete()	 directive	 to	 finish	 processing	 already-scheduled	 events	
and	then	cease	processing.	Once	the	event	loop	has	completed	it	can	be	close()’d	
(after	collecting	results).	

The	 following	 example	 shows	 another	 way	 to	 terminate	 an	 event	 loop	 that	 is	
interrupted	by	an	exception.	In	general,	such	an	exception	would	cause	the	concurrent	
iterations	to	be	in	an	abnormal	state.	The	associated	finally	clause	cleans	them	up	
and	terminates	them.	

Try:
 loop.run_forever()
finally:
 loop.run_until_complete(loop.shutdown_asyncgens())
 loop.close()

An	event	loop	can	also	await	the	completion	of	a	selected	set	of	tasks.		

Termination	of	asyncio	tasks	

To	direct	the	termination	of	an	asyncio	task,	one	can	set	a	shared	variable	that	will	
direct	asyncio	task	to	terminate	itself.	The	asyncio	task	can:		

• Fail	to	detect	the	termination	request;		
• Detect	and	obey	the	termination	request;	or		

• Detect	and	ignore	the	termination	request.	

In	all	 cases,	 the	vulnerabilities	documented	 in	 ISO/IEC	24772-1:2024	6.60	apply	 to	
asyncio	tasks.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

108	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Another	mechanism	is	to	asynchronously	raise	the	CancelledError	exception	in	an	
asyncio	 task	 via	 the	 cancel	 method	 in	 the	 asyncio.Task	 class	 (see	 example	
below).	If	the	exception	is	caught,	the	recipient	task	may:	

• Complete;	
• Report	the	error	condition	and	complete;	or	
• Take	alternative	action	and	continue	processing.	

import asyncio

async def foo():
 try:
 for i in range (1, 10):
 print("Count...%d" %i)
 await asyncio.sleep(1)
 except asyncio.CancelledError as e:
 print("Stopping foo")
 finally:
 print("foo stopped")

async def main():
 t1 = asyncio.create_task(foo())
 await asyncio.sleep(5)
 t1.cancel() # Cancel count after 5 seconds
 await t1
 print("Hello world")

if __name__ == '__main__':
 loop = asyncio.new_event_loop()
 asyncio.set_event_loop(loop)
 asyncio.run(main())

OUTPUT:
Count...1
Count...2
Count...3
Count...4
Count...5
Stopping foo
foo stopped

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 109	
	

Hello world

If	the	exception	is	ignored,	the	recipient	task	is	not	permitted	to	continue	executing;	it	
is	 transferred	 to	 its	 finally	 portion.	 Vulnerabilities	 associated	 with	 unhandled	
exceptions	 are	 addressed	 in	 	 6.36	 Ignored	 error	 status	 and	 unhandled	 exceptions	
[OYB].	

In	any	of	 the	above	cases,	 the	vulnerabilities	documented	 in	 ISO/IEC	24772-1:2024	
6.60	apply	to	Python	asyncio	tasks.	

Common	vulnerabilities	of	all	models	

The	 termination	 of	 any	 concurrent	 activity	 can	 consume	 significant	 time	 and	
resources,	 e.g.	 because	 of	 finalization.	 Thus,	 there	 is	 a	 risk	 of	 timing	 errors	 for	 the	
remaining	concurrent	entities.	

6.60.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.60.5.	
• Avoid	external	termination	of	concurrent	entities	except	as	an	extreme	measure,	

such	as	the	termination	of	the	program.		
• Use	inter-thread	or	inter-process	communication	mechanisms	to	instruct	another	

thread	or	process	to	terminate	itself.	
• Ensure	that	all	shared	resources	locked	by	the	thread	or	process	are	released	upon	

termination,	for	example,	in	an	exception	handler	and/or	in	a	finally	block.		
• Design	the	code	to	be	fail-safe	in	the	presence	of	terminating	processes,	threads	or	

tasks.	
• Forbid	calls	to	join()on	a	daemon	thread.	

6.61	Concurrent	data	access	[CGX]		

6.61.1	Applicability	to	language	

The	vulnerabilities	as	documented	in	ISO/IEC	24772-1:2024	6.61	apply	to	Python.	The	
traditional	accesses	to	shared	data,	and	the	locking	and	unlocking	of	locks	that	protect	
shared	data	are	as	described	in	ISO/IEC	24772-1:2024	6.61.	

Threading	model	

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

	

110	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Threads	and	events	can	share	memory,	and	care	is	required	to	coordinate	the	update	
and	consumption	of	such	memory.	This	is	not	restricted	to	“global”	data	since	nesting	
of	threads	will	effectively	make	all	variables	of	the	outermost	thread	’shared’.	

Some	 Python	 interpreters	 use	 a	 GIL	 which	 ensures	 that	 only	 a	 single	 bytecode	 is	
executed	at	a	time.	This	guarantees	that	single	instruction	accesses	to	primitive	data	
objects	 are	 serialized,	 but	 does	 not	 guarantee	 serialization	 of	 data	 access	 between	
threads	or	asyncio	tasks	in	general.	

When	using	multiple	threads,	if	certain	events	need	to	occur	sequentially,	putting	these	
events	into	the	same	thread	guarantees	sequential	access,	reduces	the	need	for	locks	
and	minimizes	the	chance	for	data	corruption	and	race	conditions.		

When	global	variables	are	needed	to	communicate	between	functions	within	a	single	
thread	in	a	multithreaded	application,	visibility	of	the	data	to	other	threads	(and	the	
possibility	 of	 data	 corruption	 and	 race	 conditions)	 can	 be	 avoided	 by	 using	 the	
threading.local()	function.	This	creates	a	local	copy	of	the	global	variable	in	
each	thread	that	executes	that	call.	Threads	that	do	not	create	a	local	copy	see	(and	can	
update)	the	global	variable.	Confusion	can	result	 if	some	threads	maintain	a	 local	
copy	and	others	do	not.	

All	other	shared	access	to	variables	requires	that	the	data	be	locked	before	access	and	
unlocked	after	(see	6.63	Lock	protocol	errors	[CGM]).	

Multiprocessing	model	

Python	processes	do	not	share	memory	and	therefore	are	not	subject	to	data	access	
errors	between	 the	processes,	however,	access	errors	can	occur	 for	objects	such	as	
those	 provided	 by	 multiprocessing.sharedctypes	 or	 maintained	 by	 the	
operating	 system	 and	 shared	 by	 processes,	 such	 as	 files.	 For	 such	 objects,	 the	
vulnerabilities	exist.		

Interprocess	 communication	 mechanisms	 such	 as	 pipes	 can	 exhibit	 concurrency	
control	 errors	 (see	6.63	Lock	protocol	 errors	 [CGM]).	Note	 that	 the	use	of	pipes	or	
queues	to	move	significantly	large	amounts	of	data	can	reduce	complexity	related	to	
global	locks	at	the	expense	of	performance,	which	can	cause	the	application	to	run	too	
slowly	and/or	miss	deadlines.		

Pipes	and	queues	are	designed	such	that	one	process	writes	to	a	pipe	or	queue	and	a	
second	process	reads	from	it.	 If	one	of	the	processes	contains	threads,	and	multiple	
threads	 attempt	 to	 access	 the	 same	 pipe	 or	 queue,	 then	 there	 is	 a	 risk	 of	 data	

Commented	[p129]:	Add “values in” (otherwise this
sounds like heap mgmt.)

Commented	[SJM130R129]:	Discuss

Commented	[p131]:	“Enclosing”, not just the outermost

Commented	[SJM132R131]:	Or parent.

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Field	Code	Changed

©	ISO/IEC	2023	–	All	rights	reserved	 111	
	

corruption	since	 the	order	of	access	cannot	be	guaranteed.	 Indeed,	 the	use	of	more	
than	one	concurrency	model	in	the	same	application	makes	the	application	susceptible	
to	uncoordinated	data	accesses.	

Asyncio	model	

A	fundamental	principle	in	writing	asyncio	tasks	is	that	each	iteration	of	a	task	(from	
the	point	where	 its	data	 is	ready	for	processing	and	where	 it	suspends	 for	the	next	
iteration)	is	atomic	with	respect	to	the	other	tasks.	It	is	a	fundamental	error	to	split	
calculations	or	shared	data	access	between	iterations	of	the	same	task	since	other	tasks	
can	access	or	change	the	data	between	iterations.	

6.61.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

● Use	the	avoidance	mechanisms	of	ISO/IEC	24772-1:2024	6.61.5.	
● Avoid	 using	 global	 variables	 and	 consider	 using	 the	 queue.Queue(),	

threading.queue()(),	 asyncio.queue()()	 or	

multiprocessing.Queue()()	 functions	 to	 exchange	 data	 between	
threads	or	processes	respectively.	

● If	data	accesses	need	to	be	serialized,	ensure	that	they	reside	in	the	same	thread,	
or	provide	explicit	synchronization	among	the	threads	or	processes	for	the	data	
accesses.		

● For	threads:	
o When	using	multiple	threads,	verify	that	all	shared	data	is	protected	by	

locks	or	similar	mechanisms.	
o If	 shared	 variables	 must	 be	 used	 in	 multithreaded	 applications,	 use	

model	 checking	 or	 equivalent	methodologies	 to	 prove	 the	 absence	 of	
race	conditions.	

o Consider	 using	 threading_local()	 within	 each	 thread	 in	
multithreaded	code,	to	create	a	local	copy	of	each	global	variable	that	
is	used	as	a	read-only	variable.		

● For	asyncio:	
o When	multiple	asyncio	tasks	access	data	shared	among	tasks,	always	

complete	such	access	in	each	task	prior	to	awaiting	any	event.	
o When	multiple	asyncio	tasks	access	complex	data	shared	among	tasks	

which	may	require	multiple	iterations	to	fully	update,	retain	any	partial	
data	 local	 to	 the	 task	 and	 perform	 the	 update	 only	 when	 all	 data	 is	
present.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

112	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

6.62	Concurrency	–	Premature	termination	[CGS]	

6.62.1	Applicability	to	language	

The	 vulnerability	 as	 documented	 in	 ISO/IEC	 24772-1:2024	 6.62	 applies	 to	 Python.	
Premature	 termination	 of	 any	 concurrent	 part	 of	 the	 program	 exposes	 all	 other	
portions	of	the	program	to	the	risk	of	 logic	errors,	regardless	of	which	concurrency	
model	 is	used	in	the	program.	Python	provides	syntax	to	detect	and	diagnose	many	
common	 premature	 termination	 scenarios	 that	 will	 let	 the	 program	 recover	 and	
continue,	as	discussed	below.	

Threading	model	

The	termination	of	the	main	thread	awaits	the	termination	of	all	non-daemon	children;	
it	then	terminates	the	daemon	children	and	stops.		

Exceptions	in	a	thread	at	any	level	can	be	caught	by	a	try	clause	at	the	outermost	level	
of	that	thread;	and	finally	clauses	will	be	executed	in	the	presence	or	absence	of	
exception	 handling.	 Exceptions	 unhandled	 by	 a	 thread	 cause	 the	 invocation	 of	 the	
thread.exceptHook()	method	which	can	be	programmed	by	the	user.	The	default	
implementation	of	thread.exceptHook()	causes	silent	termination	of	the	thread.	

All	 these	 mechanisms	 provide	 the	 opportunity	 to	 implement	 the	 necessary	
communication	between	threads	about	their	termination	state.	

Any	 join()	with	 the	 terminated	 thread	 is	 still	 possible	 but	 will	 not	 distinguish	
between	normal	and	exceptional	termination.	Furthermore,	predefined	routines	such	
as	 threading.is_alive(),	 threading.active_count(),	 and	
threading.enumerate()	permit	querying	the	state	of	other	threads.	

If	 termination	occurs	when	a	 thread	 is	accessing	a	pipe,	 then	 the	pipe	may	become	
corrupted	and	further	accesses	can	result	in	an	exception	or	in	undefined	behaviour.	If	
termination	occurs	when	a	thread	is	accessing	a	queue,	then	the	queue	may	remain	
locked	 indefinitely	 and	 subsequent	 accesses	 can	 result	 in	 deadlock	 (see	 6.63	 Lock	
protocol	errors).	When	using	ThreadPool	objects,	it	is	important	to	properly	manage	
the	 resources	 with	 a	 context	 manager	 or	 by	 calling	 close()and	 terminate()	
explicitly	 to	 prevent	 deadlock	 during	 finalization.	 Relying	 on	 Python’s	 garbage	
collector	to	destroy	the	pool	will	not	guarantee	that	the	finalizer	of	the	pool	will	be	
called.		

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

Commented	[p133]:	Duplicate this to unspecified
behavior. Strange, though, to read this specifically for
Threadpools. What about other data structures: Is it the case
that finalizers for anything might not be called by GC in
general?

Commented	[SJM134R133]:	Also applicable to processes

©	ISO/IEC	2023	–	All	rights	reserved	 113	
	

To	prevent	premature	termination	of	the	child	threads,	the	parent	must	join()	each	
non-daemonic	child	to	wait	for	them	to	terminate	before	proceeding.	It	is	important	to	
prevent	Python	processes	or	threads	from	waiting	on	daemon	processes	or	threads	
since	the	daemons	never	complete	until	the	program	exits.		

If	 a	 child	 thread	 has	 put	 items	 in	 a	 queue	 and	 it	 has	 not	 used	
JoinableQueue.cancel_join_thread,	 then	 that	 thread	 will	 not	 terminate	
until	all	buffered	items	have	been	flushed	from	the	queue	to	the	underlying	pipe,	and	
future	attempts	 to	 join	 that	 thread	may	 result	 in	 a	deadlock	unless	 all	 items	 in	 the	
queue	have	been	consumed.		

Multiprocessing	model	

If	the	execution	of	a	process	incurs	an	exception	and	terminates	prematurely,	then	any	
communicating	 processes	 can	 fail	 to	 receive	 expected	 results	 and	 can	 suffer	 from	
protocol	errors,	or	themselves	can	wait	indefinitely.	OS	calls	to	query	the	state	of	other	
processes	are	available,	hence	periodic	checking	whether	the	other	processes	are	still	
executable	can	be	used.	

Exceptions	that	occur	within	a	task	can	notify	the	parent	by	using	a	try-except	block	
within	the	task	as	shown	below:	

from time import sleep
from multiprocessing.pool import Pool

def task():
 sleep(1)
 # Handle the exception in the task
 try:
 raise Exception()
 except Exception:
 return 'An ERROR occured in task'
 return 'Task completed successfully.' # unreachable code

if __name__ == '__main__':
 # Create a pool of processes
 with Pool() as pool:
 result = pool.apply_async(task)
 value = result.get()
 print(value)

OUTPUT:
An ERROR occurred in task

Formatted

Formatted

Field	Code	Changed

Formatted:	Underline

Formatted

Formatted

Formatted

Formatted

	

114	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Similarly,	exceptions	can	also	be	handled	within	the	parent	by	using	a	try–except	
block	as	shown	below:	

from time import sleep
from multiprocessing.pool import Pool

def task():
 sleep(1)
 raise Exception()
 return 'Task completed successfully.' # unreachable code

if __name__ == '__main__':
 with Pool() as pool:
 result = pool.apply_async(task)
 # Handle task in parent
 try:
 value = result.get()
 print(value)
 except Exception:
 print('An ERROR occurred in task')

OUTPUT:
An ERROR occurred in task

Exception	 handling	 across	 process	 boundaries	 can	 also	 be	 accomplished	 by	 using	
global	 objects	 or	 the	 multiprocessing.Event	 flag	 to	 communicate	 between	
processes.	

If	an	exception	occurs	in	main(),	child	processes	can	continue	to	run	and	should	be	
handled	accordingly,	such	as	by	catching	the	exception,	terminating	and	cleaning	up	
all	 child	 processes	 and	 structures	 that	 are	 the	 responsibility	 of	 this	 process.	 If	
termination	 occurs	 when	 a	 process	 is	 accessing	 a	 pipe,	 then	 the	 pipe	 can	 become	
corrupted	and	further	accesses	can	result	in	an	exception	or	in	undefined	behaviour.	If	
termination	occurs	when	a	process	 is	accessing	a	queue,	 then	the	queue	 is	 likely	 to	
remain	locked	indefinitely	and	subsequent	accesses	can	result	in	deadlock	(see	6.63	
Protocol	lock	errors	[CGM]).	

When	using	multiprocessing.pool	objects,	 it	 is	 important	to	properly	manage	
the	 resources	 with	 a	 context	 manager	 or	 by	 calling	close()	 and	terminate()	
manually	to	prevent	deadlock	during	finalization.	Processes	that	terminate	cannot	be	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

©	ISO/IEC	2023	–	All	rights	reserved	 115	
	

restarted.	Relying	on	Python’s	garbage	collector	to	destroy	the	pool	will	not	guarantee	
that	the	finalizer	of	the	pool	will	be	called.		

Asyncio	model	

Premature	termination	occurs	as	follows:	

• When	the	primary	task	terminates	due	to	an	exception	or	unprogrammed	
event;		

• When	a	dependent	task	raises	an	exception	or	terminates	abnormally.	

For	 the	 first	 scenario,	 all	 dependent	 tasks	 will	 be	 terminated	 when	 the	main	 task	
terminates	(see	6.36	Ignored	error	status	or	unhandled	exception	[OYB]).	

For	 the	 second	 scenario,	 the	 premature	 termination	 of	 dependent	 coroutines	 will	
almost	always	affect	the	execution	of	main()	and	other	coroutines.	If	all	tasks	are	not	
cooperatively	terminating,	then	it	is	unlikely	that	the	program	will	execute	correctly.	

The	following	methods	can	be	helpful	in	handling	asyncio	exceptions:	

• get_name()	–	Returns	the	name	of	the	Task	

• exception()	–	Returns	the	exception	of	the	Task,	or	returns	None	if	there	are	no	
exceptions.		

• result()	–	Returns	the	result	of	the	Task	coroutine	or	None	if	the	coroutine	does	
not	have	a	return.	If	the	task	has	been	cancelled,	a	CancelledError	exception	is	
raised.	 If	 the	 result	 is	 not	 completed,	 an	 InvalidStateError	 is	 raised.	 All	
exceptions	are	re-raised	so	that	they	can	propagate	back	to	the	caller	for	handling.	

When	main()	 calls	 two	or	more	coroutines,	precautions	need	to	be	taken	since	an	
exception	 in	any	coroutine	gets	sent	 to	 the	scheduler	and	then	handled	by	main()	
only	after	the	return_when	condition	is	satisfied.	If	main()	does	not	recognize	an	
exception	from	a	subordinate	coroutine,	it	will	not	get	handled	and	will	remain	in	the	
event	loop	for	the	remainder	of	the	program.	The	following	example	uses	the	above	
methods	to	help	ensure	that	main()	gets	notified	and	all	tasks	are	removed	from	the	
event	loop	prior	to	program	termination.	

import asyncio

async def coro1():
 raise RuntimeError("ERROR in coro1")
 return ("coro1 completed") # Unreachable code

async def coro2():

Formatted

Formatted

Formatted

Formatted

Field	Code	Changed

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

116	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

 await asyncio.sleep(1)
 return ("coro2 completed")

async def main():
 # Create tasks
 t1 = asyncio.create_task(coro1(), name='task1')
 t2 = asyncio.create_task(coro2(), name='task2')
 tasks = [t1, t2]

 # Run both tasks concurrently and block until the
condition
 # specified by return_when (ALL_COMPLETED in this case)
met.
 done, pending = await asyncio.wait(\
 tasks, return_when =
asyncio.ALL_COMPLETED)
 # Handle all 'done' tasks
 for task in done:
 # Get name of the task that was assigned during
creation.
 task_name = task.get_name()
 print(task_name, "is done")
 # Obtain exception object raised by coroutine
 exception = task.exception()
 # Print the task name associated with any exceptions
 if isinstance(exception, Exception):
 print(task_name, "threw following exception:",
exception)
 # Test for errors
 try:
 # Returns result of coroutine & re-throws
exceptions
 # that may have occurred so that they can be
handles.
 result = task.result()
 print(task_name, "returned:", result)
 # Print errors that may occur
 except RuntimeError as err:
 print("RuntimeError:", err)

©	ISO/IEC	2023	–	All	rights	reserved	 117	
	

 # Handle 'pending' tasks
 for task in pending:
 task.cancel()

asyncio.run(main())

The	above	example	shows	that	even	though	both	tasks	are	reported	to	be	done,	the	
exception	only	gets	passed	to	main()	by	calling	task.result().	The	example	runs	
successfully	and	produces	the	following	output:	

task2 is done
task2 returned: coro2 completed
task1 is done
task1 threw the following exception: ERROR in coro1
RuntimeError: ERROR in coro1

6.62.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.62.5.	
• Protect	data	that	would	be	vulnerable	to	premature	termination,	such	as	by	using	

locks	or	protected	regions,	or	by	retaining	the	last	consistent	version	of	the	data	
(checkpoints).	

• Enable	 event	 logging	 and	 record	 all	 events	 prior	 to	 termination	 so	 that	 full	
traceability	is	preserved.		

• For	threads:	

o Handle	exceptions;	free	locks;	and	clean	up	nested	threads	and	shared	
data	before	termination.	

o Use	 the	 try	 or	 finally	 clauses	 in	 thread	 methods	 and	 consider	
notifying	 a	 higher-level	 construct	 of	 the	 termination	 so	 that	 any	
corrective	action	if	needed	can	be	taken.	

o Consider	using	one	or	more	of	the	
						Thread.is_alive(),	
						Thread.active_count(),		
						Thread.enumerate()
	methods	in	threading to	determine	if	child	threads’	execution	states	
are	as	expected.	

• For	multiprocessing:	

Formatted

Formatted

	

118	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

o Handle	exceptions;	free	locks;	and	clean	up	any	processes	that	are	the	
responsibility	of	this	process.	

o 	Use	 the	 try	 or	 finally	 clauses	 in	 process	 methods	 and	 consider	
notifying	 a	 higher-level	 construct	 of	 the	 termination	 so	 that	 any	
corrective	action	if	needed	can	be	taken.	

o Consider	using	one	or	more	of	the	
					Process.is_alive(),		
methods	in	multiprocessing	to	determine	if	child	process’	execution	
states	are	as	expected.	

• For	asyncio:	

o Ensure	consistent	termination	behaviour	of	all	coroutines	

6.63	Lock	protocol	errors	[CGM]	

6.63.1	Applicability	to	language	

The	vulnerabilities	as	documented	in	ISO/IEC	24772-1:2024	6.63	apply	to	Python.		

Python	provides	locks	and	semaphores	that	are	intended	to	protect	critical	sections	
managing	 shared	 data.	 All	 calls	 to	 lock.acquire()	 with	 default	 parameters	
guarantee	 that	 the	 calling	 concurrent	 unit	 (thread,	 process,	 or	 coroutine)	 will	 not	
continue	 until	 the	 lock	 is	 available.	 Python	 also	 provides	 event	 objects	 that	 permit	
programmed-specific	notification	between	two	concurrent	units,	as	well	as	barriers	
and	 condition	objects	 that	permit	 the	 release	of	 groups	of	 concurrent	units	upon	a	
single	 condition	 becoming	 true.	 However,	 there	 are	 vulnerabilities	 associated	with	
Python’s	synchronization	mechanisms:	

o If	 a	 concurrent	 unit	 is	 killed	 in	 between	 lock.acquire()	 and	
lock.release(),	every	other	concurrent	unit	unconditionally	waiting	
on	that	lock	will	be	deadlocked.		

o Locations	 where	 locks	 are	 needed	 can	 be	 missed,	 unless	 shared	
resources	are	accessed	exclusively	by	dedicated	functions	that	act	like	a	
traditional	monitor.		

o The	 use	 of	 locks	 does	 not	 guarantee	 consistency	 of	 shared	 resources	
unless	all	relevant	concurrent	units	check	for	the	locks.		

Commented	[SM135]:	SM - check if there are any other
calls needed here.	
Commented	[SJM136R135]:	NO other calls needed
https://docs.python.org/3/library/multiproces
sing.html

is_alive()

Return whether the process is alive.
Roughly, a process object is alive from the moment
the start() method returns until the child process
terminates.

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 119	
	

o Every	 critical	 section	 that	 starts	 with	 a	 lock.acquire()	 must	 be	
matched	with	a	lock.release(),	or	the	program,	or	some	concurrent	
units,	will	deadlock.	

o For	 calls	 of	lock.acquire(..)	 that	 are	 parameterized	with	 a	 time-
limit	 or	with	 the	 requirement	 for	 immediate	 locking,	 the	 omission	 of	
checking	 the	 result	 of	 lock.acquire(..)	 will	 allow	 the	 caller	 to	
proceed	without	acquiring	a	lock.	

Threading	model	

Multiple	 threads	can	have	shared	data,	as	well	as	other	shared	resources.	All	of	 the	
vulnerabilities	documented	in	ISO/IEC	24772-1:2024	6.63	apply.	In	particular,	access	
by	multiple	threads	to	the	same	pipe	or	queue	exhibits	these	vulnerabilities.	

To	 avoid	 the	 vulnerabilities,	 concurrent	 access	 to	 such	 data	 or	 resources	 must	 be	
synchronized.	The	following	example	shows	a	simple	scenario	where	synchronization	
is	required.	

database_value=0
lock=threading.Lock()

def update(x):…
 #Takes a finite amount of time and updates x

def increase():
 global database_value
 global lock
 lock.acquire()
 local_copy = database_value
 update(local_copy)
 database value = local_copy
 lock.release() # don’t forget this else deadlock

A	better	alternative	is	to	use	a	context	manager	since	it	acquires	and	releases	the	lock	
automatically.	

def increase():
 global database_value
 global lock
 with lock: # The context manager.
 local_copy = database_value
 update(local_copy)
 database_value = local_copy

Formatted:	Underline

	

120	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

if __name__ == "__main__":
 print('start value', database_value)
 thread1 = Thread(target=increase)
 thread2 = Thread(target=increase)
 thread1.start()
 thread2.start()
 thread1.join()
 thread2.join()
 print('end value', database_value)
 print('end main')

Threads	 that	 have	 been	 created	 typically	 need	 to	 return	 a	 result.	 This	 is	 often	
accomplished	 via	 the	 join()	 method.	 There	 are	 a	 number	 of	 possible	 errors	
associated	with	the	joining	of	threads:	

o Joining	multiple	 child	 threads	 in	an	order	different	 than	 the	expected	
completion	of	those	children	can	cause	extended	or	indefinite	delays.		

o Attempting	to	join()	the	current	thread	will	result	in	deadlock.	
o Using	join()	on	a	daemon	thread	will	result	in	a	deadlock	condition.	
o Attempting	to	join()	a	thread	before	starting	it	will	result	in	a	runtime	

error.	

Multiprocessing	model		

Multiple	 processes	 in	 Python	 do	 not	 have	 shared	 data,	 thus	 no	 synchronization	 is	
required	to	access	such	data.	However,	other	resources	such	as	OS-level	variables	or	
files,	can	be	accessed	by	multiple	processes	and	require	synchronization.	In	order	to	
communicate	 data	 or	 state	 between	 processes,	 Python	 provides	 API’s	 for	 pipes,	
queues,	and	files.	Some	mechanisms	(i.e.	queues)	are	designed	to	be	usable	by	multiple	
processes	by	encapsulating	the	interface	to	each	in	multiprocess-safe	calls.	For	pipes	
and	 files,	 Python	 does	 not	 provide	 automatic	 synchronization	 between	 multiple	
readers	 or	 writers	 of	 the	 pipe	 or	 file,	 and	 thus	 explicit	 synchronizations	 is	 the	
responsibility	of	the	programmer.	Process	locks	or	process	semaphores	can	be	used	to	
guarantee	exclusivity.	

The	 issues	 related	 to	multiple	 threads	 attempting	 to	 access	 the	 same	 interprocess	
communication	abstraction	are	discussed	above	under	“Threading	model”.	

Commented	[p137]:	Not a rejoin exception? As stated
elsewhere

Commented	[SJM138R137]:	https://docs.python.org/3/li
brary/threading.html#threading.Thread.join

RuntimeError: cannot join current thread

join() raises a RuntimeError if an attempt is made to join the
current thread as that would cause a deadlock.

Formatted

Formatted

Formatted:	Underline

©	ISO/IEC	2023	–	All	rights	reserved	 121	
	

Processes	that	have	been	created	may	need	to	return	a	result.	This	is	accomplished	via	
the	join() method	(see	6.61	Concurrency	–	data	access	[CGX]).	There	are	several	
possible	errors	associated	with	the	joining	of	threads	or	processes:	

o Joining	multiple	child	processes	in	an	order	different	than	the	expected	
completion	of	those	children	can	cause	extended	or	indefinite	delays.		

o Attempting	to	join()	the	current	process	will	result	in	deadlock.	
o Using	join()	on	a	daemon	process	will	result	in	a	deadlock	condition.	
o Attempting	to	join()	a	process	before	starting	it	will	result	in	a	runtime	

error.	

Asyncio	model	

Although	Python	provides	mechanisms	for	asyncio	tasks	to	control	access	to	data	or	
resources	 shared	 between	 them,	 such	 usage	 can	 result	 in	 serious	 errors	 and	
vulnerabilities.	 The	 coroutine	model	 of	 programming	 associates	 a	 single	asyncio	
task	with	a	single	IO	event	and	communicates	results	directly	back	to	the	initiator	of	
the	task.	The	scheduler	takes	responsibility	for	the	scheduling	of	multiple	tasks	and	
ensures	that	they	cannot	access	shared	resources	concurrently.	

Nevertheless,	coroutines	can	be	programmed	to	access	state	or	resources	that	are	not	
coroutine-safe.	For	example,	some	programming	models	have	coroutines	that	interact	
with	each	other	or	with	multiple	IO	events	before	relinquishing	control	to	the	event	
loop.	In	such	cases,	it	is	necessary	to	identify	critical	regions	where	the	order	of	access	
by	different	coroutines	matter,	and	locks	of	such	regions	are	necessary.	

The	asyncio	 module	 provides	 the	asyncio.Lock	 class	 to	 protect	 these	 critical	
sections,	but	these	sections	are	not	thread-safe	or	process-safe,	hence	cannot	be	safely	
shared	by	any	other	thread	or	process	or	their	respective	asyncio	tasks.	The	same	
instance	 of	 the	asyncio.Lock	 class	must	 be	 used	 by	 all	 coroutines	 that	 access	 a	
shared	resource	so	that	race	conditions	can	be	avoided.		

6.63.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Use	the	avoidance	mechanisms	of	ISO/IEC	24772-1:2024	6.63.5.		
• Verify	 that	 all	 sections	of	 code	 that	have	 critical	 sections	 check	 the	 related	 lock	

prior	 to	 entering	 the	 critical	 section,	 including	 API	 calls	 known	 to	 be	
unsynchronized,	and	release	the	acquired	lock	at	the	end	of	the	section.	

• Avoid	intermixing	concurrency	models	within	the	same	Python	program,	including	
programs	that	are	replicated	across	multiple	processes	to	gain	access	to	multicore	
hardware.	

Formatted

Formatted

Field	Code	Changed

Commented	[p139]:	ditto

Commented	[SJM140R139]:	Rejoin

RuntimeError: cannot join current thread

Formatted

Formatted

Formatted:	Underline

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

122	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Threading	model	

• If	 global	 variables	 are	 used	 in	 multi-threaded	 code,	 consider	 using	 locks	 or	
semaphores	in	a	module	that	contains	all	operations	on	them	so	that	all	accesses	
are	 serialized;	 alternatively,	 encapsulate	 all	 related	 global	 data	 in	 monitor-like	
structures	(as	published	in	the	literature)	and	avoid	explicit	coding	of	locks.	

• For	threads,	use	join()	as	the	final	interaction	with	other	thread(s)	to	ensure	that	
the	 calling	 thread	 is	 blocked	 until	 all	 joined	 threads	 have	 either	 terminated	
normally,	thrown	an	exception,	or	timed	out	(if	implemented).		

• Ensure	that	join()	is	not	used	on	a	thread	before	it	is	started	since	this	will	throw	
an	exception.		

• When	using	Pipe()	 in	conjunction	with	threads,	restrict	 the	writing	of	a	single	
pipe	to	a	single	thread,	and	similarly	for	reading.	

Multiprocessing	Model	

• Ensure	 that	join()	 is	not	used	on	a	process	before	 it	 is	 started	 since	 this	will	
throw	an	exception.		

• When	 using	 Pipe()	 in	 conjunction	 with	 processes	 or	 threads	 inside	 multiple	
processes,	restrict	the	writing	of	a	single	pipe	to	a	single	thread	per	process,	and	
similarly	for	reading.	

• If	 exclusive	 access	 to	 any	 resource	 shared	 among	multiple	 processes	 is	 needed,	
ensure	 the	 exclusivity	 by	 synchronization	 mechanisms	 provided	 by	 the	
multiprocessing	module.	

Asyncio	model	

• Prefer	 a	 programming	 model	 such	 that	 the	 event	 loop	 is	 responsible	 for	 the	
distribution	and	post-processing	of	all	data	collected	by	asyncio	tasks.	Such	post-
processing	can	be	delegated	to	other	tasks.	

• Forbid	await	or	sleep	within	critical	sections.	

Formatted:	Underline

Commented	[p141]:	I wonder whether this should be a
freestanding first advice (rather than an “afterthought”)

Commented	[SJM142R141]:	I agree with making it
freestanding

Formatted:	Underline

©	ISO/IEC	2023	–	All	rights	reserved	 123	
	

6.64	Reliance	on	external	format	string	[SHL]	

6.64.1	Applicability	to	language	

The	 vulnerabilities	 as	 documented	 in	 ISO/IEC	 24772-1:2024	 6.64	 apply	 to	 Python.	
Externally	 controllable	 strings	 can	 result	 in	 unexpected	 behaviour	 such	 as	 buffer	
overruns,	exposure	of	private	data,	and	other	malicious	exploits.	Python	strings	share	
most	of	the	potential	security	vulnerabilities	described	in	ISO/IEC	24772-1:2024	6.64.		

6.64.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerabilities	or	mitigate	their	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.64.3.	
• Implement	checks	to	limit	the	size	of	input	strings	so	that	they	do	not	exceed	the	

expected	length.	
• Review	the	Python	format	string	specifiers	and	forbid	vulnerable	formats	provided	

by	the	user.	

6.65	Modifying	constants	[UJO]	

6.65.1	Applicability	to	language	

This	vulnerability	as	documented	in	ISO/IEC	24772-1:2024	6.65	minimally	applies	to	
Python	because	Python	has	only	a	small	number	of	constants.	

Python	does	not	allow	the	declaration	of	constants.	However,	Python	has	six	constants	
declared	as	part	of	the	language.	The	list	is:	

False
True
None
NotImplemented
Ellipsis (same as the ellipsis literal “...”)
__debug__

Note	that	per	the	Python	language	documentation:	“Changed	in	version	3.9:	Evaluating	
NotImplemented	in	a	boolean	context	is	deprecated.	While	it	currently	evaluates	as	
True,	 it	will	emit	a	DeprecationWarning.	 It	will	raise	a	TypeError	 in	a	future	
version	of	Python.”	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

	

124	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Early	versions	of	Python	would	allow	these	constants	to	be	given	a	new	value.	Since	
Python	version	3.0,	 the	 first	 three,	False,	True	 and	None,	 have	been	declared	 as	
keywords	in	addition	to	being	a	constant	so	their	values	may	no	longer	be	changed.	
The	 remaining	 three,	 NotImplemented,	 Ellipsis	 and	 __debug__,	 can	 be	
assigned	 new	 values	 without	 raising	 a	 SyntaxError	 making	 them	 modifiable	
constants.	

6.65.2	Avoidance	mechanisms	for	language	users	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Apply	the	avoidance	mechanisms	provided	by	ISO/IEC	24772-1:2024	6.65.3.	
• Forbid	assigning	new	values	to	NotImplemented,	Ellipsis	or	__debug__.	

7.	Language	specific	vulnerabilities	for	Python	

7.1	General	

This	clause	documents	vulnerabilities	specific	to	Python	that	are	not	yet	addressed	in	
ISO/IEC	24772-1.	

7.2	Lack	of	Explicit	Declarations	

7.2.1	Description	of	application	vulnerability	

As	explained	in		5.1.4,	an	assignment	to	a	not	yet	existing	variable	is	legal	and	creates	
the	 variable	 and	 its	 object	 at	 that	 location.	 This	 capability	 also	 extends	 to	 the	 data	
members	of	a	class,	 thereby	extending	 that	class.	Moreover,	 reassigning	an	existing	
label	to	a	different	object	binds	the	label	to	the	new	object	regardless	of	the	type	of	the	
previous	object.	Hence,	any	arbitrary	assignment	to	a	variable	is	legal.	

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

©	ISO/IEC	2023	–	All	rights	reserved	 125	
	

7.2.2	Cross	reference	

7.2.3	Mechanism	of	failure	

A	mistyped	label	name	as	the	target	of	an	assignment	simply	introduces	a	new	label.	
For	example,	upon	execution	of		

CountTheNumberOfObjects = 0
 # and later on …
CountTheNumberofObjects = CountTheNumberOfObjects + 1
Two different variables, capital vs. lowercase “O” in
“Of”!!!

Most	programmers	will	miss	small	and	unintentional	differences	in	the	names	and	be	
highly	 surprised	 by	 the	 fact	 that	 CountTheNumberOfObjects	 will	 retain	 its	
initialized	value,	usually	0.	

Thus	any	unintentional	mistyping	of	identifiers	on	the	left	hand	side	of	an	assignment	
is	required	by	the	language	to	go	unnoticed.	However,	reading	the	value	of	an	unknown	
variable	will	result	in	runtime	error	NameError.	

7.2.4	Avoiding	the	vulnerability	or	mitigating	its	effects	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:		

• Use	consistent	naming	conventions,	such	as	if	using	camel	case,	the	first	letter	
of	all	words	should	always	be	capitalized.	

• Be	cognizant	of	the	number	of	significant	characters	in	variables	and	consider	
staying	below	the	limit	for	the	number	of	significant	characters.	

7.3	Code	representation	differs	between	compiler	view	and	reader	view	

7.3.1	Description	of	application	vulnerability	

The	 ISO/IEC	10646:2020	character	set,	which	Python	supports,	 includes	characters	
that	can	effectively	hide	adjoining	text.	Such	characters	set	text	display	direction	left-
to-right	 or	 right-to-left	 but	 are	 invisible	 unless	 the	 editor	 or	 display	 program	 is	
instructed	to	mnemonically	display	them.	If	left-to-right	is	the	current	default	direction	
and	a	right-to-left	character	(RLI)	 is	used,	subsequent	text	will	visually	replace	the	
text	preceding	the	RLI	character.

Formatted

Formatted

Formatted

Formatted

	

126	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

The	 following	 example,	 taken	 from	 [1],	 shows	 code	 with	 the	 invisible	 characters	
denoted	visibly	by	+LRI, +PDI, +RLO,	where	these	denotations	stand	for	the	zero-
space	Unicode	control	characters:		

<LRI> Left-to-Right Isolate
<PDI> Pop Directional Isolate
<RLO> Right-to-Left Overwrite

Due	to	the	direction-changing	characters,	the	following	code		

alvl = 'user'
if alvl != 'none+RLO+LRI': #Check if admin+PDI+LRI' and alvl!= 'user’
 print('You are an admin.')

will	be	displayed	to	the	human	reader	in	some	editors	as:			

alvl = 'user'
if alvl != 'none’ and alvl!= 'user' #Check if admin
 print('You are an admin.')

However,	this	code	will	always	print	"You are an admin",	as	the	apparent	second	
condition	is	really	part	of	a	comment	in	the	original	code.		

Python	only	permits	the	use	of	direction-changing	control	characters	in	comments	and	
strings.	 Nevertheless,	malicious	 use	 can	 change	 string	 or	 comment	 into	 executable	
code,	as	shown	above	and	also	below	using	RLI	in	a	string.	

'''Subtract funds from account then RLI ''' ; return
'''LRI'''

This	line	can	display	as,	depending	on	the	text	editor	used;	

'''Subtract funds from bank account then return;’’’

but	executes	as	

; return

Deleted:	

©	ISO/IEC	2023	–	All	rights	reserved	 127	
	

A	similar	situation	arises	from	the	use	of	the	carriage	return	<CR>	and	line	feed	<LF>	
characters,	depending	upon	the	environment	where	the	code	is	executed.	

Example	

Blow_Up(); <CR> BeReallyNice()

The	lack	of	a	<LF>	can	cause	the	code	(e.g	in	UNIX-based	systems)	to	be	displayed	as	

BeReallyNice()

while	the	code	executes	as		

Blow_Up(); BeReallyNice()

because	some	environments	will	overwrite	the	physical	line	if	the	<LF>	is	not	included.	

7.3.4	Avoiding	the	vulnerability	or	mitigating	its	effect	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:	

• Carefully	manage	and	thoroughly	review	the	use	of	any	characters	that	can	in	
any	way	hide	the	functionality	and	representation	of	Python	code.		

• Avoid	reliance	on	simple	visual	inspection	of	code;	instead	use	tools	to	reveal	
dangerous	control	characters.	

• Always	 use	 static	 analysis	 tools	 that	 identify	 all	 occurrences	 of	 hidden	
characters	within	a	program.		

• Use	only	editors	that	are	capable	of	revealing	the	hidden	Unicode	(zero-space)	
control	characters	and	ensure	that	the	editor	setting	is	enabled.	

• Refrain	from	copying	and	pasting	code	from	untrusted	sources	unless	the	code	
is	thoroughly	checked	as	described	above.	

7.4	Time	representation	and	Usage	in	Python	

7.4.1	Description	of	application	vulnerability	

The	vulnerability	described	in	ISO/IEC	24772-1:2024	7.33	applies	to	Python.		

In	addition	to	the	issues	documented	in	ISO/IEC	24772-1:2024	7.33,	Python	has	naïve	
datetime	 objects	 that	 do	 not	 specify	 a	 time	 zone,	 and	 thus	 do	 not	 contain	 enough	

	

128	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

information	to	unambiguously	provide	locale	relative	to	other	date	and	time	objects.	
Such	 objects	 can	 be	 passed	 to	 functions	 that	 expect	 datetime	 objects	 of	 a	 different	
locale	and	thus	generate	erroneous	results.	

Aware	 datetime	 objects	 contain	 timezone	 information	 which	 mitigates	 the	
vulnerability.	

7.4.2	Cross	reference	

7.4.3	Mechanism	of	failure	

Python	3	allows	naive	datetime	objects	 to	be	used	with	operations	that	assume	the	
existence	of	a	timezone	in	the	object,	or	operations	that	expect	naïve	datetime	objects	
and	receive	a	datetime	object	from	a	different	timezone.		In	either	case,	an	incorrect	
datetime	value	will	arise.	Examples	are	aware	datetime	objects	created	with	the	TZ	for	
UTC	 or	 naïve	 datetime	 object	 created	 in	 the	 UTC	 timezone.	 Such	 objects	 when	
processed	by	an	operation	in	the	EDT	timezone	that	expects	naïve	datetime	objects	
will	be	5	hours	off	the	local	time.		

Methods	such	as	utcnow()	and	utcfromtimestamp()	are	potentially	dangerous	
since	they	create	a	naive	datetime	and	do	not	throw	an	error	when	used	in	operations	
expecting	non-UTC	time	objects.	These	functions	are	being	deprecated	by	the	Python	
designers	for	future	releases.		

When	anything	other	than	aware	datetime	objects	and	functions	are	used,	time-related	
values	can	be	calculated	incorrectly	and	routines	based	upon	their	correct	calculation	
can	fail	with	arbitrary	consequences.		

7.4.4	Avoiding	the	vulnerability	or	mitigating	its	effects	

To	avoid	the	vulnerability	or	mitigate	its	ill	effects,	software	developers	can:

• Follow	the	advice	of	ISO/IEC	24772-1	7.33.4;	

• Avoid	the	use	of	naïve	datetime	objects	and	functions;	
• Place	appropriate	assertions	upon	any	datetime	objects	received	or	processed;	
• Avoid	deprecated	functions.	

©	ISO/IEC	2023	–	All	rights	reserved	 129	
	

	

130	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Bibliography	

[1]		 Anderson,	R.	&	Boucher,	N.	Trojan	Source:	Invisible	Vulnerabilities,	
https://trojansource.codes/trojan-source.pdf	

[2]	 Einarsson,	B.,		Accuracy	and	Reliability	in	Scientific	Computing,	SIAM,	July	2005	
http://www.nsc.liu.se/wg25/book	

[3]	 Embedding	Python	in	Another	Application,	
http://docs.python.org/3/extending/embedding.html	

[4]	 ISO/IEC	60559:2020,	Information	technology	Microprocessor	Systems	Floating-Point	
arithmetic	

[5]		 Logging	facility	for	Python, https://docs.python.org/3/library/logging.html	

[6]	 Lutz,	M.,	Learning	Python,	5th	Edition,	Sebastopol,	CA:	O'Reilly	Media,	Inc.,	2013	

[7]	 Lutz,	M.,	Programming	Python,	4th	Edition,	Sebastopol,	CA:	O'Reilly	Media,	Inc.,	2010	

[8]	 MITRE	Corporation,	Common	Weakness	Enumeration,	http://cwe.mitre.org	

[9]		 Packaging	binary	extensions,	
https://packaging.python.org/en/latest/guides/packaging-binary-extensions/	

[10]	 PEP	8	-	Style	Guide	for	Python	Code,	http://www.python.org/dev/peps/pep-0008	

[11]	 PEP	551	-	Security	transparency	in	the	Python	runtime,	
https://www.python.org/dev/peps/pep-0551	(Status:	Withdrawn)	

[12]	 PEP	578	–	Python	Runtime	Audit	Hooks,	https://peps.python.org/pep-0578/	

[13]	 Martelli,	A.	Python	in	a	Nutshell,	Sebastopol,	CA:	O'Reilly	Media,	Inc.,	2006.	

[14]	 Python/C	API	Reference	Manual,	http://docs.python.org/py3k/c-api	

[15] The	Python	Language	Reference,	https://docs.python.org/3/reference	

[16] The	Python	Standard	Library,	https://docs.python.org/3/library

[17]	 Sebesta,	Robert	W.,	Concepts	of	Programming	Languages,	11th	edition,	ISBN-13:	978-
0-133-94302-3,	ISBN-10:	0-133-94302-X,	Pearson	Education,	Boston,	MA,	2015	

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

Field	Code	Changed

Formatted:	No	underline
Field	Code	Changed

Formatted:	No	underline,	Font	color:	Auto
Field	Code	Changed

Commented	[p143]:	For Sean to fix;

Commented	[SM145]:	Done.	
Commented	[SJM144R143]:	Done?

Field	Code	Changed

Field	Code	Changed

Formatted:	No	underline,	Font	color:	Auto

Field	Code	Changed

Formatted:	English	(US)

Formatted:	No	underline,	Font	color:	Auto
Field	Code	Changed

©	ISO/IEC	2023	–	All	rights	reserved	 131	
	

[18]	 Sun	Microsystems,	Inc.	,	What	Every	Computer	Scientist	Should	Know	About	Floating-
Point	Arithmetic,	Part	No:	800-7895-10	Revision	A,	June	1992,	
https://docs.oracle.com/cd/E19957-01/800-7895/800-7895.pdf	
	 	

Field	Code	Changed

	

132	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Index	

Annotation,	11,	21,	35,	40,	44	
Argument,	11,	19,	24,	40,	41,	56,	59,	70,	71,	72,	73,	74,	75,	
86,	89,	90,	94,	96,	97	
Mutable,	70	

Assert,	62	
Assignment	statement,	11,	51	
Aware	datetime	object,	11	
Body,	11,	69,	74,	104	
Boolean,	12,	62,	75,	123	
Built-in,	12	
Class,	12,	20,	25,	26,	27,	28,	29,	34,	35,	42,	44,	48,	52,	53,	
54,	55,	56,	57,	63,	71,	80,	81,	82,	83,	85,	88,	96,	124	
asyncio.Lock,	121	
asyncio.Task,	108	
Base,	80	
Future,	99	
Heirarchy,	42,	80,	81,	85	
Inheritance,	14	
Instance,	14,	71,	84	
Member,	81	
Namespace,	57	
Overriding,	16	
prepare_class,	57	
self,	16	
Superclass,	84,	85	

Comment,	12,	35,	44,	62	
Compiler,	24,	49,	90,	125	
Complex	number,	12,	41	
coroutine,	12	
Coroutine,	29,	64,	115,	116,	117,	118,	121	
CPython,	12,	87	
Datetime	object	
Aware,	11	
Naive,	15	

Decorator,	12,	25	
@dispatch,	25	
@unique,	38	

Dictionary,	13,	74,	99,	100	
Mutable,	20,	22	

Docstring,	13,	44,	81	
Dynamic	typing,	19,	49	
Entry	point,	13	
Default,	88	

Main,	104	
Modified,	89	

Exception,	13,	21,	34,	42,	46,	69,	72,	73,	76,	83,	90,	97,	
109,	112,	114,	115,	116,	117,	122	
assert,	62	
asyncio,	115	
BaseException,	99,	100	
Binding,	85	
Boundary,	43,	67	
CancelledError,	108,	115	
Child	thread	restart,	103,	105	
Concurrency,	104	
Event	loop,	107	
Floating-point,	46,	47	
Imported,	90	
Multiprocessing,	29	
NameError,	70	
Null	pointer,	45	
OverflowError,	46	
OverFlowError,	41	
Pickling,	98	
Process,	113	
Py_NotImplemented,	42	
Rejoining	thread,	106	
Runtime,	21,	43,	45,	74,	75,	91	
Task,	115	
Termination,	29,	105,	115	
Thread,	28,	112,	113	
Thread	creation,	103	
try-except,	113,	114	
TypeError,	28,	40,	42,	81	
Unassigned	variable,	48	
Unbound	reference,	58	
UnboundLocalError,	24	
Unhandled,	46,	76,	81,	83,	109	
Uninitialized	variable,	57	
Unsigned	reference,	23,	24	

Expression	
Lambda,	14	

Function,	13,	19,	25,	50,	51,	52,	53,	54,	56,	59,	61,	63,	64,	
69,	70,	71,	72,	73,	74,	94,	96,	97,	99,	103,	110	
__prepare__,	57	
asyncio.queue(),	111	

©	ISO/IEC	2023	–	All	rights	reserved	 133	
	

ayncio,	105	
bin(),	35	
Body,	69	
Built-in,	35,	42,	92	
Call,	97	
Callback,	90	
catch_warnings(),	91,	99,	100	
cffi,	74,	75	
contextlib.nested(),	102	
ctypes,	105	
deepcopy(),	78	
eval(),	93	
exec(),	93	
global,	57	
hex(),	35	
id(),	20,	99	
Initialization,	24	
int(),	36	
intern(),	98	
len(),	85,	86	
memoryview(),	45	
multiprocessing.Queue(),	111	
Name,	97	
Nested,	23,	52	
oct(),	35	
overloading,	74	
Parameter,	20,	21	
pickle,	93	
PyOS_string_to_double(),	102	
queue.Queue(),	111	
range(),	67	
Return,	64,	72	
Scope,	51	
setrecursionlimit(),	75	
super(),	27,	80,	84	
sys.getfilesystemcoding(),	101	
threading.queue(),	111	

Garbage	collection,	13,	20,	21,	45,	78,	100	
Global	Interpreter	Lock	(GIL),	13,	28,	110	
Global	object,	13,	56	
Guerrilla	patching,	13,	88,	89	
IDE	(Integrated	Development	Environment),	19	
IEC	(International	Electrotechnical	Commission),	8	
Immutable	object,	14,	42,	59,	72,	94	
Import,	14,	23,	48,	53,	55,	56,	57,	64,	65	
Inheritance,	14,	24,	25,	26,	27,	79,	85	
Multiple,	24,	26,	81	

Instance,	14,	23,	26,	57,	66,	121	
Integer,	14,	19,	20,	22,	35,	36,	41,	42,	47,	100,	101	
Immutable,	59	

Interpreter,	21,	87,	88,	105	
ISO	(International	Organization	for	Standardization),	8	

join(),	103,	106,	107,	110,	113,	120,	121,	122	
Keyword,	14,	74,	95,	96	
Lambda	expression,	14	
List,	14,	21,	22,	43,	57,	59,	60,	62,	66,	67,	72,	77,	78,	94,	95,	
99,	100,	123	
Mutable,	14,	20,	22	

Literal,	15,	37	
Membership,	15,	75	
Method,	19,	25,	28,	39,	41	
Overriding,	25	

Method	Resolution	Order,	15,	26	
Module,	15,	17,	23,	24,	28,	29,	34,	37,	40,	48,	51,	52,	54,	
55,	56,	57,	64,	65,	73,	75,	78,	79,	87,	88,	90,	92,	93,	95,	
102,	103,	104,	105,	122	

Mutable,	15,	20,	22,	24,	59,	60,	63,	64,	66,	67,	70,	72,	73,	
94,	95,	97	
Argument,	72	
Dictionary,	20	
List,	20	
Object,	20,	22	
Set,	20	

Naïve	datetime	object,	15	
Name,	15,	19,	25,	38,	47,	49,	51,	52,	53,	54,	55,	56,	57,	58,	
74,	81,	82,	83,	84,	86,	90,	92,	97,	101,	115	
Binding,	26	

Namespace,	15,	23,	24,	25,	48,	51,	53,	54,	55,	57,	94,	99	
None,	15,	64	
Number,	15	
Object,	20,	21,	22,	34,	49,	60,	61,	63,	76,	78,	79,	83,	84,	94,	
95,	98,	124	
Default,	24	
Immutable,	14,	20,	42,	59,	72,	80,	94	
Integer,	22	
List,	22	
Mutable,	20,	22,	24,	80	
Tuple,	21	

Object-Oriented	Programming	(OOP),	24	
Operator,	16	
Boolean,	61,	63	

Overriding,	16,	86,	92,	93	
Package,	16	
Pickling,	16,	98	
Polymorphic,	83	
Scope,	16,	23,	24,	52,	53,	68,	71,	75,	90,	98	
Script,	16	
self,	16	
Sequence,	16,	26,	27,	28,	38,	55,	56,	60,	61,	62,	67,	68,	73,	
80,	81,	97,	99,	101	

Set,	16	
Mutable,	20	

Short-circuiting	operator,	17	
Statement,	17	

	

134	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

String,	17,	21,	22,	36,	40,	41,	42,	43,	67,	97,	98,	123	
Assignment,	19	
Immutable,	17	

Tuple,	17	

Type	checking,	19,	40,	85	
Argument,	19	

Type	hint,	17,	44,	75,	81,	85	
Variable,	17	

	 Commented	[SM146]:	Ensure that all font is normal font
here.	

Page	3:	[1]	Deleted			 Stephen	Michell			6/26/24	2:37:00	PM	

	

Page	3:	[2]	Deleted			 Stephen	Michell			6/26/24	2:31:00	PM	

	

	

Page	41:	[3]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[3]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[3]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[3]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[4]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[4]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[4]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Style	De(inition

...	[118]

Formatted

...	[119]

Formatted

...	[120]
Formatted

...	[121]
Formatted

...	[122]
Formatted

...	[123]
Formatted

...	[124]
Formatted

...	[125]
Formatted

...	[126]
Formatted

...	[127]
Formatted

...	[128]
Formatted

...	[129]
Formatted

...	[130]
Formatted

...	[131]
Formatted

...	[132]

Not	Highlight	

	

Page	41:	[4]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[5]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[5]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[5]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[5]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

Formatted

...	[133]
Formatted

...	[134]
Formatted

...	[135]
Formatted

...	[136]
Formatted

...	[137]
Formatted

...	[138]
Formatted

...	[139]
Formatted

...	[140]
Formatted

...	[141]
Formatted

...	[142]
Formatted

...	[143]
Formatted

...	[144]
Formatted

...	[145]
Formatted

...	[146]
Formatted

...	[147]
Formatted

...	[148]
Formatted

...	[149]

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Formatted

...	[150]
Formatted

...	[151]
Formatted

...	[152]
Formatted

...	[153]
Formatted

...	[154]
Formatted

...	[155]
Formatted

...	[156]
Formatted

...	[157]
Formatted

...	[158]
Formatted

...	[159]
Formatted

...	[160]
Formatted

...	[161]
Formatted

...	[162]
Formatted

...	[163]
Formatted

...	[164]
Formatted

...	[165]
Formatted

...	[166]

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[6]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[7]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[7]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[7]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[7]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[8]	Deleted			 McDonagh,	Sean			8/22/24	8:14:00	PM	

Page	41:	[8]	Deleted			 McDonagh,	Sean			8/22/24	8:14:00	PM	

Formatted

...	[167]
Formatted

...	[168]
Formatted

...	[169]
Formatted

...	[170]
Formatted

...	[171]
Formatted

...	[172]
Formatted

...	[173]
Formatted

...	[174]
Formatted

...	[175]
Formatted

...	[176]
Formatted

...	[177]
Formatted

...	[178]
Formatted

...	[179]
Formatted

...	[180]

Formatted

...	[181]
Formatted

...	[182]

Page	41:	[9]	Deleted			 McDonagh,	Sean			8/22/24	8:15:00	PM	

Page	41:	[9]	Deleted			 McDonagh,	Sean			8/22/24	8:15:00	PM	

Page	41:	[10]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[10]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[10]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[10]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[10]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[10]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Formatted

...	[183]
Formatted

...	[184]

Formatted

...	[185]
Formatted

...	[186]

Formatted

...	[187]
Formatted

...	[188]
Formatted

...	[189]
Formatted

...	[190]
Formatted

...	[191]
Formatted

...	[192]
Formatted

...	[193]
Formatted

...	[194]
Formatted

...	[195]
Formatted

...	[196]
Formatted

...	[197]
Formatted

...	[198]
Formatted

...	[199]
Formatted

...	[200]

Page	41:	[10]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[10]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[10]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	41:	[10]	Formatted			 McDonagh,	Sean			8/28/24	12:51:00	PM	

Not	Highlight	

	

Page	44:	[11]	Deleted			 McDonagh,	Sean			8/28/24	3:25:00	AM	

Page	44:	[12]	Deleted			 McDonagh,	Sean			8/28/24	3:26:00	AM	

Page	44:	[13]	Deleted			 McDonagh,	Sean			8/28/24	3:24:00	AM	

Page	56:	[14]	Commented	[SJM21R20]			 McDonagh,	Sean			7/15/24	7:16:00	PM	

As a refresher, this content was derived from PEP 3115 https://peps.python.org/pep-3115/

"these” is simply referring to the mentioned symbols, but this could probably be worded more clearly (good point).

Formatted

...	[201]
Formatted

...	[202]
Formatted

...	[203]
Formatted

...	[204]
Formatted

...	[205]
Formatted

...	[206]
Formatted

...	[207]
Formatted

...	[208]

Formatted

...	[209]

...	[210]
Formatted

...	[211]

Formatted

...	[212]

Metaclasses are an advanced area of Python but can be useful in certain circumstances. For example, metaclasses
can be used to create function overloading in Python since, by default, Python does not inherently have this
capability. However, we may want to reconsider including this paragraph since we offer no concrete guidance when
using metaclasses in 6.21.2 other than to state the use of __prepare__ (which merely opens the door to this
capability).

There are many other advanced capabilities that we have deemed to be beyond the scope of this document, and
the safe use of metaclasses may also fall into this category. We can discuss this further. If we do decide to keep this
paragraph, and potentially add an example, it may end up being tutorial in nature.

If interested, here are some useful videos on the topic:

https://www.youtube.com/watch?v=NAQEj-c2CI8

https://www.youtube.com/watch?v=yWzMiaqnpkI

	

Page	59:	[15]	Deleted			 McDonagh,	Sean			8/5/24	2:51:00	PM	

	

Page	59:	[16]	Deleted			 Stephen	Michell			8/14/24	2:48:00	PM	

Page	59:	[17]	Deleted			 Stephen	Michell			8/14/24	2:48:00	PM	

	

Page	61:	[18]	Commented	[SJM40]			 McDonagh,	Sean			8/27/24	6:38:00	AM	

This is probably OK as is, but we could elaborate on this example.

b=d=0

Formatted

...	[213]

Formatted

...	[214]

Formatted

...	[215]

...	[216]

Formatted

...	[217]

Formatted

...	[218]

c=5
a = b or c or d or None
print(a) #=> 5

INTERESTING:	The	operands	of	an	expression	involving	a	boolean	expression	(OR,	AND,	etc.)	
would	expectedly		have	Boolean	values,	but	objects	in	Python	are	not	very	strict	about	this	
and	internally	implements	a	set	of	rules	to	decide	if	an	object	is	considered	true	or	false		
	

https://docs.python.org/3/library/stdtypes.html

“By	default,	an	object	is	considered	true	unless	its	class	defines	either	a	__bool__()	method	
that	returns	False	or	a	__len__()	method	that	returns	zero,	when	called	with	the	object.	[1]	
Here	are	most	of	the	built-in	objects	considered	false:	
	
• 	constants	defined	to	be	false:	None	and	False	
• 	zero	of	any	numeric	type:	0,	0.0,	0j,	Decimal(0),	Fraction(0,	1)	
• 	empty	sequences	and	collections:	'',	(),	[],	{},	set(),	range(0)”	

	

Page	64:	[19]	Commented	[SJM54R53]			 McDonagh,	Sean			7/16/24	11:35:00	AM	

This entire paragraph warrants reconsideration in my opinion.

Per the text:

“Except in very limited cases, Python does not provide static analysis to detect such code …”.

Strictly speaking, static analysis is not a capability of a language, but rather the result of compilers, linkers and 3rd-
party tools such as pyflakes and vulture	(for Python when hints are used). I do agree with suggesting the use of
Python-specific static analysis tools for finding dead code, but we may want to reword this content so that it does
not come across as a feature that Python, by itself, has.

Type hints are discussed in Section 5.1.3 and recommended in numerous other locations.

Formatted

...	[219]

Citing an example of dead code in this paragraph is fine, but not necessary in my opinion (tutorial).

The following example runs successfully without warning:

if False:
 print('hello from False')
if True:
 print('hello from True')

OUTPUT:

hello from True	

	

Page	66:	[20]	Deleted			 Stephen	Michell			9/4/24	3:06:00	PM	

Page	69:	[21]	Deleted			 Stephen	Michell			9/4/24	3:09:00	PM	

Page	73:	[22]	Deleted			 McDonagh,	Sean			9/9/24	8:51:00	AM	

	

Page	76:	[23]	Commented	[SJM79R78]			 McDonagh,	Sean			7/16/24	9:28:00	AM	

I agree with moving it to 6.36!

We currently have the following Avoidance Mechanisms in 6.36.2:

• Use	 Python’s	 exception	 handling	 mechanisms	 to	 ensure	 that	 only	 the	 desired	 named	
exceptions	are	caught	and	handled.	

• Ensure	that	every	exception	that	can	be	thrown	is	caught	by	the	appropriate	handler.	
	

Formatted

...	[220]

Formatted

...	[221]

Formatted

...	[222]

Formatted

...	[223]

Section	6.36	Ignored	error	status	and	unhandled	exceptions	may	be	a	good	home	for	this	
sentence	since	the	assert	statement	can	be	used	to	test	the	exceptions	mentioned	in	these	
Avoidance	Mechanisms	(albeit	typically	for	debugging	only).		

	

Page	76:	[24]	Deleted			 Stephen	Michell			9/4/24	4:51:00	PM	

	
• 	

Page	76:	[25]	Commented	[p80]			 ploedere			 7/15/24	7:16:00	PM	

Do I have a non-Python mechanism to catch exceptions??? Delete?

	

Page	76:	[26]	Commented	[SJM81R80]			 McDonagh,	Sean			7/16/24	4:52:00	PM	

Non-Python?

This statement is confusing since it advises to only handle the desired exceptions, yet the next statement
immediately below it advises to ensure every exception is handled. If we decide to keep it, possible reword:

• “Use	 Python’s	 exception	 handling	 mechanisms	 to	 ensure	 that	 the	 desired	 named	
exceptions	are	caught	and	handled.	

• Ensure	 that	 all	 other	 exceptions	 that	 can	 be	 thrown	 are	 caught	 by	 the	 appropriate	
handler.	

”

We do not provide an exception handling example in .1 since this is somewhat tutorial in nature, but we could
include one. Here is an example directly from the docs: (https://docs.python.org/3/tutorial/errors.html)

while True:
 try:
 x = int(input("Please enter a number: "))
 break
 except ValueError:
 print("Oops! That was no valid number. Try again...")

Formatted

...	[224]

Formatted

...	[225]
Formatted

...	[226]

A try statement may have more than one except clause, to specify handlers for different exceptions. See
above link for more examples if desired.

	

Page	82:	[27]	Commented	[SJM91R90]			 McDonagh,	Sean			8/8/24	12:51:00	PM	

The following screenshot illustrates mypy in use and how it finds Liskov violations in the example found in:

https://mypy.readthedocs.io/en/stable/error_code_list.html#check-validity-of-overrides-override

	

Page	98:	[28]	Deleted			 McDonagh,	Sean			8/21/24	7:30:00	PM	

	

Page	105:	[29]	Commented	[p124]			 ploedere			 7/15/24	7:16:00	PM	

Very wrong!!!

Join waits. Join.is-alive checks whether the thread is still running and does not block.

	

Page	105:	[30]	Commented	[SJM125R124]			McDonagh,	Sean			7/17/24	12:53:00	PM	

Formatted

...	[227]
Formatted

...	[228]

Formatted

...	[229]
Formatted

...	[230]

join() blocks new threads from starting until all currently running threads are completed. Need to discuss.

Here is an example of a graceful shutdown using a simple flag:

import threading

import time

def run():

 while True:

 print('thread running')

 global stop_threads

 if stop_threads:

 break

stop_threads = False

t1 = threading.Thread(target = run)

t1.start()

time.sleep(1)

stop_threads = True

t1.join()

print('thread killed')

	

Page	106:	[31]	Commented	[SJM128R127]			McDonagh,	Sean			7/30/24	9:42:00	PM	

From the docs:

https://docs.python.org/3/library/threading.html

Formatted

...	[231]

“Wait until the thread terminates. This blocks the calling thread until the thread whose join() method is called
terminates – either normally or through an unhandled exception – or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating-point number specifying a timeout for
the operation in seconds (or fractions thereof). As join() always returns None, you must call is_alive() after join() to
decide whether a timeout happened – if the thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be joined many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock. It is
also an error to join() a thread before it has been started and attempts to do so raise the same exception.”

The previous example in the comments shows at least one way that a thread can communicate with another thread
to safely shut it down. I suspect this statement is attempting to state that you cannot join a running thread multiple
times. If this is the intent, it needs reworded.

	

	

Formatted

...	[232]

