
6.64	Reliance	on	external	format	string			[SHL]	

6.64.1	Description	of	application	vulnerability	

Many	languages	use	format	string	to	control	how	output	is	generated	or	input	acquired.	If	the	
format	string	can	be	influenced	by	an	attacker,	there	is	an	opportunity	for	them	to	gain	access	to	
what	should	be	private	data	and	to	execute	arbitrary	code.	

6.64.2	Cross	reference	

CWE:	
134.	Uncontrolled	Format	String	

6.64.3	Mechanism	of	failure	

There	are	three	common	scenarios	where	a	format	string	can	be	a	source	of	vulnerability.	In	all	cases	
a	key	factor	is	that	the	format	string	is	acquired	from	some	source	outside	the	program’s	control,	
and	which	may	have	been	supplied	or	modified	by	an	attacker:	

• the	supplied	format	string	may	specify	extremely	large	field	widths	for	output,	potentially	
leading	to	resource	exhaustion	and	ultimately	program	failure	

• where	the	number	of	parameters	an	output	statement	expects	is	controlled	by	the	contents	
of	the	format	string,	if	the	number	of	items	to	be	output	according	to	the	format	string	is	
greater	than	the	number	of	parameters	supplied	by	the	program,	then	the	statement	will	
start	outputting	arbitrary	data	from	the	stack,	which	may	be	sensitive	

• most	control	sequences	in	format	strings	cause	a	supplied	parameter	to	be	read	and	
generate	appropriate	output.	However,	some	languages	allow	for	control	sequences	that	
write	a	value	(typically	the	number	of	characters	output	so	far)	to	the	supplied	pointer	
parameter.	Using	such	a	control	sequences	in	a	tainted	format	string	may	lead	to	
unexpected	modification	of	the	program		

6.64.4	Applicable	language	characteristics		

This	vulnerability	is	intended	to	be	applicable	to	languages	with	the	following	characteristics:	

• Languages	that	support	format	strings	for	input/output	functions. 

6.64.5	Avoiding	the	vulnerability	or	mitigating	its	effects	

Software	developers	can	avoid	the	vulnerability	or	mitigate	its	ill	effects	in	the	following	ways:	

• Where	possible,	ensure	that	all	format	strings	are	supplied	to	their	functions	as	static	strings	
which	cannot	be	modified	by	an	attacker.	During	development	(i.e.	not	at	run	time),	it	
should	be	checked	that:	

o 	the	number	of	arguments	supplied	to	the	function	matches	those	required	by	the	
format	string.		

o all	specifiers	used	match	the	associated	parameter.	

Deleted:	The	software	uses	externally	controlled	format	
strings	in	input/output	functions,	which	can	lead	to	buffer	
overflows	or	data	representation	problems.

Comment	[CP1]:	I	have	to	say	that	I’m	not	entirely	convinced	
by	this	claim.		The	CWE	doesn’t	provide	an	example	and	
what	you	can	write	back	in	C/C++/Perl	is	very	limited.		There	
is	a	rather	contrived	example	of	how	there	could	be	a	
security	issue	(modifying	a	‘checked’	flag),	but	not	of	code	
execution		(but	see	my	second	comment)	

Deleted:	

Deleted:	The	programmer	rarely	intends	for	a	format	string	
to	be	user-controlled	at	all.	This	weakness	frequently	occurs	
in	code	that	constructs	log	messages,	where	a	constant	
format	string	is	omitted. ...	[1]

Comment	[CP2]:	If	the	print	statement	is	an	sprintf,		I	can	
clearly	write	arbitrary	code	into	the	string	buffer.	If	I	can	I	
then	force	it	to	be	executed,	then	there	is	a	way	of	executing	
arbitrary	code		
	

Deleted:	functions	are	passed	as

Deleted:	controlled	by	the	user

Deleted:	and	that	

Deleted:	proper	number	of	arguments	is	always	sent	to	
that	function

Deleted:	Ensure	



• 	
• If	a	format	string	has	to	be	supplied	from	outside	the	program,	i.e.	not	as	a	static	string,	the	

program	should	check	at	run-time:	
o the	number	of	parameters	required	by	the	format	string	matches	the	number	

supplied	in	the	call	
o the	field	widths	required	by	the	format	string	are	not	excessive	
o no	use	is	made	of	control	structures	that	modify	the	program’s	data	

6.64.6	Implications	for	language	design	and	evolution		

In	future	language	design	and	evolution	activities,	the	following	items	should	be	considered:		

• Ensure	all	format	strings	are	verified	to	be	correct	in	regard	to	the	associated	arguments	or	
parameters,	either	at	compile	time	(for	static	strings)	or	at	run-time,	if	the	format	string	is	
acquired	from	an	external	source	

Deleted:	Avoid	format	strings	that	will	write	to	a	memory	
location	that	is	pointed	to	by	its	argument.

Deleted:	.



Page	1:	[1]	Deleted	 Clive	Pygott	 7/20/17	6:24:00	PM	

The	programmer	rarely	intends	for	a	format	string	to	be	user-controlled	at	all.	This	weakness	frequently	
occurs	in	code	that	constructs	log	messages,	where	a	constant	format	string	is	omitted.	

In	cases	such	as	localization	and	internationalization,	the	language-specific	message	repositories	could	
be	an	avenue	for	exploitation,	but	the	format	string	issue	would	be	resultant,	since	attacker	control	of	
those	repositories	would	also	allow	modification	of	message	length,	format,	and	content.	
	

	


