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ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC IS 17960, which is an International Standard, was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and system software interfaces.
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Information Technology — Programming Languages — Code Signing for Source Code
[bookmark: _Toc319588863]1. Scope
This document uses a language and environment neutral description to define the application program interfaces (APIs) and supporting data structures necessary to support the signing of code and executables.  It is intended to be used by both applications developers and systems implementers.
The following areas are outside the scope of this specification:
· Graphics interfaces
· Object or binary code portability
· System configuration and resource availability
[bookmark: _Toc319588864]2. Normative References
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 14750:1999, Information technology -- Open Distributed Processing -- Interface Definition Language
[bookmark: _Toc319588865]3. Terms and Definitions
For the purposes of this document, the following terms and definitions apply.
[TBD]
[bookmark: _Toc319588866]4. Conformance
An implementation of code signing conforms to this International Standard if it provides the interfaces specified in Clause 6.
Clause 5 is informative, providing an overview of the concepts of code signing. Annex A, also informative, provides a possible scenario of usage for the interfaces specified in Clause 6.
[bookmark: _Toc319588867]5. Concepts
Code signing is the process of digitally signing scripts and executable objects that verifies the author or origin and guarantees that the signed code has not been tampered with or corrupted since it was signed by use of a cryptographic hash.
Code signing provides several valuable functions,
•	code signing can provide security when deploying,
•	code signing can provide a digital signature mechanism to verify the identity of the author or build system,
•	code signing can provide multi signatures, allowing an audit trail of the signed object,
•	code signing will provide a checksum to verify that the object has not been modified,
•	code signing can provide versioning information, and
•	code signing can store other meta data about an object.
Code Signing identifies to customers the responsible party for the code and confirms that it has not been modified since the signature was applied.  In traditional software sales where a buyer can physically touch a package containing software, the buyer can confirm the source of the application and its integrity by examining the packaging.  However, most software is now procured via the Internet.  This is not limited to complete applications as code snippets, plug-ins, add-ins, libraries, methods, drivers, etc. are all downloaded over the Internet.  Verification of the source of the software is extremely important since the security and integrity of the receiving systems can be compromised by faulty or malicious code.  In addition to protecting the security and integrity of the software, code signing provides authentication of the author, publisher or distributor of the code, and protects the brand and the intellectual property of the developer of the software by making applications uniquely identifiable and more difficult to falsify or alter.
When software (code) is associated with a publisher's unique signature, distributing software on the Internet is no longer an anonymous activity. Digital signatures ensure accountability, just as a manufacturer's brand name ensures accountability with packaged software. Distributions on the Internet lack this accountability and code signing provides a means to offer accountability.  Accountability can be a strong deterrent to the distribution of harmful code.  Even though software may be acquired or distributed from an untrusted site or a site that is unfamiliar, the fact that it is written and signed by someone known and trusted allows the software to be used with confidence.
Multiple signatures for one piece of code would be needed in some cases in order to create a digital trail through the origins of the code.  Consider a signed piece of code.  Someone should be able to modify a portion of the code, even if just one line or even one character, without assuming responsibility for the remainder of the code.  A recipient of the code should be able to identify the responsible party for each portion of the code.  For instance, a very trustworthy company A produces a driver.  Company B modifies company A’s driver for a particular use.  Company B is not as trusted or has an unknown reputation.  The recipient should be able to determine exactly what part of the code originated with company A and what was added or altered by company B so as to be able to concentrate their evaluation on the sections of code that company B either added or altered.  This necessitates a means to keep track of the modifications made from one signature to the next.
An alternative scenario is software offered by company B that contains software from company A.  Company B does not alter company A’s software, but incorporates it into a package or suite of software.  It would be useful to a customer to be able to identify the origin of each portion of the software.
[bookmark: _Toc319588868]6. Structures and APIs
[bookmark: _Toc319588869]6.1 General
The structures and APIs described below are intended to be language and platform independent.  A particular language implementation will need to specify, for instance, an appropriate convention for specifying options and determine how error reporting will be done.
The structures and APIs are described with a syntax independent of any particular programming language, using the Interface Description Language (IDL) provided by ISO/IEC 14750:1999.
Note: the APIs are expressed using camel case (e.g. isIntTrue instead of underscores is_int_true).  Particular language implementations may prefer to implement the APIs using underscores.  Either is acceptable as long as the implementation is consistent within the language implementation.

[bookmark: _Toc319588870]6.2 Structures

Additional descriptions of the fields used in these structures are available at ITU-T Recommendation X.509.

struct algorithmIdentifierStruct {
	unsigned short algorithm;			// used to identify the cryptographic
							// algorithm
	string parameters;					// optional parameters associated 
// with the 
// algorithm
}

struct certStruct {					// structure for an X.509 certificate
unsigned short version;			// certificate format version
unsigned long serialNumber;			// unique identifier generated by
// the 
						// certificate issuer
algorithmIdentifierStruct algorithmID;	// the algorithm used by the
// issuer to sign
// the certificate
string issuerName;				// a representation of its issuer's
// identity in
						// the form of a Distinguished Name
string int validNotBeforeDate;		// the start of the time period in
// which a certificate is intended
						// certificate is intended to be used
string int validNotAfterDate;			// the end of the time period in
//  which a certificate is intended
						// certificate is intended to be used
string subjectName;				// a representation of its
//  subject's identity in the form
						// in the form of a Distinguished Name
unsigned short publicKeyAlgorithm;		// the public key algorithm to be used
// with
// the subjectPublicKey
string subjectPublicKey;			// the public key component off its
						// associated subject
string issuerUniqueIdentifier;			// optional issuer unique
// identifier
string subjectUniqueIdentifier;		// optional subject unique
 // identifier
string extensions;				// optional extensions
algorithmIdentifierStruct certificateSignatureAlgorithm;	
// specifies the algorithm
						// used by the issuer to sign the
// certificate
string certificateSignature;			// signature of the certificate
}

struct keyStruct {					// structure for a X.509 private key
	string privateKey;
}

[bookmark: _Toc319588871]6.3 certCreate
Notional Syntax
boolean certCreate (string certificateFile, string certificateDirPath)
Description
CertCreate creates in the directory certificateDirPath the file certificateFile that contains a certificate that complies with ITU-T X.509.
Returns
CertCreate returns TRUE if the certificate was successfully created and FALSE otherwise.
Errors
If the certificateFile cannot be created, CertCreate will report an error.
If certificateDirPath is an invalid path, CertCreate will report an error.

[bookmark: _Toc319588872]6.4 certSignCode
Notional Syntax
boolean certSignCode (certStruct myCertificate, keyStruct myPrivateKey, string sourceFilename, string sourceDirPath, boolean overwriteCurrentSignature, enum hashType signatureAlgorithm, string signFilename, string signDirPath)
Description
CertSignCode generates a digital signature (encrypted hash) of the source code file sourceFilename in directory sourceDirPath using public certificate myCertificate and private key myPrivateKey.   The default hashing algorithm for signing shall be SHA-1. Alternative hashing functions that are specified in ISO/IEC 10118:2004 could be used instead and would be indicated through the enumerated type signatureAlgorithm.  The digital signature and publisher’s certificate are stored in the directory signDirPath in the file signFilename.  By convention, the signature filename signFilename should be of the form “filename.ds”.  If signFilename already exists in the directory signDirPath, then overwrite must be set to TRUE or certSignCode will return an error that the file could not be created since it already exists.
Returns
CertSignCode returns TRUE if the digital signature was successfully created and FALSE otherwise.
Errors
If signFilename exists and overwrite is FALSE, certSignCode will report that the signature operation could not be completed since signFilename already exists.
If myCertificate or myPrivateKey are in an unknown format or do not contain proper keys, certSignCode will report that the signature operation could not be completed since a key could not be read or used.

[bookmark: _Toc319588873]6.5 certSignWrap
Notional Syntax
boolean certSignWrap (certStruct myCertificate, keyStruct myPrivateKey, string originalSourceFilename, string originalSourceDirPath, string modifiedSourceFilename, string modifiedSourceDirPath, enum hashType signatureAlgorithm, string signFilename, string signDirPath)
Description
Incorporates changes to the previously signed file originalSourceFilename in directory originalSourceDirPath in such a way that the changes can be unwrapped at a later date in order to revert to a previously signed version.  CertSignWrap generates a digital signature (encrypted hash) of the source code file modifiedSourceFilename in directory modifiedSourceDirPath using public certificate myCertificate and private key myPrivateKey.   The default hashing algorithm for signing shall be SHA-1. Alternative hashing functions that are specified in ISO/IEC 10118:2004 could be used instead and would be indicated through the enumerated type signatureAlgorithm.  The digital signature, publisher’s certificate and changes between the current version and the previous version are added to the file signFilename in directory signDirPath.
Returns
CertSignWrap returns TRUE if the signature was successfully created and FALSE otherwise.
Errors
If a signature for originalSourceFilename does not exist, certSignWrap will report that the signature wrapping could not be completed because a signature does not exist and that a signature file would need to be created before the operation could be completed.
If there are no differences between the contents of originalSourceFilename and modifiedSourceFilename, certWrap will report that the signature operation could not be completed since there have not been any changes to the source code file.
If the hash of originalSourceFilename does not match the encrypted hash stored within originalFile.ds, certSignWrap will report that the originalFile differs from the file which was signed and that the signature operation could not be completed.

[bookmark: _Toc319588874]6.6 certHash
Notional Syntax
boolean certHash (string sourceFilename, string sourceDirPath, enum hashType signatureAlgorithm)
Description
CertHash generates a digital finger print (hash) of the source code contained in file sourceFilename in directory sourceDirPath.  The default hashing algorithm for signing shall be SHA-1. Alternative hashing functions that are specified in ISO/IEC 10118:2004 could be used instead and would be indicated through the enumerated type signatureAlgorithm.
Returns
CertHash returns TRUE if the hash was successfully generated and FALSE otherwise.
Errors
TBD

[bookmark: _Toc319588875]6.7 certDecryptSignature
Notional Syntax
boolean certdecryptsignature (certStruct myCertificate, keyStruct myPrivateKey, string signFilename, string signDirPath)
Description
CertDecryptSignature decrypts the digital signature of the source code file contained in signFilename using myCertificate and myPrivateKey.
Returns
CertDecryptSignature returns TRUE if the digital signature was successfully decrypted and FALSE otherwise.
Errors
If the signature file signFilename does not exist, certDecryptSignature will report that the signature could not be verified because the signature file is missing.
If the signature file exists yet does not contain the properly formatted signature and public key components, certDecryptSignature will report that the signature file is corrupt.

[bookmark: _Toc319588876]6.8 certVerifySignature
Notional Syntax
boolean certVerifySignature (certStruct myCertificate, keyStruct myPrivateKey, string signFilename, string signDirPath)
Description
CertVerifySIgnature verifies the latest digital signature of the source code file signFilename in directory signDirPath is valid and returns either an indication that the “signature is valid” or “signature is not valid”.  This accomplishes in one step what certHash() and certDecryptSignature() do in multiple steps. Note that the hashing algorithm is inferred by the length of the signed hash and thus need not be specified by the user.
Returns
CertVerifySignature returns TRUE if the signature is valid and FALSE otherwise.
Errors
If the signature file does not exist, certVerifySignature will report that the signature file is missing. 
If the signature file exists but does not contain the properly formatted signature and public key components, certVerifySignature will report that the signature file is corrupt.

[bookmark: _Toc319588877]6.9 certUnwrap 
Notional Syntax
boolean certUnwrap (string signatureFile, string signatureFileDirPath, string sourceFilename, string sourceDirPath, string newSignatureFile, string newSignatureDirPath, string newSourceFilename, string newSourceDirPath)
Description
CertUnwrap reverts a previously signed file to the last previously signed version.  CertUnwrap will remove the most recent signature for sourceFilename in sourceDirPath from the file signatureFile in directory signatureFileDirPath and the most recent set of changes in order to revert to the next most recent signature and file.  If newSignatureFile and newSignatureFileDirPath are non-NULL, certUnwrap places modified the signature file in newSignatureFile inside directory newSignatureDirPath instead of modifying the contents of signatureFile.   If sourceFilename and sourceDirPath non-Null, then the unwrapped file contents are placed in sourceFilename in sourceDirPath.
After the operation is complete, the user should run certverifysignature to ensure the files they are viewing is the previous version of source code and has a valid signature.
Returns
CertUnwrap returns TRUE if the unwrapping was successful and FALSE otherwise.
Errors
If the signature file does not contain a valid signature or is missing any components such as certificates or file differences, cerUnwrap will report that the unwrap operation could not be completed.
If only one of newSignatureFile and newSignatureFileDirPath is NULL, an error is generated.
If only one of sourceFilename and sourceDirPath is NULL, an error is generated.
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Annex A
(informative)
A possible method of operation
Annex A
(Informative)
A possible method of operation
This annex describes one possible way of using the interfaces specified in Clause 6 of this International Standard.
1. Publisher obtains a Code Signing Digital ID (Software Publishing Certificate) from a global certificate authority
(how one obtains a Code Signing Digital ID may be out of scope and might be better left to other standards bodies such as the World Wide Web Consortium (W3C))
A software publisher's request for certification is sent to the Certification Authority (CA).  It is expected that the CAs will have Web sites that walk the applicant through the application process.  Applicants will be able to look at the entire policy and practices statements of the CA.  The utilities that an applicant needs to generate signatures should also be available.
Digital IDs can be either issued to a company or an individual.  In either case, the global certificate authority must validate the identification of the company and applicant.  Validation for applicants would be in the form of a federally issued identification for applicants and a Dun & Bradstreet number.  Tables 1 and 2, respectively, contain the criteria for a commercial and individual code signer.
Proof of identification of an applicant must be made.  Simply trusting the applicant’s ID via a web site is insufficient.  Additional verification of the applicant’s ID should be commensurate with the application process for a federally issued ID, such as a passport.  Sending in a federally issued ID, such as a passport, to the CA would be sufficient for proof of identification.
The applicant must generate a key pair using either hardware or software encryption technology.  The public key is sent to the CA during the application process.  Due to the identity requirements, the private key must be sent by mail or courier to the applicant.
	Identification
	Applicants must submit their name, address, and other material along with a copy of their federally issued id that proves their identity as corporate representatives. Proof of identify requires either personal presence or registered credentials.

	Agreement
	Applicants must agree to not distribute software that they know, or should have known, contains viruses or would otherwise harm a user's computer or code.

	Dun & Bradstreet Rating
	Applicants must achieve a level of financial standing as indicated by a D-U-N-S number (which indicates a company's financial stability) and any additional information provided by this service. This rating identifies the applicant as a corporation that is still in business. (Other financial rating services are being investigated.) Corporations that do not have a D-U-N-S number at the time of application (usually because of recent incorporation) can apply for one and expect a response in less than two weeks.


Table 1: Criteria for Commercial Code Publishing Certificate

	Identification
	Applicants must submit their name, address, and other material along with a copy of their federally issued id that proves their identity as citizens of the country where they reside.  Information provided will be checked against an independent authority to validate their credentials.

	Agreement
	Applicants must agree that they cannot and will not distribute software that they know, or should have known contains viruses or would otherwise maliciously harm the user's computer or code.

	
	


Table 2: Criteria for Individual Code Publishing Certificate

2. Publisher develops code or modifies previously signed code

3. Calculate a hash of the code and create a new file containing the encrypted hash, the publisher's certificate and the code
A one-way hash of the code is produced using certsigncode, thereby signing the code.  The hash and publisher’s certificate are inserted stored in a separate file.
In order to be able to verify the integrity of previously signed code, it must be possible to identify the responsible party for each section of code.  When new code modifies or in some way encapsulates previously signed code, the original code must be able to be identified so that its signature can be checked.  Therefore, iterative changes to code must be able to be reversed to identify previously signed versions.

4. The digitally signed file is transmitted to the recipient

5. The recipient produces a one-way hash of the code

6. Using the publisher's public key contained within the publisher's Digital ID and the digital signature algorithm, the recipient browser decrypts the signed hash with the sender’s public key

7. The recipient compares the two hashes
If the signed hash matches the recipient's hash, the signature is valid and the document is intact and hasn't been altered since it was signed.
Software that has multiple signings must be able to be “unwrapped” in order to recreate previously signed versions.  Iterative changes to code can be reversed to identify previously signed versions through the use of certunwrap.
[bookmark: _Toc319588879]
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