
ISO/IEC JTC 1/SC 22/WG 23 N 0290
Proposed revision of “6.26 Dead and Deactivated Code [XYQ]”

Date 13 December 2010
Contributed by David Keaton
Original file name
Notes

ISO/IEC JTC 1/SC 22/WG 23 N 0290

6.26 Dead and Deactivated Code [XYQ]

6.26.1 Description of application vulnerability

Dead and Deactivated code (the distinction is addressed in 6.35XYQ.3) is code that exists in
the executable, but which can never be executed, either because there is no call path that
leads to it (for example, a function that is never called), or the path is semantically infeasible
(for example, its execution depends on the state of a conditional that can never be achieved).

Dead and Deactivated code ismay be undesirable because it indicatesmay indicate the
possibility of a coding error and because it may provide a "jump" target for an intrusion.

Also covered in this vulnerability is code which is believed to be dead, but which is
inadvertently executed.

6.26.2 Cross reference

CWE:
561. Dead Code
570. Expression is Always False
571. Expression is Always True

JSF AV Rules: 127 and 186
MISRA C 2004: 2.4 and 14.1
MISRA C++ 2008: 0-1-1 to 0-1-10, 2-7-2, and 2-7-3
CERT C guidelines: MSC07-C and MSC12-C
DO‐178B/C

6.26.3 Mechanism of failure

DO‐178B defines Dead and Deactivated code as:
• Dead code – Executable object code (or data) which... cannot be executed (code) or used

(data) in an operational configuration of the target computer environment and is not
traceable to a system or software requirement.

• Deactivated code – Executable object code (or data) which by design is either (a) not
intended to be executed (code) or used (data), for example, a part of a previously
developed software component, or (b) is only executed (code) or used (data) in certain
configurations of the target computer environment, for example, code that is enabled by a
hardware pin selection or software programmed options.

Dead code is code that exists in an application, but which can never be executed, either
because there is no call path to the code (for example, a function that is never called) or
because the execution path to the code is semantically infeasible, as in

integer i = 0;
if (i == 0)
 then fun_a();
 else fun_b();

fun_b is dead code, as only fun_a can ever be executed.

The presence of dead code is not in itself an error, but begs the question why is it there?. Is
iIts presence may be an indication that the developer believed it to be necessary, but some

ISO/IEC JTC 1/SC 22/WG 23 N 0290

error means it will never be executed?. Or is there aThere may also be legitimate reasons for
its presence, for example:

• Defensive code, only executed as the result of a hardware failure.
• Code that is part of a library not required in this application.
• Diagnostic code not executed in the operational environment.

• Code that is temporarily deactivated but may be needed soon. This may occur
as a way to make sure the code is still accepted by the language translator
to reduce opportunities for errors when it is reactivated.

• Code that is made available so that it can be executed manually via a
debugger.

Such code may be referred to as “deactivated”. That is, dead code that is there by intent.

There is a secondary consideration for dead code in languages that permit overloading of
functions and other constructs that use complex name resolution strategies. The developer
may believe that some code is not going to be used (deactivated), but its existence in the
program means that it appears in the namespace, and may be selected as the best match for
some use that was intended to be of an overloading function. That is, although the developer
believes it is never going towill never be used, in practice it is used in preference to the
intended function.

6.26.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following
characteristics:

• Languages that allow code to exist in the executable that can never be
executed.

6.26.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• The developer should endeavour to remove, as a first resort and as far as
practical, dead code from an application unless its presence serves a purpose.

• When a developer identifies code that is dead because a conditional always
evaluates to the same value, this could be indicative of an earlier bug and additional
testing may be needed to ascertain why the same value is occurring.

• The developer should identify any dead code in the application, and provide
a justification (if only to themselves) as to why it is there.

• The developer should also ensure that any code that was expected to be
unused is actually recognized as dead code.

• The developer should apply standard branch coverage measurement tools and ensure by
100% coverage that all branches are neither dead nor deactivated

6.26.6 Implications for standardization

[None]

	ISO/IEC JTC 1/SC 22/WG 23 N 0290

