ISO/IEC JTC 1/SC 22/OWGV N 0150
Proposed rewrite of 6.18 of Editor's draft of PDTR 24772 [N0138]

Contributed by Larry Wagoner

26 September 2008

6.18.3 Mechanism of failure

A single fault could allow both an overflow and underflow of the array index. An index overflow exploit might use buffer overflow techniques, but this can often be exploited without having to provide "large inputs." Array index overflows can also trigger out-of-bounds read operations, or operations on the wrong objects; i.e., "buffer overflows" are not always the result. Unchecked array indexing, depending on its instantiation, can be responsible for any number of related issues. Most prominent of these possible flaws is the buffer overflow condition. Due to this fact, consequences range from denial of service, and data corruption, to arbitrary code execution. The most common condition situation leading to unchecked array indexing is the use of loop index variables as buffer indexes. If the end condition for the loop is subject to a flaw, the index can grow or shrink unbounded, therefore causing a buffer overflow or underflow. Another common situation leading to this condition is the use of a function's return value, or the resulting value of a calculation directly as an index in to a buffer. Unchecked array indexing can result in the corruption of relevant memory and perhaps instructions, lead to the program halting, if the values are outside of the valid memory area. If the memory corrupted is data, rather than instructions, the system mightl continue to function with improper values. If the corrupted memory can be effectively controlled, it may be possible to execute arbitrary code, as with a standard buffer overflow.

Language implementations might or might not statically detect out of bound access and generate a compile-time diagnostic. At runtime the implementation might or might not detect the out of bounds access and provide a notification at runtime. The notification might be treatable by the program or it might not be. Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is possible that the former is checked and detected by the implementation while the latter is not.The information needed to detect the violation might or might not be available depending on the context of use. (For example, passing an array to a subroutine via a pointer might deprive the subroutine of information regarding the size of the array.)
Aside from bounds checking, some languages have ways of protecting against out of bounds accessed. Some languages automatically extend the bounds of an array to accommodate accesses that might otherwise have been beyond the bounds. However, this may or may not match the programmer's intent and can mask errors. Some languages provide for whole array operations that may obviate the need to access individual elements thus preventing unchecked array accesses.
6.18.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages in which the size and bounds of arrays and their extents are statically determinable or dynamic. Some languages provide both capabilities.

· Languages that do not automatically bounds check array accesses.

· Languages that do not automatically extend the bounds of an array to accommodate array accesses.
6.18.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Include sanity checks to ensure the validity of any values used as 1 index variables.

· The choice could be made to use a language that is not susceptible to these issues.

· When available, use whole array operations whenever possible.

