6.x
NMP Pre-processor Directives

6.x.0
Status and history

2007-11-19, Edited by Benito

2007-10-15, Decided at OWGV meeting #6: “Write a new description, NMP about the use of preprocessors directives and the increased cost of static analysis and the readability difficulties. MISRA C:2004 rules in 19 and JSF rules from 4.6 and 4.7.
6.x.1
Description of application vulnerability

Pre-processor replacements happen before any source code syntax check, therefore there is no type checking – this is especially important in function-like macro parameters.

If great care is not taken in the writing of macros, the expanded macro can have an unexpected meaning. In many cases if explicit delimiters are not added around the macro text and around all macro arguments within the macro text unexpected expansion is the results.

Source code that relies heavily on complicated pre-processor directives may result in obscure and hard to maintain code since the syntax they expect is on many occasions different from the regular expressions programmers expect in the programming language that the code is written.
6.x.2
Cross reference

CWE: none

Holtzmann-8

JSF: 26, 27, 28, 29, 30, 31, and 32

MISRA: 19.7, 19.8, and 19.9
6.x.3
Categorization

See clause 5.?.
6.x.4
Mechanism of failure

Readability and maintainability is greatly increased if the language features available in the programming language are used instead of a pre-processor directive.

Static analysis while can identify many problems early; heavy use of the pre-processor can limit the effectiveness of many static analysis tools.

In many cases where complicated macros are used, the program does not do what is intended. For example:

define a macro as follows,

	
	#define CD(x, y) (x + y - 1) / y

whose purpose is to divide. Then suppose it is used as follows

	
	a = CD (b & c, sizeof (int));

this will normally expands into

	
	a = (b & c + sizeof (int) - 1) / sizeof (int);

which most times will not do what is intended. Defining the macro as

	
	#define CD(x, y) ((x) + (y) - 1) / (y)

will normally provide the desired result.
6.x.5
Range of language characteristics considered

· Unintended groupings of arithmetic statements
· Improperly nested language constructs

· Cascading macros

· Duplication of side effects

· Macros that reference themselves

· Nested macro calls

· Reliance on complicated macros

6.x.6
Avoiding the vulnerability or mitigating its effects

All functionality that can be accomplished without the use of a pre-processor should be used before using a pre-processor.

6.x.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.x.8
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

