6.x REU Termination strategy
6.x.0 Status and history

NEEDS TO BE WRITTEN
2007-10-15 Decided at OWGV meeting 6: Write a new description, REU, that discusses abnormal termination of programs, fail-soft, fail-hard, fail-safe. You need to have a strategy and select appropriate language features and library components. Deal with MISRA 2004 rule 20.11.

6.x.1 Description of application vulnerability

Expectations that a system will be dependable are based on the confidence that the system will operate as expected and not fail in normal use. The dependability of a system can be measured through the component parts reliability, availability, safety and security.

Fault tolerance

Reliability is often defined as a measure of how well a system operates within its specifications. For, example, fault tolerance can enable a variety of alternatives, including real-time, fail-safe, fail-soft, fail-fast, and fail-secure modes of operation. Availability despite system failures must be tailored to a variety of specific needs, with different techniques used for different functionality, as appropriate. It must address unintentional and malicious changes in the operating environment, including those that result from power outages and power variations, earthquakes, floods, and other natural disasters. There should be no serious weak links that are vulnerable to perceived threats, and system design should be defensive enough that it also addresses some of the more serious unanticipated threats.

Performance. Particularly in real-time systems, performance tends to be a critical requirement. In some cases, adequate performance may be critical to the survivability of the services provided by an enterprise or an application. On the other hand, in most cases, performance is itself dependent on survivability and availability -- if a system is not survivable, adequate performance cannot be achieved. To avoid this apparent interdependence loop, it would be possible to redefine performance requirements as being meaningfully specified only when the relevant systems are available. However, this seems to be a cop-out, because of the need to ensure adequate performance that is itself critical to survivability.
When a fault is detected, there are many ways in which a system can react. These are:
Fail soft

Reaction to a fault: keep on working with faults present, but with reduced performance
Types of systems that generally fail in this manner: robust, high availability systems such as telephone switching centers, transaction processing, e-commerce

Methods used to fail in this manner: HW/info redundancy, backup schemes, hot-swap, recovery
Fail hard (fail fast, fail stop)
Reaction to a fault: Cause the system to immediately halt

Types of systems that generally fail in this manner:

Methods used to fail in this manner:
Fail safe
Reaction to a fault: make no effort to meet normal operational requirements, instead aim to limit the danger or damage caused by the fault
Types of systems that generally fail in this manner: sound, high-integrity systems such as flight controls, nuclear plant, medical monitoring, traffic signals, elevators
Methods used to fail in this manner: replication with voting, time redundancy, design diversity
Fail slow
Reaction to a fault:

Types of systems that generally fail in this manner: rugged, high reliability, long-life systems such as spacecraft with multi-year missions, systems in inaccessible locations
Methods used to fail in this manner: replication (spares), error coding, monitoring, shielding
Fail silent

Reaction to a fault: a self checking node that either functions correctly or stops functioning after an internal failure is detected
Types of systems that generally fail in this manner:

Methods used to fail in this manner:

Fail secure

Reaction to a fault: maintain maximum security when a fault is detected
Types of systems that generally fail in this manner:

Methods used to fail in this manner:
<Replace this with a brief description of the application vulnerability. It should be a short paragraph.>
6.x.2 Cross reference

MISRA 2004: 20.11
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

The reaction to a fault in a system can depend on the criticality of the part in which the fault originates. Having inconsistent reactions to a fault, such as the fault reaction to a crypto fault, can potentially be a vulnerability.
<Replace this with a brief description of the mechanism of failure. This description provides the link between the programming language vulnerability and the application vulnerability. It should be a short paragraph.>
6.x.5 Range of language characteristics considered

<Exception: This section is omitted from vulnerability descriptions in Clause 7. The subsequent subclauses are, of course, to be renumbered.>
This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· A strategy for fault handling should be decided. Consistency in fault handling should be the same with respect to critically similar parts.
· A multi-tiered approach of fault prevention, fault detention and fault reaction should be used.
<Replace this with a bullet list summarizing various ways in which programmers can avoid the programming language vulnerability, break the chain of causation to the application vulnerability, or contain the bad effects of the application vulnerability. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means.>

6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>
