6.6
XYL Memory Leak

6.6.0
Status and history

REVISE: Steve Michell
2007-12-14, considered at OWGV meeting 7. Changes needed as noted below.

2007-08-03, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.6.1
Description of application vulnerability

[Note: Possibly separate item: Attempting to allocate storage and not checking if it is successful.]
The software does not sufficiently track and release allocated memory after it has been used, which slowly consumes remaining memory. This is often triggered by improper handling of malformed data or unexpectedly interrupted sessions.

6.6.2
Cross reference

CWE:

401. Memory Leak

6.6.3
Categorization

See clause 5.?.
Group: Dynamic Allocation
6.6.4
Mechanism of failure

If an attacker can determine the cause of the memory leak, an attacker may be able to cause the application to leak quickly and therefore cause the application to crash.

6.6.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that can dynamically allocate memory.

· Languages that do not have the capability for garbage collection to collect dynamically allocated memory that is no longer reachable.
6.6.6
Avoiding the vulnerability or mitigating its effects

[Revise to remove names of specific products. Also, remark upon the difficulty in testing and suggest that specialized tooling or testing techniques may be helpful.]

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Garbage collectors attempts to reclaim memory that will never be used by the application again. Some garbage collectors are part of the language while others are add-ons such as Boehm-Demers-Weiser Garbage Collector or Valgrind. Again, this is not a complete solution as it is not 100% effective, but it can significantly reduce the number of memory leaks.

· Allocating and freeing memory in different modules and levels of abstraction burdens the programmer with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a block of memory has been allocated or freed, leading to memory leaks. To avoid these situations, it is recommended that memory be allocated and freed at the same level of abstraction, and ideally in the same code module.
· Memory leaks can be eliminated by avoiding the use of dynamically allocated storage entirely.
Note: some consider this to be a design issue rather than a coding issue.
6.6.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.6.8
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

