6.x BVQ Unspecified Functionality
6.x.0 Status and history

2008-01-02: Updated by Clive Pygott

2007-12-13: OWGV Meeting 7: created this vulnerability to be based largely on Clive's N0108.
6.x.1 Description of application vulnerability

‘Unspecified functionality’ is code that may be executed, but whose behaviour does not contribute to the requirements of the application. Whilst this may be no more than an amusing ‘Easter Egg’, like the flight simulator in Microsoft’s Excel 97, it does raise questions about the level of control of the development process.

In a security-critical environment particularly, could the developer of an application have included a ‘trap-door’ to allow illegitimate access to the system on which it is eventually executed, irrespective of whether the application has obvious security requirements or not?

6.x.2 Cross reference

XYQ: Dead and Deactivated code. Dead and deactivated code is unnecessary code that exists in the binary but is never executed, whilst unspecified functionality is unnecessary code (as far as the requirements of the program are concerned) that exists in the binary and which may be executed.

6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

Unspecified functionality is not a software vulnerability per se, but more a development issue. In some cases, unspecified functionality may be added by a developer without the knowledge of the development organization (for example an aircraft auto-pilot that was programmed to fly around the developer’s home town). In other cases, typically Easter Eggs, the functionality is unspecified as far as the user is concerned (nobody buys a spreadsheet expecting to find it includes a flight simulator), but is specified by the development organization. In effect they only reveal a subset of the program’s behaviour to the users.

In the first case, one would expect a well managed development environment to discover the additional functionality during validation and verification. In the second case, the user is relying on the supplier not to release harmful code.

In effect, a program’s requirements are ‘the program should behave in the following manner …. and do nothing else’. The ‘and do nothing else’ clause is often not explicitly stated, and can be difficult to demonstrate.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to all languages.
6.x.6 Avoiding the vulnerability or mitigating its effects

End user’s can avoid the vulnerability or mitigate its ill effects in the following ways:
· programs that are to be used in critical applications should come from a developer with a recognized and audited development process. For example: ISO9001 or CMM.

· the development process should generate documentation showing traceability from source code to requirements, in effect answering ‘why is this unit of code in this program?’. Where unspecified functionality is there for a legitimate reason (e.g. diagnostics required for developer maintenance or enhancement), the documentation should also record this. It is not unreasonable for customers of bespoke critical code to ask to see such traceability as part of their acceptance of the application

6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>
