6.x MEM Deprecated Language Features
6.x.0 Status and history

2008-01-10 Minor edit by Larry Wagoner
2007-12-15 Minor editorial cleanup by Jim Moore

2007-11-01 Edited by Larry Wagoner

2007-10-15 Created by OWG Meeting #6. The following content is planned:
Create a new description for deprecated features, MEM. This might be focal point of a discussion of what to do when your language standard changes out from underneath you. Include legacy features for which better replacements exist. Also, features of languages (like multiple declarations on one line) that commonly lead to errors or difficulties in reviewing. The generalization is that experts have determined that use of the feature leads to mistakes.

Include MISRA 2004 rules 1.1, 4.2, 20.10; JSF C++ rules 8, 152. <20.10 is undefined behavior, doesn’t belong here>
6.x.1 Description of application vulnerability

All code should conform to the current standard for the respective language. In reality though, a language standard may change during the creation of a software system or suitable compilers and development environments may not be available for the new standard for some period of time after the standard is published. In order to smooth the process of evolution, features that are no longer needed or which serve as the root cause of or contributing factor for safety or security problems are often deprecated to temporarily allow their use but to indicate that those features will be removed in the future. The deprecation of a feature is a strong indication that it should not be used. Other features, although not formally deprecated, are rarely used and there exists other alternative and more common ways of expressing the same function. Use of these rarely used features can lead to problems when others are assigned the task of debugging or modifying the code containing those features.
6.x.2 Cross reference

CWE:
JSF: 8, 152

MISRA 2004: 1.1, 4.2
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

Most languages evolve over time. Sometimes new features are added making other features extraneous. Languages may have features that are frequently the basis for security or safety problems. Some features may no longer be needed since there are better or more commonly accepted ways of accomplishing the same thing. The deprecation of these features indicates that there is a better way of accomplishing the desired functionality. However, there is always a time lag between the acknowledgement that a particular feature is the source of safety or security problems, the decision to remove or replace the feature and the generation of warnings or error messages by compilers that the feature shouldn’t be used. Given that software systems can take many years to develop, it is possible and even likely that a language standard will change causing some of the features used to be suddenly deprecated. Modifying the software can be costly and time consuming to remove the deprecated features. However, if the schedule and resources permit, this would be prudent as future vulnerabilities may result from leaving the deprecated features in the code. Ultimately the deprecated features will likely need to be removed when the features are removed. Removing the features sooner rather than later would be the best course of action to take.
6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· All languages

· that have standards, though some only have de facto standards.

· that evolve over time and as such could potentially have deprecated features at some point.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Rarely used or complicated features of a language should not be used as peer review and future maintenance could inadvertently introduce vulnerabilities due to a lack of complete understanding of obscure features of a language. The skill level of those who eventually modify or maintain the code or reuse the code cannot be guaranteed. Keeping constructs simple can make future code debugging, reuse and enhancements easier and more successful.

· Adhere to the latest published standard for which a suitable complier and development environment is available

· Avoid the use of deprecated features of a language

· Avoid the use of complicated features of a language

· Avoid the use of rarely used constructs that could be difficult for entry level maintenance personnel to understand

· Stay abreast of language discussions in language user groups and standards groups on the Internet. Discussions and meeting notes will give an indication of problem prone features that should not be used or used with caution.

6.x.7 Implications for standardization

· Obscure language features for which there are commonly used alternatives should be considered for removal from the language standard.

· Complicated features which have been routinely been found to be the root cause of safety or security vulnerabilities or which are routinely disallowed in software guidance documents should be considered for removal from the language standard.

6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>
