6.x AMV Overlapping memory
<No text should appear here—in the space between 6.x and 6.x.1. This is simply an explanation of the header.>

<Exception: Some vulnerabilities—those judged to be application vulnerabilities rather than programming language vulnerabilities—will have a clause number of 7 rather than 6.>

<The number "x" depends on the order in which the vulnerabilities are listed in Clause 6. It will be assigned by the editor.>

<The "unique immutable identifier" is intended to provide an enduring identifier for each of the vulnerability descriptions, even if their order is changed in the document. It is invented by the proposer as a unique three-letter alphabetic code; airport codes work nicely. A new code is to be manufactured when proposed vulnerability descriptions are merged or subdivided.>

<The "short title" should be a noun phrase summarizing the description of the application vulnerability.> 
6.x.0 Status and history

NEEDS TO BE WRITTEN
2007-10-15: OWGV meeting 6 decided: Write a new description, AMV. Overlapping or reuse of memory provides aliasing effects that are extremely difficult to analyze. Attempt to use alternative techiques when possible. If essential to the function of the program, document it clearly and use the clearest possible approach to implementing the function. (This includes C unions, Fortran common.) Discuss the difference between discriminating and non-discriminating unions. Discuss the possibility of computing the discriminator from the undiscriminated part of the union. Deal with unchecked conversion (as in Ada) and reinterpret casting (in C++). Deal with MISRA 2004 rules 18.2, 18.3, 18.4; JSF rules 153, 183.
6.x.1 Description of application vulnerability

<Replace this with a brief description of the application vulnerability. It should be a short paragraph.>
6.x.2 Cross reference

CWE: <Replace this one or more CWE identifiers—both number and short title. At a later date, other cross-references may be added.>
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

<Replace this with a brief description of the mechanism of failure. This description provides the link between the programming language vulnerability and the application vulnerability. It should be a short paragraph.>
6.x.5 Range of language characteristics considered

<Exception: This section is omitted from vulnerability descriptions in Clause 7. The subsequent subclauses are, of course, to be renumbered.>
This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the programming language vulnerability, break the chain of causation to the application vulnerability, or contain the bad effects of the application vulnerability. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means.>

6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>
