6.<x> XYW Buffer Overflow in Stack
[Consider merging this with XZB.]
6.x.0 Status and history

PENDING
2007-07-30, Edited by Larry Wagoner
2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
6.<x>.1 Description of application vulnerability

A buffer overflow in the stack condition occurs when the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function). 

6.<x>.2 Cross reference

CWE: 

121. Stack Overflow 

6.<x>.3 Categorization

See clause 5.?. 
Group: Array Bounds
6.<x>.4 Mechanism of failure

There are generally several security-critical data on an execution stack that can lead to arbitrary code execution. The most prominent is the stored return address, the memory address at which execution should continue once the current function is finished executing. The attacker can overwrite this value with some memory address to which the attacker also has write access, into which he places arbitrary code to be run with the full privileges of the vulnerable program. Alternately, the attacker can supply the address of an important call, for instance the POSIX system() call, leaving arguments to the call on the stack. This is often called a return into libc exploit, since the attacker generally forces the program to jump at return time into an interesting routine in the C standard library (libc). Other important data commonly on the stack include the stack pointer and frame pointer, two values that indicate offsets for computing memory addresses. Modifying those values can often be leveraged into a "write-what-where" condition.

Stack overflows can instantiate in return address overwrites, stack pointer overwrites or frame pointer overwrites.  They can also be considered function pointer overwrites, array indexer overwrites or write-what-where condition, etc.

Buffer overflows can be exploited for a variety of purposes.  A relatively easy way of exploitation is to overflow a buffer so it leads to a crash. Other attacks leading to lack of availability are possible, including putting the program into an infinite loop.  Buffer overflows often can be used to execute arbitrary code.  When the consequence is arbitrary code execution, this can often be used to subvert any other security service.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:
· Some languages or compilers perform or implement automatic bounds checking.
· The size and bounds of arrays and their extents might be statically determinable or dynamic. Some languages provide both capabilities. 

· Language implementations might or might not statically detect out of bound access and generate a compile-time diagnostic. 

· At run-time the implementation might or might not detect the out of bounds access and provide a notification at run-time. The notification might be treatable by the program or it might not be. 

· Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is possible that the former is checked and detected by the implementation while the latter is not. 

· The information needed to detect the violation might or might not be available depending on the context of use. (For example, passing an array to a subroutine via a pointer might deprive the subroutine of information regarding the size of the array.) 

· Some languages provide for whole array operations that may obviate the need to access individual elements. 

· Some languages may automatically extend the bounds of an array to accommodate accesses that might otherwise have been beyond the bounds. (This may or may not match the programmer's intent.)

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Although not a complete solution, an abstraction library to abstract away risky APIs can be used.
· Compiler-based canary mechanisms such as StackGuard, ProPolice and the Microsoft Visual Studio /GS flag can be used.  However, unless automatic bounds checking is provided, it is not a complete solution.

· OS-level preventative functionality can also be used.
· 







6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004




