6.x NAI Choice of Clear Names

6.x.0 History

2008-01-10 Minor edit by Larry Wagoner

2007-12-13, Considered at OWGV 7: Minor changes suggested
2007-11-26 Edited by Larry Wagoner

2007-10-15 May need more work by Steve Michell to incorporate this decision of OWGV meeting 6: Write a new description, NAI, on issues in selecting names. Assign this one to Steve Michell. Look at Derek's paper on the subject. Deal with JSF rules 48-56.

2007-10-03 Edited by OWGV Meeting #6

2007-10-02 Contributed by Steve Michell

6.x.1 Description

Humans sometimes choose similar or identical names for objects, types, aggregates of types, subprograms and modules. They tend to use characteristics that are specific to the programming language to aid in this effort, such as use of mixed-casing, underscores and periods, or use of plural and singular forms to support the separation of items with similar names. Similarly, development conventions sometimes use casing (e.g. all uppercase for constants, etc).

Human cognitive problems occur when different (but similar) objects, subprograms, types, or constants differ in name so little that human reviewers are unlikely to distinguish between them, or when the system maps such entities to a single entity.

Conventions such as the use of text case, and singular/plural distinctions may work in small and medium projects, but there are a number of significant issues to be considered:

· Large projects often have mixed languages and such conventions are often language-specific
· Today's identifiers can be international and some language character sets have different notions of casing and plurality
· Different word-forms tend to be language-specific (e.g. English) and may be meaningless to humans from other dialects

An important general issue is the choice of names that differ from each other negligibly (in human terms), for example by differing by only underscores, (none, "_" "__", ...), plurals ("s"), visually identical letters (such as "l" and "1", "O" and "0"), or underscores/dashes ("-","_"). [There is also an issue where identifiers appear distinct to a human but identical to the computer, e.g. FOO, Foo, and foo in some languages. Character sets extended with diacritical marks and non-Latin characters may offer additional problems. Some languages or their implementations may pay attention to only the first n characters of an identifier.
There are a couple of similar situations that may occur, but which are notably different. This is different than overloading or overriding where the same name is used intentionally (and documented) to access closely linked sets of subprograms. This is also different than using reserved names which can lead to a conflict with the reserved use and the use of which may or may not be detected at compile time.
Although most such mistakes are unintentional, it is plausible that such mistakes can be intentional, if masking surreptitious behaviour is a goal.

0.2 Cross Reference

JSF-C++ : Rules 48-56
0.3 Categorization

0.4 Mechanism of Failure

· Calls to the wrong subprogram or references to the wrong data element (that was missed by human review) can cause unintended behaviour. Language processors will not make a mistake in name translation, but human cognition limitations may cause humans to misunderstand, and therefore may be easily missed in human reviews.

0.5 Range of Language Characteristics Considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

·
· Languages with relatively flat name spaces will be more susceptible. Systems with modules, classes, packages can qualify names to disambiguate names that originate from different parents.

· Languages that provide preconditions, postconditions, invariances and assertions or redundant coding of subprogram signatures help to ensure that the subprograms in the module will behave as expected, but do nothing if different subprograms are called.

· L and were considered
0.6 Avoiding the Vulnerability or Mitigating its Effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Implementers can create coding standards that provide meaningful guidance on name selection and use. Good language specific guidelines could eliminate most problems.

· Use static analysis tools to show the target of calls and accesses and to produce alphabetical lists of names. Human review can then often spot the names that are sorted at an unexpected location or which look almost identical to an adjacent name in the list.

· Use static tools (often the compiler) to detect declarations that are unused.
· Use languages with a requirement to declare names before use or use available tool or compiler options to enforce such a requirement.

0.7 Implications for Standardization

· Languages that do not require declarations of names should consider providing an option that does impose that requirement.
0.8 References

Jones, Derek, “Some proposed language vulnerability guidelines” Submitted to the December 2006 Washington, D.C. meeting of the ISO/IEC SC22 OWGV
JSF C++

