6.16
XYZ Unchecked Array Indexing

Suggest merging with XYX-Boundary Beginning Violation which also deals with indexing into an array. The name of the merged vulnerability to be “Unchecked Array Indexing”.
6.16.0
Status and history

2008-02-13, Edited by Derek Jones

2007-12-15, status revised, Jim Moore
2007-08-04, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.16.1
Description of application vulnerability

Unchecked array indexing occurs when an unchecked value is used as an index into a buffer.

6.16.2
Cross reference

CWE:

129. Unchecked Array Indexing

6.16.3
Categorization

See clause 5.?.

Group: Array Bounds

6.16.4
Mechanism of failure

A single fault could allow both an overflow and underflow of the array index. An index overflow exploit might use buffer overflow techniques, but this can often be exploited without having to provide "large inputs." Array index overflows can also trigger out-of-bounds read operations, or operations on the wrong objects; i.e., "buffer overflows" are not always the result.

Unchecked array indexing, depending on its instantiation, can be responsible for any number of related issues. Most prominent of these possible flaws is the buffer overflow condition. Due to this fact, consequences range from denial of service, and data corruption, to full blown arbitrary code execution. The most common condition situation leading to unchecked array indexing is the use of loop index variables as buffer indexes. If the end condition for the loop is subject to a flaw, the index can grow or shrink unbounded, therefore causing a buffer overflow or underflow. Another common situation leading to this condition is the use of a function's return value, or the resulting value of a calculation directly as an index in to a buffer.

Unchecked array indexing will very likely result in the corruption of relevant memory and perhaps instructions, leading to a crash, if the values are outside of the valid memory area. If the memory corrupted is data, rather than instructions, the system will continue to function with improper values. If the memory corrupted memory can be effectively controlled, it may be possible to execute arbitrary code, as with a standard buffer overflow.

6.16.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· The size and bounds of arrays and their extents might be statically determinable or dynamic. Some languages provide both capabilities.

· Language implementations might or might not statically detect out of bound access and generate a compile-time diagnostic.

· At run-time the implementation might or might not detect the out of bounds access and provide a notification at run-time. The notification might be treatable by the program or it might not be.

· Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is possible that the former is checked and detected by the implementation while the latter is not.

· The information needed to detect the violation might or might not be available depending on the context of use. (For example, passing an array to a subroutine via a pointer might deprive the subroutine of information regarding the size of the array.)

· Some languages provide for whole array operations that may obviate the need to access individual elements.

· Some languages may automatically extend the bounds of an array to accommodate accesses that might otherwise have been beyond the bounds. (This may or may not match the programmer's intent.)

6.16.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Include sanity checks to ensure the validity of any values used as index variables. In loops, use greater-than-or-equal-to, or less-than-or-equal-to, as opposed to simply greater-than, or less-than compare statements.

· The choice could be made to use a language that is not susceptible to these issues

6.16.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.16.8
Bibliography

<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

