7.6
XYT Cross-site Scripting

7.6.0
Status and History

2007-08-04, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
7.6.1
Description of application vulnerability

Cross-site scripting (XSS) weakness occurs when dynamically generated web pages display input, such as login information, that is not properly validated, allowing an attacker to embed malicious scripts into the generated page and then execute the script on the machine of any user that views the site. If successful, Cross-site scripting vulnerabilities can be exploited to manipulate or steal cookies, create requests that can be mistaken for those of a valid user, compromise confidential information, or execute malicious code on the end user systems for a variety of nefarious purposes. 

7.6.2
Cross reference

CWE: 

80. Basic XSS
81. XSS in error pages

82. Script in IMG tags
83. XSS using Script in Attributes
84. XSS using Script Via Encoded URI Schemes
85. Doubled character XSS manipulators, e.g. '<<script'
86. Invalid Character in Identifiers
87. Alternate XSS syntax 

7.6.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

7.6.4
Mechanism of failure

Cross-site scripting (XSS) vulnerabilities occur when an attacker uses a web application to send malicious code, generally JavaScript, to a different end user. When a web application uses input from a user in the output it generates without filtering it, an attacker can insert an attack in that input and the web application sends the attack to other users. The end user trusts the web application, and the attacks exploit that trust to do things that would not normally be allowed. Attackers frequently use a variety of methods to encode the malicious portion of the tag, such as using Unicode, so the request looks less suspicious to the user.

XSS attacks can generally be categorized into two categories: stored and reflected. Stored attacks are those where the injected code is permanently stored on the target servers in a database, message forum, visitor log, and so forth. Reflected attacks are those where the injected code takes another route to the victim, such as in an email message, or on some other server. When a user is tricked into clicking a link or submitting a form, the injected code travels to the vulnerable web server, which reflects the attack back to the user's browser. The browser then executes the code because it came from a 'trusted' server. For a reflected XSS attack to work, the victim must submit the attack to the server. This is still a very dangerous attack given the number of possible ways to trick a victim into submitting such a malicious request, including clicking a link on a malicious Web site, in an email, or in an inner-office posting.

XSS flaws are very likely in web applications, as they require a great deal of developer discipline to avoid them in most applications. It is relatively easy for an attacker to find XSS vulnerabilities. Some of these vulnerabilities can be found using scanners, and some exist in older web application servers. The consequence of an XSS attack is the same regardless of whether it is stored or reflected. 

The difference is in how the payload arrives at the server. XSS can cause a variety of problems for the end user that range in severity from an annoyance to complete account compromise. The most severe XSS attacks involve disclosure of the user's session cookie, which allows an attacker to hijack the user's session and take over their account. Other damaging attacks include the disclosure of end user files, installation of Trojan horse programs, redirecting the user to some other page or site, and modifying presentation of content.

Cross-site scripting (XSS) vulnerabilities occur when:
 1. Data enters a Web application through an untrusted source, most frequently a web request.
 2. The data is included in dynamic content that is sent to a web user without being validated for malicious code.
The malicious content sent to the web browser often takes the form of a segment of JavaScript, but may also include HTML, Flash or any other type of code that the browser may execute. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data like cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. 

Cross-site scripting attacks can occur wherever an untrusted user has the ability to publish content to a trusted web site. Typically, a malicious user will craft a client-side script, which — when parsed by a web browser — performs some activity (such as sending all site cookies to a given E–mail address). If the input is unchecked, this script will be loaded and run by each user visiting the web site. Since the site requesting to run the script has access to the cookies in question, the malicious script does also. There are several other possible attacks, such as running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as trustworthy; cookie theft is however by far the most common. All of these attacks are easily prevented by ensuring that no script tags — or for good measure, HTML tags at all — are allowed in data to be posted publicly.

Specific instances of XSS are:
  'Basic' XSS involves a complete lack of cleansing of any special characters, including the most fundamental XSS elements such as "<", ">", and "&".
 
  A web developer displays input on an error page (e.g. a customized 403 Forbidden page). If an attacker can influence a victim to view/request a web page that causes an error, then the attack may be successful.

  A Web application that trusts input in the form of HTML IMG tags is potentially vulnerable to XSS attacks. Attackers can embed XSS exploits into the values for IMG attributes (e.g. SRC) that is streamed and then executed in a victim's browser.  Note that when the page is loaded into a user's browsers, the exploit will automatically execute.

  The software does not filter "javascript:" or other URI's from dangerous attributes within tags, such as onmouseover, onload, onerror, or style.

  The web application fails to filter input for executable script disguised with URI encodings.

  The web application fails to filter input for executable script disguised using doubling of the involved characters.

  The software does not strip out invalid characters in the middle of tag names, schemes, and other identifiers, which are still rendered by some web browsers that ignore the characters.

  The software fails to filter alternate script syntax provided by the attacker. 

Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post unregulated material to a trusted web site for the consumption of other valid users.  The most common example can be found in bulletin-board web sites which provide web based mailing list-style functionality.  The most common attack performed with cross-site scripting involves the disclosure of information stored in user cookies.  In some circumstances it may be possible to run arbitrary code on a victim's computer when cross-site scripting is combined with other flaws.

7.6.5
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Carefully check each input parameter against a rigorous positive specification (white list) defining the specific characters and format allowed.

· All input should be sanitized, not just parameters that the user is supposed to specify, but all data in the request, including hidden fields, cookies, headers, the URL itself, and so forth.

· A common mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site.

· Data is frequently encountered from the request that is reflected by the application server or the application that the development team did not anticipate. Also, a field that is not currently reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.
7.6.6
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

7.6.7
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

