6.15
XZH Off-by-one Error

6.15.0
Status and history

IN

2007-12-28, Edited by Stephen Michell

2007-08-04, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-19, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.15.1
Description of application vulnerability

A product uses an incorrect maximum or minimum value that is 1 more or 1 less than the correct value. This usually arises from one of a number of situations where the bounds as understood by the developer differ from the design, such as;

a) confusion between the need for “<” and “<=” or “>” and “>=” in a test

b) confusion as to the sentinals (start point and end point) for an algorithm, such as beginning an algorithm at 1 when the underlying structure is indexed from 0, beginning an algorithm at 0 when the underlying structure is indexed from 1 (or some other start point) or using the length or a structure as the count mechanism instead of the sentinal values

These issues arise from mistakes in mapping the design into a particular language, in moving between languages (such as between C-based languages where all arrays start at 0 and Pascal-based languages where all arrays start at 1 or Ada where all bounds are specifiable), and when exchanging data between languages with different default array sentinal values.

The issue also can arise in more complex algrithms where relationships exist between components, and the existence of a sentinal value changes the conditions of the test.

The existence of this possible flaw can also be a serious security hole as it can permit someone to serrupticiously provide an unused location (such as 0 or the last element) that can be used for undocumented featurs or hidden channels).

6.15.2
Cross reference

CWE:

193. Off-by-one Error

6.15.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

6.15.4
Mechanism of failure

An off-by-one error could lead to.

a) an out-of bounds access to an array (buffer overflow),

b) an incomplete comparisons and calculation mistakes,

c) a read from the wrong memory location, or

d) an incorrect conditional.
Such incorrect accesses can cause calculation errors or references to illegal locations, resulting in potentially unbounded behaviour.

Off-by-one errors are not exploited as often in attacks because they are difficult to identify and exploit externally, but the calculation errors and boundary-condition errors can be severe.
6.15.5
Applicable Language Characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

· Many languages have mechanisms to help avoid mistakes in bounding array accesses correctly, e.g. methods to obtain the actual bounds of an array.

· Some languages provide mechanisms such as iterators or whole array operations to access whole arrays without explicitly naming the sentinal values
· Some languages provide mechanisms to reference key array elements and properties, such as first, last, next, previous and length that help programmers avoid off-by-one errors.
· Most languages provide named constants for sentinals (including the lower bound) whose use in in iterators and bounds checks dramatically reduces errors of this type.
· Some languages start all arrays at the 0th element, some at the 1st element and some permit programmer-specified bounds.
· Some language provide iterators that work on the specific structure that owns the iterator
6.15.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Off-by-one errors are a common defect that is also a code quality issue As with most quality issues, a systematic development process, use of development/analysis tools and thorough testing are all common ways of preventing errors, and in this case, off-by-one errors.

Where references are being made to structure indices and the languages provide ways to specify the whole structure or the starting and ending indices explicitly (eg Ada provides xxx'First and xxx'Last for each dimension), these should be used always. Where the language doesn't provide these, constants can be declared and used in preference to numeric literals.

const int str_first = 0;
const int str_last = 99;
const int str_length = 100;
char str[str_last];
for (i = str_first; i <= str_last; i++) {... do stuff}

Coding standards can be written such that either the sentinal values or the length of all arrays is used. Ideally length should be a calculated function of the indices to avoid interpretation errors.
6.15.7
Implications for standardization

Languages can provide standard ways to access all elements in indexed structures without the need for numeric literals, as well as tests to ensure that algorithms cover the declared ranges of whole structures.

6.15.8
Bibliography

<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

