6.x BRS Leveraging experience and expertise (was Maintainability)
6.x.0 Status and history

REVISE: Tom Plum
2008-01-21, edited by Plum
2007-12-12, edited at OWGV meeting 7

2007-11-22, edited by Plum
2007-10: Assigned by OWG meeting 6: Write a new description, BRS, that says that guidelines for coding constructs should consider the capabilities of the review and maintenance audience as well as the writing audience, and that features that correlate with high error rates should be discouraged. Write another description, NYY, for self-modifying code that includes Java dynamic class libraries and DLLs. MISRA 12.10
6.x.1 Description of application vulnerability

Methodologies for developing critical software components (whether safety-critical, security-critical, mission-critical, etc.) will often require the participation of subject-matter experts, hardware engineers, human-factors engineers, safety officers, etc., in code reviews. This is one reason to develop and adopt guidelines to prohibit the use of language features which have been found to be obscure or misleading to this general audience.
Furthermore, the programmers who eventually maintain the system will often have less programming experience than the original developers; this provides another reason for the same type of prohibition.
And in any event, consistency in coding is desirable for its own sake, so empirical support is not necessarily needed for all guidelines.
Experienced developers may determine that certain language features or programming constructs have a strong correlation with high error rates. Therefore, guidelines for developing critical software will generally discourage the use of such features or constructs.

6.x.2 Cross reference

MISRA C: 12.5, 12.6, 12.10, and 13.2
CERT/CC guidelines: MSC 05-A, 30-C, 31-C.

6.x.3 Categorization

[tbd].

6.x.4 Mechanism of failure

[tbd]
6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to any languages.
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules itemized above from CERT/CC or MISRA C.

6.x.7 Implications for standardization

[tbd]
6.x.8 Bibliography
Hatton 17: Use of obscure language features
