6.x IHN Strong typing
6.x.0 Status and history

2007-12-07: Formatting changes and minor improvements made by Jim Moore
2007-10-15: OWGV Meeting 6 decided: Write a new description, IHN, to encourage strong typing but deal with performance implications. Use enumeration types when you intend to select from a manageably small set of alternatives. Deal with issues like char being implementation-defined in C. Discuss how one should introduce names (e.g. typedefs) to document typing decisions and check them with tools. Deal with MISRA 2004 rules 6.1, 6.2, 6.3; JSF rules 148, 183.
[For the convenience of reviewers, the applicable JSF C++ rules are quoted below:

[AV Rule 148 Enumeration types shall be used instead of integer types (and constants) to select from a limited series of choices. 

[Note: This rule is not intended to exclude character constants (e.g. ‘A’, ‘B’, ‘C’, etc.) from use as case labels. 

[Rationale: Enhances debugging, readability and maintenance. Note that a compiler flag (if available) should be set to generate a warning if all enumerators are not present in a switch statement. 

[AV Rule 183 Every possible measure should be taken to avoid type casting. 

[Rationale: Errors caused by casts are among the most pernicious, particularly because they are so hard to recognize. Strict type checking is your friend – take full advantage of it.]
6.x.1 Description of application vulnerability

<Replace this with a brief description of the application vulnerability. It should be a short paragraph.>
6.x.2 Cross reference

CWE:
MISRA 2004: 6.1, 6.2, 6.3

JSF C++: 148, 183
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

<Replace this with a brief description of the mechanism of failure. This description provides the link between the programming language vulnerability and the application vulnerability. It should be a short paragraph.>
6.x.5 Range of language characteristics considered

<Exception: This section is omitted from vulnerability descriptions in Clause 7. The subsequent subclauses are, of course, to be renumbered.>
This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the programming language vulnerability, break the chain of causation to the application vulnerability, or contain the bad effects of the application vulnerability. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means.>

6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
[1] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-10: 0-321-49362-1, Pearson Education, Boston, MA, 2008

[2] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0-471-10426-4, John Wiley & Sons, 1998
