
ISO/IEC JTC 1/SC 22/OWGV N 00990102, corrected

Annotations to N0099 made during Meeting #6 of OWGV

Date 3 October 2007, corrected 25 October 2007
Contributed by Derived from N0099
Original file name n0099.doc
Notes During the discussion of N0099 during Meeting #6, annotations were made to
the document. These annotations are valuable enough to be captured. Accordingly,
document N0102 was created. The annotations are shown as changes using "Track
Changes".

Proposal to the ISO/IEC Project 22.24772: Guidance for Avoiding
Vulnerabilities through Language Selection and Use

Date 29 September 2007
Contributed by Larry Wagoner
Original file name sc22_owgv_safety_proposal_v3.doc
Notes

Part 1: Reason for the Proposal

Document N0073 was a derivation of the security vulnerabilities observed in the wild to
actionable modifications in computer languages. The safety world, which overlaps
considerably with the security world with respect to vulnerabilities, deserves a similar
analysis.

This document will attempt a similar derivation from the real world to actionable
modifications in computer languages. It is expected that there will be some or even
considerable overlap with the observations seen in the security world. However, it is
expected that there will be additional recommendations unique to the safety world or
which have not been observed to a large enough degree in the security world.

Part 2: Derivation from Frequently Occurring Vulnerabilities to CWE
[Subsequent to Meeting #6 it was noted that this heading should read:
"Part 2: Derivation from a Measurement Based Safer Subset of ISO C"]

There doesn’t seem to be a central safety collection of observed problems for software
safety that is comparable to the CERT collection. There are a few popularly cited ones
such as the Therac-25, NASA Mars missions and Ariane-5. There are also some blogs
such as ACM Risks (http://catless.ncl.ac.uk/Risks) and IEEE Spectrum’s The Risk Factor
(http://blogs.spectrum.ieee.org/riskfactor/).

There are many safety guidelines in existence. Many, however, were generated with a
“gut feel.” Some are too vague or too “feel good” to be of practical use. Others are

Formatted: Indent: Left: 0 pt,
Hanging: 108 pt

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Font: (Default) Nimbus
Roman No9 L, (Asian) Nimbus Sans
L, 14 pt, Bold

heavily concentrated on requirements, design and documentation, all of which are outside
of the scope of this project. Any guidance that does not have an underlying empirical
basis is a distraction to the development of software and in the worst case can make
software less reliable than it would have been without the guidance.

One that focuses on the computer language is the “Guidelines for the Use of the C
Language in Vehicle Based Software” published by The Motor Industry Software
Reliability Association (MISRA). MISRA-C was originally published in 1998 as a set of
127 guidelines for using C in safety critical systems. The guidance was updated in 2004,
with the guidance renumbered, reorganized, modified and made consistent as a set of 141
rules. Vendors now sell tools that help organizations verify MISRA-C compliance.
MISRA-C is based on ISO 9899:1990 as amended by ISO/IEC 9899/COR1:1995,
AMD1:1995, and COR2:1996 which has been superseded by ISO/IEC 9899:1999.
MISRA-C is a good basis for actionable language guidance for the safety community.
For the purposes of SC22 OWGV, we will have to update and filter the rules to reflect the
changes made in C99.

MISRA C has also undergone analysis by some researchers. One of note is Les Hatton,
Chair in Forensic Software Engineering at the University of Kingston, UK. Hatton
proposes in [1] dividing rules into two categories:
 A – Rules that promote a common style
 B – Rules that promote avoidance of programming features that are thought to or
have caused problems

B rules can then be divided into two categories:
 B.1 – Rules whose violation is capable of being the root cause of a problem, but
of which an actual instance is lacking
 B.2 – Rules whose violation can be shown to be the root cause at least one known
failure

In [2] Hatton develops a small number of rules which avoid known faults. He bases them
on the same ISO C standard as MISRA C (that is, ISO/IEC 9899: 1990 (C90) that
includes the normative addedendum and two technical corrigenda from 1993-1995) and
for simplicity he refers to this as C94.

He states five goals in developing these rules:

 Every rule is associated with faults which appeared in the quoted surveys in his
paper

 Every rule covers as many of the fault modes as possible to reduce the total
number of rules

 Rules are easy to understand and as unambiguous as possible
 Rules are as non-contentious as possible to ease acceptance
 The totality of the rules cover the vast majority of the faults described in earlier
surveys

For the safety world, his rule development follows a similar pattern to how the rules were
derived from the security world and proposed in SC22 OWGV document N0073. His

rules will be stated below and then a cross-mapping will be made to the templates created
from N0073. Should any of his rules not be covered by an already existing template, then
a new template will need to be created for consideration.

The list of twenty rules:

1. S_GLOB: There shall be no dependence on any of the undefined features of ISO C
 This refers to the 97 items in Appendix G of C94, such as “all automatics shall
should be initialized before use,” “do not divide by zero,” and “expressions shall not
depend on evaluation order.”
2. F_PROT: All function calls and definitions shall be preceded by a new-style
prototype
3. F_COMP: All function call arguments and function definition parameters shall be
compatible with the corresponding arguments in the corresponding function declaration
 This would prevent a long being passed to a short or even to an unsigned short.
4. E_PREC: A boolean-valued sub-expression shall not appear next to a bit operator, an
assignment operator or a relational operator in a if or while expression
 This is a spin on the “thou shall put parenthesis around all expressions which
results in senseless situations (and programmer irritation with standards/guideline) such
as:
 x = (x + 5); instead of x = x + 5;
 It narrows the focus to situations such as:
 if (flags & bitmask != 0)
 where the programmer really meant
 if ((flags & bitmask) != 0)
5. E_SIDE: Every expression statement shall have at least one side-effect for any
execution path
 If a statement has no side-effects (i.e. modifying a file or accessing a volatile), the
statement doesn’t do anything. The classic example is:
 i == j; where the programmer meant i= j;
6. E_COMM: The expression on the left hand side of a comma operator shall have at
least one side-effect
 This is to avoid code such as:
 z = i++ + (i,y++);
 which is the same as
 z = i++ + y++;
Therefore it begs the question as to why the programmer used (i,y++) and thus should be
flagged.
7. E_UNEG: An unsigned expression shall not be compared for negativity
8. E_CSIGN: No implicit conversion shall change the signed nature of an object or
reduce the number of bits in that object
9. E_REACH: Every non-null statement shall be reachable
 This is stated this way to avoid tagging situations such as:
 case YES:
 …
 return;
 break; /* unreachable, but who cares? */
10. E_HIDE: Local objects shall not hide objects with internal or external linkage

 For example:
 int i = 4; /* i is 4 */
 …
 {
 i = 5; /* i = 5 */
 …
 }
 /* i = 4 */
11. E_EXTR: The extern keyword shall not be used in a nested block
12. E_FEQL: Floating point objects shall not be compared for equality or inequality
13. E_FLOOP: Floating point objects shall not be used in the initialization, controlling
or re-initialization expressions of a for statement or the controlling expression of a while
statement.
14. E_BITF1: Every named bitfield of size 1 shall use the unsigned or signed keyword
in its declaration
15. E_NARRW: No pointer shall be cast to a narrower integral type
For example:
 int i;
 char *c;
 i = (int)c;
16. E_PCAST: Pointers shall not be cast to different pointer types
17. E_CASE1: A switch statement shall have at least one 'case:' and shall have exactly
one 'default:'
18. E_CFALL: No 'case:' or 'default:' shall be reachable from the previous 'case:' or
'default:' except by direct fall-through
For example:

switch (i)
{

 case 1:
 case 2: /* this is allowed - case 1 falling through to case 2 */
 ...
 case 6:
 ++k;
 case 7: /* this shouldn't be allowed - case 6 falling through to */
 /* case 7 -- it could be intended, but it is likely that the */
 /* programmer left out the break statement in case 6 */
 ...
}
19. P_ARGS2: No function-like macro shall use an argument more than once
 For example
 #define SQR(x) ((x)*(x))
 …
 z = SQR (y++);

This causes y to be incremented by 2 and the value of z is dependent on the evaluation
order.
20. P_PAREN: All macro arguments shall be parenthesized unless by doing so a syntax
violation would be created

The goal of SC22 OWGV is to be as language independent at possible. Each language
has trade-offs to allow certain capabilities and freedoms (imagine writing an OS using
COBOL, but COBOL is great for business applications). These freedoms at times come
at the expense of safety or security. Hatton’s work is oriented squarely at C. Some of
his rules are very C specific. Other rules can apply to other languages, though
modifications may be needed. For instance, Rule 6, E_COMM: The expression on the
left hand side of a comma operator shall have at least one side-effect is very C specific.
Rule 1, _GLOB: There shall be no dependence on any of the undefined features of ISO
C, can easily be made language independent. Even though it could be made language
independent, it does not mean that it would apply to all languages, but rather the subset
of languages that have undefined features.

Table 1 contains a list of the rules along with a decision whether the rule is or can be
made language independent. For those rules which are or can be language independent,
the last column will contain either the words “As is” meaning that the rule as it is stated is
language independent, or if it is language independent, the last column will contain a
modified, language independent version of the rule.

Numb
er

Abbreviati
on

Existing Rule Potential for
Language
Independence

Use as is or modified rule

1 S_GLOB There shall be no dependence
on any of the undefined
features of ISO C

Yes There shall be no
dependence on any of the
undefined features of the
language standard.

2 F_PROT All function calls and
definitions shall be preceded
by a new-style prototype

Yes, in a
broadened
sense

Deprecated features of the
language should not be
used.

3 F_COMP All function call arguments
and function definition
parameters shall be compatible
with the corresponding
arguments in the
corresponding function
declaration

Yes As is

4 E_PREC A boolean-valued sub-
expression shall not appear
next to a bit operator, an
assignment operator or a
relational operator in an if or
while expression

Yes As is

Numb
er

Abbreviati
on

Existing Rule Potential for
Language
Independence

Use as is or modified rule

5 E_SIDE Every expression statement
shall have at least one side-
effect for any execution path

Yes As is

6 E_COMM The expression on the left hand
side of a comma operator shall
have at least one side-effect

No, too
language
specific

7 E_UNEG An unsigned expression shall
not be compared for negativity

Yes, include
in an integer
coercion rule

Integer coercion, such as
comparing an unsigned
expression for negativity,
shall not be done.

8 E_CSIGN No implicit conversion shall
change the signed nature of a
object or reduce the number of
bits in that object

Yes As is

9 E_REAC
H

Every non-null statement shall
be reachable

Yes All statements should be
reachable

10 E_HIDE Local objects shall not hide
objects with internal or
external linkage

No, too
language
specific

11 E_EXTR The extern keyword shall not
be used in a nested block

No, too
language
specific

12 E_FEQL Floating point objects shall not
be compared for equality or
inequality

Yes As is

13 E_FLOOP Floating point objects shall not
be used in the initialization,
controlling or re-initialization
expressions of a for statement
or the controlling expression of
a while statement.

Yes As is

14 E_BITF1 Every named bitfield of size 1
shall use the unsigned or
signed keyword in its
declaration

Yes As is

15 E_NARR
W

No pointer shall be cast to a
narrower integral type

Yes As is

16 E_PCAST Pointers shall not be cast to
different pointer types

Yes As is

Numb
er

Abbreviati
on

Existing Rule Potential for
Language
Independence

Use as is or modified rule

17 E_CASE1 A switch statement shall have
at least one 'case:' and shall
have exactly one 'default:'

Yes As is

18 E_CFALL No 'case:' or 'default:' shall be
reachable from the previous
'case:' or 'default:' except by
direct fall-through

Yes As is

19 P_ARGS2 No function-like macro shall
use an argument more than
once

No

20 P_PAREN All macro arguments shall be
parenthesized unless by doing
so a syntax violation would be
created

No

Table 1 : Mapping of Hatton [2] Rules to SC22 OWGV Templates

For those rules which cannot be made language independent, the rule is eliminated from
consideration. For those rules which are or can be language independent, the last column
will contain either the rule as it is, if it is language independent, or contain a modified,
language independent version of the rule.

Table 2 contains the derived rules from Hatton’s work and a cross mapping of the rules to
the currently existing SC22 OWGV templates. New templates will need to be created for
those for annotated as “New” and for which no template is listed. For those already
covered by existing templates, the existing templates will need to be checked to be sure
that the template fully reflects the rule and annotated to reflect the safety basis in the
subsections such as the mechanism of failures and avoidance of the vulnerability.

Number New Derived Rule Template/New
1 There shall be no dependence on any of the

undefined features of the language standard.
Broad theme, but partially covered by
EWF, BQF, maybe FAB. Specifying
particular instances as in EWF, BQF,
and FAB would be more productive
than just saying there should be no
dependence on undefined features. So
additional templates created from
working from the bottom up will be
partially cover this rule.

2 Deprecated features of the language should
not be used.

New

Number New Derived Rule Template/New
3 All function call arguments and function

definition parameters shall be compatible with
the corresponding arguments in the
corresponding function declaration

New

4 A boolean-valued sub-expression shall not
appear next to a bit operator, an assignment
operator or a relational operator in an if or
while expression

New

5 Every expression statement shall have at least
one side-effect for any execution path

add in XYQ

6 Integer coercion, such as comparing an
unsigned expression for negativity, shall not
be done.

add in XYE

7 No implicit conversion shall change the
signed nature of a object or reduce the number
of bits in that object

add in XYF

8 All statements should be reachable add in XYQ
9 Local objects shall not hide objects with

internal or external linkage
New

10 Floating point objects shall not be compared
for equality or inequality

New

11 Floating point objects shall not be used in the
initialization, controlling or re-initialization
expressions of a for statement or the
controlling expression of a while statement.

New

12 Every named bitfield of size 1 shall use the
unsigned or signed keyword in its declaration

add into XYF

13 No pointer shall be cast to a narrower integral
type

New

14 Pointers shall not be cast to different pointer
types

New

15 A switch statement shall have at least one
'case:' and shall have exactly one 'default:'

New

16 No 'case:' or 'default:' shall be reachable from
the previous 'case:' or 'default:' except by
direct fall-through

New

Table 2 Mapping of Hatton [2] Rules to SC22 OWGV Templates

Of the sixteen rules in Table 2, six are covered by or could be incorporated directly into
existing templates. Templates need to be created for the remaining ten items. It is

proposed that the remaining items be grouped into the following seven categories, each
of which would correspond to a new template.

Deprecated features
2 Deprecated features of the language should not be used

Functions
3 All function call arguments and function definition parameters shall be compatible
with the corresponding arguments in the corresponding function declaration

Boolean tests
4 A boolean-valued sub-expression shall not appear next to a bit operator, an assignment
operator or a relational operator in an if or while expression

Scope issues
9 Local objects shall not hide objects with internal or external linkage

Floating point
10 Floating point objects shall not be compared for equality or inequality
11 Floating point objects shall not be used in the initialization, controlling or re-
initialization expressions of a for statement or the controlling expression of a while
statement

Casting of pointers
13 No pointer shall be cast to a narrower integral type
14 Pointers shall not be cast to different pointer types

Switch/case issues
15 A switch statement shall have at least one 'case:' and shall have exactly one 'default:'
16 No 'case:' or 'default:' shall be reachable from the previous 'case:' or 'default:' except
by direct fall-through

The creation of the templates should be fairly straightforward for these seven categories.

Part 3: MISRA-C

Many of Hatton’s rules are very similar or virtually identical to those in MISRA-C.
However, there are many more rules in MISRA-C than the twenty that Hatton proposes.
Therefore, it would be prudent to check the entire rule set of MISRA-C to determine
whether there are additional rules or guidance of value that can be derived. The
MISRA-C rules must be purchased and so cannot appear in this paper and can be only
referred to by number. Fortunately a copy of the rules for personal use is relatively
inexpensive as it costs only 10 pounds sterling (about 20 U.S. dollars) for an electronic
PDF version emailed to you. The rules do take a couple of days after your order to
arrive in your in-box.

The templates in SC22 OWGV are expected to be more encompassing than individual
rules as presented in MISRA-C. Therefore, it would be expected that multiple MISRA-
C rules would be covered by a single template. Hatton’s rules are likewise broader, in
general, than MISRA-C rules. The specifics covered by MISRA-C rules and other
specifics should be described in the text of the templates if that is permissible under
MISRA-C licensing guidelines.

Initially, a mapping of the MISRA-C rules to the derived rules in Table 2 will be made
in Table 3. The remaining rules in MISRA-C will then be either grouped together into
categories or rejected as out of scope, too language specific, etc. This mapping will
demonstrate which rules are covered by the derived rules from Hatton’s work and what
other rules could be derived from the MISRA-C work. For MISRA-C rules that are
within the scope of the rules from Table 2, but which are definitely not covered by the
current version of Hatton’s rule will be tagged with the words “add-in.” Add-in will
refer to all rules listed after the add-in tag.

Number Derived Rule from Part 2 MISRA-C:2004 Rules Template/New
2.1 There shall be no dependence on any of

the undefined features of the language
standard.

1.2
add-in 3.1, 3.2, 3.3,
4.1

Broad theme, but
partially covered by
EWF, BQF, maybe
FAB.

2.2 Deprecated features of the language
should not be used.

1.1 New

2.3 All function call arguments and function
definition parameters shall be
compatible with the corresponding
arguments in the corresponding function
declaration

8.3, 16.4
add-in 8.1, 8.4, 8.6,
8.7, 16.1, 16.3, 16.5,
16.6, 16.7, 16.9

New

2.4 A boolean-valued sub-expression shall
not appear next to a bit operator, an
assignment operator or a relational
operator in an if or while expression

12.5, 12.6
add-in 13.2

New

2.5 Every expression statement shall have at
least one side-effect for any execution
path

13.1, 14.2
add-in 12.3, 12.4

add in XYQ

2.6 Integer coercion, such as comparing an
unsigned expression for negativity, shall
not be done.

12.9 add in XYE

2.7 No implicit conversion shall change the
signed nature of a object or reduce the
number of bits in that object

10.1, 10.2, 10.3, 10.4,
10.5
add-in 12.11

add in XYF

2.8 All statements should be reachable 14.1
add-in 2.4

add in XYQ

Number Derived Rule from Part 2 MISRA-C:2004 Rules Template/New
2.9 Local objects shall not hide objects with

internal or external linkage
add-in 5.2, 8.9, 8.10 New

2.10 Floating point objects shall not be
compared for equality or inequality
Floating point objects shall not be used
in the initialization, controlling or re-
initialization expressions of a for
statement or the controlling expression
of a while statement.

13.3, 13.4
add-in 1.5, 12.12

New

2.11 Every named bitfield of size 1 shall use
the unsigned or signed keyword in its
declaration

6.4
add-in 3.5, 12.7

add into XYF

2.13 No pointer shall be cast to a narrower
integral type
Pointers shall not be cast to different
pointer types

11.1, 11.2, 11.3, 11.4
add-in 11.5

New

2.14 A switch statement shall have at least
one 'case:' and shall have exactly one
'default:'
No 'case:' or 'default:' shall be reachable
from the previous 'case:' or 'default:'
except by direct fall-through

15.2, 15.3
add-in 14.8, 15.1,
15.4, 15.5

New

Table 3: Mapping of MISRA-C Rules/Advisories to Rules Derived in Part 2

Remaining rules that need to be covered are categorized in Table 4 along with the
remaining rules with are out of scope, etc. The new rules that need to be covered, the
existing template or the need for a new template will be indicated in the last column.

Category MISRA-C Rule/Advisory Template/New
Undefined behavior of shift
operator

12.8 add-in EWF or XYY

Undefined behavior of
increment (++) and
decrement (--) operator

12.13 add-in EWF

 Use of obscure language
features

12.10 New

 Control Flow – if structure 14.9, 14.10 New
 Initialization of variables,
arrays, structures and
enumerated lists

9.1, 9.2, 9.3 New

Loop control 13.5, 13.6, 14.6 New
Operator Precedence 12.1, 12.2 add-in FAB

Functions – control
flow/return values

16.2, 16.8, 16.10 New

Macros 19.4, 19.7,19.8, 19.9, 19.10,
19.11

New

Reuse of identifiers or
reserved identifiers

5.3, 5.4, 5.5, 5.6, 5.7, 20.1,
20.2

add-in YOW

Overlapping or reuse of
memory

18.2, 18.3 New

Restrictions on types 6.1, 6.2, 6.3, 6.5, New
Preprocessor 14.3, 19.1 New
Compiler issues 1.3, 1.4, 3.4, 5.1 New
Pointers 17.1, 17.2, 17.3, 17.4, 17.5,

17.6
(maybe) add-in XYK or
New

Libraries 20.3, 20.4 New
Tool use 21.1 (good rule, but where to

put it?)
New

Inappropriate Rules (out of
scope, too language specific,
style guidance, etc.)

2.1, 2.2, 2.3, 3.6, 4.2, 7.1, 8.5,
8.8, 8.11, 8.12, 10.6, 14.4,
14.5, 14.7, 18.1, 18.4, 19.2,
19.3, 19.5, 19.6, 19.12, 19.13,
19.14, 19.15, 19.16, 19.17,
20.5, 20.6, 20.8, 20.9, 20.10,
20.11, 20.12

Table 4: Categorization of Remaining MISRA-C Rules/Advisories

Incorporating Table 4 into Table 3 yields Table 5.

Number New Derived Rule MISRA-C:2004 Rules Template/New
2.1 There shall be no dependence on any of

the undefined features of the language
standard.

1.2
add-in 3.1, 3.2, 3.3,
4.1

Broad theme, but
partially covered by
EWF, BQF, maybe
FAB.

2.2 Deprecated features of the language
should not be used.

1.1 New

2.3 All function call arguments and function
definition parameters shall be
compatible with the corresponding
arguments in the corresponding function
declaration

8.3, 16.4
add-in 8.1, 8.4, 8.6,
8.7, 16.1, 16.3, 16.5,
16.6, 16.7, 16.9

New

2.4 A boolean-valued sub-expression shall
not appear next to a bit operator, an
assignment operator or a relational
operator in an if or while expression

12.5, 12.6
add-in 13.2

New

Number New Derived Rule MISRA-C:2004 Rules Template/New
2.5 Every expression statement shall have at

least one side-effect for any execution
path

13.1, 14.2
add-in 12.3, 12.4

add in XYQ

2.6 Integer coercion, such as comparing an
unsigned expression for negativity, shall
not be done.

12.9 add in XYE

2.7 No implicit conversion shall change the
signed nature of a object or reduce the
number of bits in that object

10.1, 10.2, 10.3, 10.4,
10.5
add-in 12.11

add in XYF

2.8 All statements should be reachable 14.1
add-in 2.4

add in XYQ

2.9 Local objects shall not hide objects with
internal or external linkage

add-in 5.2, 8.9, 8.10 New

2.10 Floating point objects shall not be
compared for equality or inequality
Floating point objects shall not be used
in the initialization, controlling or re-
initialization expressions of a for
statement or the controlling expression
of a while statement.

13.3, 13.4
add-in 1.5, 12.12

New

2.11 Every named bitfield of size 1 shall use
the unsigned or signed keyword in its
declaration

6.4
add-in 3.5, 12.7

add into XYF

2.13 No pointer shall be cast to a narrower
integral type
Pointers shall not be cast to different
pointer types

11.1, 11.2, 11.3, 11.4
add-in 11.5

New

2.14 A switch statement shall have at least
one 'case:' and shall have exactly one
'default:'
No 'case:' or 'default:' shall be reachable
from the previous 'case:' or 'default:'
except by direct fall-through

15.2, 15.3
add-in 14.8, 15.1,
15.4, 15.5

New

2.15 Undefined behavior of shift operator 12.8 add-in EWF or XYY
2.16 Undefined behavior of increment (++)

and decrement (--) operator
12.13 add-in EWF

2.17 Use of obscure language features 12.10 New
2.18 Control Flow – if structure 14.9, 14.10 New
2.19 Initialization of variables, arrays,

structures and enumerated lists
9.1, 9.2, 9.3 New

2.20 Loop control 13.5, 13.6, 14.6 New

Number New Derived Rule MISRA-C:2004 Rules Template/New
2.21 Operator Precedence 12.1, 12.2 add-in FAB
2.22 Functions – control flow/return values 16.2, 16.8, 16.10 New
2.23 Macros 19.4, 19.7,19.8, 19.9,

19.10, 19.11
New

2.24 Reuse of identifiers or reserved
identifiers

5.3, 5.4, 5.5, 5.6, 5.7,
20.1, 20.2

add-in YOW

2.25 Overlapping or reuse of memory 18.2, 18.3 New
2.26 Restrictions on types 6.1, 6.2, 6.3, 6.5 New
2.27 Preprocessor 14.3, 19.1 New
2.28 Compiler issues 1.3, 1.4, 3.4, 5.1 New
2.29 Pointers 17.1, 17.2, 17.3, 17.4,

17.5, 17.6
(maybe) add-in XYK
or New

2.30 Libraries 20.3, 20.4 New
2.31 Tool use 21.1 (good rule, but

where to put it?)
New

Table 5: Results of Mapping MISRA-C:2004 Rules into Rules Derived in Part 2

Part 4: Joint Strike Fighter Air Vehicle Coding Standards

Another document that is designed to aid developers in creating safety critical software
is the Joint Strike Fighter (JSF) Air Vehicle (AV) C++ Coding Standards for the System
Development and Demonstration Program. This coding standard also bases many of
their rules on MISRA-C. Although in this case, the rule set is based on the April, 1998
version of MISRA-C instead of the newer 2004 version. The MISRA-C:1998 rule set
had 127 rules, of which 93 were required and 34 were deemed advisories. The JSF AV
set of rules consists of 221 rules. Seventy four of the MISRA-C:1998 rules were used
either in their original form, extended or revised to create the JSF AV rules. Two of the
MISRA-C:1998 rules were combined to create one of the JSF AV rules, so of the 221
JSF AV rules, 73 are very close or essentially identical to MISRA-C:1998
rules/advisories.

Since the MISRA-C:2004 are a revised set of MISRA-C:1998 and those have been
examined in Part 2, then only the rules that are not tagged in the JSF AV document with
an associated MISRA-C rule will be examined. A similar categorization to that done in
Table 4 will be presented in Table 6.

Numbe

r
Derived Rule w/MISRA-

C:2004 Rules
JSF AV
Rules

Template/New Annotations added during
Meeting #6

Numbe
r

Derived Rule w/MISRA-
C:2004 Rules

JSF AV
Rules

Template/New Annotations added during
Meeting #6

2.1 There shall be no dependence
on any of the undefined
features of the language
standard. (1.2, add-in 3.1,
3.2, 3.3, 3.4, 4.1)

210, 211,
212, 214

Broad theme,
but partially
covered by
EWF, BQF,
maybe FAB.

It should be localized to EWF,
BQF, FAB. Discuss pragmas
and assertions also.

2.2 Deprecated features of the
language should not be used.
(1.1, 4.2, 20.10)

8, 152 New Create a new description for
deprecated features, MEM.
This might be focal point of a
discussion of what to do when
your language standard
changes out from underneath
you. Include legacy features
for which better replacements
exist. Also, features of
languages (like multiple
declarations on one line) that
commonly lead to errors or
difficulties in reviewing. The
generalization is that experts
have determined that use of
the feature leads to mistakes.

2.3 All function call arguments
and function definition
parameters shall be
compatible with the
corresponding arguments in
the corresponding function
declaration (8.3, 16.4, add-in
8.1, 8.4, 8.6, 8.7, 16.1, 16.3,
16.5, 16.6, 16.7, 16.9)

 New Also discuss external linkage,
cross-language calls, and API
calls. Add into XZM.

2.4 A boolean-valued sub-
expression shall not appear
next to a bit operator, an
assignment operator or a
relational operator in an if or
while expression (12.5, 12.6,
add-in 13.2)

 New Add to the new JCW.

Numbe
r

Derived Rule w/MISRA-
C:2004 Rules

JSF AV
Rules

Template/New Annotations added during
Meeting #6

2.5 Every expression statement
shall have at least one side-
effect for any execution path
(13.1, 14.2, add-in 12.3,
12.4). Perhaps this should be
phrased as statements that
execute with no effect on all
possible execution paths.

 add in XYQ We look at XYQ. XYQ
concerns code that cannot be
reached. That is somewhat
different than code that
executes with no result. The
latter is a symptom of poor
quality code but may not be a
vulnerability. We should
introduce a new item, KOA,
for code that executes with no
result because it is a symptom
of misunderstanding during
development or maintenance.
(Note that this is similar to
unused variables.) We
probably want to exclude
cases that are obvious, such as
a null statement, because they
are obviously intended. It
might be appropriate to
require justification of why
this has been done. These may
turn out to be very specific to
each language. The rule needs
to be generalized.

2.6 Integer coercion, such as
comparing an unsigned
expression for negativity,
shall not be done. (12.9)

 add in XYE Added material to XYE

2.7 No implicit conversion shall
change the signed nature of a
object or reduce the number
of bits in that object (10.1,
10.2, 10.3, 10.4, 10.5, add-in
12.11)

162 add in XYF Added material to XYF

2.8 All statements should be
reachable (14.1, add-in 2.4)

127 add in XYQ Already covered by XYQ

2.9 Local objects shall not hide
objects with internal or
external linkage (add-in 5.2,
8.9, 8.10)

159 New Add to YOW. Also add
something about issues in
redefining and overloading
operators.

Numbe
r

Derived Rule w/MISRA-
C:2004 Rules

JSF AV
Rules

Template/New Annotations added during
Meeting #6

2.10 Floating point objects shall
not be compared for equality
or inequality
Floating point objects shall
not be used in the
initialization, controlling or
re-initialization expressions
of a for statement or the
controlling expression of a
while statement. (13.3, 13.4,
add-in 1.5, 12.12)

184 New Add to a new description PLF
that says that when you use
floating point, get help. The
existing rules should be cross-
referenced.

2.11 Every named bitfield of size
1 shall use the unsigned or
signed keyword in its
declaration (6.4, 6.5, add-in
3.5, 12.7)

 add into
XYFNew

Write a new vulnerability
description, STR, that deals
with bit representations. It
would say that representations
of values are often not what
the programmer believes they
are. There are issues of
packing, sign propagation,
endianness and others.
Boolean values are a particular
problem because of packing
issues. Programmers who
depend on the bit
representations of values
should either utilize language
facilities to control the
representation or document
that the code is not portable.

2.13 No pointer shall be cast to a
narrower integral type
Pointers shall not be cast to
different pointer types (11.1,
11.2, 11.3, 11.4, add-in 11.5)

175, 182 New We will write a new
description, HFC, to cover
pointer casting and pointer
type changes.

Numbe
r

Derived Rule w/MISRA-
C:2004 Rules

JSF AV
Rules

Template/New Annotations added during
Meeting #6

2.14 A switch statement shall
have at least one 'case:' and
shall have exactly one
'default:'
No 'case:' or 'default:' shall
be reachable from the
previous 'case:' or 'default:'
except by direct fall-through
(15.2, 15.3
add-in 14.8, 15.1, 15.4, 15.5)

 New Write a new description, CLL.
Using an enumerable type is a
good thing. One wants the
case analysis to cover all of
the cases. One often wants to
avoid falling through to
subsequent cases. Adding a
default option defeats static
analysis. Providing labels
marking the programmer's
intentions about falling
through can be an aid to static
analysis.

2.15 Undefined behavior of shift
operator (12.8)

 add-in EWF or
XYY

Added to XYY

2.16 Undefined behavior of
increment (++) and
decrement (--) operator
(12.13)

 add-in EWF Try to deal with this in the
new KOA.

2.17 Use of obscure language
features (12.10)

2 New Write a new description, BRS,
that says that guidelines for
coding constructs should
consider the capabilities of the
review and maintenance
audience as well as the writing
audience, and that features
that correlate with high error
rates should be discouraged.
Write another description,
NYY, for self-modifying code
that includes Java dynamic
class libraries and DLLs.

2.18 Control Flow – if structure
(14.9, 14.10)

 New There are two classes of
languages, those that
explicitly mark the end and
those that don't. The former
don't have this problem; the
latter do. Write a new
description, EOJ, that suggests
writing appropriate guidelines
for your language. This
includes end of loop as well as
if-then-else.

Numbe
r

Derived Rule w/MISRA-
C:2004 Rules

JSF AV
Rules

Template/New Annotations added during
Meeting #6

2.19 Initialization of variables,
arrays, structures and
enumerated lists (9.1, 9.2,
9.3)

1433, 144,
148, 71, H-6

New Write a new description,
LAV, saying that variables
should not be introduced until
they can be initialized with a
meaningful value. (Don't do
junk initialization because it
defeats static analysis.) In
languages that provide clear
mechanism for initialization,
use the clearest. For example,
in Ada, use named
components in aggregates.
The structure of the initializer
should match the structure of
the initialized object. The
vulnerability is that if the
object's structure is changed in
maintenance, the initializer
simply adapts itself to the new
structure and may omit values.
Incomplete initializations may
lead to the insertion of
unexpected values, which may
be wrong. When choosing a
default, be explicit about it. In
an enumerator list, the "="
construct should not be used
unless all items are explicitly
initialized (MISRA 9.3).
(Steve Michell wants to do
this one.) Reserve a distinct
description, CCB, to discuss
enumerator issues.

2.20 Loop control (13.5, 13.6,
14.6)

198, 199,
200

New Write a new description, TEX,
about not messing with the
control variable of a loop.

2.21 Operator Precedence (12.1,
12.2)

204, 213 add-in FAB We decide to write three new
descriptions: operator
precedence, JCW;
associativity, MTW; order of
evaluation, SAM.

Numbe
r

Derived Rule w/MISRA-
C:2004 Rules

JSF AV
Rules

Template/New Annotations added during
Meeting #6

2.22 Functions – control
flow/return values (16.2,
16.8, 16.10)

111, 117,
118, 198,
199, 200, 69,
116, 208

New Write a new description,
GDL, suggesting that if
recursion is used, then you
have to deal with issues of
termination and resource
exhaustion. Write a new
description, NZN, about
returning error status. Some
languages return codes that
must be checked; others raise
exceptions that must be
handled. Deal with tool
limitations related to
exception handling;
exceptions may not be
statically analyzable. Write
another one, CSJ, to deal with
passing parameters and return
values. Deal with passing by
reference versus value; also
with passing pointers.
Distinguish mutable from non-
mutable entities whenever
possible.

2.23 Macros (19.4, 19.7,19.8,
19.9, 19.10, 19.11)

29 New Include in NMP

2.24 Reuse of identifiers or
reserved identifiers (5.3, 5.4,
5.5, 5.6, 5.7, 20.1, 20.2)

 add-in YOW Added to YOW

Numbe
r

Derived Rule w/MISRA-
C:2004 Rules

JSF AV
Rules

Template/New Annotations added during
Meeting #6

2.25 Overlapping or reuse of
memory (18.2, 18.3, 18.4)

153, 183 New Write a new description,
AMV. Overlapping or reuse of
memory provides aliasing
effects that are extremely
difficult to analyze. Attempt to
use alternative techiques when
possible. If essential to the
function of the program,
document it clearly and use
the clearest possible approach
to implementing the function.
(This includes C unions,
Fortran common.) Discuss the
difference between
discriminating and non-
discriminating unions. Discuss
the possibility of computing
the discriminator from the
undiscriminated part of the
union. Deal with unchecked
conversion (as in Ada) and
reinterpret casting (in C++).

2.26 Restrictions on types (6.1,
6.2, 6.3, 6.5)
6.5 was done elsewhere.

148, 183 New Write a new description, IHN,
to encourage strong typing but
deal with performance
implications. Use enumeration
types when you intend to
select from a manageably
small set of alternatives. Deal
with issues like char being
implementation-defined in C.
Discuss how one should
introduce names (e.g.
typedefs) to document typing
decisions and check them with
tools.

Numbe
r

Derived Rule w/MISRA-
C:2004 Rules

JSF AV
Rules

Template/New Annotations added during
Meeting #6

2.27 Preprocessor (14.3, 19.1) 26,30, 27,
28, 35, H-8

New Write a new description,
NMP. The use of
preprocessors increases the
cost of static analysis and the
difficulty of human
understanding. Unless the use
of preprocessors is restricted
to simple usage such as
conditional compilation,
creation of symbolic
constants, and simple text
insertion, issues arise
concerning the analyzability
of the source code and the
maintainability of the
generated code. Prefer
language constructs to
preprocessor or macro
constructs whenever possible.
(Consider all of the MISRA
19.x rules in this section.) Use
appropriate methods to guard
against multiple inclusions.

2.28 Compiler issues (1.3, 1.4,
3.4, 5.1, 21.1)

H-10 New Potentially for Section 7.
Know how your linkage editor
actually works. Understand
the impact of changing your
compiler switches. Select
additional tooling that is
appropriate. Don't ignore
warnings. Analyze frequently.

2.29 Pointers (17.1, 17.2, 17.3,
17.4, 17.5, 17.6)

175 (maybe) add-in
XYK or New

We decide to write a new
vulnerability, Pointer
Arithmetic, RVG, for 17.1
thru 17.4. Don't do 17.5. We
also want to create DCM to
deal with dangling references
to stack frames, 17.6. XYK
deals with dangling pointers.

Numbe
r

Derived Rule w/MISRA-
C:2004 Rules

JSF AV
Rules

Template/New Annotations added during
Meeting #6

2.30 Libraries (20.3, 20.4) 16, H-7 New Write a new item, TRJ. Calls
to system functions, libraries
and APIs might not be error
checked. It may be necessary
to perform validity checking
of parameters before making
the call. (However, sometimes
libraries are specified to
explicitly provide checking.)
When writing a library for
unknown users, never trust the
calling programs to send the
right thing. Within a system,
there should be a convention
established whether the caller
or the called program
establishes validity of the
parameters. Especially when
there is a distinction in
privilege level. Assertions can
be useful in checking
preconditions.

2.31 Tool use (21.1 (good rule,
but where to put it?))

H-10 New General guidance like this will
go into Section 7. Specific
guidance regarding
analyzability of language
constructs will go into
individual vulnerability
descriptions.

 , 14.4, 14.5, 14.7, 20.7 Holtzmann-1 New Write a new description,
EWD, that discusses goto,
structured programming,
continue statement, break
statement, single exit from a
function. Discuss in terms of
cost to analyzability and
human understanding. Include
setjmp and longjmp.

Numbe
r

Derived Rule w/MISRA-
C:2004 Rules

JSF AV
Rules

Template/New Annotations added during
Meeting #6

 20.11 New Write a new description, REU,
that discusses abnormal
termination of programs, fail-
soft, fail-hard, fail-safe. You
need to have a strategy and
select appropriate language
features and library
components.

 48 thru 56 New Write a new description, NAI,
on issues in selecting names.
Assign this one to Steve
Michell. Look at Derek's
paper on the subject.

 70 thru 100
and OOTIA,
177, 178,
179, 185,
219

 Consider a set of descriptions
related to object-oriented
programming. This is an
action item for Tom Plum.

 101, 102,
103, 104,
105, 106,

 Consider a description, SYM,
related to templates and
generics.

 120 Add this to YOW.
 20.4 H-3, 206, Dynamic memory allocation

Table 6: Results of Mapping JSF AV Rules into Rules Derived in Part 3

Category JSF AV Rule
Inappropriate Rules (out of scope, too
language specific, style guidance, etc.)

1, 3, 4, 5, 6, 7, 14, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 109, 110, 112,
116, 120, 121, 122, 123, 124, 125, 126,
128, 129, 130, 131, 132, 133, 134, 141,
150, 151, 152, 155, 159, 163, 169, 176,
177, 178, 179, 183, 185, 205, 207, 208,
216, 217, 218, 219, 220, 221

Part 5: Power of 10 recommendations

Gerard Holtzmann of NASA/JPL has proposed 10 rules for developing safety-critical
code. As with the other rules cited above, his rules are targeted at C, since most of the
developers at JPL program in C. His rules, by his own admission, are strict. Arguably
his rules will make code more dependable, but at the high cost of strict limits.

1. Rule: Restrict all code to very simple control flow constructs \u2013 do not use goto
statements, setjmp or longjmp constructs, and direct or indirect recursion.

2. Rule: All loops must have a fixed upper-bound. It must be trivially possible for a
checking tool to prove statically that a preset upper-bound on the number of iterations of
a loop cannot be exceeded. If the loop-bound cannot be proven statically, the rule is
considered violated. [Inappropriate]

3. Rule: Do not use dynamic memory allocation after initialization.

4. Rule: No function should be longer than what can be printed on a single sheet of paper
in a standard reference format with one line per statement and one line per declaration.
Typically, this means no more than about 60 lines of code per function. [Inappropriate]

5. Rule: The assertion density of the code should average to a minimum of two assertions
per function. Assertions are used to check for anomalous conditions that should never
happen in real-life executions. Assertions must always be side-effect free and should be
defined as Boolean tests. When an assertion fails, an explicit recovery action must be
taken, e.g., by returning an error condition to the caller of the function that executes the
failing assertion. Any assertion for which a static checking tool can prove that it can
never fail or never hold violates this rule. (I.e., it is not possible to satisfy the rule by
adding unhelpful “assert(true)” statements.) [Inappropriate]

6. Rule: Data objects must be declared at the smallest possible level of scope.

7. Rule: The return value of non-void functions must be checked by each calling
function, and the validity of parameters must be checked inside each function.

8. Rule: The use of the preprocessor must be limited to the inclusion of header files and
simple macro definitions. Token pasting, variable argument lists (ellipses), and recursive
macro calls are not allowed. All macros must expand into complete syntactic units. The
use of conditional compilation directives is often also dubious, but cannot always be
avoided. This means that there should rarely be justification for more than one or two
conditional compilation directives even in large software development efforts, beyond
the standard boilerplate that avoids multiple inclusion of the same header file. Each such
use should be flagged by a tool-based checker and justified in the code.

9. Rule: The use of pointers should be restricted. Specifically, no more than one level of

dereferencing is allowed. Pointer dereference operations may not be hidden in macro
definitions or inside typedef declarations. Function pointers are not permitted. [The good
parts are captured elsewhere; the general rule is inappropriate.]

10. Rule: All code must be compiled, from the first day of development, with all
compiler warnings enabled at the compiler\u2019s most pedantic setting. All code must
compile with these setting without any warnings. All code must be checked daily with at
least one, but preferably more than one, state-of-the-art static source code analyzer and
should pass the analyses with zero warnings.

NOTE: Holzmann’s work still needs to be analyzed and incorporated.

Reference

Hatton, Les. Safer Language Subsets: an overview and a case history, MISRA C.
Information and Software Technology. 46(7), June 2004, pp. 465-472.
http://www.leshatton.org/Documents/MISRAC.pdf

Hatton, Les. EC-A Measurement Based Safer Subset of ISO C Suitable for Embedded
System Development. Information and Software Technology, 47(3), March 2005,
pp. 181-187. ISSN (online) 0950-5849
http://www.leshatton.org/Documents/ISOC_subset.pdf

Holzmann, Gerard J., The Power of 10: Rules for Developing Safety-Critical Code,
Computer, vol. 39, no. 6, pp. 95-97, Jun., 2006

Joint Strike Fighter Air Vehicle C++ Coding Standards for the System Development and
Demonstration Program, Document Number 2RDU00001 Rev C, December 2005,
www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc

Motor Industry Software Reliability Association (MISRA), “MISRA-C:2004 - Guidelines
for the use of the C language in critical systems,” October 2004, http://www.misra-
c2.com/

