
ISO/IEC JTC 1/SC 22/OWGV N0074
Editorʹs draft 3 of PDTR 24772, 01 June 2007

© ISO 2007 – All rights reserved

ISO/IEC JTC 1/SC 22 N 0000
Date: 2007-06-01

ISO/IEC PDTR 24772

ISO/IEC JTC 1/SC 22/OWG

Secretariat: ANSI

Information Technology — Programming Languages — Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and
Use

Élément introductif — Élément principal — Partie n: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage: (20) Preparation
Document language: E

ISO/IEC PDTR 24772

ii © ISO 2007 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved iii

Contents Page

Foreword ..v
Introduction...vi
1 Scope ...1
1.1 In Scope...1
1.2 Not in Scope..1
1.3 Approach ...1
1.4 Intended Audience..1
1.4.1 Safety ...1
1.4.2 Security..1
1.4.3 Predictability ...1
1.4.4 Software Assurance..2
1.5 How to Use This Document..2
1.5.1 Writing Profiles ...2
2 Normative references ...3
3 Terms and definitions...4
3.1 Language Vulnerability...4
3.2 Application Vulnerability ..4
3.3 Security Vulnerability ...4
3.4 Safety Hazard ..4
3.5 Safety-critical software...4
3.6 Software quality ..4
3.7 Predictable Execution...4
4 Symbols (and abbreviated terms)..5
5 Vulnerability issues ..6
5.1 Issues arising from lack of knowledge..6
5.1.1 Issues arising from unspecified behaviour...7
5.1.2 Issues arising from implementation defined behaviour ..7
5.1.3 Issues arising from undefined behaviour ...7
5.2 Issues arising from human cognitive limitations ...8
5.3 Predictable execution ...8
5.4 Portability ..8
6. Vulnerabilities ...10
6.1 SM-004 Out of bounds array element access ...10
6.1.1 Description of application vulnerability ..10
6.1.2 Cross reference...10
6.1.3 Categorization ...10
6.1.4 Mechanism of failure ..10
6.1.5 Possible ways to avoid the vulnerability...10
6.1.6 Assumed variations among languages...10
6.1.7 Avoiding the vulnerability or mitigating its effects ..11
Annex A (informative) Guideline Recommendation Factors ...12
A.1 Factors that need to be covered in a proposed guideline recommendation................................12
A.1.1 Expected cost of following a guideline ...12
A.1.2 Expected benefit from following a guideline ..12
A.2 Language definition ..12
A.3 Measurements of language usage...12
A.4 Level of expertise..12
A.5 Intended purpose of guidelines ...12

ISO/IEC PDTR 24772

iv © ISO 2007 – All rights reserved

A.6 Constructs whose behaviour can very..13
A.7 Example guideline proposal template ...13
A.7.1 Coding Guideline ..13
Annex B (informative) Guideline Selection Process...14
B.1 Cost/Benefit Analysis ...14
B.2 Documenting of the selection process ...14
Annex C (informative) Template for use in proposing vulnerabilities...17
C. Skeleton template for use in proposing vulnerabilities ...17
C.1 6.<x> <unique immutable identifier> <short title>..17
C.1.1 6.<x>.1 Description of application vulnerability ...17
C.1.2 6.<x>.2 Cross reference..17
C.1.3 6.<x>.3 Categorization..17
C.1.4 6.<x>.4 Mechanism of failure ...17
C.1.5 6.<x>.5 Possible ways to avoid the vulnerability..17
C.1.6 6.<x>.6 Assumed variations among languages..17
C.1.7 6.<x>.7 Avoiding the vulnerability or mitigating its effects ...18
Bibliography...19

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 24772 which is a Technical Report of type 3, was prepared by Joint Technical Committee
ISO/IEC JTC 1, Subcommittee SC 22, Programming Languages.

ISO/IEC PDTR 24772

vi © ISO 2007 – All rights reserved

Introduction

A paragraph.

The introduction is an optional preliminary element used, if required, to give specific information or
commentary about the technical content of the document, and about the reasons prompting its preparation. It
shall not contain requirements.

The introduction shall not be numbered unless there is a need to create numbered subdivisions. In this case, it
shall be numbered 0, with subclauses being numbered 0.1, 0.2, etc. Any numbered figure, table, displayed
formula or footnote shall be numbered normally beginning with 1.

WORKING DRAFT ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 1

Information Technology — Programming Languages — Guidance to Avoiding Vulnerabilities in Programming 1
Languages through Language Selection and Use 2

1 Scope 3

1.1 In Scope 4

1) Applicable to the computer programming languages covered in this document. 5
2) Applicable to software written, reviewed and maintained for any application. 6
3) Applicable in any context where assured behavior is required, e.g. security, safety, mission/business 7

criticality etc. 8
1.2 Not in Scope 9

This technical report does not address software engineering and management issues such as how to design 10
and implement programs, using configuration management, managerial processes etc. 11

The specification of the application is not within the scope. 12

1.3 Approach 13

The impact of the guidelines in this technical report are likely to be highly leveraged in that they are likely to 14
affect many times more people than the number that worked on them. This leverage means that these 15
guidelines have the potential to make large savings, for a small cost, or to generate large unnecessary costs, 16
for little benefit. For these reasons this technical report has taken a cautious approach to creating guideline 17
recommendations. New guideline recommendations can be added over time, as practical experience and 18
experimental evidence is accumulated. 19

 20
Some of the reasons why a guideline might generate unnecessary costs include: 21

1) Little hard information is available on which guideline recommendations might be cost effective 22
2) It is likely to be difficult to withdraw a guideline recommendation once it has been published 23
3) Premature creation of a guideline recommendation can result in: 24

i. Unnecessary enforcement coast (i.e., if a given recommendation is later found to be not 25
worthwhile). 26

ii. Potentially unnecessary program development costs through having to specify and use 27
alternative constructs during software development. 28

iii. A reduction in developer confidence of the worth of these guidelines. 29
 30
1.4 Intended Audience 31

1.4.1 Safety 32

1.4.2 Security 33

1.4.3 Predictability 34

The programmers who may benefit from this document include those who are primarily experts in areas other 35
than programming and who need to use computation as part of their work. These programmers include 36
scientists, engineers, economists, and statisticians. These programmers require high confidence in the 37
applications they write and use due to the increasing complexity of the calculations made (and the consequent 38
use of teams of programmers each contributing expertise in a portion of the calculation), due to the costs of 39
invalid results, or due to the expense of individual calculations implied by a very large number of processors 40

ISO/IEC PDTR 24772

2 © ISO 2007 – All rights reserved

used and/or very long execution times needed to complete the calculations. These circumstances give a 41
consequent need for high reliability and motivate the need felt by these programmers for the guidance offered 42
in this document. 43

1.4.4 Software Assurance 44

1.5 How to Use This Document 45

1.5.1 Writing Profiles 46

[Note: Advice for writing profiles was discussed in London 2006, no words] 47

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 3

 48

2 Normative references 49

The following referenced documents are indispensable for the application of this document. For dated 50
references, only the edition cited applies. For undated references, the latest edition of the referenced 51
document (including any amendments) applies. 52

ISO/IEC PDTR 24772

4 © ISO 2007 – All rights reserved

3 Terms and definitions 53

For the purposes of this document, the following terms and definitions apply. 54

3.1 Language Vulnerability 55

A feature or combination of features of a programming language which can cause, or is strongly correlated 56
with, a weakness, a hazard, or a bug. 57

3.2 Application Vulnerability 58

A security vulnerability or safety hazard. 59

3.3 Security Vulnerability 60

A set of conditions that allows an attacker to violate an explicit or implicit security policy. 61

3.4 Safety Hazard 62

Should definition come from, IEEE 1012-2004 IEEE Standard for Software Verification and Validation, 63
3.1.11, IEEE Std 1228-1994 IEEE Standard for Software Safety Plans, 3.1.5, IEEE Std 1228-1994 IEEE 64
Standard for Software Safety Plans, 3.1.8 or IEC 61508-4 and ISO/IEC Guide 51? 65

3.5 Safety-critical software 66

Software for applications where failure can cause very serious consequences such as human injury or death. 67

3.6 Software quality 68

The degree to which software implements the needs described by its specification. 69

3.7 Predictable Execution 70

The property of the program such that all possible executions have results which can be predicted from the 71
relevant programming language definition and any relevant language-defined implementation characteristics 72
and knowledge of the universe of execution. 73

Note: In some environments, this would raise issues regarding numerical stability, exceptional 74
processing, and concurrent execution. 75

Note: Predictable execution is an ideal which must be approached keeping in mind the limits of human 76
capability, knowledge, availability of tools etc. Neither this nor any standard ensures predictable 77
execution. Rather this standard provides advice on improving predictability. The purpose of this document 78
is to assist a reasonably competent programmer approach the ideal of predictable execution. 79

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 5

4 Symbols (and abbreviated terms) 80

ISO/IEC PDTR 24772

6 © ISO 2007 – All rights reserved

5 Vulnerability issues 81

Software vulnerabilities are unwanted characteristics of software that may allow software to behave in ways 82
that are unexpected by a reasonably sophisticated user of the software. The expectations of a reasonably 83
sophisticated user of software may be set by the software's documentation or by experience with similar 84
software. Programmers build vulnerabilities into software by failing to understand the expected behavior (the 85
software requirements), or by failing to correctly translate the expected behavior into the actual behavior of the 86
software. 87

This document does not discuss a programmer's understanding of software requirements. This document 88
does not discuss software engineering issues per se. This document does not discuss configuration 89
management; build environments, code-checking tools, nor software testing. This document does not discuss 90
the classification of software vulnerabilities according to safety or security concerns. This document does not 91
discuss the costs of software vulnerabilities, nor the costs of preventing them. 92

This document does discuss a reasonably competent programmer's failure to translate the understood 93
requirements into correctly functioning software. This document does discuss programming language 94
features known to contribute to software vulnerabilities. That is, this document discusses issues arising from 95
those features of programming languages found to increase the frequency of occurrence of software 96
vulnerabilities. The intention is to provide guidance to those who wish to specify coding guidelines for their 97
own particular use. 98

A programmer writes source code in a programming language to translate the understood requirements into 99
working software. The programmer combines in sequence language features (functional pieces) expressed in 100
the programming language so the cumulative effect is a written expression of the software's behavior. 101

A program's expected behavior might be stated in a complex technical document, that can result in a complex 102
sequence of features of the programming language. Software vulnerabilities occur when a reasonably 103
competent programmer fails to understand the totality of the effects of the language features combined to 104
make the resulting software. The overall software may be a very complex technical document itself (written in 105
a programming language whose definition is also a complex technical document). 106

Humans understand very complex situations by chunking, that is, by understanding pieces in a hierarchal 107
scaled scheme. The programmer's initial choice of the chunk for software is the line of code. (In any 108
particular case, subsequent analysis by a programmer may refine or enlarge this initial chunk.) The line of 109
code is a reasonable initial choice because programming editors display source code lines. Programming 110
languages are often defined in terms of statements (among other units), which in many cases are 111
synonymous with textual lines. Debuggers may execute programs stopping after every statement to allow 112
inspection of the program's state. Program size and complexity is often estimated by the number of lines of 113
code (automatically counted without regard to language statements). 114

5.1 Issues arising from lack of knowledge 115

While there are many thousands of programmers in the world, there are only several tens of authors engaged 116
in designing and specifying those programming languages defined by international standards. The design 117
and specification of a programming language is very different than programming. Programming involves 118
selecting and sequentially combining features from the programming language to (locally) implement specific 119
steps of the software's design. In contrast, the design and specification of a programming language involves 120
(global) consideration of all aspects of the programming language. This must include how all the features will 121
interact with each other, and what effects each will have, separately and in any combination, under all 122
foreseeable circumstances. Thus, language design has global elements that are not generally present in any 123
local programming task. 124

The creation of the abstractions which become programming language standards therefore involve 125
consideration of issues unneeded in many cases of actual programming. Therefore perhaps these issues are 126
not routinely considered when programming in the resulting language. These global issues may motivate the 127
definition of subtle distinctions or changes of state not apparent in the usual case wherein a particular 128
language feature is used. Authors of programming languages may also desire to maintain compatibility with 129

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 7

older versions of their language while adding more modern features to their language and so add what 130
appears to be an inconsistency to the language. 131

A reasonably competent programmer therefore may not consider the full meaning of every language feature 132
used, as only the desired (local or subset) meaning may correspond to the programmer's immediate intention. 133
In consequence, a subset meaning of any feature may be prominent in the programmer's overall experience. 134

Further, the combination of features indicated by a complex programming goal can raise the combinations of 135
effects making a complex aggregation within which some of the effects are not intended. 136

5.1.1 Issues arising from unspecified behaviour 137

While every language standard attempts to specify how software written in the language will behave in all 138
circumstances, there will always be some behavior which is not specified completely. In any circumstance, of 139
course, a particular compiler will produce a program with some specific behavior (or fail to compile the 140
program at all). Where a programming language is insufficiently well defined, different compilers may differ in 141
the behavior of the resulting software. The authors of language standards often have an interpretations or 142
defects process in place to treat these situations once they become known, and, eventually, to specify one 143
behavior. However, the time needed by the process to produce corrections to the language standard is often 144
long, as careful consideration of the issues involved is needed. 145

When programs are compiled with only one compiler, the programmer may not be aware when behavior not 146
specified by the standard has been produced. Programs relying upon behavior not specified by the language 147
standard may behave differently when they are compiled with different compilers. An experienced 148
programmer may choose to use more than one compiler, even in one environment, in order to obtain 149
diagnostics from more than one source. In this usage, any particular compiler must be considered to be a 150
different compiler if it is used with different options (which can give it different behavior), or is a different 151
release of the same compiler (which may have different default options or may generate different code), or is 152
on different hardware (which may have a different instruction set). In this usage, a different computer may be 153
the same hardware with a different operating system, with different compilers installed, with different software 154
libraries available, with a different release of the same operating system, or with a different operating system 155
configuration. 156

5.1.2 Issues arising from implementation defined behaviour 157

In some situations, a programming language standard may specifically allow compilers to give a range of 158
behavior to a given language feature or combination of features. This may enable more efficient execution on 159
a wider range of hardware, or enable use of the language in a wider variety of circumstances. 160

The authors of language standards are encouraged to provide lists of all allowed variation of behavior (as 161
many already do). Such a summary will benefit applications programmers, those who define applications 162
coding standards, and those who make code-checking tools. 163

5.1.3 Issues arising from undefined behaviour 164

In some situations, a programming language standard may specify that program behavior is undefined. While 165
the authors of language standards naturally try to minimize these situations, they may be inevitable when 166
attempting to define software recovery from errors, or other situations recognized as being incapable of 167
precise definition. 168

Generally, the amount of resources available to a program (memory, file storage, processor speed) is not 169
specified by a language standard. The form of file names acceptable to the operating system is not specified 170
(other than being expressed as characters). The means of preparing source code for execution may not be 171
specified by a language standard. 172

ISO/IEC PDTR 24772

8 © ISO 2007 – All rights reserved

5.2 Issues arising from human cognitive limitations 173

The authors of programming language standards try to define programming languages in a consistent way, so 174
that a programmer will see a consistent interface to the underlying functionality. Such consistency is intended 175
to ease the programmer's process of selecting language features, by making different functionality available 176
as regular variation of the syntax of the programming language. However, this goal may impose limitations on 177
the variety of syntax used, and may result in similar syntax used for different purposes, or even in the same 178
syntax element having different meanings within different contexts. 179

Any such situation imposes a strain on the programmer's limited human cognitive abilities to distinguish the 180
relationship between the totality of effects of these constructs and the underlying behavior actually intended 181
during software construction. 182

Attempts by language authors to have distinct the language features expressed by very different syntax may 183
easily result in different programmers preferring to use different subsets of the entire language. This imposes 184
a substantial difficulty to anyone who wants to employ teams of programmers to make whole software 185
products or to maintain software written over time by several programmers. In short, it imposes a barrier to 186
those who want to employ coding standards of any kind. The use of different subsets of a programming 187
language may also render a programmer less able to understand other programmer's code. The effect on 188
maintenance programmers can be especially severe. 189

5.3 Predictable execution 190

If a reasonably competent programmer has a good understanding of the state of a program after reading 191
source code as far as a particular line of code, the programmer ought to have a good understanding of the 192
state of the program after reading the next line of code. However, some features, or, more likely, some 193
combinations of features, of programming languages are associated with relatively decreased rates of the 194
programmer's maintaining their understanding as they read through a program. It is these features and 195
combinations of features which are indicated in this document, along with ways to increase the programmer's 196
understanding as code is read. 197

Here, the term understanding means the programmer's recognition of all effects, including subtle or 198
unintended changes of state, of any language feature or combination of features appearing in the program. 199
This view does not imply that programmers only read code from beginning to end. It is simply a statement 200
that a line of code changes the state of a program, and that a reasonably competent programmer ought to 201
understand the state of the program both before and after reading any line of code. As a first approximation 202
(only), code is interpreted line by line. 203

5.4 Portability 204

The representation of characters, the representation of true/false values, the set of valid addresses, the 205
properties and limitations of any (fixed point or floating point) numerical quantities, and the representation of 206
programmer-defined types and classes may vary among hardware, among languages (effecting inter-207
language software development), and among compilers of a given language. These variations may be the 208
result of hardware differences, operating system differences, library differences, compiler differences, or 209
different configurations of the same compiler (as may be set by environment variables or configuration files). 210
In each of these circumstances, there is an additional burden on the programmer because part of the 211
program's behavior is indicated by a factor that is not a part of the source code. That is, the program's 212
behavior may be indicated by a factor that is invisible when reading the source code. Compilation control 213
schemes (IDE projects, make, and scripts) further complicate this situation by abstracting and manipulating 214
the relevant variables (target platform, compiler options, libraries, and so forth). 215

Many compilers of standard-defined languages also support language features that are not specified by the 216
language standard. These non-standard features are called extensions. For portability, the programmer must 217
be aware of the language standard, and use only constructs with standard-defined semantics. The motivation 218
to use extensions may include the desire for increased functionality within a particular environment, or 219
increased efficiency on particular hardware. There are well-known software engineering techniques for 220
minimizing the ill effects of extensions; these techniques should be a part of any coding standard where they 221

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 9

are needed, and they should be employed whenever extensions are used. These issues are software 222
engineering issues and are not further discussed in this document. 223

The use of libraries to broaden the software primitives available in a given development environment is a 224
useful technique, allowing the use of trusted functionality directly in the program. Libraries may also allow the 225
program to bind to capabilities provided by its environment. However, these advantages are potentially offset 226
by any lack of skill on the part of the designer of the library (who may have designed subtle or undocumented 227
changes of state into the library's behavior), and implementer of the library (who may not have the 228
implemented the library identically on every platform), and even by the availability of the library on a new 229
platform. The quality of the documentation of a third-party library is another factor that may decrease the 230
reliability of software using a library in a particular situation by failing to describe clearly the library's full 231
behavior. If a library is missing on a new platform, its functionality must be recreated in order to port any 232
software depending upon it. 233

Using a library usually requires that options be set during compilation and linking phases, which constitute a 234
software behavior specification beyond the source code. Again, these issues are software engineering issues 235
and are not further discussed in this document. 236

ISO/IEC PDTR 24772

10 © ISO 2007 – All rights reserved

6. Vulnerabilities 237

6.1 SM-004 Out of bounds array element access 238

6.1.1 Description of application vulnerability 239

Unpredictable behaviour can occur when accessing the elements of an array outside the bounds of 240
the array. 241

6.1.2 Cross reference 242

CWE: 129 243

6.1.3 Categorization 244

See clause 5.?. 245

6.1.4 Mechanism of failure 246

Arrays are defined, perhaps statically, perhaps dynamically, to have given bounds. In order to access 247
an element of the array, index values for one or more dimensions of the array must be computed. If 248
the index values do not fall within the defined bounds of the array, then access might occur to the 249
wrong element of the array, or access might occur to storage that is outside the array. A write to a 250
location outside the array may change the value of other data variables or may even change program 251
code. 252

6.1.5 Possible ways to avoid the vulnerability 253

The vulnerability can be avoided by not using arrays, by using whole array operations, by checking 254
and preventing access beyond the bounds of the array, or by catching erroneous accesses when they 255
occur. The compiler might generate appropriate code, the run-time system might perform checking, 256
or the programmer might explicitly code appropriate checks. 257

6.1.6 Assumed variations among languages 258

This vulnerability description is intended to be applicable to languages with the following 259
characteristics: 260

• The size and bounds of arrays and their extents might be statically determinable or dynamic. Some 261
languages provide both capabilities. 262

• Language implementations might or might not statically detect out of bound access and generate a 263
compile-time diagnostic. 264

• At run-time the implementation might or might not detect the out of bounds access and provide a 265
notification at run-time. The notification might be treatable by the program or it might not be. 266

• Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is 267
possible that the former is checked and detected by the implementation while the latter is not. 268

• The information needed to detect the violation might or might not be available depending on the 269
context of use. (For example, passing an array to a subroutine via a pointer might deprive the 270
subroutine of information regarding the size of the array.) 271

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 11

• Some languages provide for whole array operations that may obviate the need to access individual 272
elements. 273

• Some languages may automatically extend the bounds of an array to accommodate accesses that 274
might otherwise have been beyond the bounds. (This may or may not match the programmer's intent.) 275

6.1.7 Avoiding the vulnerability or mitigating its effects 276

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 277

• If possible, utilize language features for whole array operations that obviate the need to access 278
individual elements. 279

• If possible, utilize language features for matching the range of the index variable to the dimension of 280
the array. 281

• If the compiler can verify correct usage, then no mitigation is required beyond performing the 282
verification. 283

• If the run-time system can check the validity of the access, then appropriate action may depend upon 284
the usage of the system (e.g. continuing degraded operation in a safety-critical system versus 285
immediate termination of a secure system). 286

• Otherwise, it is the responsibility of the programmer: 287

o to use index variables that can be shown to be constrained within the extent of the array; 288

o to explicitly check the values of indexes to ensure that they fall within the bounds of the 289
corresponding dimension of the array; 290

o to use library routines that obviate the need to access individual elements; or 291

o to provide some other means of assurance that arrays will not be accessed beyond their 292
bounds. Those other means of assurance might include proofs of correctness, analysis with 293
tools, verification techniques, etc. 294

 295

ISO/IEC PDTR 24772

12 © ISO 2007 – All rights reserved

Annex A 296
(informative) 297

 298
Guideline Recommendation Factors 299

A.1 Factors that need to be covered in a proposed guideline recommendation 300

These are needed because circumstances might change, for instance: 301

• Changes to language definition. 302

• Changes to translator behavior. 303

• Developer training. 304

• More effective recommendation discovered. 305

A.1.1 Expected cost of following a guideline 306

How to evaluate likely costs. 307

A.1.2 Expected benefit from following a guideline 308

How to evaluate likely benefits. 309

A.2 Language definition 310

Which language definition to use. For instance, an ISO/IEC Standard, Industry standard, a particular 311
implementation. 312

Position on use of extensions. 313

A.3 Measurements of language usage 314

Occurrences of applicable language constructs in software written for the target market. 315

How often do the constructs addressed by each guideline recommendation occur. 316

A.4 Level of expertise. 317

How much expertise, and in what areas, are the people using the language assumed to have? 318

Is use of the alternative constructs less likely to result in faults? 319

A.5 Intended purpose of guidelines 320

For instance: How the listed guidelines cover the requirements specified in a safety related standard. 321

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 13

A.6 Constructs whose behaviour can very 322

The different ways in which language definitions specify behaviour that is allowed to vary between 323
implementations and how to go about documenting these cases. 324

A.7 Example guideline proposal template 325

A.7.1 Coding Guideline 326

Anticipated benefit of adhering to guideline 327

• Cost of moving to a new translator reduced. 328

• Probability of a fault introduced when new version of translator used reduced. 329

• Probability of developer making a mistake is reduced. 330

• Developer mistakes more likely to be detected during development. 331

• Reduction of future maintenance costs. 332
 333

ISO/IEC PDTR 24772

14 © ISO 2007 – All rights reserved

Annex B 334
(informative) 335

Guideline Selection Process 336
 337

It is possible to claim that any language construct can be misunderstood by a developer and lead to a failure 338
to predict program behavior. A cost/benefit analysis of each proposed guideline is the solution adopted by this 339
technical report. 340

The selection process has been based on evidence that the use of a language construct leads to unintended 341
behavior (i.e., a cost) and that the proposed guideline increases the likelihood that the behavior is as intended 342
(i.e., a benefit). The following is a list of the major source of evidence on the use of a language construct and 343
the faults resulting from that use: 344

• a list of language constructs having undefined, implementation defined, or unspecified behaviours, 345

• measurements of existing source code. This usage information has included the number of 346
occurrences of uses of the construct and the contexts in which it occurs, 347

• measurement of faults experienced in existing code, 348

• measurements of developer knowledge and performance behaviour. 349

The following are some of the issues that were considered when framing guidelines: 350

• An attempt was made to be generic to particular kinds of language constructs (i.e., language 351
independent), rather than being language specific. 352

• Preference was given to wording that is capable of being checked by automated tools. 353

• Known algorithms for performing various kinds of source code analysis and the properties of those 354
algorithms (i.e., their complexity and running time). 355

B.1 Cost/Benefit Analysis 356

The fact that a coding construct is known to be a source of failure to predict correct behavior is not in itself a 357
reason to recommend against its use. Unless the desired algorithmic functionality can be implemented using 358
an alternative construct whose use has more predictable behavior, then there is no benefit in recommending 359
against the use of the original construct. 360

While the cost/benefit of some guidelines may always come down in favor of them being adhered to (e.g., 361
don't access a variable before it is given a value), the situation may be less clear cut for other guidelines. 362
Providing a summary of the background analysis for each guideline will enable development groups. 363

Annex A provides a template for the information that should be supplied with each guideline. 364

It is unlikely that all of the guidelines given in this technical report will be applicable to all application domains. 365

B.2 Documenting of the selection process 366

The intended purpose of this documentation is to enable third parties to evaluate: 367

• the effectiveness of the process that created each guideline, 368

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 15

• the applicability of individual guidelines to a particular project. 369

ISO/IEC PDTR 24772

16 © ISO 2007 – All rights reserved

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 17

Annex C 370
(informative) 371

Template for use in proposing vulnerabilities 372
 373

C. Skeleton template for use in proposing vulnerabilities 374

C.1 6.<x> <unique immutable identifier> <short title> 375

Notes on template header. The number "x" depends on the order in which the vulnerabilities are 376
listed in Clause 6. It will be assigned by the editor. The "unique immutable identifier" is intended to 377
provide an enduring identifier for the vulnerability description, even if their order is changed in the 378
document. The "short title" should be a noun phrase summarizing the description of the application 379
vulnerability. No additional text should appear here. 380

C.1.1 6.<x>.1 Description of application vulnerability 381

Replace this with a brief description of the application vulnerability. It should be a short paragraph. 382

C.1.2 6.<x>.2 Cross reference 383

CWE: Replace this with the CWE identifier. At a later date, other cross-references may be added. 384

C.1.3 6.<x>.3 Categorization 385

See clause 5.?. Replace this with the categorization according to the analysis in Clause 5. At a later 386
date, other categorization schemes may be added. 387

C.1.4 6.<x>.4 Mechanism of failure 388

Replace this with a brief description of the mechanism of failure. This description provides the link 389
between the programming language vulnerability and the application vulnerability. It should be a 390
short paragraph. 391

C.1.5 6.<x>.5 Possible ways to avoid the vulnerability 392

Replace this with a description of the various points at which the chain of causation could be broken. 393
It should be a short paragraph. 394

C.1.6 6.<x>.6 Assumed variations among languages 395

This vulnerability description is intended to be applicable to languages with the following 396
characteristics: 397

Replace this with a bullet list summarizing the pertinent range of characteristics of languages for 398
which this discussion is applicable. This list is intended to assist readers attempting to apply the 399
guidance to languages that have not been treated in the language-specific annexes. 400

ISO/IEC PDTR 24772

18 © ISO 2007 – All rights reserved

C.1.7 6.<x>.7 Avoiding the vulnerability or mitigating its effects 401

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 402

Replace this with a bullet list summarizing various ways in which programmers can avoid the 403
vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and 404
then progress to the more indirect, abstract, and probabilistic means. 405

 406

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 19

Bibliography 407

[1] ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 2001 408

[2] ISO/IEC TR 10000-1, Information technology — Framework and taxonomy of International 409
Standardized Profiles — Part 1: General principles and documentation framework 410

[3] ISO 10241, International terminology standards — Preparation and layout 411

[4] ISO/IEC TR 15942:2000, "Information technology - Programming languages - Guide for the use of the 412
 Ada programming language in high integrity systems" 413

[5] Joint Fighter Air Vehicle: C++ Coding Standards for the System Development and Demonstration 414
Program. Lockheed Martin Corporation. December 2005. 415

[6] ISO/IEC 9899:1999, Programming Languages – C 416

[7] ISO/IEC 1539-1:2004, Programming Languages – Fortran 417

[8] ISOISO/IEC 8652:1995/Cor 1:2001/Amd 1:2007, Information technology -- Programming languages – Ada 418

[9] ISO/IEC 15291:1999, Information technology - Programming languages - Ada Semantic Interface 419
Specification (ASIS) 420

[10] Software Considerations in Airborne Systems and Equipment Certification. Issued in the USA by the 421
Requirements and Technical Concepts for Aviation (document RTCA SC167/DO-178B) and in Europe 422
by the European Organization for Civil Aviation Electronics (EUROCAE document ED-12B).December 423
1992. 424

[11] IEC 61508: Parts 1-7, Functional safety: safety-related systems. 1998. (Part 3 is concerned with 425
software). 426

[12] ISO/IEC 15408: 1999 Information technology. Security techniques. Evaluation criteria for IT security. 427

[13] J Barnes. High Integrity Software - the SPARK Approach to Safety and Security. Addison-Wesley. 428
2002. 429

[14] R. Seacord Preliminary draft of the CERT C Programming Language Secure Coding Standard. 430
ISO/IEC JTC 1/SC 22/OWGV N0059, April 2007. 431

[15] Motor Industry Software Reliability Association. Guidelines for the Use of the C Language in Vehicle 432
Based Software, 2004 (second edition)1. 433

 434

1 The first edition should not be used or quoted in this work.

