Skeleton template for use in proposing vulnerabilities

	8.<x> Resource Management Errors

8.<x>.1 Description of application vulnerability

The software does not sufficiently track and release allocated memory after it has been used, which slowly consumes remaining memory. This is often triggered by improper handling of malformed data or unexpectedly interrupted sessions.

8.<x>.2 Cross reference

CWE: 

401. Memory Leak

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

If an attacker can determine the cause of the memory leak, an attacker may be able to cause the application to leak quickly and therefore cause the application to crash.

8.<x>.5 Possible ways to avoid the vulnerability

Some languages or compilers perform automatic bounds checking.  Although not a complete solution, the use of an abstraction library can abstract away risky APIs.  The Boehm-Demers-Weiser Garbage Collector or valgrind can be used to detect leaks in code.  Again, this is not a complete solution as it is not 100% effective, but it can significantly reduce the number of memory leaks.

Allocating and freeing memory in different modules and levels of abstraction burdens the programmer with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a block of memory has been allocated or freed, leading to memory leaks.  To avoid these situations, it is recommended that memory be allocated and freed at the same level of abstraction, and ideally in the same code module.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


