Skeleton template for use in proposing vulnerabilities

	8.<x> Wrap-around Error

8.<x>.1 Description of application vulnerability

Wrap around errors occur whenever a value is incremented past the maximum value for its type and therefore "wraps around" to a very small, negative, or undefined value.

8.<x>.2 Cross reference

CWE: 

128. Wrap-around Error
8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

Due to how addition is performed by computers, if a primitive is incremented past the maximum value possible for its storage space, the system will fail to recognize this, and therefore increment each bit as if it still had extra space. Because of how negative numbers are represented in binary, primitives interpreted as signed may "wrap" to very large negative values.

Wrap-around errors generally lead to undefined behavior and infinite loops, and therefore crashes.  If the value in question is important to data (as opposed to flow), simple data corruption will occur.  If the wrap around results in other conditions such as buffer overflows, further memory corruption may occur.  A wrap around can sometimes trigger buffer overflows which can be used to execute arbitrary code.

8.<x>.5 Possible ways to avoid the vulnerability

The choice could be made to use a language that is not susceptible to these issues.

Provide clear upper and lower bounds on the scale of any protocols designed.

Place sanity checks on all incremented variables to ensure that they remain within reasonable bounds.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


