Skeleton template for use in proposing vulnerabilities

	8.<x> Injection

8.<x>.1 Description of application vulnerability

Injection problems span a wide range of instantiations. The basic form of this weakness involves the software allowing injection of control-plane data into the data-plane in order to alter the control flow of the process. 

8.<x>.2 Cross reference

CWE: 

90. LDAP Injection
91. XML Injection (aka Blind Xpath injection)
92. Custom Special Character Injection
95. Direct Dynamic Code Evaluation ('Eval Injection')
98 PHP File Inclusion
99. Resource Injection

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For this reason, the most effective way to discuss these weaknesses is to note the distinct features which classify them as injection weaknesses. The most important issue to note is that all injection problems share one thing in common -- they allow for the injection of control plane data into the usercontrolled data plane. This means that the execution of the process may be altered by sending code in through legitimate data channels, using no other mechanism. While buffer overflows and many other flaws involve the use of some further issue to gain execution, injection problems need only for the data to be parsed. The most classic instantiations of this category of weakness are SQL injection and format string vulnerabilities.

Many injection attacks involve the disclosure of important information in terms of both data sensitivity and usefulness in further exploitation.  In some cases injectable code controls authentication, which may lead to a remote vulnerability.

Injection attacks are characterized by the ability to significantly change the flow of a given process, and in some cases, to the execution of arbitrary code.

Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data injected is always incidental to data recall or writing.  Often the actions performed by injected control code are unlogged.

Eval injection occurs when the software allows inputs to be fed directly into a function (e.g. "eval") that dynamically evaluates and executes the input as code, usually in the same interpreted language that the product uses.  Eval injection is prevalent in handler/dispatch procedures that might want to invoke a large number of functions, or set a large number of variables.

A PHP file inclusion occurs when a PHP product uses "require" or "include" statements, or equivalent statements, that use attacker-controlled data to identify code or HTML to be directly processed by the PHP interpreter before inclusion in the script.

A resource injection issue occurs when the following two conditions are met: 1. An attacker can specify the identifier used to access a system resource. For example, an attacker might be able to specify part of the name of a file to be opened or a port number to be used. 2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted. For example, the program may give the attacker the ability to overwrite the specified file, run with a configuration controlled by the attacker, or transmit sensitive information to a third-party server. Note: Resource injection that involves resources stored on the filesystem goes by the name path manipulation and is reported in separate category. See the path manipulation description for further details of this vulnerability.  Allowing user input to control resource identifiers may enable an attacker to access or modify otherwise protected system resources.

8.<x>.5 Possible ways to avoid the vulnerability

A language can be chosen which is not subject to these issues.

As so many possible implementations of this weaknes exist, it is best to simply be aware of the weakness and work to ensure that all control characters entered in data are subject to black-list style parsing.  Assume all input is malicious.  Use an appropriate combination of black lists and white lists to ensure only valid and expected input is processed by the system.

To avert eval injections, refactor your code so that it does not need to use eval() at all.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


