
ISO/IEC JTC 1/SC 22/OWGV N 0043
Adam Schofield & Clive Pygott, "A Tabulation of the unpredictable features of the C++
language," September 2006, QINETIQ/S&DU/TIM/CR060019

Date 2006-09-19
Contributed by Clive Pygott
Original file name C++ Vulnerabilities Report - v03.pdf
Notes

Unclassified/Unlimited

Unclassified/Unlimited

A Tabulation of the unpredicatable features
of the C++ language

This document is subject to the release conditions
printed on the reverse of this page

Cover + vi + 28 pages
September 2006

QINETIQ/S&DU/TIM/CR060019

Adam Schofield & Clive Pygott

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

ii

Customer Information

Customer Reference Number MCIP 03 06 001 12
Task Title Safety Critical Systems: Robust Languages
Customer Contact Name D. Wharf
Staff Requirement/Target

Project Number C/CIP/N03508
Milestone Number 12
Date Due (dd/mm/yyyy) 10/02/2006

© Copyright of QinetiQ ltd 2006
Approval for wider use of releases must be sought from:

Intellectual Property Department, QinetiQ ltd, Cody Technology Park,
Farnborough, Hampshire GU14 0LX

This document has been prepared for MOD and, unless indicated, may be used
and circulated in accordance with the conditions of the Order under which it was
supplied. It may not be used or copied for any non-Governmental or commercial

purpose without the written agreement of QinetiQ.

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

iii

Authorisation

Principal authors
Name Adam Schofield & Clive Pygott
Appointment Systems Assurance Group
Location Woodward A109, QinetiQ, Malvern

Name Prof C M O'Halloran
Appointment Director Systems Assurance Group

Woodward A109, QinetiQ, Malvern

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

iv

Record of changes

Issue Date Detail of Changes
1 3/2/2006 First Issue
2 8/9/2006 Added Unique ID column to tables

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

v

Executive summary

In recent years there has been a growing interest in the use of C++ in high integrity
applications. However, there is as yet no publicly recognised standard for the
development of such code.

The primary requirement for any software that is to be used in a high-integrity
environment is predictability. Typically, this requirement for predictability has led to the
development of coding standards that aim to avoid or control ‘problematic’ areas of a
language, such as the SPARK Ada and MISRA C subsets.

The starting point for the SPARK and MISRA C subsets were the annexes in the
respective ISO standards that described the various unspecified, compiler dependent
etc. language features. These provided a benchmark against which any proposed
coding standard could be judged.

The ISO standard for C++ does not provide an equivalent annex of language
vulnerabilities, so the aim of this report is to address this omission.

It should be noted that this report is solely concerned with core language features, and
does not address any issues associated with libraries or support environments.

It is anticipated that this report may be used in two ways:

• as guidance to anyone developing a C++ reduced-risk subset, as to the language
specification issues that need to be addressed,

• as a bench mark against which any proposed reduced-risk subset can be
accessed (again for language specification issues)

In either event, the development of a reduced-risk language subset to address language
specification issues is only part of the requirement for high integrity software
development. The need to consider avoidance of common programmer errors, clarity of
intent to aid maintenance and the development of tool support to police any subset and
analyse developed code are outside the scope of this report.

It is recommended that this report is given wide circulation in an attempt to achieve
public scrutiny and industrial consensus that the language specification issues that need
to be addressed for the safety critical/related use of C++ have been identified.

It is also recommended that any proposed reduced-risk language subset should be
assessed against the issues identified here.

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

vi

List of contents

Authorisation iii

Record of changes iv

Executive summary v

1 Introduction 1
1.1 Background 1

1.2 Purpose of this Report 1

1.3 History and contractual 2

1.4 Structure of the report 2

1.5 Linking this report to the C++ ISO standard 2

2 Comparison with C, and Classification of Issues 4
2.1 Comparison with the use of C in High Integrity Applications 4

2.2 Classification of C++ Language Standard Issues 4

2.3 Classification by language feature 6

3 Unspecified Behaviours 8

4 Undefined Behaviours 11

5 Implementation Defined Behaviours 18

6 Indeterminate behaviour 23

7 Behaviour that requires no diagnostic 24

8 Conclusions and Recommendations 26
8.1 Conclusions 26

8.2 Recommendations 26

9 References 27

10 Glossary 28

Report documentation page 29

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

vii

This page is intentionally blank

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 1 of 30

1 Introduction

1.1 Background

1.1.1 The primary requirement for any software that is to be used in a high-integrity
environment is predictability. Typically, this requirement for predictability has led to the
development of coding standards that aim to avoid or control ‘problematic’ areas of a
language. For C and Ada, this has meant the definition of the SPARK [1] and MISRA C
[2] subsets, which aim to:

• avoid unspecified1 behaviour in the language
• avoid compiler dependent behaviour
• avoid ‘confusing’ behaviour associated with common programmer mistakes and

increase the clarity of a program, to minimise mistakes during maintenance
• avoid constructs and features that cannot be adequately tested/analysed by the

available technology

1.1.2 It can be argued that the first three should be ranked in that order, i.e. ‘unspecified
behaviour’ being the most serious concern, etc. The argument being that:

• for unspecified behaviour it is impossible to predict what the program will do
• for compiler dependencies, it may be possible to predict what the program will do,

but it may be difficult to demonstrate that the same behaviour will happen under all
circumstances, and the implementation is not robust if the compiler changes

• for confusing behaviour etc., the behaviour of the program is well defined and may
be what the programmer wants. Hence, any restrictions are precautionary.

1.1.3 For the fourth bullet, the impact depends upon what ‘constructs and features’ are being
considered, and clearly the requirements may change with time, as testing/analysis
technology develops.

1.2 Purpose of this Report

1.2.1 In recent years there has been a growing interest in the use of C++ in high integrity
applications. However, there is as yet no publicly recognised standard for the
development of such code.

1.2.2 The starting point for the SPARK subset was the annex in the ISO language definition
standard [9] that described the various unspecified, compiler dependent etc. features of
the language. For MISRA C it was the C standard’s [8] annex and a number of books
[6,7] that identified the equivalent features of that language. These provided a
benchmark against which any proposed coding standard could be judged, at least as far
as unspecified and compiler dependent behaviours were concerned (issues of clarity
and testability require separate consideration).

1.2.3 The ISO standard for C++ [3] does not provide an equivalent annex of language
vulnerabilities, so the aim of this report is to address this omission.

1 using ‘unspecified’ its general sense, rather than the narrow definition provided in [3], c.f. 1.4.2

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 2 of 30

1.2.4 This report is solely concerned with core language features, and does not address any
issues associated with libraries or support environments.

1.3 History and contractual

1.3.1 During 2004, staff at QinetiQ carried out a review of the C++ ISO standard [3], looking
for keywords, such as ‘unspecified’, ‘undefined’, ‘compiler dependent’ etc. and
assembled a list of vulnerabilities as reference [4].

1.3.2 Simultaneously and independently, a similar study was being conducted at the
University of York [5].

1.3.3 This report, provides a consolidated list of the vulnerabilities identified in these two
report, traceable back to the ISO standard.

1.3.4 It should be noted that these two source documents contain additional information
relating to the use of C++ in critical systems, not covered in this report.

1.3.5 This report has been produced as part of an MoD Corporate Research Programme
(CRP) on ‘Robust Languages’. It represents the deliverable for task 3.1 ‘identify C++
vulnerabilities’. It aims to facilitate the development of C++ coding standards, such as
being undertaken by MISRA as ‘MISRA C++’.

1.4 Structure of the report

1.4.1 Section 2 contains further background information, a classification scheme for
vulnerabilities (derived from the ISO standard [3]) and a description of the format of the
tables in the rest of the report.

1.4.2 Sections 3 to 7 contain lists of the vulnerabilities for each of the five classifications:

• Unspecified2

• Undefined
• Implementation defined
• Indeterminate
• ‘Behaviour that requires no diagnostic’

1.4.3 Section 8 is the conclusions and recommendations.

1.5 Linking this report to the C++ ISO standard

1.5.1 For each of the vulnerabilities described in sections 3 to 7, there is a hypertext link to the
relevant page of the ISO standard (as well as a printed reference in terms of sub-section
and paragraph number). When correctly configured, clicking on the link will open the
standard on the correct page.

1.5.2 To make the hyperlinks work under Windows, you will need the following:

• This report

2 from now on, ‘unspecified’ is used as defined in [3], which is distinct from ‘undefined’ and ‘indeterminate’

c.f. 1.1.1

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 3 of 30

• The ISO C++ Standard in PDF format, which can be purchased from the British
Standards Organisation on-line store:

http://www.bsonline.bsi-global.com/server/index.jsp
• The auto-extracting zip file LinkedReport.exe, available from the supplier of this

report.

1.5.3 Note, due to copyright restrictions we are unable to distribute the ISO standard with this
report (hence the need to purchase it separately).

1.5.4 Place LinkedReport.exe in the some folder and double click on LinkedReport.exe. This
will extract the contents to a sub-folder named ‘CPP Vulnerabilities’. Copy this report
into ‘CPP Vulnerabilities’.

1.5.5 ‘CPP Vulnerabilities’ contains a sub-folder called ‘data’, the contents of a which will be a
series of HTM files that are accessed by this report’s links and cause the ISO standard
to be opened in a PDF reader on the correct page. Move/copy the ISO C++ Standard
PDF to this ‘data’ folder.

1.5.6 The ISO C++ Standard pdf should be named ‘ISO14882 - 2003.pdf’. The document
should already have this name by default. If it is named differently, change the name by
right-clicking on the document, selecting rename, and typing in "ISO14882 - 2003"
(without quotes). Drag and drop the folder into the ‘data’ folder.

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 4 of 30

2 Comparison with C, and Classification of Issues

2.1 Comparison with the use of C in High Integrity Applications

2.1.1 In the early 1990’s, C was regarded as a ‘non-starter’ for safety critical applications. For
example, the wide and varied use of pointers and the ability to manipulate them was
seen as providing far too many ways of generating unexpected aliasing and
dependencies, and so lead to unexpected results.

2.1.2 A major step forward for the use of C in safety applications was the production of the
book “Safer C” by Les Hatton [6] in 1994. In this Hatton identified all the undefined,
unspecified, implementation defined etc. features that could be found in the C language
standard and then analysed how they could be detected and what means of verification
could be used to show that programs avoid these known issues.

2.1.3 The outcome from Hatton’s book has been that the holes and pitfalls of C were opened
up for scrutiny. Researchers were then able to look towards ways of developing
programs which could avoid the known language deficiencies. A consequence from this
initial work was that in 1998 the UK Motor Industry Software Reliability Association
produced a set of guideline rules [1] for aiding the development of safety related
automotive applications. This document soon became the de-facto standard in many
organisations around the world and formed a solid starting point for take up by the safety
critical software community.

2.1.4 The MISRA guidelines have proved to be a significant advancement over the way C
programs are viewed for safety related applications. The lessons learnt from the initial
uses of the MISRA guidelines have been incorporated into the recently released revised
version.

2.1.5 However, just defining a reduced-risk sub-set for a language is not, in itself, sufficient to
guarantee that all dangerous language issues have been avoided. This is especially true
for C with its use and manipulation of pointers. Unlike Ada it is not possible to ban the
use of all pointers as they are central to efficient C based programs. Therefore in order
to minimise the risks it is necessary to capture the use of C within a robust fault
management framework. The same is expected to be true of C++, as it is a direct
descendant of C.

2.2 Classification of C++ Language Standard Issues

2.2.1 Whilst the ISO Ada and C language standards [8,9] provide a clear list of those
language features which are unspecified, undefined, etc., the C++ language standard [3]
does not do this. This report is therefore the result of reviewing the C++ language
standard, to draw out such features. Sections 3 to 7 of this report provide detailed tables
of the different categories of features that need to be considered. In overview these are:

• Unspecified behaviour
• Undefined behaviour
• Implementation defined behaviour
• Indeterminate behaviour
• Behaviour that requires no diagnostic

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 5 of 30

2.2.2 Unspecified behaviour is defined in the C++ language standard as: “behaviour, for a
well-formed program construct and correct data, that depends on the implementation.
The implementation is not required to document which behaviour occurs. It should be
noted that usually, the range of possible behaviours is delineated by the language
Standard”.

2.2.3 Undefined behaviour is defined in the C++ language standard as: “behaviour, such as
might arise upon use of an erroneous program construct or erroneous data, for which
the language standard imposes no requirements. Undefined behaviour may also be
expected when the language standard omits the description of any explicit definition of
behaviour. It should be noted that permissible undefined behaviour ranges from ignoring
the situation completely with unpredictable results, to behaving during translation or
program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution
(with the issuance of a diagnostic message).”

2.2.4 Implementation defined behaviour is defined in the C++ language standard as
“behaviour, for a well-formed program construct and correct data, that depends on the
implementation and that each implementation shall document”.

2.2.5 Indeterminate behaviour is defined in the C++ language standard through negative
statements. For example, some language statements define that a construct shall not
use a particular feature. It is therefore left indeterminate what would happen if such a
construct did use a particular feature.

2.2.6 “Behaviour that requires no diagnostics” are features of the language which do not
follow the required or expected rules but for which the language standard states that no
diagnostic information is required to be given to the user. Thus it is possible that these
issues could be violating the language definition yet no information is passed to a
programmer that such a violation has occurred.

2.2.7 Sections 3 to 7 provide details of the different occurrences of the above categories that
have been determined from a review of the C++ language standard. The tables provided
in the sections give cross references to the appropriate sections of the language
standard where a fuller description of the language features and issue can be found.

2.2.8 Overall the number of issues found within the C++ language standard for which
reduced-risk coding rules will be required are shown in table 2.1. Note that these are
core language issues, and exclude issues relating to libraries etc.

Category Language
issues

Unspecified behaviour 31
Undefined behaviour 81
Implementation behaviour 62
Indeterminate behaviour 5
Behaviour that requires no diagnostic 19

Table 2.1: C++ language issues

2.2.9 As a rough comparison, the equivalent analysis for C identified a total of 12 unspecified
behaviours, 54 undefined and 41 implementation dependent behaviours.

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 6 of 30

2.3 Classification by language feature

2.3.1 Each of the following sections includes a table with a format similar to that shown in
table 2.2, where each row represents a specific issue (unspecified feature etc).

Unique
ID

ISO
Standard
Reference

ISO
Standard
Paragraph

Description Classification

1.01 3.6.2 2 Whether an object is fully, or merely
zero-initialized when an object refers to
another object of namespace scope with
static storage duration potentially
requiring dynamic initialization and
defined later in the same translational
unit.

Initialisation
Order.

Link

Table 2.2: C++ language sample issue

2.3.2 The first two columns provide a reference into the C++ language reference [3], in terms
of a sub-section number and paragraph within the sub-section. The third column is a
short description of the issue.

2.3.3 If the report has been installed as described in section 1.5, the “Link” in the final column
allows the C++ ISO standard to be ‘opened’ on the appropriate page.

2.3.4 The fourth column classifies the issue into broad ‘areas of concern’. The areas of
concern used are shown in table 2.3

Classification Description

Casting Issues involving explicit type conversion with cast operators

Constant Objects Issues involving objects that can not be modified, i.e. objects with a
const-qualification

Enumerated Types Issues involving the value and type of enumeration constants

Evaluation Issues related to evaluation, but not its order, e.g. whether or how
many times expressions are evaluated, rather than in what order,
c.f. Initialisation

Evaluation Order Issues relating to order of evaluation of sub-expression within an
expression etc. That is, the elements being ordered are visible in
the program, c.f. Initialisation Order

Exceptions Issues relating to any ‘exceptional’ behaviour. This does not just
relate to the explicit C++ exception mechanism

Execution
Environment

Issues involving freestanding environments ("execution takes place
without the benefit of an operating system") and the main function

Function Calls Issues relating to calling functions

Inheritance Issues relating to inheritance (excluding virtual functions), both

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 7 of 30

single and multiple

Initialisation Issues relating to initialisation, excluding the order of initialisation,
c.f. Evaluation

Initialisation Order Order of execution of initialisation actions. That is, where the
elements being ordered or the action of concern is implied (e.g.
program start) rather than explicit, c.f. Evaluation Order

Layout Layout of objects in memory, e.g. the order and relative position of
sub-objects within an object, c.f. Representation

Lexical Analysis Issues relating to lexical analysis of the source text

Memory Allocation Issues relating to if and how memory is allocated and deallocated

Mixed Language
Working

Issues relating to the use of multiple language linkages

NameSpace Issues relating to name-spaces in the general computer science
sense of the scope of a name, rather than necessarily to do with
C++'s namespace construct

Object Lifetime Issues relating to the start and end of an object’s lifetime and
constructor/destructor calls, e.g. when (or if) an object is created or
destroyed

One Definition Rule Issues relating to the One Definition Rule over multiple translation
units, as defined in [3, section 3.2]

Pointers Issues relating to pointer types

Pre-processor Issues relating to macros and pre-processing tokens

Representation The representation of an object in memory (e.g. 2's compliment vs.
sign and magnitude), c.f. Layout

String Literal Issues relating to string literals

Template Issues relating to templates

Type Info Issues relating to types, type_info objects and typeid expressions

Value Range Issues relating to the range of values a type can take

Virtual Functions Issues relating to virtual functions and calls

Table 2.3: Classification definitions used in the following sections

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 8 of 30

3 Unspecified Behaviours

Unspecified behaviour is defined in the C++ language standard as "behaviour, for a well-
formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behaviour occurs." [1.3.13]

Unique
ID

ISO
Standard
Reference

ISO
Standard
Paragraph

Description Classification

1.01 3.6.2 2 Whether an object is fully, or merely
zero-initialized when an object refers to
another object of namespace scope with
static storage duration potentially
requiring dynamic initialization and
defined later in the same translational
unit.

Initialisation Order. Link

1.02 3.7.3.1 2 The order, contiguity and initial value of
storage allocated by the allocation
functions.

Representation /
Layout.

Link

1.03 5 4 The order of evaluation of operands of
individual operators and subexpressions
of individual expressions, and the order
in which side effects take place.

Evaluation Order Link

1.04 5.2.2 8 The order of evaluation of arguments in
a function call and the order of
evaluation of the postfix expression and
the argument expression list.

Evaluation Order /
Function Calls

Link

1.05 5.2.8 1 Whether or not the destructor is called
for the type_info object at the end of the
program.

Object Lifetime /
Type Info

Link

1.06 5.2.9 7 An integer type is explicitly converted to
an enumeration type but the integral
value is not within the range of the
enumeration values

Casting /
Enumerated
Types.

Link

1.07 5.2.10 6 A pointer to a function is explicitly
converted to a function of a different
type using reinterpret_cast.

Casting / Pointers /
Function Calls

Link

1.08 5.2.10 7 A pointer to an object is explicitly
converted to a pointer to an object of a
different type using reinterpret_cast.

Casting / Pointers Link

1.09 5.2.10 9 A pointer to member of some type is
explicitly converted to a pointer to
another member of another type using
reinterpret_cast.

Casting / Pointers Link

1.10 5.3.4 21 The order of evaluation of the allocation
function and its arguments.

Evaluation Order/
Initialisation Order

Link

1.11 5.3.4 21 The evaluation of arguments if the
allocation function returns null or exits
using an exception.

Evaluation Order. Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 9 of 30

1.12 5.4 6 Whether the static_cast or
reinterpret_cast interpretation is used if
either the operand or destination type of
the cast is a pointer to incomplete class
type.

Casting Link

1.13 5.9 2 Pointers are compared using a relational
operator that do not point to members of
the same object, elements of the same
array or to the same functions, etc…

Memory Allocation
/ Layout / Pointers

Link

1.14 5.10 2 Pointers are compared using an equality
operator and either is a pointer to a
virtual member function.

Memory Allocation
/ Layout / Pointers

Link

1.15 7.2 4 The type of an uninitialised first
enumerator.

Enumerated Types Link

1.16 7.2 4 The value of an uninitialised enumerator
is not representable in the type of the
preceding enumerator.

Enumerated Types Link

1.17 7.2 9 A value is not in the range of the
enumeration type to which it is explicitly
converted.

Casting /
Enumerated
Types.

Link

1.18 8.3.2 3 Whether a reference requires storage. Memory Allocation
/ Layout

Link

1.19 8.3.6 9 The order of evaluation of function
arguments.

Evaluation Order /
Function Calls

Link

1.20 9.2 12 The order of allocation of nonstatic data
members separated by an access-
specifier

Memory Allocation
/ Layout

Link

1.21 10 3 The order in which the base class
subobjects are allocated in the most
derived object

Memory Allocation
/ Layout /
Inheritance

Link

1.22 11.1 2 The order of allocation of data members
with separate access-specifier labels

Memory Allocation
/ Layout

Link

1.23 12.1 15 The value of an object obtained, if during
the construction of a const object, the
object is accessed through an lvalue not
obtained from the constructor’s this
pointer.

Initialisation Order Link

1.24 12.2 5 The order of creation of temporary
objects.

Evaluation Order. Link

1.25 12.8 13 Whether subobjects representing virtual
base classes are assigned more than
once by the implicitly-defined copy
assignment operator.

Evaluation /
Inheritance

Link

1.26 14.7.1 5 Whether the instantiation occurs when
the overload resolution process can
determine the correct function to call
without instantiating a class template
definition.

Evaluation /
Template

Link

1.27 14.7.1 9 Whether an implementation implicitly
instantiates a virtual member function of
a class template if the virtual member
function would not otherwise be
instantiated.

Memory Allocation
/ Layout / Template

Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 10 of 30

1.28 15.1 4 The way memory is allocated for the
temporary copy of an exception being
thrown

Memory Allocation
/ Layout /
Exceptions

Link

1.29 15.1 4 Deallocation of memory for a temporary
object when the last handler exits by any
means other than a throw and the
temporary object is then destroyed.

Memory Allocation
/ Layout /
Exceptions

Link

1.30 16.3.2 2 The order of evaluation of # and ##
operators.

Evaluation Order /
Pre-processor

Link

1.31 16.3.3 3 The order of evaluation of ## operators. Evaluation Order /
Pre-processor

Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 11 of 30

4 Undefined Behaviours

Undefined behaviour is defined in the C++ language standard as "behaviour, such as
might arise upon use of an erroneous program construct or erroneous data, for which
this International Standard imposes no requirements. Undefined behaviour may also be
expected when this International Standard omits the description of any explicit definition
of behaviour. [Note: permissible undefined behaviour ranges from ignoring the situation
completely with unpredictable results, to behaving during translation or program
execution in a documented manner characteristic of the environment (with or without the
issuance of a diagnostic message). Many erroneous program constructs do not
engender undefined behaviour; they are required to be diagnosed]" [1.3.12]

Unique
ID

ISO
Standard
Reference

ISO
Standard
Paragraph

Description Classification

2.01 2.1 2 A character sequence that matches a
universal-character-name is produced due
to the splicing of physical source lines in
the translation process.

Lexical Analysis Link

2.02 2.1 2 A non empty source file does not end in a
new line character, or ends in a new line
character immediately preceded by a
backslash character.

Lexical Analysis Link

2.03 2.1 4 A character sequence that matches a
universal-character-name is produced due
to token concatenation.

Lexical Analysis Link

2.04 2.4 2 An unmatched ' or a " character is
encountered on a logical source line during
tokenisation.

Lexical Analysis Link

2.05 2.8 2 The characters ', \, ", /*, or // are
encountered between the < and >
delimiters or the characters ', \, /*, or // are
encountered between the " delimiters in the
two forms of a header name preprocessing
token.

Lexical Analysis
/ Pre-processor

Link

2.06 2.13.1 2 An integer literal cannot be represented by
any of the allowed types.

Value Range Link

2.07 2.13.2 3 The character following a backslash does
not give a valid escape sequence.

Lexical Analysis Link

2.08 2.13.4 2 An attempt is made to modify a string
literal.

String Literal /
Constant
Objects

Link

2.09 2.13.4 3 A narrow string literal token is adjacent to a
wide string literal token.

String Literal Link

2.10 3.2 5 The behaviour of a program if two
definitions in separate translation units do
not satisfy the one definition rule.

One Definition
Rule

Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 12 of 30

2.11 3.6.1 4 The library function exit is called to end a
program during the destruction of an object
with static storage duration.

Object Lifetime Link

2.12 3.6.3 2 A function contains a local object of static
storage duration that has been destroyed
and the function is called during the
destruction of an object with static storage
duration and the flow of control passes
through the definition of the previously
destroyed object.

Object Lifetime Link

2.13 3.7.3.1 2 The results of dereferencing a pointer
returned as a request for zero size space in
a call to an allocation function.

Memory
Allocation /
Pointers

Link

2.14 3.7.3.2 4 Attempt to use a pointer to a deleted object. Memory
Allocation /
Pointers

Link

2.15 3.8 4 The side effects of a non-trivial destructor
of an object of class type whose lifetime
has ended, but whose destructor has not
been called explicitly.

Object Lifetime Link

2.16 3.8 5 An object will be or was of a class type with
a non-trivial destructor and the pointer is
used as the operand of a delete-
expression.

Object Lifetime /
Pointers

Link

2.17 3.8 5 Series of uses of a pointer to a non-POD
class type between object storage
allocation and the start of object lifetime,
and the end of object lifetime and storage
deallocation.

Object Lifetime /
Pointers

Link

2.18 3.8 6 An lvalue-to-rvalue conversion is applied to
an lvalue that refers to an object whose
lifetime has not yet started but whose
storage has been allocated, or whose
lifetime has ended but whose storage has
not been reused or released.

Memory
Allocation /
Object Lifetime

Link

2.19 3.8 6 Series of uses of an lvalue that refers to a
non-POD class type between object
storage allocation and the start of object
lifetime, and the end of object lifetime and
storage deallocation.

Memory
Allocation /
Object Lifetime

Link

2.20 3.8 8 A program ends the lifetime of an object of
type T with static or automatic storage
duration, T has a non-trivial destructor and
an object of a different type occupies the
storage location when the implicit
destructor call takes place.

Object Lifetime Link

2.21 3.8 9 A new object is created at the storage
location that a const object with static or
automatic storage duration occupies or, at
the storage location that such a const
object used to occupy before its lifetime
ended.

Memory
Allocation /
Object Lifetime /
Constant Object

Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 13 of 30

2.22 3.10 15 A program attempting to access the stored
value of an object through an lvalue of
other than one of the types specified.

Casting Link

2.23 4.1 1 An lvalue, which does not refer to an object
of type T or is uninitialised, is used where
an rvalue of type T is expected.

Casting Link

2.24 4.8 1 A floating-point conversion produces a
result that cannot be represented in the
space provided.

Casting / Value
Range

Link

2.25 4.9 1 A floating-integral conversion produces a
result that cannot be represented in the
space provided

Casting / Value
Range

Link

2.26 5 4 An object is modified more than once or is
modified and accessed other than to
determine the new value, between two
sequence points.

Evaluation Order Link

2.27 5 5 An arithmetic operation is invalid (such as
division or modulus by zero) or produces a
result that cannot be represented in the
space provided (such as overflow or
underflow).

Value Range Link

2.28 5.2.2 1 A function is called through an expression
whose function type has a language linkage
that is different from the language linkage
of the function type of the called function's
definition.

Mixed Language
Working /
Function Calls

Link

2.29 5.2.2 7 An argument with no parameter, after
standard conversions, has a non-POD
class type.

Function Calls /
Variable Length
Parameter List

Link

2.30 5.2.9 5 A static_cast is used to cast an lvalue of
class type to a non-derived class.

Casting Link

2.31 5.2.9 8 A static_cast is used to cast a pointer of
class type to a pointer from a non-derived
class.

Casting /
Pointers

Link

2.32 5.2.9 9 A static_cast is used to cast a pointer to a
class member to a pointer to a member of a
non-derived class

Casting /
Pointers

Link

2.33 5.2.10 6 A pointer to a function is converted by
reinterpret_cast to point to a function of a
different type and used to call a function of
a type not compatible with the original type.

Casting /
Function Calls

Link

2.34 5.2.11 7 Depending on the type of object, a write
operation through the pointer, lvalue or
pointer to data member resulting from a
const_char that casts away a const-qualifier
may produce undefined behaviour.

Layout / Casting
/ Constant
Object

Link

2.35 5.2.11 12 The use of values produced from
conversions between pointers and
functions, pointers and member functions
and in particular a pointer to a const
member function to a pointer to a non-const
member function.

Casting /
Function Calls /
Constant Object

Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 14 of 30

2.36 5.3.1 4 The address of an object with incomplete
type, whose complete type declares
operator&() as a member function.

Overloading /
Pointers

Link

2.37 5.3.4 6 The first array dimension applied to a new
operator is negative.

Memory
Allocation

Link

2.38 5.3.5 2 The behaviour of the delete operator on a
pointer to a non-array object or a pointer to
a sub-object representing the base class of
such an object that was not obtained from a
new operator.

Object Lifetime Link

2.39 5.3.5 2 The value of the operand of delete is not
the pointer value that resulted from a
previous array new-expression when
deleting an array.

Object Lifetime Link

2.40 5.3.5 3 When deleting an object and the static type
of the operand is different from its dynamic
type and either the static type is not a base
class of the operand's dynamic type, or the
static type does not have a virtual
destructor.

Object Lifetime Link

2.41 5.3.5 3 The dynamic type of the object to be
deleted differs from its static type when
deleting an array.

Object Lifetime Link

2.42 5.3.5 5 The object being deleted has incomplete
class type at the point of deletion and the
complete class has a non-trivial destructor
or deallocation function.

Object Lifetime Link

2.43 5.5 4 In a pointer-to-member operation the
dynamic type of an object does not contain
the member to which the pointer refers.

Layout / Pointers Link

2.44 5.5 6 The second operand of an ->* expression is
the null pointer to a member value.

Pointers Link

2.45 5.6 4 The second operand of the / or % operators
is zero.

Value Range Link

2.46 5.7 5 A pointer that does not behave like a
pointer to an element of an array object is
added to or subtracted from.

Layout / Value
Range / Pointer

Link

2.47 5.7 5 The resultant pointer from an addition or
subtraction to a pointer to an element of an
array which does not point within the array
(or one beyond).

Layout / Value
Range / Pointer

Link

2.48 5.7 6 Two pointers to elements of the same array
object are subtracted, the result does not fit
in the space provided and there is an
arithmetic overflow.

Value Range /
Pointer

Link

2.49 5.7 6 Pointers that do not behave like pointers to
elements of the same array are subtracted.

Layout / Pointer Link

2.50 5.8 1 An expression is shifted by a negative
number or by an amount greater than or
equal to the width in bits of the expression
being shifted.

Value Range Link

2.51 5.17 8 An object is assigned to an overlapping
object.

Layout Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 15 of 30

2.52 6.6.3 2 The effect of flowing off the end of a
function that is expected to return a value

Function Calls Link

2.53 6.7 4 Control re-enters a declaration recursively
while an object is being initialized.

Initialisation Link

2.54 7.1.5.1 4 An attempt is made to modify a const
object, other than any class member
declared mutable.

Constant
Objects

Link

2.55 7.1.5.1 7 An attempt is made to refer an object
defined with volatile-qualified type through
the use of an lvalue with non-volatile-
qualified type.

Casting Link

2.56 8.3.2 4 Dereferencing a null pointer. Pointers Link
2.57 9.3.1 1 A member function of a class X is called for

an object that is not of type X or a type
derived from X.

Casting /
Function Calls

Link

2.58 10.4 6 A virtual call is made from a constructor (or
destructor) of an abstract class to a pure
virtual function directly or indirectly for the
object being created (or destroyed).

Object Lifetime /
Virtual Functions

Link

2.59 12.4 12 A destructor is invoked for an object that is
not of the destructor's class or not of a
class derived from the destructor's class.

Object Lifetime /
Casting

Link

2.60 12.4 14 A destructor is invoked for an object whose
lifetime has ended

Object Lifetime Link

2.61 12.6.2 8 A member function (including virtual
member functions) is called for an object
under construction, or an object under
construction is used as the operand of the
typeid operator or of a dynamic_cast
performed in a ctor-initializer (or a function
called directly or indirectly from a ctor-
initializer) before all of the mem-initializers
for base classes have been completed.

Evaluation Order
/ Object Lifetime
/ Inheritance

Link

2.62 12.7 1 Referring to any nonstatic member or base
class of an object of non-POD class type,
before the constructor begins execution
and after the destructor finishes execution.

Evaluation Order
/ Object Lifetime

Link

2.63 12.7 2 Converting a pointer to an object of class X
to a direct or indirect base class of X, where
the construction of the object has not
started or the destruction of the object has
completed.

Object Lifetime /
Pointer

Link

2.64 12.7 2 Forming a pointer to (or access the value
of) a direct nonstatic member of an object,
where the construction of the object has not
started or the destruction of the object has
completed.

Object Lifetime Link

2.65 12.7 3 The result of making a virtual call using an
explicit class member access and the
object expression refers to the object under
construction or destruction but its type is
neither the constructor or destructor's own
class or one of its bases.

Virtual Functions
/ Object Lifetime
/ Inheritance

Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 16 of 30

2.66 12.7 4 The operand of typeid refers to an object
under construction or destruction and the
static type of the operand is neither the
constructor or destructor's class nor one of
its bases.

Object Lifetime /
Type Info

Link

2.67 12.7 5 If the operand of the dynamic_cast refers to
the object under construction or destruction
and the static type of the operand is not a
pointer to or object of the constructor is not
a pointer to or object of the constructor or
destructor’s own class or one of its bases.

Casting / Object
Lifetime

Link

2.68 14.6.4.2 1 If a function call that depends on a template
parameter would be ill-formed or would find
a better match had the lookup within the
associated namespaces considered all the
function declarations with external linkage
introduced with those namespaces in all
translation units

Template /
NameSpace /
Function Calls

Link

2.69 14.7.1 14 The instantiation of a template produces
recursion beyond some defined limit

Template Link

2.70 15.3 10 Referring to any nonstatic member or base
class of an object in the handler for a
function-try-block of a constructor or
destructor for that object.

Exceptions /
Object Lifetime

Link

2.71 15.3 16 Flowing off the end of a function-try-block in
a value returning function.

Exceptions Link

2.72 16.1 4 The token defined is generated during the
expansion of a #if or #elif pre-processing
directive.

Pre-processor Link

2.73 16.1 4 The #defined pre-processing directive does
not match one of the two specified forms

Pre-processor Link

2.74 16.2 4 The #include pre-processing directive that
results after expansion does not match one
of the header name forms.

Pre-processor Link

2.75 16.3 10 A function-like macro argument consists of
no pre-processing tokens.

Pre-processor Link

2.76 16.3 10 There are sequences of pre-processing
tokens within the list of function-like macro
arguments that would otherwise act as pre-
processing directive lines.

Pre-processor Link

2.77 16.3.2 2 The result of the pre-processing operator #
is not a valid character string literal.

Pre-processor /
String Literal

Link

2.78 16.3.3 3 The result of the pre-processing
concatenation operator ## is not a valid
pre-processing token.

Pre-processor Link

2.79 16.4 3 The #line pre-processing directive specifies
zero or a number greater than 32767.

Pre-processor Link

2.80 16.4 5 The #line pre-processing directive that
results after expansion does not match one
of the two well-defined forms.

Pre-processor Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 17 of 30

2.81 16.8 3 One of the following identifiers is the
subject of a #define or a #undef pre-
processing directive. __LINE__, __FILE__,
__DATE__, __TIME__, __STDC__,
__cplusplus, or the identifier defined.

Pre-processor Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 18 of 30

5 Implementation Defined Behaviours

Implementation-Defined behaviour is defined in the C++ language standard as
"behaviour, for a well formed program construct and correct data, that depends on the
implementation and that each implementation shall document." [1.3.5]

Unique
ID

ISO
Standard
Reference

ISO
Standard
Paragraph

Description Classification

3.01 2.1 1 The mapping of physical source
file characters.

Lexical Analysis Link

3.02 2.1 3 Whether each non-empty
sequence of white-space
characters other than new line is
retained or replaced by one space
character.

Lexical Analysis Link

3.03 2.1 8 Whether the source of the
translational units containing the
definitions of the templates for the
requisite instantiations is required
to be available.

Lexical Analysis /
Template

Link

3.04 2.2 3 The values of the members of the
execution character sets.

Value Range /
Representation

Link

3.05 2.8 1 The mapping of the sequences in
both forms of header-names. See
16.2(2)

Pre-processor Link

3.06 2.13.2 1 The value of a multi-character
literal.

Value Range /
Representation

Link

3.07 2.13.2 2 The value of a wide-character
literal containing multiple c-chars.

Value Range /
Representation

Link

3.08 2.13.2 4 The value of a character literal
that falls outside of the
implementation defined range for
char or w_char.

Value Range /
Representation

Link

3.09 2.13.2 5 The encoding of a universal-
character-name where the
execution character set has no
encoding for the character named.

Value Range /
Representation

Link

3.10 2.13.3 1 The actual value used for a
floating literal whose value is not
in the range of representable
values for its type.

Value Range /
Representation

Link

3.11 2.13.4 2 Whether all string literals are
distinct (stored in non-overlapping
objects).

Layout / String
Literals

Link

3.12 3.6.1 1 Whether a program in a
freestanding environment is
required to define a main function.

Execution
Environment

Link

3.13 3.6.1 1 Start-up and termination in a
freestanding environment.

Execution
Environment

Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 19 of 30

3.14 3.6.1 2 The type of the main function,
though its return type must be int.

Execution
Environment

Link

3.15 3.6.1 3 The linkage of main. Execution
Environment

Link

3.16 3.6.2 3 Whether the dynamic initialization
of an object of namespace scope
is done before the first statement
of main.

Initialisation Link

3.17 3.9 4 For POD types, the set of values
of which the value representation
(a set of bits in the object
representation that determines a
value) is one discrete element.

Memory Allocation
/ Layout

Link

3.18 3.9 5 The packing needed between
sub-objects to meet alignment
requirements

Memory Allocation
/ Layout

Link

3.19 3.9.1 1 Whether char is equivalent to
unsigned char or signed char.

Value Range Link

3.20 3.9.1 2 Size of int. Value Range Link
3.21 3.9.1 5 Type of wchar_t. Value Range /

Representation
Link

3.22 3.9.1 8 The value representation of
floating-point types.

Value Range /
Representation

Link

3.23 3.9.2 3 The value representation of
pointer types.

Value Range /
Representation

Link

3.24 4.7 3 The value of a signed integer type
due to the conversion from either
an integer or an enumeration type
when the value cannot be
represented in the destination
type.

Casting / Value
Range

Link

3.25 4.8 1 The value resulting from
converting a value of a floating
point type to another floating point
type that cannot exactly represent
the original value

Casting /
Representation

Link

3.26 4.9 2 The choice of either the next
higher or lower representable
value when an rvalue of an integer
or enumeration type is converted
to an rvalue of a floating-point
type but exact conversion is not
possible.

Casting Link

3.27 5.2.8 1 The class (name) derived from
std::type_info of an lvalue of
dynamic type constname, that is
the result of a typeid expression.

Type Info Link

3.28 5.2.10 3 The mapping performed by
reinterpret_cast.

Casting Link

3.29 5.2.10 4 The mapping function used to
explicitly converting a pointer to
any integral type large enough to
hold it.

Casting Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 20 of 30

3.30 5.2.10 5 Mappings between pointers and
integers other than when a value
of integral or enumeration type is
explicitly converted into a pointer
or when a pointer is converted to
an integer of sufficient size and
back to the same pointer type.

Casting Link

3.31 5.3.3 1 The result of sizeof applied to any
fundamental type (other than char,
signed char and unsigned char),
in particular sizeof(bool) and
sizeof(wchar_t).

Representation Link

3.32 5.6 4 The sign of the remainder using
the binary % operator unless both
operands are non-negative.

Value Range /
Representation

Link

3.33 5.7 6 The signed integral type given as
a result of the subtraction of two
pointers to elements of the same
array object.

Value Range Link

3.34 5.8 3 The value given as a result of >>
shift operator where the shift-
expression has a signed type and
is negative

Value Range Link

3.35 7.1.5.2 1 Whether bit-fields and objects of
char type are represented as
signed or unsigned quantities.

Value Range /
Representation

Link

3.36 7.2 5 The integral type used as the
underlying type for an
enumeration.

Value Range /
Representation

Link

3.37 7.4 1 The meaning of an asm
declaration.

Mixed Language
Working

Link

3.38 7.5 1 Implementation specific properties
associated with an entity with
language linkage

Mixed Language
Working

Link

3.39 7.5 2 The meaning of the string-literal in
a linkage-specification

Mixed Language
Working / String
Literal

Link

3.40 7.5 2 The spelling of the language's
name when the string-literal in a
linkage-specification names a
programming language

Mixed Language
Working

Link

3.41 7.5 2 The semantics of a language
linkage other than C++ or C.

Mixed Language
Working

Link

3.42 7.5 9 Linkage from C++ to objects
defined in other languages and to
objects defined in C++ from other
languages.

Mixed Language
Working

Link

3.43 8.5.3 8 How the reference is bound when
a reference to type “cv1 T1” is
initialized by an expression “cv2
T2”.

Initialisation Link

3.44 9.6 1 The allocation of bit-fields within a
class.

Layout /
Representation

Link

3.45 9.6 1 Alignment of bit-fields Layout Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 21 of 30

3.46 9.6 3 Whether a plain (neither explicitly
signed nor unsigned) char, short,
int or long bit-field is signed or
unsigned.

Value Range /
Representation

Link

3.47 14 4 The linkage of a template, a
template explicit specialization or
a class template partial
specialization, if it is something
other than C or C++.

Mixed Language
Working /
Template

Link

3.48 14.7.1 14 The limit on the total depth of
recursive instantiation of
templates

Template Link

3.49 15.3 9 Whether or not the stack is
unwound before the call to
terminate(), in the case where no
matching handler is found in a
program.

Exceptions Link

3.50 15.5.2 2 The object of type
std::bad_exception that is used to
replace an exception thrown or
rethrown by the unexpected()
function that the exception-
specification does not allow.

Exceptions Link

3.51 16.1 4 Whether the value of an
interpreted character literal
matches the value obtained when
an identical character literal
occurs in an expression.

Pre-processor Link

3.52 16.1 4 Whether a single-character
character literal may have a
negative value.

Pre-processor Link

3.53 16.2 2 The sequence of places searched
for the header file specified
between the < and > delimiters
due to a #include <h-char-
sequence> new-line pre-
processing directive.

Pre-processor Link

3.54 16.2 2 During execution of a #include
pre-processor directive, how the
places are searched and how the
header file is identified.

Pre-processor Link

3.55 16.2 3 The sequence of places searched
for the header file specified in
quotes in a #include "q-char-
sequence" new-line pre-
processing directive.

Pre-processor Link

3.56 16.2 4 The method by which a sequence
of pre-processing tokens between
< and > or a pair of " characters is
combined into a single header
name pre-processing token.

Pre-processor Link

3.57 16.2 5 The mapping between the
delimited sequence and the
external source file name.

Pre-processor Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 22 of 30

3.58 16.2 6 The nesting limit to which an
#include pre-processing directive
may appear due to the #include
directive of another file.

Pre-processor Link

3.59 16.6 1 The behaviour of the
implementation due to the
#pragma pre-processing directive.

Pre-processor Link

3.60 16.8 1 The date/time supplied, as a result
of the __DATE__ macro, if the
date of translation is not available.

Pre-processor Link

3.61 16.8 1 The date/time supplied, as a result
of the __TIME__ macro, if the time
of translation is not available.

Pre-processor Link

3.62 16.8 1 Whether __STDC__ is predefined
and its value.

Pre-processor Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 23 of 30

6 Indeterminate behaviour

Indeterminate behaviour is defined in the C++ language standard through negative
statements. For example, some language statements define that a construct shall not
use a particular feature. It is therefore left indeterminate what would happen if such a
construct did use a particular feature.

Unique
ID

ISO
Standard
Reference

ISO
Standard
Paragraph

Description Classification

4.01 3.3.1 1 The value used when a variable is
used to initialise itself, e.g. int x = x;

Initialisation /
NameSpace

Link

4.02 5.3.4 15 The value of a POD object created
by a new-expression when a new-
initializer is omitted.

Initialisation Link

4.03 5.3.5 4 The value of a pointer that refers to
deallocated storage

Pointers Link

4.04 8.5 9 The value of an object if no
initialiser is specified.

Initialisation Link

4.05 12.6.2 4 The value of a member of a class if
it is not otherwise initialised by the
constructor.

Initialisation Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 24 of 30

7 Behaviour that requires no diagnostic

‘Behaviour that requires no diagnostic’ describes features of the language which do not
follow the required or expected rules but for which the language standard states that no
diagnostic information is required to be given to the user. Thus it is possible that these
issues could be violating the language definition yet no information is passed to the
programmer that such a violation has occurred.

Unique
ID

ISO
Standard
Reference

ISO
Standard
Paragraph

Description Classification

5.01 2.7 1 A // comment contains a form feed
or vertical-tab character and does
not only have white space
characters between it and the
new-line that terminates the
comment.

Lexical Analysis Link

5.02 2.10 2 Use of an identifier reserved for
C++ implementations and
standard libraries.

Lexical Analysis Link

5.03 3.2 3 A program that does not contain
exactly one definition for every
non-inline function or object that is
used in that program.

One Definition
Rule

Link

5.04 3.3.6 1 (2) A name N used in a class S does
not refer to the same declaration
in its context and when re-
evaluated in the completed scope
of S.

NameSpace Link

5.05 3.3.6 1 (3) If reordering member declarations
in a class yields an alternative
valid program under certain
conditions.

NameSpace /
Layout

Link

5.06 3.5 10 If a given object or function can be
referred to by values of different
type (after all types adjustments)

Type Info Link

5.07 6.8 3 During parsing, a name in a
template parameter is bound
differently than it would be bound
during a trial parse.

Pre-processor /
Template

Link

5.08 7.3.2 4 A namespace-name defined at
global scope is also declared as
the name of another entity in any
global scope of the program.

NameSpace Link

5.09 10.3 8 A virtual function declared in a
class is both defined and declared
pure in that class.

Virtual Functions Link

5.10 12.8 4 Any use of a user defined copy
constructor that matches the
implicitly declared copy
constructor

Function Calls Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 25 of 30

5.11 14 8 A template that is exported more
than once in a program.

NameSpace /
Template

Link

5.12 14 8 A non-exported template which is
neither defined in every translation
unit in which it is implicitly
instantiated nor explicitly
instantiated in some translation
unit

Template Link

5.13 14.3.3 2 A specialization is not visible at
the point of instantiation, and it
would have been selected had it
been visible.

Template Link

5.14 14.5.4 1 A partial specialization of a
template is not declared before its
first use that would cause implicit
instantiation in any translation unit.

Template Link

5.15 14.5.5.1 7 A program contains declarations
of function templates that are
functionally equivalent but not
equivalent.

Template Link

5.16 14.6 7 No valid specialization can be
generated for a template
definition, but the template is not
instantiated.

Template Link

5.17 14.6.4.1 7 Two different points of
instantiation give a template
specialisation different meanings
according to the one definition
rule.

Template / One
Definition Rule

Link

5.18 14.7.3 6 An explicit specialization of a
template is not declared before its
first use in any translation unit that
causes implicit instantiation

Template Link

5.19 15.4 2 Sets of type-ids in exception-
specifications in two translation
units differ.

Exceptions Link

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 26 of 30

8 Conclusions and Recommendations

8.1 Conclusions

8.1.1 One concern that is hampering the use of C++ for safety critical/related applications is a
belief in both industry and academia that the dynamic predictability of the (complete)
C++ language is not fully understood.

8.1.2 Many of the issues associated with C++ were inherited from its predecessor, C.
However, over the years great effort has been put into understanding the holes and
pitfalls of C, most notably by Les Hatton [6] who’s book “Safer C” laid the foundation for
the analysis of the problematical aspects of the language. The current situation with the
use of C is that providing a suitably robust fault management strategy is put in place and
that verifiable means of compliance to avoiding known problematical language issues is
implemented then C has gained a foothold in various safety related applications.

8.1.3 One aspect of any strategy for high-integrity software development should always be the
use of a reduced-risk language subset, which formally restricts the use of a language’s
problematical features. This first requires the problematical features to be identified, and
that is what this report has attempted to achieve for C++.

8.1.4 It is anticipated that this report may be used in two ways:

• as guidance to anyone developing a C++ reduced-risk subset, as to the language
specification issues that need to be addressed,

• as a bench mark against which any proposed reduced-risk subset can be
accessed (again for language specification issues)

8.1.5 In either event, the development of a reduced-risk language subset to address language
specification issues is only part of the requirement for high integrity software
development. The need to consider avoidance of common programmer errors, clarity of
intent to aid maintenance and the development of tool support to police any subset and
analyse developed code are outside the scope of this report.

8.2 Recommendations

8.2.1 This report should be given wide circulation, in an attempt to achieve public scrutiny and
industrial consensus that the language specification issues that need to be addressed
for the safety critical/related use of C++ have been identified.

8.2.2 Any proposed reduced-risk language subset should be assessed against the issues
identified here.

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 27 of 30

9 References

[1] Guidelines for the use of the C language in vehicle based software. MISRA.
ISBN 0 9524156 9 0

[2] J. Barnes: High Integrity Ada, The SPARK Approach, Addison Wesley, 1997.

[3] C++ Language standard, ISO/IEC standard 14882, September 1998.

[4] M Hill & E Whiting: An investigation of the unpredictable features of the C++
language, QinetiQ Report QINETIQ/KI/TIM/TR043014, May2004

[5] D Reinhardt: Use of the C++ Programming Language in Safety Critical
Systems, MSc Thesis, University of York, Dept of Computer Science,
September 2004

[6] L Hatton: Safer C, Developing Software for High-Integrity and Safety-Critical
Systems, McGraw-Hill International Series in Software Engineering, 1994

[7] A Koenig: C Traps and Pitfalls, Addison Wesley, 1989

[8] Programming Language C, ISO/IEC standard 9899:1999(E), November 2001

[9] Information Technology - Programming Language Ada, ISO/IEC standard
8652:1995, October 2001

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 28 of 30

10 Glossary

Accident An unintended event or sequence of events that can lead to
death or serious injury

ALARP A principal for use in assessing whether safety critical systems
are acceptably safe.

Dynamic
Predicability

The ability to determine a-priori the run-time values of variables

Error A departure from the expected or required behaviour of the
system through a fault or human error, which could lead to a
failure.

Failure The inability of a system to fulfil its operational requirements
which could lead to a hazard

Fault A defect within a system which may contribute to an error

Fault
Management
Strategy

A reduced-risk approach that integrates a number of tools and
techniques to aid an ALARP approach

Hazard A situation that occurs from a failure that could lead to an
accident

POD Plain Old Data, essentially a C++ struct that would have been
legal in C

Safety Case A reasoned argument, with objective evidence, that a proposed
system is acceptably safe for its role and environment.

Safety Critical
Software

Software, including firmware, that implements a function or
component with the highest safety integrity level requirement
(SIL4, as defined by Defence Standard 00-55 & IEC61508).

Safety Related
Software

Software, including firmware, used to implement a function or
component with some safety requirements, but which is not
critical (SIL1 to SIL3 as defined by DS00-55 & IEC61508).

Safety Integrity
Level

An indication of the severity of a safety requirement, from SIL1
(minor safety issue) to SIL4 (typically life threatening)

Strong Typing A programming language (i.e. Ada) where there are tight
checks on operations between object so that operations are
only allowed on compatible objects

Unambiguous,
Self-Consistent
and Verifiable

Any reduced-risk language rule subset should be composed of
rules that are unambiguous in their restrictions, self-consistent
and can be positively verified.

Weak Typing A programming language where there are loose checks on
operations between objects, so that implicit type conversions
frequently occur.

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 29 of 30

Report documentation page

1. Originator's report number: QINETIQ/S&DU/TIM/CR060019

2. Originator's Name and Location: Clive Pygott & Adam Schofield Woodward A109,
QinetiQ Malvern

3. MOD Contract number and period covered: C/CIP/N03508

4. MOD Sponsor's Name and Location: D Wharf

5. Report Classification and Caveats in use: 6. Date written: Pagination: References:

Unclassified/Unlimited December 2005 vii + 28 9

7a. Report Title: A Tabulation of the unpredicatable features of the C++
language

7b. Translation / Conference details (if translation give foreign title / if part of conference then give
conference particulars):

7c. Title classification: Unlimited

8. Authors: Adam Schofield & Clive Pygott

9. Descriptors / Key words: SOFTWARE, SAFETY, C++, MISRA

10a. Abstract. (An abstract should aim to give an informative and concise summary of the report in up to
300 words).

This report analyses the ISO standard for the C++ programming language and identifies those features that
are ‘undefined’, ‘compiler dependent’ or in some other way may lead to unpredicatable behaviour. This has
been produced as the first step in the process of controlling the use of C++ in safety/security related
systems, by identifying the language issues that must be controlled by subsetting the language or analysis
of a developed program.

10b. Abstract classification: Unlimited FORM MEETS DRIC 1000 ISSUE 5

Unclassified/Unlimited

QINETIQ/S&DU/TIM/CR060019

Unclassified/Unlimited

Page 30 of 30

This page is intentionally blank

	ISO/IEC JTC 1/SC 22/OWGV N 0043

