

Document:P3590R0

Revises: (none)
Date: 13-Jan-2025

Audience: EWG, CWG
Authors: Daveed Vandevoorde (daveed@edg.com)

Constexpr Coroutines Burdens
Intro
I was asked to write a brief overview of what makes "constexpr coroutines" somewhat difficult to support
in current implementations (an issue that arose during the discussion of P3367 "constexpr coroutines" in
CWG). This is that overview.

What's Needed
In order to implement "constexpr coroutines", a C++ front end's consteval implementation needs a way to
keep track of multiple evaluations simultaneously and suspend/resume between those evaluations. That
also means that local variables will have different mappings between those evaluations, and lifetime
checking may have to adjust as well. In principle, there are multiple ways to achieve that (P3367R3
includes an overview), but in practice front ends currently in production are unlikely to implement any of
those techniques in the near future.

The Current State Of Consteval Implementations
As far as I know, all the current C++ consteval implementations that are in production (as opposed to
"experimental") recursively evaluate a graph constructed from parsing expressions and constexpr
functions (that graph is often called AST — abstract syntax tree — or parse tree). My understanding is
also that all current "production" implementations perform this evaluation using recursive function calls;
e.g., to evaluate x + (y - z), a function like evaluate_expr is called for the top-level node (representing the
"+"), and that function will recursive call evaluate_expr for the "-" node.

This approach has some significant disadvantages, including:

● It tends to be low-performance because the "nodes" are typically fairly abstract, and so the
evaluator needs to do a fair bit of "decoding work" (compared to, e.g., byte code interpreters).

● For complex evaluations, it's easy to run out of space on the call stack.

Additional Constraints
Some of the C++ front ends (which include the consteval implementation) are available as "components"
that are used for multiple tools. This introduces some constraints:

● The representation of the parse tree must be close to that of the source so that source analysis
tools can use that representation. This, e.g., makes many transformations (e.g., of a coroutine to a
set of blocks with exits/entries for suspend/resume) impractical.

● The components do not want to impose undue environmental burdens on their client code. E.g.,
the initial Clang-based consteval coroutine evaluator used a "fiber" framework to allow
suspending/resuming the state of the evaluator. However, adding a dependency on such a
framework is not actually practical for mainline Clang (according to at least two principal Clang
maintainers). Similarly, one could imagine using C++20 coroutines in the implementation of the
constant evaluation of coroutines, but imposing C++20 on the client code is not always an option
for production tools.

An Anticipated Future
My expectation is that over the next decade or so, C++ consteval implementations will switch to
something like virtual-machine-based (VM) evaluators (i.e., "byte code interpreters"), driven by the
increased reliance on constant evaluation in modern code (including due to anticipated reflection facilities
in C++26). Clang has already started that transition
(https://clang.llvm.org/docs/ConstantInterpreter.html), but it's a project that started several years ago and
hasn't completed yet.

In light of all of the above, it seems to me that "constexpr coroutines" are being proposed a little too early.
If they become part of C++26, I suspect most of the principal C++ implementations will opt not to be
standard compliant for the better part of a decade, while they (a) keep working on outstanding pre-C++26
language features ("modules" being most notable) and (b) prioritize newer C++26 and C++29 features
that provide "more bang for the buck".

I therefore recommend we wait with standardizing "constexpr coroutines" until implementations are well
underway in their transition to VM-like implementations.

https://clang.llvm.org/docs/ConstantInterpreter.html

	Intro
	What's Needed
	The Current State Of Consteval Implementations
	Additional Constraints
	An Anticipated Future

