
Pattern Matching P3572R0 Stroustrup

1

Doc. No. P3572R0
Date: 2025-01-12

Audience: EWG
Author: Bjarne Stroustrup

Reply to: bjarne@stroustrup.com

Pattern matching
Bjarne Stroustrup
Columbia University

C++ badly needs functional style pattern matching. It is what we lack to make C++ code safer,

simpler to write, and for C++ to be seen (correctly) as modern. However, to serve the larger C++

community well it must be simple to use for simple tasks (as simple as or simpler than using

union, optional, and variant), as efficient as the basic uses of those older ways of selecting while

also supporting more advanced uses.

This is not a new idea. I presented some experiments and implementation ideas in a WG21

evening session back in 2014 Pattern Matching for C++ and restated the case for pattern

matching in 2021: Thoughts on pattern matching P2411R0. Since then, two proposals have

emerged

• [P1371] B. Cardoso Lopes, S. Murzin, M. Park, D. Sankel, D. Sarginson, B. Stroustrup:

Pattern Matching (R3). 2020-09.

• [P2392] H. Sutter: Pattern matching using is and as. 2021-06-13.

Both proposals have evolved since then [PH2024; HS2024]. I have followed their development

pretty closely, but I don’t see a consensus for either. To avoid personalizing the discussion, I will

refer to Michael Park’s version the “match design” and Herb Sutter’s version the “is/as design.”

The general notion of pattern matching (PM) for C++ has wide support:

• The Direction Group recommends progress on PM: DIRECTION FOR ISO C++

• Ville Voutilainen in To boldly suggest an overall plan for C++26 recommends “making

progress “ on PM (§5.3).

In my opinion, both proposals need simplification, but the is/as design is by far the better

design framework and also have more implementation experience. We should accept a slightly

slimmed down version of that for C++26. This opinion differs from the Wroclaw EWG vote that

preferred the match proposal (“Consensus, but sizable objection”).

What makes the is/as design a good framework for pattern matching:

https://www.stroustrup.com/pattern-matching-November-2014.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2411r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2000r3.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0592r5.html

Pattern Matching P3572R0 Stroustrup

2

• It is a framework: adding new forms of selection can be done without adding new syntax

• It is simple to use simply

• It can be (has been) implemented efficiently

• It has a consistent (simple) general syntax

Selecting alternatives
Both proposals can match a variety of alternatives

• Values

• Types

• concepts

• Classes in class hierarchies

• optionals

• anys

• variants

• Pointers

• tuples

However, there is a major difference in how they map an expression to the type of a pattern.

The match design uses up-front syntax and the is/as proposal use operators for customization. I

strongly prefer the second approach because it leaves complexity to implementation. If in the

future we want to add a new alternative, in is/as we can do so without changing the notation

used in application code. In particular, this will allow developers to add their own alternatives.

This is very much in the tradition of C++.

Opinion
I would like to see pattern matching now but could wait for is/as as general constructs (e.g., in if

statements). In particular, as outside pattern matching could become a complication given the

timescale for C++26. I do think as is necessary for pattern matching in a class hierarchy.

The is/as examples are consistently as short or shorter than the match examples, and as

logically simple or simpler than the match examples.

I would like to see “Tony tables” just for the is/as and match examples. I was occasionally

confused by the variety of designs discussed and compared in the latest is/as paper.

The is/as design is consistent with structured binding (as was stated as an aim when structured

binding was approved).

Pattern Matching P3572R0 Stroustrup

3

Objections
I can summarize the objections to the is/as proposal that I heard most in Wroclaw as “but I

want to say exactly what I mean”. That’s a simplification, of course, but what I think it shows is

the difference between focusing on specification and on implementation.

If someone wants to be precise and know the diverse notations for section (e.g., for optional,

any, and variant) those existing constructs are still be available for use. I prefer to have the type

system select the implementation.

“Other languages use the match style.” Yes, but “other languages” aren’t C++ and don’t have

the range of constructs that C++ does. For example, the match design suggests case, let, ?, *, ?*,

and ^ to handle such variations, and <…> to distinguish types. This is a burden to programmers;

at best “expert friendly.” The is/as design has only * for dereferencing. Both use […] for tuples

just as structured bindings.

Notation
Comments on §4.3 of [HS2024]. I don’t care much about the detailed syntax used (e.g., match

or inspect) but the notation should directly reflects the semantic while not requiring the

programmer to know all the (often obscure) implementation details. Notation should not

directly reflect implementation unless if absolutely necessary.

If I had to choose, I’d pick a single introducing keyword (match or inspect) but not switch

because that’s likely to confuse pattern matching with old style code (e.g., a switch statement

that doesn’t start with a case or cause people to mistakenly over-or-underuse break out of

habit).

I’d also pick => over alternatives because it’s short and doesn’t usually imply assignment (like =

does).

I like that every alternative starts with a prefix keyword (is or as). That eases readability and

layout.

References
[MP2024] Michael Park: Pattern Matching: match Expression. P2688R4. 2014-12-17.

[HS2024] Herb Sutter: Pattern matching using is and as. P2392R3 2014-10-15.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2688r4.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2392r3.pdf

