
 P3566R0: You shall not pass `char*` -
 Safety concerns working with
 unbounded null-terminated strings
 Date: 2025-01-11
 Project: ISO JTC1/SC22/WG21: Programming Language C++
 Audience: SG23
 Author: Marco Foco
 Contributors: Joshua Krieghauser, Alexey Shevlyakov
 Reply to: marco.foco@gmail.com

 History

 R0
 Document creation

 Abstract
 string s and string_view s are often used as a safer alternative to null-terminated strings.
 Unfortunately they suffer from an implicit assumption at creation/assignment time, and in some
 of their functions: the presence of a null-terminator in the input sequence.
 The absence of the null-terminator can currently lead to undefined behavior inside these
 functions.
 There are many cases when the length of the sequence can be computed at compile time, and
 we should save those usages. In some other cases, we can turn potential undefined-behaviors
 into either well-defined behavior, or "better behaved" undefined behavior (i.e. turning an
 unbounded string operation into a bounded string operation).
 In this paper we propose to restrict the usage of constructors and functions taking a char*
 argument in string and string_view , to improve range-safety in these operations.

 Introduction
 P3038R0 suggests the use of string and string_view as substitute for char* , and
 suggests adding range checking to such classes. P3274R0 further clarifies the Ranges profile,
 banning subscripting of raw pointers, and introducing a checked indexing operator for strings
 and views.

 In an effort to improve safety on our codebase, we independently started implementing the
 suggestion from P3038R0, and replaced const char* s with string_view s as much as we
 could in our internal APIs.

 We realized that, in order to improve memory safety further, we should limit the implicit
 construction of string and string_view from an unsafe char* , and only allow construction
 from types that will bring along the some additional range information (e.g. char[]).

 Note : For simplicity of notation, we will often mention string , string_view and char* , but
 the entire discussion is really about basic_string<CharT> , basic_string_view<CharT> ,
 and CharT* .

 Proposal
 There are a number of other cases in the standard library where null-terminated strings are
 expected, and, while we aim in the future to address most of them, this proposal will be mainly
 limited to addressing the issues in string and string_views , and strictly related usages.

 We aim to separate the function that take a naked char* in two categories:
 - Functions that can be implemented in a safe way (computing them with bounded memory
 access)
 - Functions that cannot be implemented safely, and need to deal with unbounded memory
 access (e.g. unbounded scan for determining the string length)

 In some cases, we will be able to separate functions of the second category (unsafe) into two
 functions (one unsafe and one safe):
 - The first one, taking a bare char* (unsafe) will compute an unbounded string length at
 run-time
 - The second one (safe) will capture the bounded types before they decay (e.g. char[N]), and
 compute the string length only in the safe region (0..N-1).

 We propose to then [[deprecated]] all unsafe usages, and replace them with equivalent
 versions tagged versions of the same functions (proposed tag: unsafe_length , of type
 unsafe_length_t).

 Safe functions in char_traits

 One important aspect of this proposal is the introduction of a new function in char_traits :
 length_s . This function is the bounded counterpart of char_traits::length_s and has
 two overloads

 template<size_t N>
 size_t length_s(const char_type (&s)[N]) {...}

 size_t length_s(const char_type* s, size_t N) {...}

 Both versions behave similarly to strnlen_s , returning the number of characters before the
 null terminator if that appears before the size provided (or implied by the underlying array), or N
 if the terminator was not found.

 Changes to std::string and std::string_view

 Constructing and assigning
 Construction and assignment from char* of both classes requires an unbounded memory scan
 to determine the string length. At the moment, this constructor is typically used for both bounded
 strings (char[]) and unbounded (char*). We want to separate bounded and unbounded
 cases, keeping the former and deprecating the latter. We will then introduce a tagged
 replacement for the deprecated functions.

 Example for string_view

 Before:
 constexpr string_view(const char *p) noexcept : _data(p),
 _size(Traits::length(p)) {...}

 After:
 [[deprecated]] constexpr string_view(const char *p) noexcept :
 _data(p), _size(Traits::length(p)) {...}

 template<size_t N>
 string_view(const char (&p)[N]) noexcept : _data(p),
 _size(Traits::length_s(p, N)) noexcept {...}

 explicit constexpr string_view(unsafe_length_t, const char *p)
 noexcept : _data(p), _size(Traits::length(p)) {...}

 The bounded-memory-range constructor/assignment will be used when dealing with string
 literals and strings built within a fixed-size array. In these cases, we will use N as the length of
 the string should no null-terminator be found within the range.

 This does not represent a breaking change with respect to status quo, as all the usages with
 non-null-terminated char sequences would currently result in undefined behavior (out of
 bounds access), and we're just giving a well-defined behavior to this operation.

 Member function: copy
 The copy member functions of string and string_view is bounded by the current object's
 length and the count of characters requested, and is therefore considered safe

 Member function: compare and operator <=>
 The only potentially unsafe member function has signature:

 constexpr int compare(const char* s) const;

 This member function does not require any unbounded operation because it will exit as soon as
 the first difference is encountered.

 It will compare the first size() characters of both sequence, and only if they're all equal, it will
 check the size()+1 character (s[size()]), to verify the sequence s terminates correctly.

 The non-member overloads of the operator <=> can all be defined in terms of the compare
 member function (exactly as today).

 Member function: starts_with
 The potentially unsafe member function has signature:

 constexpr bool starts_with(const char* s) const;

 This member function does not require any unbounded operation because it will exit as soon as
 the first difference is encountered.

 It will compare at most size() characters from the sequence s (as it doesn't need to verify that
 the sequence is terminating).

 Member function: ends_with
 The potentially unsafe member function has signature:

 constexpr bool ends_with(const char* s) const;

 This member function does not require any unbounded operation because it can compute sz =
 length_s(s, size()+1)

 ● If the result is size()+1 the provided suffix is longer than the current object, and the
 result is false

 ● If the result is smaller, we can compare the sequences by returning
 ends_with(string_view(s, sz))

 It will visit at most size()+1 characters from the sequence s .

 Member function contains
 The potentially unsafe member function has signature:

 constexpr bool contains(const char* s) const;

 This member function does not require any unbounded operation because it can compute sz =
 length_s(s, size()+1)

 ● If the result is size()+1 the provided suffix is longer than the current object, and the
 result is false

 ● If the result is smaller, we can compare the sequences by returning
 contains(string_view(s, sz))

 It will visit at most size()+1 characters from the sequence s .

 Member function find and rfind
 The potentially unsafe member functions has signatures:

 constexpr size_type [r]find(const char* s) const;

 This member function does not require any unbounded operation because it can compute sz =
 length_s(s, size()+1)

 ● If the result is size()+1 the provided suffix is longer than the current object, and the
 result is false

 ● If the result is smaller, we can compare the sequences by returning
 [r]find(string_view(s, sz))

 It will visit at most size()+1 characters from the sequence s .

 Member Functions find_first_of , find_last_of ,
 find_first_not_of and find_last_not_of

 The unsafe member functions has signature (example with find_first_of):

 constexpr size_type find_first_of(const char* s, size_type pos = 0)
 const;

 Here there's no way to deduce an upper bound for the length of s. Like in the
 construction/assignment case, we have to split these usages, deprecate the unsafe versions,
 and add the tagged member functions:

 Example with find_first_of

 [[deprecated]] constexpr size_type find_first_of(const char* s,
 size_type pos = 0) const;

 template<size_t N>
 constexpr size_type find_first_of(const char (&s)[N], size_type pos =
 0) const noexcept;

 constexpr size_type find_first_of(unsafe_length_t, const char* s,
 size_type pos = 0) const;

 Changes to std::string only

 Member function insert
 Unsafe member function:

 constexpr string& insert(size_type index, const char* s);

 It's impossible to deduce an upper bound for the length of s, so we deprecate the member
 function with the usual outcome:

 [[deprecated]] string& insert(size_type index, const char* s);

 template<size_t N>
 constexpr string& insert(size_type index, const char (&s)[N]);

 constexpr string& insert(unsafe_length_t, size_type index, const char*
 s);

 Member function append and operator +=
 Unsafe member functions:

 constexpr string& append(const char* s);
 constexpr string& operator +=(const char* s);

 It's impossible to deduce an upper bound for the length of s, so we deprecate the member
 function with the usual outcome:

 [[deprecated]] constexpr string& append(const char* s);
 [[deprecated]] constexpr string& operator +=(const char* s);

 template<size_t N>
 constexpr string& append(const char (&s)[N]);
 template<size_t N>
 constexpr string& operator +=(const char (&s)[N]);

 constexpr string& append(unsafe_length_t, const char* s);

 No tagged replacement can be offered for the operator +=

 Member function replace
 Unsafe overloads:

 constexpr string& replace(size_type pos, size_type count, const char*
 cstr);
 constexpr string& replace(const_iterator first, const_iterator last,
 const char* cstr);

 It's impossible to deduce an upper bound for the length of s, so we deprecate the member
 function with the usual outcome:

 [[deprecated]] constexpr string& replace(size_type pos, size_type
 count, const char* cstr);
 [[deprecated]] constexpr string& replace(const_iterator first,
 const_iterator last, const char* cstr);

 template<size_t N>
 constexpr string& replace(size_type pos, size_type count, const char
 (&s)[N]);
 template<size_t N>
 constexpr string& replace(const_iterator first, const_iterator last,
 const char (&s)[N]);

 constexpr string& replace(unsafe_length_t, size_type pos, size_type
 count, const char* cstr);
 constexpr string& replace(unsafe_length_t, const_iterator first,
 const_iterator last, const char* cstr);

 Non-member operator+
 Unsafe overloads:

 constexpr string operator+(const string& lhs, const Char* rhs);
 constexpr string operator+(const char* lhs, const string& rhs);
 constexpr string operator+(string&& lhs, const char* rhs);
 constexpr string operator+(const char* lhs, string&& rhs);

 It's impossible to deduce an upper bound for the length of s, so we deprecate the member
 function with the usual outcome:

 [[deprecated]] constexpr string operator+(const string& lhs, const
 Char* rhs);
 [[deprecated]] constexpr string operator+(const char* lhs, const
 string& rhs);
 [[deprecated]] constexpr string operator+(string&& lhs, const char*
 rhs);
 [[deprecated]] constexpr string operator+(const char* lhs, string&&
 rhs);

 template<size_t N>
 constexpr string operator+(const string& lhs, const char (&rhs)[N]);
 template<size_t N>
 constexpr string operator+(const char (&lhs)[N], const string& rhs);
 template<size_t N>
 constexpr string operator+(string&& lhs, const char (&rhs)[N]);
 template<size_t N>
 constexpr string operator+(const char (&lhs)[N], string&& rhs);

 No tagged replacement can be offered for the operator +

 Changes to std::zstring_view
 As a note for zsrting_view described in P3081, will need to receive all the changes coming
 from string_view .
 In addition, zstring_view will have to guarantee the presence of the null-terminator when
 built from bounded-ranges. This can be achieved by computing length_s on the provided
 sequence, and verifying that the effective length returned is less than N-1 (with N being the
 number of characters in the sequence).

 Alternatives
 ● If we want to frame this proposal in the "profiles" framework, we propose to introduce a

 new annotation [[ranges_deprecated]] which will be used when passing
 unbounded memory ranges. This will deprecated the offending constructor selectively,
 without incurring in ODR violations (we evaluated other options, where the offending
 functions were "disappearing" under the ranges profile, but that would generate ODR
 violations in codebases that mix different profile configurations)

 ● Another alternative is the direct removal of any function marked as [[deprecated]] in
 this document

 Conclusion
 In this paper we proposed to restrict the usage of constructors and functions taking a char*
 argument in string and string_view , with the scope of improving range-safety of these
 operations.

 The changes proposed in this document allow to remove or mitigate the effects of undefined
 behavior in string and string_view .

 Appendix A
 Resources on safe C++

 ● Bjarne Stroustrup :: Approaching C++ Safety - YouTube
 A presentation at Core C++ 2023 where Stoustrup present the idea of a "profile"

 ● P2816R0 : Bjarne Stroustrup, Gabriel Dos Reis - "Safety Profiles: Type and resource
 Safe programming in ISO Standard C++"

 ● P3274R0 : Bjarne Stroustrup - "A framework for Profiles development"
 ● P3081R0 : Herb Sutter - "Core safety Profiles: Specification, adoptability, and impact"
 ● P3436R1 : Herb Sutter - "Strategy for removing safety-related UB by default"

