
P3561: Index based coproduct operations on

variant, and library wording

P3561R0

Esa Pulkkinen

esa.pulkkinen@iki.fi

January 8, 2025

Revision History

Revision Date Author(s) Description

P3561R0 8.1.2024 Esa Pulkki-
nen

Initial version for C++ standardization

1 Introduction

This paper is intended for WG21, C++ standardization committee, in particu-
lar, Library working group and SG21.

1.1 Motivation and scope

There is a known problem with C++ std::variant’s visit operations, which
are useful when variant’s branches do not have multiple uses of same types as
branches. When using the overloaded visiting, only differences encoded in types
would be allowed, but when multiple branches have same type, the behaviour
of the visit operations using an overload-set based matching does not allow
distinguishing them.

This came up for class invariants in P3361 [7], which attempted to rely on
coproducts in category theory to describe semantics of class invariants and con-
tract checking in general, however current std::variant implementation didn’t
quite support sufficient operations, and therefore linking coproduct semantics
with current approach in std::variant seemed difficult.

Here are some examples, what you might need to do to use a variant:

std::variant <int ,int ,int > v{std:: in_place_index

<0>,10}; // OK

// ill -formed , also can’t determine which int:

// std:: visit(v, [](int i) { ... })

1

int x = std::get <0>(v); // works

int y = std::get <1>(v); // throws exception

// ill -formed , and can’t tell which int was selected

:

// int z = std::get <int >(v);

// ugly , inefficient code , but works:

int a;

try {

a = std::get <0>(v);

} catch (std:: bad_variant_access &e) {

try {

a = std::get <1>(v);

} catch (std:: bad_variant_access &e) {

a = std::get <2>(v);

}

}

// also ugly:

if (int * ap0 = std::get_if <0>(&v)) {

a = *ap0;

} else if (int *ap1 = std::get_if <1>(&v)) {

a = *ap1;

} else if (int *ap2 = std::get_if <2>(&v)) {

a = *ap2;

} else { throw std:: bad_variant_access (); }

// ugly , procedural style code , but works , now all

// branch -specific code now is inside the switch -

case:

switch (v.index ()) {

case 0: a = std::get <0>(v); break;

case 1: a = std::get <1>(v); break;

case 2: a = std::get <2>(v); break;

default: throw std:: bad_variant_access ();

}

std::variant <std::tuple <int ,int >, std::pair <int , std

::string > > v{

std:: in_place_index <0>, std:: make_tuple (2,3)

};

auto f = [](int x , int y) { return x + y; };

auto g = [](int x, std:: string name) { return x +

name.length (); }

// now arguments to either f and g are in variant ,

but how to call it?

int res = 0;

switch (v.index ()) {

case 0: res = std:: apply(f,std::get <0>(v)); break;

case 1: res = std:: apply(g,std::get <1>(v)); break;

2

default: throw std:: bad_variant_access ();

}

To a functional programmer, all of the above examples seem very compli-
cated and procedural.

It’s possible nonetheless to distinguish different branches using index based
lookup from variant, that is, std::get<I> for a compile-time index. However
these are not particularly useful when the index of the chosen branch is not
known at compile-time. This is in particular necessary to support correct pat-
tern matching operations for representing a coproduct in category theory using
variant. In particular, a coproduct has “injections”, which are represented by
already existing variant constructors that use index, and “index based case
matching”, which are described here.

It’s important to see that order of declaration now matters, and the functions
to process data from variant must be given in the same order they are declared in
the variant. But that’s because it’s the indexing that is used to match branches
of the variant with actual functions.

Here are some examples of how index based case matching could work.

std::variant <int ,std::string , int > v{std::

in_place_index <2>, 66};

std::variant <int ,std::string , int > w{std::

in_place_index <1>, "foo"};

// order of branches matters:

auto compute = invoke_cases(

[](int i) -> int { return i; },

[](std:: string const &s) -> int { return s.

length (); },

[](int j) -> int { return j + 100; }

);

std::cout << "res=" << compute(v) << "," << compute(

w) << std::endl;

using message = std::tuple <int ,int >;

using message2 = std::pair <int ,std::string >;

std::variant <message , message2 > args{

std:: in_place_index <0>, std:: make_tuple (3,4)

};

std::variant <message , message2 > args2{

std:: in_place_index <1>, std:: make_pair(3,"

teststring")

};

auto analyze = apply_cases(

[](int x, int y) -> int { return x + y; },

[](int x, std:: string const &y) -> int {

return x + y.length (); });

int result = analyze(args);

3

int result2 = analyze(args2);

int result3 = visit_apply_cases(args ,

[](int x, int y) -> int { return x + y; },

[](int x, std:: string const &y) -> int {

return x + y.length (); });

auto tup = std:: make_tuple(

[](int x, int y) -> int { return x + y; },

[](int x, std:: string const &y) -> int { return x

+ y.length (); }

);

int result4 = visit_apply(args ,tup);

int result5 = visit_apply(args2 ,tup);

For the coproduct index based case matching, the important consideration
is that it allows combining several functions indexed by a compile-time integer
into one function, whose input is a variant whose branches are indexed simi-
larly by the integer. Such operation is often considered primitive in functional
programming languages such as Haskell [1].

As summary, the plan is to support following operations:

operation multi-parameter functions variant first parameter multiple functions

visit invoke No Yes Tuple
visit invoke cases No Yes Variadics

invoke cases No No Variadics
visit apply Yes Yes Tuple

visit apply cases Yes Yes Variadics
apply cases Yes No Variadics

The idea in naming these operations is that “invoke” is used if functions have
one parameter, “apply” for cases where more than one parameter is supported.
The “cases” suffix is used if the functions are listed as variadic arguments. The
“visit” prefix is used if the first argument is the variant to be analyzed. If not,
then to call the operation, you need two calls, where first call is for a list of
functions, and second call passes in the variant.

2 Categorical semantics

The appropriate category theory commutative diagram is the definition of the
coproduct. The definitions for these are well known [2] [3]. Notice that these
are intended to represent coproduct of arbitrary number of alternatives, not the
binary coproducts. The extension to more than two alternatives is a standard
construction.

Ai ∐iAi

B

fi

ini

[fi]

There is a simple mechanism for visiting a variant which allows matching by
index. The ini is the constructor for variant indexed by compile-time constant

4

i. The [fi] = [fi]i∈[0,n−1] will be called invoke_cases(f0, ..., fn−1) and satisfies

the principle that invoke_cases(f0, ..., fn−1)(ini(xi)) = fi(xi).
The parameter to fi has type xi : 1 → Ai, and since the type depends on

the index, I’ve used index for xi as well.
I allow each Ai to be a product. The C++ implementation will support

separate functions to support functions fi that take multiple parameters, as
a generalization of the one-parameter case. The corresponding function to
invoke_cases will be called apply_cases. That satisfies the same principle
than invoke_cases, except that it allows multiple parameter functions, and
requires the arguments to be wrapped in a tuple. So each Ai in that case is
considered to be of form ΠjUij , and corresponding functions fi : (ΠjUij) → B.
So apply_cases(f0, ..., fn−1)(ini(〈xi0, ..., xi(k−1)〉)) = fi(xi0, ..., xi(k−1)), where
i ∈ [0, n− 1] and j ∈ [0, k − 1].

The C++ implementation uses functions that take tuples of functions instead
of a variadic function with multiple function parameters. Those are useful prim-
itives to construct more complicated cases. In C++ the case where n = 2 is
special, because std::pair and std::tuple with two parameters provide sim-
ilar (isomorphic) functionality. The std::get and std::apply already provide
sufficient abstraction for that, and it’s expected that other coproduct-like types
should also support these operations.

The case where n = 0 is also special in that coproduct of zero alternatives
should be the initial object, but operation to extract values always fails, and
constructing the variant is ill-formed. The case where n = 1 has the special
property that std::get<0> operation that passes type checking to extract the
values cannot fail.

To represent an indexed set of functions, a tuple containing function objects
is natural, however for ease of use, it’s useful to support operations where user
doesn’t need to explicitly construct the tuple. A tuple can be described as
following commutative diagram, which is dual to the one for coproduct.

Γ ΠiXi

Xi

ai

〈ai〉

πi

The operation πi is the std::get<I> operation, and 〈ai〉 = 〈ai〉i∈[0,n−1] is

make_tuple(a0, ..., an−1).
To specialize this to represent an indexed set of functions for coproduct,

I set Xi = Ai → B and use exponentials (−∗,app) : − × A ⊣ A → − to
produce the function based on the coproduct definition. This produces following
commutative diagram:

Γ Πi(Ai → B)

Ai → B

f∗

i

〈f∗

i
〉

πi

Using exponentials in reverse, and using the coproduct, we can turn this into
commutative diagram:

5

Γ×Ai Πi(Ai → B)×Ai

(Ai → B)×Ai

Γ×∐iAi B

f∗

i
×idAi

〈f∗

i
〉×idAi

idΓ×ini

πi×idAi

app

[fi]◦snd

Notice that when constructing the coproduct, the context is not used, whereas
when going through the lambda, the function used to deconstruct the variant
may depend on the context.

This paper is intended to formalize changes to C++ standard for introducing
index-based coproduct visit operations for variant to C++.

The visit_invoke operation described above doesn’t support functions
where function takes more than one parameter. To support that case, I will
add a new operation which uses std::apply to apply the function on the vari-
ant branch to multiple arguments that are described in a tuple. This provides a
generalization where parameters to variant are not limited to one argument. So
in that case each branch of the variant should be a tuple of parameters, which
would be passed on to the functions in the tuple.

3 Changes to standard

The changes are against [5]. An example implementation which doesn’t need
compiler extensions is given in the appendix.

3.1 coproduct global operations

This should be added after 22.6.7 [variant.visit]:

3.1.1 visit invoke

template <class Tuple , size_t I = 0, class ... Alts >

constexpr auto visit_invoke(std::variant <Alts...>

const &v, Tuple const &tup)

noexcept(/* described below */)

requires (I >= 0

&& I < tuple_size_v <Tuple >

&& sizeof ...(Alts) == tuple_size_v <Tuple >);

The semantics should be same as returning the results of following expres-
sion:

invoke(

get <LIFT(v.index()) >(tup),

get <LIFT(v.index()) >(v)

);

Where LIFT(v.index()) is a constant expression referring to currently cho-
sen branch of variant in v. The lifting of the run-time index of the chosen branch
of the variant to compile-time expression should use an implementation-defined

6

mechanism, which is indicated as “LIFT” here. Practical library implemen-
tations could use a switch statement with appropriate mechanisms to prevent
ill-formed constructs together with a default branch that invokes the operation
recursively, or a more sophisticated implementation-defined mechanism.

The noexcept specification for visit_invoke can look as follows:

noexcept(noexcept ([]<std:: size_t ... J>(std::

integer_sequence <std::size_t , J...>) constexpr

noexcept ((std::

is_nothrow_invocable_v <std:: tuple_element_t <J,Tuple

>,

std::

variant_alternative_t <J, std::variant <Alts...> > >

&& ...))

{}(std:: index_sequence_for <Alts ... >{})))

3.1.2 visit apply

template <class Tuple , size_t I = 0, class ... Alts >

constexpr decltype(auto)

visit_apply(std::variant <Alts ...> const &v, const

Tuple &t)

requires (I >= 0

&& I < std:: tuple_size_v <Tuple >

&& sizeof ...(Alts) == std:: tuple_size_v <Tuple >);

The semantics should be same as returning the results of following:

return std:: apply(get <LIFT(v.index())>(t), std::get <

LIFT(v.index ()) >(v));

Where again the “LIFT” is as above.

3.1.3 visit apply cases

template <class ... Alts , class ... F>

constexpr decltype(auto)

visit_apply_cases(variant <Alts...> const &v,

F && ... funcs)

requires (sizeof ...(Alts) == sizeof ...(F));

The semantics should be:

return visit_apply(v, std:: make_tuple(std::forward <F

>(funcs)...));

3.1.4 apply cases

template <class ... F>

constexpr auto apply_cases(F && ... funcs);

The semantics should be:

7

return [fs = std:: make_tuple(std::forward <F>(funcs)

...)]

<class ... Alts >(std::variant <Alts...> const &

v)

requires (sizeof ...(Alts) == sizeof ...(F)) { return

visit_apply(v,fs); }

3.1.5 visit invoke cases

template <class ... Alts , class ... F>

constexpr auto

visit_invoke_cases(

std::variant <Alts...> const &v, F && ... funcs)

-> common_type_t <invoke_result_t <F, Alts >...>

requires (sizeof ...(Alts) == sizeof ...(F));

The semantics should be:

return visit_invoke(v, std:: make_tuple(std::forward <

F>(funcs)...));

3.1.6 invoke cases

template <class ... F>

constexpr auto invoke_cases(F && ... funcs);

Semantics should be:

return [fs = std:: make_tuple(std::forward <F>(funcs)

...)]

<class ... Alts >(std::variant <Alts...> const &v)

-> std:: common_type_t <std:: invoke_result_t <F, Alts

>...>

requires (sizeof ...(F) == sizeof ...(Alts))

{ return visit_invoke(v,fs); };

4 Loose ends

The following known issues have not had careful analysis:

1. Naming of the operations. It’s possible to support std::variant member
functions with similar semantics for the visit operations that take variant
as first argument. Also various overloaded operations which might auto-
matically choose between, say, visit_invoke_cases and visit_apply_cases
based on whether the functions used are multi-argument functions are pos-
sible. However to avoid overloading-based ambiguities on their semantics
I’ve used distinct name.

2. Interaction with pattern matching proposals [6] [4].

8

3. Interaction with std::expected, std::optional or std::any, or other
existing coproduct-like types.

4. noexcept specification of all the functions is not defined. If all functions
given to the invoke_cases and apply_cases functions are noexcept, the
result should be noexcept. I’ve tried various mechanism to propagate
noexcept, but I don’t seem to get correct result from noexcept operator
(it returns false). Therefore I’ve only specified noexcept specification for
visit_invoke.

5. Optimization: instead of throwing bad_variant_access, it’s possible to
use __builtin_unreachable() since concepts are used for checking the
compile-time index, and run-time indices requested from an initialized
variant should already be checked by the switch-case. However, if vari-
ants with uninitialized or out of range index were constructed, then these
functions would become unsafe as well. For users that explicitly spec-
ify starting index to avoid specifying functions for some branches, the
branches skipped would produce such errors.

5 Appendix

These functions have been implemented. As an example, the visit_invoke

operation can be implemented as follows:

template < class Tuple , size_t I = 0, class ... Args >

constexpr decltype(auto) visit_invoke(std::variant <

Args...> const &v, const Tuple &t)

noexcept(noexcept ([]<std:: size_t ... J>(std::

integer_sequence <std::size_t , J...>) constexpr

noexcept ((std::

is_nothrow_invocable_v <std:: tuple_element_t <J,Tuple

>,

std::

variant_alternative_t <J, std::variant <Args...> > >

&& ...))

{}(std:: index_sequence_for <Args ... >{})))

requires (I >= 0 && I < std:: tuple_size_v <Tuple >

&& sizeof ...(Args) == std:: tuple_size_v <

Tuple >)

{

constexpr std:: size_t SZ = std:: tuple_size_v <Tuple >;

switch (v.index ()) {

case I: if constexpr (I < SZ) { return std:: invoke

(std::get <I>(t), std::get <I>(v)); }

case I+1: if constexpr (I+1<SZ) { return std:: invoke

(std::get <I+1>(t),std::get <I+1>(v)); }

case I+2: if constexpr (I+2<SZ) { return std:: invoke

(std::get <I+2>(t),std::get <I+2>(v)); }

case I+3: if constexpr (I+3<SZ) { return std:: invoke

(std::get <I+3>(t),std::get <I+3>(v)); }

9

case I+4: if constexpr (I+4<SZ) { return std:: invoke

(std::get <I+4>(t),std::get <I+4>(v)); }

case I+5: if constexpr (I+5<SZ) { return std:: invoke

(std::get <I+5>(t),std::get <I+5>(v)); }

default: if constexpr (SZ > I+6) {

return visit_invoke <Tuple ,I+6, Args ...>(v,t);

} else {

throw std:: bad_variant_access ();

}

}

}

The visit_apply function is similar, but uses std::apply instead of std::invoke.
The other functions’ implementation is relying on these two, and are as described
in their semantics.

References

[1] The Haskell 2010 committee. The haskell 2010 report. Technical report,
2010.

[2] Maarten M. Fokkinga. A gentle introduction to category theory. 1994.

[3] Joseph A. Goguen. A categorical manifesto. 1989.

[4] Bruno Cardoso Lopes, Sergei Murzin, Michael Park, David Sankel, Dan
Sarginson, and Bjarne Stroustrup. Pattern matching. https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r3.pdf.

[5] N4950: Working draft, standard for programmning language c++.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4950.pdf.

[6] Michael Park. Pattern matching: match expression. https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2024/p2688r1.pdf.

[7] Esa Pulkkinen. Class invariants and contract checking philosophy.
https://esapulkkinen.github.io/cifl-math-library/C++/contracts.pdf, 2024.

10

