
Prevent Undefined Behavior By Default

Document #: P3558R0
Date: 2025-01-12
Project: Programming Language C++
Audience: SG23 (Safety), SG15 (Tooling), EWG (Evolution)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

John Lakos <jlakos@bloomberg.net>
Abstract

Managing the impact of undefined behavior on the functional safety and correctness of
programs written in C++ is the key challenge of our time and one that WG21 must urgently
address. In [P3100R1], a mechanism for clearly specifying most undefined behavior as the conse-
quence of violated core-language preconditions, using the mechanisms of Contracts introduced in
[P2900R13], provides a framework for improving the world’s ability to write functionally safe
and correct code in C++ with no need for compromises. We propose not only pursuing this route
for all runtime-checkable undefined behavior, but also encouraging vendors to make checking
these conditions the default in all implementations.

Contents
1 Introduction 2

2 Concerns 4

3 Profiles 5

4 Proposal 5

5 Conclusion 6

1

mailto:jberne4@bloomberg.net
mailto:jlakos@bloomberg.net


Revision History
Revision 0

• Original version of the paper

1 Introduction
For many years, the C++ Standards Committee (WG21) — particularly the Contracts study group
of that Committee (SG21) — has been working on defining a flexible and powerful framework that
users can employ to diagnose and mitigate the impact of bugs in their software. The first major
step forward produced by that effort is the Contracts MVP proposed in [P2900R13].

Undefined behavior, when encountered, is always a bug in a user’s program — be it in the code
they wrote or in a library they are using. As described in [P3100R1], most undefined behavior can
be categorized as violations of core-language preconditions that are implicitly present wherever such
undefined behavior occurs today. In addition, as of today and with no need for extra permission to
do so, each of these preconditions is already being effectively evaluated with the assume semantic.

[P3100R1] proposes making this specification explicit and encouraging vendors to provide users
with consistent mechanisms to select other semantics for these checks (e.g., enforce, quick-enforce,
or observe), allowing those users to dramatically increase safety (of all sorts) albeit with a potential
cost in runtime performance.

We propose taking this approach a step further, encouraging vendors to make enforcing these
preconditions the default everywhere, as is done for library-level contract assertions with [P2900R13],
to reap several associated game-changing benefits.

• The C++ ecosystem will, out of the box, be safer to use on any platform.

Keeping active, by default, any passive safety system that is not mandated in absolutely
every case, such as air bags, is important unless a compelling local reason exists to disable it.
For implicit contract assertions, this need is especially acute for less-experienced developers,
particularly students learning C++, who will have absolutely no idea that they should first
flip some esoteric compiler switch to enable this immensely valuable implicit core-language
precondition enforcement. Note that this automatic language safety is a property Rust users
rely on but, unlike with C++26, cannot selectively disable to reclaim performance.

With each runtime-checkable mistake they make, novices will be informed, via meaningful
diagnostics, immediately and automatically of their error, rather than relying on first digesting
enough documentation to configure their compiler appropriately. Such immediate feedback
forces exposure of a wide variety of defects very early in a user’s learning career and in the
lifecycle of the software they write, which in turn facilitates rapid learning by the person who
created the bug without the need to engage additional tooling, and avoids the tedium and
frustration that can lead C++ novices to migration to other languages.

• Anyone maintaining a C++ program that is significantly impacted by any performance costs
resulting from these additional runtime checks will already be more than capable of choosing
compiler configurations that fine-tune performance for their needs and can do so just as easily

2



with any checks that are not needed. Importantly, the non-performance-sensitive uses of that
same source code, in unit tests and development environments, will still easily benefit from
checking these assertions and reduce the bugs and security vulnerabilities in the eventually
deployed high-performance release builds.

• The decision to opt out versus in to these protections is not at all symmetric. If we don’t
know we have a bug, nothing will tell us to turn on checking. If checking is on by default,
however, we will catch the bug regardless of whether we thought we needed checking. Similarly,
if checking is opt in and we don’t avail ourselves of it, we won’t know if the impact is enough
to make a difference. Conversely, if checking is on by default, all the code will be guarded
unless or until clear and compelling evidence indicates that some code is too slow, at which
point that theory can be empirically measured to see if indeed the checking is causing the
slowdown. In other words, when in doubt or when the cost is not meaningful, we want the code
to start out protected (by default) so that as much of the code as possible continues to remain
protected until empirical evidence shows that needed runtime permanence is compromised.

• Other than how the resulting violations are presented1 to the contract-violation handler,
nothing about the proposed core-language preconditions in [P3100R1] results in any changes
to how C++ source code is written. All benefits of such checks apply not only to newly
developed software written in C++26 or C++29, but also to all legacy C++ programs written
to conform to any Standard just by recompiling with a new compiler that has chosen to enable
those checks by default.

Most importantly, for those concerned with the runtime overhead of defining undefined core-language
behavior, the approach proposed in [P3100R1] is optimal.

• The decision to check such preconditions is not made in source code, and code is not written
differently because the behavior has been defined. Therefore, the same libraries that work for
users who want safety will work exactly as well for users who need optimal performance.

• When possible, a well-defined fallback behavior can be specified, reducing risk significantly
even when bugs are not found and fixed, realizing — with no need for changes to source code —
the great benefits of erroneous behavior, as introduced in [P2795R0]. Surprisingly, this design
can be specified without any need to define erroneous behavior in the language specification;
implicit contract assertions are introduced, some previously undefined behavior is defined, and
the benefits of erroneous behavior remain.

Three questions remain.

1. What concerns does the Committee have regarding this approach to handling undefined
behavior?

2. What should be done with profiles that seek to introduce runtime checks for core-language
preconditions?

1In [P3100R0], violations of a core-language precondition can (if the observe or enforce semantic is chosen) invoke
the contract-violation handler, in which case the kind on the contract_violation object will be implicit and other
values will be used to indicate the specific core-language precondition that was violated. Note that these additional
enumerators represent the only explicit API change proposed in [P3100R1].

3



3. What parts of these proposals are necessary to achieve a meaningful improvement in the safety
of C++ in a meaningful timeframe?

2 Concerns
Any compiler change carries concerns.

• Overhead of Checking — The overhead of checking core-language preconditions is going
to vary from one such precondition to the next. Many experiments in compilers have been
conducted with varying results for each kind of undefined behavior for which we would consider
introducing checks. Only real implementation experience will tell us how often each kind of
check will need to be reverted to the current assume semantic, but in general, experience has
shown that most such checks do not introduce sufficient overhead to impact the utility of the
typical program.

• Potentially Throwing Contract-Violation Handlers — Much concern has been raised,
such as in [P3541R0], about the impact that throwing violation handlers will have on the
language. In particular, by allowing a violation of a core-language contract to emit an exception
when the installed contract-violation handler throws (since the predicate of such a precondition
will clearly never throw), we open the door to exceptions escaping from expressions from which
they previously never would have escaped. This behavior can be surprising and leave code in a
bad state, yet the current behavior is undefined and leaves the program in an even worse state.

Altering UB based on build modes is not only conforming but a fact of life. Consider the case
of defective code that nonetheless works as intended in unoptimized mode but fails specularity
with even the -O1 compiler flag. We simply cannot require that optimization not affect the
behavior of UB. That said, the range of behaviors seen for many forms of undefined behavior
is, in practice, reasonaby bounded and certainly does not include throwing an exception.

A suggestion has been made, however, that legacy code might be dependent on certain
operations, such as null pointer dereferences, leading to core dumps today. While unwise to
depend on such behaviors as if they were guarantees, Hyrum’s law somewhat forces us to
seriously consider any change to that behavior. Note that the default behavior we recommend

— enforcing the implicit contract assertions — provides exactly that behavior. Only expert
users decide to install a throwing contract-violation handler that will encounter any new and
surprising control paths, and those users most need such flexibility.

• Overhead of Exception-Handling Scaffolding — Potentially throwing violation handlers
also require extra code to be generated to handle exceptions escaping. We strongly suggest that
compilers implement switches for users to, as a global build-time option, require a nonthrowing
violation handler and produce a translation unit that has none of that related overhead. Such
a switch need not be used on all translation units that are being built; the compiler and
linker, however, must enforce that any translation unit built this way results in requiring that
the installed violation handler itself be noexcept. Of course, any platform that follows the
recommended practice for how the default contract-violation handler behaves will be providing
a contract-violation handler that simply cannot throw.

4



3 Profiles
Profiles — particularly the core-safety profiles proposed in [P3081R1] — have been aiming to provide
two distinct features combined in a single specification.

1. Introduce restrictions on what is considered well formed C++ (e.g., restrictions on allowed
language constructs) in a particular translation unit or at a particular scope.

2. Introduce runtime checks of certain core-language preconditions.

The first feature is eminently useful and a potentially powerful tool for improving the quality of
C++ software.

The second group of features proposed for Profiles, however, is actively harmful in three ways.

1. We actively want all runtime checking in C++ — implicit core-language and explicit source-
code-level contract assertions — to be on by default.

2. Profiles would redundantly intrude on how implicit precognitions are proposed to be controlled
in [P3100R1].

3. Once we put something in a profile, that would override external settings, thereby undermining
the build system’s ability to control and tailor the safety and performance trade-offs for C++
software components, subsystems, and programs — let alone generally reusable libraries — as
they move through their lifecycle.

We, therefore, propose that Profiles focus entirely on locally restricting the language to better
subsets, while all control over runtime checks be moved out of Profiles and each have the enforce
semantic by default, with compilers providing the appropriate configuration options to opt out of
such checks if and as needed.

Proposal 1: Leave Runtime Checking Out of Profiles

Do not have Profiles introduce contract assertions or mandate the semantic with which any
contract assertions are evaluated.

4 Proposal
The question then is what should be done immediately.

• Standardizing the enumerators proposed by [P3100R1] is the only part of the proposal that
has any user-facing API change that would be beneficial to include in C++26.

• Even without those changes, compilers can still begin to implement runtime checks of core-
language preconditions because any violations so detected are fully undefined behavior today
and because the design in [P2900R13] has been carefully and explicitly crafted to support
vendor extensions that introduce new enumeration values and values from future Standards
being back-ported.

• The first group to review [P3100R1] was a joint session of SG21 (Contracts) and SG23 (Safety)
in Wrocław. After this initial discussion, unanimous consent was reached to pursue the direction

5



of [P3100R1] for handling undefined behavior for all core language operations.

SG21, Wrocław, 2024-11-22, Poll 6

We support the direction of P3100R1 and encourage the authors to come back with a
fully specified proposal.
SF F N A SA
19 6 0 0 0

Result: Consensus

With no specific ship vehicle required, we need only to continue actively pursuing implicit core-
language precondition checking and to avoid any attempt to invent source-code syntax for that
purpose in C++26. Once labels ([P3400R0]) become available, we can use that needed flexibility to
provide both command-line and in-source control over both implicit and explicit contract assertions.

Proposal 2: Pursue [P3100R1] to Completion

Continue to pursue a more complete specification of [P3100R1], and adopt it after [P2900R13].

In addition, what default we recommend for the semantic of implicit core-language preconditions is
another consideration and is important for both the perception of the safety of the C++ language
and the user experience of novices to the language.

A recommended default is, of course, not enforceable, but the world pays attention to the best
practices we place in the Standard, so that is the vehicle to use to suggest an appropriate default.

Proposal 3: Recommend Enforcement

When adopted, [P3100R1] should recommend a default evaluation semantic, when nothing
else is specified, of enforce for all core-language preconditions.

5 Conclusion
For various reasons that have been covered extensively elsewhere, C++ is at an inflection point with
regard to safety and its own future. We believe that pursing core-language precondition checks, on
top of the Contracts MVP, can mitigate the perception of C++ as an unsuitable tool for large-scale
system software and provide real value.

Importantly, the simple act of pursuing these designs, seeing them implemented, and deploying
them at scale will realize immediate benefits, without the effort and risk associated with adding
new syntax or library components to the language.

Acknowledgments
Thanks to Mungo Gill and Timur Doumler for reviewing this paper.

Thanks to Lori Hughes for providing editorial feedback.

6



Bibliography
[P2795R0] Thomas Köppe, “Correct and incorrect code, and “erroneous behaviour””, 2023

http://wg21.link/P2795R0

[P2900R13] Joshua Berne, Timur Doumler, and Andrzej Krzemieński, “Contracts for C++”, 2025
http://wg21.link/P2900R13

[P3081R1] Herb Sutter, “Core safety Profiles: Specification, adoptability, and impact”, 2024
http://wg21.link/P3081R1

[P3100R0] Timur Doumler, Gašper Ažman, and Joshua Berne, “Undefined and erroneous
behaviour are contract violations”, 2024
http://wg21.link/P3100R0

[P3100R1] Timur Doumler, Gašper Ažman, and Joshua Berne, “Undefined and erroneous
behaviour are contract violations”, 2024
http://wg21.link/P3100R1

[P3400R0] Joshua Berne, “Controlling Contract-Assertion Properties”, 2025
http://wg21.link/P3400R0

[P3541R0] Andrzej Krzemieński, “Violation handlers vs noexcept”, 2024
http://wg21.link/P3541R0

7

http://wg21.link/P2795R0
http://wg21.link/P2900R13
http://wg21.link/P3081R1
http://wg21.link/P3100R0
http://wg21.link/P3100R1
http://wg21.link/P3400R0
http://wg21.link/P3541R0

	1 Introduction
	2 Concerns
	3 Profiles
	4 Proposal
	5 Conclusion

