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C++20 added support for coroutines that can improve the experience writing asynchronous code. C++26 added
the sender/receiver model for a general interface to asynchronous operations. The expectation is that users would
use the framework using some coroutine type. To support that, a suitable class needs to be defined and this
proposal is providing such a definition.

Just to get an idea what this proposal is about: here is a simple Hello, world written using the proposed
coroutine type:
#include <execution>
#include <iostream>
#include <task>

namespace ex = std::execution;

int main() {
return std::get<0>(*ex::sync_wait([]->ex::lazy<int> {

std::cout << "Hello, world!\n";
co_return co_await ex::just(0);

}()));
}

1 The Name
Just to get it out of the way: the class (template) used to implement a coroutine task needs to have a name. In
previous discussions, SG1 requested that the name task is retained and LEWG chose lazy as an alternative. It
isn’t clear whether the respective reasoning is still relevant. To the authors, the name matters much less than
various other details of the interface. Thus, the text is written in terms of lazy. The name is easily changed
(prior to standardisation) if that is desired.

2 Prior Work
This proposal isn’t the first to propose a coroutine type. Prior proposals didn’t see any recent (post introduction
of sender/receiver) update, although corresponding proposals were discussed informally on multiple occasions.
There are also implementations of coroutine types based on a sender/receiver model in active use. This section
provides an overview of this prior work, and where relevant, of corresponding discussions. This section is
primarily for motivating requirements and describing some points in the design space.
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2.1 P1056: Add lazy coroutine (coroutine task) type
The paper describes a task/lazy type (in P1056r0 the name was task; the primary change for P1056r1 is
changing the name to lazy). The fundamental idea is to have a coroutine type which can be co_awaited:
the interface of lazy consists of move constructor, deliberately no move assignment, a destructor, and
operator co_await(). The proposals don’t go into much detail on how to eventually use a coroutine, but it
mentions that there could be functions like sync_await(task<To>) to await completion of a task (similar to
execution::sync_wait(sender)) or a few variations of that.

A fair part of the paper argues why future.then() is not a good approach to model coroutines and their results.
Using future requires allocation, synchronisation, reference counting, and scheduling which can all be avoided
when using coroutines in a structured way.

The paper also mentions support for symmetric transfer and allocator support. Both of these are details on how
the coroutine is implemented.

Discussion for P1056r0 in SG1

— The task doesn’t really have anything to do with concurrency.
— Decomposing a task cheaply is fundamental. The HALO Optimisations help.
— The task isn’t move assignable because there are better approaches than using containers to hold them.

It is move constructible as there are no issues with overwriting a potentially live task.
— Resuming where things complete is unsafe but the task didn’t want to impose any overhead on everybody.
— There can be more than one task type for different needs.
— Holding a mutex lock while co_awaiting which may resume on a different thread is hazardous. Static

analysers should be able to detect these cases.
— Votes confirmed the no move assignment and forwarding to LEWG assuming the name is not task.
— Votes against deal with associated executors and a request to have strong language about transfer between

threads.

2.2 P2506: std::lazy: a coroutine for deferred execution
This paper is effectively restating what P1056 said with the primary change being more complete proposed
wording. Although sender/receiver were discussed when the paper was written but std::execution hadn’t
made it into the working paper, the proposal did not take a sender/receiver interface into account.

Although there were mails seemingly scheduling a discussion in LEWG, we didn’t manage to actually locate any
discussion notes.

2.3 cppcoro
This library contains multiple coroutine types, algorithms, and some facilities for asynchronous work. For the
purpose of this discussion only the task types are of interest. There are two task types cppcoro::task and
cppcoro::shared_task. The key difference between task and shared_task is that the latter can be copied
and awaited by multiple other coroutines. As a result shared_task always produces an lvalue and may have
slightly higher costs due to the need to maintain a reference count.

The types and algorithms are pre-sender/receiver and operate entirely in terms for awaiters/awaitables. The
interface of both task types is a bit richer than that from P1056/P2506. Below t is either a cppcoro::task<T>
or a cppcoro::shared_task<T>:

— The task objects can be move constructed and move assigned; shared_task<T> object can also be copy
constructed and copy assigned.

— Using t.is_ready() it can be queried if t has completed.
— Using co_await t awaits completion of t, yielding the result. The result may be throwing an exception if

the coroutine completed by throwing.
— Using co_await t.when_ready() allows synchronising with the completion of t without actually getting

the result. This form of synchronisation won’t throw any exception.
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— cppcoro::shared_task<T> also supports equality comparisons.

In both cases, the task starts suspended and is resumed when it is co_awaited. This way a continuation is known
when the task is resumed, which is similar to start(op)ing an operation state op. The coroutine body needs to
use co_await or co_return. co_await expects an awaitable or an awaiter as argument. Using co_yield is not
supported. The implementation supports symmetric transfer but doesn’t mention allocators.

The shared_task<T> is similar to split(sender): in both cases, the same result is produced for multiple
consumers. Correspondingly, there isn’t a need to support a separate shared_task<T> in a sender/receiver
world. Likewise, throwing of results can be avoid by suitably rewriting the result of the set_error channel
avoiding the need for an operation akin to when_ready().

2.4 libunifex
unifex is an earlier implementation of the sender/receiver ideas. Compared to std::execution it is lacking
some of the flexibilities. For example, it doesn’t have a concept of environments or domains. However, the
fundamental idea of three completion channels for success, failure, and cancellation and the general shape of
how these are used is present (even using the same names for set_value and set_error; the equivalent of
set_stopped is called set_done). unifex is in production use in multiple places. The implementation includes
a unifex::task<T>.

As unifex is sender/receiver-based, its unifex::task<T> is implemented such that co_await can deal with
senders in addition to awaitables or awaiters. Also, unifex::task<T> is scheduler affine: the coroutine code
resumes on the same scheduler even if a sender completed on a different scheduler. The task’s scheduler is taken
from the receiver it is connected to. The exception for rescheduling on the task’s scheduler is explicitly awaiting
the result of schedule(sched) for some scheduler sched: the operation changes the task’s scheduler to be sched.
The relevant treatment is in the promise type’s await_transform():

— If a sender sndr which is the result of schedule(sched) is co_awaited, the corresponding sched is
installed as the task’s scheduler and the task resumes on the context completing sndr. Feedback from
people working with unifex suggests that this choice for changing the scheduler is too subtle. While it is
considered important to be able to explicitly change the scheduler a task executes on, doing so should be
more explicit.

— For both senders and awaiters being awaited, the coroutine will be resumed on the task’s current scheduler
when the task is scheduler affine. In general that is done by continuing with the senders result on the
task’s scheduler, similar to continues_on(sender, scheduler). The rescheduling is avoided when the
sender is tagged as not changing scheduler (using a static constexpr member named blocking which
is initialised to blocking_kind::always_inline).

— If a sender is co_awaited it gets connected to a receiver provided by the task to form an awaiter holding an
operation state. The operation state gets started by the awaiter’s await_suspend. The receiver arranges
for a set_value completion to become a value returned from await_resume, a set_error completion
to become an exception, and a set_done completion to resume a special “on done” coroutine handle
rather than resuming the task itself effectively behaving like an uncatchable exception (all relevant state
is properly destroyed and the coroutine is never resumed).

When co_awaiting a sender sndr there can be at most one set_value completion: if there are more than one
set_value completions the promise type’s await_transform will just return sndr and the result cannot be
co_awaited (unless it is also given an awaitable interface). The result type of co_await sndr depends on the
number of arguments to set_value:

— If there are no arguments for set_value then the type of co_await sndr will be void.
— If there is exactly one argument of type T for set_value then the type of co_await sndr will be T.
— If there are more than one arguments for set_value then the type of co_await sndr will be

std::tuple<T1, T2, ...> with the corresponding argument types.

If a receiver doesn’t have a scheduler, it can’t be connect()ed to a unifex::task<T>. In particular,
when using a unifex::async_scope scope it isn’t possible to directly call scope.spawn(task) with a

3

https://eel.is/c++draft/exec.split
https://github.com/facebookexperimental/libunifex
https://github.com/facebookexperimental/libunifex/blob/main/include/unifex/task.hpp


unifex::task<T> task as the unifex::async_scope doesn’t provide a scheduler. The unifex::async_scope
provides a few variations of spawn() which take a scheduler as argument.

unifex provides some sender algorithms to transform the sender result into something which may be more
suitable to be co_awaited. For example, unifex::done_as_optional(sender) turns a successful completion
for a type T into an std::optional<T> and the cancellation completion set_done into a set_value completion
with a disengaged std::optional<T>.

The unifex::task<T> is itself a sender and can be used correspondingly. To deal with scheduler affinity a type
erased scheduler unifex::any_scheduler is used.

The unifex::task<T> doesn’t have allocator support. When creating a task multiple objects are allocated on
the heap: it seems there is a total of 6 allocations for each unifex::task<T> being created. After that, it seems
the different co_awaits don’t use a separate allocation.

The unifex::task<T> doesn’t directly guard against stack overflow. Due to rescheduling continuations on a
scheduler when the completion isn’t always inline, the issue only arises when co_awaiting many senders with
blocking_kind::always_inline or when the scheduler resumes inline.

2.5 stdexec
The exec::task in stdexec is somewhat similar to the unifex task with some choices being different, though:

— The exec::task<T, C> is also scheduler affine. The chosen scheduler is unconditionally used for every
co_await, i.e., there is no attempt made to avoid scheduling, e.g., when the co_awaited sender completes
inline.

— Unlike unifex, it is OK if the receiver’s environment doesn’t provide a scheduler. In that case an inline
scheduler is used. If an inline scheduler is used there is the possibility of stack overflow.

— It is possible to co_await just_error(e) and co_await just_stopped(), i.e., the sender isn’t required
to have a set_value_t completion.

The exec::task<T, C> also provides a context C. An object of this type becomes the environment for receivers
connect()ed to co_awaited senders. The default context provides access to the task’s scheduler. In addition an
in_place_stop_token is provides which forwards the stop requests from the environment of the receiver which
is connected to the task.

Like the unifex task exec::task<T, C> doesn’t provide any allocator support. When creating a task there are
two allocations.

3 Objectives
Also see sender/receiver issue 241.

Based on the prior work and discussions around corresponding coroutine support there is a number of required
or desired features (listed in no particular order):

1. A coroutine task needs to be awaiter/awaitable friendly, i.e., it should be possibly to co_await awaitables
which includes both library provided and user provided ones. While that seems obvious, it is possible to
create an await_transform which is deleted for awaiters and that should be prohibited.

2. When composing sender algorithms without using a coroutine it is common to adapt the results using
suitable algorithms and the completions for sender algorithms are designed accordingly. On the other
hand, when awaiting senders in a coroutine it may be considered annoying having to transform the result
into a shape which is friendly to a coroutine use. Thus, it may be reasonable to support rewriting certain
shapes of completion signatures into something different to make the use of senders easier in a coroutine
task. See the section on the result type for co_await for a discussion.

3. A coroutine task needs to be sender friendly: it is expected that asynchronous code is often written using
coroutines awaiting senders. However, depending on how senders are treated by a coroutine some senders
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may not be awaitable. For example neither unifex nor stdexec support co_awaiting senders with more
than one set_value completion.

4. It is possibly confusing and problematic if coroutines resume on a different execution context than the one
they were suspended on: the textual similarity to normal functions makes it look as if things are executed
sequentially. Experience also indicates that continuing a coroutine on whatever context a co_awaited
operation completes frequently leads to issues. Senders could, however, complete on an entirely different
scheduler than where they started. When composing senders (not using coroutines) changing contexts is
probably OK because it is done deliberately, e.g., using continues_on, and the way to express things is
new with fewer attached expectations.

To bring these two views together a coroutine task should be scheduler affine by default, i.e., it should
normally resume on the same scheduler. There should probably also be an explicit way to opt out of
scheduler affinity when the implications are well understood.

Note that scheduler affinity does not mean that a task is always continuing on the same thread: a scheduler
may refer to a thread pool and the task will continue on one of the threads (which also means that thread
local storage cannot be used to propagate contexts implicitly; see the discussion on environments below).

5. When using coroutines there will probably be an allocation at least for the coroutine frame (the HALO
optimisations can’t always work). To support the use in environments where memory allocations using
new/delete aren’t supported the coroutine task should support allocations using allocators.

6. Receivers have associated environments which can support an open set of queries. Normally, queries on an
environment can be forwarded to the environment of a connect()ed receiver. Since the coroutine types
are determined before the coroutine’s receiver is known and the queries themselves don’t specify a result
type that isn’t possible when a coroutine provides a receiver to a sender in a co_await expression. It
should still be possible to provide a user-customisable environment from the receiver used by co_await
expressions. One aspect of this environment is to forward stop requests to co_awaited child operations.
Another is possibly changing the scheduler to be used when a child operation queries get_scheduler
from the receiver’s environment. Also, in non-asynchronous code it is quite common to pass some form of
context implicitly using thread local storage. In an asynchronous world such contexts could be forwarded
using the environment.

7. The coroutine should be able to indicate that it was canceled, i.e., to get set_stopped() called on the
task’s receiver. std::execution::with_awaitable_senders already provided this ability senders being
co_awaited but that doesn’t necessarily extend to the coroutine implementation.

8. Similar to indicating that a task got canceled it would be good if a task could indicate that an error
occurred without throwing an exception which escapes from the coroutine.

9. In general a task has to assume that an exception escapes the coroutine implementation. As a result, the
task’s completion signatures need to include set_error_t(std::exception_ptr). If it can be indicated
to the task that no exception will escape the coroutine, this completion signature can be avoided.

10. When many co_awaited operations complete synchronously, there is a chance for stack overflow. It may
be reasonable to have the implementation prevent stack overflow by using a suitable scheduler sometimes.

11. In some situations it can be useful to somehow schedule an asynchronous clean-up operation which is
triggered upon coroutine exit. See the section on asynchronous clean-up below for more discussing

12. The lazy coroutine provided by the standard library may not always fit user’s needs although they may
need/want various of the facilities. To avoid having users implement all functionality from scratch lazy
should use specified components which can be used by users when building their own coroutine. The
components as_awaitable and with_awaitable_sender are two parts of achieving this objective but
there are likely others.

The algorithm std::execution::as_awaitable does turn a sender into an awaitable and is expected to
be used by custom written coroutines. Likewise, it is intended that custom coroutines use the CRTP class
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template std::execution::with_awaitable_senders. It may be reasonable to adjust the functionality
of these components instead of defining the functionality specific to a lazy<...> coroutine task.

It is important to note that different coroutine task implementations can live side by side: not all functionality
has to be implemented by the same coroutine task. The objective for this proposal is to select a set of features
which provides a coroutine task suitable for most uses. It may also be reasonable to provide some variations as
different names. A future revision of the standard or third party libraries can also provide additional variations.

4 Design
This section discusses various design options for achieving the listed objectives. Most of the designs are indepen-
dent of each other and can be left out if the consensus is that it shouldn’t be used for whatever reason.

4.1 Template Declaration for lazy
Coroutines can use co_return to produce a value. The value returned can reasonably provide the argument for
the set_value_t completion of the coroutines. As the type of a coroutine is defined even before the coroutine
body is given, there is no way to deduce the result type. The result type is probably the primary customisation
and should be the first template parameter which gets defaulted to void for coroutines not producing any value.
For example:
int main() {

ex::sync_wait([]->ex::lazy<>{
int result = co_await []->ex::lazy<int> { co_return 42; }();
assert(result == 42);

}());
}

The inner coroutines completes with set_value_t(int) which gets translated to the value returned from
co_await (see co_await result type below for more details). The outer coroutine completes with set_value_t().

Beyond the result type there are a number of features for a coroutine task which benefit from customisation
or for which it may be desirable to disable them because they introduce a cost. As many template parameters
become unwieldy, it makes sense to combine these into a [defaulted] context parameter. The aspects which
benefit from customisation are at least:

— Customising the environment for child operations. The context itself can actually become part of the
environment.

— Disable scheduler affinity and/or configure the strategy for obtaining the coroutine’s scheduler.
— Configure allocator awareness.
— Indicate that the coroutine should be noexcept.
— Define additional error types.

The default context should be used such that any empty type provides the default behaviour instead of requiring
a lot of boilerplate just to configure a particular aspect. For example, it should be possible to selectively enable
allocator support using something like this:
struct allocator_aware_context {

using allocator_type = std::pmr::polymorphic_allocator<std::byte>;
};
template <typename T>
using my_lazy = ex::lazy<T, allocator_aware_context>;

Using various different types for task coroutines isn’t a problem as the corresponding objects normally don’t
show up in containers. Tasks are mostly co_awaited by other tasks, used as child senders when composing
work graphs, or maintained until completed using something like a counting_scope. When they are used in
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a container, e.g., to process data using a range of coroutines, they are likely to use the same result type and
context types for configurations.

4.2 lazy Completion Signatures
The discussion above established that lazy<T, C> can have a successful completion using set_value_t(T). The
coroutine completes accordingly when it is exited using a matching co_return. When T is void the coroutine also
completes successfully using set_value() when floating off the end of the coroutine or when using a co_return
without an expression.

If a coroutine exits with an exception completing the corresponding operation with set_error(std::exception_ptr)
is an obvious choice. Note that a co_await expression results in throwing an exception when the awaited
operation completes with set_error(E) (see below), i.e., the coroutine itself doesn’t necessarily need to throw
an exception itself.

Finally, a co_await expression completing with set_stoppped() results in aborting the coroutine immediately
(see below) and causing the coroutine itself to also complete with set_stopped().

The coroutine implementation cannot inspect the coroutine body to determine how the different asynchronous
operations may complete. As a result, the default completion signatures for lazy<T> are
ex::completion_signatures<

ex::set_value_t(T), // or ex::set_value_t() if T == void
ex::set_error_t(std::exception_ptr),
ex:set_stopped_t()

>;

Support for reporting an error without exception may modify the completion signatures.

4.3 lazy constructors and assignments
Coroutines are created via a factory function which returns the coroutine type and whose body uses one of the
co_* function, e.g.
lazy<> nothing(){ co_return; }

The actual object is created via the promise type’s get_return_object function and it is between the promise
and coroutine types how that actually works: this constructor is an implementation detail. To be valid senders
the coroutine type needs to be destructible and it needs to have a move constructor. Other than that, constructors
and assignments either don’t make sense or enable dangerous practices:

1. Copy constructor and copy assignment don’t make sense because there is no way to copy the actual
coroutine state.

2. Move assignment is rather questionable because it makes it easy to transport the coroutine away from
referenced entities.

Previous papers P1056 and P2506 also argued against a move assignment. However, one of the arguments
doesn’t apply to the lazy proposed here: There is no need to deal with cancellation when assigning or
destroying a lazy object. Upon start() of lazy the coroutine handle is transferred to an operation state
and the original coroutine object doesn’t have any reference to the object anymore.

3. If there is no assignment, a default constructed object doesn’t make much sense, i.e., lazy also doesn’t
have a default constructor.

Based on experience with Folly the suggestion was even stronger: lazy shouldn’t even have move construction!
That would mean that lazy can’t be a sender or that there would need to be some internal interface enabling
the necessary transfer. That direction isn’t pursued by this proposal.

The lack of move assignment doesn’t mean that lazy can’t be held in a container: it is perfectly fine to push_back
objects of this type into a container, e.g.:
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std::vector<ex::lazy<>> cont;
cont.emplace_back([]->ex::lazy<> { co_return; }());
cont.push_back([]->ex::lazy<> { co_return; }());

The expectation is that most of the time coroutines don’t end up in normal containers. Instead, they’d be
managed by a counting_scope or hold on to by objects in a work graph composed of senders.

Technically there isn’t a problem adding a default constructor, move assignment, and a swap() function. Based
on experience with similar components it seems lazy is better off not having them.

4.4 Result Type For co_await
When co_awaiting a sender sndr in a coroutine, sndr needs to be transformed to an awaitable. The existing
approach is to use execution::as_waitable(sndr) [exex.as.awaitable] in the promise type’s await_transform
and lazy uses that approach. The awaitable returned from as_awaitable(sndr) has the following behaviour
(rcvr is the receiver the sender sndr is connected to):

1. When sndr completes with set_stopped(std::move(rcvr)) the function unhandled_stopped() on the
promise type is called and the awaiting coroutine is never resumed. The unhandled_stopped() results in
lazy itself also completing with set_stopped_t().

2. When sndr completes with set_error(std::move(rcvr), error) the coroutine is resumed and the
co_await sndr expression results in error being thrown as an exceptions (with special treatment for
std::error_code).

3. When sndr completes with set_value(std::move(rcvr), a...) the expression co_await sndr produces
a result corresponding the arguments to set_value:

1. If the argument list is empty, the result of co_await sndr is void.
2. Otherwise, if the argument list contains exactly one element the result of co_await sndr is a....
3. Otherwise, the result of co_await sndr is std::tuple(a...).

Note that the sender sndr is allowed to have no set_value_t completion signatures. In this case the result
type of the awaitable returned from as_awaitable(sndr) is declared to be void but co_await sndr would
never return normally: the only ways to complete without a set_value_t completion is to complete with
set_stopped(std::move(rcvr) or with set_error(std::move(rcvr), error), i.e., the expression either re-
sults in the coroutine to be never resumed or an exception being thrown.

Here is an example which summaries the different supported result types:
lazy<> fun() {

co_await ex::just(); // void
auto v = co_await ex::just(0); // int
auto[i, b, c] = co_await ex::just(0, true, 'c'); // tuple<int, bool, char>
try { co_await ex::just_error(0); } catch (int) {} // exception
co_await ex::just_stopped(); // cancel: never resumed

}

The sender sndr can have at most one set_value_t completion signature: if there are more than one
set_value_t completion signatures as_awaitable(sndr) is invalid and fails to compile: users who want to
co_await a sender with more than one set_value_t completions need to use co_await into_variant(s) (or
similar) to transform the completion signatures appropriately. It would be possible to move this transformation
into as_awaitable(sndr).

Using effectively into_variant(s) isn’t the only possible transformation if there are multiple set_value_t
transformations. To avoid creating a fairly hard to use result object, as_awaitable(sndr) could detect certain
usage patterns and rather create a result which is easier to use when being co_awaited. An example for this
situation is the queue.async_pop() operation for concurrent queues: this operation can complete successfully
in two ways:
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1. When an object was extracted the operation completes with set_value(std::move(rcvr), value).
2. When the queue was closed the operation completes with set_value(std::move(rcvr)).

Turning the result of queue.async_pop() into an awaitable using the current as_awaitable(queue.async_pop())
([exec.as.awaitable]) fails because the function accepts only senders with at most one set_value_t completion.
Thus, it is necessary to use something like the below:

lazy<> pop_demo(auto& queue) {
// auto value = co_await queue.async_pop(); // doesn't work
std::optional v0 = co_await (queue.async_pop() | into_optional);
std::optional v1 = co_await into_optional(queue.async_pop());

}

The algorithm into_optional(sndr) would determine that there is exactly one set_value_t completion
with arguments and produce an std::optional<T> if there is just one parameter of type T and produce a
std::optional<std::tuple<T...>> if there are more than one parameter with types T.... It would be pos-
sible to apply this transformation when a corresponding set of completions is detected. The proposal optional
variants in sender/receiver goes into this direction.

This proposal currently doesn’t propose a change to as_awaitable ([exec.as.awaitable]). The primary reason
is that there are likely many different shapes of completions each with a different desirable transformation. If
these are all absorbed into as_awaitable it is likely fairly hard to reason what exact result is returned. Also,
there are likely different options of how a result could be transformed: into_optional is just one example. It
could be preferable to turn the two results into an std::expected instead. However, there should probably be
some transformation algorithms like into_optional, into_expected, etc. similar to into_variant.

4.5 Scheduler Affinity
Coroutines look very similar to synchronous code with a few co-keywords sprinkled over the code. When
reading such code the expectation is typically that all code executes on the same context despite some co_await
expressions using senders which may explicitly change the scheduler. There are various issues when using
co_await naïvely:

— Users may expect that work continues on the same context where it was started. If the coroutine simply
resumes when the co_awaited senders calls a completion function code may execute some lengthy operation
on a context which is expected to keep a UI responsive or which is meant to deal with I/O.

— Conversely, running a loop co_awaiting some work may be seen as unproblematic but may actually easily
cause a stack overflow if co_awaited work immediately completes (also see below).

— When co_awaiting some work completes on a different context and later a blocking call is made from the
coroutine which also ends up co_awaiting some work from the same resource there can be a dead lock.

Thus, the execution should normally be scheduled on the original scheduler: doing so can avoid the problems
mentioned above (assuming a scheduler is used which doesn’t immediately complete without actually scheduling
anything). This transfer of the execution with a coroutine is referred to as scheduler affinity. Note: a scheduler
may execute on multiple threads, e.g., for a pool scheduler: execution would get to any of these threads, i.e.,
thread local storage is not guaranteed to access the same data even with scheduler affinity. Also, scheduling
work has some cost even if this cost can often be fairly small.

The basic idea for scheduler affinity consists of a few parts:

1. A scheduler is determined when starting an operation state which resulted from connecting a coroutine
to a receiver. This scheduler is used to resume execution of the coroutine. The scheduler is determined
based on the receiver rcvr’s environment.

auto scheduler = get_scheduler(get_env(rcvr));

2. The type of scheduler is unknown when the coroutine is created. Thus, the coroutine implementation
needs to operate in terms of a scheduler with a known type which can be constructed from scheduler. The
used scheduler type is determined based on the context parameter C of the coroutine type lazy<T, C> using
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typename C::scheduler_type and defaults to any_scheduler if this type isn’t defined. any_scheduler
uses type-erasure to deal with arbitrary schedulers (and small object optimisations to avoid allocations).
The used scheduler type can be parameterised to allow use of lazy contexts where the scheduler type is
known, e.g., to avoid the costs of type erasure.

3. When an operation which is co_awaited completes the execution is transferred to the held scheduler using
continues_on. Injecting this operation into the graph can be done in the promise type’s await_transform:

template <ex::sender Sender>
auto await_transform(Sender&& sndr) noexcept {

return ex::as_awaitable_sender(
ex::continues_on(std::forward<Sender>(sndr),

this->scheduler);
);

}

There are a few immediate issues with the basic idea:

1. What should happen if there is no scheduler, i.e., get_scheduler(get_env(rcvr)) doesn’t exist?
2. What should happen if the obtained scheduler is incompatible with the coroutine’s scheduler?
3. Scheduling isn’t free and despite the potential problems it should be possible to use lazy without scheduler

affinity.
4. When operations are known to complete inline the scheduler isn’t actually changed and the scheduling

operation should be avoided.
5. It should be possible to explicitly change the scheduler used by a coroutine from within this coroutine.

All of these issues can be addressed although there are different choices in some of these cases.

In many cases the receiver can provide access to a scheduler via the environment query. An example where
no scheduler is available is when starting a task on a counting_scope. The scope doesn’t know about any
schedulers and, thus, the receiver used by counting_scope when connecting to a sender doesn’t support the
get_scheduler query, i.e., this example doesn’t work:
ex::spawn([]->ex::lazy<void> { co_await ex::just(); }(), token);

Using spawn() with coroutines doing the actual work is expected to be quite common, i.e., it isn’t just a
theoretical possibility that lazy is used together with counting_scope. The approach used by unifex is to fail
compilation when trying to connect a Task to a receiver without a scheduler. The approach taken by stdexec is
to keep executing inline in that case. Based on the experience that silently changing contexts within a coroutine
frequently causes bugs it seems failing to compile is preferable.

Failing to construct the scheduler used by a coroutine with the scheduler obtained from the receiver is likely an
error and should be addressed by the user appropriately. Failing to compile is seems to be a reasonable approach
in that case, too.

It should be possible to avoid scheduler affinity explicitly to avoid the cost of scheduling. Users should be very
careful when pursuing this direction but it can be a valid option. One way to achieve that is to create an “inline
scheduler” which immediately completes when it is start()ed and using this type for the coroutine. Explicitly
providing a type inline_scheduler implementing this logic could allow creating suitable warnings. It would
also allow detecting that type in await_transform and avoiding the use of continues_on entirely.

When operations actually don’t change the scheduler there shouldn’t be a need to schedule them again. In
these cases it would be great if the continues_on could be avoided. At the moment there is no way to tell
whether a sender will complete inline. Using a sender query which determines whether a sender always completes
inline could avoid the rescheduling. Something like that is implemented for unifex: senders define a property
blocking which can have the value blocking_kind::always_inline. The proposal A sender query for comple-
tion behaviour proposes a get_completion_behaviour(sndr, env) customisation point to address this need.
The result can indicate that the sndr returns synchronously (using completion_behaviour::synchronous or
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completion_behaviour::inline_completion). If sndr returns synchronously there isn’t a need to reschedule
it.

In some situations it is desirable to explicitly switch to a different scheduler from within the coroutine and from
then on carry on using this scheduler. unifex detects the use of co_await schedule(scheduler); for this
purpose. That is, however, somewhat subtle. It may be reasonable to use a dedicated awaiter for this purpose
and use, e.g.
auto previous = co_await co_continue_on(new_scheduler);

Using this statement replaces the coroutine’s scheduler with the new_scheduler. When the co_await com-
pletes it is on new_scheduler and further co_await operations complete on new_scheduler. The result of
co_awaiting co_continue_on is the previously used scheduler to allow transfer back to this scheduler. In
stdexec the corresponding operation is called reschedule_coroutine.

Another advantage of scheduling the operations on a scheduler instead of immediately continuing on the context
where the operation completed is that it helps with stack overflows: when scheduling on a non-inline scheduler
the call stack is unwound. Without that it may be necessary to inject scheduling just for the purpose of avoiding
stack overflow when too many operations complete inline.

4.6 Allocator Support
When using coroutines at least the coroutine frame may end up being allocated on the heap: the HALO
optimisations aren’t always possible, e.g., when a coroutine becomes a child of another sender. To control how
this allocation is done and to support environments where allocations aren’t possible lazy should have allocator
support. The idea is to pick up on a pair of arguments of type std::allocator_arg_t and an allocator type
being passed and use the corresponding allocator if present. For example:
struct allocator_aware_context {

using allocator_type = std::pmr::polymorphic_allocator<std::byte>;
};

template <typename...A>
ex::lazy<int, allocator_aware_context> fun(int value, A&&...) {

co_return value;
}

int main() {
// Use the coroutine without passing an allocator:
ex::sync_wait(fun(17));

// Use the coroutine with passing an allocator:
using allocator_type = std::pmr::polymorphic_alloctor<std::byte>;
ex::sync_wait(fun(17, std::allocator_arg, allocator_type()));

}

The arguments passed when creating the coroutine are made available to an operator new of the promise type,
i.e., this operator can extract the allocator, if any, from the list of parameters and use that for the purpose of
allocation. The matching operator delete gets passed only the pointer to release and the originally requested
size. To have access to the correct allocator in operator delete the allocator either needs to be stateless or
a copy needs to be accessible via the pointer passed to operator delete, e.g., stored at the offset size.

To avoid any cost introduced by type erasing an allocator type as part of the lazy definition the expected
allocator type is obtained from the context argument C of lazy<T, C>:
using allocator_type = ex::allocator_of_t<C>;

This using alias uses typename C::allocator_type if present or defaults to std::allocator<std::byte>
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otherwise. This allocator_type has to be for the type std::byte (if necessary it is possible to relax that
constraint).

The allocator used for the coroutine frame should also be used for any other allocators needed for the coroutine
itself, e.g., when type erasing something needed for its operation (although in most cases a small object optimi-
sation would be preferable and sufficient). Also, the allocator should be made available to child operations via
the respective receiver’s environment using the get_allocator query. The arguments passed to the coroutine
are also available to the constructor of the promise type (if there is a matching on) and the allocator can be
obtained from there:
struct allocator_aware_context {

using allocator_type = pmr::polymorphic_allocator<std::byte>;
};
fixed_resource<2048> resource;

ex::sync_wait([](auto&&, auto* resource)
-> ex::lazy<void, allocator_aware_context> {

auto alloc = co_await ex::read_env(ex::get_allocator);
use(alloc);

}(allocator_arg, &resource));

4.7 Environment Support
When co_awaiting child operations these may want to access an environment. Ideally, the coroutine would
expose the environment from the receiver it gets connected to. Doing so isn’t directly possible because the
coroutine types doesn’t know about the receiver type which in turn determines the environment type. Also, the
queries don’t know the type they are going to return. Thus, some extra mechanisms are needed to provide an
environment.

A basic environment can be provided by some entities already known to the coroutine, though:

— The get_scheduler query should provide the scheduler maintained for scheduler affinity whose type is
determined based on the coroutine’s context using ex::scheduler_of_t<C>.

— The get_allocator query should provide the coroutine’s allocator whose type is determined based on the
coroutine’s context using ex::allocator_of_t<C>. The allocator gets initialised when constructing the
promise type.

— The get_stop_token query should provide a stop token from a stop source which is linked to the stop token
obtained from the receiver’s environment. The type of the stop source is determined from the coroutine’s
context using ex::stop_source_of_t<C> and defaults to ex::inplace_stop_source. Linking the stop
source can be delayed until the first stop token is requested or omitted entirely if stop_possible() returns
false or if the stop token type of the coroutine’s receiver matches that of ex::stop_source_of_t<C>.

For any other environment query the context C of lazy<T, C> can be used. The coroutine can maintain an
instance of type C. In many cases queries from the environment of the coroutine’s receiver need to be forwarded.
Let env be get_env(receiver) and Env be the type of env. C gets optionally constructed with access to the
environment:

1. If C::env_type<Env> is a valid type the coroutine state will contain an object own_env of this type which
is constructed with env. The object own_env will live at least as long as the C object maintained and C
is constructed with a reference to own_env, allowing C to reference type-erased representations for query
results it needs to forward.

2. Otherwise, if C(env) is valid the C object is constructed with the result of get_env(receiver). Construct-
ing the context with the receiver’s environment provides the opportunity to store whatever data is needed
from the environment to later respond to queries as well.

3. Otherwise, C is default constructed. This option typically applies if C doesn’t need to provide any environ-
ment queries.
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Any query which isn’t provided by the coroutine but is available from the context C is forwarded. Any other
query shouldn’t be part of the overload set.

For example:
struct context {

int value{};
int query(get_value_t const&) const noexcept { return this->value; }
context(auto const& env): value(get_value(env)) {}

};

int main() {
ex::sync_wait(

ex::write_env(
[]->demo::lazy<void, context> {

auto sched(co_await ex::read_env(get_scheduler));
auto value(co_await ex::read_env(get_value));
std::cout << "value=" << value << "\n";
// ...

}(),
ex::make_env(get_value, 42)

)
);

}

4.8 Support For Requesting Cancellation/Stopped
When a coroutine task executes the actual work it may listen to a stop token to recognise that it got canceled.
Once it recognises that its work should be stopped it should also complete with set_stopped(rcvr). There is
no special syntax needed as that is the result of using just_stopped():
co_await ex::just_stopped();

The sender just_stopped() completes with set_stopped() causing the coroutine to be canceled. Any other
sender completing with set_stopped() can also be used.

4.9 Error Reporting
The sender/receiver approach to error reporting is for operations to complete with a call to set_error(rcvr, err)
for some receiver object rcvr and an error value err. The details of the completions are used by algorithms
to decide how to proceed. For example, if any of the senders of when_all(sndr...) fails with a set_error_t
completion the other senders are stopped and the overall operation fails itself forwarding the first error. Thus, it
should be possible for coroutines to complete with a set_error_t completion. Using a set_value_t completion
using an error value isn’t quite the same as these are not detected as errors by algorithms.

The error reporting used for unifex and stdexec is to turn an exception escaping from the coroutine into a
set_error_t(std::exception_ptr) completion: when unhandled_exception() is called on the promise type
the coroutine is suspended and the function can just call set_value(r, std::get_current_exception()).
There are a few limitations with this approach:

1. The only supported error completion is set_error_t(std::exception_ptr). While the thrown exception
can represent any error type and set_error_t completions from co_awaited operations resulting in the
corresponding error being thrown it is better if the other error types can be reported, too.

2. To report an error an exception needs to be thrown. In some environments it is preferred to not throw
exception or exceptions may even be entirely banned or disabled which means that there isn’t a way to
report errors from coroutines unless a different mechanism is provided.

3. To extract the actual error information from std::exception_ptr the exception has to be rethrown.

13

https://github.com/facebookexperimental/libunifex
https://github.com/NVIDIA/stdexec


4. The completion signatures for lazy<T, C> necessarily contain set_error_t(std::exception_ptr) which
is problematic when exceptions are unavailable: std::exception_ptr may also be unavailable. Also,
without exception as it is impossible to decode the error. It can be desirable to have coroutine which don’t
declare such a completion signature.

Before going into details on how errors can be reported it is necessary to provide a way for lazy<T, C> to
control the error completion signatures. Similar to the return type the error types cannot be deduced from the
coroutine body. Instead, they can be declared using the context type C:

— If present, typename C::error_signatures is used to declare the error types. This type needs be a
specialisation of completion_signatures listing the valid set_error_t completions.

— If this nested type is not present, completion_signatures<set_error_t(std::exception_ptr)> is used
as a default.

The name can be adjusted and it would be possible to use a different type list template and listing the error
types. The basic idea would remain the same, i.e., the possible error types are declared via the context type.

Reporting an error by having an exception escape the coroutine is still possible but it doesn’t necessarily result
in a set_error_t: If an exception escapes the coroutine and set_error_t(std::exception_ptr) isn’t one
of the supported the set_error_t completions, std::terminate() is called. If an error is explicitly reported
somehow, e.g., using one of the approaches described below, and the error type isn’t supported by the context’s
error_signatures, the program is ill-formed.

The discussion below assumes the use of the class template with_error<E> to indicate that the coroutine
completed with an error. It can be as simple as
template <typename E> struct with_error{ E error; };

The name can be different although it shouldn’t collide with already use names (like error_code or upon_error).
Also, in some cases there isn’t really a need to wrap the error into a recognisable class template. Using a marker
type probably helps with readability and avoiding ambiguities in other cases.

Besides exceptions there are three possible ways how a coroutine can be exited:

1. The coroutine is exited when using co_return, optionally with an argument. Flowing off the end of a
coroutine is equivalent to explicitly using co_return; instead of flowing off. It would be possible to turn
the use of

co_return with_error{err};

into a set_error(std::move(rcvr), err) completion.

One restriction with this approach is that for a lazy<void, C> the body can’t contain co_return with_error{e};:
the void result requires that the promise type contains a function return_void() and if that is present
it isn’t possible to also have a return_value(T).

2. When a coroutine uses co_await a; the coroutine is in a suspended state when await_suspend(...)
of some awaiter is entered. While the coroutine is suspended it can be safely destroyed. It is
possible to complete the coroutine in that state and have the coroutine be cleaned up. This ap-
proach is used when the awaited operation completes with set_stopped(). It is possible to call
set_error(std::move(rcvr), err) for some receiver rcvr and error err obtained via the awaitable a.
Thus, using

co_await with_error{err};

could complete with set_error(std::move(rcvr), err).

Using the same notation for awaiting outstanding operations and returning results from a coroutine
is, however, somewhat surprising. The name of the awaiter may need to become more explicit like
exist_coroutine_with_error if this approach should be supported.
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3. When a coroutine uses co_yield v; the promise member yield_value(T) is called which can return an
awaiter a. When a’s await_suspend() is called, the coroutine is suspended and the operation can complete
accordingly. Thus, using

co_yield with_error{err};

could complete with set_error(std::move(rcvr), err). Using co_yield for the purpose of returning
from a coroutine with a specific result seems more expected than using co_await.

There are technically viable options for returning an error from a coroutine without requiring exceptions.
Whether any of them is considered suitable from a readability point of view is a separate question.

One concern which was raised with just not resuming the coroutine is that the time of destruction of variables
used by the coroutine is different. The promise object can be destroyed before completing which might address
the concern.

Using co_await or co_yield to propagate error results out of the coroutine has a possibly interesting variation:
in both of these case the error result may be conditionally produced, i.e., it is possible to complete with an error
sometimes and to produce a value at other times. That could allow a pattern (using co_yield for the potential
error return):
auto value = co_yield when_error(co_await into_expected(sender));

The subexpression into_expected(sender) could turn the set_value_t and set_error_t into a suitable
std::expected<V, std::variant<E...>> always reported using a set_value_t completion (so the co_await
doesn’t throw). The corresponding std::expected becomes the result of the co_await. Using co_yield with
when_error(exp) where exp is an expected can then either produce exp.value() as the result of the co_yield
expression or it can result in the coroutine completing with the error from exp.error(). Using this approach
produces a fairly compact approach to propagating the error retaining the type and without using exceptions.

4.10 Avoiding Stack Overflows
It is easy to use a coroutine to accidentally create a stack overflow because loops don’t really execute like loops.
For example, a coroutine like this can easily result in a stack overflow:
ex::sync_wait(ex::write_env(

[]() -> ex::lazy<void> {
for (int i{}; i < 1000000; ++i)

co_await ex::just(i);
}(),
ex::make_env(ex::get_scheduler, ex::inline_scheduler{})

));

The reason this innocent looking code creates a stack overflow is that the use of co_await results in some
function calls to suspend the coroutine and then further function calls to resume the coroutine (for a proper
explanation see, e.g., Lewis Baker’s Understanding Symmetric Transfer). As a result, the stack grows with each
iteration of the loop until it eventually overflows.

With senders it is also not possible to use symmetric transfer to combat the problem: to achieve the full generality
and composing senders, there are still multiple function calls used, e.g., when producing the completion signal.
Using get_completion_behaviour from the proposal A sender query for completion behaviour could allow
detecting senders which complete synchronously. In these cases the stack overflow could be avoided relying on
symmetric transfer.

When using scheduler affinity the transfer of control via a scheduler which doesn’t complete immediately
does avoid the risk of stack overflow: even when the co_awaited work immediately completes as part of the
await_suspend call of the created awaiter the coroutine isn’t immediately resumed. Instead, the work is sched-
uled and the coroutine is suspended. The thread unwinds its stack until it reaches its own scheduling and picks
up the next entity to execute.
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When using sync_wait(sndr) the run_loop’s scheduler is used and it may very well just resume the just
suspended coroutine: when there is scheduling happening as part of scheduler affinity it doesn’t mean that work
gets scheduled on a different thread!

The problem with stack overflows does remain when the work resumes immediately despite using scheduler
affinity. That may be the case when using an inline scheduler, i.e., a scheduler with an operation state whose
start() immediately completes: the scheduled work gets executed as soon as set_value(std::move(rcvr)) is
called.

Another potential for stack overflows is when optimising the behaviour for work which is known to not move to
another scheduler: in that case there isn’t really any need to use continue_on to get back to the scheduler where
the operation was started! The execution remained on that scheduler all along. However, not rescheduling the
work means that the stack isn’t unwound.

Since lazy uses scheduler affinity by default, stack overflow shouldn’t be a problem and there is no separate
provision required to combat stack overflow. If the implementation chooses to avoid rescheduling work it will
need to make sure that doing so doesn’t cause any problems, e.g., by rescheduling the work sometimes. When
using an inline scheduler the user will need to be very careful to not overflow the stack or cause any of the
various other problems with executing immediately.

4.11 Asynchronous Clean-Up
Asynchronous clean-up of objects is an important facility. Both unifex and stdexec provide some facilities for
asynchronous clean-up in their respective coroutine task. Based on the experience the recommendation is to do
something different!

The recommended direction is to support asynchronous resources independent of a coroutine task. For example
the async-object proposal is in this direction. There is similar work ongoing in the context of Folly. Thus, there
is currently not plan to support asynchronous clean-up as part of the lazy implementation. Instead, it can be
composed based on other facilities.

5 Caveats
The use of coroutines introduces some issues which are entirely independent of how specific coroutines are defined.
Some of these were brought up on prior discussions but they aren’t anything which can be solved as part of any
particular coroutine implementation. In particular:

1. As co_awaiting the result of an operation (or co_yielding a value) may suspend a coroutine, there is a
potential to introduce problems when resources which are meant to be held temporarily are held when
suspending. For example, holding a lock to a mutex while suspending a coroutine can result in a different
thread trying to release the lock when the coroutine is resumed (scheduler affinity will move the resumed
coroutine to the same scheduler but not to the same thread).

2. Destroying a coroutine is only safe when it is suspended. For the task implementation that means that
it shall only call a completion handler once the coroutine is suspended. That part is under the control
of the coroutine implementation. However, there is no way to guard against users explicitly destroying a
coroutine from within its implementation or from another thread while it is not suspended: that’s akin to
destroying an object while it being used.

3. Debugging asynchronous code doesn’t work with the normal approaches: there is generally no suitable stack
as work gets resumed from some run loop which doesn’t tell what set up the original work. To improve on
this situation, async stack traces linking different pieces of outstanding work together can help. At CppCon
2024 Ian Petersen and Jessica Wong presented how that may work (watch the video). Implementations
should consider adding corresponding support and enhance tooling, e.g., debuggers, to pick up on async
stack traces. However, async stack support itself isn’t really something which one coroutine implementation
can enable.

While these issues are important this proposal isn’t the right place to discuss them. Discussion of these issues
should be delegated to suitable proposals wanting to improve this situation in some form.
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6 Questions
This section lists questions based on the design discussion above. Each one has a recommendation and a vote is
only needed if there opinions deviating from the recommendation.

— Result type: expand as_awaitable(sndr) to support more than one set_value_t(T...) completion?
Recommendation: no.

— Result type: add transformation algorithms like into_optional, into_expected? Recommendation: no,
different proposals.

— Scheduler affinity: should lazy support scheduler affinity? Recommendation: yes.
— Scheduler affinity: require a get_scheduler() query on the receiver’s environments? Recommendation:

yes.
— Scheduler affinity: add a definition for inline_scheduler (using whatever name) to support disabling

scheduler affinity? Recommendation: yes.
— Allocator support: should lazy support allocators (default std::allocator<std::byte>)? Recommenda-

tion: yes.
— Error reporting: should it be possible to return an error without throwing an exception? Recommendation:

yes.
— Error reporting: how should errors be reported? Recommendation: using ‘co_yield with_error(e).
— Error reporting: should co_yield when_error(expected) be supported? Recommendation: yes (al-

though weakly).
— Clean-up: should asynchronous clean-up be supported? Recommendation: no.

7 Implementation
An implementation of lazy as proposed in this document is available from beman::lazy. This implementation
hasn’t received much use, yet, as it is fairly new. It is setup to be buildable and provides some examples as a
starting point for experimentation.

Coroutine tasks very similar although not identical to the one proposed are used in multiple projects. In
particular, there are three implementations in wide use:

— Folly::Task
— unifex::Task
— stdexec::task

The first one (Folly::Task) isn’t based on sender/receiver. Usage experience from all three have influenced the
design of lazy.

8 Acknowledgements
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9 Proposed Wording
The intent is to have all relevant wording in place before the Hagenberg meeting.

Based on the discussion the wording would get Entities to describe:

— inline_scheduler
— any_scheduler
— lazy
— any internally used tool
— allocator_of_t exposition-only?
— scheduler_of_t exposition-only?
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— stop_source_of_t exposition-only?
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