
Imports cannot …
C-style variadic functions in modular C++

Document #: P3550R0
Date: 2025-01-13
Project: Programming Language C++
Audience: Evolution Incubator

Library Incubator
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 2

2 Revision history 2

3 Introduction 3

4 Addressing the import Problem 3
4.1 Remove C-style var-arg functions from C++ . 3

5 Addressing the Security Concerns 4

6 Remediation 4
6.1 Variadic templates . 4
6.2 Library replacement . 4

7 Design Principles 6

8 Proposed Solution 6

9 Wording 7

10 Acknowledgements 13

11 References 13

1

mailto:ameredith1@bloomberg.net

1 Abstract
Macros cannot be exported from a C++ module. This presents a problem for modular C++, which relies on
importing the Standard Library module std to access Standard Library functionality. In particular, when trying
to access the arguments to a C style variadic function, a core language functionality, the user is further required
to #include <cstdarg> or #include <stdarg.h>, as neither header is importable.

This paper reviews the value and risks of supporting such variadic functions in the modern modular C++ world,
paying particular attention to the growing concerns about secure coding and the risks associated with this kind
of function. Considering several approaches to resolving the concerns raised above, we recommend removing
support for C-style variadic functions from C++ at the earliest opportunity, and deprecating any parts that we
cannot immediately remove.

2 Revision history
R0 January 2025 (pre-Hagenberg mailing)

Initial draft of this paper.

2

3 Introduction
Macros cannot be exported from a C++ module. This presents a problem when trying to access the arguments
to a C style variadic function while relying on importing the Standard Library module std to access library
functionality. This paper proposes turning the relevant C macros into keywords, to remove the macro dependency
from a core language facility.

Further, C-style variadic functions have been identified as an attack vector for security vulnerabilities in C and
C++ programs. It would be desirable to scale back or entirely remove support for these facilities in C++, rather
than extend the language to support their use in modular code.

4 Addressing the import Problem
4.1 Remove C-style var-arg functions from C++
Where we say remove, we mostly mean deprecate in C++26 with a stated goal to phase in removal in subsequent
standards. However, we can address the s

C-style variadic function are very prone to undefined behavior, potentially exploitable as a security vulnerability,
and essentially supplanted by variadic function templates. Our preference should be to remove them from the
language.

We must retain a level of C-compatibility support, which suggests supporting the declaration of var-arg functions
only in the global namespace with extern "C" linkage.

We will need to maintain support for var-arg declarations in C++ code much longer than their definition, as
they are used in popular SFINAE techniques as a default lowest ranked function match in overload resolution.
However, such functionality can be addressed slowly through the more traditional approach of a period of
deprecation before removal. The SFINAE functionality is no longer needed as requires clauses are a superior
alternative.

3

5 Addressing the Security Concerns
Variadic functions push a different number of arguments onto the calling stack frame for each call — although
this is fully determined at compile-time and not at run-time.

Interpretation of the arguments passed in the stack memory is entirely dependant on runtime analysis, including
guessing the size of type of each argument. This part is extremely error prone and may easily lead into undefined
behavior.

There have been various attempts to document and address these risks from the C language in the past, notably
in the work on the [HexVASAN] code sanitizer.

Notable risks arising from supporting this syntax are:

— Open to attacks through the function call stack
— Loss of type safety leading to undefined behavior

6 Remediation
6.1 Variadic templates
C++ variadic templates are type-safe, and guaranteed to process the correct number of arguments. They decode
parameter type at compile-time, not runtime, potentially saving some computation.

We have a proof-of-concept for the superior reach of C++ variadic templates solving the same problem as C-style
var-args in the C++ Standard Library print facility that is a superior drop-in replacement for the C Library
printf family of functions.

6.2 Library replacement
After an audit of the C23 Library, these are the only functions that depend on variadic functionality.

— printf family of functions
— scanf family of functions

In <cstdio>
int fprintf(FILE* stream, const char* format, ...);
int fscanf(FILE* stream, const char* format, ...);
int printf(const char* format, ...);
int scanf(const char* format, ...);
int snprintf(char* s, size_t n, const char* format, ...);
int sprintf(char* s, const char* format, ...);
int sscanf(const char* s, const char* format, ...);
int vfprintf(FILE* stream, const char* format, va_list arg);
int vfscanf(FILE* stream, const char* format, va_list arg);
int vprintf(const char* format, va_list arg);
int vscanf(const char* format, va_list arg);
int vsnprintf(char* s, size_t n, const char* format, va_list arg);
int vsprintf(char* s, const char* format, va_list arg);
int vsscanf(const char* s, const char* format, va_list arg);

In <cwchar>
int fwprintf(FILE* stream, const wchar_t* format, ...);
int fwscanf(FILE* stream, const wchar_t* format, ...);
int swprintf(wchar_t* s, size_t n, const wchar_t* format, ...);
int swscanf(const wchar_t* s, const wchar_t* format, ...);
int vfwprintf(FILE* stream, const wchar_t* format, va_list arg);

4

int vfwscanf(FILE* stream, const wchar_t* format, va_list arg);
int vswprintf(wchar_t* s, size_t n, const wchar_t* format, va_list arg);
int vswscanf(const wchar_t* s, const wchar_t* format, va_list arg);
int vwprintf(const wchar_t* format, va_list arg);
int vwscanf(const wchar_t* format, va_list arg);
int wprintf(const wchar_t* format, ...);
int wscanf(const wchar_t* format, ...);

6.2.1 Print functionality

std::print handles narrow and wide characters, print to stream (including stringstream), and print to C file.

There is no need to emulate the v variants in C that take va_list arguments since that functionality is deliber-
ately not supported.

6.2.2 Scan functionality

We have no drop-in replacement in the standard library yet. The <iostream> family of headers remains our
best supported alternative, having its detractors along with its benefits.

— folks may prefer scanf for the same reason they preferred printf
— handling errors is more approachable for a newcomer than scanf

The <regex> header provides another feature that supports parsing text, but requires considerably more learning
than a simple replacement for reading a pattern through a scanf string.

5

7 Design Principles
— Design for “safety” in C++ by reducing the range of undefined behavior in the Standard
— Design for “safety” in C++ by reducing type-unsafe access to the program stack
— Ensure compatibility with C-language interfaces, notably operating system APIs
— Avoid the breakage of existing “safe” code
— Minimize the breakage of existing “unsafe” code

8 Proposed Solution
This paper proposes two basic changes:

— Deprecate the declaration of functions using C-style ... var-args unless the function is in the global
namespace has extern "C" linkage. This supports the ability to call regular C functions, including the
printf and scanf families of functions in the C standard library. Notes that the printf and scanf
families of functions in namespace std, as supplied by the headers <cstdio> and <cwchar> are implicitly
deprecated by this change, but might want to be formally deprecated and moved to Annex D by the LWG.

— Remove the header <cstdarg> and <stdarg.h> from the C++ Standard Library. This change removes the
ability for C++ programs accessing the variable arguments on the program stack in a function definition.
Functions that do not access such arguments remain well-defined, but deprecated by implication as the
function declaration that is being defined is deprecated. Note that this change would mean that there is a
subset of C programs that could not be “just recompiled as C++” for safer type analysis, as we would no
longer support defining var-arg functions. We accept this, rather than continuing to support the C header
<stdarg.h> as part of the cost of securing C++.

A less ambitious proposal might simply deprecate the <cstdarg> and <stdarg.h> headers, allowing time for the
deprecation of function declarations to be processed by the community. This approach leaves open the security
hole that we are trying to close, although that may still be addressed by security profiles, see [P3081R0] section
3.8.

6

9 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N5001], the latest draft at
the time of writing.

This drafting implements the strongest proposal — the complete removal of support for C-style variadic argu-
ments. It is expected that some weaker resolution will be adopted, and this guideline wording highlights all the
text in the Standard that will likely be affected, requiring some rewrites.

7.7 [expr.const] Constant expressions
10 An expression E is a core constant expression unless the evaluation of E, following the rules of the abstract

machine (6.9.1 [intro.execution]), would evaluate one of the following:

—(10.1) this (7.5.3 [expr.prim.this]), except
—(10.1.1) in a constexpr function (9.2.6 [dcl.constexpr]) that is being evaluated as part of E or
—(10.1.2) when appearing as the postfix-expression of an implicit or explicit class member access expression

(7.6.1.5 [expr.ref]);
—(10.2) …
—(10.28) an asm-declaration (9.10 [dcl.asm]);
—(10.29) an invocation of the va_arg macro (17.13.2 [cstdarg.syn]);
—(10.30) a non-constant library call (3.35 [defns.nonconst.libcall]); or
—(10.31) a goto statement (8.7.6 [stmt.goto]).

[Note 4: A goto statement introduced by equivalence (8 [stmt.stmt]) is not in scope. For example, a while
statement (8.6.2 [stmt.while]) can be executed during constant evaluation. —end note]

11 It is implementation-defined whether E is a core constant expression if E satisfies the constraints of a core
constant expression, but evaluation of E has runtime-undefined behavior.

12 It is unspecified whether E is a core constant expression if E satisfies the constraints of a core constant expression,
but evaluation of E would evaluate an operation that has undefined behavior as specified in 16 [library] through
33 [exec].

—(12.1) an operation that has undefined behavior as specified in 16 [library] through 33 [exec] or
—(12.2) an invocation of the va_start macro 17.13.2 [cstdarg.syn])].

9.3.4.6 [dcl.fct] Functions
2 The parameter-declaration-clause determines the arguments that can be specified, and their processing, when

the function is called.

[Note 1: The parameter-declaration-clause is used to convert the arguments specified on the function call; see
7.6.1.3 [expr.call]. —end note]

If the parameter-declaration-clause is empty, …

…

[Example 1: The declaration …

However, the first argument must be of a type that can be converted to a const char*. —end example]

[Note 2: The standard header <cstdarg> (17.13.2 [cstdarg.syn]) contains a mechanism for accessing arguments
passed using the ellipsis (see 7.6.1.3 [expr.call] and 17.13 [support.runtime]). —end note]

16.4.2.3 [headers] Headers
3 The facilities of the C standard library are provided in the additional headers shown in Table 25.1

1It is intentional that there is no C++ header for any of these C headers: <stdarg.h>, <stdnoreturn.h>, <threads.h>.

7

https://wg21.link/expr.const
https://wg21.link/intro.execution
https://wg21.link/expr.prim.this
https://wg21.link/dcl.constexpr
https://wg21.link/expr.ref
https://wg21.link/dcl.asm
https://wg21.link/cstdarg.syn
https://wg21.link/defns.nonconst.libcall
https://wg21.link/stmt.goto
https://wg21.link/stmt.stmt
https://wg21.link/stmt.while
https://wg21.link/library
https://wg21.link/exec
https://wg21.link/library
https://wg21.link/exec
https://wg21.link/cstdarg.syn
https://wg21.link/dcl.fct
https://wg21.link/expr.call
https://wg21.link/cstdarg.syn
https://wg21.link/expr.call
https://wg21.link/support.runtime
https://wg21.link/headers

Table 25 — C++ headers for C library facilities [tab:headers.cpp.c]

<cassert> <cctype> <cerrno> <cfenv> <cfloat> <cinttypes> <climits> <clocale> <cmath> <csetjmp>
<csignal> <cstdarg> <cstddef> <cstdint> <cstdio> <cstdlib> <cstring> <ctime> <cuchar> <cwchar>
<cwctype>

6 Names which are defined as macros in C shall be defined as macros in the C++ standard library, even if C
grants license for implementation as functions.

[Note 2: The names defined as macros in C include the following: assert, offsetof, and setjmp, va_arg,
va_end, and va_start. —end note]

16.4.2.4 [std.modules] Modules
6 Recommended practice: Implementations should avoid exporting any other declarations from the C++ library

modules.

[Note 2: Like all named modules, the C++ library modules do not make macros visible (10.3 [module.import]),
such as assert (19.3.2 [cassert.syn]), errno (19.4.2 [cerrno.syn]), and offsetof (17.2.1 [cstddef.syn]) , and
va_arg ([cstdarg.syn]). —end note]

16.4.3.2 [using.headers] Headers

Table 27 — C++ headers for freestanding implementations [tab:headers.cpp.fs]

Subclause Header

17.11 Comparisons <compare>
17.12 Coroutines support <coroutine>
17.13 Other runtime support

<cstdarg><csetjmp>, <csignal>
Clause 18 Concepts library <concepts>

17.1 [support.general] General

Table 42 — Language support library summary [tab:support.summary]

Subclause Header

17.11 Comparisons <compare>
17.12 Coroutines support <coroutine>
17.13 Other runtime support <csetjmp>, <csignal>, <cstdarg>, <cstdlib>

16.4.5.3.4 [extern.names] External linkage
2 Each global function signature declared with external linkage in a header is reserved to the implementation to

designate that function signature with external linkage.2

17.13 [support.runtime] Other runtime support

17.13.1 [support.runtime.general] General
1 Headers <csetjmp> (nonlocal jumps), <csignal> (signal handling), <cstdarg> (variable arguments), and

<cstdlib> (runtime environment getenv, system), provide further compatibility with C code.
2The list of such reserved function signatures with external linkage includes setjmp(jmp_buf), declared or defined in <csetjmp>

(17.13.3 [csetjmp.syn]) , and va_end(va_list), declared or defined in <cstdarg> (17.13.2 [cstdarg.syn]).

8

https://wg21.link/std.modules
https://wg21.link/module.import
https://wg21.link/cassert.syn
https://wg21.link/cerrno.syn
https://wg21.link/cstddef.syn
https://wg21.link/using.headers
https://wg21.link/support.general
https://wg21.link/extern.names
https://wg21.link/support.runtime
https://wg21.link/support.runtime.general
https://wg21.link/csetjmp.syn
https://wg21.link/cstdarg.syn

17.13.2 [cstdarg.syn] Header <cstdarg> synopsis

// all freestanding

namespace std {
using va_list = see below;

}

#define va_arg(V, P) see below
#define va_copy(VDST, VSRC) see below
#define va_end(V) see below
#define va_start(V, P) see below

1 The contents of the header <cstdarg> are the same as the C standard library header <stdarg.h>, with the
following changes:

— In lieu of the default argument promotions specified in ISO/IEC 9899:2018 6.5.2.2, the definition in 7.6.1.3
applies.

— The restrictions that C places on the second parameter to the va_start macro in header <stdarg.h> are
different in this document. The parameter parmN is the rightmost parameter in the variable parameter list
of the function definition (the one just before the ...).3 If the parameter parmN is a pack expansion (13.7.4
[temp.variadic]) or an entity resulting from a lambda capture (7.5.6 [expr.prim.lambda]), the program is
ill-formed, no diagnostic required. If the parameter parmN is of a reference type, or of a type that is not
compatible with the type that results when passing an argument for which there is no parameter, the
behavior is undefined.

SEE ALSO: ISO/IEC 9899:2018, 7.16.1.1

17.14 [support.c.headers] C headers

17.14.1 [support.c.headers.general] General

Table 44 — C headers [tab:c.headers]

<assert.h> <inttypes.h> <signal.h> <stdckdint.h> <tgmath.h> <complex.h> <iso646.h> <stdalign.h>
<stddef.h> <time.h> <ctype.h> <limits.h> <stdarg.h> <stdint.h> <uchar.h> <errno.h> <locale.h>
<stdatomic.h> <stdio.h> <wchar.h> <fenv.h> <math.h> <stdbit.h> <stdlib.h> <wctype.h> <float.h>
<setjmp.h> <stdbool.h> <string.h>

28.7.3 [cwchar.syn] Header <cwchar> synopsis

namespace std { // freestanding
using size_t = see 17.2.4[support.types.layout]; // freestanding
using mbstate_t = see below; // freestanding
using wint_t = see below; // freestanding

struct tm;

int fwprintf(FILE* stream, const wchar_t* format, ...);
int fwscanf(FILE* stream, const wchar_t* format, ...);
int swprintf(wchar_t* s, size_t n, const wchar_t* format, ...);
int swscanf(const wchar_t* s, const wchar_t* format, ...);
int vfwprintf(FILE* stream, const wchar_t* format, va_list arg);
int vfwscanf(FILE* stream, const wchar_t* format, va_list arg);
int vswprintf(wchar_t* s, size_t n, const wchar_t* format, va_list arg);

3193) Note that va_start is required to work as specified even if unary operator& is overloaded for the type of parmN.

9

https://wg21.link/cstdarg.syn
https://wg21.link/temp.variadic
https://wg21.link/expr.prim.lambda
https://wg21.link/support.c.headers
https://wg21.link/support.c.headers.general
https://wg21.link/cwchar.syn
https://wg21.link/support.types.layout

int vswscanf(const wchar_t* s, const wchar_t* format, va_list arg);
int vwprintf(const wchar_t* format, va_list arg);
int vwscanf(const wchar_t* format, va_list arg);
int wprintf(const wchar_t* format, ...);
int wscanf(const wchar_t* format, ...);

wint_t fgetwc(FILE* stream);
wchar_t* fgetws(wchar_t* s, int n, FILE* stream);
wint_t fputwc(wchar_t c, FILE* stream);
int fputws(const wchar_t* s, FILE* stream);
int fwide(FILE* stream, int mode);

// …

// 28.7.5[c.mb.wcs], multibyte / widestring and character conversion functions
int mbsinit(const mbstate_t* ps);
size_t mbrlen(const char* s, size_t n, mbstate_t* ps);
size_t mbrtowc(wchar_t* pwc, const char* s, size_t n, mbstate_t* ps);
size_t wcrtomb(char* s, wchar_t wc, mbstate_t* ps);
size_t mbsrtowcs(wchar_t* dst, const char** src, size_t len, mbstate_t* ps);
size_t wcsrtombs(char* dst, const wchar_t** src, size_t len, mbstate_t* ps);

}

#define NULL see 17.2.3[support.types.nullptr]// freestanding
#define WCHAR_MAX see below // freestanding
#define WCHAR_MIN see below // freestanding
#define WEOF see below // freestanding

31.13.1 [cstdio.syn] Header <cstdio> synopsis

namespace std {
using size_t = see 17.2.4[support.types.layout];
using FILE = see below ;
using fpos_t = see below ;

}

#define NULL see 17.2.3
#define _IOFBF see below
#define _IOLBF see below
#define _IONBF see below

// …

#define stderr see below
#define stdin see below
#define stdout see below

namespace std {
int remove(const char* filename);
int rename(const char* old_p, const char* new_p);
FILE* tmpfile();
char* tmpnam(char* s);

10

https://wg21.link/c.mb.wcs
https://wg21.link/support.types.nullptr
https://wg21.link/cstdio.syn
https://wg21.link/support.types.layout

int fclose(FILE* stream);
int fflush(FILE* stream);
FILE* fopen(const char* filename, const char* mode);
FILE* freopen(const char* filename, const char* mode, FILE* stream);
void setbuf(FILE* stream, char* buf);
int setvbuf(FILE* stream, char* buf, int mode, size_t size);

int fprintf(FILE* stream, const char* format, ...);
int fscanf(FILE* stream, const char* format, ...);
int printf(const char* format, ...);
int scanf(const char* format, ...);
int snprintf(char* s, size_t n, const char* format, ...);
int sprintf(char* s, const char* format, ...);
int sscanf(const char* s, const char* format, ...);
int vfprintf(FILE* stream, const char* format, va_list arg);
int vfscanf(FILE* stream, const char* format, va_list arg);
int vprintf(const char* format, va_list arg);
int vscanf(const char* format, va_list arg);
int vsnprintf(char* s, size_t n, const char* format, va_list arg);
int vsprintf(char* s, const char* format, va_list arg);
int vsscanf(const char* s, const char* format, va_list arg);

int fgetc(FILE* stream);
char* fgets(char* s, int n, FILE* stream);
int fputc(int c, FILE* stream);
int fputs(const char* s, FILE* stream);

// …

int feof(FILE* stream);
int ferror(FILE* stream);
void perror(const char* s);

}

D [depr] Compatibility features

D.X [depr.varags.lib] C Library Variadic Functions

D.X.1 [depr.cstdio] Header <cstdio>

The header <cstdio> declares the following functions that are defined according to the C Library.
namespace std {
int fprintf(FILE* stream, const char* format, ...);
int fscanf(FILE* stream, const char* format, ...);
int printf(const char* format, ...);
int scanf(const char* format, ...);
int snprintf(char* s, size_t n, const char* format, ...);
int sprintf(char* s, const char* format, ...);
int sscanf(const char* s, const char* format, ...);
int vfprintf(FILE* stream, const char* format, va_list arg);
int vfscanf(FILE* stream, const char* format, va_list arg);
int vprintf(const char* format, va_list arg);
int vscanf(const char* format, va_list arg);
int vsnprintf(char* s, size_t n, const char* format, va_list arg);
int vsprintf(char* s, const char* format, va_list arg);

11

https://wg21.link/depr

int vsscanf(const char* s, const char* format, va_list arg);
}

D.X.2 [depr.cwchar] Header <cwchar>

The header <cwchar> declares the following functions that are defined according to the C Library.
namespace std {
int fwprintf(FILE* stream, const wchar_t* format, ...);
int fwscanf(FILE* stream, const wchar_t* format, ...);
int swprintf(wchar_t* s, size_t n, const wchar_t* format, ...);
int swscanf(const wchar_t* s, const wchar_t* format, ...);
int vfwprintf(FILE* stream, const wchar_t* format, va_list arg);
int vfwscanf(FILE* stream, const wchar_t* format, va_list arg);
int vswprintf(wchar_t* s, size_t n, const wchar_t* format, va_list arg);
int vswscanf(const wchar_t* s, const wchar_t* format, va_list arg);
int vwprintf(const wchar_t* format, va_list arg);
int vwscanf(const wchar_t* format, va_list arg);
int wprintf(const wchar_t* format, ...);
int wscanf(const wchar_t* format, ...);

}

12

10 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

11 References
[HexVASAN] Priyam Biswas, Alessandro Di Federico, Scott A. Carr, Prabhu Rajasekaran, Stijn Volckaert, Yeoul

Na, Michael Franz, and Mathias Payer. 2017. Venerable Variadic Vulnerabilities Vanquished.
https://nebelwelt.net/files/17SEC.pdf

[N5001] Thomas Köppe. 2024-12-17. Working Draft, Programming Languages — C++.
https://wg21.link/n5001

[P3081R0] Herb Sutter. 2024-10-16. Core safety Profiles: Specification, adoptability, and impact.
https://wg21.link/p3081r0

13

https://nebelwelt.net/files/17SEC.pdf
https://wg21.link/n5001
https://wg21.link/p3081r0

	Abstract
	Revision history
	Introduction
	Addressing the import Problem
	Remove C-style var-arg functions from C++

	Addressing the Security Concerns
	Remediation
	Variadic templates
	Library replacement

	Design Principles
	Proposed Solution
	Wording
	Acknowledgements
	References

