
Explicit return type deduction for
std::numeric limits and <numbers>

Thomas Mejstrik

December 19, 2024

1 Revision history

1.1 R0

Current revision

2 Motivation

In spite of the always auto movement, their are some places where auto cannot be used, leading to the need to
write types multiple times. Two places where auto cannot be used are

• non-static data members in types, and

• type specifiers in function declarations.

This paper proposes

• a new tag type std::deduce, which can be used to indicate that return type deduction shall take place
and to eliminate the need for writing out type names multiple times.

Although return type deduction in C++ is possible, it is rarely used, since it is not very C++ like, can easily
be overseen where it happens, and thus can easily be used wrongly. By introducing a tag std::deduce this is
solved. Indeed, the tag clearly indicates that return type deduction shall occur, and it is easy to search for the
tag in source code.

2.1 Tony Tables

/* (1) - For structs */

struct F {

float f1 = std:: numeric_limits < float >::max(); // Before

float f2 = std:: numeric_limits < std::deduce >::max(); // After

};

/* (2) - For functions */

void func1(float f = std:: numeric_limits < float >::max()); // Before

void func2(float f = std:: numeric_limits < std::deduce >::max()); // After

The latter gets much easier to read, especially when the type (here: float) is not that simple, but a rather
complicated, maybe user defined, type.

3 Implementation proposal

This proposal can be implemented as a library extension. A specialization of the types in std::numeric_limits

with the type std::deduce is added An example is given for numeric_limits::max:

namespace std {

template <>

struct numeric_limits < std::deduce > {

struct max {

1

template < typename Out >

operator Out() { return numeric_limits < Out >::max(); }

};

/* ... */

};

}

For the mathematical constants the following code is a possible implementation. We present the code for the
fictitious constant M_ONES.

inline constexpr auto M_ONES = 1.111111111111111111111111111111111111111L;

template < typename T = double >

struct m_ones_v_c {

constexpr operator T() const {

return M_ONES;

}

};

template <> struct m_ones_v_c < tt:: deduce > {

template < typename Out >

constexpr operator Out() const {

return M_ONES;

}

};

template < typename T > inline constexpr auto m_ones = m_ones_v_c < T >{};

inline constexpr auto m_ones = m_ones_v_c < double >{};

This implementation is fully compatible with the current implementation of the mathematical constants.

4 Header

The tag type std::deduce should go into the header <utility>. This way, users can easily also use this type
for their own functions, without the need to include <numeric_limits> or <numbers>.

5 Not suggested variants

5.1 auto for non-static data members

In this paper we do not suggest to allow auto for non-static data members, because

• it does not solve point (2).

• it is more or less already rejected, see N3897.

/* (1) */

struct F {

float f1 = std:: numeric_limits < float >::max(); // Before

auto f0 = std:: numeric_limits < float >::max (); // Not suggested

};

/* (2) */

void func1(float f = std:: numeric_limits < float >::max()); // Before

// void func0(auto f = std:: numeric_limits < float >::max()); // senseless

5.2 auto instead of std::deduce

Instead of introducing a new tag type, one could also allow auto to be used in template instantiations. This
proposal seems to be rejected already - There is a note about this in P0849.

/* (1), (2) is similar */

struct F {

float f1 = std:: numeric_limits < float >::max(); // Before

float f3 = std:: numeric_limits < auto >::max(); // Not suggested

};

2

5.3 void instead of std::deduce

Instead of introducing a new tag type, one could also overload the classes for type void, similar as it is done
for std::less. We do not propose this for the following reasons:

• It’s hard to search for it in the source code

• It is not obviously clear that return type deduction shall take place.

• It’s not consistent with std::less: Indeed, void in std::less is used to make the function deduce its
instantiation from the input type, where std::deduce is used to deduce its instantiation from the output
type

/* (1), (2) is similar */

struct F {

float f1 = std:: numeric_limits < float >::max(); // Before

float f4 = std:: numeric_limits < void >::max(); // Not suggested

};

5.4 Empty brackets instead of std::deduce

This is similar to the void case above, since std::less’s template parameter defaults to void. Furthermore,
this is even more less search-and-findable then the case above.

/* (1), (2) is similar */

struct F {

float f1 = std:: numeric_limits < float >::max(); // Before

float f4 = std:: numeric_limits <>::max(); // Not suggested

};

3

	Revision history
	R0

	Motivation
	Tony Tables

	Implementation proposal
	Header
	Not suggested variants
	auto for non-static data members
	auto instead of std::deduce
	void instead of std::deduce
	Empty brackets instead of std::deduce

