
Chained comparisons: Safe, correct, efficient

Document Number: P3439 R1

Date: 2025-01-06

Reply-to: Herb Sutter (herb.sutter@gmail.com)

Audience: EWG

Contents

1 Background and motivation: Why consider this again now? ...2

2 Rationale and design alternatives ..4

3 Proposal: Boolean chains (incl. folds) have their correct transitive meaning ..5

4 Q&A ..6

5 Proposed wording ..8

6 References ..8

Abstract

This paper proposes that we adopt Barry Revzin’s [P0893R1] (based on my [P0515R0] section 3.3) with refined

proposed rules that may address previous concerns. I am raising this now because of the new focus on the im-

portance of safety and correctness in C++, and that this proposal automatically fixes known actual bugs in C++

code to do the right thing, including for safety-related bugs like bounds checks. Also: more implementation and

use experience in C++ code is now available via [cppfront] which implements the proposal with working C++

code on all recent versions of all compilers; starting in 2024 all major compilers already warn on (but are re-

quired to accept) the current bugs; and since Tokyo 2024 we have the new tool of “erroneous behavior” in draft

C++26.

Updates in this revision

R1:

• Added proposed wording.

• Added fold-expressions support, following EWG Wrocław direction.

• Simplified to ‘the entire rewritten expression is valid and contextually convertible to bool’ as the trigger

rule, rather than ‘each individual binary comparison.’ Thanks to Gašper Ažman for this suggestion over

the break, and the observation in Q&A 4.4.

• Added section 4 “Q&A” covering: that previous implementability concerns have been addressed; that

user-defined mathematical types Just Work; whether to have a deprecation period; and additional bene-

fits discovered since R0.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r0.pdf
https://github.com/hsutter/cppfront

P3439 R1 Chained comparisons: Safe, correct, efficient – Sutter 2

1 Background and motivation: Why consider this again now?

1.1 Overview
Today, comparison chains like min <= index_expression < max are valid code that do the wrong thing; for exam-

ple, 0 <= 100 < 10 means true < 10 which means true, certainly a bug. Yet that is exactly a natural bounds check;

for indexes, such subscript chains’ current meaning is always a potentially exploitable out-of-bounds violation.

[P0893R1] reported that code searches performed by Barry Revzin with Nicolas Lesser and Titus Winters found:

• Lots of instances of such bugs in the wild: in real-world code “of the assert(0 <= ratio <= 1.0); vari-

ety,” and “in questions on StackOverflow [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11].”

• “A few thousand instances over just a few code bases” (emphasis original) where programmers today

write more-brittle and less-efficient long forms such as min <= index_expression && index_expres-

sion < max because they must, but with multiple evaluation of index_expression and with bugs be-

cause of having to write the boilerplate and sometimes getting it wrong.

Today, fold expressions currently always generate parenthesized chains such as ((a <= b) <= max); as [P0893R1]

observes, “this makes today's fold expressions for comparisons not useful and actually buggy.”

1.2 History
In [P0515R0] which introduced <=>, section 3.3 proposing chained comparisons was the only part not adopted.

In [P0893R1], Barry Revzin re-proposed chained comparisons, including researching real-world code (with Nico-

las Lesser and Titus Winters and finding shipping code bugs that expected comparisons to chain. The paper was

rejected in EWG San Diego 2018, partly because the bugs seemed rare and lack of implementation experience.

1.3 What’s new: Why consider this again now?
New motivation (safety): Since 2022, WG21 has been more receptive to proposals that improve safety and cor-

rectness, especially when those proposals are of the form “recompile your existing code and it gets safer and/or

faster” as we did with erroneous behavior for uninitialized locals. Comparison chains’ correctness has safety im-

plications, because one of the most common examples of such chains is the natural bounds checks min <= idx <

max, which [P0893R1] showed are actually written by accident in the wild and are currently wrong.

New C++ implementation and usage experience: Chained comparisons are implemented and used in [cppfront],

and the resulting C+ code works in all recent versions of MSVC, GCC, and Clang.

New information: Since 2024, Clang 19 warns for boolean chains like 0 <= i < j for integer variables i and j, so

now all recent compilers already warn on such chains, but are required to accept them. (All compilers have long

warned on literal cases like 0 <= i < 20 (GCC with -Wall, MSVC and Clang by default) but again are required to

accept them.)

New tool (erroneous behavior): Since Tokyo 2024, we have the new tool of “erroneous behavior” in draft C++26

that we could apply to make invalid chains like a <= b > c either ill-formed or erroneous.

New simplified proposed rules: This paper refines the proposed rules to avoid changing the meaning of con-

structs like a<b == c<d (unchanged in this proposal) and of DSLs that use heavy operator overloading.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://stackoverflow.com/q/8889522/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/14433884/2069064
https://stackoverflow.com/q/46806239/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/38643022/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/20989496/2069064
https://stackoverflow.com/q/35564553/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/37470518/2069064
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://github.com/hsutter/cppfront

P3439 R1 Chained comparisons: Safe, correct, efficient – Sutter 3

1.4 Acknowledgments
Thanks very much to Barry Revzin for [P0893R1] carrying the torch further for this feature, and T.C., Nicolas

Lesser, and Titus Winters who helped him gather data.

Thanks to the following people for their feedback on this paper, and on my paper [P0515R0] where section 3.3

originally proposed this feature: Gašper Ažman, Walter Brown, Casey Carter, Lawrence Crowl, Gabriel Dos Reis,

Vicente J. Botet Escriba, Hal Finkel, Charles-Henri Gros, Howard Hinnant, Loïc Joly, Nicolai Josuttis, Tomasz Ka-

miński, Andrzej Krzemieński, Jens Maurer, Alisdair Meredith, Patrice Roy, Mikhail Semenov, Richard Smith, Oleg

Smolsky, Jeff Snyder, Peter Sommerlad, David Stone, Bjarne Stroustrup, Daveed Vandevoorde, Tony Van Eerd,

and Ville Voutilainen.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r0.pdf

P3439 R1 Chained comparisons: Safe, correct, efficient – Sutter 4

2 Rationale and design alternatives
For detailed rationale and discussion, see [P0893R1].

For convenience, here is a copy of the key results reported in that paper, in the section “Existing Code in C++”

(emphasis is original, highlights are added to draw attention to some key parts):

Existing Code in C++

The first question we sought to answer is the last question implied above: How much code exists today

that uses chained comparison whose meaning would change in this proposal, and of those cases, how

many were intentional (wanted the current semantics and so would be broken by this proposal) or unin-

tentional (compile today, but are bugs and would be silently fixed by this proposal)? Many instances of

the latter can be found in questions on StackOverflow [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

To that end, we created a clang-tidy check for all uses of chained comparison operators, ran it on many

open source code bases, and solicited help from the C++ community to run it on their own. The check it-

self casts an intentionally wide net, matching any instance of a @ b @ c for any of the six comparison oper-

ators, regardless of the types of these underlying expressions.

Overall, what we found was:

• Zero instances of chained arithmetic comparisons that are correct today. That is, intentionally

using the current standard behavior.

• Four instances of currently-erroneous arithmetic chaining, of the assert(0 <= ra-

tio <= 1.0); variety. These are bugs that compile today but don’t do what the programmer in-

tended, but with this proposal would change in meaning to become correct.

• Many instances of using successive comparison operators in DSLs that overloaded these opera-

tors to give meaning unrelated to comparisons.

Finding zero instances in many large code bases where the current behavior is intended means this pro-

posal has low negative danger (not a significant breaking change). However, a converse search shows

this proposal has existing demand and high positive value: we searched for expressions that would bene-

fit from chaining if it were available (such as idx >= 0 && idx < max) and found a few thousand instances

over just a few code bases. That means that this proposal would allow broad improvements across exist-

ing code bases, where linter/tidying tools would be able to suggest rewriting a large number of cases of

existing code to be clearer, less brittle, and potentially more efficient (such as suggesting rewrit-

ing idx >= 0 && idx < max to 0 <= idx < max, where the former is easy to write incorrectly now or under

maintenance, and the latter is both clearer and potentially more efficient because it avoids multiple eval-

uation of idx). It also adds strong justification to pursuing this proposal, because the data show the fea-

ture is already needed and its lack is frequently being worked around today by forcing programmers to

write more brittle code that is easier to write incorrectly.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://stackoverflow.com/q/8889522/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/14433884/2069064
https://stackoverflow.com/q/46806239/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/38643022/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/20989496/2069064
https://stackoverflow.com/q/35564553/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/37470518/2069064
https://medium.com/@barryrevzin/chaining-comparisons-seeking-information-from-the-audience-abec909a1366

P3439 R1 Chained comparisons: Safe, correct, efficient – Sutter 5

3 Proposal: Boolean chains (incl. folds) have their correct

transitive meaning
This paper proposes a refinement of [P0893R1] that may address some of the earlier concerns:

• For an expression E that is an unparenthesized chain of x1 @1 x2 @2 … @n-1 xn, where each @i is a relational

operator ([expr.rel]) or equality operator ([expr.eq]), let the expression E’ be ((x1 @1 x2) && (x2 @2 x3) &&

… && (xn-1 @n-1 xn)) where every xi for 0 < i < n is materialized as an lvalue, and if E’ is valid and of a type

contextually convertible to bool:

o If in E every @i is one of < and <=, or is one of > and >=, or is ==, then E is replaced with E’.

Note For example, comparing integers using min <= index_expression < max will mean the expected

((min <= index_expression) && (index_expression < max)) but with single evaluation of in-

dex_expression.

o Otherwise, if in E every @i is a relational operator, then E is ill-formed.

Note For example, a <= b > c would be ill-formed, just as it is anti-recommended in the languages that

currently allow it (e.g., Python).

• For an expression E that is a fold-expression ([expr.prim.fold]) whose fold-operator is a relational opera-

tor or ==, the instantiation of a fold-expression ([temp.variadic]) produces

o (E1 op E2 op ⋯ op EN) for a unary left fold,

o (E1 op ⋯ op EN−1 op EN) for a unary right fold,

o (E op E1 op E2 op ⋯ op EN) for a binary left fold, and

o (E1 op ⋯ op EN−1 op EN op E) for a binary right fold.

Note For example, for a pack containing a and b, (... <= max) would expand to (a <= b <= max), after

which we treat it using the above chained comparison semantics if applicable.

• No change to other chains. Expressions like a<b == c<d and ((a < b) < c) retain their current reasona-

ble meaning. Existing DSLs that overload comparison operators retain their current meaning.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html

P3439 R1 Chained comparisons: Safe, correct, efficient – Sutter 6

4 Q&A

4.1 What about the implementability concerns previously raised in

EWG, that this would be very hard to implement on compilers

that mix parsing and sema phases?
I’ve discussed the concern with that implementer, and my understanding is that we now agree it’s no longer a

red flag. Because the proposed chains are always unparenthesized, and the compiler already has to look ahead

to the next operator because it might have higher precedence, the parsing can key off the handling of a chained

relational operator.

4.2 Will my user-defined mathematical type work with chained

comparisons?
Yes, because any mathematical type for which if(a<b) works already provides relational comparisons whose

results are contextually convertible to bool, and so will work with chained comparisons.

4.3 What about first having a deprecation period?
It has been suggested that we first deprecate the old construct in one standard, and then make the change in

the next standard.

Deprecation is appropriate where we may be changing the meaning of correct code, but that does not appear to

be the case here. There are two kinds of situation:

• Deprecating code that would change meaning (mathematically reasonable chains, and fold expres-

sions).

o Pros: None. There is no advantage in a deprecation period for these, because in both cases the

current behavior is always a bug — as far as I know, no occurrences have been found so far in

the wild that are working as intended with today’s semantics. Since no valid code relies on the

current behavior, I don’t see any value in warning users that the semantics will change and not

just making the code correct their code.

o Cons: Delayed benefit. First having a deprecation period would delay (by one standard cycle =

three years) the benefits of making existing code correct by just recompiling it. Also, for the per-

vasive cases where today’s users have to write more complex expressions, a deprecation period

would delay delivering the benefits of being able to write simpler and more efficient code with

the feature.

• Deprecating code that would become ill-formed (mathematically nonsense chains):

o Pros: None. Again, because the current behavior is always a bug, and no valid code relies on the

current behavior. Therefore, regardless whether we warn (deprecate) or give an error (make it

ill-formed), the user’s correct response to “this is bad code” is to change their code; so we

should just make it an error.

P3439 R1 Chained comparisons: Safe, correct, efficient – Sutter 7

o Cons: Misguided kindness = permissiveness: It is true that first deprecating would enable users

who have code that contains mathematically nonsense chains to defer fixing their code. How-

ever, because the code is virtually certain to be a bug, I view “let it keep compiling for a while”

as actually a negative (a mistaken kindness), not a positive benefit.

So I see no advantages, only disadvantages, to first deprecating these changes.

4.4 Does this allow any other strong typing benefits?
Gašper Ažman points out that this feature also makes partial bounds easy to use correctly using the type system.

Consider this comparison, where we only want to use LowerBound and UpperBound as part of a chain, not in iso-

lation because we don’t want those partial bounds to be used in isolation:

 LowerBound{1} < y < UpperBound{5}

In this proposal, this performs

 lower_ok_t __a = LowerBound{1} < y;

 upper_ok_t __b = y < UpperBound{5};

and then

 __a && __b

This enables us to make lower_ok_t and upper_ok_t individually not convert to bool because they’re part of a

cohesive check, to prevent them from being used in isolation, and provide bool operator&&(lower_ok_t, up-

per_ok_t) which enables the chain.

This approach allows modeling split “in-range” comparisons with strong types, and LB < y < UB reads correctly

and verifies that the programmer tested both bounds.

P3439 R1 Chained comparisons: Safe, correct, efficient – Sutter 8

5 Proposed wording
After [expr.rel] and [expr.eq], add a new subclause:

x.x.x Chained comparisons [expr.chain]

For an expression E that is an unparenthesized chain of x1 @1 x2 @2 … @n-1 xn, where n > 2 and each @i is a

relational operator ([expr.rel]) or equality operator ([expr.eq]), let the expression E’ be ((x1 @1 x2) && (x2

@2 x3) && … && (xn-1 @n-1 xn)) where each xi for 0 < i < n is evaluated once and treated as an lvalue. If E’ is

valid and the type of E’ is contextually convertible to bool:

• If every @i is one of < and <=, or is one of > and >=, or is ==, then E is replaced with E’.

• Otherwise, if in E every @i is a relational operator, then E is ill-formed.

Change the first bullet list of [temp.variadic] paragraph 14 as follows:

The instantiation of a fold-expression ([expr.prim.fold]) produces:

• If the fold-operator is a relational operator or ==, then:

▪ (E1 op E2 op ⋯ op EN) for a unary left fold,

▪ (E1 op ⋯ op EN−1 op EN) for a unary right fold,

▪ (E op E1 op E2 op ⋯ op EN) for a binary left fold, and

▪ (E1 op ⋯ op EN−1 op EN op E) for a binary right fold.

• Otherwise:

▪ (((E1 op E2) op ⋯) op EN) for a unary left fold,

▪ (E1 op (⋯ op (EN−1 op EN))) for a unary right fold,

▪ ((((E op E1) op E2) op ⋯) op EN) for a binary left fold, and

▪ (E1 op (⋯ op EN−1 (op EN (op E)))) for a binary right fold.

In each case [… etc. as currently …]

6 References
[cppfront] H. Sutter. Cppfront compiler (GitHub, 2022-2025).

[P0515R0] H. Sutter. “Consistent comparison” (WG21 paper, February 2017).

[P0893R1] B. Revzin. “Chaining comparisons” (WG21 paper, April 2018).

https://github.com/hsutter/cppfront
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html

