
Controlling Contract-Assertion Properties

Document #: P3400R0
Date: 2025-01-09
Project: Programming Language C++
Audience: SG21 (Contracts)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Abstract

The Contracts facility proposed in [P2900R12] provides significant flexibility for tool vendors
to enable control over contract-assertion behavior, along with defaults that enable power and
principled use of contract assertions in a wide variety of contexts. Many users, however, demand
in-source input and control over that flexibility, and other advanced features are needed for
widespread adoption of Contracts in more environments. To facilitate these controls, we present
here a design for how to configure contract assertions using compile-time C++ objects, achieving
flexibility, control, and expressivity far better than any bespoke solution can offer.

Contents
1 Introduction 3

2 Proposal 5
2.1 Core Features 5

2.1.1 Assertion-Control Objects 5
2.1.2 Name Lookup in Control Expressions 7
2.1.3 Combining Assertion-Control Objects 8
2.1.4 Integration with contract_violation 8
2.1.5 Ambient-Control Objects 10

2.2 Controllable Properties 11
2.2.1 Identification Labels 11
2.2.2 Allowed-Semantic Control 11
2.2.3 Chosen-Semantic Control 13
2.2.4 Local Violation Handlers 14
2.2.5 Dimensions and Mutual Exclusivity 15
2.2.6 Virtual Function Interface and Implementation Assertions 16
2.2.7 Standard-Library Labels 17
2.2.8 Core-Language Control Labels 17
2.2.9 Profile Labels 18

2.3 Alternative Proposals 18
2.3.1 Disable const-ification 19
2.3.2 Legacy Label Syntax 19
2.3.3 Build Environment 21

1

mailto:jberne4@bloomberg.net

3 Conclusion 21

A Example Implementations 22
A.1 std::contracts::labels::operator| 22

2

Revision History
Revision 0

• Original version of the paper for discussion during an SG21 telecon

1 Introduction
A key feature missing from the Contracts MVP, [P2900R12], is the ability to distinguish contract
assertions from one another by identifying common properties separate from their predicates. Up to
this point, a number of features have been postponed rather than commit to the language a bespoke
syntax for each individual property that might be specified for a contract assertion.

To provide that requested functionality, we propose a mechanism to add a place in the syntax to
produce an assertion-control object from an arbitrary expression, effectively using these objects to
parameterize the various kinds of contract assertions. The individual objects used to constitute an
assertion-control object are, in general, referred to as labels:

struct my_label_t {};

constexpr my_label_t my_label;

void f(int i)
pre<my_label>(i > 0);

Much like how a coroutine’s promise object controls the behavior of a coroutine, the type and value
of the control object alters the behavior of a contract assertion. Because some properties that can
be controlled are static and others are dynamic, the assertion-control object itself is the result of a
constant expression (and hence why my_label above is a constexpr variable).

Multiple labels can be combined easily using operator| that is available when the <contracts>
header is included (see Section 2.1.3):

struct my_label_2_t {};
constexpr my_label_2_t my_label_2;

void g(int i)
pre<my_label | my_label_2>(i > 0);

Once available, assertion-control objects allow features that will enable us to achieve the following
fine-grained control over the properties of contract assertions.

• Guide the implementation-defined selection of contract-evaluation semantics or control other
external tools that apply to source code (see Section 2.2.1).

• Restrict the set of allowed evaluation semantics for a contract assertion (see Section 2.2.2).

• Control the effective semantic with which a contract assertion will be evaluated (see Sec-
tion 2.2.3).

• Use an alternate contract-violation handler, or wrap the default contract-violation handler
(see Section 2.2.4).

3

• Denote whether a function contract assertion is caller facing or callee facing (see Section 2.2.6).

Consider, for example, a library that has the following requirements for its function contract
assertions.

• Contract assertions should always be enforced or quick-enforced.

• When a contract-violation handler is invoked, a library-specific version should be invoked first.

The first task can be accomplished with a simple label that identifies the named evaluation semantics
as the only ones that can be used:

struct enforce_or_quick_enforce_t {
static constexpr evaluation_semantic_set allowed_semantics =

evaluation_semantic_set(evaluation_semantic::enforce,
evaluation_semantic::quick_enforce);

};
constexpr enforce_or_quick_enforce = {};

Another label to provide a contract-violation handler that will be invoked first and then delegate to
the globally installed one is equally simple to define:

struct my_library_violation_handler_t {
std::true_type handle_contract_violation(

const std::contracts::contract_violation& violation)
{

// Do stuff with violation object.
return {}; // Return true value to continue on to next handler;

// returning false or void would finish handling
// of the violation.

}
}
constexpr my_library_violation_handler = {};

These labels can then be combined into one label with both properties using the free function
std::contracts::combine_labels:

constexpr auto my_lib_assertion =
std::contracts::combine_labels(enforce_or_quick_enforce,

my_library_violation_handler);

Then, this combined control object can be used for contract assertions to both limit the allowed
evaluation semantics and hook in the library-specific violation handling:

void f()
pre<my_lib_assertion>(true)
post<my_lib_assertion>(true)

{
contract_assert<my_lib_assertion> (true);

}

Other features described below would allow you to apply these assertion-control objects as the
default for all contract assertions in a scope (see Section 2.1.5) or as the control object for implicit
preconditions of core-language operations (see Section 2.2.8).

4

Tools to reduce verbosity when writing the expressions that initialize assertion-control objects are
described in Section 2.1.2, and the ability to combine assertion-control objects using operator|
within assertion-control expressions is described in Section 2.1.3.

A number of the use cases for assertion-control objects are simple and ubiquitous enough including
such objects in the Standard Library itself is clearly justified so that simple wheels do not need to
be regularly reinvented; these use cases are described in Section 2.2.7.

Finally, assertion-control objects provide a mechanism to describe and control the behaviors of
implicit contract assertions as introduced by [P3100R1], which we describe in Section 2.2.8.

Put all together, pursing this design for labels will allow the Standard to provide the rich and
effective set of controls needed in all environments where C++ is used.

2 Proposal
We will break down details of this proposal into two basic categories.

1. Section 2.1, the core features, explains how we attach assertion-control objects to contract
assertions, describes ways to improve the usability of assertion-control objects, and discusses
their various applications.

2. Section 2.2, the controllable properties, are those things that assertion-control objects can
actually do. Each such property will specify

• what concept an assertion-control object must satisfy to control the property in question

• how assertion-combined assertion-control objects will determine if (and how) they satisfy
the concept

• what properties change based on the values and behavior of assertion-control objects
that satisfy the concept

2.1 Core Features

2.1.1 Assertion-Control Objects

An assertion-control object can be thought of as a parameter for the type of a contract assertion,
and we leverage the well-known C++ syntax of using angle brackets (< and >) to specify type
parameters.

To begin with, we will modify the grammar productions for pre, post, and contract_assert to have
an optional assertion-control expression:

function-contract-specifier :
precondition-specifier
postcondition-specifier

precondition-specifier :
pre assertion-control-specifieropt attribute-specifier-seqopt (conditional-expression)

postcondition-specifier :
post assertion-control-specifieropt attribute-specifier-seqopt (result-name-introduceropt
conditional-expression)

5

assertion-statement :
contract_assert assertion-control-specifieropt attribute-specifier-seqopt (conditional-
expression) ;

assertion-control-specifier :
< constant-expression >

The specified constant-expression is a manifestly constant-evaluated expression whose type must be
a class type, so it must satisfy the assertion_control_object concept:

namespace std::contracts::labels {
template <class T>
concept assertion_control_object = std::is_class_v<T>;
}

Note the following caveats:

• Special meaning might be given in the future to particular scalars (such as values of
std::contracts::evaluation_semantic), but they will need specific core-language support
that is not proposed in this paper. To maintain freedom to adopt such proposals in the future,
we restrict assertion-control objects to class types for now.

• To make some of the other features here more targeted and to avoid degenerate misuse
of assertion-control objects, we might consider instead specifying this concept to require a
particular tag be used to identify assertion-control objects:

namespace std::contracts::labels {
template <class T>
concept assertion_control_object =

requires (typename T::assertion_control_object; };
}

For every contract assertion, an assertion-control object will be created that is initialized by the
constant-expression in the assertion-control specifier.

• To avoid requiring that these objects get names that are mangled, we leave unspecified whether
the same object is used for all instances of the same contract assertion. This property will
become observable when we expose the assertion-control objects to the contract-violation
handler later (in Section 2.1.4).

• Naturally, if the assertion-control expression is not a constant expression, the program is
ill-formed, and this error is not subject to SFINAE.

• We do not want to support assertion-control objects being different in different translation
units for the same contract assertion, so we require that equivalent objects be produced by
the expressions regardless of when they are evaluated. Of course, the same object can still
produce different results when queried for different evaluations of the same contract, such as
when determining the contract-evaluation semantic as described in Section 2.2.3 below.

• The expression in all other ways behaves as any other constant expression with regards to
name lookup, overload resolution, and other behaviors.

6

Proposal 1: Assertion-Control Objects

Allow an optional assertion-control-expression to be specified as part of a precondition-specifier,
postcondition-specifier, or assertion-statement.

2.1.2 Name Lookup in Control Expressions

To minimize the redundant overhead of using labels as parts of assertion-control objects, the names
of labels, especially commonly used ones, must be short. These names are also only particularly
useful within the context of assertion-control expressions, so introducing short names into enclosing
namespaces where they can do nothing but cause conflicts would be a clear downside.

To facilitate using concise names without causing conflicts for enclosing code, we introduce a new
kind of using directive and using declaration that introduce, into the enclosing scope, names that
are found only within assertion-control expressions within that scope:

assertion-control-using-directive :
attribute-specifier-seqopt ‘contract_assert‘ ‘using‘ ‘namespace‘ nested-name-specifieropt
namespace-name ‘;‘

assertion-control-using-declaration :
‘contract_assert‘ ‘using‘ using-declarator-list

Note the following caveats:

• Because a new keyword, contract_assert, is already unambiguously associated with contract
assertions, we make use of that same keyword for these new kinds of statements. Alternative
syntax proposals are welcome.

• Unlike user-defined literals, which make use of nested namespaces and normal using directives,
no overlap occurs between the literal operations introduced into a namespace and other
uses of entities within that namespace. In other words, adding a using directive to include
std::literals does not pollute the results of name lookup for anything other than user-defined
literal suffixes. Doing the same for contract-assertion labels would not be possible since they
are simply regular C++ variables.

• Segregating names intended to be used as labels into their own namespace is still helpful so
that unwanted names are not pulled into name lookup indiscriminately. Therefore, we propose
that Standard-Library labels be placed in the namespace std::contracts::labels.

• The Standard-Library labels should all be usable easily when importing or including the
<contracts> header, so that header should include a assertion control using directive:

// ... in <contracts>, in the global namespace:
contract_assert using namespace std::contracts::labels

Proposal 2: Assertion Using Directives

Introduce assertion-control-using-directives and assertion-control-using-declarations that make
additional names available within assertion-control expressions.

7

2.1.3 Combining Assertion-Control Objects

A primary benefit of allowing arbitrary expressions to determine the values of assertion-control
objects is that these expressions enable combining different labels in arbitrary ways. Consider, for
example, that we might have labels with orthogonal purposes, such as to mark a label as being
expensive to execute (and thus disabled in most builds) and as being newly introduced (and thus
preferring to be observed instead of enforced).

To standardize the combining of labels, we choose an overloaded operator| as the mechanism that
will be used when two assertion-control objects need to be combined.

Importantly, a default implementation is provided in the namespace std::contracts::labels that
will produce an assertion-control object with the combined properties of both its arguments:

namespace std::contracts::labels {
template <assertion_control_object LHS,

assertion_control_object RHS>
constexpr assertion_control_object auto operator|(

const LHS& lhs,
const RHS& rhs);

}

A full implementation of this function can be found in Appendix A.1, and for each individual
property we propose, we will describe how the combined assertion-control object it returns will
behave.

By implementing the combination logic as a library function, we make supporting vendor-provided
extension properties easier and allowing users to define their own combination semantics simpler if
the Standard-provided ones do not match their needs.

Proposal 3: Assertion-Combination Operator

Provide a free-function operator| in the namespace std::contracts::labels that returns an
assertion-control object with all properties of both its operands.

2.1.4 Integration with contract_violation

By having a single assertion-control object for any contract assertion that might be violated, a
natural way to expose such objects to the contract-violation handler appears: Provide a pointer to
that assertion-control object from the contract_violation object.

Such a pointer would, however, be somewhere between highly unsafe to use and totally useless for
most objects. A category for which it is viable, however, is for polymorphic objects that can then
be inspected with dynamic_cast. Therefore, we add a function to contract_violation to access the
control object that returns nullptr if the control object was not polymorphic and a pointer to the
control object otherwise:

namespace std::contracts {
class contract_violation {

public:
// ...

8

void *control_object() const noexcept;
// ...

}

A violation can then be inspected to see if it has a particular kind of assertion-control object:
struct my_dynamic_tag {

virtual ~my_dynamic_tag() = default;
};

void handle_contract_violation(const contract_violation &violation)
{

if (auto* dynamic_tag =
dynamic_cast<my_dynamic_tag*>(violation.control_object()) != nullptr) {

std::cout << "Dynamic Tag!\n";
}
else {

std::cout << "No Dynamic Tag\n";
}

}

void f()
pre<my_dynamic_tag>(false) // prints "Dynamic Tag!"
pre(false); // prints "No Dynamic Tag"

For combined assertion-control objects, however, access to the object alone is not particularly
useful. To facilitate identifying if any labels of a particular type are present, a utility function in
std::contracts can search for such objects:

namespace std::contracts {
template <typename T>
T* get_constituent_label(void* control_object);
}

A combined control object will be polymorphic if and only if one of its constituent objects is
polymorphic. The above function, get_constituent_label, will perform the following tasks.

• If control_object is an instance of T, return that.

• If control_object is a combined control object, recursively apply get_constituent_label to
the constituent objects until one of them returns a non-nullptr value.

• Otherwise, return nullptr.

The violation handler shown earlier can be updated to handle combined objects as well:
#include <contracts>
void handle_contract_violation(const contract_violation &violation)
{

if (auto* dynamic_tag =
get_constituent_label<my_dynamic_tag>(violation.control_object())

!= nullptr) {
std::cout << "Dynamic Tag!\n";

9

}
else {

std::cout << "No Dynamic Tag\n";
}

}

void f()
pre<my_dynamic_tag> (false) // prints "Dynamic Tag!"
pre<my_dynamic_tag | review> (false) // prints "Dynamic Tag!"
pre (false); // prints "No Dynamic Tag"

Proposal 4: Access-Control Object on Violation

Add an accessor for polymorphic assertion-control objects to contract_violation,
add get_constituent_label, and make combined assertion-control objects conditionally
polymorphic.

2.1.5 Ambient-Control Objects

A variety of use cases for assertion-control objects dictate that they be specifiable not only on single
contract assertions, but also on a range of assertions identified by scope or context:

• all member functions of a particular class

• all functions declared within a particular namespace

• all functions invoked from a particular context

In each of these cases, attaching an assertion-control object to the corresponding context would
be helpful. Such a feature, however, would result in multiple sources of assertion-control objects
being possible for a single contract assertion since these scopes are not mutually exclusive and
since an explicit assertion-control expression may also be present on the assertion. In all such cases,
the assertion-control expression used for the contract assertion will be the result of combining the
constituent ambient objects with the explicit one on the assertion using operator|. If overload
resolution fails for that operator, the contract assertion is ill-formed.

As an example, we can introduce an implicit control-object declaration that can be used at class or
namespace scope:

implicit-assertion-control-directive :
‘contract_assert‘ ‘implicit‘ ‘<‘ expression ‘>‘ ‘;‘

Some requirements must be added to ensure that the final assertion-control expression used for each
individual contract assertion is well defined and manageable.

• Having multiple such declarations in the same class definition or namespace scope is invalid.

• The ambient assertion-control objects of a function contract assertion are those of the namespace
where the first declaration of the function occurs, followed by those of the class definition.

• The ambient assertion-control objects of an assertion statement are those of the enclosing
namespace followed by those of the defining class.

10

Proposal 5: Ambient-Control Objects

Introduce implicit-assertion-control-directives that add ambient assertion-control objects to
namespace and classes, combined with any explicit assertion-control object using operator|.

2.2 Controllable Properties

With great flexibility to specify arbitrary objects to control the behavior of contract assertions, we
get absolutely nothing unless we also define behaviors associated with those objects. To that end,
we define various concepts that assertion-control objects can satisfy and the associated behaviors
that come when an assertion-control object does satisfy those concepts.

2.2.1 Identification Labels

The simplest use case for assertion-control objects and their constituent labels is to identify groups of
contract assertions so that source-based tools can manipulate those groups. In particular, compilers
can give users control over the default evaluation semantics chosen for such groups and how groups
will interact when combined without impacting other groups when such control is exerted.

No additional proposal is needed for this functionality; the simple existence of assertion-control
objects allows full command-line control of labelled contract assertions to be provided by vendors.

2.2.2 Allowed-Semantic Control

Three absolutely needed use cases arise where contract assertions must restrict the range of semantics
that might be applied to a contract assertion.

1. When a contract-assertion predicate can be written only in a destructive manner, writing
that contract assertion might still be useful. A common example is preconditions involving
iterators that might be input iterators:

template <typename IT>
void f(IT begin, IT end)

pre(std::distance(begin,end) > 5); // destructive for input iterators

Such contract assertions must be restricted from ever being evaluated with a checked semantic.

2. Many codebases consider allowing narrow contracts that are unchecked to be unacceptable
risks, and allowing the evaluation of contract assertions written in those contexts with any
semantic that does not check and enforce the assertion is considered unacceptable.

3. Certain codebases are equally allergic to the prospect of enabling unconditional termination
and must always continue normally even when known bugs are present. In such cases, users
would want to explicitly preclude the use of the enforce or quick-enforce semantics.

In addition, in some cases, finer control over assertion-evaluation semantics becomes important,
such as when a particular semantic results in particularly unacceptable code generation or, worse,
triggers a compiler bug.

11

To facilitate this control, we define a type in the std::contracts namespace to
represent a set of evaluation semantics, with a simple constexpr subset of the API of
std::set<std::contracts::evaluation_semantic>:

class evaluation_semantic_set {
public:

// Constructors
constexpr evaluation_semantic_set();
constexpr evaluation_semantic_set(const evaluation_semantic_set& other);
constexpr evaluation_semantic_set(std::initializer_list<evaluation_semantic> ilist);

// Accessors
constexpr bool contains(evaluation_semantic semantic) const;
constexpr std::size_t size() const;

// Modifiers
constexpr void clear();
constexpr void insert(std::initializer_list<evaluation_semantic> ilist);
constexpr void erase(evaluation_semantic);

// Set operations
constexpr evaluation_semantic_set& operator&=(const evaluation_semantic_set& rhs);
constexpr evaluation_semantic_set& operator|=(const evaluation_semantic_set& rhs);
constexpr evaluation_semantic_set& operator~() const;

friend constexpr evaluation_semantic_set operator&(const evaluation_semantic_set& lhs,
const evaluation_semantic_set& rhs);

friend constexpr evaluation_semantic_set operator|(const evaluation_semantic_set& lhs,
const evaluation_semantic_set& rhs);

// Comparisons
friend constexpr bool operator==(const evaluation_semantic_set& lhs,

const evaluation_semantic_set& rhs);

// Utility Factories

static constexpr evaluation_semantic_set all();
static constexpr evaluation_semantic_set none();

};

An assertion-control object with an accessible const member named allowed_semantics that can
initialize an evaluation_semantic_set will limit the possible set of evaluation semantics for the
associated contract assertion to those in the set. In other words, assertion-control objects can opt in
to this feature by modelling the following concept:

namespace std::contracts::labels {
template <typename T>
concept allowed_semantics_label =

requires (const T t) {
requires std::is_const_v<decltype(T::allowed_semantics)>;

12

evaluation_semantic_set({t.allowed_semantics});
};

};

We require that the member be const to give the implementation the freedom to query the value at
any time and use it asynchronously, relying on the elements of this set being unable to change once
an assertion-control object has been constructed.

A combined assertion-control object will satisfy this concept if either of its constituent elements
does, and its allowed_semantics member will have the intersection of all the corresponding members
of its constituents.

When an implementation selects an implementation-defined semantic for a contract assertion, it
shall always be from one of those semantics in the associated allowed_semantics set. If the set is
empty or the chosen semantic is not in the allowed set, the program is ill-formed. Implementations
are encouraged to document ways in which they will look at the set of allowed semantics and adjust

— in a manner acceptable to users — the chosen semantic to be one of those in the set; in general,
this adjustment will be the selection of a more conservative semantic.

Proposal 6: Allowed-Semantics Control

Allow evaluation of contract assertions with only the allowed_semantics of the associated
assertion-control object. Combined objects intersect the sets of allowed semantics.

2.2.3 Chosen-Semantic Control

One of the most important use cases for labels is that of introducing logic that manipulates the
semantic that will be used for a given contract assertion. In particular, having a review label that
can be used to mark contract assertions that are being newly introduced into a codebase is essential
to deploying Contracts successfully at scale.

An assertion-control object with a constexpr compute_semantic member function can be used to alter
the semantic that will be chosen for the associated contract assertion; in other words, assertion-control
objects can opt in to this feature by modelling the following concept:

namespace std::contracts::labels {
template <typename T>
concept semantic_computation_label =

requires(T t, evaluation_semantic s) {
evaluation_semantic(t.compute_semantic(s));

};
}

A combined assertion-control object will implement the above member to pass its input to each
constituent object in turn if either constituent object models semantic_computation_label.

When an implementation-defined semantic is chosen, it is then passed to the compute_semantic
function of the assertion-control object, and the result of that function is used as the semantic for
the evaluation.

13

• If the assertion-control object also models allowed_semantics_label and the result is not in
that set, the program is ill-formed. Importantly, these two modes of influencing the semantic
for a contract assertion are not mutually exclusive. Making them so would preclude the ability
to use many compound assertion-control objects, such as never_assume | review.

• What values will be passed at compile time to compute_semantic is implementation defined. At
a minimum, when a contract assertion is going to be evaluated with a particular compiler-chosen
semantic, that semantic will be transformed first using compute_semantic. Other compilation
choices, such as delaying the choice of semantic to link-time or runtime, can result in the
compiler needing to call compute_semantic for a single contract assertion many times — for
each possible evaluation semantic — to determine the set of actual semantics that will be
available to evaluate that contract assertion. (In other words, when the final choice of evaluation
semantic will not happen until after the compilation phase of a translation unit, the compiler
may need to build a full mapping from user-chosen semantic to computed semantic.)

An assertion-control object’s compute_semantic member function might, for example, use legacy
macros to determine its output or possibly even some other mechanism to enable user-defined
configuration of a translation unit.1

Proposal 7: Compute Semantics

Compute the evaluation semantic of contract assertions using the compute_semantic member
of the assertion-control object (if there is one).

2.2.4 Local Violation Handlers

Customizing contract-violation handling for specific contexts and specific contract assertions is an
oft-requested feature.

• Libraries and components might need to fail fast for safety or security reasons and to prevent
the escape of additional information via a user-chosen contract-violation handler.

• Other libraries might wish to log additional state information on certain failures — e.g.,
what request was being processed at the time of failure or what the subsystem configuration
was — and to do so before delegating the primary logic of contract-violation handling to the
user-chosen global violation handler.

An assertion-control object that models the following concept will be able to insert its own contract-
violation handling logic:

namespace std::contracts::labels {
template <typename T>
concept local_violation_label =

requires(std::remove_const_t<T> t, const contract_violation& v) {
t.handle_contract_violation(v);
requires (std::is_same_v<decltype(t.handle_contract_violation(v)), void>

|| std::is_convertible_v<decltype(t.handle_contract_violation(v)),bool>);
};

}

1For a suggestion of a possible future proposal that might enable this kind of configuration without the use of the
preprocessor, see the build environment described in Sections 2.3.3–2.3.5 of [P2755R1].

14

In other words, the assertion-control object must have a member function that is a contract-violation
handler that returns void or bool.

When the associated contract assertion is violated, the contract_violation object will be passed
first to the handle_contract_violation member of its assertion-control object. If the return type
is void or its value is true, violation handling will complete if the local violation handler returns
normally, i.e., if the handler has handled the contract violation.

A combined assertion-control object will evaluate the handle_contract_violation members of its
constituent objects from right to left. This can be thought of as control flowing back from the
predicate to the global contract-violation handler, which is the default and which comes last. If any
handler returns void or true, indicating the the violation has been handled, the next handler in
order will not be invoked.

Proposal 8: Local Violation Handlers

Invoke the handle_contract_violation member of the assertion-control object (if there is
one).

2.2.5 Dimensions and Mutual Exclusivity

Occasionally, users will want to make certain labels mutually exclusive. In some cases, this simple
requirement is imposed because particular labels just do not make sense when used together. In
other cases, a value is associated with which member of a mutually exclusive family of labels is
being used, such as the cost of evaluation associated with default or audit from C++2a Contracts.

Since at least some of these mutually exclusive families of labels have values associated with them, we
can think of each such family as a dimension that is associated with the resulting assertion-control
object. The dimensions of a label can be expressed by a specialization of the following template:

namespace std::contracts::labels {
template<typename... Dims>
struct dimension_list {};
}

An assertion-control object has a dimension any time it declares a nested name that is a specialization
of std::contracts::labels::dimensions, i.e., when it satisfies the following concept2:

namespace std::contracts::labels {
template <typename T>
concept dimensioned_label =

is_specialization_of_v<typename T::dimensions, dimension_list>;
}

The primary purpose of these dimensions, of course, is to control what happens when multiple labels
that have dimensions are combined.

2This implementation assumes the presence of a Standard Library trait is_specialization_of, such as proposed
in [P2098R0], or some similar functionality.

15

• The dimensions of a combined label is the concatenation of all dimensions of its constituent
labels, (if any).

• If any intersection occurs in the dimensions of the constituent labels, the combined label is
ill-formed.

Proposal 9: Label Dimensions

Recognize dimensions on labels, combine them, and make combining labels with overlapping
dimensions ill-formed.

2.2.6 Virtual Function Interface and Implementation Assertions

The proper guarantees to provide when invoking a virtual function are to check the contract of both
the statically invoked function and the final overrider selected by dynamic dispatch.3 Therefore,
precondition and postcondition specifiers on the declaration of a virtual function apply when both
using that declaration for dynamic dispatch and when the declaration is invoked.

Sometimes, however, specifying distinct contract assertions for the caller-facing set and the callee-
facing set is helpful, especially when a virtual function provides a significantly less specific interface
than the actual definition of that virtual function does.

Both these properties are the default unless an assertion-control object with a caller_facing or
callee_facing member is associated with the contract assertion, i.e., an assertion-control object
that satisfies one (or both) of the following two concepts:

namespace std::contracts::labels {
template <typename T>
concept caller_facing_label =

requires(T t) {
typename T::caller_facing;

};

template <typename T>
concept callee_facing_label =

requires(T t) {
typename T::callee_facing;

};
}
}

A combined control object will satisfy either of these concepts if any of its constituent control objects
do.

3See [P3097R0], which has been incorporated into [P2900R12].

16

Proposal 10: Caller-Facing and Callee-Facing Control

Recognize assertion-control objects with the caller-facing and callee-facing members to
control whether the associated function contract assertion is considered part of the caller-
facing or callee-facing sets of contract assertions when invoking a function, including virtual
dispatch where different function declarations are used for the two sets.

2.2.7 Standard-Library Labels

The Standard Library should provide common labels that are either simple enough to preclude
rewriting everywhere or ubiquitous enough to be useful as a vocabulary type for common uses of
assertion-control objects. These common labels will include the following basic label types.

• Explicit Semantic Labels — For each standard evaluation semantic, provide a label prefixed
with always_ that models semantic_computation_label and always returns the named semantic.
Explicit semantic labels should be mutually exclusive.

• Disallowed Semantic Labels — For each standard evaluation semantic, provide a label
prefixed with never_ that models allowed_semantics_label whose allowed_semantics member
is evaluation_semantic_set::all() with the named semantic removed.

• Review Label — A label named review models semantic_computation_label and returns
evaluation_semantic::observe when a potentially terminating semantic is passed in as the
chosen semantic.

• Other Feature Labels — For any other proposed features, such as the ability to control
whether a contract assertion is caller facing and callee facing, provide basic labels to opt in to
those features.

Proposal 11: Standard Labels

Provide a basic set of Standard Library assertion-control labels.

2.2.8 Core-Language Control Labels

Implicit contract assertions for core-language constructs, as explained in [P3100R1], are a powerful
way to provide Standard mechanisms to manage and mitigate the risks of undefined behavior in the
C++ language without any need to compromise on the available performance of C++ programs.

Such preconditions can interact with assertion-control objects in two ways.

1. Each type of implicit contract assertion introduced by the Standard should specify a Standard-
Library label that is an otherwise-empty object that is the assertion-control object of
that contract assertion. These Standard-Library labels will then provide two key pieces of
functionality:

(a) A portable way to discuss and configure the evaluation semantic of implicit contract
assertions

17

(b) A mechanism to have other contract assertions controlled as part of the same group by
specifying these labels as their assertion-control objects

2. Within particular contexts, it can be helpful to attach new labels to particular types of implicit
contract checks. For example, in a particular context, bounds checking might be found to be
excessively impactful to performance, so adding the audit label to all implicit bounds checks
in a certain scope can help achieve the performance needed in a piece of hot-path code while
leaving the check available to be enabled in slower builds that are used for testing.

Proposal 12: Implicit Contract Labels

Provide labels in the Standard Library that match the assertion-control objects that will be
used for each kind of implicit precondition check adopted by the Standard.

Proposal 13: Ambient-Implicit Labels

Extend ambient-control objects to have a mechanism to apply them to specific kinds of
implicit contract assertions.

2.2.9 Profile Labels

Profiles, as specified in [P2816R0] and more concretely in [P3081R0], might be able to either
introduce or be associated with implicit contract assertions. In such cases, the association is useful
to achieve by associating a named label from the Standard Library with the associated implicit
contract assertions.

For example, array bounds checking might have associated with it the assertion-control object
std::contracts::labels::bounds. Just as with other labels on implicit contract assertions, these
provide both a mechanism to manipulate the chosen evaluation semantics and a way to have other
precondition checks (such as the preconditions of std::vector::operator[]) use the same label to
be controlled with other aspects of the profile as a group.

Proposal 14: Profile Labels

Provide labels in the Standard Library that are associated with each Standard profile and
are attached to any contract assertions associated with or introduced by the named profile.

Note that both this proposal and the previous one (Proposal 12) might add labels to the same
contract assertions, and in such cases, the assertion-control object will be the combination of all
added labels using operator|.

2.3 Alternative Proposals

Some functionality of assertion-control objects and labels is omitted from the proposals in this
paper. In some cases, SG21 has not had consensus to pursue these features, and in other cases, the
features are postponed for future work because they serve even more niche use cases.

18

2.3.1 Disable const-ification

As discussed in [P3261R2], one possible escape hatch from const-ification that contract-assertion
predicates could have is the ability to simply turn off const-ification when a label modelling a
particular concept is attached to a contract assertion.

This approach to const-ification, however, is heavy handed and avoids recording the actual specific
objects that need to be manipulated as non-const objects without actually modifying them. An
operator to control const objects is much easier to use and provides significantly better expressiveness.

In addition, this approach was discussed and polled in an SG21 telecon, where it had almost no
support:

SG21, Teleconference, 2024-12-12, Poll 2

We want to spend more SG21 time considering an optional label to contract assertions that
suppresses const-ification, as proposed in [P3261R2] Proposal E2.
SF F N A SA
1 1 1 11 2

Result: Consensus Against

SG21, Teleconference, 2024-12-12, Poll 3

We want to spend more SG21 time considering having labels for both suppressing and enabling
const-ification, and making a contract assertion without such a label ill-formed, as proposed
in [P3261R2] Proposal E3.
SF F N A SA
2 0 0 4 9

Result: Consensus Against

Given the above results, pursuing this option as a possible controllable property of contract assertions
does not seem viable.

2.3.2 Legacy Label Syntax

C++2a contracts contained a nascent ability to provide some basic labels for contracts. This
functionality included the audit and axiom labels that were initially proposed as well as the concrete
semantics introduced by [P1429R3] and [P1607R1].

These labels were all individual identifiers that were placed as part of a contract assertion between
the introducer and the expression, with only white space separating the labels themselves. Various
expansions to this syntax are explored in many parts of [P2755R1], including an attribute-based
mechanism for attaching types (with their associated behavior) to user-defined labels.

That approach had some basic benefits that this proposal does not have.

• Using labels had less syntactic overhead compared to the required template-like syntax (using
< and >) of this proposal.

19

• By not being part of otherwise normal C++ expressions, user-defined labels were able to make
use of identifiers that would be keywords in other contexts, such as new or default.

• The approach to labels from [P2755R1] has been implemented in a fork of GCC based on its
C++2a Contracts implementation.

20

On the other hand, by moving to assertion-control objects, we gain significant advantages.

• Bespoke methods of combining labels do not need to be baked into the core language
but instead are part of the Standard Library (through the definition of
std::contracts::labels::operator|()), and users are freely able to customize their labels
differently if the Standard’s decisions are not appropriate.

• No new mechanism, such as the contract_label_id specifier described in [P2755R1], need
be defined to attach user-provided types and values to labels that can be used on contract
assertions.

• Disambiguation rules need not be defined nor future evolution limited due to potential conflicts
with existing labels in use.

• No new syntax for, for example, parameterized labels need be defined since all the needed
functionality is already freely available for use in constant expressions.

Due to these benefits, we are pursing an entirely expression-based mechanism for assertion control
instead of the previous bespoke sequence of identifiers-based mechanism.

2.3.3 Build Environment

One of the primary ways in which existing macro-based facilities benefit from being implemented
using the C++ preprocessor is that their behavior can be controlled from the command line when
compiling by providing definitions (or not providing such definitions) to various macros.

The most common example of such a control is the NDEBUG macro used to control the behavior of
the assert() macro.

[P2755R1] described the idea of a build environment that would provide a map of values that could
be specified on the command line and then accessed locally during constant evaluation using a new
consteval API. Such an API would largely bridge the remaining gap between the abilities of the
preprocessor and those of constant evaluation.

On the other hand, such an API would be hugely impactful in several ways that need exploration
before it could be reasonably adopted. Its adoption can also be done at a later date, and assertion-
control expressions could easily take advantage of it as soon as it does become available.

Due to that, we do not consider such an API fundamental to the basic proposal of labels and will
likely instead pursue it separately at a future time.

3 Conclusion
In this paper, we have presented many layers that result in a power extension to the Contracts
facility proposed in [P2900R12]. These extensions vastly extend the use cases supported by Contracts
to include those that will be necessary for extensive real-world deployment of Contracts in C++
codebases around the world for many years to come.

21

A Example Implementations

A.1 std::contracts::labels::operator|

An implementation will be provided in a future revision of this paper, making explicit what
behaviors we expect when combining labels that satisfy the concepts proposed in this paper. An
in-progress partial implementation that supports some of the concepts discussed here can be found
at https://godbolt.org/z/nGE9Ez9r4.

Acknowledgments
Thanks to the many people who have helped contribute to [P2900R12]; that foundation allows the
proposals in this paper to be developed.

Thanks to Iain Sandoe, Timur Doumler, Peter Bindels, and Ville Voutilainen for feedback on this
paper and to Lori Hughes for reviewing this paper and providing editorial feedback.

Bibliography
[P1429R3] Joshua Berne and John Lakos, “Contracts That Work”, 2019

http://wg21.link/P1429R3

[P1607R1] Joshua Berne, Jeff Snyder, and Ryan McDougall, “Minimizing Contracts”, 2019
http://wg21.link/P1607R1

[P2098R0] Walter E Brown and Bob Steagall, “Proposing std::is_specialization_of”, 2020
http://wg21.link/P2098R0

[P2755R1] Joshua Berne, Jake Fevold, and John Lakos, “A Bold Plan for a Complete Contracts
Facility”, 2024
http://wg21.link/P2755R1

[P2816R0] Bjarne Stroustrup and Gabriel Dos Reis, “Safety Profiles: Type-and-resource Safe
programming in ISO Standard C++”, 2023
http://wg21.link/P2816R0

[P2900R12] Joshua Berne, Timur Doumler, and Andrzej Krzemieński, “Contracts for C++”, 2024
http://wg21.link/P2900R12

[P3081R0] Herb Sutter, “Core safety Profiles: Specification, adoptability, and impact”, 2024
http://wg21.link/P3081R0

[P3097R0] Timur Doumler, Joshua Berne, and Gašper Ažman, “Contracts for C++: Support
for virtual functions”, 2024
http://wg21.link/P3097R0

[P3100R1] Timur Doumler, Gašper Ažman, and Joshua Berne, “Undefined and erroneous
behaviour are contract violations”, 2024
http://wg21.link/P3100R1

22

https://godbolt.org/z/nGE9Ez9r4
http://wg21.link/P1429R3
http://wg21.link/P1607R1
http://wg21.link/P2098R0
http://wg21.link/P2755R1
http://wg21.link/P2816R0
http://wg21.link/P2900R12
http://wg21.link/P3081R0
http://wg21.link/P3097R0
http://wg21.link/P3100R1

[P3261R2] Joshua Berne, “Revisiting const-ification in Contract Assertions”, 2024
http://wg21.link/P3261R2

23

http://wg21.link/P3261R2

	1 Introduction
	2 Proposal
	2.1 Core Features
	2.1.1 Assertion-Control Objects
	2.1.2 Name Lookup in Control Expressions
	2.1.3 Combining Assertion-Control Objects
	2.1.4 Integration with contract_violation
	2.1.5 Ambient-Control Objects

	2.2 Controllable Properties
	2.2.1 Identification Labels
	2.2.2 Allowed-Semantic Control
	2.2.3 Chosen-Semantic Control
	2.2.4 Local Violation Handlers
	2.2.5 Dimensions and Mutual Exclusivity
	2.2.6 Virtual Function Interface and Implementation Assertions
	2.2.7 Standard-Library Labels
	2.2.8 Core-Language Control Labels
	2.2.9 Profile Labels

	2.3 Alternative Proposals
	2.3.1 Disable const-ification
	2.3.2 Legacy Label Syntax
	2.3.3 Build Environment

	3 Conclusion
	A Example Implementations
	A.1 std::contracts::labels::operator|

